IOTLB-SC: An Accelerator-Independent Leakage Source in Modern Cloud Systems

Thore Tiemann¹, Zane Weissman², Thomas Eisenbarth¹, Berk Sunar²

¹University of Lübeck, Lübeck, Germany

²Worcester Polytechnic Institute, MA, USA

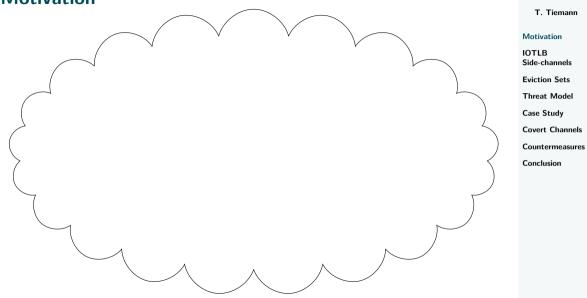
ASIA CCS 2023, July 10-14 2023

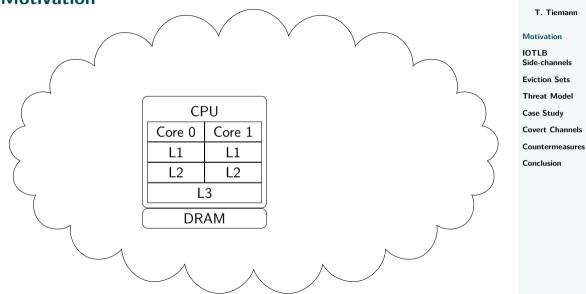
IOTLB-SC

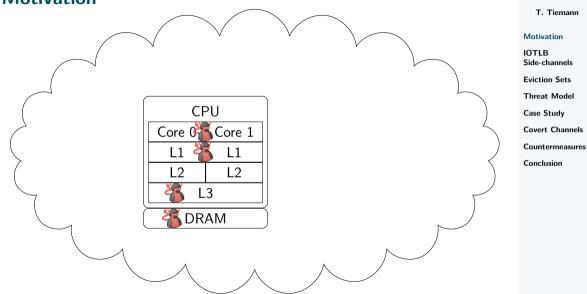
T. Tiemann

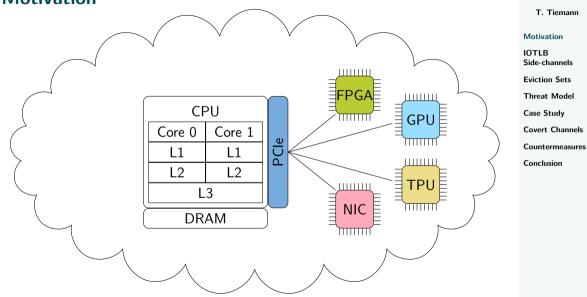
Motivation

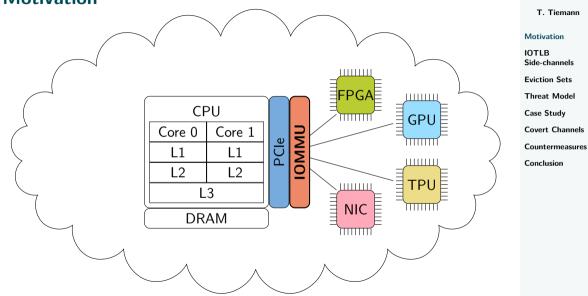
IOTLB Side-channels


Eviction Sets


Threat Model


Case Study


Covert Channels


Countermeasures

Research Question

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Conclusion

Do IOTLBs introduce a side-channel?

Problem

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Conclusion

► IOMMU inaccessible from CPU

Problem

► IOMMU inaccessible from CPU

Solution: FPGA design to carry out our experiments

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Results

IOMMU disabled

► DMA read: 160–185 cycles

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

R. Neugebauer et al., "Understanding PCIe performance for end host networking", SIGCOMM, 2018

C. Peglow, "Security analysis of hybrid Intel CPU/FPGA platforms using IOMMUs against I/O attacks", Thesis, University of Lübeck, 2020

Results

IOMMU disabled

► DMA read: 160–185 cycles

IOMMU enabled

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

R. Neugebauer et al., "Understanding PCIe performance for end host networking", SIGCOMM, 2018

C. Peglow, "Security analysis of hybrid Intel CPU/FPGA platforms using IOMMUs against I/O attacks", Thesis, University of Lübeck, 2020

Results

IOMMU disabled

► DMA read: 160–185 cycles

IOMMU enabled

► First DMA read: 225–270 cycles

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

R. Neugebauer et al., "Understanding PCIe performance for end host networking", SIGCOMM, 2018

C. Peglow, "Security analysis of hybrid Intel CPU/FPGA platforms using IOMMUs against I/O attacks", Thesis, University of Lübeck, 2020

Results

IOMMU disabled

DMA read: 160–185 cycles

IOMMU enabled

- First DMA read: 225–270 cycles
- ► Next accesses: 160–185 cycles

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

R. Neugebauer et al., "Understanding PCIe performance for end host networking", SIGCOMM, 2018

C. Peglow, "Security analysis of hybrid Intel CPU/FPGA platforms using IOMMUs against I/O attacks", Thesis, University of Lübeck, 2020

Results

IOMMU disabled

DMA read: 160–185 cycles

IOMMU enabled

- First DMA read: 225–270 cycles
- ► Next accesses: 160–185 cycles

65-85 cycles difference between IOTLB hit and miss

IOTLB-SC

T. Tiemann

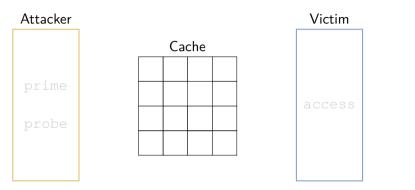
Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study


Covert Channels

Countermeasures

R. Neugebauer et al., "Understanding PCIe performance for end host networking", SIGCOMM, 2018

C. Peglow, "Security analysis of hybrid Intel CPU/FPGA platforms using IOMMUs against I/O attacks", Thesis, University of Lübeck, 2020

Prime+Probe

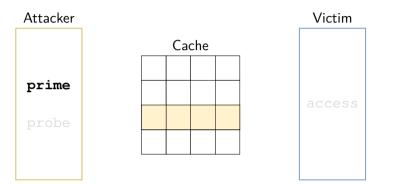
IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets


Threat Model

Case Study

Covert Channels

Countermeasures

Prime+Probe

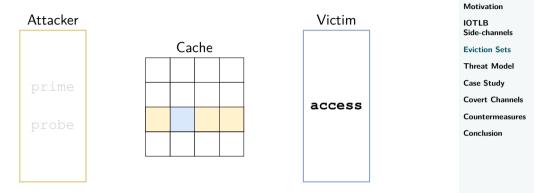
IOTLB-SC

T. Tiemann

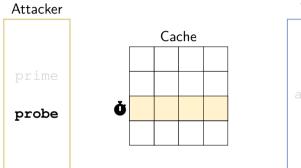
Motivation

IOTLB Side-channels

Eviction Sets


Threat Model

Case Study


Covert Channels

Countermeasures

Prime+Probe

Prime+Probe

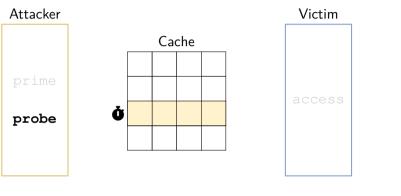
IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets


Threat Model

Case Study

Covert Channels

Countermeasures

Prime+Probe

IOTLB Side-channels Eviction Sets Threat Model Case Study Covert Channels Countermeasures

Motivation

Conclusion

fast slow Victim did not access Victim accessed

IOTLB-SC

T. Tiemann

Algorithms

Grow-Split [Liu]

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

F. Liu et al., "Last-Level Cache Side-Channel Attacks are Practical", S&P, 2015

P. Vila et al., "Theory and Practice of Finding Eviction Sets", S&P, 2019

Algorithms

Grow-Split [Liu]

? Number of ways per cache set

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

F. Liu et al., "Last-Level Cache Side-Channel Attacks are Practical", S&P, 2015

P. Vila et al., "Theory and Practice of Finding Eviction Sets", S&P, 2019

Algorithms

Grow-Split [Liu]

- **?** Number of ways per cache set
- ✓ Address to cache set mapping

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

F. Liu et al., "Last-Level Cache Side-Channel Attacks are Practical", S&P, 2015

P. Vila et al., "Theory and Practice of Finding Eviction Sets", S&P, 2019

Algorithms

Grow-Split [Liu]

Baseline Reduction [Vila]

- ? Number of ways per cache set
- ✓ Address to cache set mapping

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

F. Liu et al., "Last-Level Cache Side-Channel Attacks are Practical", S&P, 2015

P. Vila et al., "Theory and Practice of Finding Eviction Sets", S&P, 2019

Algorithms

Grow-Split [Liu]

- **?** Number of ways per cache set
- ✓ Address to cache set mapping

Baseline Reduction [Vila]

✓ Number of ways per cache set

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

F. Liu et al., "Last-Level Cache Side-Channel Attacks are Practical", S&P, 2015

P. Vila et al., "Theory and Practice of Finding Eviction Sets", S&P, 2019

Algorithms

Grow-Split [Liu]

- ? Number of ways per cache set
- ✓ Address to cache set mapping

Baseline Reduction [Vila]

- ✓ Number of ways per cache set
- ? Address to cache set mapping

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

F. Liu et al., "Last-Level Cache Side-Channel Attacks are Practical", S&P, 2015

P. Vila et al., "Theory and Practice of Finding Eviction Sets", S&P, 2019

Algorithms

Grow-Split [Liu]

- ? Number of ways per cache set
- \checkmark Address to cache set mapping

Baseline Reduction [Vila]

- Number of ways per cache set
- **?** Address to cache set mapping

We combine both algorithms to not require prior knowledge.

Eviction Sets Threat Model Case Study Covert Channels Countermeasures Conclusion

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

F. Liu et al., "Last-Level Cache Side-Channel Attacks are Practical", S&P, 2015

P. Vila et al., "Theory and Practice of Finding Eviction Sets", S&P, 2019

Grow-Reduce Algorithm

// Grow				
while $count < 50$ do				
$page \leftarrow_{\in} pool$				
$evset \leftarrow_+ page$				
$pool \leftarrow page$				
if evicts(target, evset) then				
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $				

Cache			

IOTLB-SC

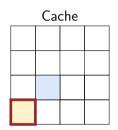
T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model


Case Study

Covert Channels

Countermeasures

Grow-Reduce Algorithm

// Grow				
while $count < 50$ do				
$page \leftarrow_\in pool$				
$evset \leftarrow_+ page$				
$pool \leftarrow page$				
if evicts(target, evset) then				
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				

IOTLB-SC

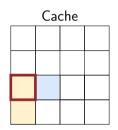
T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model


Case Study

Covert Channels

Countermeasures

Grow-Reduce Algorithm

// Grow				
while $count < 50$ do				
$page \leftarrow_{\in} pool$				
$evset \leftarrow_+ page$				
$pool \leftarrow page$				
if evicts(target, evset) then				
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $				

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Grow-Reduce Algorithm

// Grow				
while $count < 50$ do				
$page \leftarrow_{\in} pool$				
$evset \leftarrow_+ page$				
$pool \leftarrow page$				
if evicts(target, evset) then				
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $				

Cache				

IOTLB-SC

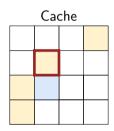
T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model


Case Study

Covert Channels

Countermeasures

Grow-Reduce Algorithm

```
// Grow
while count < 50 do
    page \leftarrow_{\in} pool
    evset \leftarrow_{+} page
    pool \leftarrow_{-} page
    if evicts(target, evset) then
        | count \leftarrow count + 1
```


IOTLB-SC

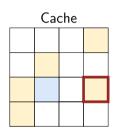
T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model


Case Study

Covert Channels

Countermeasures

Grow-Reduce Algorithm

// Grow				
while $count < 50$ do				
$page \leftarrow_{\in} pool$				
$evset \leftarrow_+ page$				
$pool \leftarrow page$				
if evicts(target, evset) then				
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $				

IOTLB-SC

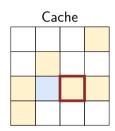
T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model


Case Study

Covert Channels

Countermeasures

Grow-Reduce Algorithm

```
// Grow
while count < 50 do
    page \leftarrow_{\in} pool
    evset \leftarrow_{+} page
    pool \leftarrow_{-} page
    if evicts(target, evset) then
        | count \leftarrow count + 1
```


IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Grow-Reduce Algorithm

```
// Grow
while count < 50 do
    page \leftarrow_{\in} pool
    evset \leftarrow_{+} page
    pool \leftarrow_{-} page
    if evicts(target, evset) then
        | count \leftarrow count + 1
```

Cache				

IOTLB-SC

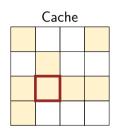
T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model


Case Study

Covert Channels

Countermeasures

Grow-Reduce Algorithm

```
// Grow
while count < 50 do
    page \leftarrow_{\in} pool
    evset \leftarrow_{+} page
    pool \leftarrow_{-} page
    if evicts(target, evset) then
        | count \leftarrow count + 1
```


IOTLB-SC

T. Tiemann

Motivation

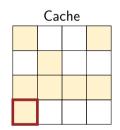
IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels


Countermeasures

Grow-Reduce Algorithm

// Reduce foreach page in evset do evset ←_ page

if not evicts(target, evset) then $_$ evset \leftarrow_+ page

return evset

IOTLB-SC

T. Tiemann

Motivation

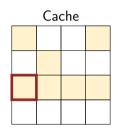
IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels


Countermeasures

Grow-Reduce Algorithm

// Reduce foreach page in evset do evset ←_ page if not evicts(target, evset) then

 $\mathsf{evset} \leftarrow_+ \mathsf{page}$

return evset

IOTLB-SC

T. Tiemann

Motivation

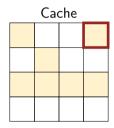
IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels


Countermeasures

Grow-Reduce Algorithm

// Reduce foreach page in evset do evset ←_ page if not evicts(target, evset) then

 $\mathsf{evset} \leftarrow_+ \mathsf{page}$

return evset

IOTLB-SC

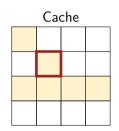
T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model


Case Study

Covert Channels

Countermeasures

Grow-Reduce Algorithm

return evset

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

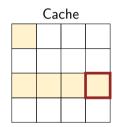
Threat Model

Case Study

Covert Channels

Countermeasures

Grow-Reduce Algorithm


// Reduce foreach page in evset do

```
evset \leftarrow_{-} page

if not evicts(target, evset) then

\lfloor evset \leftarrow_{+} page
```

return evset

IOTLB-SC

T. Tiemann

Motivation

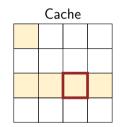
IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels


Countermeasures

Grow-Reduce Algorithm

// Reduce foreach page in evset do evset ←_ page if not evicts(target, evset) then

 $\mathsf{evset} \leftarrow_+ \mathsf{page}$

return evset

IOTLB-SC

T. Tiemann

Motivation

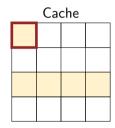
IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels


Countermeasures

Grow-Reduce Algorithm

// Reduce foreach page in evset do evset ←_ page if not evicts(target, evset) then

 $\mathsf{evset} \leftarrow_+ \mathsf{page}$

return evset

IOTLB-SC

T. Tiemann

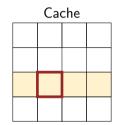
Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study


Covert Channels

Countermeasures

Grow-Reduce Algorithm

// Reduce foreach page in evset do evset ←_ page

return evset

IOTLB-SC

T. Tiemann

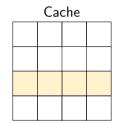
Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study


Covert Channels

Countermeasures

Grow-Reduce Algorithm

// Reduce foreach page in evset do

return evset

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Evaluation

IOTLB-SC T. Tiemann

	Motivation	
	IOTLB Side-channels	
	Eviction Sets	
erage best	Threat Model	
ction rate	Case Study	
0.00 %	Covert Channels	
0.00%	Countermeasures	
0.00 /0	Conclusion	
.00 %	Conclusion	

Flush	Algorithm	Sets	Set size	Useful sets per target	Average best eviction rate
~	Grow-Split [Liu]	1.00	118.00	1.00	100.00 %
	Grow-Reduce	1.00	118.00	1.00	100.00 %
×	Grow-Split [Liu]	10.70	50.69	0.98	28.00 %
	Grow-Reduce	32.08	110.05	0.98	82.23 %

F. Liu et al., "Last-Level Cache Side-Channel Attacks are Practical", S&P, 2015

Threat Model

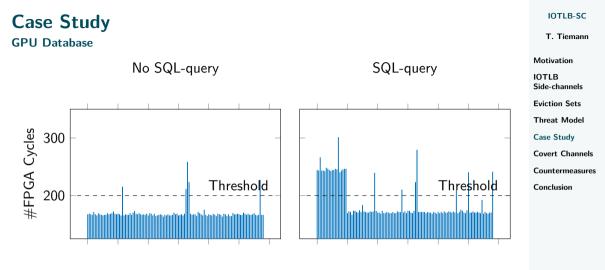
IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

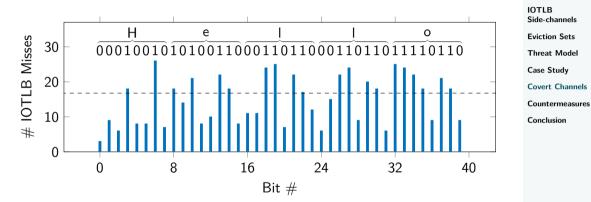
Eviction Sets


Threat Model

Case Study

Covert Channels

Countermeasures


Eviction Set Address

Covert Channels PCle ↔ PCle

IOTLB-SC

T. Tiemann

Motivation

Covert Channels $CPU \rightarrow PCIe$

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Conclusion

Requires ring 0 privileges

Covert Channels $CPU \rightarrow PCIe$

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

- Requires ring 0 privileges
- ► Flush+Reload

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

How about the reverse direction?

Covert Channels

Countermeasures

Conclusion

Requires ring 0 privileges

► Flush+Reload

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Conclusion

- Requires ring 0 privileges
- ► Flush+Reload

How about the reverse direction? ► Ansynchronous IOTLB flush

- Requires ring 0 privileges
- ► Flush+Reload

How about the reverse direction?

- Ansynchronous IOTLB flush
- Flush execution time is *not* data-dependent

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

- Requires ring 0 privileges
- ► Flush+Reload

How about the reverse direction?

- Ansynchronous IOTLB flush
- Flush execution time is *not* data-dependent
- $\blacktriangleright \ \mathsf{No} \ \mathsf{PCIe} \to \mathsf{CPU}$

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Covert Channels

IOTLB-SC

T. Tiemann

Motivation IOTLB

						Side-channels
Channel	Method	Env	Throughput	Error	Message content	Eviction Sets Threat Model
$PCIe \to PCIe$	P+P	Host	3.4 bps 6.65 bps 246.15 bps 7.58 bps	0% 0% 0.1% 0%	All 1s 50/50 All 0s ASCII	Case Study Covert Channels Countermeasures Conclusion
$CPU \to PCle$	F+R	Host	15023 bps	30.09%		

Application

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

► Constant-time code

Application

IOTLB-SC

T. Tiemann

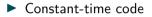
Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study


Covert Channels

Countermeasures

IOTLB-SC

T. Tiemann Motivation

Application

Hypervisor

Eviction Sets Threat Model

IOTLB Side-channels

Case Study

Covert Channels

Countermeasures

IOTLB-SC

T. Tiemann Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Conclusion

Application

Constant-time code

Hypervisor

Address Translation Services

Application

Constant-time code

Hypervisor

- Address Translation Services
- 💐 Set-based IOTLB partitioning

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Application

Constant-time code

Hypervisor

- Address Translation Services
- 💐 Set-based IOTLB partitioning

Physical

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Application

Constant-time code

Hypervisor

- Address Translation Services
- 💐 Set-based IOTLB partitioning

Physical

Plug devices into separate IOMMUs

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Conclusion

Application

Constant-time code

Hypervisor

Address Translation Services

💐 Set-based IOTLB partitioning

Physical

Plug devices into separate IOMMUs

Hardware

Application

- Constant-time code
- Hypervisor
- Address Translation Services
- 💐 Set-based IOTLB partitioning

Physical

Plug devices into separate IOMMUs

Hardware

Way-based IOTLB partitioning

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Application

Constant-time code

Hypervisor

- Address Translation Services
- 💐 Set-based IOTLB partitioning

Physical

Plug devices into separate IOMMUs

Hardware

- Way-based IOTLB partitioning
- Un-cacheable translations

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

Previously ignored side-channel for DMA-capable devices identified

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

- Previously ignored side-channel for DMA-capable devices identified
- Eviction set algorithm without prior knowledge

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

- Previously ignored side-channel for DMA-capable devices identified
- Eviction set algorithm without prior knowledge
- ► First IOTLB covert channel

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures

- Previously ignored side-channel for DMA-capable devices identified
- Eviction set algorithm without prior knowledge
- ► First IOTLB covert channel

Thore Tiemann

- @ t.tiemann@uni-luebeck.de
- 🍠 @ThoreTiemann

 https://www.its.uni-luebeck.de/en/staff/ thore-tiemann.html

Thank you for your attention!

IOTLB-SC

T. Tiemann

Motivation

IOTLB Side-channels

Eviction Sets

Threat Model

Case Study

Covert Channels

Countermeasures