Case Study: | Want To Fault My BIKE

On the Feasibility of Electromagnetic Fault Injection Attacks Against The
BIKE Cryptosystem

Jeremy Boy, Jack Mahl, Robin Sehm

2024-05-30

Contents

1.1 1 rkl e

[2.1 Linear Codes and (Quasi-)Cyclic Codes|
[2.2 McEliece Cryptosystem and Niederreiter Cryptosystem|

3 BIKE Key Recovery|

[3.1 Key Properties and Faultability]
[3.2 Key Recovery Algorithm|

4 Hardwarel

[4.1.1 Target Mounting Plate] 0 0.
[4.1.2 Safe Construction of ChipSHOUTER Location|
[4.2 Challenges|
4.2.1 Cooling| e e
[4.2.2 Controllable Relay|o oo oo
E3PIOW - - o o o et e
[4.3.1 Power and Data Layout|. 0.
[4.3.2 Connection between Stages and Controller]

(5 Experiments|

(5.2 Probing Experiment| o oo
[>.2.1 Probing Protocol|. oo
[5.2.2 Building the Probing Firmware|. 00000000
[5.3 BIKE Attack and Combined Probing|
[5.3.1 Building the BIKE Firmware|0 0000000
[>.3.2 Locating the Intermediate Key|
[5.3.3 The BIKE Faulting Attack Script|

Evaluation and Resul

[6.3 Additional Challenges and Findings|

.2 Reliable Reset]l
[6.3.3 Probe Position and Tip| oo
[6.3.4 Variability in EMFI Resistance|.

11

13
13
13
13
14
15
15
16
16
16

20
20
22
23
26
26
29
29
30

39

1 Introduction

This report documents the construction of an electromagnetic fault injection (EMFTI) sta-
tion, how to find suitable locations for injecting faults on the device-under-test (DUT)
and a practical fault attack against the Bit Flipping Key Encapsulation (BIKE) frame-
work. To achieve this, we first constructed an EMFI station that precisely moves a fault
injection probe to the desired location on the chip.

To identify susceptible locations for fault injection (probing), a specialized firmware was
developed to operate on the DUT. This firmware is designed to record register states
both before and after a fault injection event. By analyzing the discrepancies between
these states, the specific registers affected by the fault can be pinpointed.

Using the information which locations are most susceptible to faults, we slightly mod-
ified an implementation of the BIKE framework and used this for subsequent experi-
ments. First, the information of the probing experiment was combined with the modified
firmware to find susceptible locations specific to the targeted algorithm. After that, we
started with the actual fault injection attack: The idea behind fault attacks on BIKE
is to set bits during the secret key generation to reach a certain threshold. When this
faulty key is then used for encapsulation, the security of the payload is compromised
and the secret key can be recovered.

Experimental results show that, under certain conditions, faulting BIKE in a lab en-
vironment is possible, as we were able to effectively manipulate bits during secret key
generation, nearly reaching the optimal threshold within a reasonable timeframe. These
results underscore the vulnerability of the BIKE framework to fault injection attacks,
highlighting potential security vulnerabilities that warrant further investigation and mit-
igation strategies.

1.1 Related Work

In [16], [14] the authors examined the influence of faults on the BIKE framework in a
theoretical model. That is, it was assumed that fault attacks can reliably flip a large
amount of bits, allowing the adversary to eventually recover the secret key.

In [17], the authors present the EMFI station and use their novel construction to suc-
cessfully perform a fault injection attack against the AMD Secure Processor (AMD-SP).
The EMFT station is based on components commonly found in 3D printers and uses
motorized linear stages, which allow precise positioning of a fault injection probe. The
system built during this case study is largely based on their original design of the EMFI
station.

The authors of [15] implemented post-quantum cryptography (PQC) algorithms selected
for standardization by NIST as part of the NIST PQC competition for several relevant
ARM Cortex-M4 platforms.

1.2 Structure

This report discusses the feasibility of EMFT attack against the BIKE Key encapsulation
mechanism running on the STMS32F/DISCOVERY platform. Readers only interested
in the getting started with the faulting station can skip until

In the post-quantum secure key encapsulation mechanism BIKE is introduced.
The construction of BIKE is derived from quasi-cyclic linear codes and the Niederreiter
cryptosystem.

After that, the evaluates different approaches for key recovery attacks against
the BIKE cryptosystem. Those attacks have been introduced in a previous work by Ket-
telsen [16]. A distinction is made between weak and faulty keys. Key recovery algorithms
that abuse these key properties are also discussed. In the general hardware
setup and challenges we encountered are discussed. presents our experiments,
faulting station setup and build system. We introduce an experiment used to probe
a DUT for vulnerable regions and an attack against the PQM4 [15] implementation of
BIKE. The results of these experiments are described in detail in [Section 6, We conclude

this report in

2 BIKE

The BIKE suite [5] is a code-based key-encapsulation mechanism designed to resist
quantum attackers. BIKE was submitted to the NIST Post-Quantum Cryptography
Standardization Process in November 2017[1], and its second round submission was ac-
cepted as a full submission in April 2019 [2]. In the third round, BIKE was listed as
alternate candidate in the public-key encryption and key-establishment algorithms cat-
egory [3]. BIKE was one of four entries to advance to the fourth round of the NIST
competition [4].

BIKE implements the Niederreiter cryptosystem on quasi-cyclic moderate density parity
check codes (QC-MDPC codes). The Niederreiter cryptosystem as well as the related
McEliece cryptosystem are Indistinguishable for Chosen Plaintext Attacks (IND-CPA)
secure and can be transformed into a Indistinguishable for Chosen Ciphertext Attacks
(IND-CCA) secure cryptosystem using the Fujisaki-Okamoto transformation|10].

The following subsections will discuss the BIKE cryptosystem. We will start by briefly
introducing cyclic codes, commencing with their generalization, quasi-cyclic codes.
Afterwards, we will discuss the McEliece and Niederreiter cryptosystems before finally
introducing the BIKE. The following explanations are in part a synopsis of |7].

2.1 Linear Codes and (Quasi-)Cyclic Codes

Linear codes are a type of error-correcting code. These codes are called “linear” because
they satisfy linearity. In a linear code, the sum of two codewords is also a valid codeword.
For example, if we have two codewords 1010 and 0101 of a given code C, the bit-wise
sum of these codewords 1111 is a code word as well. This property allows for efficient
decoding of the received message.

Cyclic codes are a class of linear codes, where, given a code word ¢ = cjca. .. ¢y, then
shift(c) = cperea ... cp—1 is a code word as well. We can define a generator matrix G for
a cyclic code C' as

g1 92 .- Gr—1 9r 0o ... 0
0 g1 92 - G-1 g O ... 0

G=10 0 g1 g e g1 g 0 ... 0] g pkxn
0o 0 ... 0 g1 g2 ... Gr

with k& = n — r. The linear code C is then defined as the product of vectors from F*
with the generator matrix:

C:{m-G|m€Fk}§IF".

Alternatively, we can define C by its parity check matrix H, which is a generator matrix
of the dual code C*:
C={c|H -c=0}CF"

Given a word ¢ € F", we can then decide if ¢/ € C using syndrome decoding, i.e., check
H-d =0. With ¢ = ¢+ e with ¢ € C and error ¢, we call H-¢ = H-(d +¢€) =
H-c+ H-e= H -e the syndrome of c¢. Observe that ¢ € C implies H - e = 0.

Fact 1 Given a generator matriz G (or parity check matriz H) and ¢ = ¢+ e, finding
e is NP-hard [6].

Definition 1 (Quasi-Cyclic Codes) Quasi-cyclic codes are a generalization of cyclic
codes [13]. In contrast to cyclic codes, quasi-cyclic codes are invariant to shifts of length
¢ (note that, for cyclic codes, £ = 1). The parity check matriz of a quasi-cyclic code can
be expressed as

H= (HO H, ... H,, Hn)

where the H; are parity check matrices for cyclic codes C;.

An interesting class of quasi-cyclic codes are those with moderately dense parity check
matrices, which allow for fast syndrome decoding.

Definition 2 (QC-MDPC Codes) Quasy-cyclic moderate density parity check codes
(QC-MDPC codes) are quasi-cyclic codes with moderate density, i.e.

weight(ho) € O(V/n),

weight(h1) € O(v/n),
where weight(h;) denotes the hamming weight of h; and n is the code word length.

2.2 McEliece Cryptosystem and Niederreiter Cryptosystem

In 1978, Robert McEliece developed the McEliece cryptosystem, an asymmetric encryp-
tion system that is inspired by the NP-hardness of the above-mentioned problem. For
key generation, Alice samples a linear code ¢ able to recover t errors from a family of
linear codes £ with generator matrix G € FF*™ as well as permutation matrices S € Fkxk
and P € F**™. The public key then is

pk=(G=5-G-P)

and the private key is
sk = (G, S, P).

A

After Alice sends pk to Bob, he can encrypt a message m by first calculating c =m - G
and sampling a random error e with weight(e) < t to get the ciphertext ¢ = ¢ + e.
Because of the above-mentioned problem, finding e (and therefore ¢ and m) given ¢ + e
and G is hard. With knowledge of her private key sk though, Alice can calculate m given
¢by ¢ =é- P71, decoding ¢ w.r.t. G to get m/, and calculate m’ - S~! to yield m.

Lemma 1 The McEliece cryptosystem is secure against CPA attackers if

e Gis indistinguishable from a random linear code and

o ¢ =c+ e is indistinguishable from a random vector.

The Niederreiter cryptosystem works similarly to the McEliece cryptosystem. Instead
of the generator matrix G, it uses the parity check matrix H with pk = (FI =S-H-P),
sk = (S, H, P). With Niederreiter, we then encrypt an error e to a syndrome. The error
e can then only be recovered if the secret key sk is known.

2.3 BIKE

BIKE is an implementation of a (modified) Niederreiter cryptosystem using QC-MDPC
codes. In BIKE, Alice’s private key consists of a matrix H = (ho h1> where H is a
(2,1,7,w)-QC-MDPC code of length n := 2r, i.e., ho, hy are n x n circular square block
matrices. Additionally, a failure message o is sampled at random. The private key then
is

sk = (h(), hl,O').
Since the h; are parity check matrices of cyclic codes, they are usually represented by
their first row hz(»l) € GF(2"). We will use hgl) interchangeably with h;. The public key
is generated as pk = h = h; - hal.
Afterwards, using three hash functions H, L, K, which are treated as random oracles in
BIKE’s security proofs, and public key h = hihy 1 Bob can encapsulate a shared key k
by first sampling a random message m from a message space M. He then proceeds by
calculating error vectors (eg,e;) = H(m) and ciphertext ¢ = (cp,c1) = (€ + e1h,m @
L(eg,e1). Bob then calculates the shared key by & = K(m, ¢) and sends ¢ = (¢, c1) to
Alice. Here, ¢ is the encapsulation of error vectors eg, e1, which are pseudo-random due
to hashing with the random oracle L, while ¢; can later be used by Alice to verify her
decoding result.
Alice, using her private key H and the ciphertext ¢, can recover the shared key k with
high likelihood by first recovering an error vector

¢’ := (ep,e1)’ = decode(coho, (ho, h1))
from ¢ using her knowledge of sk. For decode, ¢y is first mapped to
coho = (60 + elh)ho = eghg + e1h1 = ¢TH.

The decode function then solves the syndrome decoding problem by finding a sparse
error vector €/ = (eg,e1) such that ¢ H = el H. After decode has recovered an error
vector €/ = (e, €), Alice checks if she has the correct error vector by first calculating
m’ = c¢1 @ L(ep, €}). If the decoding succeeded, m’ = m and subsequently ¢/ = H(m')
will hold. Alice then calculates the shared key k& = K(m/, (co,c1)). If not, Alice uses
k = K(o,c) as failure message in order to avoid leaking information about m. For a
message sequence chart of the protocol, see [Figure 1

With high probability, the error vector generated by decode will be equal to e, compare
[5]. The probability of decode recovering an error vector € # e is called the decoding
failure rate (DFR). The DFR is what will be manipulated by a fault attack by forcing
the use of weak or faulty keys in the protocol, see

3 BIKE Key Recovery

We now explain how a fault injection can be used to recover the secret key that is used
in BIKE. For the attack, we target hg, h1 from the secret key sk. The core idea is to
manipulate hg or h; in such a way that the decoder fails every other round, i.e., to
achieve an optimal DFR. This information whether the decoder failed together with a
so-called distance spectrum of e can be used to recover the secret key. We show the
top-level view of the attack in The function Init initializes the arrays used
for the distance spectrum. The function UpdateDistSpec updates this spectrum based
on bit distances in the generated error vector e. The other functions are explained in
The communication between the two parties is repeated N times until the
spectrum is sufficient to recover the secret key. The probability of recovering sk for a
given N has been studied in [14].

3.1 Key Properties and Faultability

There are two main types of secret keys that influence the error rate of the decoder,
faulty keys and weak keys. Weak keys are in compliance to specification, i.e, they have
the correct weight. The problem for the decoder stems from a bad roll of the random
positions for the ones. A key is considered weak if large sets of ones are evenly spaced.
However, the probability of such a distribution occurring for long secret keys when KGen
is implemented according to the specification is very low. Faulty keys on the other hand
are not according to specification. They have a lower or higher weight than the decoder
expects.

Let us now discuss some ideas how we can fault KGen to return a weak or faulty key. Ke-
telsen[16] introduced the concept of efficiently forgeable weak keys (EFWK). It assumes
a subset of the bits being stored in a register, and then all of those bits are faulted to
one. We now have a block of f ones where f is the register size. In the reference imple-
mentation [8], one could target the SET_BIT function for this. Ketelsen assumed 32-bit
registers, i.e., f = 32. However, as the current reference implementation of SET_BIT ex-
pects a uint8*, both Arm and x86 Compilers will instruct writing back 8 bit. In other
words, every time the SET_BIT function is called, we can increase a block of ones in the
secret key by a maximum of 8 bits (if the fault is successful). The big advantage over
the previous approach is that we don’t require a fault to generate a very specific value,
however, we just try to set as many ones as possible. If we want to use the approach and
get blocks larger than 8 bit, we still have to get lucky that the random positions lie close
to each other. This approach seems to be the best for generating faulty keys, as we just
need to increase (or decrease) the weight of sk. While easier than the previous approach,

msc BIKE

Bob Alice

sk := hg, h1,0 + KGen(1%)

Pgen
S k= hy byt

pk

m s {0,1}

e, e1 < H(m)
Encaps
co,c1 < eo + e1 - pk,m @ L(eg, 1)

k <+ K(m, (co,c1))

€o, C1
e, = 66? 6,1 — DeCOdG(CO . h07 <h07 hl))
. m c1 D L(el)
ecaps if H(m') = ¢ -
k <+ K(m/,(co,c1))

/ /

K(o,¢) Him') # e

| |

Figure 1: Message sequences of BIKE

10

it will still be hard to create EFWKs, as we need to also fault the termination condition
of the for loop in generate_sparse_rep_keccak. This is because we now add more bits
each iteration and still need to fulfill the weight requirement for the specification (by
definition of a weak key). The rest of this document focuses on the PQM4 implemen-
tation. It handles key generation slightly differently. However, the basic idea that we
inject faults within a subroutine of the KGen function similar to SET_BIT remains the
same.

3.2 Key Recovery Algorithm

From [Figure 2] it becomes clear that the adversary needs three helper methods to perform
a key recovery. As explained in the introduction of this section, the secret key recovery
algorithm requires the distances of ones in the error vector eg, e; and whether the decoder
was successful, i.e, if Alice does not send K(o,¢). If Alice used a non-faulty KGen, the
DFR is almost negligible (as stated by Aragon et al. [5]). If we manage to increase the
weight of hg or hi, i.e, produce faulty keys, we can increase this DFR. Ketelsen [16]
studied the influence of certain weights on the DFR. Their results indicate that there
are certain weights that almost produce a 50% DFR. At such a decoding error rate, we
need the least number of repetitions, i.e., N is then minimal. We now give a top-level
explanation of the functions involved in the key recovery:

e INIT This function creates two helper arrays a and b of size r and sets all entries
to 0. They are later needed to create the distance spectrum. Array a at position
p contains how often a distance of p between the ones existed in eg,e;. We have
pe{l,...,r — 1} where p =1 indicates two ones directly next to each other. The
array b at position p is incremented if decoding was unsuccessful and the distance
p between ones was present at least once in the error vector ey, e; of this round.

e UpdateDistSpec This function updates a and b as explained. The distance spec-
trum is a vector ds; where i is the current round, i.e., i € {1,..., N}. Its entries
are defined as

alp] .
dsilp] = blo] if b[p] >0
0, otherwise

for pe{l,...,r—1}

o RecoverKey Now, after N repetitions, we can use Algorithm 2 from [14] to recover
a guess for sk by providing the distance spectrum dsy. If N is sufficiently large,
the algorithm will return the correct key shifted one to the right.

11

msc Faulted BIKE

Eve

Alicefaulty

sk := hg, h1,0 < KGenfaulty(l)\)
pk := hy - byt

pk
(o]
Encaps
Co, C1
Decaps
repeat(N)
H / /
Kowe) (') # e
UpdateDistSpec
RecoverKey

* |

Figure 2: Top level view for key recovery of a faulty or weak secret key

12

4 Hardware

This section discusses the general setup of the EMFT station, the hardware used, and its
purpose in the setup. We also discuss problems encountered during extensive probing
runs and their solutions.

Our setup is based on the results of |[17]. In their work, the authors build a EMFI station
and evaluate it by conducting a fault attack against AMD-SP, an SoC found in current
(as of 2021) AMD CPUs.

Our EMFT station consists of a XYZ stage attached to aluminum profiles, controlled
by a motion control unit familiar from the 3D-printing community. The motion con-
trol unit is in turn attached to a main control unit (a Raspberry Pi 4) via USB. The
XY7Z stage is equipped with a ChipSHOUTER EMFT tool [19], that emits electromag-
netic fields on demand via a text-based serial protocol and other hardware components
used to monitor the probing process. The main control unit runs a Python application
to control the motion control unit using GCode commands, which are common in 3D
printing applications. It also controls the ChipSHOUTER, while monitoring the DUT’s
state for successful fault injections and crashes and resetting the DUT if needed. The
EMFTI station can be controlled and monitored via a web interface on the RPi 4. The
web interface exposes two camera perspectives, one from above, as well as an overview
camera and a thermal camera. The thermal camera is used to approximate the DUT’s
core temperature, allowing the user to pause the execution of an experiment or increase
airflow by adapting the cooler fan RPM if the DUT’s temperature exceeds a prede-
fined threshold. This threshold prevents crashes due to core temperatures exceeding the
device’s permissible temperatures.

4.1 Construction

This section discusses the specific construction of the EMFI station, technical details
and safety features regarding the usage of the station.

4.1.1 Target Mounting Plate

To ensure that one can achieve reproducible results, the EMFI station is equipped with
a Target Mounting Plate, which ensures a repeatable location of the DUT. This plate
has a pattern of 5.32mm holes spaced 15mm apart, and each row is offset 7.5mm from
the previous row. For each DUT one has to construct a PCB holder, which ensures a
correct and repeatable way of positioning the device.

4.1.2 Safe Construction of ChipSHOUTER Location

When moving the stages of the EMFI station, it must be ensured that they cannot hit
the circuit board of the DUT or the aluminum frame construction. To ensure that the
probe or the DUT cannot be damaged, the holder for the ChipSHOUTER can let the
probe be pushed upwards and away from the DUT. Further, due to the construction of
the EMFT station, the stages could crash into the main aluminum construction before

13

Figure 3: Target Mounting Plate carrying a PCB holder designed for STM32F4Discovery.

the end stops of the stages can trigger. This problem can be solved on both a software
and hardware basis. Extended physical end stops were constructed to push the original
end stops of the stages. This restricts the range of motion for the stage, but does not
affect its ability to home, as it still utilizes the existing end stops.

Figure 4: Extended physical end stops for Y and Z axes.

4.2 Challenges

During the project, we faced several issues related to the setup and construction. This
section outlines the problems and our proposed solutions.

14

4.2.1 Cooling

When running faulting experiments over an extended period of time, the DUT can
overheat due to the continuous injection of electromagnetic fields through the device.
This can lead to unexpected behavior and potential crashes or damage to the device. To
mitigate this problem, we installed a 24 V fan to cool the probe and the DUT during
the experiments. This fan can be enabled or disabled via G-code commands in software.
Due to the mounting of the fan at the holder for the ChipSHOUTER, it automatically
moves with the probe and always cools it sufficiently.

Figure 5: Improved cooling using a 24 V fan.

4.2.2 Controllable Relay

During longer experiments with the EMFI station, it may happen that the DUT does
not respond to reset commands or does not process these reset commands as expected
. In this case, human intervention is normally required to disconnect the
power supply of the DUT and reset it. As a modification, we power the DUT via a 5V
relay. This can be enabled or disabled via a GPIO pin, which is on the Raspberry Pi
and seamlessly integrates in the software stack.

In practice, we always switch the device on and off to ensure a fresh device state and no
errors or faults occur due to a bad reset.

15

" -

Figure 6: Raspberry Pi (left) running the EMFI controller software and controllable relay (right)
used to reset the DUT.

4.3 Pinout

This subsection discusses the pinout of all devices used in the EMFTI station. The pin
assignment is not relevant and can be changed at will, which requires software and
hardware changes.

4.3.1 Power and Data Layout

Figure 8 shows all data and power wires used for the connection between all devices of
the EMFT station. All connections between the stages and the controller are exactly the
same, so we only specify a general mapping to connect the stepper motor controller to
the motors of the stages. describes the power layout of the faulting station in
general. There are several power supply units that are required for the different voltages
used by the various devices.

4.3.2 Connection between Stages and Controller

The stages used in this project are normally used with industrial CNC control boards,
which do not offer the high software flexibility needed for this project. Further the
cost of such control boards are way higher than the used solution from the 3D-printing
market. Due to the different use cases of 3D printers and CNC machines, the connectors
used between normal 3D-printing servo motors and the control board and linear stages
for CNC applications differ wildly. Further, CNC stages are equipped with endstops,
which run over the same cable as the servo motor voltage, which is different to the 3D
printing world, where endstops are used standalone and run over an independent cable.
Therefore a custom connection is needed to map the DB9 (M) stage connector to a 5-PIN
JST-XH power plug and a 3-PIN JST-XH plug for the endstop states on the controller.

16

E

nd Devices
R
5V
\ > Controller Fan
Control Units
24V 24V
> Controller > DUT Fan
5V 5V
PSU > Relay > DUT
5V USB 5V .
> Pi N Microscope
”| ChipSHOUTER
USB 5V
» Microscope Stage
~— @
GPIO
3.3V > IR Camera
~— @
Figure 7: Power layout of the EMFI station.
usB
usBe
ChipSHOUTER
/_ N\ G
use
Stage P e -
| N Controller Fan
GND -
GPIO 03/ SDA SDA [\ T4 129 | -
GPIO 05/ SCL SCL | . DUT Fan
FAN2 -
3v3 3v3 IR Camera
FAN2 +
GND GND /ﬁ
\ / Controller At
A
Pi N\
GPIO 19 MOSI B+
GPIO 21 MISO B- Stage X, Y, Z
DUT
GPIO 23 SCLK Signal (White)
oND . GND | Endstop X, Y, Z I
—
— N————
GPIO 27
Relay l
\—————

Figure 8: Data layout of the EMFT station.

We used a standard VGA connector, which has the same layout as the connector of the
DB9(M) cable. This VGA connector is using the given mapping of the cable and via
custom soldered wires we connect the stage to the power and control part on the control
board and the endstops as denoted in

Each stage has two endstops, therefore we need to use two endstop pins on the controller
per stage. The positive and negative wiring of the linear stage is not relevant, the stage
is turning in the wrong direction the controller is capable of reversing the turn direction
in software.

Figure 9: Stepper controller with DB9(M) stage connectors.

18

ﬂinear Stage \

1
E |: 2 - Phase /B
@ 3 -Phase B

4 - Phase /A
-

- Phase A

o

6
E o——— 7-Limit2
o———— 8- Limit1
\ 9 - Ground J
/DBQ(M) \

View on front of plug

/ 4-Phase A \
SKR PRO

3 - Phase /A

2 - Phase /B

1-Phase B

Limit 0

1-3.3V

2-GND

3-SWITCH

1-3.3v

2-GND

3 - SWITCH

o /

Figure 10: Example pinout between a stage and the controller (Denoted as SKR PRO). The
DB9(M) cable has to be split up between the power connection and control of the
linear stage and the endstop signal.

19

5 Experiments

In this section, we introduce and discuss the EMFI experiments we conducted against
BIKE on a STM32F4DISCOVERY platform. We also explain the tools needed for using
our setup and to reproduce the results. Our EMFT station’s software setup is based on
[17], which provides a Python framework for fault injection attacks against any kind of
target. It is mainly designed for probing a DUT, i.e., finding vulnerable positions on the
chip. For the general approach of the fault injection attack, we decided not to target
the memory directly but rather the registers of the DUT. This decision resulted from
uncertainties about the specific location on the memory of the chip and its potential
caching mechanisms that could complicate the fault injection procedures. In addition,
the BIKE firmware we target in the next experiment implements a function that is very
suitable for faulting the registers during execution. Before faulting the actual firmware
running on the DUT, we needed to find areas susceptible to fault attacks, i.e., areas on
the chip where a fault would cause bits in a target register to flip. A fault should not only
produce bit flips, but also be non-destructive — after the fault, operation should continue
as before, ideally with some values in the registers changed. To find areas vulnerable
to fault injection, we developed the Probing firmware (Subsection 5.2). This firmware
sends all tested registers from the DUT while injecting electromagnetic fields using the
ChipSHOUTER.

After finding areas susceptible to injecting a fault into the registers, we continue with
the Combined probing attack against BIKE (Subsection 5.3] The idea is using the actual
algorithm (BIKE) to find vulnerable positions on the chip. As running BIKE instead of
a lightweight custom probing firmware requires a lot more time, we used the results of
the probing run to limit the area to the most promising positions.

Now we can use these algorithm-specific vulnerable regions to run the actual fault injec-
tion. To know the internal state of the device and ease the attack, we instrumented the
PQM4 [15] implementation of BIKE. The DUT reports its readiness to be faulted and
the values of the targeted register using a protocol deduced from the probing experiment.

5.1 EMFI Station Overview

The EMFT station framework provides an abstract Attack base class the user can extend
for their experiment’s needs. It also provides several callbacks, which are called by an
Attack Worker while conducting the experiment. The program first scans for imple-
mentations of the Attack base class in the attacks/ directory on startup and allows the
user to start an attack from a drop-down menu in the web interface. Implementations
of the Attack base class must implement the following methods:

e __init__(self, ...): the base class constructor, used to set important attack
parameters. It takes the following arguments:

— start_pos: the start position for the attack. The Attack Worker will move
the injection probe to this position before starting the fault injection proce-
dure.

20

EMFI Station

Mode: Manual Safe 2 Positio 00 Temperature:

Step (mm)

Set Safe Z Depth

Figure 11: Screenshot of the EMFI station web interface. Various status data are shown at the
top. The camera view and the digital joystick for moving the probe are visible in
the middle. In the lower area there are control elements for homing and absolute
positioning of the probe, starting an attack experiment and setting the safe-Z depth.

21

— end_pos: the end position for the attack. The Attack Worker moves the
injection probe in a grid pattern of step_size from start_pos to end_pos.

— step_size: the step size as a float (in mm) the injection probe is moved
between iterations.

— max_target_temp: the maximum target temperature (in °C) deemed to be
safe for the DUT. If the DUT exceeds max_target_temp, the attack is paused
until the device cooled down. The target temperature is determined using the
infrared camera attached to the injection probe.

— repetitions: the number of attack repetitions for each position in the grid.
If you want to target a specific position indefinitely (or until was_successful

returns true), set this to the max integer limit, compare [Subsection 5.3

e name(): a static method returning a human-readable string describing the attack.
This name is displayed on the web frontend before starting the attack.

e shout(self): the shout method. It is called repeatedly by the Attack Worker.
As our setup is based on the ChipSHOUTER framework, we use its API here to
arm and fire the probe.

o was_successful (self): check for a successful fault injection in this method. For
example, one might try to conduct a key recovery attack in this method and return
true iff the key recovery succeeded.

e critical_check(self): conduct critical checks before a call to shout. For exam-
ple, one might check whether the ChipSHOUTER is in a fault-ready state here.

e shutdown(self): shut down the attack. The user might want to persist collected
data and disarm the ChipSHOUTER here.

After implementing a simple attack against the Ballistic Gel target included in the
ChipSHOUTER retail bundle, we proceeded to implement a probing attack as well as
an attack against the BIKE cryptosystem. We will discuss both of these attacks in the
subsequent sections.

5.2 Probing Experiment

The probing experiment aims to find regions susceptible to fault injection in a DUT. To
find those areas, we developed the probing protocol as well as a firmware
and an attack script implementing this protocol.

After the device boots, all tested registers are initialized with known values, and all
register values are sent to the host. Afterwards, a fixed fault window start sequence
is transmitted to the host. The host then knows that the DUT entered the faulting
state and starts to inject electromagnetic fields. After a certain time has elapsed, the
DUT sends a fault window end sequence, which signals the host that it successfully left

22

the fault state. Afterwards, all registers are transmitted to the host again, and the host
compares the register values with the expected values previously received from the DUT.
The host side of the protocol is implemented using the Attack base class from the EMFI
framework. The core of the attack implementation is the collection and processing of
data in the was_successful callback. If a register value transferred after the fault
injection differs from its expected state, a bit flip was successfully injected and logged
to a JSON file for further analysis.

During the experiment, the host continuously logs Datapoint entities . This
structure holds Response values for both before and after the fault attack has been con-
ducted, as well as the attack location (X,Y, Z), register differences and register names.
For each position (X,Y,Z), an array of N (number of repetitions) Datapoints is col-
lected by the host.

Using the X xY x Z x N dimensional array of Datapoints objects, we can then evaluate
the probing run using one of the custom Metrics (currently, one of ZeroOneFlipAnywhere,
Crash, and ZeroOneFlipOanJ:DrREEI). The metric ZeroOneFlipAnywhere
sums up all recorded bit flips in all registers or evaluates to —1 if the experiment caused
the DUT to crash. Analogously, ZeroOneF1ipOnR40rR5 sums up only zero-
to-one flips in registers R4 and R5. Finally, the metric Crash (Figure 16) evaluates to
1 if the experiment caused the DUT to crash and evaluates to 0 if the device did not
crash.

Listing 1: Datapoint python class used to hold register values

@dataclass(eq=False)
class Datapoint:
response_before_fault: Response
response_after_fault: Response
attack_location: Tuple[float, float, float]
reg_diff: Dict[str, List[BitFlip]] = field(init=False)
reg_names: Set[str] = field(init=False)

5.2.1 Probing Protocol

We now describe the host to DUT and DUT to host communication for probing. The
protocol is implemented in the host script located in attacks/probing.py

1. Initialization:

e The host initiates the communication by sending a Reset message. This
message is implemented using a relay that is wired to physically toggle the
power to the DUT instead of relying on soft-reset mechanics found in some
STM32 models.

!This metric will become relevant for the attack against BIKE.

23

msc Register Probing Communication

Host DUT
Reset
Prepare Transfer
Register values
< Reset successful >
Fault window start sequence
Fault
| Wait
Wait
Fault window end sequence >
Prepare Transfer
Register values
Prepare Transfer
End sequence
I I

Figure 12: Register Probing Communication MSC.

24

Following the reset, the DUT boots up and enters a Prepare Transfer phase.
During this startup phase, the registers to be observed could, for example, be
initialized with a fixed value OxAAAAAAAA (checkerboard pattern). This gives
a 50% chance to “notice” a bit flip as ones and zeros are evenly distributed.
For the attack on BIKE, a zero to one flip is much more relevant, thus we
set the initial value of the targeted registers to zero, giving a 100% chance to
catch these flips.

2. Data Transfer:

The DUT transmits the (now initialized) register values to the host.

Upon reception of the register values, the host can now verify that the reset
was successful.

If the host does not receive the expected register values, it concludes that the
reset was not successful, and the protocol restarts.

3. Fault Detection Window:

The DUT signals the start of a fault injection window with a Fault window
start sequence message.

During this window, the DUT enters a wait loop to give the host time to
conduct the fault injection experiment. It is important to not use a targeted
register for counting down here, as this register does not contain a fixed known
value for obvious reasons.

4. Fault Injection:

Once the host received the Fault window start sequence message, it can
verify that the DUT has entered the fault window.

If no Fault window start sequence message was received after a timeout
has elapsed, the protocol restarts. As use physical switches to turn off the
board, this usually indicates serious problems with the DUT and warrants
investigation.

Otherwise, the host begins with the fault injection by arming the Chip-
SHOUTER using the ChipWhisperer API via USB.

After injection, the host enters a wait phase, polling the serial interface to
the DUT for a Fault window end sequence message.

5. Conclusion of Fault Window:

The DUT signals the end of the fault window with a Fault window end
sequence message.

If the host successfully receives the Fault window end sequence message, it
concludes that the fault injection did not cause the DUT to crash.

25

o If the host does not receive a Fault window end sequence message until a
timeout period exceeds, it is assumed that the DUT crashed and the protocol
restarts.

6. Finalization:
e The DUT prepares for transfer and transmits the register values to the host.
o The DUT concludes the communication with an End sequence message.

o After successfully completing the protocol, the host can now compare the
before and after values for each register. If a register holds a different after
value, the host concludes that the fault injection caused a bit flip in the
register. The host logs the current (X,Y, Z) position of the ChipSHOUTER

as well as the values observed in this iteration.

e Restart the protocol.

The Probing protocol is repeated for each position (X,Y,Z) in a predefined range with
step width of W mm and a number N of iterations per position. Appropriate choices of
W depend on the width of the injection probe in use. A width of % to % of the injection
tip’s width appears to be reasonable [26]. Additionally, the DUT wait loop duration
as well as the host timeouts have to be adapted according to the DUT’s processor
frequency. The range to search for areas susceptible to fault injections depends on the
DUT’s dimension and architecture (see [24] for die-shots of MCUs).

5.2.2 Building the Probing Firmware

The probing firmware is based on the PlatformIO framework [22]. The project is lo-
cated in attacks/stm32_probing. It contains the platformio.ini file. To build the
firmware, attach an STM32F4DISCOVERY board to your computer via USB and run
the command pio run -t upload (optionally specify the environment) to build and
upload the firmware from within this directory.

5.3 BIKE Attack and Combined Probing

From the probing firmware, we obtained a coarse-grained view of which regions of the
chip are susceptible to register fault injection. To get the final and optimal position to
inject faults, we opted for a combined probing approach: We have the DUT running the
final firmware and move the probe over the most promising region given by the probing
run. The BIKE faulting firmware is one of the main contributions of this case study.
To understand how to modify existing code to work with our setup, we will explain our
changes to the BIKE firmware in detail. As we used an ARM Cortex M4 as the DUT,
we forked the mupq/pgmé implementation of BIKE [15] and slightly modified it. This is
necessary to (1) stop faulting once the target weight in the secret key is reached, (2)
utilize our stateless serial communication (which proved to be the most fault resilient) to
transfer data and (3) stall the device at the targeted function secure_set_bits. All of
these modifications just ease analyzing the fault performance in a lab setup. For example,

26

a more capable attacker with more time and resources could perform a statistical analysis
to determine the number of cycles after reset in which the DUT is most likely to be in
the target instruction.

The modified BIKE code is located in pgm4/mupq/crypto_kem/bikell/opt and the
new main function fault.c is located in pgqm4/mupq/crypto_kem. It initializes GPIO
(gpio_setup) for communication with the host and runs the MUPQ_crypto_kem_keypair
function that generates a key pair. The modification of the key generator is more
involved. It mainly consists of modifying the secure_set_bits function
in pgqm4/mupq/crypto_kem/bikell/opt/sampling_portable.c. This file also contains
the _transfer function that sends data via GPIO pins.

The second file that we need to make this experiment work is the fault_util.S in the
same directory. It contains some helper functions that can only be written in assembly,
like sending the register contents (send_rx_ry) and stalling the chip by counting down
a specific, unused register (delay_some_time). The main idea behind this modification
is to stall the device before writing the next 64 (on STM32F4DISCOVERY 2 x 32) key
bits in variable val to memory (see |[Listing 2). During this time, the host script will
inject the fault using the ChipSHOUTER API.

27

Listing 2: Modified secure_set_bits function modified for 32 bit device (with comments, rele-
vant parts only).

void secure_set_bits(OUT pad_r_t * r,

IN const size_t first_pos, // is 0
IN const idx_t *wlist, // contains the indices of the ones
IN const size_t w_size) {

// T is a struct that contains R_BYTES (wal) and padding (pad)

// PQM4 is optimized for 64 bit thus we use uint64_t *

uint64_t *a64 = (uint64_t *)r;

uint64_t val, mask;

// The positions of the quad words and the positions of the bit inside the QW
uint32_t pos_qw[MAX_WLIST_SIZE];
uint64_t pos_bit [MAX_WLIST_SIZE];

/7L]

// Fill each QW in constant time
for(size_t i = 0; i < (sizeof(*r) / sizeof(uint64_t)); i++) {
val = 0;
for(size_t j = 0; j < w_size; j++) {
mask = (-1ULL) + (!secure_cmp32(pos_qwljl, 1));
// On a 32 bit DUT, rz and ry contain the 64 bits (val) that
// contain the new key part
val |= (pos_bit[j] & mask);
}
fault_window_start(); // send fault ready trigger
// if MOSI PIN 4s high, delay. Else, immedtiately send fault window end
if (gpio_get (GPIOB, GPI04)) {
// wait N seconds until fault s injected.
delay_some_time();
+
fault_window_end(); // send fault window end sequence
// Declared in fault_util.S which sends rz and ry via GPIO serial.
// Which registers to send is explained in the corresponding section.
send_rx_ry();
// The partial key is written back to the stack
a64[i] = val;

28

5.3.1 Building the BIKE Firmware

We use the build process of PQM4 which is based on GNU make [12]. The setup
of the authors is rather involved, so we only highlight the important parts of the
build process. To build the faulting firmware using the optimized (constant-time)
implementation of BIKEL1 in pqm4/mupq/crypto_kem/bikell/opt/fault.c (fault.c
contains the main function), run make -j4 bin/mupq_crypto_kem_bikell_opt_|
fault.bin PLATFORM=stm32f4discovery from the PQM4 directory. The filename en-
codes the name of the file that contains the main function, i.e., fault. If you plan to
build the firmware for a different platform, change the PLATFORM environment variable
according to your DUT. For a list of supported platforms, refer to the README in
pam4/README.

After building the firmware, you should find the resulting .elf file in e1f/mupq_crypto_
kem_bikell_opt_fault.elf (which is the firmware with debugging symbols), and the
resulting .bin file in bin/mupq_crypto_kem_bikell_opt_fault.bin. You can use the
.elf file for analysis, for example in Ghidra, see next section. To upload the binary to an
STM32F4DISCOVERY, attach a DUT to your computer using a USB cable and use the
st-flash tool from the STLINK suite [20] to flash the firmware to your device. After
successfully flashing the firmware, you might want to issue a reset command to restart
the device:

st-flash write bin/mupq_crypto_kem_bikell_opt_fault.bin 0x08000000
st-flash reset

5.3.2 Locating the Intermediate Key

We now discuss how to find the registers storing val (see , which contains the
partial key. While it is possible to consider only the key on the stack, analyzing the
location of the partial keys stored in registers has the advantage that we can use the
results of the probing attack and place the probe over the most promising location for
said registers. The process of sending the intermediate key bits involves the send_rx_ry
function in fault_util.S which sends the two registers containing val. Knowing the
partial key allows for stopping the attack once a targeted weight is reached. When
compiling the code for 64-bit machines, val is (most likely) stored in a single register,
and the method for determining said register can easily be adapted. The procedure for
adapting the firmware to a lab setup is as follows:

1. First, we implement all the changes to simplify fault injection. We use a generic
function name send_rx_ry, which we modify for the actual registers after the

analysis. See for the implementation.

2. Next, build the firmware for the DUT. After successful compilation, locate the

mupq_crypto_kem_bikell_opt_fault.elf file and analyze it to find which regis-
ter(s) were used for the partial key(s). For this, we used Ghidra [18]. [Figure 13
contains the relevant part from the analyzed firmware inside the secure_set_bits

29

function. We infer that (in this example), the registers r4 and r5 contain the two
parts of the 64 bits.

3. We now need to adapt the send_rx_ry function (optionally rename it to
send_r4_r5) to actually send those registers. Now we recompile and (optionally)
analyze the firmware again to make sure the compiler kept the register assignments.
The firmware is now properly adapted.

To the best of our knowledge, there is no easier way to be certain that a value is actually
stored in a specific register. The register in C keyword can, and will usually be ignored
by the compiler.

—+

Figure 13: Using Ghidra to find the register(s) that contain the partial key.

Listing 3: ARM Thumb mode compatible function that transfers register values located in rx
and ry.

send_rx_ry:
push {rO,rl,r4,r5,1r}
// some register cannot be pushed to the stack in ARM thumb mode.
// copy them to pushable registers (r4 and r5) first
// mov T4, T
// mov r5, ry
push {r4,r5}
mov r0, sp // mov sp (location of the r4, r5) to r0
mov rl, #8 // r0 = begin of registers, rl = size of two registers
bl _transfer
pop {r4,r5}
ldr r0, =end_seq // Call transfer with end_seq
mov rl, #4
bl _transfer
pop {r0,r1,r4,r5,pc}

5.3.3 The BIKE Faulting Attack Script

The BIKE faulting attack script is a python script used to communicate with the DUT,
control the fault injection, and collect data. The faulting attack script extends EMFI’s
Attack base class. The protocol is similar to the probing protocol (Figure 14)).

30

msc Bike Key Attack Protocol

Host DUT

Reset
Start KGen Run KGen until
— - secure_set_ bits
is reached
Loop
Fault window start sequence
Fault
Wait
Wait
Fault window end sequence
Prepare Transfer of R4, R5
Register values R4, R5
Prepare Transfer
End sequence
Send generated key
Fault window end sequence
] |

Figure 14: BIKE Attack Protocol MSC.

As we have already determined which area of the DUT is generally susceptible to fault
injections (Figures and , we can limit the area of the BIKE attack. This enables

31

us to conduct an experiment with multiple repetitions while still maintaining a reason-
able duration of the experiment — a single instrumented key generator run takes around
four minutes, including online analysis.

In the shout callback, the attack blocks until a fault_window_start message is received.
After receiving the message, implying that the DUT is now in a fault-ready state, the
ChipSHOUTER is armed by the attack script. After injecting faults during the first
three iterations of the loop , the attack script collects the remainder of the
generated key. To skip the wait loop on the DUT, we set control pin MOSI to low.

In the was_successful callback, the attack script first collects the generated key from
the DUT. This acts as a sanity check to ensure that the fault injection did not cause
any side effects besides flipping bits in the targeted registers R4 and R5. Afterwards, the
weight of the key is calculated. If the weight exceeds a threshold of 95 or falls short of 30
(both corresponding to a DFR of approximately 50%), the attack is deemed successful.

32

6 Evaluation and Results

In this section, we explore the outcomes of two experiments in the context of this case
study. The primary focus was on testing the feasibility of injecting faults during the
key generation of the BIKE framework on an actual device. Guided by the work of [16],
our goal was to set bits in the secret key stored in intermediate registers. This requires
finding the physical location of the registers on the chip. To do this, we have developed
a so-called probing firmware. It stores known values in the registers, waits for the fault
and sends the register contents back. The more bitflips and the fewer crashes, the more
promising the location. An instruction skip, which is a target in many other fault attacks
19] [11] |23] would not make sense in this case, as fewer bits would then be set in the key
— the exact opposite of what we want to achieve.

6.1 Probing

We conducted experiments to find EMFT susceptible regions on a STM32F4DISCOVERY
microcontroller. For this purpose, we designed a probing firmware that reads the contents
of predefined registers and sends them to the host via a custom serial protocol with
minimal state.

As can be seen in [Figure 15a] and [Figure 16| we can expect some amount of crashes at
positions in proximity to regions where a successful bit flip is observed. This should come
to no surprise, as we expect more crashes when the fault injection has an influence in the
operations of the DUT. For the attack against BIKE, we are looking for a region where
the flip probability of a target register is as high as possible while the crash probability
in this region is sufficiently low (ideally negligible). From our evaluation (Figure 15b)),
we can deduce that the offset A, = 3, A, = 9 is the most promising for an attack against
registers r4 and r5. As mentioned in previous sections, these registers contain parts of
the secret key that we are targeting in the BIKE attack.

6.2 BIKE

Following the results of [16], setting or unsetting bits in the secret key of BIKE leads to
a higher decoder failure rate, which can be exploited for key recovery. Thus, the main
goal was reaching a specific weight threshold of the secret key. [16] established a weight
between = 93 and 97 leads to an optimal decoder failure rate at around 50%.

We have also conducted an experiment where we limited the attack to a single poin1E|
on the DUT, faulting every single iteration of the KGen loop. After around 6 hours of
running this experiment, we generated a faulty key with a sufficient weight of 92
ing 4). The faulted key was reconstructed within the host script from the register values
transmitted by the DUT. Unfortunately, even after intensive troubleshooting, we could
not reproduce a fault where the key actually ended up in memory and could have been
used in subsequent computations. Instead, when faulting the device, the .data section
ended up on the stack. All other measures to verify that the DUT is in a known state

2determined using the data we collected during the probing experiment

33

(a) (b)

Figure 15: Heatmaps showing evaluation of (a) AnyFlipAnywhere, (b) ZeroOneFlipOnR50rR5
metric. The darker the color, the more bits were flipped on average at that position.
We only consider data points where the system does not crash during fault injection
(N = 1000 repetitions per position on a Imm grid).

0.0

Figure 16: Heatmap showing evaluation of Crash metric. The darker the color, the higher the
probability of crashing the device while faulting at that position. While some regions
are very susceptible to crashing the device, most areas don’t influence the device’s
operation at all. Note that position (2,9) has a somewhat increased probability of
crashing the device and is close to the region we observed bit flips in (N = 100
repetitions per position).

have been met. Due to the complexity and number of moving parts, we cannot be certain
that this is not a problem with the code. However, it is very unlikely, as running the
code without inducing an electromagnetic field results in correct and expected behavior.
The most likely explanation is an instruction skip in delay_some_time that causes the
counter register, which contains a pointer to the .data section, to end up in the partial
key which is then written back to memory.

34

92

71 A

52 +

Hp Weight

0 5 10 15 20 25
Experiment #

Figure 17: Bar chart showing weights of Hy with a fixed probe position on an STM32F4 Discov-
ery with ChipSHOUTER settings at 500 V and 3 pulses per shout. Blue bars indicate
runs where the key returned by the KGen function match the register contents col-
lected during the experiment. Red bars indicate runs where the key returned by the
KGen function did not match the register contents collected during the experiment.
These are probably due to side effects caused by fault injection. We observed that
non-matching keys often contain parts of a data section inserted for instrumentation
purposes: constants for fault window start/end sequence, timers, etc.

6.3 Additional Challenges and Findings

During the course of the case study that lead to this report, we encountered several
obstacles, mainly caused by the nature of fault injection. Fault injection, by design,
places an additional strain on the device and can completely prevent normal operation
at certain locations. Furthermore, the additional energy induced by the fault injection
process can lead to a temperature increase outside the device’s specified range, which
may even result in permanent damage.

6.3.1 Stateless Protocol

Initially, we tried using a serial protocol for communication. However, we quickly realized
that the protocol seemed to be implemented in a stateful manner. This meant that faults
had a large impact on the communication with the DUT, making using an “in-built”
protocol unsuitable for our purposes. To overcome this, we turned our attention to the
GPIO Controller, which seemed to be the most reliable option. We decided to implement
a custom serial protocol using the MISO (Main In Sub Out) and MOSI (Main Out Sub
In) pins of the GPIO Controller. This approach offered more flexibility and reduced
dependencies that could introduce side effects. By implementing our own protocol, we

35

were able to control factors such as the size of the data section, the number of registers
used, and the timing of data transmission. This increased the predictability of the system
and allowed us to better manage the effects of fault injection.

6.3.2 Reliable Reset

The STM boards we used in our case study provide both soft and hard reset options,
which can be invoked via Open On-Chip Debugger (OpenOCD) [21]. However, we
encountered occasional issues where the board would stop resetting. This was due to
a multitude of errors. For instance, the STM32F4 microcontroller has a lock flag that
can lock the processor, preventing any further modifications to the flash memory. This
feature is designed to protect the device from unintended programming, but in our case,
it posed a challenge as it could interfere with the reset process. To overcome this, we
found that the most reliable solution was to perform a physical reset via relays. A relay
is an electrically operated switch that can be used to control a circuit by a separate
low-power signal. By using such a relay, we were able to physically disconnect and
reconnect the power supply, effectively resetting the board. This method proved to be
the easiest and most reliable solution for ensuring a successful reset, even in the face of
various errors and lock conditions. It allowed us to maintain control over the device and
continue our testing process without significant interruptions.

6.3.3 Probe Position and Tip

During our case study, we found that the position of the probe, especially when it was
placed at larger distances from the chip, significantly affected the communication. The
communication was distorted, likely due to interference with the GPIO ports. This was
a challenge as it affected the reliability of our data and the effectiveness of the probing
experiment.

In one instance, we experienced an accident where the probe injected a fault not onto
the chip, but next to it on the board. On the STM32F4DISCOVERY this appeared
to be 1mm below the chip. This led to the board being permanently destroyed, i.e,
it was unable to flash, and the data sent via GPIO was unusable. This incident un-
derscored the importance of precise probe placement and the potential risks associated
with fault injection. Following this, we took extra precautions to ensure that the probe
only faults the chip and not other parts of the board. Regarding the tip of the probe,
we experimented with both clockwise and counterclockwise tips. However, we did not
observe any significant difference in the results based on the orientation of the EM tip.
This suggests that the orientation of the EM tip does not significantly impact the fault
injection process in our experimental setups.

6.3.4 Variability in EMFI Resistance

We have also observed that different devices of the same type have different levels of
resistance to electromagnetic fault injection. While we conducted most of our early

36

experiments with high voltages (up to 500 V) and long-term induced magnetic fields
with a single device, later on other devices failed during the very first experiment with
the same parameters. This suggests that there are significant quality differences in
resistance to fault injection attacks within a series. As a result of these observations, we
reduced the probe voltage and as compensation moved the injection probe closer to the
DUT to counteract failures. However, this also leads to reduced side effects and thus
possibly to a lower probability of success of the experiment when repeated with different
boards.

Listing 4: Faulty BIKE hy key with hamming weight 92 in hexadecimal

0001000000000000000000000000000000
0000000000000000000000000000080000001000
00000000002080000000000000000000000000001000000000000200000000000000000000000000
00000000000000000000000000000400
0000000100000000010000000000000000002000
00000000000000000000000000000000000004000000010000100000000000000000000000000000
00
000000000000000000000000000000000000010001
00000000008000000000000000000000000000000002000000000000000000000000000000000004
000100000002000000
00000000080000000021000000000000002000000000000400000000000000000000020000000000
0000800000000400
00
0040008000
000200000000000080000000
00
00000000000000400000000000000000000000000100000002000000000000020000000000080000
0001000000000000000000000000000000001000
00000000008000000880400000000000000000000020000000000000000000000000000000000000
0010000000000000020000000000000000000000
00000000000001000000000000000000000020000000020000000000020000000000000000000200
0000000000000000802000
000400000000000000000000000000
00
00000000000000000000000000000004000000000000000000000002000000000000000000000000
001000000000000000000000020000000000000000
00000004000000000200000000000100
1000
0000000000000000000000000000000000000800
00000000000000000000000000000020000000000000000080000000000000000000000000040000
0000000800800000000000000000
00040400000000000000000000080000000000000000000000000000400000000000000000000020
00000000001000000020000000000000000000000000800000000000000000008000000000000000

37

00000000000000000002000040000000000000000000000000000000800000200004010000000000
00000000000400000000000000000000000000000000020000000000000000000000000000000000
100200000000000000000000000000
00000000000000000000000000000100
0040000000000000000000000000000000
000000000000000000000000000000900000000000

38

7 Conclusion

In phase one of our case study, we built a working setup for an electromagnetic fault
injection station (EMFI), based on previous results by Kiihnapfel et al. [17].

In phase two, we conducted extensive experiments to examine the susceptibility to EMFI
on the STM32F4DISCOVERY platform. We observed susceptible regions that matched
the expected register positions derived from MCU die-shots [25].

In the last phase of our case study, we examined the feasibility of EMFT against the BIKE
cryptosystem. Using our results from the probing experiment, we already determined
which memory regions are most likely susceptible to fault injection. Following a 6-hour
experiment, we successfully obtained a faulty key for the BIKE cryptosystem, potentially
allowing key recovery. Nevertheless, even after extensive troubleshooting, we were not
able to inject faults in a way such that the forged key is actually stored in memory for
use in subsequent computations.

Although we assume that we found a reasonable attack against the BIKE cryptosystem,
further research is required to overcome the obstacles most likely posed by loop skips
or other problems with electromagnetic fault injection against this firmware. Another
relevant field of research in the area of electromagnetic fault injections against the BIKE
cryptosystem would be to improve tooling for key recovery against faulted keys.

39

Acronyms

BIKE Bit Flipping Key Encapsulation

DFR decoding failure rate

DUT device under test

EFWK efficiently forgeable weak keys

EMFI electromagnetic fault injection

IND-CCA Indistinguishable for Chosen Ciphertext Attacks

IND-CPA Indistinguishable for Chosen Plaintext Attacks

PQC post-quantum cryptography

References

[1] 2017. URL: https://csrc.nist.gov/Projects/post-quantum-cryptography/
post—quantum-cryptography-standardization/round-1-submissions.

[2] 2019. URL: https://csrc.nist.gov/Projects/post-quantum-cryptography/
post—-quantum-cryptography-standardization/round-2-submissions.

[3] 2020. URL: https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[4] 2022. URL: https://csrc.nist.gov/Projects/post-quantum-cryptography/
post—quantum-cryptography-standardization/round-4-submissions.

[6] Nicolas Aragon et al. BIKE: Bit Flipping Key Encapsulation. URL: https: //
bikesuite . org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf (visited on
11/26/2022).

[6] E. Berlekamp, R. McEliece, and H. van Tilborg. “On the inherent intractability
of certain coding problems (Corresp.)” In: IEEE Transactions on Information
Theory 24.3 (May 1978), pp. 384-386. DOI: 10.1109/tit.1978.1055873. URL:
https://doi.org/10.1109/tit.1978.1055873.

[7] Sebastian Berndt. Personal Conversation. Sept. 16, 2022.

[8] Bike Reference Implementation. Accessed: 2024-02-20 17:57. URL: https : / /
bikesuite.org/files/v5.0/Reference Implementation.2022.10.04.1.zip.

[9] Jean-Max Dutertre et al. “Experimental analysis of the electromagnetic instruction

skip fault model and consequences for software countermeasures” In: Microelec-
tronics Reliability 121 (2021), p. 114133.

40

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-4-submissions
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://bikesuite.org/files/v5.0/BIKE_Spec.2022.10.10.1.pdf
https://doi.org/10.1109/tit.1978.1055873
https://doi.org/10.1109/tit.1978.1055873
https://bikesuite.org/files/v5.0/Reference_Implementation.2022.10.04.1.zip
https://bikesuite.org/files/v5.0/Reference_Implementation.2022.10.04.1.zip

Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure Integration of Asymmetric and
Symmetric Encryption Schemes”. In: Advances in Cryptology — CRYPTO’ 99.
Springer Berlin Heidelberg, 1999, pp. 537-554. DOI: [10.1007/3-540-48405-1_34l

Clement Gaine et al. “Fault Injection on Embedded Neural Networks: Impact of
a Single Instruction Skip”. In: arXiv preprint arXiv:2308.16665 (2023).

GNU Make. Accessed: 2024-01-18 16:00. URL: https://www.gnu.org/software/
make/.

Cem Giineri, San Ling, and Buket Ozkaya. Quasi-Cyclic Codes. 2020. DOI: 10 .
48550/ARXIV.2007.16029. URL: https://arxiv.org/abs/2007.16029.

Qian Guo, Thomas Johansson, and Paul Stankovski. “A key recovery attack on
MDPC with CCA security using decoding errors”. In: International conference on
the theory and application of cryptology and information security. Springer. 2016,
pp. 789-815.

Matthias J. Kannwischer et al. PQM/: Post-quantum crypto library for the ARM
Cortex-M}. https://github.com/mupq/pqmé.

Sophie Ketelsen. “Fault attacks on BIKE”. MA thesis. Universitat zu Liibeck, 2022.

Niclas Kiithnapfel et al. “EM-Fault It Yourself: Building a Replicable EMFI Setup
for Desktop and Server Hardware”. In: CoRR abs/2209.09835 (2022).

National Security Agency (NSA). Ghidra: Software Reverse Engineering Frame-
work. Accessed: 2024-01-18 14:13. 2023. URL: https://ghidra-sre.org/.

NewAE ChipSHOUTER Kit. Accessed: 2024-01-18 15:00. URL: https://www .
newae.com/products/nae-cwb20.

Open source version of the STMicroelectronics STLINK Tools. Accessed: 2024-01-
18 16:08. URL: https://github.com/stlink-org/stlink.

OpenOCD. Accessed: 2024-03-07 14:55. URL: https://openocd.org/.
PlatformIO. Accessed: 2024-01-18 14:13. URL: https://platformio.org/.

Lionel Riviere et al. “High precision fault injections on the instruction cache of
ARMv7-M architectures”. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). IEEE. 2015, pp. 62-67.

siliconprOn website. Accessed: 2024-02-20 16:14. URL: https://siliconprOn.org.

STM32F407 Die Shot. Accessed: 2024-02-20 16:14. URL: https://siliconprOn.
org/map/st/stm32f407vgt6/mcmaster mz mit20x/.

Alexander Treff. Personal Conversation. Dec. 12, 2023.

41

https://doi.org/10.1007/3-540-48405-1_34
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/
https://doi.org/10.48550/ARXIV.2007.16029
https://doi.org/10.48550/ARXIV.2007.16029
https://arxiv.org/abs/2007.16029
https://github.com/mupq/pqm4
https://ghidra-sre.org/
https://www.newae.com/products/nae-cw520
https://www.newae.com/products/nae-cw520
https://github.com/stlink-org/stlink
https://openocd.org/
https://platformio.org/
https://siliconpr0n.org
https://siliconpr0n.org/map/st/stm32f407vgt6/mcmaster_mz_mit20x/
https://siliconpr0n.org/map/st/stm32f407vgt6/mcmaster_mz_mit20x/

	Introduction
	Related Work
	Structure

	BIKE
	Linear Codes and (Quasi-)Cyclic Codes
	McEliece Cryptosystem and Niederreiter Cryptosystem
	BIKE

	BIKE Key Recovery
	Key Properties and Faultability
	Key Recovery Algorithm

	Hardware
	Construction
	Target Mounting Plate
	Safe Construction of ChipSHOUTER Location

	Challenges
	Cooling
	Controllable Relay

	Pinout
	Power and Data Layout
	Connection between Stages and Controller

	Experiments
	EMFI Station Overview
	Probing Experiment
	Probing Protocol
	Building the Probing Firmware

	BIKE Attack and Combined Probing
	Building the BIKE Firmware
	Locating the Intermediate Key
	The BIKE Faulting Attack Script

	Evaluation and Results
	Probing
	BIKE
	Additional Challenges and Findings
	Stateless Protocol
	Reliable Reset
	Probe Position and Tip
	Variability in EMFI Resistance

	Conclusion

