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Abstract

Side-channel attacks on CPUs allow crossing architectural security barriers which were
deemed impenetrable by software. Even trusted execution environments (TEEs), which
seek strong hardware-based isolation of applications running on an untrusted system,
have been subject to attacks which managed to extract the code and data inside them.
Attack techniques range from tracking memory access patterns via cache attacks to
single-stepping of TEEs, deducing secrets from ciphertext changes in memory, and even
invoking transient behavior that yields state which should not be accessible by software
at all.

We begin this thesis with an overview over the various side-channel attack techniques
and highlight their capabilities. We then take a defender’s perspective, aiming to deploy
side-channel resistant software. The most common class of side-channel vulnerabilities
in software concerns memory access pattern leakages, where the attacker can infer se-
crets by observing secret-dependent control flow and memory accesses. Absent effective
hardware countermeasures against side-channels, the standard solution for such leak-
ages is constant-time code, which exhibits access patterns that are independent from
secrets. However, writing such code is complex and error-prone, prompting research
into automatic leakage detection. To date, there are many different proposals for finding
side-channel leakages in software, with varying focus on soundness, capabilities and
scalability. We survey the existing research and propose a new framework Microwalk,
which aims to unite the features of the different techniques in a single practically usable
tool.

Progressing forward, we discuss side-channel defenses which do not need as much man-
ual intervention by the developer and comprise both hardware and software approaches.
We propose Cipherfix, which automatically rewrites binaries to be resistant to ciphertext
side-channel attacks, an attack method allowing to break constant-time implementa-
tions on TEEs that use deterministic memory encryption schemes. We conclude with
Obelix, a dynamic obfuscation engine that addresses many classes of side-channels in a
single drop-in solution, including memory access pattern leakages, single-stepping and
ciphertext side-channels.





Kurzfassung

Seitenkanalangriffe auf CPUs überwinden architekturelle Sicherheitsbarrieren, die für
Software als undurchdringlich galten. Selbst Trusted Execution Environments (TEEs),
die eine starke hardwarebasierte Isolation von Anwendungen auf einem nicht ver-
trauenswürdigem System anstreben, waren Ziel von Angriffen, denen es gelang, Code
and Daten aus diesen Umgebungen zu extrahieren. Angriffstechniken reichen hier-
bei vom Mitschneiden von Speicherzugriffsmustern mittels Cache-Angriffen bis hin
zum Single-Stepping von TEEs, Ableiten von Geheimnissen aus Chiffretextänderungen
im Speicher und sogar Verursachen von transientem Verhalten, das zu für Software
unerreichbaren Systemzuständen führt.

Wir beginnen diese Arbeit mit einem Überblick über die verschiedenen Seitenkanal-
Angriffstechniken und ihre Fähigkeiten. Anschließend nehmen wir die Perspektive
eines Verteidigers ein, der seitenkanalresistente Software entwickeln und einsetzen
möchte. Die häufigste Klasse von Seitenkanal-Schwachstellen sind Lecks von Spei-
cherzugriffsmustern, aus denen der Angreifer durch Beobachtung von geheimnisab-
hängigen Kontrollflüssen und Speicherzugriffen auf Geheimnisse schließen kann. Man-
gels effektiver Hardware-Gegenmaßnahmen gegen solche Schwachstellen besteht die
Standardlösung in constant-time Code, dessen Zugriffsmuster unabhängig von geheimen
Eingaben sind. Das Schreiben solchen Codes ist jedoch komplex und fehleranfällig, was
Forschung zur automatischen Schwachstellenerkennung veranlasst hat. Inzwischen
gibt es viele verschiedene Vorschläge zur Erkennung von Seitenkanal-Schwachstellen
in Software, mit variierendem Schwerpunkt auf Korrektheit, Fähigkeiten oder Skalier-
barkeit. Wir geben einen Überblick über die bestehende Forschung und schlagen ein
neues Framework mit dem Namen Microwalk vor, welches zum Ziel hat, die Merkmale
der verschiedenen Techniken in einem praktisch nutzbaren Werkzeug zu vereinen.

Im Anschluss diskutieren wir Seitenkanal-Gegenmaßnahmen, die weniger manuelle
Eingriffe seitens des Entwicklers benötigen und sowohl software- als auch hardware-
basierte Ansätze umfassen. Wir schlagen Cipherfix vor, das Binärdateien automa-
tisch umschreibt, um diese gegen Chiffretext-Seitenkanalangriffe resistent zu machen.
Chiffretext-Seitenkanäle ermöglichen es, constant-time Implementierungen zu brechen,
wenn diese auf TEEs mit deterministischer Speicherverschlüsselung laufen. Zum Ab-
schluss stellen wir Obelix vor, das mittels dynamischer Obfuscation viele Klassen von
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Seitenkanalangriffen in einer einzigen direkt einsetzbaren Lösung behebt, insbesondere
Speicherzugriffsmuster-Lecks, Single-Stepping und Chiffretext-Seitenkanäle.
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Part I

Software Defenses against CPU
Side-Channels





1
Introduction

The broad availability of high-bandwidth internet access leads to a centralization of IT
services: Instead of maintaining their own data centers, many companies and agencies
rent resources on third-party cloud systems. Moving workloads into the cloud avoids
the costly acquisition and maintenance of own hardware, and allows quick scaling of
applications under an increased load.

However, by moving potentially sensitive computations into the cloud, the customer
effectively entrusts the cloud provider with maintaining confidentiality of their applica-
tions and isolating them from the applications of other customers. A standard measure
to keep customers running on the same hardware from interfering with each other is
virtualization: Every customer’s code runs in a separate virtual machine (VM), which is
assigned a share of the system’s resources and behaves like a native bare-metal system.
VMs are managed by the hypervisor (i.e., cloud provider) and cannot access each other’s
code and data.

If the owner of sensitive code and data does not trust the cloud provider, virtualiza-
tion becomes insufficient, as the hypervisor has full access to all code and data on the
given system. Instead, the customer may choose to use a trusted execution environment
(TEE), which adds an additional layer of hardware-enforced protection that even resists
privileged attacks from the hypervisor itself. While VMs can be freely modified by the
hypervisor, TEEs encrypt the application’s memory and do not allow any other user to
read or manipulate it.

Unfortunately, it was shown countless times that the isolation guarantees from VMs and
TEEs do not hold in practice. While direct, architectural attacks were quickly patched
in subsequent processor generations [160, 161, 250, 252], there is another attack class
that is much harder to mitigate: Side-channel attacks. A side-channel attack does not
directly read sensitive information, but observes the execution behavior of a program
to infer secrets indirectly. This reaches from very simple attacks like measuring the
total execution time of a program that compares passwords and aborts upon the first
difference (thus leaking the amount of correct characters) to complex attacks that exploit
a certain behavior of the hardware that the program runs on. The latter class, so-called
microarchitectural side-channel attacks, exploit optimizations that were introduced by
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the processor vendors and are transparent to the application developer, like caching [30,
171] or out-of-order execution [144]. TEEs with their powerful attacker model come with
another set of attacks, which allow the hypervisor to single-step code [45] or infer secrets
from ciphertext changes in memory [136, 138].

The indirect nature of these attacks makes it difficult to implement effective hardware
countermeasures without sacrificing performance, and many such proposals have even-
tually been shown to be vulnerable to an improved version of the same attack. However,
there are mitigations that address at least some of the most relevant attack classes and
that can be implemented by software developers. The arguably most common type
of side-channel leakage are secret-dependent operations, also called memory access pattern
leakages. Common examples are executing an if statement depending on the value of a
secret key bit, or using a key byte as index for an array access. Both can be observed by
an attacker monitoring memory accesses, e.g., via a cache attack. While the developer
of a sensitive application (e.g., cryptographic software) should not be responsible for
addressing security issues stemming from unrelated hardware optimizations, they can
adapt their software in a way that it becomes resistant against such side-channels.

To remove memory access pattern leakages (and thus prevent all attacks exploiting them),
the developer systematically replaces secret-dependent operations in their program by
linearized ones, such that the program always accesses the same code and data, indepen-
dent from its secret input. Such programs are called constant-time, as they exhibit the same
observable execution behavior for any input. Writing constant-time code is challenging
and prone to missing subtle leakages which may be exploitable nonetheless [16, 208, 239].
As standard bug-finding tools and sanitizers are not capable of finding side-channel leak-
ages, specialized tools and approaches were developed that aim to help the developer
identify missed leakages in their code and patch them appropriately. Methods vary from
static analysis and proof generation to dynamic analysis and fuzzing [78].

Other research goes one step further and designs tools that automate code hardening
through means like static instrumentation. For example, it is possible to automatically
linearize code, allowing developers to write leaking, but better maintainable code, that is
later transformed by the compiler. Such automated hardening tools can also be created
for other side-channel attack classes. Several software-only and software/hardware co-
design approaches have been proposed for preventing speculative execution attacks [49,
62], TEE single-stepping [55, 59, 168, 246] and ciphertext side-channels [244, 246].
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1.1 Main Contributions

In this thesis, we design new side-channel leakage analysis techniques and build auto-
mated hardening tools for software running in insecure TEEs.

We advance the state of the art of software defenses against CPU side-channels by:

• Designing a practical dynamic side-channel leakage analysis framework. With
Microwalk, we build a new software leakage analysis framework targeted at prac-
tical use in day-to-day development. We propose new efficient leakage analysis
algorithms based on comparing execution traces generated through dynamic binary
instrumentation (DBI). The framework satisfies three key objectives of practical
leakage analysis: Localization and quantification of side-channel leakages, and effi-
ciency of the analysis method. We design a modular and extensible framework and
devise templates for easy inclusion in Continuous Integration (CI) pipelines. We
successfully use Microwalk to uncover many previously unknown side-channel vul-
nerabilities, which includes leakages in closed-source libraries like Microsoft CNG,
that is shipped with every Windows system but received little scrutiny beforehand.

• Bringing dynamic leakage analysis to scripting languages and non-x86 platforms.
We show that side-channel leakage analysis algorithms designed for evaluating
binaries can also be applied to programming languages directly. For this, we em-
ploy source-based static instrumentation to insert trace generation code at relevant
source locations. With a custom preprocessor we convert those traces into the
generic trace format of Microwalk, allowing us to reuse its existing analysis mod-
ules. Using the extended framework, we conduct the first broad leakage analysis
of popular JavaScript cryptographic libraries from NPM, identifying many vulner-
abilities.

Finally, we demonstrate the first side-channel leakage analysis toolchain for the
RISC-V platform. We port the ARM-based DBI framework MAMBO to RISC-V,
allowing us to generate native execution traces on RISC-V, which we can subse-
quently analyze with Microwalk. We hope that the early availability of leakage
analysis tooling on RISC-V supports the development of native cryptographic code
that is resistant to side-channels from day one.

• Designing an automated software hardening scheme against ciphertext side-
channels. As ciphertext side-channels are specific to TEEs, existing software does
not deploy any suitable countermeasures and, due to their impact on code main-
tainability, is also not likely to deploy them in the future. Starting from a taint
tracking tool that collects memory loads and stores that access secret data and
are potentially vulnerable against ciphertext side-channel attacks, we build an
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automatic software hardening framework based on rewriting existing binaries. We
complement each memory write with additional instructions which generate a new
random mask and add this mask to the written value, leading to fresh ciphertexts.
We evaluate different methods for sampling sufficiently good randomness and for
keeping track of the secrecy of a given memory location. We apply our toolchain to
several popular cryptographic implementations and show that it can protect them
against ciphertext side-channel attacks with a reasonable runtime overhead.

• Exploring a catch-all drop-in software countermeasure against a wide spectrum
of TEE-related attacks. We survey existing software countermeasures against the
high variety of side-channel attacks against TEEs, and find that these countermea-
sures only cover few attack vectors and often require expert knowledge to apply.
With the objective of “restoring trust in TEEs” we look for an automated solution
that can protect against all relevant classes of attacks, and explore the suitability of a
rather exotic approach: Full program obfuscation. We show how an existing obfus-
cation tool can be adapted to protect against timing and controlled channel attacks,
single-stepping and ciphertext side-channels. For this, we analyze the practical
capabilities of single-stepping attackers on Intel SGX and AMD SEV, and design
an algorithm that generates corresponding indistinguishable code blocks. In our
evaluation we find that, while the resulting tool comes with a high performance
overhead, it can reliably protect entire cryptographic implementations against
attackers trying to fingerprint code or extract secret data.

1.1.1 Individual Publications

In the following, we summarize the individual publications included in this thesis, which
make up the main contributions. The respective full text is given in Part II.

Microwalk: A Framework for Finding Side Channels in Binaries. To avert side-
channel vulnerabilities caused by the microarchitecture a program is executed on, pro-
grammers need to employ software-based mitigation techniques. One such technique
is constant-time code, i.e., code that exhibits the same control flow and memory access
patterns independent from a secret input. There are various ways to verify whether
a given program is constant-time, but to this point research mostly focused on static
analysis (which tends to be slow and hard to deploy in practice) and on imprecise or
highly manual methods. We introduced a new fast dynamic leakage analysis method
based on DBI and mutual information analysis: First, we generated a number of random
secret inputs and collected corresponding execution traces. We then compared those
traces with a focus on the observed memory access patterns. Any difference between
two traces is directly linked to a secret-dependent computation, which is potentially
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exploitable by a side-channel attacker. As the approach tends to find many potential
vulnerabilities in a program, we assigned them a severity score, which is the mutual
information between the secret input and the resulting trace.

We implemented the workflow in a new modular and extensible framework, Microwalk.
With Microwalk, we showed that our leakage analysis technique can efficiently find
side-channel leakages in cryptographic libraries, and we uncovered previously unknown
leakages in the closed-source Microsoft CNG and Intel IPP cryptographic libraries.

The paper was published at ACSAC 2018 in collaboration with Daniel Moghimi, Thomas
Eisenbarth, and Berk Sunar [243]. The full text is in Chapter 5.

Microwalk-CI: Practical Side-Channel Analysis for JavaScript Applications. While
side-channel leakage analysis of software is a well-studied problem, the results never
found wide practical adoption, mostly since the research artifacts were hardly usable, had
bad performance, or required in-depth knowledge of the underlying methods. For these
reasons, as was shown by a study in 2022 [118], developers of cryptographic libraries
still heavily relied on occasional vulnerability disclosures by researchers and, in some
cases, on manual code analysis through tools like ctgrind [133].

To address these challenges, we developed a new dynamic leakage analysis algorithm,
which inserts the execution traces into a trie-like data structure, allowing precise localiza-
tion and quantification of potential leakages in linear time. As mutual information alone
gives misleading results in some cases, we evaluated alternative leakage measurement
methods. The result is a single scalar leakage score which is shown to the user, so they
can quickly prioritize the reported leakages. In another contribution, we abstracted
Microwalk’s trace generation stage to support arbitrary programming languages, and
showed how one can generate suitable execution traces even for script languages like
JavaScript.

Finally, we showed how one can design a general-purpose analysis template for the
extended Microwalk framework, which abstracts away most configuration complexity
and allows a developer to easily integrate side-channel leakage analysis into their existing
Continuous Integration workflow. The Docker images, configuration templates and
example repositories were made available at GitHub [154]. We used the new toolchain to
do the first thorough leakage analysis of popular cryptographic libraries on NPM, and
uncovered many vulnerabilities.

The paper was published at ACM CCS 2022 in collaboration with Florian Sieck, Anna
Pätschke and Thomas Eisenbarth [247]. The full text is in Chapter 6.
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MAMBO-V: Dynamic Side-Channel Leakage Analysis on RISC-V. Most existing
leakage analysis tools target source code or x86 binaries. While analyzing source code can
find source-level leakages, it misses vulnerabilities introduced by compiler optimizations.
Binary approaches catch such issues, but they are inherently bound to a certain architec-
ture. It is desirable to have leakage analysis support on other platforms as well, especially
on the upcoming RISC-V architecture which is growing quickly, to avoid repeating the
many security issues from x86 and ARM. As no DBI tool for RISC-V was available, we
created a port of the ARM-based DBI tool MAMBO, naming it MAMBO-V. We used
MAMBO-V to generate Microwalk-compatible execution traces for RISC-V binaries,
allowing us to conduct the first side-channel leakage analysis of native RISC-V crypto-
graphic code. We identified several vulnerabilities, mostly caused by insecure fallback
implementations in popular libraries which do not yet offer assembly implementations
optimized for RISC-V.

The paper was published at DIMVA 2023 in collaboration with Christopher Peredy,
Florian Sieck, Anna Pätschke and Thomas Eisenbarth [245]. The full text is in Chapter 7.

Cipherfix: Mitigating Ciphertext Side-Channel Attacks in Software. Ciphertext
side-channels are a rather young attack class, targeting deterministic memory encryption
in TEEs (in this case, AMD SEV). They exploit the fact that a fixed plaintext always
results in the same ciphertexts at a certain memory address, allowing the attacker to
detect repeating plaintexts by keeping track of observed ciphertexts. They can then use
this information to break constant-time cryptographic implementations. As hardware-
based countermeasures are not available, software hardening is necessary. We solved
this problem through masking, where we added a random value each time data was
written to memory. When reading the data, the mask was subtracted again.

As simply masking all data was not efficient, we prepended an analysis step, where we
used dynamic taint tracking to find all locations where secret data was processed, and
did precise context-aware tracking of stack variables and heap allocations to find where
those secrets were stored. We then implemented a static binary instrumentation tool,
which rewrote the relevant memory loads and stores to use masking. Due to our binary
approach, we could harden a program across library boundaries without requiring
recompilation. We showed that the resulting performance overhead was tolerable, and
discussed possible trade-offs between performance and security, like the bookkeeping of
secrecy information and the choice of the random number generator for the masks.

The paper was published at USENIX Security 2023 in collaboration with Anna Pätschke,
Luca Wilke und Thomas Eisenbarth [244]. The full text is in Chapter 8.
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Obelix: Mitigating Side-Channels through Dynamic Obfuscation. Over time many
different side-channel attacks were demonstrated against TEEs. Some were addressed
through hardware updates, but many must be averted by software countermeasures.
However, the existing countermeasures only focus on single attack classes, are incom-
patible with each other, or can only protect the secret data within the TEE, but not hide
the code itself. We designed a drop-in mitigation that can prevent a wide range of side-
channel attacks and manages to protect both code and data. Our approach was based on
dynamic obfuscation, where code and data were stored in oblivious memory and fetched
block by block. To protect against single-stepping, we built the blocks in a way that they
are indistinguishable for a high-resolution attacker, and verified this through precise
measurements on Intel SGX and AMD SEV. While the obfuscation-based approach led
to a high performance overhead in our proof-of-concept implementation, it is suitable
to thoroughly protect small or asynchronously executed programs against all relevant
side-channels. Due to the modular design of Obelix, it can be extended to also protect
against transient execution and fault injection attacks.

The paper was published at IEEE S&P 2024 in collaboration with Anja Rabich, Anna
Pätschke and Thomas Eisenbarth [246]. The full text is in Chapter 9.

1.2 Other Contributions

Apart from the main contributions outlined previously, the author has also contributed
to other results which are not included in this thesis. We briefly summarize them in the
following.

MemJam: A False Dependency Attack against Constant-Time Crypto Implementa-
tions. Most side-channel attacks target structures like the translation look-aside buffer
(TLB) or the data and instruction caches. While they were successfully used to break
cryptographic implementations, they are limited to a spatial locality of the size of a
page or cache line. With MemJam, we demonstrated a new side-channel attack with
intra-cache line resolution, that exploits false memory read-after-write dependencies
between two hyperthreads. We showed that MemJam can be used to break several
cryptographic primitives in the Intel IPP library, which was specifically hardened against
cache attacks.

The paper was published in the Springer IJPP 2019 journal in collaboration with Ahmad
Moghimi, Thomas Eisenbarth and Berk Sunar [157].
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SEVurity: No Security Without Integrity – Breaking Integrity-Free Memory Encryp-
tion with Minimal Assumptions. We analyzed the memory encryption of AMD SEV
on Zen 1 and Zen 2 platforms. We found that they use an XEX encryption mode with
an address-dependent tweak, which we were able to reverse engineer. We then showed
how one can construct an initial encryption oracle solely by moving around existing
ciphertext blocks in memory. This way, we were able to build a multi-stage exploit which
finally allowed us to inject arbitrary code and data into the protected VM, without relying
on I/O operations as did previous attacks. As a response to this and other attacks, AMD
introduced the SEV-SNP extension, which fixed our attack on Zen 3 by preventing the
hypervisor from writing to encrypted memory.

The paper was published at IEEE S&P 2020 in collaboration with Luca Wilke, Mathias
Morbitzer and Thomas Eisenbarth [250].

undeSErVed trust: Exploiting Permutation-Agnostic Remote Attestation.
AMD SEV offers a remote attestation feature which computes a so-called measurement of
the initial VM state to prove to the VM’s owner that the correct bootloader was placed
in encrypted memory. To generate the corresponding hash, the hypervisor sequentially
calls a dedicated API in the trusted co-processor, passing the code and data which should
be stored in encrypted memory. However, we discovered that the measurement did not
include the address of the data, so we could arbitrarily reorder it in memory, with the
measurement not changing as long as we called the API in the right order. This way, the
owner of the VM would believe that the bootloader was loaded correctly, and would
supply their secret disk encryption key for booting the system. We were able to reorder
the code in such a way that we could inject small amounts of data into the VM, which
after several steps resulted in a full encryption oracle and control over its execution.

The paper was published at WOOT 2021 in collaboration with Luca Wilke, Florian Sieck
and Thomas Eisenbarth [252].

Util::Lookup: Exploiting key decoding in cryptographic libraries. We used Micro-

walk to conduct a leakage analysis of key decoding functions, which were often ig-
nored during side-channel analysis. We found that many libraries implement table-based
Base64 decoding, leaking the secret key through the sequence of accessed indexes. How-
ever, this is difficult to exploit using conventional cache attacks due to the small amount
of leakage (around one bit per Base64 character) and high performance of the implemen-
tation. We significantly increased the practically achievable attack precision by combining
single-stepping with a cache attack, allowing us to accurately measure each table lookup
and then reconstruct the private key. Our attack was aided by a software mitigation
recently proposed by Intel to counter Load Value Injection (LVI) attacks, showing that
countermeasures against one class of attacks may actually amplify another.
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The paper was published at ACM CCS 2021 in collaboration with Florian Sieck, Sebastian
Berndt and Thomas Eisenbarth [208].

A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP. While AMD
SEV-SNP includes measures to prevent the hypervisor from moving ciphertexts (which
we exploited in our SEVurity and undeSErVed trust papers), it still relies on a determin-
istic memory encryption. In this work, we systematically analyzed the attack surface
exposed by deterministic ciphertexts, and identified two main attack primitives: The
dictionary attack, where a certain variable only has few possible values, leading to few
distinguishable ciphertexts; and the collision attack, where the attacker only observes
whether a variable changed, allowing them to break common constant-time primitives like
conditional swaps. We showed that ciphertext side-channel attacks can break constant-
time cryptographic implementations, and proposed and discussed several potential
mitigation approaches.

The paper was published at IEEE S&P 2022 in collaboration with Mengyuan Li, Luca
Wilke, Thomas Eisenbarth, Radu Teodorescu and Yinqian Zhang [136].

ASAP: Algorithm Substitution Attacks on Cryptographic Protocols. In an algo-
rithm substitution attack (ASA), an adversary modifies the shipped implementation of a
cryptographic primitive to embed secrets in publicly sent data, which allows them, for
example, to leak secret keys. We analyzed the applicability of ASAs on the protocol level,
and found that commonly desired properties like forward secrecy and post-compromise
security directly enable ASAs. We showed that we can easily hide private keys in nonces
used by the TLS and WireGuard protocols, while the Signal protocol is much more robust
due to its double ratchet structure.

The paper was published at ACM AsiaCCS 2022 in collaboration with Sebastian Berndt,
Claudius Pott, Tim-Henrik Traving and Thomas Eisenbarth [29].

Help, my Signal has bad Device! We analyzed the post-compromise security of Signal
when the user’s identity key is leaked by an attacker. While existing conversations remain
secure under the core Signal protocol, this does not hold for the extensions which allow
using Signal on multiple devices. Indeed, we showed that an attacker who possesses
the identity key can stealthily register secondary devices under the user’s account,
allowing them to receive and send all future messages involving the compromised user.
We proposed short-term and long-term countermeasures, concluding that the device
registration workflow of Signal must be replaced by a more robust protocol to fully avert
our attack.

The paper was published at DIMVA 2021 in collaboration with Sebastian Berndt, Claudius
Pott and Thomas Eisenbarth [242].
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SEV-Step: A Single-Stepping Framework for AMD-SEV. Single-stepping is a pow-
erful attack primitive against TEEs. As the name suggests, it allows the malicious hy-
pervisor to step the protected code with instruction granularity, by programming a
timer that interrupts the enclave after precisely one instruction. SGX-Step [45] offers a
software framework that aids in building such attacks on Intel SGX. We showed that
single-stepping is also possible on AMD SEV, and designed a framework called SEV-Step
that offers the necessary infrastructure for single-stepping alongside further attack tools
like page-fault tracking and cache attacks. We demonstrated SEV-Step by conducting an
end-to-end cache attack against the cryptographic code contained in the Linux operating
system, allowing us to obtain the volume key of a LUKS2-encrypted disk. In addition,
we conducted precise measurements indicating that Nemesis-style [44] instruction latency
measurement attacks also apply to AMD SEV.

The paper will appear at CHES 2024 and was written in collaboration with Luca Wilke,
Anja Rabich and Thomas Eisenbarth [251].

1.3 Outline

This thesis is structured in two parts. In the first part, after providing fundamental
background on system architecture and microarchitecture, code analysis and software
instrumentation in Chapter 2, we discuss the state of the art in side-channel attacks and
defenses in Chapter 3. More precisely, we first summarize the many different classes
of side-channel attacks and typical software-level leakages (Section 3.1). Then, we sur-
vey automated software leakage detection techniques and discuss the advantages and
drawbacks of each approach (Section 3.2). Finally, we give an overview over manual
and automated side-channel defenses, comparing both hardware- and software-oriented
proposals (Section 3.3). In Chapter 4 we conclude the first part of this thesis and give an
outlook on open questions and future research.

The second part then follows with the publications making up the main contributions of
this thesis, in their original peer-reviewed text.



2
Background

In this chapter, we give some background necessary for following the contributions
of this thesis. For the side-channel attacks and defenses, we provide an overview over
common system architecture and trusted execution environments. In addition, as we
later discuss software leakage analysis and automated code hardening in-depth, we need
a general understanding of software instrumentation and code analysis.

2.1 System Architecture

System architecture can be viewed on different levels. At the highest level, most modern
computers follow the von Neumann architecture model: A central processing unit
(CPU) is connected with main memory and some input/output devices via a number of
buses. Software usually relies on this architectural view of the system. This thesis mostly
focuses on the next two lower levels, which are often referred to as microarchitecture:
The organization of a CPU into separate physical cores with some shared resources like
the last-level cache and memory bus, and the execution engine of a physical core itself.
Software typically is oblivious to these layers, though it may contain optimizations to
maximize utilization of microarchitectural components.

We start with the architectural view, which involves processes, the operating system,
address spaces and virtualization. Afterward, we discuss caches and, finally, a physical
core’s microarchitecture and the out-of-order and speculative execution optimizations,
which are subject to many side-channel attacks.

The following only gives a rough overview over the concepts needed for understanding
side-channel attacks, and focuses on the x86-64 architecture. For a more detailed intro-
duction into system architecture, we refer the reader to books like Computer Architecture
– A Quantitative Approach [98] and Operating Systems: Three Easy Pieces [18], which also
form the foundation of this section.
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Figure 2.1: Memory layout of modern operating systems. Each process has its own virtual address
space, comprising the entire encodable address range. The lower half of the address space
(user space) belongs to the process itself, and may contain code, data, the heap, the stack and
libraries the application depends on. The higher half (kernel space) is used by the operating
system and is inaccessible by user code. Due to the isolated virtual address spaces, processes
can only access their own code and data.

2.1.1 Operating System and Address Spaces

Contrary to embedded devices, general-purpose computers often run many processes
in parallel. This requires careful isolation to keep a defective or compromised process
from blocking resources, destabilizing the system, or interacting with data from other
processes. As a solution, CPUs generally enforce a privilege model, where the (trusted)
operating system (OS) runs with the highest privilege and manages many processes
running at the lowest privilege level. Depending on the architecture, device drivers may
occupy intermediate privilege levels or run with the same privileges as the operating
system kernel. The processes themselves are isolated via virtual address spaces (Figure 2.1).
This means that they can’t access physical memory directly, but all accesses are to virtual
(linear) addresses which are translated into physical addresses by the processor’s memory
management unit (MMU). Besides the security benefits, this separation also greatly
simplifies software development, as the physical properties of the system are abstracted
away and a process only sees its own contiguous, linear address space.

To enable efficient address translation, the virtual-to-physical address mappings are
stored as a tree structure, where each node is a table that encodes several bits of the
virtual address (9 bits per level on x86). The smallest translation unit is referred to as page,
which typically has a size of 4096 bytes (4 kB). Consequently, the leafs of the translation
tree are called page tables. As is common in the side-channel field, we use the term
synonymous to the entire tree structure in this thesis, and do not distinguish between
the different tree levels.

Page tables are managed by the kernel, which can also define for each page table entry
whether the page or sub tree is privileged (user/supervisor access bit), whether it is currently
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present in physical memory or was swapped out by the OS (present bit), or whether the
page is writable (read/write bit). Other notable page table bits are the accessed bit, which is
set by the CPU when the page is accessed by a program, and the no-execute bit, which
prevents the page’s data from being interpreted as executable instructions. Common
operating systems partition the virtual space into two halves, where the lower half
(0x00..0-0x7f..f) belongs to the process and the higher half (0x80..0-0xff..f) maps
the kernel. By putting the kernel into the higher half of every process’s virtual address
space (protected by the user/supervisor access bit), system calls become very efficient, as
the current address space does not need to be changed during user/kernel mode context
switches.

When the process tries to access a virtual address that is not mapped in the current
process (or the present bit of the corresponding page table entry is not set), a page fault
exception is raised. This redirects execution to an interrupt handler in the OS, which
receives the requested virtual address and may then decide whether the page is made
available and the process is resumed afterward, or whether the process is terminated
due to an illegal access.

2.1.2 Virtualization

In some cases, isolated processes may not suffice, as the user wants to virtualize an entire
operating system. A common application for virtualization are cloud services, which
host several customers on the same hardware to improve utilization and thus save costs.
From the customer’s view, their virtual machine (VM) looks and behaves like it runs on
physical hardware.

As software-emulation through tools like QEMU [28, 182] is inefficient, modern CPUs
provide hardware support for virtualization through extensions like Intel VT-x [105, Vol.
3, Ch. 24] or AMD SVM [10, Vol. 2, Ch. 15]. These introduce a new virtualized execution
mode. The host operating system becomes the hypervisor (Figure 2.2). While the hypervi-
sor may forward certain functionality to the VM, most accesses to system functionality
must go through the hypervisor. This commonly happens through interrupts which
transfer execution from the VM to the hypervisor.

A notable feature is memory virtualization through nested paging, which is hardware
support for two layers of page tables: The mapping of host physical addresses (HPAs) to
guest physical addresses (GPAs), which is managed by the hypervisor, and the mapping
of GPAs to guest virtual addresses, which is done by the operating system inside the
VM. When a process running inside the VM tries to access memory, the hardware first
conducts a page walk in the VM’s page table, and after resolving the GPA does a page
walk in the host’s page table to find the actual physical address. If a GPA is not mapped,
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Figure 2.2: Hardware-assisted virtualization. The host operating system becomes the hypervisor,
which mostly handles the same tasks as a normal OS, but instead of processes manages one or
more virtual machines (VMs). Each VM contains a full operating system itself, which in turn
runs its own processes. The hypervisor controls the VMs, handles interrupts and forwards
input/output.

the processor raises a nested page fault exception (NPF), which exits the VM and must
be handled by the hypervisor. After the page was resolved, the VM is resumed.

2.1.3 Caches

With growing throughput and parallelism of CPUs, main memory has become a major
bottleneck. Both due to the lower frequency and physical distance of main memory, the
CPU can process data much faster than it can be retrieved and written back. To address
this, CPUs store the current working set in locations that are smaller and more close to
the execution units, so-called caches. The key observation behind caches is that data is
often accessed in a spatially and temporally local manner, i.e., it is likely that an access
targets a similar address as a recent access. On common processors, all data (and code)
that is used by a CPU core must pass through the cache. If the data is already present
there, it can be directly processed. This is called cache hit. On the other hand, if the data
is not in the cache and must be retrieved from main memory, this is referred to as cache
miss and comes with a performance penalty.

Eviction Policies. As the cache is much smaller than main memory (ranging from
kilobytes to few megabytes), the processor must carefully manage its use. The most
important component is the eviction policy, which controls which address is evicted
from the cache to make room for another address. Common policies are (pseudo) least
recently used (LRU) and random replacement. As the names indicate, (P)LRU removes
the address that has been used the longest time ago, while random replacement simply
picks a random one. Evicted data is written back into main memory.
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Figure 2.3: A set-associative cache with 4 ways. The tag and index parts of a cache line’s physical
address are converted into a set index through an arbitrary function F . The set index points to
the cache set of that address, which consists of the cells where the cache line can be stored in
(one for each way).

Cache Layout. To improve efficiency, the entire memory is partitioned into so-called
cache lines, which usually amount to 64 bytes of data that are treated as a single unit.
The physical address of a cached cache line is referred to as its tag. There are different
methods for assigning cache lines to cache cells.

A simple layout is the directly mapped cache, where each cache line can end up in a
single defined location which depends on its physical address. If a cache line is accessed
that is mapped to the same location, the former one is evicted. On the other side, a fully
associative cache allows any address to end up anywhere in the cache. While the former
minimizes hardware overhead for tag comparison, parts of the cache may end up unused.
The latter makes use of the full cache, but has a high hardware cost for comparing the
cache tags.

A middle ground between both approaches is the n-way set-associative cache (Figure 2.3),
which divides the cache into a number of ways and sets. Each cache set consists of a cell
from each way, so the size of each set equals the number of ways n. A mapping function
translates the physical address of a cache line into a set index. The cache line can only
be stored in this cache set, but may end up in any cache way. This method minimizes
hardware cost while maximizing cache utilization.

In the L1 and L2 caches (see below) of x86 CPUs the set index often matches bit 11 to
bit 6 of the address, which are shared between virtual and physical addresses and are
thus quickly available without having to wait for address translation. The last-level
cache often has larger set counts, and the set index is computed through an arbitrary
(hash-)function.

Cache Levels. As the performance of a cache correlates with its size and distance
to the execution units, CPUs employ several cache levels, leading to a cache hierarchy
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(Figure 2.4). The closest and smallest cache is the L1 (level 1) cache, which is often
divided into L1d and L1i for data and instructions, respectively. The L1 is private to a
physical core and directly connected to the core’s front end and execution engine, serving
all memory accesses. The next layer, L2, is usually also core-private and contains data
evicted from the L1. Finally, many CPUs have a third layer, the last-level cache (LLC, or
L3), that is shared between all cores and has the largest size. When a cache line is evicted,
it is pushed into the next layer, so data from L2 is moved into the LLC, and the LLC
evicts into main memory.

Caches may be inclusive, non-inclusive or exclusive. In an inclusive cache hierarchy, a cache
line must be present in all lower cache levels. For example, if a cache line resides in the
L1 cache, it must exist in L2 and LLC as well; data in L2 must be present in the LLC.
Consequently, if a cache line is evicted from a low cache level (e.g., another physical core
fills the LLC), it is also removed from all higher cache levels. Non-inclusive caches do
not have this restriction. If a cache line is contained in an exclusive cache, it cannot be
present in other cache levels.

If the same address is kept in different cache levels and cores, inconsistencies and stale
data may occur. To avoid that, the processor enforces cache coherence, which guarantees
that all cores always have the latest architectural view of cached data. A simple approach
to that is bus snooping, where all cores use a shared bus to keep track of cached addresses.
As this involves broadcasting and thus does not scale well with an increasing number of
cores, recent architectures use cache directories instead. Cache directories map cache line
addresses (tags) to the cores they are cached in, and store additional bits like the dirty
state of the respective cache lines, allowing any core to efficiently query the state of a
given cache line [258].

Other Caches. The data and instruction caches are not the only caches in modern
processors. For example, as page walks are quite expensive, virtual-to-physical address
mappings are cached in the translation look-aside buffer (TLB). Contrary to the data and
instruction caches, the TLB is architecturally visible and must be explicitly invalidated
by the kernel when changing page mappings. Many modern CPUs also feature µOP
caches, which store decoded instructions.

2.1.4 Execution Engine

Each CPU core consists of caches, a front end and a back end (Figure 2.5). The front end
pulls the instructions from the L1i cache, decodes them into µOPs and passes those to
the back end for execution. The back end, also called execution engine, inserts the µOPs
into the scheduler, from where they are picked up by the respective execution units. The
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Figure 2.4: Cache hierarchy. Each physical core has its private L1 and L2 caches, where the L1
cache is divided into a data (L1d) and an instruction (L1i) cache. All cores share a common
last-level cache (LLC). Data traverses all cache levels on its way to the CPU’s execution engine.
If a cache line gets evicted from the LLC, it is written back into main memory.

execution units carry out operations like arithmetic and memory accesses, for which
they communicate with the L1d cache. The execution is pipelined to maximize front end
and back end utilization, i.e., the next instruction is fetched while the previous one is
decoded, and its predecessor is executed, and so on. After all µOPs of an instruction are
executed, the instruction is retired (or committed), i.e., its result becomes architecturally
visible.

If a processor implements simultaneous multi-threading (SMT), each physical core is di-
vided into two logical cores, which may have individual front ends, but share the same
back end. This way, two processes can execute in parallel on the same physical core,
maximizing utilization of the execution units in the back end at little additional hardware
or power cost.

Out-of-order Execution. Traditional in-order execution is susceptible to stalls due
to long-running operations, e.g., when an instruction waits for a non-cached memory
access. To avoid idling while waiting for the instruction to complete, the processor may
bring forward subsequent instructions which do not depend on the result of the stalled
one. These out-of-order instructions traverse the front end and back end as usual, but
wait in the reorder buffer for retirement until all previous instructions have retired. This
means that future instructions may already affect the microarchitectural state, but they
are not yet architecturally visible. A notable technique used for out-of-order execution
is register renaming, which separates logical registers from physical registers and thus
solves false dependencies which would otherwise prevent reordering.
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Speculative Execution. Another cause for stalls are branch instructions which have to
wait for an earlier instruction to complete in order to determine the branch target. To solve
this, CPUs have heuristics that guess the target and then continue executing instructions
speculatively. If the guess later turns out correct, the CPU has already executed many
instructions that it now only needs to retire, improving overall performance. If the guess
turns out wrong, the CPU has to rollback all speculatively executed instructions, which
however is less expensive than always waiting for all branches to be retired. On Intel
processors, the most relevant microarchitectural structure is the branch prediction unit
(BPU). The BPU relies on information from the pattern history table (PHT), which tracks
the historic outcomes of conditional branch instructions, the branch target buffer (BTB),
which contains recent jump targets, and the return stack buffer (RSB), which caches return
addresses.



2.1 System Architecture 21

L1i Instruction Cache

Instruction Fetch

Instruction Decode

Reorder Buffer

μOP Scheduler

Allocation Queue

μOP Cache

Branch Predictor

Port 0 Port 1 Port 6

ALU

Div

...

ALU

Mul

...

Port 2 Port 3 Port 4 Port 5 Port 7

ALU

Vect

...

ALU

Branch

AGU

Load

AGU

Load

Store AGU

μOP μOP μOP μOP μOP μOP μOP μOP

μOP μOP μOP μOP μOP μOP μOP μOP

μOP μOP μOP μOP μOP μOP

μOP μOP μOPμOP μOPs

Instruction
TLB

S
ha

re
d 

TL
B

L2 Cache
LLC

Data TLB

Store BufferLoad Buffer

Front End

Back End

Execution Units

L1d Data Cache

Figure 2.5: Illustration of a CPU core from the Intel Skylake Client microarchitecture, adapted
and simplified from [211]. The front end fetches instructions from the instruction cache
and decodes them into a series of µOPs. The µOPs are forwarded to the back end, which
schedules them for execution. Actual execution is done by execution units, which are attached
to execution ports. Each execution unit supports a fixed set of operations, like general-purpose
arithmetic (ALU, arithmetic logic unit), vectorized arithmetic, address computations (AGU,
address generation unit), or loads/stores.
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2.2 Trusted Execution Environments

Usually, the local operating system or hypervisor is trusted, i.e., applications can freely
handle sensitive data without taking particular precautions. However, this scenario
not always holds – for example, a program may be running on the servers of a cloud
provider, who may be compromised. Since the OS or the hypervisor have full access to
the address space of the respective process or VM, they can arbitrarily manipulate its state
or extract sensitive data. Trusted execution environments (TEEs) address this problem
by providing hardware-assisted isolation, separating sensitive code and data into a so-
called enclave. Common features of TEEs are encryption of memory and execution state,
(remote) attestation of the enclave’s initial state, and measures to prevent the attacker
from tampering with the enclave’s execution. There are two TEE types: Protection of
processes and of whole VMs. We briefly describe both with reference to their most notable
implementation.

2.2.1 Process-Level: Intel SGX

Intel Software Guard Extensions (SGX) [105, Vol. 3, Ch. 34] [106] divides a process into a
trusted and untrusted part (Figure 2.6). The trusted part, invoked by the untrusted code
via an ECALL, runs inside the SGX enclave and communicates with the untrusted code
via OCALLs. SGX reserves a fixed part of the system’s physical memory and prevents
all non-enclave accesses to this region. Most of the reserved memory is taken up by the
enclave page cache, which holds the actual memory pages assignable to the enclave. SGX
guarantees freshness and integrity of the encrypted data, even when it is temporarily
swapped out of the EPC [56]. When leaving the enclave due to an interrupt, the current
execution state is written into the state save area (SSA), which also resides on an EPC
page.

Recently Intel introduced Total Memory Encryption - Multi Key (TME-MK) [111], which
moves encryption into the memory controller and supports page-granular assignment of
encryption keys. This change allows to arbitrarily expand the EPC, but does not support
freshness and only protects integrity with respect to software-based attacks [113].

2.2.2 Virtual Machine Protection: AMD SEV

Whole-VM protection has received increased attention in recent years, as it would allow
users to run their sensitive workloads in the cloud, without actually having to trust the
provider to properly safeguard their data. The first scheme in this context is AMD’s
Secure Encrypted Virtualization (SEV) [10, Vol. 2, Sec. 15.34], which offers drop-in protection
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Figure 2.6: Process with SGX enclave. The enclave is isolated from the code and data of the
parent process and may only be entered via ECALLs. The code inside the enclave has its own
protected heap and stack, which are not accessible by the untrusted code outside the enclave.
When the enclave is exited (e.g., due to an interrupt or an OCALL), the current execution state
is written to the state save area (SSA). The enclave’s memory is encrypted and inaccessible by
any other system component.

for VMs with all typical TEE features like remote attestation and memory encryption.
SEV was iterated several times following attacks [41, 160, 161, 250, 252], first with the
introduction of Encrypted State (SEV-ES), which added encryption to the VM’s save area
(VMSA) during context switches, and Secure Nested Paging (SEV-SNP) [9], which prevents
the hypervisor from modifying the VM’s memory and its page mappings.

To allow the hypervisor to setup and manage VMs, AMD introduced the secure processor,
which holds the encryption keys and guarantees correct execution of remote attestation.
The VM encryption keys are attached to the VM’s address-space identifier (ASID) and are
only loaded when the VM is executing. If the VM wants to access certain privileged
resources or receives an interrupt that it cannot handle, all execution state is written into
the VMSA and control is transferred to the hypervisor. The hypervisor may then write
result data into a dedicated shared page and resume the VM.

SEV-SNP uses a tweaked Xor-Encrypt-Xor (XEX) memory encryption scheme, where the
tweak is computed from the physical address. Contrary to the original Intel SGX, AMD
SEV’s memory encryption is deterministic, i.e., the ciphertext of a given encryption block
solely depends on the plaintext, the secret key and the physical address. Additionally,
even with SEV-SNP, the hypervisor can read the VM’s ciphertext.

Another upcoming VM TEE is Intel’s Trusted Domain Extensions (TDX) [108], which is
similar to SEV in principle, but builds on top of TME-MK and provides stronger software-
side isolation by routing all VM/hypervisor interactions through the dedicated TDX
module, which forms another layer. Finally, ARM is currently working on its Confidential
Computing Architecture (CCA) [17], which is stated to offer equivalent functionality.
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2.3 Software Instrumentation

Instrumentation is the act of automatically inserting additional code into a program
without modifying its source code [11]. The inserted code is invoked at runtime and
may extract or modify program state. Applications of instrumentation are dynamic
program analysis, for example to find out-of-bounds accesses or to trace information
flow, or automatic deployment of defenses against certain attacks. There are two flavors
of instrumentation: Static instrumentation, which permanently embeds the new code into
the program binary, and dynamic instrumentation, which modifies the program’s machine
code while it is executed.

2.3.1 Static Instrumentation

Most commonly, static instrumentation is done through compiler extensions, which in-
sert additional passes into the optimization pipeline. Depending on the goal, the passes
may modify the compiler’s intermediate representation (IR) or directly the generated ma-
chine code. A famous example for compiler-level instrumentation is AddressSanitizer
(ASan) [1], which finds typical memory errors like out-of-bounds accesses and use-after-
free bugs.

A different approach is binary rewriting or static binary instrumentation (SBI), which mod-
ifies an existing binary [26, 64, 134, 163, 244, 253]. Correct binary rewriting is notori-
ously difficult, as it needs to move existing machine code, adjust absolute offsets and
avoid breaking jump tables. Additionally, binary formats like ELF are not intended for
later modification, requiring great care when expanding segments to hold more code.
Compiler-based approaches do not have these limitations, and IR-based instrumentation
can even freely use variables without worrying about register allocation. Hence, compiler-
level instrumentation is typically more stable, can use more source-level information,
and achieves better performance.

However, as a consequence, compiler-level instrumentation often changes the machine
code and stack layout, reducing the applicability of code analysis results to the uninstru-
mented program. Binary rewriting takes the program as it is, so it accurately captures its
real runtime behavior. In addition, binary rewriting also covers pre-compiled dependen-
cies, avoiding complex rebuilds of system libraries.

Thus, in summary, the choice between binary rewriting and compiler-level instrumenta-
tion depends on the desired application.
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Figure 2.7: Design of a typical DBI framework. The main parts of a DBI engine are the dispatcher
and the code cache. The dispatcher loads the code from the input binaries and transforms
it by inserting calls to callback functions provided by a plugin. The instrumented code is
cached and executed when needed. After executing a sequence of instrumented code, control
is returned to the dispatcher, which fetches and instruments the next code sequence.

2.3.2 Dynamic Instrumentation

If persistent instrumentation is not needed, dynamic binary instrumentation (DBI) offers
the stability of compiler-level instrumentation combined with the transparency of binary
rewriting. For this, a DBI framework like Intel Pin [176], DynamoRIO [69], Valgrind [165,
222] or MAMBO [82, 149] loads the program binary and rewrites the machine code in
memory to invoke the DBI engine at defined locations (Figure 2.7). The user provides
a plugin that registers instrumentation callbacks, which instruct the DBI engine which
transformations are desired. These transformations may themselves insert callbacks into
the program code, allowing to, e.g., log all memory accesses.

A major advantage of DBI is the availability of runtime information and the high control
of the process layout in memory, which avoids much of the complexity of binary rewriting.
The code is usually instrumented on-the-fly, and invalid or unknown paths are caught by
the DBI engine. Most DBI engines aim for full behavioral transparency, i.e., the program
shows the same architectural behavior as without instrumentation. This way, the user
gets an accurate view of the program’s execution.

2.4 Code Analysis

Analysis of program code and behavior plays a large role in security research. Appli-
cations range from classic bug finding over information flow tracking to automated
patching. Depending on the desired result, one may pick static approaches which prove a
certain program property (e.g., absence of out-of-bounds errors), or dynamic approaches,
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which evaluate the program for a set of inputs. In the following, we introduce three
common code analysis primitives: Symbolic execution, taint analysis and fuzzing.

2.4.1 Symbolic Execution

Instead of running the program with concrete inputs, a symbolic execution engine
assumes symbolic inputs and gradually builds a set of constraints representing the entire
execution [11, 20, 123]. The engine then invokes a solver to test these constraints (and
optionally some security property) for satisfiability. Symbolic execution allows to prove a
security property over all possible inputs, making it a valuable tool for code analysis.
However, due to its generality it also suffers from issues limiting its practical applicability:
Path explosion leads to exponential growth of formulas and drastically reduces analysis
performance. Additionally, there can be difficulties when mapping between the real
system and the symbolic expression, e.g., when dealing with raw pointers and freely
addressable memory, which may require a simplified model.

A weaker version of symbolic execution is dynamic (or concolic) symbolic execution [80],
where the program is executed with concrete inputs and the engine only builds a formula
for the observed execution path. While it sacrifices the ability to generate definite proofs,
dynamic symbolic execution is a valuable tool for finding test cases and vulnerabilities
that comes with better performance than fully static symbolic execution.

There are many different symbolic execution tools, often rooted within the security
research community; common examples are angr [13, 206], KLEE [46, 124] and SymCC [177,
219].

2.4.2 Taint Analysis

Taint analysis [11, 199] allows to analyze the flow of data through a program. In the
taint source, every variable of interest is assigned a label (taint), which is propagated
throughout the program’s execution until it encounters a taint sink. Labels can be attached
to registers, status flags and memory locations. When such a labeled value is used as an
operand, the result is labeled as well.

Dynamic taint analysis (DTA) is implemented with instrumentation, i.e., it analyzes
the program for concrete inputs, though symbolic taint analysis is also possible. The
performance and accuracy of taint analysis depend on the analysis granularity (e.g.,
bit-level vs. byte-level) and the prevalence of undertainting/overtainting due to under-
/overapproximations in the label propagation logic.
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2.4.3 Fuzzing

Software testing often suffers from insufficient coverage, i.e., execution paths are missed
by the available input set. Fuzzing [150, 155] supplements these handcrafted inputs with
automatically generated ones, trying to maximize program coverage.

There are many different types of fuzzers and fuzzing methods, which are selected de-
pending on the model and goal. For example, a fuzzer may try to satisfy some constraint,
or simply crash the program. Black-box fuzzers do not get any internal program infor-
mation and can only guess the next input, while white-box fuzzers use techniques like
dynamic symbolic execution to directly generate promising inputs. Grey-box fuzzers
like AFL [135] take a middle ground, receiving some information about the program
and the observed execution path to make an educated guess for the next input. Fuzzers
have been successfully used to uncover many vulnerabilities and fix them prior to their
exploitation, making fuzzers an essential tool for developing secure software.





3
State of the Art

In this chapter, we discuss the state of the art in side-channel attacks and defenses. We first
summarize and classify side-channel vulnerabilities and the associated attack techniques
in Section 3.1. In Section 3.2, we survey and evaluate tools for finding memory access
pattern leakages in software, addressing a broad class of side-channel vulnerabilities.
Finally, in Section 3.3, we dive into generic software/hardware mitigations for different
kinds of side-channel leakages.

3.1 Side-Channel Leakage in the CPU

Contrary to “classic” data exfiltration attacks like buffer overflow exploits, CPU side-
channel attacks do not seek direct, architectural access to secret data, but they measure
and manipulate execution behavior to infer secrets indirectly. The field of side-channel
attacks is very broad, spanning a multitude of attack techniques and threat models. In
the following, we first introduce the most common type of side-channel leakage, memory
access patterns. Then, we give an overview over the various attack techniques and
discuss their respective capabilities.

Memory Access Pattern Leakage. The majority of side-channel exploits, especially
of cryptographic implementations, is based on observing memory access patterns. These
observations concern code and data with a granularity ranging from memory pages
to individual words. The temporal resolution varies between attacks, from imprecise
measurements covering an entire execution of a cryptographic primitive to precise
pinpointing of a single access. Memory access pattern attacks are tightly linked to
classical timing attacks [126], since control flow variations (e.g., loop iteration counts)
affect the total execution time of the program, and the latency of memory accesses
depends on whether data is cached or not.

Regardless of the attack technique, the vulnerability of a program to memory access
pattern analysis boils down to its use of secret-dependent memory accesses and branches:
If an accessed memory location is correlated with a secret input, the attacker may recover
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const unsigned char b64d[256] = { ... };

int decode_base64_char(char c) {
  return b64d[c];
}

c:

Figure 3.1: Base64 decoding with memory access pattern leakage. The decoding is done through
a lookup table, where the ASCII codes of valid Base64 characters are mapped to their numeric
values. The relation between Base64 characters and table indexes is bijective, i.e., the attacker
can directly deduce the current Base64 character c if they know the accessed table index. Thus,
solely by observing the accessed memory addresses during decoding, the attacker can learn
the secret Base64 string.

the secret from memory access measurements (Figure 3.1). The most common counter-
measure against memory access pattern analysis is constant-time code, i.e., code that
exhibits no attacker-visible, secret-dependent behavior.

There are many different avenues for obtaining a program’s memory access pattern. Most
of them rely on microarchitectural behavior, but in certain threat models (e.g., TEEs),
attacks based on architectural features exist as well.

3.1.1 Cache Attacks

Cache attacks make a very large and diverse class of side-channel attacks, which is
notorious for leaking memory access patterns. The underlying idea is that data is not
directly fetched from main memory, but temporarily stored in various CPU caches.
Caching is transparent to the user, except that spatially and temporally local accesses
become significantly faster. However, this difference in access times also introduces a way
to distinguish whether a memory access was served by a cache or by main memory. If
the attacker manages to evict a particular cache line containing the victim’s data (which
is possible, as the cache is shared), they can use a time measurement to detect with
reasonable precision whether the victim recently accessed that cache line.

Such attacks have been shown in many scopes, from logging keystrokes and finger-
printing websites to extracting cryptographic keys. Attack scenarios include spying on
other processes and VMs running on the same cloud machine [15, 100, 101, 115, 146, 251],
extracting sensitive information via JavaScript code running in a sandbox [141, 170, 207],
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and even attacks over the network [130]. Cache attacks are also a central part of transient
execution attacks as a covert channel for extracting the transiently accessed data.

In the following, we discuss the impact of cache attacks on cryptography, the influence
of the targeted cache level, and several common attack techniques and their advantages
and drawbacks.

Cache Attacks and Cryptography. Cache attacks have arguably received the highest
scrutiny due to being able to break insufficiently hardened implementations of many
cryptographic primitives. For example, AES implementations often use large lookup
tables which combine several round operations, speeding up encryption and decryption
significantly. These so-called T-tables have been subject to attacks across many libraries,
as tracing the accessed table indexes allows to quickly recover the key [15, 30, 92, 115,
151, 156, 166, 171, 215, 251]. Similarly, sliding window exponentiation, an optimization
used by many ElGamal and RSA implementations, often relies on a lookup table with
precomputed multipliers. Due to their size, the entries can cover multiple cache lines
each, making accesses to them easily detectable by an attacker [100, 146]. Nevertheless,
we also showed that, given sufficient temporal resolution, cache attacks can even be
used to target very small and dense lookup tables, for example those used for Base64
decoding [208]. We achieved this by combining a cache attack with single-stepping
(Section 3.1.3) to accurately measure specific table accesses, and by exploiting the high
redundancy of the PEM RSA storage format we were able to reconstruct an RSA private
key.

Aside from lookup tables, cache attacks also work against secret-dependent control
flow. A prime example is the square-and-multiply algorithm for RSA (and analogously,
double-and-add for elliptic curves), which executes the multiplication depending on the
current secret bit. An attacker able to detect whether the multiplication was executed
can directly reconstruct the secret exponent [259].

As a reaction to those attacks, most libraries have moved to constant-time implementa-
tions or employ countermeasures like blinding. However, these must be applied with
a high amount of care, and even minimal remaining leakage might still be exploited,
as shown by Aranha et al., who managed to break a hardened ECDSA implementation
which leaked the second most-significant bit of the nonce [16]. See Section 3.3.1 for a
deeper discussion of countermeasures.

Cache Levels. Any cache level can be subject to an attack, where each has advantages
and disadvantages. Attacks against the L1 and L2 caches often enjoy a high temporal
resolution due to their small size, which speeds up generation and application of the
eviction sets needed for some attack techniques. However, such attacks generally require
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the attacker to run on the same CPU core as the victim, which is easier to achieve in
TEE scenarios than in the generic cloud setting. On the other side, attacks against the
LLC (L3) cache can run on an arbitrary physical core, as the cache is shared between all
cores. As the LLC is much larger and often has a more complex structure (e.g., cache
slices [116, 152]) than lower cache levels, attacks tend to be slower and somewhat less
precise [66, 181]. However, this drawback can be compensated through sophisticated
attack techniques and a higher amount of measurements.

Cache Attack Techniques. There are many different cache attack techniques, but they
fall generally into three groups [77]: Evict+Time, Flush+Reload and Prime+Probe.

In the Evict+Time attack, the attacker evicts the target cache line from the cache. Sub-
sequently, they call the victim and measure its execution time. If the time is high, the
victim accessed the evicted cache line and encountered a cache miss. If the time is low,
the victim did not access the address. Given a sufficient amount of measurements, the
attacker is able to correlate the measured times with secret bits [171]. Note that the attack
is synchronous: The attacker must be able to precisely invoke the victim and measure its
execution. This holds, for example, for network services like SSH and TLS, where the
attacker can arbitrarily initiate connections.

If this is not an option, the attacker can resort to asynchronous attacks. One of those is
Flush+Reload [259], which applies to settings where the victim and the attacker share a
physical memory page. This is by far not unrealistic [85, 139, 203]: For example, operating
systems may choose to map physical memory containing a standard library into multiple
processes at once, avoiding to hold the same read-only data in physical memory multiple
times. If any process modifies such a shared page, it is copied (copy-on-write). From
an architectural point of view, this so-called memory deduplication is a valid and secure
optimization. A hypervisor may do the same for virtual machines, by merging pages
which hold the same data. To conduct a Flush+Reload attack, the attacker first flushes the
shared cache line back into main memory using a dedicated instruction (e.g., clflush on
x86). After waiting for the victim to access the flushed address (e.g., a part of a lookup
table), the attacker reloads the address and measures the time needed to do so. If the
access hits, the victim accessed the address as well. Flush+Reload is very fast and precise,
as removing the target address from cache is efficient, and due to targeting a specific
physical address there are few false positives. A variant of the attack is Flush+Flush [89],
which replaces the reload step with another flush. The latency of the flush depends on
whether the address is cached or not, so it yields the same information as a reload, but
without generating suspicious cache misses. This makes the attack stealthier in presence
of detection mechanisms.

The most generic attack method is Prime+Probe [171, 175], which is asynchronous and
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does not require shared memory, as it relies on cache contention. In an initial step, the
attacker generates an eviction set for reliably filling an entire cache set with their own
data. The attack then consists of two steps: First the attacker primes the cache set using
their eviction set, which evicts the target address from the cache. After waiting for the
victim to make its accesses, the attacker probes the cache set: They access each address
from their eviction set, and measure the time needed to do so. If they observe a cache
miss, a part of the eviction set must have been evicted from the cache, which is likely due
to the victim accessing the target address in the meantime. Due to the indirect approach
(compared to Flush+Reload’s direct one), the attack is more prone to false positives and
more complex to carry out. Some interfering factors are cache slicing [100, 116, 152],
non-inclusive caches [142, 258] and replacement policies [37, 84, 142], but all of these can
be circumvented (or even exploited), making Prime+Probe the most used attack class due
to its few preconditions and high flexibility.

A notable combination of Flush+Reload and Prime+Probe is Evict+Reload [90, 258]. The
method also needs shared memory, but evicts the target address through an eviction set.
Hence, it does not require a special cache flushing instruction, which is not available on
all systems.

While most cache attacks use time measurements to distinguish hits and misses, this is
not the only approach. The Prime+Abort [66] attack uses Intel TSX [105, Vol. 1, Ch. 16], an
ISA extension that offers hardware-supported transactional memory. The attacker starts
a TSX transaction and then primes the cache with their eviction set. Then, they wait
for the victim access. By design, TSX transactions abort when addresses loaded during
the transaction get evicted from the cache. As this happens when the victim accesses
data that collides with the eviction set, the attacker gets notified immediately. The abort
also comes with an error code, so the attacker can assess whether the abort happened
due to unrelated noise (e.g., timer interrupts) or victim activity. While TSX is supported
by many Intel processors, it was involved in several noteworthy side-channel attacks,
and thus disabled for most CPU families via a microcode update [107]. Another notable
timer-less cache attack is S2C [262], which uses hardware synchronization instructions
on Apple M1 processors to directly measure cache evictions.

A main drawback of Prime+Probe-style attacks is their impact on the cache state during
the priming/probing phases. If the attacker is not well-synchronized, the victim may do
their access just when the attacker is refreshing the eviction set. It would be preferable if
the probing would not interfere with the cache state at all, and the eviction set would
only need to be reloaded after a victim access was detected. Prime+Scope [181] solves this
problem by exploiting a property of inclusive caches: When a cache line is evicted from
the LLC, it is also evicted from all other cache levels. The attacker primes the LLC in a
way that they know which cache line from the eviction set is the next eviction candidate,
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i.e., will be pushed out by the victim. They then continuously probe this cache line on
a core separate from the victim. These accesses will be served by the core’s L1 cache,
without any effect on the LLC. When the victim does its access, the eviction candidate is
removed from the LLC and thus the L1 cache as well, notifying the attacker. This attack
also works with non-inclusive caches; in this case, the cache directory instead of the LLC
is targeted.

TLB Attacks. Similar attacks can also be mounted against the TLB, which caches the
virtual to physical address mappings. In the TLBleed attack [83] the attacker uses a
Prime+Probe-like method to monitor the victim’s page access patterns. Though the attack
has a much lower granularity than one targeting the cache, the authors still manage to
break EdDSA and RSA implementations.

Sub-Cache Line Granularity. A few attacks even achieved a spatial resolution below
the 64 byte granularity offered by cache attacks. The CacheBleed attack [260] exploits
cache bank conflicts. Cache banks are used by some processors to serve requests to
different L1 cache line offsets in parallel. If the attacker runs on the same physical core
as the victim, they can issue many accesses targeting a particular cache bank, slowing
down the victim’s accesses that hit the same cache bank. The authors show that their
method can break scatter-gather implementations, which were originally recommended
for mitigating cache attacks.

The MemJam attack [157] exploits 4K aliasing, which is a false dependency between
different addresses sharing the lower 12 bits. L1 caches often are virtually addressed, as
physical and virtual addresses share the lower 12 bits, which are sufficient for indexing
64 cache sets. This means that accesses to virtual addresses that differ in the lower 12
bits can be immediately discerned, without waiting for the virtual-to-physical address
translation. However, if the lower 12 bits are identical, the two virtual addresses may
theoretically refer to the same physical address – a possible conflict that can only be
resolved by waiting for the address translation to complete. We used MemJam to break
the DES, AES and SM4 implementations of the Intel IPP library, which was specifically
hardened against cache attacks. Later the attack was improved and applied against SGX
enclaves [209].

3.1.2 Page Fault Controlled Channel

A much more powerful variant of the TLB attack is the page fault controlled channel, which
can leak memory access patterns with page granularity and high temporal resolution.
The original version [257] assumes an untrusted OS: Instead of indirectly evicting the
victim’s pages, the OS can clear the present bit of every page, indicating that they are not
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Figure 3.2: Single-stepping of an enclave. The blue arrows denote the execution flow. The attacker
programs a timer to interrupt the enclave precisely after the current instruction (highlighted
in red) is executed, but before the enclave can fully execute another one. After the enclave has
exited, the timer interrupt handler is invoked, where the attacker can measure the instruction
latency or conduct a fine-grained cache attack. Finally, they re-program the timer and resume
the enclave, to execute the next instruction.

currently mapped in physical memory. When the victim tries to execute an instruction,
this inevitably triggers a page fault, as the CPU cannot fetch the instruction or its data
operands from memory. The OS handles the page fault and resumes execution. This
stepping of the victim grants the OS an execution trace containing the page frame
numbers of most executed instructions and all accessed data.

While the untrusted OS model by itself is somewhat academic (the OS could just access
the victim’s data directly), that attacker model becomes highly relevant in the context of
TEEs like Intel SGX or AMD SEV, which try to isolate the untrusted host (hypervisor)
from the user processes and VMs through hardware-enforced access control and memory
encryption. Indeed, the (nested) page fault controlled channel was used to enable and
assist many attacks on TEEs [94, 136, 137, 159, 160, 250, 251, 252]. For example, we
used page fault pattern-based fingerprints to identify the AES functions in the Linux
kernel when attacking LUKS2 disk encryption with SEV-Step [251]. The CopyCat attack
by Moghimi et al. [159] relies on the page table entry accessed bit to accurately count
instructions while single-stepping on SGX.

3.1.3 Single-Stepping

While the page fault controlled channel allows to follow execution with page granularity
(often better, if many instructions have data operands), it is possible to increase this attack
to the maximum possible resolution, which is single-stepping the code running in the TEE.
Single-stepping is a powerful primitive which allows to count instructions [159], measure
their precise execution time [44] or greatly increase the precision of cache attacks [156,
208, 251].
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Instead of using page faults, the attacker programs a timer interrupt to fire after a certain
amount of cycles. Single-stepping is achieved by carefully tuning the timer threshold to
interrupt the enclave as soon as the first instruction has started execution (Figure 3.2).
There are several challenges: The enclave entry does not take a fixed time, as it has
to restore the enclaves’ current execution state from memory, which may lead to the
timer firing too early, resulting in zero-stepping. This can be addressed by additionally
clearing and then checking the accessed bit of the associated code page – if the bit is set,
an instruction was fetched. Another challenge for precise measurements is the noise
introduced by the enclave exit and the interrupt handler. The Nemesis attack tries to
mitigate the latter through a user-space handler, to avoid a noisy user/kernel context
switch.

An early user of timer interrupts was CacheZoom [156], which stepped several instruc-
tions at a time. Full SGX single-stepping was first achieved through the SGX-Step frame-
work [45], which became a standard tool used in many subsequent attack papers [43, 44,
117, 158, 159, 178, 208, 209]. We later designed and published an equivalent framework
for AMD SEV, called SEV-Step [251], and demonstrated an attack which manages to steal
an AES disk encryption key within a single execution of the targeted implementation.

3.1.4 Transient Execution

Most conventional side-channel attacks are based on observation, i.e., they measure and
exploit the effects a program’s execution has on the system’s internal and visible states. In
case of memory access pattern leakage, the program follows its architectural control flow
while leaving a footprint in the cache and other components. Transient execution attacks
take a different route, as they transiently invoke behavior that is not architectural, i.e.,
that should not occur at all per the system’s specification. There are two major categories
of such attacks: Speculative execution of invalid program paths, and transient out-of-
order execution of instructions that should not be executed due to a prior fault. Both
attack types allow extracting data that should not be accessible architecturally, and they
frequently cross privilege boundaries.

For referring to the different attack variants we use the naming scheme introduced by
Canella et al. [47].

Speculative Execution Attacks. Speculative execution attacks exploit a row of CPU
optimizations that speculatively execute code paths when one or more preconditions are
still unknown (e.g., due to a non-cached operand). This way, if the predicted code path is
later deemed correct, the processor has already completed a number of tasks which else
would have had to wait until the stalled precondition was resolved. As shown first in the
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int value;
if(index >= 0 && index < array->len) {
  value = array->data[index];
}
else {
  throw_outofbounds();
}
// ...
leak(value);

Figure 3.3: A simple out-of-bounds check forming a Spectre-PHT gadget, as it may be emitted by
a JIT compiler. Before array->data is accessed, the index variable is checked against the array
length. Architecturally, the array access is only reachable if index is within bounds. However,
the attacker may remove array->len from the cache, slowing down the bounds check, which
leads the CPU to speculate on the branch outcome. If the branch predictor was mistrained to
assume that the check passes, the access is carried out speculatively with an invalid index. The
extracted value is then leaked, e.g., through another array access where it is used as an offset.

Spectre attack [125], the attacker can specifically train the branch predictors to execute an
invalid path and thus do unintended memory accesses. This would not be bad by itself, if
the speculative execution would not leave a microarchitectural footprint even after being
rolled back. For example, data that is accessed during speculative execution is loaded
into the L1 cache, and stays there – allowing to extract information via cache-based
covert channels. There are many variants of Spectre attacks, which differ in the exploited
predictor and the covert channel that is used to leak the extracted data.

The most common example for a Spectre attack is Spectre-PHT (for pattern history table),
which is based on an incorrect branch taken/not taken prediction. A typical vulnerable
gadget is a bounds check before accessing an array (Figure 3.3). While Spectre-PHT
attacks usually stay close to the architectural execution path, it is also possible to redirect
execution to arbitrary locations. The branch target buffer (BTB) tracks recent targets of
indirect branches, and the return stack buffer (RSB) stores the return address when a call
instruction is encountered, so the processor does not need to wait for the stack read when
handling a function return. Accordingly, Spectre-BTB and Spectre-RSB manipulate these
buffers in a way that they point to an attacker-specified address. These variants allow
building gadget chains similar to return-oriented programming attacks, and have been
used for leaking data from other processes and the kernel [128, 148, 249].

After speculatively accessing secret data, the attacker needs a way to leak it outside the
transient domain. Most attacks rely on a cache covert channel based on, for example,
the Prime+Probe method. The attacker first prepares eviction sets for different cache sets,
and primes the cache accordingly. Depending on the leaked value, the Spectre gadget
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meltdown_gadget:

mov al, byte [kernel_addr]

shl eax, 12

mov rcx, qword [buffer+rax]

Figure 3.4: Meltdown attack. The black arrow on the left represents architectural execution,
the red arrows on the right correspond to transient out-of-order execution. Upon accessing
the privileged address kernel_addr, architectural execution is immediately aborted and an
exception is raised. However, that is not what happens microarchitecturally: The exception
is delayed enough that out-of-order execution can read the (cached) kernel address, rescale
the result conveniently, and then leak it via an access to a buffer. Out-of-order execution is
aborted eventually, but the accessed part of buffer remains in the cache and can be detected
through the Flush+Reload method.

then accesses one of the aforementioned cache sets. Finally, the attacker probes the cache
sets to learn the leaked value. Depending on the number of primed cache sets, multiple
bits can be leaked in a single operation [125]. In the NetSpectre attack [202], the authors
leak data by selectively powering on the AVX2 unit, which comes with a high and thus
measurable performance penalty. Another possible covert channel is port contention, if
the attacker resides on the sibling logical core [31].

Out-of-order Execution Attacks. Meltdown-style attacks [47, 144] do not rely on mis-
prediction, but exploit microarchitectural race conditions. The root cause of this attack
class is out-of-order execution, i.e., that instructions are (partially) executed before their
predecessors are committed. Similar to speculative execution, this optimization allows
the CPU to fully utilize its execution units even if a particular instruction is stalled (e.g.,
due to a slow load or a page table walk). Out-of-order execution is possible whenever an
instruction does not depend on a prior one.

In the original Meltdown attack [144], the authors showed that out-of-order executed
instructions can access privileged memory and leak its contents through the cache, before
the processor completes the access check and raises a page fault exception, rolling back
transient execution (Figure 3.4). As many operating systems map kernel addresses in the
higher half of the virtual address space and only prevent user-space accesses through the
user/supervisor access bit, the attack is able to read arbitrary kernel memory that currently
happens to reside in the L1 cache. Accordingly, the attack is also referred to as Meltdown-
US-L1. A variation of this attack even works from virtual machines: The Foreshadow



3.1 Side-Channel Leakage in the CPU 39

attack [42] (also known as Meltdown-P-L1) exploits short-circuiting of the nested page
translation in Intel processors, which leads to the guest physical address (instead of the
host physical address) being transiently used for accessing the L1 cache.

Since then, many more Meltdown variants have been published [43, 48, 144, 158, 188, 189,
197, 201, 216], targeting different CPU components. Some attacks do not even need to
trigger exceptions, allowing them to circumvent hardware protections implemented by
Intel [48, 197]. Load Value Injection (LVI) [43] extracts secrets from an SGX enclave by
injecting malicious data that is used transiently when a load within the enclave fails. The
Downfall attack [158] reads stale data from AVX registers through gather instructions.
These registers do not only hold privileged data, but are also used by the SGX runtime
for attestation. This way, the author was able to extract the SGX sealing key, breaking the
entire trust model.

3.1.5 Value-Based Leakages

Cache attacks, page faults and single-stepping extract information indirectly by observing
a program’s memory access patterns. However, there are also channels where the CPU
leaks a value itself, without the program doing a secret-dependent access, and without
involving transient execution.

A widely known issue are data operand-dependent execution latencies of instructions.
For example, multiplication and division instructions may have fast paths for certain
simple cases, and it was shown that performance penalties for subnormal floating point
numbers can be used to breach browser security boundaries and attack differentially
private databases [12]. A similar issue are silent stores, where the CPU quietly eliminates
a store because it does not change the data that is already present in the target memory
location [73].

In the recent GoFetch attack [53], the authors exploited data memory-dependent prefetchers
(DMP). Prefetchers are commonly used to load data into the cache that is likely to be
used soon. Usually, these prefetchers rely on access pattern-based heuristics; DMP looks
for pointers in the recently used memory and prefetches the target addresses, leaking the
pointer to the attacker. This can also be used to extract non-pointer data, if the attacker
manages to manipulate the secret in a way that it looks like a pointer to the prefetcher.

A TEE-specific attack class are ciphertext side-channels [136, 138]. AMD SEV uses determin-
istic tweaked memory encryption, i.e., the ciphertext depends on the plaintext and the
physical address. This means that writing the same plaintext to the same address leads to
the same ciphertext. In conjunction with Li et al., we showed that an attacker can break
constant-time cryptographic implementations solely by observing the ciphertext during
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cswap(a, b, 0)
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cswap(a, b, 1)

Figure 3.5: A constant-time swap operation susceptible to a ciphertext side-channel attack. The
function cswap swaps the values of variables a and b if the secret bit is 1. The colors and patterns
resemble a particular ciphertext. The secret bit is directly leaked through the ciphertext change.

encryption. The first attack primitive is the dictionary attack, where a variable can only
hold a small range of values, so the attacker can build a mapping of observed ciphertexts
to (suspected) plaintexts. The second and more generic primitive is the collision attack,
where the attacker extracts secrets by checking whether ciphertexts repeat. Collisions
happen frequently with constant-time swaps, an important primitive for elliptic curve im-
plementations. By observing whether a memory location is changed or not, the attacker
immediately learns the secret bit (Figure 3.5).

3.1.6 Other Attacks and Leakages

Execution Unit Contention. When a CPU implements SMT, logical cores share the
same execution units. By observing the latency of certain operations, the attacker can
leak the current workload of the neighboring core. Port contention attacks slightly delay
operations of the same type as issued by the attacker [4]. Scheduler queue contention on
AMD CPUs allows an attacker to temporarily block certain instructions from execution,
e.g., multiplication, allowing to measure whether an application makes increased use of
them [76].

Amplification. Often attacks require high-precision timers, noise reduction and rep-
etition to extract the leaked data. Amplification aims to increase the signal-to-noise ra-
tio through different means. For example, one can abuse eviction strategies and non-
temporal prefetches to distinguish whether an item is cached with millisecond granu-
larity [179, 194]. Katzman et al. [120] build logical gadgets within transient execution,
allowing them to do arbitrary computations in the transient domain and generate high
timing differences.
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A similar approach is slowing down the victim. Such performance degradation attacks
generate contention by, for example, repeatedly evicting cache lines [6] or executing
atomic instructions which lock the memory bus [99]. This way, the attacker can more
accurately target the vulnerable code sections.

Power and Frequency Side-Channel Attacks. Instead of exploiting architectural
and microarchitectural behavior, side-channel attacks can also measure and manipulate
physical properties of the hardware itself. This can be used both for extracting secrets
like register values and for injecting faults into computations.

With Running Average Power Limit (RAPL) [105, Vol. 3, Sec. 15.10], Intel provides an
interface for reading the system’s current power consumption, that was used for several
attacks. A similar interface is available on AMD CPUs. For example, in PLATYPUS [143],
the authors were able to recover keys from AES-NI code running in an SGX enclave.
Lipp et al. [140] combine AMD’s version of RAPL with a prefetch side-channel to break
KASLR.

The Hertzbleed attacks [236, 237] exploit varying CPU power consumption and frequency
due to the currently processed data. They break various crypto systems by triggering spe-
cific bit sequences, which cause the CPU to increase its frequency, leading to a measurable
timing difference.

Fault Attacks. Fault attacks change the architectural state in an invalid way by modi-
fying data stored in memory or influencing the result of computations through physical
means. This allows breaking protections like user/supervisor access bits in page tables
or extracting cryptographic keys.

Rowhammer attacks [87, 88, 122, 127, 145, 225] exploit the increasing density of DRAM
chips. While this reduces power consumption and increases capacity, close memory cells
are prone to physical interactions. By repeatedly hammering (i.e., accessing) physically
close memory locations, there is a certain chance that a neighboring memory cell flips its
value. This attack strategy can also be used to read data from other memory cells which
belong to an otherwise inaccessible address space [131].

Another fault injection vector is undervolting through software, which abuses a feature
originally intended for under-/overclocking and energy saving. By faulting certain types
of arithmetic instructions (e.g., multiplication), cryptographic keys can be extracted from
SGX [121, 162, 184] and TrustZone [183] enclaves without hardware modifications.
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3.2 Software Leakage Analysis

Over the years, numerous approaches for automated software leakage analysis were
proposed. Most of them target timing and cache side-channel leakages, i.e., vulnerabili-
ties stemming from secret-dependent memory accesses and control flow, which can be
exploited by monitoring a program’s memory access pattern. By removing these secret-
dependent operations, memory access pattern-based attacks can be averted. In the fol-
lowing, we give an overview of the various approaches on finding such secret-dependent
operations in software, for which there are static and dynamic methods. Afterward, we
compare the different approaches, discuss their strengths and weaknesses, and point
out directions for future work. Finally, we briefly describe related work that finds other
leakage types such as transient execution vulnerabilities and ciphertext side-channels.

Note that research in this area is inherently tool-driven, i.e., a new approach is usually
assigned a name and complemented with a proof-of-concept implementation and a
suitable evaluation. We thus often use the tool name to refer to a specific approach.

Sound(i)ness and Completeness. We call a leakage detection tool sound if it never
states that an insecure program is secure, or phrased differently, it never misses a real
leakage (no false negatives). Analogously, we call a leakage detection tool complete, if
it never falsely states that a program is insecure, i.e., it only rejects programs that are
actually insecure (no false positives). Consequently, if the tool is both sound and complete,
it always correctly determines the security of a program.

In practice, strict soundness is unrealistic. A weaker, but more realistic variation of
soundness is soundiness [147]. A tool can be called soundy, if it is sound within reasonable
practical limitations, including some simplifications. For example, an analysis may only
unroll unbounded loops until a certain depth, lose precision during conversion of a
program into a formal framework, or use dynamic information to speed up an otherwise
sound technique. In fact, the authors of [147] claim that every program analysis tool must
make some compromises when applied to a real programming language. For this reason,
when we call a tool sound, we actually consider it soundy, though the formal methods
themselves may be strictly sound in an ideal setting.

Similarly, no existing tool does actually have zero false positives – apart from overap-
proximation, techniques like blinding and the internal generation of random secrets (e.g.,
ephemeral keys) often trip trace comparison-based methods and are not incorporated in
formal models. Some dynamic approaches try to support non-determinism by applying
statistical tests, but those are still susceptible to insufficient sample sizes and imperfect
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Figure 3.6: Illustration of noninterference. Low-confidentiality inputs may flow into both low-
and high-confidentiality outputs. However, high-confidentiality inputs may never end up in
low-confidentiality outputs.

leakage models, so not complete either. Thus, we consider completeness only for de-
terministic programs, and evaluate the ability to analyze non-deterministic programs
separately.

3.2.1 Static Approaches

Static analysis aims to make general statements about the behavior of the given program,
without actually executing it. As these statements typically apply to all possible inputs,
static analysis can prove the security of the program.

A concept tightly coupled with all static analysis approaches is noninterference, which
was coined by Goguen and Meseguer [81] to formalize secure information flow. Non-
interference requires that two users on a given system with different security levels do
not interfere with each other, i.e., confidential data does not affect data visible to other
users. In the context of language security, noninterference means that given low and high
confidentiality inputs, the resulting low outputs do not depend on the high inputs (Fig-
ure 3.6). As this requirement is too strong for most applications (e.g., a ciphertext clearly
depends on high confidentiality inputs, but can be safely released), weaker notions were
proposed, like delimited release [195], which allows certain variables to be declassified
explicitly.

Noninterference can be adapted to verifying constant-time properties [7, 8]: We assume
side-channel observations (e.g., address traces) as a public output, and then require that
any pair of executions which differ only in their secret inputs produce the same ob-
servations. To prove this property, various approaches have been explored, which we
summarize in the following.

Composition and Reduction to Assertion Safety. In ct-verif [7], Almeida et al.
construct a product of the verified program with itself, getting two interleaved executions
with separate sets of variables (cross product [24]). They assume that all public inputs
are identical, and then assert at each position in the execution that the side-channel
observations are equal. By reducing the constant-time property to assertion safety, they
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can subsequently employ an SMT solver that checks whether the program is safe for
all possible secret inputs. In a limited fashion, this approach also supports varying
control flow that depends on public outputs, with manual annotations indicating that a
given leakage is benign. However, the loss of synchronicity between the two simulated
executions may lead to path explosion in the worst case.

A similar path is taken by Athanasiou et al. in SideTrail [19], who use self-composi-
tion [25] instead of a cross product, i.e., they do not interleave the two executions. How-
ever, they assume a much simpler leakage model, where they only verify whether all
possible program paths have the same execution time.

Blazer [14] by Antonopoulus et al. addresses the issue of path explosion, by decom-
posing the program into partitions, where each partition holds the body of a single
secret-independent conditional. By proving that all partitions have secret-independent
execution time, the same is also proven for the whole program. Note that this is a weaker
notion than constant-time, as there may still be memory access trace leakage through bal-
anced branches or secret-dependent array indexes. Finally, Blazer runs on source code,
as it is more difficult to identify partitions in binary code, and compiler optimizations
may affect the actually observed execution time and thus introduce more leakages.

Type Systems. Type systems have long been prominent approaches for showing
noninterference: A variable is assigned both a data type and a security label. This label
is propagated through the program, similar to static taint tracking, with the compiler
verifying that only permitted information flow occurs.

Conceptually, adapting an existing type system for constant-time checking is straight-
forward. For example, Volpano et al. [229] slightly modify their system from [228] to
prevent branching based on secret data at all. Agat [2] relaxes this strict requirement
by instead enforcing that an observer cannot distinguish which branch was taken, and
provide an automated tool that pads branches accordingly.

Barthe et al. [23] take an approach that is more suited to prevent modern side-channel
attacks, requiring that secret high data is not used in conditionals and for addressing
memory. To make the system practically applicable, it is necessary to know which infor-
mation is accessed in a certain part of a program. They solve this through a conventional
points-to analysis, which overapproximates the set of addresses accessed through a given
pointer.

A similar approach is outlined by Rodrigues et al. [193]: They exploit a property of the
Static Single Assignment (SSA) form, which is often utilized by compilers, allowing
them to efficiently capture implicit and explicit information flows and thus determine
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secret-dependent accesses in LLVM IR. However, it is unclear how they deal with heap
memory and detect which information is referenced by a given pointer.

Abstract Interpretation. Instead of building an accurate formal representation of
all instructions a program contains, one can abstract those computations to the degree
that is needed for side-channel analysis, and then interpret the program using those
abstractions [58].

In CacheAudit [67], Doychev et al. approximate the number of side-channel observations
through a cache leakage model. Their abstraction focuses on capturing memory accesses,
to build traces of hits and misses as they would occur in practice. By counting the number
of such traces, they compute an upper bound of the resulting leakage. If the approximated
leakage is zero, this corresponds to a proof that the program is secure. In a follow-up
paper [68], they refine their abstraction to also support dynamic memory allocations,
tracking the least-significant bits of addresses (which are helpful for distinguishing
whether an unknown address points to the same cache line as another address) and
detecting intra-cache line leakage.

Blazy et al. [32] assume a classical leakage model, which incorporates secret-dependent
branches and memory accesses of any granularity. Similarly to logic-based approaches,
they reduce the security of the program to its safety, by letting the program get stuck
when encountering a secret-dependent operation. They then track secrets through static
tainting based on an abstract interpreter, integrated into the CompCert [54] verified
compiler platform.

Static tainting based on abstract interpretation is also used by Schaub [198]. Their tool
STAnalyzer traverses the AST of every function to build a dependency graph, encoding
which initial (potentially secret) argument values a given variable depends on. When
interpreting an instruction, the algorithm checks whether that instruction could possibly
leak a secret value, and marks it accordingly.

In CacheS [234], Wang et al. observe that a majority of information flows in a typical
cryptographic implementation relates to public values only, and only a small minority
of operations depend on secrets. Thus, compared to classic static taint analysis, they
reduce the accuracy of tracking public values in exchange for a highly accurate tracking
of secret values. After interpreting the program, they feed all identified secret-dependent
positions into a constraint solver, which generates example inputs producing the leakages
(witnesses). In a rather unusual approach, CacheS relies on a reverse engineering tool
to lift binary code into an intermediate representation. While this allows the analysis to
reason about the security of the compiled code (not the source code like other approaches),
it leads to loss of soundness due to inaccuracies in the conversion.
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To address the general lack of completeness of abstract interpretation, Chattopadhyay et
al. [51] propose to combine it with model checking or symbolic execution, which can
verify leakage candidates and thus reduce false positives.

Symbolic Execution. Leakage analysis through symbolic execution [123] is tightly
related to formal reduction-based approaches. It reasons about the exact effects of in-
structions, without making simplifications like type systems or abstract interpretation.
In symbolic execution, the program is converted into a number of constraints, which are
parameterized by symbolic inputs, i.e., variables representing the arguments given to the
program. These constraints are then evaluated for satisfiability on-the-fly using a suitable
solver. Most symbolic execution-based approaches make use of noninterference-related
techniques like self-composition, where the program is simulated for two different secret
inputs in order to prove that it behaves the same for all secrets.

In an early work on using symbolic execution for side-channel analysis, Pasareanu et
al. [173] take a cost-based approach, that includes execution time, number of heap objects
and I/O communication in the leakage model. They estimate the total leakage of a
program by counting all possible symbolic execution paths that exhibit different cost,
and then computing the Shannon entropy.

Brennan et al. [36] use a similar partitioning technique as Antonopoulos et al. [14]: With
their tool CoCo-Channel, they decompose the program into branch and loop components,
and assign each instruction a certain cost. However, instead of looking at all possible
paths, they use taint analysis to find secret-dependent branches, and check whether those
expose execution time differences.

CANAL [218] from Sung et al. simulates a cache by instrumenting an LLVM IR program
with special store/load calls on each memory access. Additionally, it allows to query
auxiliary variables containing the number of cache hits and misses. It then evaluates
two executions of the same program with different symbolic inputs (self-composition)
and checks whether the computed execution times and hit counts differ. Chattopad-
hyay et al. [52] follow a similar approach with CacheFix, and accompany the vulnerability
detection with monitoring that synthesizes patches which introduce dummy cache hit-
s/misses/invalidations at runtime to avert detected leakages. Cache models are refined
by Brotzman et al. [39], who introduce optimistic and pessimistic models which abstract
away implementation details, reducing analysis complexity at the cost of more false
positives.

Disselkoen et al. [65] verify whether a program is constant-time by propagating secret
taint during symbolic execution, and checking whether a tainted value appears in a
branch condition or is used as a memory address. They also support verification on
protocol-level, catching attacks like Lucky Thirteen [5], which are not associated with
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CPU-level side-channels. Tainting is also used by Yavuz et al. [261]. As a performance
optimization, they ask the user to specify the information flow behavior of subroutines,
so those can be omitted during symbolic execution [190].

A generic approach is taken by Daniel et al. [60, 61]. Their tool Binsec/Rel supports
both constant-time verification as well as checking for proper secret erasure. While
their approach also relies on self-composition for comparing the execution paths of two
different secret inputs, it has one key difference: By using relational symbolic execution [72],
they can merge redundant public paths in both programs (reducing the size of the
symbolic formula), and avoid leakage tests for expressions that only involve public
variables. This way, they address the performance issues that typically render symbolic
execution-based techniques impractical. The good performance also allows avoiding
over-approximation, making Binsec/Rel soundy and complete.

3.2.2 Dynamic Approaches

Dynamic analysis tries to reason about the behavior of the program by looking at its
execution. This is usually approached by instrumenting the program and collecting one
or more execution traces for a set of concrete inputs (contrary to static analysis, which
reasons about all possible inputs).

Some approaches only use the collected runtime information to improve the performance
of static analysis techniques, while others compare execution traces to find differences
caused by information leaks (Figure 3.7). Many approaches share a simple idea: If
changing a secret input leads to a different execution path, there must be secret-dependent
code and thus leakage. In the following, we summarize the dynamic analysis techniques
proposed in the literature.

Taint Tracking. ct-grind by Langley [133] is a small patch for the popular Valgrind
debugging framework. It directly builds upon the memcheck tool, which checks whether
uninitialized data is used for branch decisions or memory addresses. This can be trivially
adapted to leakage analysis by marking all secrets as uninitialized. memcheck then pro-
ceeds propagating this information during execution, and reports an error as soon as a
secret-dependent branch or memory access is detected. Neikes [164] shows the scalability
of the method by applying it to the SUPERCOP [223] benchmarking suite, uncovering a
number of vulnerabilities.

Irazoqui et al. [114] use taint tracking to find branches and memory accesses that are
somehow affected by secret data. As this does not yet necessarily mean that there is
leakage, they subsequently collect cache traces for those code locations, by flushing the
affected variable from the cache and then measuring every access to it. Finally, they
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Trace A Trace B

read b64d[0x51]

read b64d[0x61]

read b64d[0x47]

read b64d[0x56]

read b64d[0x79]

read b64d[0x51]

read b64d[0x61]

read b64d[0x47]

read b64d[0x56]

read b64d[0x79]

read b64d[0x31]

read b64d[0x6b]

read b64d[0x2f]

read b64d[0x32]

read b64d[0x6c]

read b64d[0x77]

Figure 3.7: Execution traces for the inputs Q1k/aGVy and Q2lwaGVy for the leaking Base64 decoding
example from Figure 3.1. Different Base64 characters lead to different accessed memory
addresses. If a dynamic tool observes such differences between execution traces after changing
only the secret input, the cause was likely a secret-dependent memory access.

find dependencies between the cache traces and the secret through mutual information
analysis.

Statistical Tests. In dudect [192], Reparaz et al. use statistical tests to compare the
program’s execution time (e.g., measured by counting CPU cycles) for different secret
inputs. If the tool identifies timing differences between executions, those indicate the
presence of secret-dependent branches. However, the approach allows neither localizing
the origin of leakages nor finding smaller leakages involving memory access patterns
variations.

Zankl et al. [264] present a leakage test specifically tailored to modular exponentiation.
They observe that typical optimizations skip calculations when there are 0-bits in the
exponent, which in turn implies that there are more calculations for an exponent with a
high amount of 1-bits. This can be turned into a leakage test by correlating the Hamming
weight of the exponent with the number of times a given instruction was executed. Both
positive and negative correlation indicates leakage.

Trace Comparison. STACCO [255] by Xiao et al. focuses on TLS implementations and
Bleichenbacher attacks [33]. They generate pairs of random TLS packets and trace their
processing in the respective libraries. The resulting control flow traces are then compared
using a standard diff tool. While each small difference points to a potential vulnerability,
their vulnerability analyzer allows to reduce granularity of the recorded addresses
to cache line or page-level, reflecting the real attacker capabilities and thus removing
leakages that are not exploitable.
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DATA [240] by Weiser et al. takes a more generic approach. Leakage detection is done
in three phases: First, for two sets of fixed and random secret inputs, the tool collects
execution traces and then uses a custom diffing algorithm to find a pairwise alignment.
In the second phase, detailed execution traces are collected for all instructions involved in
trace differences, and transferred into histograms that are subsequently tested for secret-
dependent differences using Kuiper’s test. Finally, a specific leakage test analyzes how the
leakage is correlated with the secret, e.g., through specific bytes or the Hamming weight.
Internally generated secret nonces are also supported, by skipping the second phase,
extracting them from the ciphertext/signature and then applying the specific leakage
test [239]. A drawback of this solution is that the leakage model must be specifically
tailored to the analyzed primitive, which involves significant manual intervention.

With Microwalk [243], in contrast to other leakage analysis tools, we went beyond the
traditional research prototype and built a robust and extensible code base, aiming for
practical usability in development workflows. At its core, Microwalk also relies on com-
paring execution traces: The first version collected traces for a number of random secret
inputs through DBI and used mutual information analysis to find dependencies between
the inputs and the observed memory access patterns. We later refined it with linear-time
call tree diffing and added further metrics like minimal conditional guessing entropy,
allowing the user to accurately localize and quantify the severity of deterministic leak-
ages [247]. Besides x86 binaries, the generic leakage analysis pipeline also supports
JavaScript and RISC-V programs [245]. Extension to further languages and platforms
only requires a suitable instrumentation engine to generate the necessary traces.

Another tool solely relying on comparing execution traces (and optionally cache traces)
is CacheQL [263] by Yuan et al.. Similar to Microwalk, they try to estimate leakage by
computing mutual information between the traces. However, they estimate this value
through neural networks. To assign the leakage to concrete program points, they use
methods from game theory. While the authors state that applying the tool to a set of
traces is fast, the neural networks it relies on need to be specifically trained for every
implementation, so CacheQL cannot be straightforwardly applied to another library or
primitive without very costly retraining.

Fuzzing. ct-fuzz [96] by He et al. utilizes an LLVM plugin to materialize a self-
composition of the given program, that allows to compare two executions with different
secret inputs. Suitable instrumentation tracks the leakage behavior of both instances.
They then use a fuzzer to produce pairs of secret inputs until a variation is discovered. A
very similar approach is followed by DifFuzz [167] from Nilizadeh et al., though they
target Java bytecode. What both fuzzer-based approaches have in common is that they
often find a vulnerability within the first few seconds. If no vulnerability is found in that
time, a longer analysis often does not lead to more results.



50 Chapter 3: State of the Art

Dynamic Symbolic Execution. Contrary to classic symbolic execution, dynamic sym-
bolic execution [80] (also called concolic execution) applies the symbolic formula to a
concrete execution trace. This drastically reduces the search space and allows quickly
finding solutions which lead to yet unexplored program paths.

Wang et al. [235] build such a symbolic expression along a concrete execution path,
capturing the program state and path conditions. For any given memory access, they
then ask the solver to find two secret inputs that access a different address. To reduce
expensive queries to the solver, they use taint tracking to preselect potentially vulnerable
instructions and apply domain knowledge.

Bao et al. [21] improve upon this idea by also including control flow variation in their
expressions. Additionally, instead of querying a solver, they find that random sampling is
sufficient to find a pair of inputs which produce a leakage. Based on this observation, their
tool Abacus uses a variant of Monte Carlo simulation to estimate the number of inputs
that can be distinguished using the given leakage. That number can then immediately be
used to calculate the amount of leaked input bits.

Refinement Types. Refinement types [74] are an extension of type systems, where types
can carry an additional predicate that specifies properties of the typed value. Jiang et
al. [119] use this for bit-accurate tracking of secret values, allowing their type system to
avoid false positives such as secret-dependent operations that involve correctly masked
or randomized values. Thus, in contrast to regular type systems, their tool CaType also
supports blinding. The remainder of their approach is similar to dynamic symbolic
execution: They first ask the user to mark secrets and random values, collect bit-level
taint for a concrete execution, and then verify adherence to their type system for the
execution trace.

3.2.3 Comparison

To learn the capabilities of the many proposed static and dynamic approaches, we
compare them across various categories. In the following, we briefly describe each
category and discuss observations. The results are summarized in Table 3.1.

Analysis Level. The robustness of the analysis result depends on the representation
of the analyzed code. If only the source code is considered, compiler optimizations
can remove secret-dependent operations or even introduce them [61, 210]. Similarly,
IR-based analysis may miss target-dependent low-level optimizations. For this reason,
many contemporary tools target binary code, as it is executed natively on the machine
and thus accurately reflects the leakage behavior. Another noteworthy approach are
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certifying compilers, which validate a security property during compilation, but those
suffer from similar issues as source code/IR analysis if the verification is not done on
binary level. Finally, some tools rely on lifted IR, which is IR generated from a binary.
During the lifting process some information gets lost, so it also suffers from inaccuracies,
though it is arguably closer to the optimized binary than the compiler IR.

Security Guarantee. When evaluating the guarantees of each tool, one must consider
their underlying leakage model and the resulting security level. For example, tools that
only care for secret-independent execution time (time-invar.) or constant control flow
(const. ctrl.) usually leave the code vulnerable to memory access trace-based attacks
(e.g., cache attacks). This is averted by approaches that employ a formal cache model
(cache-invar.), but those models do not fully match reality and miss fine-grained leakages.
Most recent approaches thus adopt a generic constant-time policy (constant-time), which
can protect against all kinds of trace-based side-channel leakages.

Sound(i)ness and Completeness. Generally, static approaches that consider some
variant of noninterference allow to prove the absence of leakage, i.e., they are formally
sound. This is due to considering all possible inputs, without making simplifications that
omit secret-dependent information flows. In practice, peculiarities of the programming
languages and proof engines still impose some restrictions, so the actual implementations
of those approaches can be rather called soundy [147]. Naturally, dynamic tools are
unsound, as they only consider a subset of all possible program paths and thus may miss
leakages.

Achieving completeness (no false positives) statically is much more difficult, as the formal
abstraction must not allow any over-approximation that turns a public-only information
flow into one that looks like it may contain secrets. While the reduction-based tools
promise completeness, this is paid with a high analysis time, making those tools hardly
scalable for applications exceeding symmetric cryptography. The only other tool that
provides some notion of completeness is Binsec/Rel, which is possible due to their very
efficient approach at symbolic execution. On the other hand, dynamic approaches can
be complete, if they do not make overapproximations that introduce false positives. For
example, in deterministic programs, differences between two execution traces always
originate from secret-dependent operations, so any difference is a true positive.

Scalability. For publications which contained a performance evaluation, we assigned
one of four classes to illustrate their expected real-world scalability (for sensible input
parameters). The lowest class, signaled by , indicates that the tool needs a long analysis
time even for simple targets (or does not terminate at all in some cases), and thus is hardly
usable in practice. Tools marked with  are capable of analyzing most implementations,
but still take a significant analysis time or terminate without conclusion eventually.
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Practically relevant are  and , which support even large asymmetric targets, though
 may still have few cases with long or non-terminating analyses.

Dynamic tools generally perform better than static ones, as they often rely on native
execution and only consider a concrete subset of possible inputs, avoiding costly SMT
solver calls. However, FlowTracker, CacheS and Binsec/Rel demonstrate that high per-
formance is also achievable with static approaches, by excluding irrelevant inputs from
the analysis and carefully minimizing the number and size of constraints.

Capabilities. To date, ct-verif is the only tool that allows ignoring operations that
depend on public outputs. For example, once encryption is done, any side-channel
observations on the ciphertext do not increase the attacker’s knowledge, as they learn
the ciphertext anyway. But it is quite difficult to automatically detect at which point
exactly an encryption ended. Even ct-verif can only achieve this through a manual
annotation by the user, after which the tool ignores all dependent operations. Being able
to avoid false positives from insensitive operations (like encoding a ciphertext) is a useful
property, which deserves more attention in the future.

Dealing with non-input-randomness like ephemeral keys is another difficult area. Infor-
mation flow-based approaches need to be modified to also incorporate these internally
generated secrets, and trace-based approaches need to rely on statistical tests to detect
non-determinism. At the time of writing, only DATA was used to systematically analyze
internal secrets [239], and even there they relied on a customized leakage model and lots
of manual analysis. Thus, automating this kind of case remains an unsolved problem.

Blinding (i.e., transient randomization during computation) is better supported. Sev-
eral dynamic tools are able to eliminate independent randomness through statistical
tests, at the cost of sacrificing completeness. Deterministic information flow and trace
comparison-based approaches mistake randomized for secret-dependent operations, i.e.,
report false positives. It thus remains an open question whether a tool can efficiently
analyze blinded implementations without relying on statistical methods.

Output. In order to address a reported vulnerability, the developer needs to be given
context on its cause and its severity [118, 247]. Many tools are able to tell the exact code
location of a leakage and often provide a witness (i.e., secret input) triggering it. Far
fewer tools offer a metric that quantifies the severity, which can be useful for triaging.
The available metrics are widely different in their accuracy and validity. The metric with
the arguably closest estimation of leaked bits is the one used by Abacus, which computes
the number of inputs triggering secret-dependent behavior.
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Table 3.1: Comparison of software side-channel leakage analysis tools. We list the analysis level, security guarantee and whether the tool
is sound (Sound) and complete (Compl). We also denote support for public outputs (PubOut), internally generated secrets (IntSec) and
blinded implementations (Blind). Finally, we checked whether the tools can localize (Loc) and quantify (Quan) leakage, and provide a
suitable witness (Witn).

Tool Approach Level Security
Properties

Scal
Capabilities Output

Sound Compl PubOut IntSec Blind Loc Quan Witn

[7] ct-verif reduction; product program IR constant-time �  
[19] SideTrail reduction; self-composition IR time-invar. �   ü
[14] Blazer reduction; decomposition source time-invar. �   ü

[229] Volpano et al. type system - const. ctrl. �
[2] Agat type system - time-invar. �

[23] VirtualCert type system cert constant-time �
[193] FlowTracker type system IR constant-time � 
[67] CacheAudit abstract interpretation; cache model binary cache-invar. � 
[68] CacheAudit2 abstract interpretation; cache model binary constant-time � 
[32] Blazy et al. abstract interpretation; static tainting cert constant-time �
[198] STAnalyzer abstract interpretation; static tainting source constant-time � 
[234] CacheS abstract interpretation; static tainting lifted IR constant-time �   ü
[218] CANAL symbolic execution; self-comp., cache model IR time-invar. �
[52] CacheFix symbolic execution; self-comp., cache model source cache-invar. �   ü
[36] CoCo-Channel symbolic execution; decomposition source time-invar. �  ü
[39] CaSym symbolic execution; self-comp., cache model IR cache-invar. �   ü
[65] PitchFork symbolic execution; static tainting IR constant-time �   ü
[60] Binsec/Rel symbolic execution; self-comp., relational SE lifted IR constant-time �    ü
[261] ENCIDER symbolic execution; self-comp., static tainting IR constant-time �   ü
[173] Pasareanu et al. symbolic execution; model counting IR time-invar. �   ü

[133] ct-grind taint tracking; tainted data-dependent accesses binary constant-time 
[114] Irazoqui et al. taint tracking; real cache attack traces IR cache-invar. 
[264] Zankl et al. statistical test; modexp bit correlation binary time-invar.  
[192] dudect statistical test; resource usage measurement binary time-invar.  
[255] STACCO trace diffing; pairwise, TLS-only, basic block traces binary const. ctrl.    ü
[240] DATA trace diffing; pairwise, stat. test, leakage model binary constant-time  L    ü
[243] Microwalk trace diffing; N-way, linear time binary constant-time     ü
[263] CacheQL trace diffing; neural networks, game theory binary constant-time     ü
[96] ct-fuzz fuzzing; self-composition binary constant-time    ü

[167] DifFuzz fuzzing; self-composition IR constant-time    ü
[235] CacheD dyn. symbolic execution cache variance binary cache-invar.    ü
[21] Abacus dyn. symbolic execution cache variance, sampling binary cache-invar.     ü
[119] CaType refinement types; cache variance binary cache-invar.    ü
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3.2.4 Discussion

Application in Practice. Jancar et al. [118] conducted a study among cryptographic
library developers, where they asked them which kinds of tools they are using for verifi-
cation and what properties a tool should have. First of all, they noted that most available
tool implementations were unmaintained research prototypes with often insufficient
language support, which are hardly usable in everyday programming. Other points of
criticism were high resource consumption and usability issues like difficult setup and
the need for manual code annotations (which need maintenance as well). For the latter
reason, the developers mostly preferred tools based on dynamic instrumentation, and
perceived formal analysis tools as requiring too much effort. Finally, purely statistical
tools like dudect were disliked due to their susceptibility to external factors like noisy
shared hosts used for CI, and the fact that their are neither sound nor complete.

With our work Microwalk-CI [247], we took up these results and showed how the Micro-

walk framework can be adapted to use in a CI workflow. Additionally, we addressed
several usability issues with a new low-maintenance analysis template and a fast analysis
algorithm that works in a constrained CI environment. We continue to maintain the tool
and, at the time of writing, work on integrating it into an actual library development
workflow.

Test Case Generation. One issue of dynamic approaches is the necessity of a set of
secret inputs (test cases) that yield good coverage of the analyzed code. Most tools rely on
purely random test cases, which tend to work well with cryptographic implementations
due to their high degree of diffusion (i.e., changing a single bit is likely to trigger varying
behavior if it is present). It was thus found that a small set of random inputs already
yields good coverage [240, 247]. However, this method may still miss code paths that
trigger in very rare situations.

One approach to address that is fuzzing (as employed by ct-fuzz and DifFuzz). Basu et
al. [27] propose a test case generation method based on simulated annealing, aiming to
maximize the number of observed cache misses, and show that it performs better than
the AFL [135] and Radamsa [97] fuzzers.

3.2.5 Other Vulnerability Types

The aforementioned methods can also be adapted for finding other vulnerability types.
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Transient Execution. Transient execution attacks like Spectre [125] exploit invalid code
paths that can be triggered by speculative execution, accessing data that should not be
accessible architecturally.

To detect potentially vulnerable code gadgets, Microsoft quickly integrated a number of
heuristics into the Visual C++ compiler [153].

Guarnieri et al. [91] introduce speculative noninterference (SNI), an adaption of the non-
interference property that also considers mispredicted execution paths until a certain
depth. Their Spectector algorithm then uses symbolic execution to prove the property.
Fabian et al. [70] extend Spectector with more generic semantics which can also catch
other types of Spectre vulnerabilities. An alternative notion introduced by Brotzman et
al. [40] is speculation-aware noninterference (SANI), which is more generic than SNI, as
it does not assume that the program is side-channel free. They aim to find more cases
by also considering leakage from the occurrence of speculation itself, instead of only
focusing on memory index-based leakage.

Other work uses symbolic execution as well: One can model speculative behavior by
extending conventional cache leakage models with a simulation of branch misprediction
(i.e., visiting both code paths for a limited number of instructions). SpecuSym [93] by
Guo et al. and KLEESpectre [232] by Wang et al. take this approach.

As a fully dynamic method, oo7 by Wang et al. [233] uses binary taint analysis to identify
branch instructions which depend on attacker inputs, and finds memory access instruc-
tions reachable from them. Finally, the tool checks whether there are further memory
access instructions depending on the values of the former, which constitutes typical
Spectre-PHT gadgets. Their work additionally hardens the code by inserting fences in the
identified gadgets.

Spectre vulnerabilities can also be found through fuzzing: SpecFuzz by Oleksenko et
al. [169] simulates misprediction at branches and executes otherwise invalid code paths,
rolling back execution state afterward. By applying AddressSanitizer [1] to the executed
code, they can find transient out-of-bounds memory accesses.

Tol et al. [221] train a classifier to detect many different types of Spectre gadgets in code.

Memory Content-Based Side-Channels. Contrary to cache and transient execu-
tion attacks, which target address-based access patterns, ciphertext side-channel at-
tacks [136, 138] and observation of silent stores [227] or data memory-dependent prefetch-
ing (DMP)[226] target the secret values themselves.

CipherH [63] by Deng et al. uses dynamic taint analysis and static symbolic execution
to detect whether consecutive writes to the same address lead to ciphertext collisions.
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While they aim to find ciphertext side-channels, their method only considers consecutive
writes without any other accesses to the same address in between. So while the tool is
not able to detect all cases of ciphertext side-channels, it is suitable to find silent store
leakages.

In our work Cipherfix [244], we take a less precise approach at finding ciphertext side-
channel vulnerabilities: We use taint analysis to track secrets through the program and
identify which variables and instructions are affected by them. We successfully use this
analysis for automated and reliable code hardening, though it is a clear overapproxima-
tion which would be unsuitable for a pure detection tool.

3.3 Side-Channel Countermeasures

When dealing with side-channel vulnerabilities, two approaches at countermeasures are
possible: Modifying the hardware to remove the cause of the side-channel, or adapting
the software to detect or mitigate the leakages caused by the side-channel. In the follow-
ing, we discuss the state of the art for both hardware and software solutions with respect
to various side-channel leakages.

3.3.1 Cache Attacks

A large class of attacks is based on caching, i.e., the fact that observable access behavior
differs between seldom used data and data that was accessed recently. While cache
attacks mostly refer to the “classic” L1 to LLC memory caches, there are more caching
layers in modern processors, like the translation look-aside buffer (TLB) for page table
mappings. However, the memory caches have received lots of scrutiny recent in attack
research, as they feature high temporal and spatial accuracy, and attacks against LLC even
work cross-core. Thus, in the following, we focus on countermeasures for memory cache
attacks, though the main ideas also apply to other microarchitectural components.

The countermeasures against cache attacks fall into three main classes: Secure cache
designs, software hardening through code linearization and randomization, and dynamic
attack detection.

Secure Cache Architectures. Caches come with significant advantages, making them
an essential part of modern microarchitectures. Most notably, they are usually fully
transparent, i.e., no software support is needed to benefit from them. This transparency
also means that CPU vendors can freely adjust various parameters like set associativity
and replacement policies, improving performance without having to adapt existing
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Reserved Partition

way0 way1 way2 way3
tag index offset

Physical Address

set index

Figure 3.8: A basic way-partitioned set-associative cache with 4 ways, where way1 is fully reserved
for a sensitive process. Cache lines of other processes cannot be stored there, so their available
cache capacity is reduced.

software. Simply disabling caches due to security concerns is not viable, as this would
lead to a major loss of performance. Similarly, secure cache designs should not introduce
a notable overhead, as this would run counter to the purpose of the cache.

As for other microarchitectural components, the main security issue of caches is that they
are shared between processes and behave predictably. For example, an attacker process
can manipulate the (shared) cache state and then observe how that state is affected by a
victim process.

A straightforward solution to this issue is cache partitioning, where processes are pre-
vented from evicting each other’s cache lines [172, 187, 196, 238, 256]. One simple method
is way partitioning, where parts of the cache are reserved exclusively for a certain code
section (Figure 3.8). Similarly, in a method called page coloring [220], the operating system
picks physical pages which map to a known cache set, allowing to “reserve” a given
cache set for the private data of a process. However, this assumes a known mapping
from address to set indexes, which is not always available for modern processors. The
Sanctum TEE [57] uses page coloring-based partitioning. Such static methods are gener-
ally considered inflexible and wasteful, and there have been many proposals on dynamic
approaches which make better use of the limited resources.

Wang et al. [238] propose PLcache, which comes with new instructions for locking selected
memory areas in the cache. A process cannot evict a locked cache line from another
process, and locked cache lines can only evict each other if they are from the same process.
The approach relies on the operating system to ensure that a single process does not lock
too many resources. The cache partitioning system Vantage from Sanchez et al. [196]
takes a different route: They divide the cache into unmanaged and managed regions,
where the latter takes the majority of ways and is divided into a fixed amount of partitions.
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way0 way1 way2 way3
tag index offset
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way indexes

Figure 3.9: A ScatterCache [241] with 4 ways. The address-to-set mapping function F is replaced
by a hash (or symmetric encryption) function H , which takes the physical address, a hardware-
generated key and an operating system-determined ID. Instead of producing a single index
for a fixed cache set, the function yields separate indexes for each cache way, greatly increasing
the number of possible cache sets.

Partitions may briefly overflow into the unmanaged region. Their management strategy
keeps track of insertion and eviction rates of each partition, and balances them in order
to keep them to their desired sizes. However, this means that there is still interference
between the partitions of different processes.

Contrary to cache partitioning, set randomization tries to thwart the attacker’s ability to
build eviction sets and infer secrets from cache state, by breaking the formerly fixed
mapping of physical addresses to cache sets [35, 185, 238]. RPcache by Wang et al. [238]
adds a key to the set index computation function to generate a unique permuted cache
set mapping for the current process. However, this requires frequent rekeying (which
amounts to a cache flush), as an attacker may prepare fixed eviction sets for every cache
set and then only needs to figure out which eviction set is required to evict the target
address.

Pre-computed eviction sets can be avoided through full randomization with skewed
caches [186, 241]: ScatterCache by Werner et al. [241] does not only permute the mapping
of addresses to set indexes, but also the sets themselves are comprised of a random
selection of ways, leading to an amount of possible cache sets that is exponential in
the number and size of ways (Figure 3.9). The permutation function of ScatterCache is
keyed both with a random hardware-managed key and a software-controlled ID. This
way, the attacker can no longer construct reliable eviction sets, as the allocation of ways
to form a cache set is fully random. The attacker’s context has a different ID than the
victim, so they also get an entirely different cache layout.

Nevertheless, it was shown that such designs can be attacked. For example, in a proba-
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const unsigned char b64d[256] = { ... };

int decode_base64_char(char c) {
  return b64d[c];
}

const unsigned char b64d[256] = { ... };

int decode_base64_char_ct(char c) {
  int bits = 0;
  for(int i = 0; i < 256; i++) {
    int mask = ~((i == c) - 1);
    bits |= b64d[i] & mask;
  }

  return bits;
}

Figure 3.10: Linearization example. The left box shows the leaking Base64 decoder from Figure 3.1,
the right box a simple (and inefficient) linearized version of the same code. Instead of accessing
only the desired table index (and thus leaking the value of c), the code accesses every table
index, but masks out all values except for the requested one. The linearized code exhibits no
secret-dependent branches or memory accesses. However, it is possible that the compiler’s
optimization passes detect the masking pattern and nevertheless emit the same machine code
as for the original leaking lookup.

bilistic version of Prime+Probe, called Prime+Prune+Probe [180], the attacker gradually
builds an eviction set that does not have any self evictions (prune). The eviction set
size is increased until it manages to evict the target address. A follow-up proposal to
ScatterCache, SassCache [79], addresses this problem by introducing a second mapping
function that reduces the set of cache lines a given process can reach. This way, the
attacker only has a partial overlap with the victim, drastically reducing their ability to
build a full eviction set, as some victim cache lines are not visible to them at all.

Yet, while skewed caches seem promising due to their security properties and generally
low overheads in their evaluations, Song et al. [214] note that skewed-cache designs may
perform poorly in highly parallelized conditions, and recommend using randomized
set-associative caches with automatic attack detection instead.

In summary, there are many different proposals for hardware-based secure caches, where
each comes with its own advantages and drawbacks. Despite the long line of research,
the major CPU vendors have yet to adopt one of the concepts in their processors. Ran-
domized designs were shown to be vulnerable to probabilistic attacks, so even if they
become widely available eventually, the user may need to harden software to mitigate
the remaining risk. Thus, for the foreseeable future, software-level solutions to cache
attacks remain necessary.

Code Linearization and Randomization. The primary software defense against cache
attacks is linearization, i.e., removal of input-dependent runtime behavior (Figure 3.10).
The resulting constant-time code exhibits the same sequence of executed instructions
and accessed memory addresses for every secret input. An alternative approach is
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randomization through means like blinding, where a random value is introduced into the
computation at the beginning and removed from the result afterward, to decouple the
observed execution trace and the secret inputs. However, randomization only works
with selected applications. Approaches and tools for checking the side-channel security
of linearized and randomized code are discussed in-depth in Section 3.2.

Hardening software against cache attacks is a mostly manual task, which requires expe-
rience, reduces code readability, and often involves fighting with the compiler to keep it
from re-introducing leakages through optimizations [61, 210]. To address this, several
methods for aiding and even automating code linearization were proposed.

The first category are domain-specific programming languages (DSLs), which are specifi-
cally designed to enable constant-time programming and ease static analysis. FaCT by
Cauligi et al. [50] is a C-like language with a built-in type system that allows marking
data as public and secret. The programmer can write readable code without constant-
time idioms, as the compiler takes care of the subsequent constant-time transformation
and formal verification of the security properties. FaCT was later extended to also support
speculative load hardening [205].

Other proposals focus on rewriting existing C code instead of translating all crypto-
graphic code into a dedicated programming language, which avoids the compatibility,
community support and maintenance issues that come with a DSL. SC-Eliminator
by Wu et al. [254] standardizes control flow by replacing secret-dependent break and
continue statements by if conditions and rewriting memory accesses to conditional
ones. Lookup tables are prefetched into the cache to ensure equal execution time. How-
ever, an attacker may work around this. Additionally, the method fully unrolls loops,
so their bounds must be known at compile time. Soares et al. [212, 213] use a similar
approach called partial control-flow linearization, which was originally designed for en-
abling program vectorization. Their tool Lif also supports unbounded loops, though
loops whose iteration count is secret-dependent are turned into infinite loops, reducing
practicality of the method. To solve the loop bound problem, Constantine by Borrello et
al. [34] takes a hybrid approach: Control flow is linearized using masked decoy paths,
and secret-dependent memory accesses are replaced by oblivious operations that always
touch every memory location that may be accessed by that instruction. Secret-dependent
instructions are identified through dynamic taint analysis, so the security of the resulting
program depends on the achieved coverage. Finally, to also support secret-dependent
loops, Constantine has a runtime component that adjusts loop iteration counts dynami-
cally.

Finally, side-channel security can be achieved through oblivious RAM (ORAM). The
most simple ORAM is a linear array that is fully scanned on each access. More advanced
schemes like Path ORAM [217] use trees to reduce the amount of accessed data. However,
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they are mostly tailored towards a client/server setting with large databases and have a
lot of overhead when implemented to work with small amounts of data in a constant-
time fashion [191, 246]. Raccoon by Rane et al. [191] uses static taint analysis to find
secret-dependent branches, and subsequently forces control flow to execute both paths.
Each path is run as a transaction, that is either committed or discarded after execution.
Memory accesses in the real and decoy paths go to an ORAM, so the attacker cannot
distinguish whether the program just executed a real or a dummy access. Due to the cost
of ORAM, Raccoon has a much higher overhead than tools like Constantine. However,
for threat models beyond the classic cache side-channel attacker who wants to extract
secret data, ORAM-based approaches yield good results. For example, in TEEs, the
owner may not only want to hide their secret data, but also the code itself, which is not
accomplished through traditional linearization. Obfuscuro by Ahmad et al. [3] protects
code by splitting it into blocks, which are stored in a dedicated ORAM. To execute a code
block, it is copied into a scratchpad, so the attacker always observes the same memory
addresses. The same applies do the accessed data blocks. Our work Obelix [246] further
highlights the potential of ORAM by extending Obfuscuro with support for strong
TEE-specific attacker models like single-stepping and ciphertext side-channels.

Attack Detection. Another line of research is dynamic detection and mitigation of
attacks. Instead of hardening software or hardware to prevent cache attacks passively,
the system actively monitors the cache state to identify malicious processes and contain
attacks. This leads to an arms race between new detection methods and more stealthy
attack techniques evading them [37].

Most detection methods rely on hardware performance counters (HPCs) [129]. HPCs
allow measuring microarchitectural behavior like execution unit usage and counts of
memory accesses and hits/misses in the various cache layers. HPC-based detection
assumes that cache side-channel attacks cause abnormal cache usage patterns which are
then reflected in the measurements. The various approaches differ in their choice of HPCs
to monitor, privilege level of the detection, the sampling rates, and the classification
method for the sampled performance values. Common issues and trade-offs of HPC-
based side-channel detection are accuracy (i.e., false positive rate), performance overhead
(directly tied to the sampling rate), delay between attack and detection, and an incomplete
threat model [129].

Another related approach for detecting cache attacks is analyzing the execution time of
the victim process, where noticeable differences may be caused by an attacker [38].
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3.3.2 Single-Stepping

The most effective software-side countermeasure against single-stepping attacks is
constant-time code, which is free from data-dependent branches and memory accesses.
Weaker notions which, for example, permit intra-cache line differences, are insecure, as
single-stepping allows very precise counting and measuring of instructions [44, 159, 178,
208]. Another approach is oblivious execution, which can also protect the code itself from
leaking to the attacker, though at a high performance cost. The code blocks need to be
sufficiently uniform in order to be indistinguishable by a single-stepping attacker [246].

Alternatively, the enclave can monitor itself to detect attacks and deploy appropriate
countermeasures at runtime. Cui et al. [59] propose a compiler modification QuanShield

that generates Intel SGX enclaves which self-destruct after receiving an interrupt. For
that, they store crucial runtime information (e.g., base pointers) in a second stack, which
resides in the state save area (SSA). After an interrupt, the current enclave state is written
into the SSA, overwriting the pointers in the second stack with invalid data. When the
enclave resumes execution, it soon crashes due to an illegal access. This approach is quite
effective, but requires the operating system to put the respective CPU core into a tickless
mode (i.e., no scheduler interrupts).

A less intrusive approach is monitoring the number of asynchronous exits and deploying
mitigations when there is suspicious activity. For example, Varys by Oleksensko et
al. [168] starts a second enclave thread on the sibling logical core, which watches the SSA
for changes. They additionally prevent cache attacks by filling the cache with dummy
data on enclave exits.

Other tools use transactional memory to suppress single-stepping and enforce execu-
tion of instruction sequences [132, 204]. However, Intel TSX is known to come with
its own vulnerabilities, and was therefore disabled in many processors via microcode
updates [107].

AEX-Notify from Constable et al. [55] takes a combined hardware/software approach
which introduces a new control bit, allowing the enclave to return to a dedicated en-
trypoint after an interrupt. That entrypoint atomically prefetches data operands of the
next application instruction, so it is executed quickly after the enclave resumes. This
way, the attacker is unable to reliably place an interrupt between the entrypoint and the
resumed instruction. AEX-Notify was deployed as a microcode and runtime update by
Intel, making it also available on many legacy systems.
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if(index < length) {
  int value = array[index];
  leak(value);
}

if(index < length) {
  int *ptr = &array[index];
  ptr = mask_ptr_ct(ptr, index < length);
  leak(*ptr);
}

// if cond == 1: return ptr
// if cond == 0: return 0
void *mask_ptr_ct(void *ptr, u64 cond) {
  return (void *)((u64)ptr & -cond);
}

Figure 3.11: Example for speculative load hardening [49]. The left side shows a simple bounds
check that is vulnerable to Spectre-PHT. The condition may be mispredicted during speculative
execution, leading to an access of an invalid array index. The read value is leaked subsequently.
With SLH, the pointer to the targeted memory address is masked first, where the mask depends
on the condition. This introduces a data dependency on the condition. If the branch is predicted
correctly, the access goes through; if the branch is mispredicted, transient execution will use a
null pointer.

3.3.3 Transient Execution

Most transient execution attacks fall into two major categories: Leakages caused by
variants of speculative execution (Spectre [125]) and vulnerabilities from out-of-order
execution and delayed exception handling (Meltdown [144]). While often mentioned
together, the attack classes are very different and thus need to be mitigated separately.

Speculative Execution. Spectre-style attacks target a problem that is inherent to any
implementation of speculative execution: The fact that code is executed transiently which
is not meant to be executed, accessing data which is otherwise protected. In CPUs, this
leads to side-effects like transiently accessed data being loaded into the cache, which
can be observed by the attacker. There are different countermeasures suggested for each
Spectre variant.

As a first measure, several browser vendors reduced the resolution of available timers
in order to prevent attackers from using the cache covert channel [95, 231]. However,
this was shown to be insufficient [248]. Chrome uses site isolation by default, which
stores sensitive data in an own virtual address space that should not be accessible by
attacker-induced speculative execution [230].

For generic software, a straightforward solution to mitigating several Spectre variants is
serialization, i.e., inserting serializing instructions like lfence before/after potentially
vulnerable branches [103, 125]. This way, speculation is fully prevented, but at a high
performance cost. To allow more targeted application of serialization, static analysis
approaches for finding vulnerable gadgets were proposed (see Section 3.2.5).
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call retpoline

trap_spec:

pause

jmp trap_spec

retpoline:

mov [rsp], rax

ret

jmp rax

jump target jump target

??

Figure 3.12: Retpoline illustration. The original program on the left side consists of an indirect
jump to the address stored in rax. Architectural execution (black arrows) jumps to the desired
target. However, speculative execution (red arrows) relies on the BTB to predict the address,
ending up in an attacker-determined location. The retpoline on the right side leads both
architectural and speculative execution into a simple dummy function which overwrites the
return address on the stack with the value in rax and then returns to that address. However,
while architectural execution continues with the jump target, speculative execution relies on
the RSB for determining the return address, which is not updated by the stack overwrite. Thus,
speculative execution returns to the old return address and gets stuck in the trap_spec loop.

Another more efficient software defense against Spectre-PHT is speculative load hardening
(SLH) [49, 265] (Figure 3.11). The key observation underlying SLH is that in most cases
data is exfiltrated through a data-dependent memory access, which results in an observ-
able modification of the cache state. SLH introduces a branchless predicate that checks
the original branch condition and generates a mask, which is applied to the pointer. If
the condition is mispredicted, the pointer becomes invalid, and the access is prevented.
Another variant of SLH protects the loaded value instead, preventing the attacker from
leaking it through another covert channel. SLH is supported both by the LLVM and
the GCC projects. SLH in its original form does only protect against Spectre-PHT with
a cache covert channel. Proposed extensions of SLH with higher guarantees are strong
SLH [174] and ultimate SLH [265].

Spectre-BTB was initially prevented with so-called retpolines [110]. A retpoline is a special
code gadget that initiates a function call and then replaces the return address on the
stack by the branch target. Speculative execution reads the stale return address from the
RSB, leaving it stuck in a loop until the misprediction is detected (Figure 3.12). However,
in Retbleed, Wikner et al. [249] showed that the RSB may underflow into the BTB in some
cases. To mitigate that attack, AMD proposed to replace all returns in the kernel by jumps
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to a single fully protected return thunk [249].

There are also hardware/microcode mitigations available for the aforementioned attacks.
Initially, Intel proposed and released Indirect Branch Restricted Speculation (IBRS) [112].
The kernel can prevent trained branch targets from user processes from being applied
in privileged mode by enabling IBRS during the user/kernel context switch. However,
IBRS is not effective if it is still enabled from an earlier context switch, so it must be
disabled when leaving privileged mode. As writing to the corresponding MSR on
every user/kernel context switch is quite expensive, Intel later introduced enhanced
IBRS (eIBRS). eIBRS only needs to activated once and effectively isolates branch target
prediction of user and kernel mode. IBRS is complemented by Single Thread Indirect Branch
Predictors (STIBP) and Indirect Branch Predictor Barrier (IBPB), which isolate hardware
threads and processes running on the same logical core, respectively.

Besides the available countermeasures, researchers have proposed many more methods
on software and hardware level. For example, Blade by Vassena et al. [224] uses a type
system to detect speculative data flows from secrets to the cache. These data flows
are then suppressed using serializing instructions. SpecShield by Barber et al. [22] is
a pure hardware solution that prevents usage of data for leaking operations like loads
by delaying them until speculative execution was resolved. SpectreGuard by Fustos et
al. [75] takes a similar approach, but allows the programmer to annotate sensitive memory
regions. ConTExT by Schwarz et al. [200] does hardware-level taint tracking by adding a
bit to each page table entry, register and status flag, indicating that the element holds
secret data. This bit is checked during transient execution, and the hardware ensures
that the secret never leaks into the microarchitectural state. Software then needs to
correctly classify memory locations as secret and not secret. With ProSpeCT, Daniel et
al. [62] propose a formal processor model to prove the security of such approaches. They
show that the protections in ConTExT can be weakened to allow some secret-dependent
operations speculatively without compromising on security.

Out-of-order Execution and Exception Handling. Contrary to speculative execution
leakages, which trick a process (or the kernel) into leaking its own data and which are
limited to the current execution context, Meltdown-style attacks have generally no such
restrictions. Instead, attacks like Meltdown [144], Foreshadow [42] and ZombieLoad [201]
sample data from various CPU buffers independent from the attacker’s privilege level. As
these attacks are often tightly linked to hardware peculiarities which cannot be controlled
by software, they can only be properly fixed by the CPU vendors. In the following, we
discuss a few software-level mitigations and proposals to harden systems.

The original Meltdown attack exploits the fact that modern operating systems use the
upper half of the virtual address space for kernel memory and keep it mapped even in
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user mode. User space processes are kept from accessing such kernel pages through a
supervisor bit in the respective page table entries. Out-of-order execution may then use
these existing mappings to read kernel data and leak it via the cache, before the access
violation is detected and an exception is raised. Until Intel introduced suitable hardware
patches [102], operating system vendors adopted a countermeasure called kernel page
table isolation (KPTI, originally proposed as KAISER by Gruss et al. [86]). KPTI removes
the kernel mapping during user mode, except for a few necessary components like the
interrupt handlers.

Load value injection [43] (LVI) allows to inject data into various CPU buffers which is
then used transiently by load instructions, even in secure contexts like SGX. To defend
against LVI until hardware fixes become available, Intel and the authors of the attack
paper recommended inserting lfence instructions after each vulnerable load. This leads
to a considerable slowdown, and we found that it greatly improves accuracy of other
attacks [208].

While not a countermeasure, Unique Program Execution Checking (UPEC) by Fadiheh et
al. [71] is a formal verification technique for hardware designs that allows to prove the
absence of transient execution side-channels. The method is able to detect Meltdown-like
vulnerabilities without assuming prior knowledge thereof, and the authors recommend
to integrate such formal checks into the release process of new CPUs.

Finally, many (but not all) transient attacks can be averted by disabling SMT, as they are
caused by microarchitectural resources shared between victim and attacker thread. For
example, Intel recommended disabling SMT for SGX enclaves to mitigate the Foreshadow
attack [109]. However, this also comes with a performance penalty for the entire system.

3.3.4 Value-Based Leakages

Constant-time code and serialization do little to prevent side-channel attacks that exploit
memory content and register value-based behavior. As some attacks are quite new for
general-purpose CPUs, there are only few approaches for mitigating them automati-
cally.

Computation simplifications which lead to an operand-dependent instruction latency
can be addressed by moving to fixed-latency instructions. Recently, Intel introduced
data operand independent timing (DOIT) [104], an upcoming ISA extension that ensures
constant-time execution for a majority of arithmetic instructions. It also prevents data-
dependent prefetching.

Silent stores occur when the CPU detects that the same data is written to a memory
address and thus skips the store. To ensure that the processor always executes a store,
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cio by Flanders et al. [73] compute an auxiliary value that is guaranteed to be different
than the old and new value, and stores it in between. This way, the stored value always
changes, and silent stores are suppressed. Besides eliminating silent stores, cio is also
able to mask operands in a way that certain computation simplifications are prevented.

In general, masking is an effective method for preventing value-based side-channels.
Our ciphertext side-channel hardening tool Cipherfix [244] uses dynamic taint tracking
to find instructions and memory areas which touch secret data. We then rewrite the
program and dependency binaries to add a random mask before each store to sensitive
memory locations. The mask is stored alongside the masked data and subtracted again
when reading it. This way, the observed ciphertext becomes independent from the stored
secret, and changes even when the stored value does not change. Thus, Cipherfix would
also prevent silent stores, though it arguably assumes a stronger threat model and thus
overapproximates.

In our ciphertext side-channel attack paper [136] we also explored two other mitiga-
tion approaches: Interleaving and address rotation. Both are specific to ciphertext side-
channels, as they break the otherwise deterministic mapping between physical address
and plaintext to ciphertext. Interleaving breaks up each memory block into two parts,
where the former holds the original data and the latter holds a counter that is incre-
mented with each store. The size of the aforementioned memory block matches the block
size of the memory encryption scheme. If the block size is 16 byte (AES), this results in
an 8-byte counter, so a ciphertext can only repeat after 264 stores to the same address.
While very secure and efficient, interleaving has the drawback that it breaks common
patterns like copying of contiguous memory (memcpy) and unaligned accesses, making
its practical implementation very complicated and unstable.

Address rotation takes an alternative route, by not changing the plaintext itself, but the ad-
dress where it is stored. That approach has a high memory cost and requires considerable
bookkeeping, but it is suitable to protect small well-known workloads like the stack on
user/kernel space context switches. Our generic TEE hardening framework Obelix [246]
uses interleaving to protect data stored in the data ORAM, and address rotation of the
code and data scratchpads to avoid repeating code/data block ciphertexts.





4
Conclusion

Defending against side-channel attacks remains a challenge given the variety of attack
methods. While there are many proposals for countermeasures, only few of them are
actually deployed in practice. At the moment, the most relevant defense is manually
created constant-time code, which is resistant against memory access pattern attacks.
However, writing constant-time code is not trivial and may fail subtly, either due to
the developer missing small leakages or the compiler re-introducing input-dependent
behavior. We have surveyed many tools that aim to detect such remaining vulnerabilities,
and found that there are trade-offs between accuracy and scalability: While static tools
allow proving the absence of vulnerabilities, dynamic tools are generally much more
efficient and easier to use.

In an effort to combine high scalability with accurate results, we designed the Microwalk

framework, which relies on finding differences between execution traces for concrete in-
puts. By design, Microwalk is complete for deterministic programs, and we are working
on further reducing the false negative rate by incorporating coverage into the analysis. In
contrast to usual research prototypes, we took extra steps to ensure practical suitability in
line with the results from Jancar et al. [118], which includes simple analysis templates and
integration into CI workflows. Microwalk is subject to ongoing development, with the
goal to eventually offer all analysis capabilities that we discussed in the state-of-the-art.
DATA is currently the only tool that was shown to be able to analyze implementations with
internal secrets, and no other tool than ct-verif can declassify public outputs. By devel-
oping methods to integrate these capabilities into a trace comparison-based approach,
we plan to offer a comprehensive solution suitable for practical development.

Automated leakage analysis assists developers of cryptographic software, who are gen-
erally aware of memory access pattern side-channels and know constant-time program-
ming techniques. However, users of TEEs may not be as knowledgeable to side-channels,
but still wish to fully protect their workloads. We have discussed various proposals for
automated hardening against different attacks. Hardware-based approaches promise
efficient and robust solutions, but depend on processor vendors adopting them. On the
contrary, software solutions can be applied by anyone, though potentially at an increased
performance cost. We explored automated hardening schemes against attacks that exist
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in modern processors and which do not have hardware mitigations available. First, with
Cipherfix, we built a binary rewriting framework which added masking to any memory
access to combat ciphertext side-channels. Cipherfix requires the input program to
be constant-time. We went several steps further with Obelix, where we took a holistic
approach at side-channels in TEEs, creating a framework that automatically hardens
any program against memory access pattern attacks, single-stepping and ciphertext side-
channels, with the option to include measures to prevent speculative execution and fault
injection attacks as well. While providing yet unmatched security guarantees, Obelix
comes with a significant performance overhead for non-trivial workloads. We hope that
our first exploration in the area of generic countermeasures inspires further research
that leads to a reduction of the performance impact in the future, while maintaining the
security guarantees.

Finally, future work may look into combining leakage analysis and code rewriting to pre-
cisely harden programs without any manual intervention and at a minimal performance
overhead. This way, developers can focus on writing clean code, leaving all side-channel
hardening to automated tools. Such tools can also take into account processor-specific
leakages and can deploy application-specific countermeasures, e.g., yielding highly hard-
ened (but slower) code for TEEs and leaky (but very fast) code for local applications.
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MicroWalk: A Framework for Finding Side Channels in
Binaries

Jan Wichelmann1, Ahmad Moghimi2, Thomas Eisenbarth1,2, and Berk Sunar2

1Universität zu Lübeck
2Worcester Polytechnic Institute

Microarchitectural side channels expose unprotected software to information leakage
attacks where a software adversary is able to track runtime behavior of a benign
process and steal secrets such as cryptographic keys. As suggested by incremen-
tal software patches for the RSA algorithm against variants of side-channel attacks
within different versions of cryptographic libraries, protecting security-critical algo-
rithms against side channels is an intricate task. Software protections avoid leakages
by operating in constant time with a uniform resource usage pattern independent of
the processed secret. In this respect, automated testing and verification of software
binaries for leakage-free behavior is of importance, particularly when the source code
is not available. In this work, we propose a novel technique based on Dynamic Binary
Instrumentation and Mutual Information Analysis to efficiently locate and quantify
memory based and control-flow based microarchitectural leakages. We develop a
software framework named MicroWalk for side-channel analysis of binaries which
can be extended to support new classes of leakage. For the first time, by utilizing
MicroWalk, we perform rigorous leakage analysis of two widely-used closed-source
cryptographic libraries: Intel IPP and Microsoft CNG. We analyze 15 different crypto-
graphic implementations consisting of 112 million instructions in about 105 minutes
of CPU time. By locating previously unknown leakages in hardened implementations,
our results suggest that MicroWalk can efficiently find microarchitectural leakages in
software binaries.

1 Introduction

Side-channel attacks exploit information leakage through physical behavior of computing
devices. The physical behavior depends on the processed data. The resulting data-
dependent patterns in physical signals such as power consumption, electromagnetic
emanations or timing behavior can be analyzed to extract secrets such as cryptographic
keys [19, 33, 50, 59]. Despite the physical proximity requirement for most physical attacks,
there exist remotely exploitable side channels such as microarchitectural attacks [32].
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Microarchitectural attacks exploit shared hardware features such as cache [13, 65, 67],
branch prediction unit (BPU) [2], memory order buffer (MOB) [62] and speculative exe-
cution engine [49] to extract secrets from a process executed on the same system. These
attacks can be mounted remotely or locally on systems where untrusted entities can
execute code on a shared hardware, either because the system is shared or untrusted
code is executed. Scenarios include but are not limited to cross-VM attacks in the cloud
environment [44, 57], drive-by JavaScript trojans inside the browser sandbox [54], at-
tacks originating from untrusted mobile applications [55] and system-adversarial attacks
against Intel Software Guard eXtensions (SGX) [20, 61]. Microarchitectural leakage can be
used to break software implementations of cryptographic schemes where the adversaries
recover the secret key by combining the leaked partial information from key-dependent
activities [12, 31, 83]. These side channels can be further exploited to violate user’s pri-
vacy through activity profiling [38], or to steal user’s keystrokes [36]. Memory protections
such as Address Space Layout Randomization (ASLR) can be bypassed by exploiting
microarchitectural side-channel leakages [30].

Defense against microarchitectural side channels have been proposed based on new hard-
ware design [24, 47], systematic mitigation [56] and activity monitoring [18, 87]. However,
the most widely-used protection against microarchitectural leakage is software harden-
ing using constant-time programming techniques [17, 40]. In this context, constant-time
programming implies using microarchitectural resources in a secret-independent fashion.
Therefore, timing, or trace-based leakages [26] in the hardware would not reveal any
information about the secret. These techniques depend on the underlying microarchitec-
ture and side-channel knowledge, i.e. software implementations are hardened to follow
a constant-time behavior based on published attacks on the target microarchitecture.
Consequently, a novel microarchitectural attack demands new changes to these software
protections. While true constant-time code avoids such problems, manual verification
of the software implementation for constant-time behavior is an error-prone task, and
it requires extensive, and ever growing knowledge of side channels. Besides, what we
observe in the source code is not always what is executed on the processor [72], and
there are leakages in the program binary that remain unobserved in the source code [46].
The state of art tools and techniques for automated finding of side-channel leakages in
software binaries fall short in practice, particularly when the source code is not avail-
able. As a result, commercial cryptographic products such as Microsoft Cryptography API
Next Generation (CNG), which is used everyday by millions of users, have never been
externally audited for side-channel security.
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1.1 Our Contribution

We propose a leakage detection technique, and develop a framework named MicroWalk to
locate leakages within software binaries. We apply MicroWalk to analyze two commercial
closed-source cryptographic libraries hardened toward constant-time protections and
report previously unknown vulnerabilities, in summary:

• We propose a technique based on Dynamic Binary Instrumentation (DBI) and
Mutual Information (MI) Analysis to locate memory based and control-flow based
microarchitectural leakages in software binaries.

• We develop the MicroWalk framework to perform automated leakage testing and
quantification based on our technique. Our framework can be extended to locate
other and new types of microarchitectural leakages.

• We demonstrate the ease-of-use of MicroWalk by showing how it significantly eases
the analysis of binary code even in cases where source code is not accessible to the
analyst.

• We apply MicroWalk to cryptographic schemes implemented in Microsoft CNG and
Intel IPP, which are both widely used, yet closed source crypto libraries. Our results
include previously unknown leakages in these libraries.

• We perform analysis and quantification of the critical leakages, and discuss the
security impact of these leakages on the relevant cryptographic schemes.

1.2 Analysis Setup and Targeted Software

Our machine for analysis is a Dell XPS 8920 machine with Intel(R) Core i7-7700 processor,
16 GB of RAM and a traditional hard disk drive running Microsoft Windows 10. The
MicroWalk Framework uses Pin v3.6 as the DBI backend, and IDA Pro v6.95 for binary
visualization and leakage analysis. The tested cryptographic modules are Microsoft
bcryptprimitives.dll v10.0.17134.1 as part of Microsoft CNG, and Intel IPP v2018.2.185.

2 Background

2.1 Dynamic Binary Instrumentation

Dynamic program analysis is more accurate compared to static analysis due to availabil-
ity of real system states and data [63]. Dynamic analysis requires instrumentation of the
program binary, and it analyzes the program when it executes. The instrumentation code
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Figure 1: Pin: The JIT compiler combines application and instrumentation codes, and it stores the
transformed binary in code cache. The virtual machine maintains and tracks program states,
while it executes from the code cache.

is added to the program binary without changing the normal logic and execution flow of
the program under analysis, and it contains minimal instructions and subroutines for
collecting metadata and measurements. The instrumentation code and the instrumented
code execute at the same time following each other. Indeed, adding instrumentation
is easier during the compilation phase and when the source code is available [53], but
source code is not always available, and the analysis would not be as accurate due to
compiler transformations. Thanks to Dynamic Binary Instrumentation (DBI) frameworks
such as Pin [58], it is possible to instrument program binaries without source code.

Pin is a DBI framework based on just-in-time (JIT) compilation. In general, JIT compilers
transform a source language to executable binary instructions at runtime. Figure 1
shows how an embedded JIT engine is part of Pin to recompile the binary instructions
at runtime and combine the program’s instruction with instrumentation codes, named
Pintools. To avoid the performance pitfall of JIT compilation, Pin uses a code cache that
stores the combined code, and re-execution of the same basic blocks occur from the code

cache. Binary instrumentation using Pintools gives us an easy to use interface to collect
runtime metadata about program states such as the accessed memory addresses, targets
of indirect branches and memory allocations. Pin makes sure the instrumentation is
transparent, i.e., it preserves the original application behavior [58]. These events can be
measures as accurate as they occur on the OS and the processor and as it would be an
uninstrumented execution. In terms of microarchitectural analysis, we can observe the
program behavior and resource usage as they appear on the hardware, and this gives
us the ability to model a known microarchitectural leakage based on the observation of
states from a real system.
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2.2 Microarchitectural Leakage

Modern microarchitectures feature various shared resources, and these resources are dis-
tributed among malicious and benign processes with different permissions. A malicious
process, sharing the same hardware, can cause resource contention with a victim and
measure the timing of either the victim or herself to learn about the victim’s runtime. In a
cache attack, the adversary accesses the same cache set that the victim’s security-critical
memory accesses are mapped to, and she measures the memory accesses’ timing. A slow
memory access reveals some information about the address bits of the victim’s memory
access. As motivated by cache attacks on AES [13, 65], knowledge of secret-dependent
memory accesses such as S-Box operations leaks information about the internal runtime
state, and this information can be used for cryptanalysis and secret key recovery. In cache
attacks, the size of each cache block is 64 B which stops adversaries from gaining infor-
mation about the log2(64) = 6 least significant address bits. While some constant-time
software countermeasures assume that the adversary cannot leak these bits, there are
microarchitectural attacks on cache banks and MOB that leak beyond this assumption [62,
84]. In this work, we consider all secret-dependent memory accesses and treat them as
memory-based leakages disregarding their spatial resolution.

Memory operations are not the only source of leakage. A conditional statement, or a
processing loop that depends on a secret to choose an execution path can leak information
about the secret. Each unique execution path operates on a different set of instructions,
and it consumes the shared resources uniquely. Shared resources such as instruction
cache and BPU leak information about the state of branches [1, 3]. Figure 2 resembles
a classical side-channel leakage in RSA Montgomery modular exponentiation. This
algorithm processes a secret exponent one bit at a time, and it performs an additional
arithmetic operation when the secret bit is one. An adversary who is able to track
the execution of the left branch is able to determine the secret value that affected the
conditional jump decision. We treat all the attacks that are triggered due to secret-
dependent branches as control-flow based attacks.

2.3 Mutual Information Analysis

Mutual information (MI) measures the mutual dependence of two random variables,
and it can be used to quantify the average amount of obtainable information about
one variable through observation of the second variable [37]. Mutual information using
Shannon entropy is defined as

I(X, Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
,
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// Square and Multiply

// Pseudocode

while(i>0){

r = (r * r) % n;

if( key[--i] == 1 ){

r = (r * x) % n;

}

}

Figure 2: Montgomery Square and Multiply operations can leak information about the secret
exponent. While r9 points to the exponent in memory, comparison of a value from the exponent
determines if the left jump should occur which leaves a key-dependent microarchitectural
footprint.

where p(x) and p(y) are the probability distributions of random variables X and Y

respectively. p(x, y) is the joint probability of X and Y , and I(X, Y ) tells us the average
amount of dependent information in bits1 between the variables X and Y . MI has
been utilized to quantify side-channel security [10, 43, 75, 86], or to mount side-channel
attacks [34]. Redefining MI in the side-channel context, we can define variable X as the
secret and variable Y as an internal physical state of a system leaked through a side
channel. I(X, Y ) will measure the average amount of leakage from secret X , through
observing the side-channel information Y .

2.4 Signing Algorithms

2.4.1 DSA

Digital Signing Algorithm (DSA) [68] is a signature scheme based on the discrete logarithm
problem (DLP) [48]. Choosing a prime p, another prime q divisor of p − 1, the group
generator g, a secret key x, the public key y = gx mod p, and the hash of the message to
be signed z, the DSA signing operation is defined as

k ← RANDOM | 1 < k < q

r = (gk mod p) mod q, s = k−1(z + r · x) mod q

where (r, s) are the output signature pairs.

1log2 measures the MI in bit unit.
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2.4.2 ECDSA

Elliptic-Curve DSA (ECDSA), as an analogue of DSA, is a signature scheme based on
elliptic curves [45], in which the subgroup of a prime p is replaced by the group of points
on an elliptic curve over a finite field. Choosing an elliptic curve, a point on the curve G,
the integer order n of G, a secret key dA, the public key QA = dA × G, and the hash of
message to be signed z, the ECDSA signing operation is defined as

k ← RANDOM | 1 < k < n− 1

(x1, y1) = k ×G

r = x1 mod n, s = k−1(z + r · dA) mod n

Both DSA and ECDSA use an ephemeral secret k that needs to be chosen randomly for
each operation.

2.4.3 Modified Elliptic Curve Signature

Elliptic-Curve Nyberg-Rueppel (ECNR) [64] and SM2 [8], a standard signature scheme, are
modified schemes based on ECDSA that allow signatures with message recovery. ECNR
and SM2 are widely used, and they are both supported by Intel IPP. Public parameters,
the private/public key pair and the ephemeral secrets are chosen similar to ECDSA. The
pair (x1, y1) is also calculated similarly, but the signature generation for ECNR is defined
as

r = x1 + z, s = k − r · dA,

and the signature generation for SM2 is defined as

r = x1 + z, s = (1 + dA)
−1(k − r · dA)

3 MicroWalk Analysis Technique

MicroWalk aims to find microarchitectural leakages in software binaries. A binary im-
plementation is vulnerable to microarchitectural side-channel attacks when there is a
dependency between a secret and internal computation states observable through the
side channels. We expose such relationships and quantify the amount of observable
leakage in these implementations. This helps security analysts 1) to reveal whether an
implementation has leakages, 2) to locate the exact location of each leakage in the binary,
and 3) to measure the dependency between the secret and the internal state, i.e., it can
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Figure 3: Left: side-channel analyst finds relationship between a real leakage such as cache access
pattern and secrets such as cryptographic keys. Right: MicroWalk follows a white-box model
where the security analyst has full access to runtime states such as memory accesses, and she
can find dependencies between arbitrary secrets and internal states.

give some confidence value on the severity of the leakage. In contrast to side-channel
analysis model, we are able to perform this analysis in a white-box model.

3.1 Leakage Analysis Model

We assume a strong adversary with full access to runtime events such as memory accesses,
execution path and even register values. Further, the adversary can choose and modify
any secret input of the system. This strong adversary can define any internal computation
state such as addresses of memory accesses and register values as a potential leakage
vector, based on her knowledge of a category of side-channel attacks, e.g., memory based
attacks (Section 2.2). The adversary executes the system under her full control, and
feeds the system with arbitrary secrets while collecting runtime traces for the defined
leakage vector. Figure 3 compares our leakage analysis model with the side-channel
analysis model. As an example, if we try to analyze a binary implementation of AES,
we need to define certain operations as our leakage vectors. Based on cache attacks, an
adversary defines memory accesses as a leakage vector, and she collects all memory
accesses during the execution of AES using arbitrary secret keys. If there is a dependency
between different secret keys and the variation of memory accesses, the adversary can
locate which instructions relate to any secret-dependent memory accesses, and identify
potential leakages.

3.2 Capturing Internal States

We choose two common sources of leakage as our leakage vectors: 1) execution path and
2) memory accesses. A true constant-time implementation follows a linear execution path
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for any given secret input; each time a software performs a secret-dependent conditional
branch, it leaks some amount of information about the secret. Defining execution path
as a leakage vector helps us to check whether for any secret input the same operations
are performed. The second common source of leakage are memory accesses. A constant-
time implementation should follow a secret-independent memory access pattern. If, for
example, an implementation of a cryptographic algorithm does key-dependent table
look ups which can be exploited by measuring cache timings, an attacker will be able to
extract parts of the secret key; we ensure that memory accesses are either invariant, or at
least uncorrelated to the input (e.g. blinding in RSA [50]).

To be able to detect these two types of leakages, we need to collect the internal state for all
memory accesses and branch operations. First of all, we generate a set of arbitrary inputs
for a chosen secret. These inputs can be either random (e.g. plain texts for encryption) or
have a special structure with some random components (e.g. private keys or ephemeral
secrets). We then execute the target binary on each input and log the following events:

• memory allocations

• branches, calls and returns

• memory reads and writes

• stack operations.

Absolute memory addresses may vary even for constant-time programs, e.g., due to
ASLR and dynamic heap allocation. We use the trace of memory allocations and stack
operations to compute relative memory addresses; our meta data then consists of a list
of relative addresses for memory accesses and the branches to, from and within the
code we are analyzing. Note that one can define other leakage sources based on the
underlying microarchitecture and collect the state of relevant instructions for analysis,
e.g., the multiplication on some ARM platforms leaks information [7].

3.3 Preparing State Variables

We do not make any assumptions on the leakage granularity; compared to similar
techniques, that stop at cache line level, we keep this parameter freely configurable. This
has the advantage that the analysis can be restricted to leakage sizes that are actually
relevant to the analyst: For example, as of writing this paper, on Intel processors the
finest known attack has a leakage granularity of 4 bytes [62]. Applying our technique in
1-byte mode will give all positions where a leakage might occur, but if one only expects
4-byte leakages to be exploitable, this may yield some false positives. Instead, the security
analyst can choose the leakage granularity that fits to the desired spatial resolution. After
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applying the chosen leakage granularity of g ∈ N bytes by discarding the lower log2 g bits
of each address, we can acquire an efficient representation of a specific execution state
by computing a hash value of all or a subset of the trace entries; a truly constant-time
program should have identical hashes of the full trace for every secret input. If we are
only interested in analyzing individual instructions, e.g., memory access leakages of a
specific subroutine, we can as well just compute the hash for the subset of traces for a
single instruction.

3.4 Leakage Analysis

Our approach identifies any variations resulting from unique inputs and captured in-
ternal states per input. A naive approach is to compare the collected traces and divide
them into classes. Observing more than one class informs us about secret-dependent
operations. One can also compare raw traces sequentially which outlines all positions
where the program behaves input-dependent and thereby allows to isolate the problem-
atic sections. In addition to these simple approaches, we use MI to detect/locate these
leakages, and to quantify the observable information.

To simplify MI analysis, we assume that X is a set of unique uniformly distributed
input test cases, which trigger deterministic behavior of the investigated program. If the
program makes use of randomization (e.g. blinding in RSA [50]), the test cases x ∈ X

should contain the corresponding sources of randomness too.

Let Y be a set of possible internal states (e.g. hashes of execution traces). We then define
the execution state Ti ⊂ X × Y of the analyzed program at time point i as

(x, y) ∈ Ti ∧ (x, y′) ∈ Ti ⇒ y = y′,

i.e. each test case x ∈ X appears at most once in Ti. The probability of one observed state
y ∈ Y is

pi(y) =
|{(x′, y′) ∈ Ti | y = y′}|

|Ti|
.

For the probability of pairs (x, y) ∈ X × Y we get

pi(x, y) =

{
1

|X| if (x, y) ∈ Ti,

0 else,

since each input and therefore each input/state tuple occur exactly once: |Ti| = |X|.

With this knowledge we can finally compute the mutual information between test cases



112 Chapter 5: MicroWalk

Testcase
generation 

Random bytes

Trace generation
(Pin tool) 

Trace data
collection

PEM files

CPU emulation

RDRAND
replacement

Trace
preprocessing

Preprocessor

Leakage
granularity

Analysis

Trace
comparison

Mutual
information

Visualization

Trace dump

Visualizer

IDA plugin

Figure 4: The MicroWalk pipeline: Given the software binary under test, the framework generates
test cases using the selected source, that are then used to produce execution traces. These
traces need to be preprocessed to extract important information. The resulting trace files can
then be analyzed for leakages, which are shown to the user in the visualization stage. Each
stage can be easily modified to add further functionality, that is used either interchangeably or
in addition to existing features.

X and the set of all occurring states Yi := {y | (x, y) ∈ Ti}:

Ii(X, Yi) =
∑

(x,y)∈Ti

1

|X|
log2

(
1

|X|
1

|X| ·
|{(x′,y′)∈Ti | y=y′}|

|Ti|

)

=
∑

(x,y)∈Ti

1

|X|
log2

(
|Ti|

|{(x′, y′) ∈ Ti | y = y′}|

)
.

3.5 Interpretation of MI Score

As mentioned before, we can compute the MI for the entire trace, or a single instruction.
A non-zero score for whole-trace MI tells us that an implementation has leakages, but
it cannot locate the leakage point, and an implementation that has multiple leakage
points over the execution period will have an aggregated MI value. The MI for single
instructions is more precise, in which we can locate the instructions with positive score.
The MI score Ii(Xi, Yi) is bounded by the amount of input bits log2 |X|, and (for instruc-
tion MI) by the operand size: For example, an instruction that once accesses memory
depending on 8 bits of the input will generate MI min{8, log2 |X|}. If we only execute
|X| = 128 test cases, we get MI score 7; for 256 or more test cases we get MI score 8. The
analyzed MI score is an estimate of the average leakage over the given test cases. MI is the
appropriate metric in cases where the analyzed inputs are not under the attackers control
and commonly used in leakage quantification. Alternatively, the worst case leakage for
any attacker-chosen input is given by the min entropy, which only considers the most
likely guess. The use of min entropy instead of MI in MicroWalk is recommended if the
adversary has full control over the inputs and specific high-leakage inputs exist [74].
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4 MicroWalk Framework

The MicroWalk framework is built as a pipeline with separate stages for test case genera-
tion, tracing and analysis (Figure 4). This modular design reduce the complexity, leading
to easier extensibility: If one wants to implement additional analysis techniques apart
from the ones that we already provide, she can directly add a new analysis stage, without
needing to touch other parts like the trace generation. We will continue explaining these
stages in more detail.

4.1 Investigated Binary

Although we are only interested in analyzing a specific function within a binary, we
have to instrument and collect traces for the entire setup stage of the application before
reaching to the analysis point, including the target library or executable itself, and parts
of dependencies like system components. This process leads to an enormous decrease
in analysis speed. A more efficient approach is to load and instrument the setup code
only once, and then process the incoming test cases in a controlled loop. For libraries, we
create a wrapper executable that executes an interface in a loop with new test cases. For
executable applications, we can adopt in-memory fuzzing techniques where we inject
hooks at the beginning and end of the target function and control the execution of the
function to reset to the beginning with new test cases [11]. To separate traces of the dif-
ferent test cases and avoid that the loop code causes false positives, we place calls to two
instrumented dummy functions PinNotifyTestcaseStart and PinNotifyTestcaseEnd,
which mark the start and the end of the analyzed section. A similar approach is taken
by some fuzzers like WinAFL [35], which use a built-in functionality of DynamoRIO [29] to
exchange the argument list of main or a similar function.

4.2 Input Generation

The MicroWalk framework utilizes cryptographically secure pseudorandom number
generators to create random test cases of any specified length. This performs well when
analyzing cryptographic code, e.g. decrypting random ciphertexts. If a special input
format is required, the test case generation code can be easily extended to produce such
inputs, e.g. cryptographic keys in PEM format; this way, parts of the input can be kept
constant while other parts are randomized, allowing to isolate the parameters which
cause non-constant time behavior. Further, the framework supports passing a directory
containing already generated inputs of any format.
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4.3 Trace Generation

To trace the execution of individual test cases, we create a custom so-called Pintool, which
is a client library making use of Intel Pin’s dynamic instrumentation capabilities. In
summary, our Pintool logs the following events in a custom binary format on disk:

• module loads and the respective start and end addresses;

• calls to dummy functions in the instrumented executable, to identify start and end
of a test case execution;

• sizes and addresses of allocated memory blocks through heap allocation functions
such as malloc and free (Platform dependent), for resolving relative memory
addresses;

• Stack pointer modifications, for resolving relative addresses;

• branches, calls and returns to and from all involved modules;

• memory reads and writes in investigated modules.

4.3.1 Instruction Emulation

Several cryptographic libraries use the CPUID instruction to detect the supported instruc-
tions for the respective processor and select a fitting implementation (that e.g. makes use
of AES-NI). we enabled the Pintool to change the output of this instruction. This allows
to test arbitrary subsets of the instruction set that is available on the computer running
Pin.

As mentioned in Section 3, cryptographic implementations might use randomization
techniques like blinding to hide correlations between secret inputs and execution, or
use ephemeral secrets. Some of these rely on the RDRAND instruction, which provides
random numbers seeded with hardware entropy [70]. We provide an option to override
the output of this instruction with arbitrary fixed values to control the randomization of
the program under investigation.

4.4 Trace Preprocessing

The resulting raw trace files now need some preprocessing: First we add the common
trace prefix that is generated before running the first test case, and which contains
allocation data from the setup phase. In a second step, we calculate relative offsets of
memory addresses. This involves associating branch targets with instruction offsets
in the respective libraries, and identify offsets of memory accesses, such that traces
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generated using the same test case but during different runs of the Pintool still match,
regardless of the usage of randomized virtual addresses, e.g., ASLR. For accesses to heap
memory, we need to maintain a list of all currently allocated blocks: We use a stack to
match the allocation size with their respective returned memory addresses, since in some
implementations the heap allocator tends to call itself to reserve memory for internal
bookkeeping. Finally the resulting preprocessed trace file is much smaller than the raw
one (which can be discarded after this step), saving disk space and speeding up the
following analysis stage.

4.4.1 Applying Leakage Granularity

We apply the leakage granularity immediately before the analysis starts; this way the
preprocessed trace files are not modified, so the analysis can be performed on the same
traces with different parameters. An analysis granularity of g = 2b bytes (b ∈ N) is
introduced by discarding the b least significant bits of each relative address.

4.5 Leakage Analysis

We implemented three different analysis methods in our framework:

4.5.1 Analysis 1: Trace Comparison

The first analysis method implements the trace comparison technique; given two prepro-
cessed traces, we compare them entry by entry to check whether they differ at all. This
performs well for leakage detection of particularly small algorithms such as symmetric
ciphers. Optionally, the user can use trace diffs to manually inspect varying sections.

4.5.2 Analysis 2: Whole-trace MI

For leakage detection of an entire logic and calculation of the average amount of input
bits that might leak over arbitrary parts of the execution (assuming that the attacker
has full access to the trace), we provide an option to estimate the MI between input
data and resulting trace. Given a set X of unique test cases, we need to determine
matching outputs for each trace prefix. Since we can compute the final MI only after
waiting for completion of all test cases, it would be inefficient to store the entire trace;
instead we reduce the trace data by encoding information like relative memory accesses
and branch targets into 64-bit integers, and then compress them into one 64-bit integer
y ∈ {0, . . . , 264 − 1} using a hash function. We store the resulting tuples of inputs and
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hashes in sets Ti ⊂ X × {0, . . . , 264 − 1} for each prefix length i. We then apply the
methods from Section 3 to measure the trace leakage.

4.5.3 Analysis 3: Single-instruction MI

The average amount of bits leaked by a single memory instruction is calculated analo-
gously to the trace prefixes: Here, for a specific instruction i, Ti ⊂ X × {0, . . . , 264 − 1}
contains hashes of the accessed memory addresses for each input x. These hashes change
when the accessed addresses, their amount or their order vary, thus we get the maximum
amount of information that is leaked by the respective instruction.

4.6 Manual Inspection and Visualization

To be able to manually inspect the preprocessed traces, the program has an option
to convert binary traces into a readable text representation. If MAP files with function
names are available (exported by some compilers or disassemblers), these can be used
to symbolize memory addresses. We also created an IDA python plugin to import our
single-instruction MI results as disassembly annotations. This helps further analysis on
which parts of functions and loops leak.

Further we developed an experimental visualization tool, that renders function names
and then draws an execution path. It also provides an option to render two traces
simultaneously and highlight all sections where they have differences. This gives a quick
overview of potential leakages and their structure.

5 Case Study I: Intel IPP

Intel’s Integrated Performance Primitives (IPP) cryptographic library aims to provide high
performance cryptographic primitives that are compatible with various generations of
Intel’s processor [41]. Intel IPP supports symmetric operations such as AES, as well as
asymmetric signature and encryption schemes such as ECDSA. Intel IPP is used as the
cryptographic backend for many of Intel’s security products such as Intel SGX. Each
of the implemented schemes in this library comes in variants optimized for different
processors [42]. The dynamic library checks the supported instruction set at runtime
and chooses the most optimized implementation. However, developers can statically
link toward a specific implementation by choosing the proper architecture code, e.g.,
n8_ippsAESInit rather than ippsAESInit. In this case study, we test implementations
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for the variant optimized for processors supporting Intel® Advanced Vector Extensions 2
(Intel® AVX2) with architecture code l9.

5.1 Applying MicroWalk MI Analysis to IPP

To be able to test Intel IPP cryptographic implementations, we prepared wrappers that
perform encryption and signing operations. For each tested implementation, we config-
ured the wrappers for testing multiple test case scenarios: 1) randomized plaintexts/-
ciphertexts to be encrypted/decrypted, or the message to be signed, 2) randomized
symmetric keys or private asymmetric keys, and 3) random ephemeral secrets, when it
is applicable, e.g., DSA and ECDSA as the input to MI Analysis. As suggested by chosen
plaintext/ciphertext attacks, attacks on the cipher key and lattice attacks on ephemeral
secrets [12], using these scenarios, we are able to detect leakages that are dependent on
various types of secrets.

Table 1 shows the single-instruction MI analysis results, where symmetric ciphers: (Triple)
DES, AES and SM4 and asymmetric ciphers: DSA, RSA, ECDSA, ECNR and SM2 have
been tested. On our analysis setup, the total computational time to analyze 10 different
implementations with about 92 million total instructions is 73 minutes of CPU time,
highlighting the efficiency of our method. Note that we performed analysis with input
size 27 = 128 (7-bit MI) and input size 210 = 1024 (10-bit MI), for analysis of symmet-
ric and asymmetric operations respectively. Although analysis with more iterations is
possible, state-of-the art side-channel attacks on these implementations suggest that the
random secret should show leakage behavior after this number of iterations. Intel IPP
uses two separate interfaces for the key schedule, and ephemeral secret generation for
most implementations (Table 1).

(Triple) DES, AES and SM4 are block ciphers that use table-based S-Box operations. The
results suggest that these implementations are heavily protected against memory-based
leakages. Our target architecture code uses the AES-NI instruction set for AES and SM4
operations. AES-NI is inherently secure against known attacks. However, testing the CTR
mode reveals some leakages. All asymmetric ciphers suffer from at least one leakage. For
schemes that are based on elliptic curves such as ECDSA, ECNR and SM2, Intel IPP sup-
ports various standard curves. As some developers optimize curve arithmetic differently
for various standard elliptic curves, we tested the ECDSA signing operation with three
different curves: SECP256R1, BN256 and SM2. However, the MI analysis results are exactly
the same for different choices of elliptic curves. We found a total of 13 leakages in Intel
IPP, while some of these leakages are triggered through calling the same subroutine, e.g.,
both ECDSA and SM2 use the leaky subroutine for scalar multiplication. We will
discuss these subroutines in more detail.
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Table 1: Singe-instruction MI Analysis of Intel IPP cryptographic implementations v2018.2.185.
All implementations are chosen from the l9 architecture code.

Scheme Interfaces Executed / Unique
Instructions

Analysis
Time (ms)

Leakage
Found

3DES/ECB
ippsDESInit

ippsTDESDecryptECB
4074613 / 70205 11921 0

SM4/ECB
ippsSMS4Init

ippsSMS4EncryptECB
4085517 / 68221 10004 0

AES/CTR
ippsAESInit

ippsAESEncryptCTR
2138799 / 49181 27289 2

DSA (512)
ippsDLPGenKeyPair

ippsDLPSignDSA
12245281 / 57423 1735153 2

RSA (512) ippsRSA_Decrypt 43987943 / 55167 275090 1

ECDSA
(SECP256R1)

ippsECCPGenKeyPair

ippsECCPSignDSA
4085155 / 63785 358373 3

ECDSA
(BN256)

ippsECCPGenKeyPair

ippsECCPSignDSA
5383210 / 63699 750188 *

ECDSA (SM2)
ippsECCPGenKeyPair

ippsECCPSignDSA
5158607 / 63741 353435 *

ECNR
(SECP256R1)

ippsECCPGenKeyPair

ippsECCPSignNR
4028592 / 62447 281937 2

SM2 ippsECCPSignSM2 6021005 / 64273 554035 3

Total 91208722 / 618142 73 minutes 13

* Different curves did not change the results for ECDSA.

5.2 Discovered leakages in Intel IPP

We have found 7 different subroutines that have leakages, i.e., perform data-depended
memory accesses or branch decisions (Table 2). We performed an initial analysis of these
leakages using our visualization tool and IDA Pro. The subroutine gfec_MulBasePoint

performs scalar multiplication of a scalar and point on the elliptic curve, as a common
operation in all curve-based signature schemes: ECDSA, ECNR, SM2. As defined by
the signing algorithms (Section 2.4), gfec_MulBasePoint leaks information about the
ephemeral secret. This leakage occurs due to the dependability of the number of times
the window-based multiplier loop processes the ephemeral secret. Further leakages exist
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Table 2: Discovered leakage subroutines within Intel IPP cryptographic implementations
v2018.2.185. Some of the subroutines expose critical and potentially exploitable leakages.

Subroutine Affected MI Leakage Source

gfec_MulBasePoint ECDSA, ECNR, SM2 0.86 / 10 Conditional Loop
cpMontExpBin DSA 3.73 / 10 Conditional Loop
cpModInv DSA, SM2, ECDSA 3.88 / 10 Conditional Loop
ExpandRijndaelKey AES/CTR 7.00 / 7 Memory Lookup
ippsAESEncryptCTR AES/CTR 0.13 / 7 Conditional Loop

gsMontExpWin RSA
1.12 / 10

3.11 / 10

Conditional Loop
Memory Lookup

alm_mont_inv ECDSA, ECNR, SM2
5.33 / 10

9.98 / 10

Conditional Loop
Memory Lookup

in the curve operations after the scalar multiplication: The subroutine alm_mont_inv leaks
information during the mapping of x coordinate of computed public point. As (x1, y1) are
not secrets in the signing operation, this leakage is not critical, and we refrain from further
root cause analysis. Similarly, the subroutine cpModInv has leakages with a relatively high
MI score that is due to the secret-dependent loop count. cpModInv performs a modular
inversion operation using Extended Euclidean Algorithm (EEA). In ECDSA, k−1 leaks
information about the secret ephemeral, and in SM2, (1 + dA)

−1 leaks information about
the secret signing key. ECNR does not perform any modular inversion and is safe from
leakages due to this subroutine. The existing leakage in cpModInv subroutine also applies
to DSA where a modular inversion on ephemeral secret, k−1 can leak.

Intel IPP supports two distinct functions for performing Montgomery exponentiation.
Exponentiation of big numbers is a common operation in schemes such as RSA and
DSA. The RSA algorithm uses the gsMonthExpWin subroutine which is a window-based
implementation of the Montgomery exponentiation. This function has leakages based
on both memory lookup and conditional loop. The second Montgomery exponentiation
subroutine cpMontExpBin is a protected binary implementation that has leakage due
to the conditional loop count. DSA uses the latter, which leaks information about the
ephemeral secret during computation of (gk mod p).

The only leakage exposed during testing of symmetric ciphers are due to AES key
generation subroutine ExpandRijndaelKey, and calculation of the nonce length in CTR
mode. ExpandRijndaelKey is called every time the ippsAESInit is used. As the high
MI score shows, AES key schedule used during the CTR mode has full leakage. This
leakage can be considered critical in scenarios such as the SGX environment where an
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Algorithm 1 Bitmasked Montgomery Exponentiation

1: procedure BINEXP(base g, exponent k)
2: A← R mod p
3: g̃ = MontMul(g,R2 mod p)
4: m← 0
5: i = 1
6: while i < (BitLength(k) mod 64) do
7: t← A & ∼m | g̃ & m
8: A← MontMul(A, t)
9: m = ∼m & ki

10: i = i+ 1−m
11: end while
12: for j ← 1 to BitLength(k)/64 do
13: perform the same operations as above.
14: end for
15: return A
16: end procedure

adversary has a high resolution side channel [61, 78]. When the symmetric key is passed
to the AES key schedule, a high resolution adversary can steal the secret key before any
encryption/decryption. While AES/CTR encryption uses AES-NI, there is a loop within
this implementation where calculating the length of nonce leaks about the leading zero
bits.

5.2.1 Leakage of Scalar Multiplication

Scalar multiplication in Intel IPP uses a fixed-window algorithm with a window size
of 5: for a 256-bit ephemeral secret, as defined by SECP256R1, the algorithm performs 51
iterations of the window operation. However, our dynamic analysis of the algorithm with
various random ephemeral secrets shows that gfec_MulBasePoint skips the leading zero
bits and applies fewer windows if there are leading zero bits in the beginning, as the mul-
tiple of the window size. In this case, the main loop performs 50 times for 2, 49 for 7 and
48 times for 12, etc, leading zero bits. CacheQuote [25] exploits a similar vulnerability used
by Intel EPID signature scheme, but EPID uses a different function of Intel IPP for scalar
multiplication cpEcGFpMulPoint. As our discovery suggests, this was a common issue in
Intel IPP that was existed among other curve implementations. Although this implemen-
tation has countermeasure based on Scatter-Gather technique [17], this vulnerability can
easily be exploited in high resolution settings using a lattice attack [25].
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5.2.2 Bitmasked Montgomery Exponentiation

The Montgomery exponentiation in Intel IPP follows a bit-by-bit operation based on
the Montgomery Reduction technique [39]. However, the implementation is protected
by obfuscating the conditional statements as bit-masked operations. Therefore, the sub-
routine always executes the same Montgomery multiplication (MontMul) subroutine
disregarding the value of the exponent bits. However, the exponent bits are used as a
mask to choose the operand of the MontMul and to execute the MontMul two times with
two different operands when the exponent bit is one. Although this implementation
looks secure at first sight, the exponent bits are used 1) to calculate the exponent bit
length, i.e., leading zero-bit leakage, and 2) to decide the number of iterations of the loop.
Based on Algorithm 1, the main loop executes two times if an exponent bit is one and
once if the exponent bit is zero. This leaks the Hamming weight of the ephemeral secret
to a microarchitectural adversary.

Further, the algorithm performs a similar operation with separate instructions for dif-
ferent parts of the key. For example, for a 160-bit DSA exponent, the algorithm first
processes the first 32 bits, and then another code section processes the remaining 128 bits
of exponent. This gives an adversary a local Hamming weight leakage of the first 32-bit
of the secret exponent.

6 Case Study II: Microsoft CNG

The Cryptography API: Next Generation (CNG) is the cryptography platform supplied with
every Windows system beginning with Windows Vista, and replaces the older CryptoAPI
as the default cryptographic stack. It includes many common algorithms, including RSA,
AES, ECDSA. While the public API for Microsoft CNG resides in the BCrypt.dll system
file, its cryptographic implementations themselves are located in another library file,
BCryptPrimitives.dll. Microsoft does provide neither source code nor documentation
for the internal functionality, but one can download PDB symbol files from Microsoft’s
symbol server, which contain most of the internal function names, helping to reduce the
reverse engineering effort.

6.1 Applying MicroWalk MI Analysis to CNG

As we did with IPP, we again created wrapper executables to call the respective library
functions of RSA, DSA, ECDSA and AES/ECB. For AES, the library uses the CPUID in-
struction to choose between two different implementations, one that uses AES-NI vector
instructions, and a plain T-table based implementation. We tested both implementations
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Table 3: Singe-instruction MI Analysis of some of the bcryptprimitives.dll v10.0.17134.1 crypto-
graphic implementations.

Scheme Interfaces Executed / Unique
Instructions

Analysis
Time (ms)

Leakage
Found

AES/ECB SymCryptAesEcbEncrypt 2384298 / 55451 17546 0
AES/ECB SymCryptAesEcbEncryptAsm 2324391 / 63179 26211 2
DSA (512) MSCryptDsaSignHash 3586162 / 63748 223356 1
RSA (1024) MSCryptRsaDecrypt 8073605 / 66454 760450 0
ECDSA
(SECP256R1)

MSCryptEcDsaSignHash 4764783 / 64732 831136 1

Total 21133239 / 313564 31 minutes 4

Table 4: Discovered leakage subroutines within bcryptprimitives.dll v10.0.17134.1 cryptographic
implementations.

Subroutine Affected MI Leakage Source

SymCryptFdefModInvGeneric DSA, ECDSA 10.00 / 10 Conditional Loop
SymCryptAesEncryptAsmInternal AES 7.96 / 10 Memory Lookup

by emulating the CPUID instruction, as explained in Section 4.3.1. The results are shown
in Table 3. We analyzed a total of 21 million instructions in 31 minutes of CPU time,
finding four different leakage points. For RSA, we discovered that Microsoft’s implemen-
tation behaves truly constant-time. ECDSA and DSA implementations both suffer from
leakage due to calling the same subroutine for modular inversion.

6.2 Discovered leakages in Microsoft CNG

Analyzing the aforementioned algorithms yielded two leakage candidates (see Table 4);
the first one resides within the modular inversion function of DSA and ECDSA and is
used for all processors. The MI returns full leakage for the modular inversion leakage,
implying that the implementation is heavily unprotected. The second one is in the
encryption function of AES and only used by processors not supporting AES-NI. As it is
a table-based implementation, the leakage is expected.
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6.2.1 Leakage of Modular Inversion

The modular inversion function that is used for DSA and ECDSA gives full MI on 1024
signing operations for random ephemeral secrets with fixed key and plaintext. This
subroutine does not have any constant-time protection. However, while this is a non-
constant time behavior and suggests that the ephemeral leaks, we considered this as not
exploitable; Microsoft protects this implementation through a masking countermeasure.
The masking countermeasure for modular inversion works as follow:

1. A mask value m is generated randomly.

2. The ephemeral secret k is multiplied by m before the modular inversion: s =

(k ·m)−1(z + x) mod q

3. Then the signature s is multiplied again with m to produce the correct signature:

s = sm = (k ·m)−1(z + x) ·m = k−1(z + x)

Thus, the implementation leaks k · m, where m is a random per-signature generated
mask, effectively preventing extraction of useful information. Leakage of ephemeral keys
is exploitable [12], the randomized product of ephemeral key and a random value is
not.

6.2.2 Leakage of AES T-table Lookup

The non-vector version of AES uses a common lookup table implementation, where
four so-called T-tables combine the steps SubBytes, ShiftRows and MixColumns. Each
round consists of four of such lookups per table, leading to 16 · r memory accesses per
encryption, where r ∈ {10, 12, 14} is the number of rounds. The 8-bit indices used for
the table accesses depend on the plaintext and the key; since the MI is 7.96 for 1024

measurements, these indices can be considered fully leaking. Each table entry has 4

bytes size, thus each T-table has 1024 bytes, and therefore takes 16 cache lines on an Intel
processor; such implementations have already been shown to be exploitable with cache
attacks [13].

7 Related Work

Programming languages can support constant-time code generation and verification [16,
21, 73]. The general approach is to support annotation of security-critical variables and
to generate instructions that operate obliviously on annotated secrets. Annotated secrets
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can be verified for constant-time behavior using SMT-based techniques [16]. Constant-
time behavior can be enforced for some operations by using primitives such as oblivious
RAM (ORAM) [76] and obfuscated execution [69]. Language-based approaches are not
widely used, and annotation is an error-prone task.

Black-box testing approaches use statistical methods to quantify leakages of physical
channels [23]. In particular, Dudect [71] performs black-box timing analysis, in which the
timing of a target system with different inputs will be analyzed using the t-test [80], but
these black-box techniques do not scale to microarchitectural attacks with a gray-box
model. With an abstract model of the leakage channel, methods based on Static Program
Analysis are proposed to analyze program code and to quantify leakages [4, 5, 9, 14, 51].
Similar to language-based approaches, these techniques are limited to correct annotation
of the source code. While some of these approaches are limited to the source code and
cannot find leakages that are potentially introduced by the compiler [5], others perform
the analysis on the lower level LLVM bitcode [4] or the annotated machine code [9, 14].
However, they rely on the availability of the source code. CacheAudit [27, 28] is based on
Static Binary Analysis (SBA). SBA approaches need to initially reconstruct the original
basic blocks and control flow graph. Precise reconstruction of the program semantic
and control flow graph is infeasible without the runtime information, by just using
static disassembly [6]. As a result, while they give formal guarantees on the absence of
leakages, they do not scale to accurately analyze large program binaries, e.g., CacheAudit
approach has only been tested on rather simple algorithms such as sorting and symmetric
encryption. Other proposals based on Symbolic execution quantify side-channel leakage
by determining symbolic secret inputs that affect the runtime behavior [22, 66]. However
symbolic execution is an expensive approach, and the proposed methods require access
to the source code.

In this work, we leverage Dynamic Program Analysis techniques to accurately locate
microarchitectural leakage in software binaries, as they execute on the processor. ct-
grind [52] based on LLVM memcheck can check all branches and memory accesses to
make sure that they do not have dependency on secret data. Irazoqui et al. instrument
the source code to obtain and analyze cache traces using MI [43]. Sensitive code sec-
tions are identified by taint analysis. On binary-only approaches, CacheD [77] analyzes
binaries based on symbolic execution and constraint solving. They initially use DBI to
get execution traces for a set of input values; then, given the information which input
values are considered secret, a taint analysis extracts all instructions that work with
secrets, either directly or indirectly. These instructions are then analyzed using symbolic
execution to detect whether cache leakages exist. In comparison, our method aims at
maximum performance without too much loss of accuracy by only storing necessary
information and using hash compression to get small execution states. The symbolic
execution approach introduces a large bottleneck, as their analysis time suggest. This
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saving of computation time allows us to detect also other types of leakages like differing
loop counts or byte-level memory access differences. Also, since MicroWalk is designed
as a modular open source framework, one can implement arbitrary analysis stages for
other types of leakages. Zankl et al. [85] use DBI to collect traces for instruction based
leakage detection. They use t-tests for leakage analysis and only test for execution flow
leakages. STACCO [81] is focused on differential trace analysis for Bleichenbacher attacks
[15]. Independently, DATA [79] follows a similar approach based on DBI. They use trace
differentiation and t-tests for leakage analysis. As of our knowledge, our work is the first
that has been tested on actual closed-source binaries.

8 Conclusion

The lack of efficient and practical tools for leakage analysis of binaries leave the reliability
of these untested deployed implementations a mystery. To be able to analyze the com-
piler outputs and closed-source libraries, we have created an extensible framework that
supports various types of microarchitectural leakages based on instruction and data

cache, MOB, BPU, etc. MicroWalk can be extended to analyze other and future side channels.
Our framework leverages DBI to collect the internal state of a program under test, and it
applies multiple analysis techniques based on trace comparison and MI. MicroWalk is
open source and is publicly accessible: https://github.com/UzL-ITS/Microwalk. We
used this framework to thoroughly analyze two widely used closed-source libraries,
Intel IPP and Microsoft CNG. The tested implementations are optimized for the current
generation of Intel processors. Our report shows that side-channel countermeasures for
these implementations are still not fully leakage-free, e.g., all the curve-based signature
schemes in Intel IPP suffer from at least one vulnerability. We have identified several leak-
ages in symmetric and asymmetric ciphers, and reported them to the respective vendors.
Our analysis shows that despite the existing efforts on protecting these implementations,
some of them still suffer from security-critical leakages.

8.1 Future Work

8.1.1 Coverage-based Fuzzing

We use random test cases to get a uniform random distribution of potential memory
accesses and execution paths; while this works well with cryptographic implementa-
tion, it would not scale to targets such as protocols or data structures. Coverage-based
Fuzzing [60] is a technique to generate test cases with the aim of achieving maximum
code coverage; while it was originally developed to find software bugs, e.g., memory

https://github.com/UzL-ITS/Microwalk
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corruption, the same approach can be applied for finding side-channel leakages, e.g.,
leakage in the JPEG library [82]. We have already implemented an experimental support
for using WinAFL [35] as a test case generator; in that setting AFL helps to generate samples
with higher coverage, while at the same time the test cases are sent to our framework for
further processing. It is desirable to enhance this experimental feature and apply it to
non-cryptographic implementations that are critical in terms of side-channel security.

8.1.2 Distinguishing leakages in call graph

We observed that in some cases control flow leakages in the higher level algorithm
residing at the top of the call chain hide leakages in the subroutines invoked in deeper
levels. Also, if separate functions use a common subroutine, a positive MI result in this
subroutine can not easily be assigned to its root cause. We therefore propose to add
an option to MicroWalk to take the call graph into account when computing mutual
information.

Responsible Disclosure

We have informed the Intel Product Security Incident Response Team (PSIRT) and Microsoft
Security Response Center (MSRC) of our findings. MSRC has not responded. After the
initial report, we noticed that Intel have already patched gfec_MulBasePoint in Intel IPP
v2018.3.240. Intel have acknowledged the receipt for the remaining vulnerabilities. Here
is the time line for the responsible disclosure:

• 06/22/2018: We informed our findings to the Intel Product Security Incident Re-
sponse Team (Intel PSIRT) and the Microsoft Security Response Center.

• 06/25/2018: Intel PSIRT acknowledged the receipt.

• 07/31/2018: Intel PSIRT confirmed a work-in-progress patch for IPP 2018 update 4
(CVE-2018-12155, CVE-2018-12156).
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Secret-dependent timing behavior in cryptographic implementations has resulted
in exploitable vulnerabilities, undermining their security. Over the years, numerous
tools to automatically detect timing leakage or even to prove their absence have
been proposed. However, a recent study at IEEE S&P 2022 showed that, while many
developers are aware of one or more analysis tools, they have major difficulties
integrating these into their workflow, as existing tools are tedious to use and mapping
discovered leakages to their originating code segments requires expert knowledge.
In addition, existing tools focus on compiled languages like C, or analyze binaries,
while the industry and open-source community moved to interpreted languages,
most notably JavaScript.

In this work, we introduce Microwalk-CI, a novel side-channel analysis framework
for easy integration into a JavaScript development workflow. First, we extend existing
dynamic approaches with a new analysis algorithm, that allows efficient localization
and quantification of leakages, making it suitable for use in practical development. We
then present a technique for generating execution traces from JavaScript applications,
which can be further analyzed with our and other algorithms originally designed
for binary analysis. Finally, we discuss how Microwalk-CI can be integrated into
a continuous integration (CI) pipeline for efficient and ongoing monitoring. We
evaluate our analysis framework by conducting a thorough evaluation of several
popular JavaScript cryptographic libraries, and uncover a number of critical leakages.

1 Introduction

Collection of sensitive data is common in today’s cloud and Internet of Things (IoT)
environments, and affects everyone. Protecting this private and sensitive data is of utmost
importance, therefore requiring secure cryptography routines and secrets. However,
especially the cloud allows attackers to observe the execution of victim code using
side-channels in co-located environments [26]. These attacks range from Last Level
Cache (LLC) [35] and de-duplication attacks [34] to the observation of memory access
patterns [64] or main memory access contention [44]. The spatial resolution depends on
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the granularity of the attacked buffer and the temporal resolution on the capabilities
of the attacker, meaning either the ability to achieve a sufficiently high measurement
frequency [65] or to interrupt and pause the victim code [14, 64].

To avoid side-channel vulnerabilities, programmers should write constant-time code,
i.e., software which does not contain input or secret-dependent control flow or memory
accesses. Depending on the problem at hand, this can be achieved by different means:
For example, a secret-dependent data access may be replaced by accessing every element
of the target array and then choosing the correct one with a mask. Conditionals can be
adjusted by always executing both branches and then selecting the result.

However, for complex projects like large cryptographic libraries, finding such vulnerabil-
ities is a difficult and time-intensive task. Thus, the research community has developed a
number of analysis strategies [5, 13, 16, 17, 33, 46, 60, 62, 63], that aim at automating the
detection of side-channel leakages in a given code base. However, a recent study [29] that
conducted a survey between crypto library developers found that while most developers
were aware of and welcome those tools, they had major difficulties using them due to
bad usability, lack of availability and maintenance or high resource consumption. The
authors worked out a number of recommendations for creators of analysis tools: The
tools should be well-documented and easily usable, such that adoption requires low
effort from the developer. Another focus is on compatibility: The analysis shouldn’t
require use of special languages or language subsets. Finally, the tools should aid efficient
development, i.e., quickly yield results with less focus on completeness, making them
suitable for inclusion in a continuous integration (CI) workflow.

In this work, we study how these challenges can be addressed, and adapt the existing Mi-
crowalk [63] framework to fit the given objectives. Microwalk was originally designed for
finding leakages in binary software, for which it generates a number of execution traces
for a set of random inputs and then compares them. The dynamic analysis approach of
Microwalk is quite fast, as it does only run the target program several times, and then
compares the resulting execution traces with a simple linear algorithm. However, due
to the simplistic leakage quantification, the resulting analysis reports contain a lot of
potential vulnerabilities, with little or even misleading information about their cause.
This makes it difficult to assess their severity and address them efficiently, especially
for complex libraries. Finally, the initial setup can be time-consuming, as the different
components need to be compiled from source.

We mitigate these issues by designing Microwalk-CI, which features a new leakage
analysis algorithm that combines the performance benefits of dynamic analysis with an
accurate leakage localization and quantification, easing the assessment and investigation
of the reported leakages. In addition, we add support for running Microwalk-CI in an
automated environment like a CI pipeline, and create a Docker image that contains
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Microwalk-CI and its dependencies for easy use. Finally, we create simple templates
that allow quick adoption of Microwalk-CI’s analysis capabilities into a cryptographic
library’s CI workflow with little effort by the developer.

During the research on leakage detection tools, as part of their evaluation, many vulner-
abilities in popular cryptographic libraries have been uncovered and fixed. However,
the developer community is moving away from compiled languages like C or C++ and
instead embraces interpreted scripting languages like JavaScript or Python. In fact, the
2021 Stack Overflow developer survey and the January 2021 Redmonk programming
language ranking found that those two languages are the most popular, both for private
and professional contexts [45, 56]. JavaScript was originally designed as a client-side
language for web browsers, but, with the arrival of Node.js [40], it has seen growing
adoption for server-side software as well. Consequently, the community has come up
with a number of cryptographic libraries written in pure JavaScript. However, due to the
lack of appropriate tooling and attention of the research community, these libraries have
never been vetted for their robustness against side-channel attacks, which is worrying
given the fact that the servers using them may be hosted in IaaS cloud environments.

To address this, Microwalk-CI offers a novel method for applying Microwalk’s original
binary analysis algorithms to JavaScript libraries by using the Jalangi2 [48, 55] source code
instrumentation library to generate compatible traces. The new tracing backend comes
with a simple code template and supports full automation, such that the analysis can be
easily added to the CI workflows of respective libraries. We evaluate several popular
JavaScript cryptographic libraries, uncovering a number of high-severity leakages.

By supporting the analysis of JavaScript, we strive to improve the security of software
and rise awareness for the importance of constant-time cryptographic code in the com-
munity of web and cloud developers. The underlying concepts of our source-based trace
generator can be used for building analysis support for other programming languages
as well, making side-channel leakage analysis available for all common platforms and at
a low barrier.

1.1 Our Contribution

In summary, we make the following contributions:

• We introduce a novel call tree-based analysis method, which allows efficient and
accurate localization and quantification of leakages.

• We show the first dynamic leakage analysis tool for JavaScript libraries.
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• We propose a new approach for integrating a fully automated timing leakage
analysis into the crypto library development workflow, which requires low effort
from the developer and immediately reports newly introduced vulnerabilities.

• We evaluate the new analysis framework with several widely-used JavaScript
libraries and uncover a significant number of previously unaddressed leakages.

The source code of Microwalk-CI is available at https://github.com/microwalk-proje
ct/Microwalk.

1.2 Disclosure

We contacted the authors of the affected libraries, informed them about our findings and
offered to aid in fixing the vulnerabilities.

The author of elliptic acknowledged the discovered vulnerabilities, but noted that the
package is no longer maintained and that fixing the vulnerabilities would require major
changes, as side-channel resistance wasn’t part of the underlying design considerations.
There was no response from the other library authors.

2 Background

2.1 Microarchitectural Timing Attacks

Implementations of cryptographic algorithms are often run on hardware resources that
are shared between different processes. If the code exhibits secret-dependent behavior,
malicious processes can use the resulting information leakage to extract secrets like
private keys through side-channel analysis. Cache attacks are a prominent example for
exploiting resource contention with a victim process: By measuring the time it takes for
repeatedly clearing and accessing a specific cache entry, the attacker can see whether
the victim accessed a similar cache entry in the meantime [1, 10, 42, 53, 65]. Other attack
vectors include the translation lookaside buffer (TLB) [22] and the branch prediction
unit [2].

The most widely used software countermeasure against these attacks is writing constant-
time code that does not contain secret-dependent memory accesses or branches, and
that uses instructions that do not come along with operand-dependent runtime [12].
There exists a variety of tools [5, 13, 16, 17, 33, 46, 60, 62, 63], that feature different anal-
ysis approaches. Some of these tools are open-source, with varying performance and
usability [29].

https://github.com/microwalk-project/Microwalk
https://github.com/microwalk-project/Microwalk
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2.2 Microwalk

Microwalk [63] is a framework for checking the constant-time properties of software
binaries in an automated fashion. It follows a dynamic analysis approach, i.e., it executes
the target program with a number of random inputs and collects execution traces, which
contain branch targets, memory allocations and memory accesses. This is done through
a three-stage pipeline, where traces are generated, preprocessed, and analyzed. Each
stage has various modules, which are chosen by the user depending on their application.
Furthermore, Microwalk has a plugin architecture, that allows easy extension by loading
custom modules.

Currently, Microwalk only has one trace generation module, which is based on Intel
Pin [27] and produces traces for binary software. Correspondingly, there is a preprocessor
module that converts the raw traces generated by Pin into Microwalk’s own format.
Finally, these preprocessed traces can be fed into a number of analysis modules, e.g., for
computing the mutual information between memory access patterns and inputs, or for
dumping the preprocessed traces in a human-readable format.

2.3 Mutual Information and Guessing Entropy

Mutual information (MI) quantifies the interdependence of two random variables, i.e.,
it models how much information an attacker can learn about one variable on average
by observing the other one [23]. It has been widely used for quantifying side-channel
leakages [9, 28, 63, 67].

The mutual information of the random variables X : K → X and Y : L→ Y is defined
as

I(X, Y ) =
∑
x∈X
y∈Y

Pr[X = x, Y = y] · log2
(

Pr[X = x, Y = y]

Pr[X = x] · Pr[Y = y]

)
.

The information is measured in bits. In our setting, the random variable X represents a
secret and Y the information that can be gathered by observing the system state through
a side-channel.

The guessing entropy (GE) of a random variable X : K → X quantifies the average
number of guesses that have to be made in order to guess the value of X correctly [32]. If
X is indexed such that Pr[X = xi] ≥ Pr[X = xj] for xi, xj ∈ X and i ≤ j, the guessing
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entropy is defined as

G(X) =
∑

1≤i≤|X |

i · Pr[X = xi].

The conditional guessing entropy (conditional GE) G(X |Y ) for random variables X and Y

is defined as

G(X |Y ) =
∑
y∈Y

Pr[Y = y] ·G(X |Y = y).

G(X |Y ) measures the expected number of guesses that are needed to determine the
value of X for a known value of Y .

A variant of the conditional GE, the minimal conditional guessing entropy (minimal GE),
determines the lower bound of expected guesses. It is defined as

Ĝ(X |Y ) = min
y∈Y

G(X |Y = y),

i.e., it outputs the minimal number of guesses that are needed to find out one of the
possible values of X .

2.4 JavaScript Instrumentation

JavaScript code can be instrumented in different ways, each coming with their own
benefits and drawbacks.

FoxHound [49] modifies Firefox’s JavaScript engine. While this allows many optimiza-
tions, it comes with the downside of being constrained to one specific JavaScript engine
and requiring constant maintenance to keep up with the upstream project. OpenTeleme-
try [41] and Google’s tracing framework [21] create program traces to monitor and profile
software, but require the developer to insert instrumentation calls into their source code
manually. While being very specific and thus only introducing the necessary overhead,
they are not generally applicable without a lot of manual effort.

Lastly, the JavaScript code can be dynamically instrumented in a source-to-source fashion.
Jalangi2 [48, 52, 55] wraps the loading process of JavaScript files and injects instrumenta-
tion code into the source code. The user of the instrumentation framework can write and
register custom callback routines, which are supplied with the current execution state.
This approach comes with a certain overhead, but it is flexible and works with arbitrary
JavaScript code without manual adjustments.



144 Chapter 6: Microwalk-CI

3 A Fast Leakage Analysis Algorithm

We propose a new leakage analysis algorithm that is optimized for quickly delivering
detailed leakage information, aiding developers in efficiently locating and fixing issues.
Before we dive into the algorithm, we define the leakage model and discuss the objectives
a thorough leakage analysis must meet. Then, we describe how the traces are processed
to build a call tree, which in a final step is broken down to compute leakage metrics for
specific instructions.

3.1 Leakage Model

To ensure that we detect all leakages which may be exploited by current and future attack
methods, we choose a strong leakage model: An attacker tries to extract secret inputs
from an implementation through a side-channel attack, which allows them to get a trace
of all executed instructions and all accessed memory addresses. They also have access to
all public inputs and outputs.

Under certain conditions, a hypervisor/OS-level adversary can single step instructions [4,
38, 54], or have below cache-line resolution [37, 66]. However, for more relaxed adver-
sarial scenarios like cross-VM attacks, granularities of 32 or 64 bytes and hundreds of
instructions may be more appropriate. Adjusting the processing of the leakage accord-
ingly allows an analysis under such a leakage model as well, but, we believe that the
most conservative approach should be applied, i.e., assuming a maximum resolution
attacker. Attacks exploiting speculative execution are considered off-scope, as we focus
on leakages caused by actual secret-dependent control flow or memory accesses, i.e.,
code paths that are reached architecturally.

This leakage model and the following analysis approach are consistent with the models
used by Microwalk [63] and DATA [62].

3.1.1 Analysis approach

The leakage model can be turned into a dynamic analysis approach by making the
following observation: Since the attacker tries to infer a secret solely by looking at an
execution trace and public inputs/outputs, they can only succeed if the trace depends
on the secret. I.e., if changing the secret does never influence the observed trace, the
implementation does not leak the secret and is constant-time.

We model this by giving the attacker a number of secret inputs and corresponding
execution traces, and asking them to map the inputs to the respective traces. If they
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1 int func(int secret) { // func+0

2 lookup(secret); // func+1

3

4 int result = 0;

5 for(int i = 0; i < secret; ++i) { // func+4

6 result += lookup(1); // func+5

7 } // func+6

8 return result; // func+7

9 }

10 int table[] { ... };

11 int lookup(int index) { // lookup+0

12 return table[index]; // lookup+1

13 }

Figure 1: A sample program illustrating different kinds of leakages: The lookup function
is not constant-time, since it does an input-based array lookup, so the memory access to
table[index] would be marked as leaking if index is secret. Another cause of leakage is in
func, which calls lookup a varying number of times depending on a secret value.

perform better than guessing, we consider the implementation as leaking. If all traces
are identical, the implementation is considered constant-time.

3.2 Objectives

For an efficient and useful dynamic leakage analysis, we identified three major objectives:
Accurate localization of leakages, a quantification of leakage severity, and performance.

Localization While varying address traces for a memory read instruction are a clear
sign that there is leakage, which can be extracted by monitoring that particular instruc-
tion [63], they do not indicate where the leakage is actually caused. E.g., a non-constant-
time function may be called two times, once with a secret-dependent parameter, and
once a varying number of times in a loop, but with a constant parameter (Figure 1). A
correct analysis should distinguish the two invocations of lookup and mark the table
access in line 12 as leaking for the first invocation (line 2); for the second invocation (line
6), the secret-dependent branch in line 5 should be reported, as the table access in line 12
itself does not add any leakage.

Quantification In addition to an accurate localization, there is a need for a rough
quantification of the severity of leakages. For example, a chain of nested if statements
may only leak a few bits of the secret each, but the leakage aggregates up to a point
which allows an attacker to easily distinguish different secrets just by looking at the
resulting sequence of branch instructions. At the same time, a lone if statement which
merely handles a special case during key file parsing (e.g., whether a parameter has some
additional byte) does not necessarily pose an urgent problem. The analysis should assign
each leakage with a score allowing the developer to prioritize between findings.
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Performance Finally, for integrating the leakage analysis into a development workflow,
performance is important: When checking whether a proposed change impacts security,
or whether a given patch fixes a previously discovered leakage, the developer should
not need to wait several ten minutes or hours until analysis results are available. The
analysis should be efficient enough to run it both on a standard developer machine and
in a hosted CI environment.

3.3 Algorithm Idea

In order to find leakages, we need to compare the generated traces, and find sections
where they diverge and, later, merge again. However, due to the performance require-
ments and the immense size of traces, especially for asymmetric primitives, we can-
not afford running a traditional diff or trace alignment algorithm, which usually have
quadratic complexity. At the same time, we do not want to lose information, as we
want to accurately pinpoint the detected leakages. Thus, we opt for a data structure that
preserves all necessary information in an efficient way, and which allows to conduct a
thorough leakage analysis which can discover and quantify trace divergences in linear
time.

For that, we merge the traces into a call tree, where each function call and a few other
trace entries form the nodes, and where subsequent function calls and trace divergences
generate branches. Each node holds the IDs of the traces which reach that node. The
tree can be built on-the-fly while the traces are processed, so it can be integrated into a
leakage analysis pipeline like the one offered by Microwalk. After the traces have been
processed, a final step traverses the tree and evaluates for each instruction in each call
stack, whether it caused a divergence and how severe that divergence is. In the following
sections, we elaborate on the respective steps.

3.4 Step 1: Building the Call Tree

We merge the traces into a tree in a greedy way, i.e., we simultaneously iterate over a
trace and the current tree entries, and add the trace entries to the tree. In order to save
memory and get a readable representation of the traces with little tree depth, we can
exploit the fact that traces of constant-time implementations tend to have long shared
sequences without any differences, and thus use a radix trie instead of a plain tree, such
that each node holds an as long as possible sequence of consecutive trace entries.
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3.4.1 Types of trace entries

In order to address the leakage model, the execution traces used by Microwalk contain
information about branches, memory allocations and memory accesses.

Branches cover call, return and jump instructions. A branch trace entry has a source
address, a target address and a taken bit that denotes whether the branch was taken or
skipped (e.g., due to a failed comparison). The source and target addresses consist each
of an image ID (i.e., the binary which contains the corresponding instruction) and an
offset.

Memory allocations are used to keep track of memory blocks on the heap and stack.
Each time the analyzed program calls malloc or a similar function, a new allocation block
is registered with a unique ID and the allocation block size.

Memory accesses contain the image ID and offset of the corresponding instruction and
the allocation block ID and offset of the accessed address. This relative addressing allows
to compare traces even when they each operate on their own allocated memory regions,
which have different absolute addresses.

3.4.2 Tree layout

As mentioned above, we chose a radix trie-like representation of the merged trace entries,
as this reduces tree depth, speeds up analysis and enhances readability of tree dumps.

A tree node consists of two parts: The consecutive trace entries which are present for
all traces hitting this node, and a list of (edges to) split nodes (Figure 2), which represent
divergences between the different traces. The trace entry list may contain call nodes
(Figure 3) which open their own sub tree, but always return back into the current node
and may be followed by other trace entries.

Edges start from within the trace entry list (for calls) or from the split node list. If an
edge leads to a split node, it is annotated with the trace IDs taking this specific edge.

3.4.3 Inserting trace entries into the tree

The handling of equal and conflicting trace entries depends on the respective type. Split
nodes are only created when a function call or a jump targets a different instruction than
the already existing trace entry, as the resulting sub tree may be fairly different. Other
differences like varying memory access offsets are only recorded in the respective trace
entry, as they don’t affect control flow and the current entry is thus likely followed by
other, non-conflicting entries.
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<...trace entries...>

... node
Trace entries

Splits

jump A -> B

split node
Trace entries

Splits

<...trace entries...>

jump A -> C

split node
Trace entries

Splits

<...trace entries...>

1, 3

2, 4

1, 2, 3, 4

Figure 2: A generic trace divergence with two split nodes. While traces 1 to 4 share the entries in
the left node, they differ at the jump statement at location A: Traces 1 and 3 jump to location B,
while traces 2 and 4 jump to C. Here, each case gets its own split node, and processing of trace
entries is resumed there.

A function call is handled by creating a new tree node at the current position in the list of
consecutive trace entries of the current tree node. Afterwards, the current node is pushed
onto a stack and the new call node is set as the current node, such that subsequent trace
entries are stored in the new node. When encountering a return statement, the last node
is popped from the stack, and insertion of trace entries is resumed after the earlier created
call node. If the target address of the current call entry does not match the target address
recorded in an existing call node, a split is triggered.

If a conflict between an existing and a new trace entry is detected, the algorithm generates
two new split nodes: One node receives the original conflicting trace entry, the remaining
consecutive trace entries and the split node list of the current node; the other node is
initialized with the new conflicting trace entry and an empty split node list. The branches
to both nodes are annotated with the corresponding trace IDs. The current node is then
set to the new split node, such that the new trace entries end up in the new node. The call
node stack is not updated, i.e., the next return statement ends the divergence and restores
the state before the last call node. This way, we can recover from a trace divergence and
discover additional leakages in other function calls.

Cases where there are more than two possible targets for an instruction (e.g., an indirect
jump) are handled appropriately, by generating further split nodes at the same level.
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<...trace entries...>

<...trace entries...>

call A -> B

... node
Trace entries

Splits

<...trace entries...>

call node
Trace entries

Splits

return C -> D

Figure 3: A generic function call with a call node. When a function call entry is encountered, a new
call node is created, that subsequently receives the trace entries for the given function. Once
the function ends (return statement), the trace entry list of the prior call node is continued.
Note that the return statement may also end up in the split node tree of the call node, if there
are trace divergences within the function.

3.5 Step 2: Leakage Analysis

After trace processing has concluded, we have a call tree that encodes the similarities
and differences of all traces. We now perform a final step that collects this information
and computes leakage measures, such that we can assign leakage information to each
instruction, meeting our localization and quantification objectives.

3.5.1 Building call stacks with trace ID trees per instruction

First, we consolidate the call tree into a number of call stacks, and store the trace split
information for each instruction in the corresponding call stack. The split information
consists of trace ID trees, which encode how multiple executions of the given instruction
for a certain function invocation led to trace divergence. This greatly simplifies the
computation of leakage measures for individual instructions, and allows to display
expressive information about the leakage behavior of a given instruction to the developer.
If a function is called multiple times (i.e., the same call stack occurs repeatedly), additional
trace ID trees are created (no merging).

When a split is encountered, new child nodes for each edge of the split are added to the
trace ID tree for the responsible instruction. Figure 4 illustrates the resulting trace ID tree
for a simple program counting bits in a secret variable: When the jump instruction in
question is encountered first, all traces are identical (tree level 0). At that point, execution
diverges for traces with an even versus an odd secret. After the second iteration, traces
are again split depending on the second bit of the secret. In the end, there are four
different possible traces for the given function call.
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void f1(int secret) { f2(secret); } // f1+0

void f2(int secret) { f3(secret); } // f2+0

void f3(int secret) { // f3+0

int tmp = 0;

for(int i = 0; i < 2; ++i) { // f3+2

if(secret & (1 << i)) { // f3+3

++tmp;

}

} // f3+6

}

(a) Program

Call stack:

main+X -> f1+0

f1+0 -> f2+0

f2+0 -> f3+0

Instructions:

jump at f3+2

jump at f3+3

jump at f3+6

(b) Call stack and instruction info

0,1,2,3,4,5

20,4 31,5

1,3,50,2,4

(c) Trace ID tree for jump at f3+3

Figure 4: Example for call stack and trace ID generation. The program in (a) counts the number
of 1s in the two least-significant bits of a secret variable by repeatedly executing a secret-
dependent if statement. When calling f1 from main with secret values from 0 (trace ID 0)
to 5 (trace ID 5), we get the call stack as shown in (b), with three detected jump instructions.
The secret-dependent jump at f3+3 leads to divergence of traces, as is visible in the resulting
trace ID tree in (c). Traces sharing a tree node at tree level h ≥ 0 are identical for at least h
consecutive executions of the instruction.

3.5.2 Computing leakage measures

After recording the divergence behavior of instructions per call stack, we can compute
various measures to quantify the corresponding leakage. We feature three efficiently
computable metrics that give the developer an indication of the severity of each detected
leakage: Mutual information, conditional guessing entropy and minimal conditional
guessing entropy. If the function containing the analyzed instruction is invoked multiple
times for the same call stack and thus produces multiple trace ID trees, the algorithm com-
putes the metrics for each tree separately and outputs the mean, minimum, maximum,
and standard deviation for each metric.

All metrics depend on the size of leaves in the trace ID tree. For n traces, let T =

{0, 1, . . . , n− 1} be the set of trace IDs. The set of leaves L for a given trace ID tree is then
defined as L = {Li |Li ⊆ T ∧ Li ̸= ∅} with L1 ∪ L2 ∪ . . . ∪ Lℓ = T and Li ∩ Lj = ∅ for
Li, Lj ∈ T and i ̸= j. This can be read as the tree having ℓ leaves Li (i = 1, . . . , ℓ), where
each Li holds the trace IDs ending up in this particular leaf. Those traces are considered
identical.
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Let X : T → N be a random variable for picking a trace ID. The trace IDs are uniformly
distributed, hence Pr[X = k] = 1

n
for each k = 1, . . . , n. Let Y : L → N be a random

variable for observing a particular trace, with Pr[Y = i] = |Li|
|T | =

|Li|
n

for i = 1, . . . , ℓ.

Mutual information measures the average amount of information an attacker learns when
observing a trace.

The MI of the trace ID X and the observed trace Y is defined as

I(X, Y ) =

|T |∑
k=1

|L|∑
i=1

Pr[X = k, Y = i] · log2
(

Pr[X = k, Y = i]

Pr[X = k] · Pr[Y = i]

)
.

With

Pr[X = k, Y = i] =

{
0 if k /∈ Li

1
n

if k ∈ Li

we get

I(X, Y ) =

|L|∑
i=1

|Li|
n
· log2

(
1
n

1
n
· |Li|

n

)
=

1

n

ℓ∑
i=1

|Li| · log2
(

n

|Li|

)
.

The value of I(X, Y ) can be interpreted as bits: In the best case, there is only one leaf
containing all trace IDs, such that the attacker learns nothing (0 bits). In the worst case,
with one leaf for each trace ID, the attacker learns log2(n) bits. The MI of the example in
Figure 4 is 1

6
(2 · 2 · log2(3) + 2 · 1 · log2(6)) ≈ 1.33 bits.

This metric has a few drawbacks: Due to its logarithmic nature, with an increasing
number of traces it only grows slowly. Another shortcoming is the averaging, i.e., a
high leakage in a few cases may get suppressed by the smaller leakage of all other
cases. Finally, it may be mistakenly interpreted as additive due to its “bits” unit (i.e., 10
instructions leaking 3 bits each does not mean that there is a leakage of 30 bits). However,
it does perform well for small and balanced leakages, e.g., when an instruction constantly
divides the traces into two groups of similar size.

Conditional guessing entropy measures the expected number of guesses an attacker needs
for associating a given trace with a secret input. The conditional GE G(X |Y ) for deter-
mining a trace ID, modeled as random variable X , for a known value of an observed
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trace (random variable Y ) is calculated as

G(X |Y ) =

|L|∑
i=1

Pr[Y = i] ·G(X |Y = i)

=

|L|∑
i=1

Pr[Y = i] ·
|T |∑
k=1

k · Pr[X = k |Y = i]. (6.1)

Since

Pr[X = k |Y = i] =

{
0 if k /∈ Li

1
|Li| if k ∈ Li,

we can simplify (6.1) to

G(X |Y ) =
ℓ∑

i=1

Pr[Y = i] · 1

|Li|

|Li|∑
k=1

k =
1

2n

ℓ∑
i=1

|Li| · (|Li|+ 1).

Note that the value of G(X |Y ) is upper-bounded by n+1
2

, which is the best case where
there is only one leaf which contains all trace IDs, i.e., all traces are identical. For the
example in Figure 4, we get G(X |Y ) = 1

2·6(6 + 2 + 6 + 2) ≈ 1.33 guesses.

Small values for the conditional GE convey that an instruction sequence leads to almost
unique traces, implying that there is widespread leakage affecting most to all traces. On
the other side, a high value means that most traces are similar and do not leak much
information. However, this being an average measure just like MI, there may well be
special cases where there is a very high leakage. Those risk being obscured by this metric,
thus we add an additional worst-case metric designed for catching these cases.

Minimal conditional guessing entropy measures the minimal number of guesses an at-
tacker needs for associating a given trace with a secret input. It is calculated similarly
to the conditional GE, but takes the minimum of all individual outcomes instead of
weighting them:

Ĝ(X |Y ) = min
i=1,...,|L|

G(X |Y = i) = min
i=1,...,ℓ

|Li|+ 1

2
.

For the example in Figure 4, we get Ĝ(X |Y ) = min{1.5, 1, 1.5, 1} = 1 guesses, i.e., there
is at least one trace that is unique.

Minimal GE is the most definite leakage measure; it gives the number of guesses needed
for the trace which leaks most. A high value for the minimal GE affirms that there is no
outlier with high leakage. We thus recommend using this metric when evaluating the
severity of a detected leakage.
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3.5.3 Leakage severity and score

While the full analysis report provides detailed information about each leakage, we also
seek to condense this information into a single, uniform score, such that the developer
can quickly prioritize. That score should require little context: The developer should not
need to be familiar with entropy, nor know analysis details like the particular number
of test cases, which determines the upper bounds for the various metrics. Additionally,
providing a single score allows easy integration of the leakage report into the user
interface of modern development platforms like GitLab. The platform can then use that
score for sorting and assigning a severity to the leakage.

We chose minimal GE for computing the leakage score, as it represents the worst-case
leakage. Instead of reporting the minimal GE value directly, we map it onto a linear
scale of 0 to 100, where 0 corresponds to a minimal GE of n+1

2
(i.e., no leakage), and 100

corresponds to a minimal GE of 1 (i.e., maximum leakage). If there are multiple trace
ID trees for a given instruction (see Section 3.5.1), we show the mean and the standard
deviation over the individual minimal GE values.

3.6 Implementation

We implemented the described algorithm as a new analysis module in Microwalk-CI’s
source tree. It integrates directly into the leakage analysis pipeline, i.e., it receives and
handles preprocessed traces from the previous pipeline stage, the trace preprocessor.
The tree is implemented as a recursive data structure, where each node holds a list of
successor and split nodes. We do not store the consecutive non-diverging trace entries
as a plain ITraceEntry list (as is suggested in the algorithm description), but as full-
featured tree nodes as well. Apart from making the code more readable, this simplifies
adding new divergences and storing temporary data for the final leakage analysis step,
at the cost of additional memory overhead (we discuss this trade-off in Section 6.2).

Our implementation offers functionality for generating leakage reports and other detailed
analysis result files optimized for readability, including an optional full call tree dump for
debugging purposes. All features can be controlled via the Microwalk-CI configuration
file infrastructure, allowing easy adoption of the new analysis module. In total, the
module has 1,363 lines of C# code.
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4 JavaScript Leakage Analysis

We now show how we can apply Microwalk-CI’s generic analysis methods to JavaScript
libraries, despite them being originally designed for binary analysis. First, we present
a simple trace generator relying on the Jalangi2 instrumentation framework. Then, we
show how these traces can be preprocessed such that they use the generic trace format
from Microwalk-CI.

4.1 Instrumenting JavaScript code

Microwalk-CI expects multiple execution traces with varying secret input for the ana-
lyzed target function. These execution traces are then fed into various analysis modules
for finding non-constant-time behavior, i.e. control flow or data flow-dependencies from
secret input. A trace needs to contain the following information:

• Address and size of all loaded program modules (e.g., binaries or source files, called
“images” internally);

• the control-flow of the analyzed program, encoded as a sequence of branch source
and target addresses;

• address and size of all heap memory objects; and

• the instructions and target addresses of all memory accesses.

We translate this to JavaScript by collecting a trace of all executed code lines, and record-
ing access offsets to any object or array. For instrumentation, we use Jalangi2 [48]. Jalangi2
instruments the code at load time by inserting callbacks before and after certain source
tokens, e.g., conditionals, expressions or return statements.

First, we register the provided SMemory analysis module, which assigns a shadow object
to each object, that contains a unique ID and the object value, allowing us to map accesses
to known objects. We then create an own analysis front-end, called tracer, which registers
some callbacks to record the necessary information and write it to a file for further
processing. The tracer has 252 lines of code, and is chained after the SMemory analysis,
which supplies the means for memory access tracking.
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4.2 Trace File Structure

Figure 5 illustrates the structure of the trace files for a simple toy example. The example
has an input-dependent branch in line 10 and a secret-dependent memory access in line
11, which should be detected by our analysis toolchain.

Each trace is structured as follows: The first element defines the type of the trace event,
e.g. Call or Expr (for Expression). This is followed by the exact source location of the
event, meaning the script file name with start/end line and column number. For a
Call, the first location describing the source of the call is followed by a second location
describing the target, which in turn is followed by the name of the called function. Expr
entries log the locations of all executed expressions; this information is only needed for
reconstructing control flow edges. Similarly, Ret1 records the occurrence of a return-
statement, which must be tracked due to not being covered by an expression. Ret2 is
generated after a function has returned, and records the entire ranges of the function
call and the executed function; however, the associated callback does not know where
the control flow originated from, thus the necessity of tracking expressions and return

statements. The same is true for Cond entries, which mark the execution of a conditional
and thus the begin of a control-flow edge.

To illustrate this, Figure 5b shows the case of a taken else-branch with the assignment
ret = 0 in line 14 of the trace. If we compare this trace to the Figures 5c and 5d, which
both show a taken if-branch, it becomes apparent that the control-flow deviation only
shows up due to the differences in lines 14 and 15; everything else is identical. Thus, only
tracking all expressions and read/write operations allows us to reconstruct the entire
control flow.

Comparing line 14 of Figures 5c and 5d demonstrates how the traces enable us to
discover secret-dependent memory accesses. The last two elements of the Get entry
represent the ID of the shadow object, and the accessed property or offset. Both elements
differ between the traces: The object IDs are assigned by Jalangi2 and thus vary for
subsequent invocations of processTestcase, and the accessed offset depends on the
input. The analysis conducted by Microwalk-CI will later match the object IDs belonging
to identical objects between traces, such that it can compare the offsets.

This example shows a very short excerpt of a trace for a toy program. Analyzing real
world code may result in traces with millions of events, resulting in huge files. To
reduce the storage overhead, we compress the trace by shortening strings and encoding
repeating lines. For most targets, these measures are sufficient to keep the trace files
within a few ten megabytes. Additional compression could be achieved e.g. by using
LZMA, which due to the high rate of repetitions and hence low entropy usually manages
to bring down the trace file size to a few hundred kilobytes.
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1 /**

2 * Simplified demo test case

3 **/

4 function processTestcase(buffer)

5 {

6 var val = parseInt(buffer);

7 var array = [0, 1, ..., 15];

8 var ret = -1;

9

10 if(val % 2 === 0) {

11 ret = array[val] + 1;

12 } else {

13 ret = 0;

14 }

15

16 return ret;

17 }

18

19

(a) Source

1 ...

2 Call;/index.js:28:5:28:43;

3 target.js:4:1:17:2:;

4 processTestcase

5 Call;target.js:6:15:6:39;

6 [extern]:parseInt:;parseInt

7 Ret2;[extern]:parseInt:;

8 target.js:6:15:6:39

9 Expr;target.js:6:15:6:39

10 Expr;target.js:7:17:7:71

11 Expr;target.js:8:15:8:17

12 Cond;target.js:10:8:10:21

13 Expr;target.js:10:5:14:6

14 Expr;target.js:13:9:13:17

15 Ret1;target.js:16:12:16:15

16 Expr;target.js:16:5:16:16

17 Ret2;target.js:4:1:17:2:;

18 /index.js:28:5:28:43

19 ...

(b) Trace for buffer = 1.

1 ...

2 Call;/index.js:28:5:28:43;

3 target.js:4:1:17:2:;

4 processTestcase

5 Call;target.js:6:15:6:39;

6 [extern]:parseInt:;parseInt

7 Ret2;[extern]:parseInt:;

8 target.js:6:15:6:39

9 Expr;target.js:6:15:6:39

10 Expr;target.js:7:17:7:71

11 Expr;target.js:8:15:8:17

12 Cond;target.js:10:8:10:21

13 Expr;target.js:10:5:14:6

14 Get;target.js:11:15:11:25;17;0

15 Expr;target.js:11:9:11:30

16 Ret1;target.js:16:12:16:15

17 Expr;target.js:16:5:16:16

18 Ret2;target.js:4:1:17:2:;

19 /index.js:28:5:28:43

20 ...

(c) Trace for buffer = 0.

1 ...

2 Call;/index.js:28:5:28:43;

3 target.js:4:1:17:2:;

4 processTestcase

5 Call;target.js:6:15:6:39;

6 [extern]:parseInt:;parseInt

7 Ret2;[extern]:parseInt:;

8 target.js:6:15:6:39

9 Expr;target.js:6:15:6:39

10 Expr;target.js:7:17:7:71

11 Expr;target.js:8:15:8:17

12 Cond;target.js:10:8:10:21

13 Expr;target.js:10:5:14:6

14 Get;target.js:11:15:11:25;19;2

15 Expr;target.js:11:9:11:30

16 Ret1;target.js:16:12:16:15

17 Expr;target.js:16:5:16:16

18 Ret2;target.js:4:1:17:2:;

19 /index.js:28:5:28:43

20 ...

(d) Trace for buffer = 2.

Figure 5: Traces created by Microwalk-CI for a JavaScript toy example. Indented lines are wrapped
for readability and are formatted in a single line in the original trace file.

4.3 Trace Preprocessing

These raw traces are not yet suitable for use by Microwalk-CI; we need to translate the
sequence of executed lines to branch entries, generate allocation information for the
objects showing up in the traces, and finally produce compatible binary traces, which can
be fed into analysis modules like the one described in Section 3. For this, we implemented
a new preprocessor module, which has 702 lines of code and resides in a plugin. The
module iterates through each entry of the raw trace, generating a preprocessed trace
on-the-fly. It recognizes branches by waiting for the next code location that is outside the
corresponding conditional; if an access to a previously unknown object is detected, an
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allocation is created.

Note that our analysis module is designed for binary analysis, i.e., it works with actual
memory addresses and offsets. In fact, this proves valuable for later analysis, as this
simplifies encoding trace entries and gives clear identifiers for referring to certain instruc-
tions. Thus, we chose to generate a mapping of observed source locations to dummy
addresses, by encoding the line and column numbers onto a base address belonging to
the respective source file. This mapping is stored in a special map file, such that it can be
mapped back to a human-readable source line after analysis.

In summary, we now have a tool chain that instruments JavaScript programs, generates
raw execution traces and converts them into the Microwalk-CI binary trace format,
allowing us to analyze arbitrary JavaScript software with the existing and new generic
analysis algorithms, without having to create a dedicated analysis tool.

5 Integration into Development Workflow

In this section, we show how one can simplify usage of Microwalk-CI to a degree that it
only needs a one-time effort by the developer to set it up and register the functions that
need to be analyzed. From that point, the tool is part of the CI pipeline of the respective
library, and runs each time a new commit is submitted. The developer is then able to
easily verify whether a code change introduces new leakages, without requiring any
manual intervention.

5.1 Dockerizing the Analysis Framework

In order to use the analysis framework in an automated environment, we must ensure
that all its dependencies are present and the environment is configured correctly. For
this task, common CI systems allow the use of Docker containers. When a job starts, a
new container is started from a predefined Docker image. The CI system checks out the
current source code and then executes a user-defined script within the container. This
has the advantage of being independent of the host system: The analysis job may run on
the developer’s private server, but also on cloud infrastructure administrated by external
providers. We thus create a pre-configured Docker image containing the components
needed for our JavaScript analysis: The Jalangi2 runtime, the analysis script and the
Microwalk-CI binaries. The image is uploaded to a Docker registry.
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/ # Project source tree

index.js # Analysis entrypoint

package.json

...

microwalk/ # Analysis-specific files

analyze.sh # Script executed by CI

config-preprocess.yml # Microwalk config. for preprocessing

config-analyze.yml # Microwalk config. for analysis

target-aes.js # AES target

target-rsa.js # RSA target

...

testcases/ # Input files for trace generation

target-aes/

0.testcase

1.testcase

...

target-rsa/

0.testcase

1.testcase

...

...

Figure 6: Generic source tree of a JavaScript project containing our analysis template.

5.2 Analysis Template

Having solved the installation and configuration problem, we now need to setup the
necessary infrastructure to actually run the analysis for the specific library. Instead
of requiring the developer to dive into the proper usage of the analysis toolchain, we
designed a template that is simple and generic enough to work with most libraries, and
which only needs minimal understanding and adjustment. The resulting file structure is
depicted in Figure 6.

The template features a script file index.js, which serves as analysis entry point and is
responsible for loading test cases and executing the target implementations. A target is
any independently testable code unit, e.g., a single primitive in a cryptographic library.
The individual microwalk/target-*.js script files consist of a single function, that
receives the current test case data buffer and is expected to call the associated library
code. Each target also needs a number of test cases, which may have a custom format
and thus need to be generated once by the developer. The test cases are stored in the
microwalk/testcases/ subdirectory. Finally, the microwalk folder has a bash script
analyze.sh, that is called by the CI. The analysis script iterates through the target files,
and runs the Microwalk-CI pipeline. The Microwalk-CI configuration is located in two
generic YAML files, which can be adjusted by the developer if they wish to use other
analysis modules or options than the preconfigured ones.

The abstractions offered by our template allows the developer to focus on supplying
simple wrappers for their library interface and generating a number of random test
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Critical - (target-toy-example) Found vulnerable memory access instruc-
tion, leakage score 100.00% +/- 0%. Check analysis result in artifacts for
details.

in target.js:11

Major - (target-toy-example) Found vulnerable jump instruction, leakage
score 53.33% +/- 0%. Check analysis result in artifacts for details.

in target.js:10

Figure 7: GitLab report for the toy example from Figure 5a. The leakage score is a relative
representation of the minimal GE as explained in Section 3.5.3.

cases; everything else is taken care of by the existing scripts. We implemented a similar
template for compiled software, so the approach is the same for C libraries.

5.3 Reports

After the CI job has completed, it yields a couple of analysis result files. As of our analysis
objectives in Section 3, these files are designed to be human-readable and offer as much
insight into a leakage as possible. However, if there are a lot of leakage candidates, going
through this list may be tedious, especially if the result files are stored separately and
need to be inspected manually for each commit. We thus looked into ways for integrating
these results into the usual development workflow.

For GitLab, there is a Code Quality Reports [20] feature, which shows up in the merge
request UI. It allows to assign a severity, a description and a source code file and line
to each entry, which makes it suitable to display the results from our leakage analysis.
Microwalk-CI consolidates the analysis result into a report that can be parsed by GitLab.
For this, the leakages must be mapped to their originating locations in the source code.
This is straightforward for JavaScript, as this information already shows up in the analysis
result file; for binary programs, we resort to parsing the DWARF debug information in
order to map offsets to file names and lines. The code quality report also shows a severity
of a given problem, which can be one of info, minor, major, critical and blocker (a continuous
scale is not supported). Assigning these levels to specific leakages is somewhat arbitrary
and depends on the preferences of the individual developer; we settled for minor if the
minimal GE is higher than 80% of its upper bound, critical if the minimal GE is lower than
20% of its upper bound, and major for everything in between. This ensures that instances
with high leakage are displayed prominently. Figure 7 shows an example report.
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6 Evaluation and Discussion

To evaluate Microwalk-CI, we applied it to several popular JavaScript crypto libraries.
In the following, we describe our experimental setup and discuss the performance and
discovered vulnerabilities.

6.1 Experimental Setup

As targets we pulled eight popular JavaScript libraries for cryptography and utility
functions from NPM, and set up a local GitLab repository for each. Using the version
from NPM instead of the version from GitHub allows us to analyze the code deployed
to millions of users. We then applied our template and created target-*.js files for
selected cryptographic primitives and utility functions that deal with secret data. For
each target we generated 16 random test cases, which were subsequently checked in into
the source tree.

The GitLab instance takes care of managing the CI jobs and visualizing the resulting code
quality reports. The analysis jobs themselves are executed through a Docker-based GitLab
Runner on a separate machine (build server), which has an AMD EPYC 7763 processor
with 128 GB DDR4 RAM. We configured the Microwalk-CI trace preprocessor step to
use up to 4 CPU cores. After all CI jobs had completed, we collected the performance
statistics generated by GitLab and the CI jobs, and went through the leakage reports. The
results are visualized in Table 1.

6.2 Performance

6.2.1 Computation time

The CPU time spent for trace generation, preprocessing and analysis mostly depends
on two factors. First, it correlates with the complexity of the analyzed targets: For the
investigated libraries, symmetric algorithms and utility functions performed very well,
while asymmetric primitives took significantly longer, which is expected. Second, the
CPU time scales linearly with the number of test cases. We discuss the corresponding
trade-off between accuracy and performance in Section 6.4.

The computational cost for the trace generation step mainly stems from the instrumenta-
tion itself, as our tracer script is already quite minimal. Significant optimizations would
thus need to target the Jalangi2 implementation.

The CPU time spent for the preprocessing step correlates with the size of the raw
traces. The implementation is parallelized, so each trace can be processed independently.
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Table 1: Targets analyzed with JavaScript Microwalk-CI, performance metrics and the number of
detected leakages (total and unique code lines). “Tr. CPU” shows the CPU time for generating
the raw traces, “Prep. CPU” for trace preprocessing, and “An. CPU” for the analysis step.
“Duration” denotes the wall clock time spent for the entire CI job (including setup and cleanup).
Finally, “Prep. RAM” and “An. RAM“ show the peak memory usage for the preprocessing
and analysis steps, respectively.

Target Type Tr. CPU Prep. CPU An. CPU Duration Prep. RAM An. RAM # Lkgs. # Uniq.
aes-js [3] 3.1.2, ≈ 800k weekly downloads

AES-ECB cipher 1 sec < 1 sec < 1 sec 7 sec 294 MB 180 MB 16 16
base64-js [7] 1.5.1, ≈ 28M weekly downloads

base64-encode utility < 1 sec < 1 sec < 1 sec 6 sec 283 MB 173 MB 7 7
base64-decode utility < 1 sec < 1 sec < 1 sec 6 sec 291 MB 189 MB 7 7

crypto-js [15] 4.1.1, ≈ 4M weekly downloads
AES-ECB cipher 2 sec < 1 sec < 1 sec 8 sec 289 MB 191 MB 44 44
Rabbit cipher 2 sec < 1 sec < 1 sec 8 sec 304 MB 182 MB 0 0
base64-encode utility 4 sec 1 sec 1 sec 10 sec 349 MB 250 MB 0 0
base64-decode utility 3 sec < 1 sec < 1 sec 9 sec 339 MB 225 MB 2 2
pbkdf2 utility 5 sec 1 sec 1 sec 11 sec 384 MB 221 MB 0 0

elliptic [18] 6.5.4, ≈ 13M weekly downloads
secp256k1 signature 110 sec 26 sec 21 sec 139 sec 853 MB 3,123 MB 58 45
p192 signature 237 sec 35 sec 12 sec 261 sec 2,112 MB 1,835 MB 98 57
p224 signature 303 sec 45 sec 14 sec 334 sec 1,700 MB 2,357 MB 76 58
p256 signature 469 sec 84 sec 45 sec 545 sec 3,347 MB 6,674 MB 78 50
p384 signature 977 sec 145 sec 45 sec 1,063 sec 3,383 MB 7,522 MB 391 53
ed25519 signature 175 sec 46 sec 32 sec 222 sec 2,884 MB 4,607 MB 111 40

js-base64 [8] 3.7.2, ≈ 6M weekly downloads
base64-encode utility < 1 sec < 1 sec < 1 sec 6 sec 290 MB 187 MB 0 0
base64-decode utility < 1 sec < 1 sec < 1 sec 6 sec 290 MB 155 MB 0 0

node-forge [19] 1.2.1, ≈ 17M weekly downloads
AES-ECB cipher 5 sec < 1 sec < 1 sec 11 sec 298 MB 193 MB 36 36
AES-GCM cipher 9 sec 2 sec 2 sec 16 sec 387 MB 349 MB 126 52
base64-encode utility 5 sec < 1 sec < 1 sec 11 sec 287 MB 192 MB 0 0
base64-decode utility 5 sec < 1 sec < 1 sec 11 sec 296 MB 198 MB 4 4
rsa signature 62 sec 18 sec 13 sec 82 sec 364 MB 1,926 MB 223 111
ed25519 signature 124 sec 33 sec 9 sec 144 sec 1,145 MB 509 MB 0 0

pbkdf2 [43] 3.1.2, ≈ 13M weekly downloads
pbkdf2 utility < 1 sec < 1 sec < 1 sec 6 sec 298 MB 179 MB 0 0

tweetnacl [58] 1.0.3, ≈ 21M weekly downloads
secretbox cipher 2 sec < 1 sec < 1 sec 8 sec 288 MB 189 MB 0 0
box asymmetric 75 sec 20 sec 7 sec 91 sec 335 MB 487 MB 0 0
ed25519 signature 117 sec 33 sec 9 sec 138 sec 1,137 MB 509 MB 0 0
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Profiling shows a slight bottleneck in the string parsing code, so switching to a binary
trace format may further improve preprocessing performance, at the cost of higher code
complexity in the trace generation.

The analysis step took less than one CPU minute for every investigated target; this
underlines the efficiency of the presented analysis algorithm, and that it is fast enough to
be used in a productive setting. The time spent for the analysis mostly depends on the
trace size, as when building the call tree, each trace entry is converted into a tree node or
embedded into an existing one. Another factor is the number of leakages, as is apparent
when comparing the analysis times of the various ed25519 implementations.

The measured overall duration heavily depends on where most CPU time is spent: While
the trace generation and the analysis are mostly sequential, the trace preprocessing is
heavily parallelized. Thus, a high CPU time for preprocessing does contribute less to the
overall duration. Apart from one outlier, elliptic’s p384, the measured times stayed
well within a few minutes, which can be considered acceptable for productive use in a
CI pipeline.

6.2.2 Memory usage

The inherently different pipeline steps also reflect in different memory requirements.

The trace generation step has a negligible memory footprint, which mostly depends on
the size of the array that is used for buffering trace entries before writing them to the
output file.

The memory consumption of the preprocessing step is mainly caused by loading chunks
of the trace file into memory and decompressing them. Parallelization of the preprocess-
ing step means that several trace files are being held in memory simultaneously. The
memory usage of the preprocessing can be reduced by decreasing the number of parallel
threads (4 in our experiment).

In the call tree analysis step, the memory demand is driven by the size of the prepro-
cessed traces and, most notably, their level of divergence. If the target is constant-time
and thus all traces are identical, the tree does not have any split nodes, so all traces
end up in the same nodes. Adding a trace ID to an existing node does not involve any
significant memory cost, as the trace IDs assigned to a call tree node are stored as a
bitfield.

However, if the traces heavily diverge, the analysis produces many split nodes with
partially redundant subtrees. This distinction becomes apparent by the implementations
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of ed25519 in elliptic and in tweetnacl: While using comparable tracing and prepro-
cessing time, the constant-time implementation in tweetnacl requires much less memory
than the implementation in elliptic, which relies on the leaking bn.js and hash.js

libraries. Through continuously applying Microwalk-CI and mitigating non-constant-
time behavior such that only small leakages pop up during analysis, the peak memory
usage of the analysis step can be kept within the bounds of a typical CI environment.

Overall, the peak memory usage of Microwalk-CI is on an acceptable level. The highest
memory consumption was observed when analyzing elliptic’s p384. This is certainly a
worst case example, as large parts of its code are non-constant time, while Microwalk-CI
is optimized for finding mid-level leakages in an otherwise fairly constant-time software.
However, most of p384’s code is shared with the other curve implementations, which
contain the same leakages, but can be analyzed more efficiently. Also, a significant part
of the identified leakages reside in the the SHA-512 implementation of hash.js, which
should be analyzed separately.

As expected, more complex algorithms like asymmetric cryptography require more
memory in the analysis. But, even those only require an amount of memory which, today,
is commonly available.

6.3 Vulnerabilities

Our leakage analysis identified many leakages in the given libraries. We evaluated
whether those are in fact actual vulnerabilities, and discuss a few examples in the fol-
lowing. In general, the leakages were correctly assigned to the respective leaking code
lines, and we did not encounter any false positives (i.e., code lines that don’t leak by
themselves). In addition to the report shown in the user interface (Figure 7), a detailed
leakage report is generated, which provides the full calling context for each leakage and
shows how the different test cases contributed to tree divergences.

6.3.1 Leakages in AES

All investigated implementations of AES use table lookups into S-boxes or precomputed
T-tables, making those highly susceptible to timing attacks. The exploitability of such
lookups was previously shown in other work [10]. All leakages found in aes-js by
Microwalk-CI have a maximum leakage score.

Additionally, Microwalk-CI discovers input-dependent behavior in the AES-GCM en-
cryption of node-forge. Manual inspection shows that these leakages in the tableMultiply
function in the file cipherModes.js occur during the computation of the GHASH which
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is used for the final computation of the authentication tag. The tableMultiply function
uses a table precomputed from the hash key and multiplies by accessing this table with
an index which is an intermediate value computed from the current ciphertext block
and the previous hash value. Learning this intermediate value potentially allows to gain
information about the GHASH key, compromising the authentication property. The im-
plementation in node-forge uses 4-bit tables. Whether this implementation and leakage
is exploitable, is left to future work. We recommend not having any secret-dependent
non-constant-time code.

6.3.2 Elliptic curve implementations

node-forge and tweetnacl feature custom constant-time big number arithmetic that is
specifically designed for the supported curves. The elliptic library, however, relies
entirely on arithmetic from the general-purpose bn.js [11] library, which features a lot
of input-dependent control flow and memory accesses. Thus, we see very high leakage
over all supported primitives. The leakages detected in the big number and elliptic code
itself are mostly assigned scores between 80 and 100.

In addition, for computing the signature, elliptic’s ECDSA implementation uses the
hash.js [24] library, which offers pure-JavaScript implementations for SHA-1 and SHA-
2. For ECDSA and EdDSA signatures with the curves p384 and ed25519, respectively,
the leakage report points to a significant amount of leakage in lib/hash/sha/512.js

for a variety of call stacks. Here, the implementation works around a limitation of
JavaScript, which represents all numbers in IEEE-754 double precision floating point,
and temporarily converts them to 32-bit signed integers for bitwise arithmetic. If the
most-significant bit ends up being 1, JavaScript sign-extends it such that the result is
negative. The implementation checks for this in an if statement and adds 0x100000000
to get a positive number. This leakage may pose a security issue, as ECDSA and EdDSA
use the hash function for generating a nonce from the private key. Microwalk-CI assigns
leakage scores between 60 and 70 for most of the leakages in lib/hash/sha/512.js.
Future work could investigate whether the leakage of the most-significant bit can be
used to learn parts of the private key. The libraries elliptic, bn.js and hash.js are
from the same author.

6.3.3 Base64 encoding

We also found leakages in some of the various Base64 implementations. All of them were
caused by the use of lookup tables, where 6-bit chunks are mapped to ASCII characters
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and vice versa. The only known attack against Base64 encoding relies on a precise con-
trolled channel that is not available for common JavaScript deployments [54]. However,
depending on the memory layout of the respective lookup tables, partial information
may be accessible via a cache attack. js-base64 does also feature a vulnerable Base64
implementation; however, it first checks whether the Buffer class with native Base64
support is present, which is the case for our Node.js build.

6.4 Number of Test Cases

As mentioned in the performance analysis, computation time and, to a lesser degree,
memory consumption, scale with the number of test cases. A higher number of test cases
increases the chance of triggering uncommon code paths and thus finding more leakages.
In the following, we analyze this trade-off and point out approaches for striking a good
balance between accuracy and performance.

In our performance analysis, we ran 16 test cases for each library. This number is within
the same order of magnitude as the one used for the evaluation in [62], where the authors
recommend running 10 test cases. To check whether the small number of test cases had
impact on the number of detected leakages, we repeated our analysis with 48 additional
test cases (64 total) for each target and compared the results with those of the first
analysis.

6.4.1 Performance

Increasing the number of test cases does not affect every pipeline step in the same
way. Doubling the number of test cases roughly doubles the CPU time needed for
trace generation, but that does not apply to the analysis step: There, the first test case
takes much longer than subsequent ones, as it needs to build the tree from scratch,
which involves spending a lot of time in the memory allocator. Later non-diverging test
cases only need to iterate the existing tree, which takes considerably less resources. We
observed that the duration increased by factor 3 to 3.5, although we ran 4 times as many
test cases.

6.4.2 Leakages

Except for targets in the libraries elliptic and node-forge, Microwalk-CI found the
same amount of leakages with 64 test cases as with 16. For elliptic, all targets show
a small single digit increase in the number of overall and unique leakages. For all new
leakages, we determined that these were initially missed due to a saturation effect (see
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Section 6.6) and not by lack of coverage, and would have been found by re-running the
analysis after fixing the preceding leakages.

For node-forge’s RSA implementation, the difference is a bit larger. While Microwalk-CI
finds 223 overall and 111 unique leakages with 16 test cases, it was able to discover 255
overall and 125 unique leakages with 64 test cases. Manual investigation shows again
that most leakages were missed due to a saturation effect. However, a small number was
missed due to insufficient coverage of the initial 16 test cases.

6.4.3 Recommendations

We recommend the developer to choose an overall duration that is acceptable during
ongoing development and determine an according test case number. In addition, the
coverage of the generated test cases could be checked with a separate tool to ensure that
all relevant code gets executed. Finally, the developer could add another larger collection
of test cases that runs as a final check before releasing the next version, where a longer
analysis time is acceptable.

6.5 Comparison with Microwalk’s original Analysis Module

Microwalk originally features two analysis modules that implement the memory access
trace (MAT) analysis method for finding leakages. The method was first presented in [63].
For each memory accessing instruction, the modules generate a hash over all accessed
offsets. By comparing the hashes between traces, the amount of leakage for each memory
accessing instruction is computed. Due to the focus on memory accesses, control flow
leakages are only discovered indirectly or may even be missed entirely.

The first module, that was originally published with [63], generates only one leakage
report per instruction. The later added second module (referred to by us as CMAT module)
is an extension of the first module that additionally distinguishes between call stacks
to achieve a higher accuracy. To compare the existing analysis method with our new
approach, we ran a selection of the targets with the CMAT module, using the same 16
test cases as for the initial analysis. The results are shown in Table 2.

Since the CMAT module only stores a single mapping of call stacks and instructions
to hashes, it generally takes less resources than our new tree-based approach, both in
computation time and memory consumption. However, the preceding trace generation
and preprocessing, which take most of the time, are identical, so the actual difference in
overall duration is limited.
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Table 2: Results of the analysis step of selected targets with the original Microwalk CMAT
module, and its resource usage. Time and memory consumption of the trace generation and
preprocessing steps are identical to those shown in Table 1.

Target CPU Duration RAM # Lkgs. # Unique
aes-js
AES-ECB < 1 sec 8 sec 168 MB 16 16
elliptic
p192 4 sec 253 sec 289 MB 4,003 811
tweetnacl
ed25519 5 sec 126 sec 286 MB 0 0

For aes-js’ AES-ECB implementation, the CMAT module reports a number of secret-
dependent table accesses with full leakage, which are identical to the leakages reported by
our new analysis module. This is the kind of leakage that the MAT analysis was designed
for: Through hashing the sequence of memory addresses that a given instruction accesses,
secret-dependent variations are discovered. Our new analysis detects these leakages
through the address lists stored in the individual memory access trace entries, which
ultimately yields the same result, but takes more memory.

The result from the CMAT module for elliptic’s p192 is very imprecise and contains
many false positives: It reports 811 leaking lines in total, which includes lines like
“this.pendingTotal = 0;”. As a fixed offset is accessed, this line is a clear false positive.
The leakage in question was in fact caused by a control flow variation higher up in the
call chain, leading to a varying number of executions of the given instruction, which in
turn produced a different memory access offset hash. The other false positives follow a
similar pattern. Our new tree-based approach handles control flow and memory access
leakages separately, which reduces false positives and allows accurately attributing a
leakage to a specific code line.

6.6 Limitations of the Analysis Algorithm

As other dynamic analysis approaches, Microwalk-CI needs a good coverage of the
program in order to give an accurate leakage detection result. If a particular path is never
executed, it does not appear in the traces and thus never reaches the analysis modules.
However, for cryptographic code, randomly generated test cases tend to work very
well [62, 63]. For other targets, it may be worth exploring other methods for generating
coverage, e.g., fuzzing.

Finally, in our analysis algorithm, some leakages may be obscured by other leakages
at a higher tree level. If leakages on higher levels cause splits that result in a unique
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sub tree for each trace, the lower leakages can not cause any more divergences and thus
are overlooked. This “saturation” is an inherent property of the analysis approach, and
the price payed for having a linear-time algorithm. We do not believe that this impacts
practical usage: After having a library reach a certain state of “constant-time-ness”, we
only expect few new leakages being reported, as certain functions are touched. And even
if a leakage is not reported in a first pass, it will show up after committing the fixes for
the previously reported leakages. It is unlikely that a number of unfixed low-severity
leakages obscure a subsequent severe leakage. This would imply a fully split up tree,
which, in itself, signals a high-severity leakage.

Other work tries to find all trace leakages in a single pass, but uses significantly more
resources with every CI run and thus is not suitable for integration into an everyday-
development workflow.

7 Related Work

Constant-time program analysis has a long tradition as there are different classes of
vulnerabilities that can be found through various analysis techniques [36]. Some tools
for checking constant-time behavior depend on the availability of source code. Irazoqui
et al. [28] introduce secret-dependent cache trace analysis, ct-fuzz [25] specializes fuzzing
for timing leakages, ct-verif [5] describes constant-time through safety properties and
CaSym [13] uses symbolic execution to model the execution behavior of a program.
Microwalk-CI does not require access to the source code for compiled languages.

Unlike Microwalk-CI which uses dynamic program analysis and compares real execution
traces, static binary analysis tries to simulate the execution of every possible program
path. BINSEC/REL [16] uses relational symbolic execution of two execution traces to
efficiently analyze binary code, however is limited by the high performance impact of
static analysis. CacheS [59], based on CacheD [60], combines taint tracking and symbolic
execution to find cache line granular leakage and secret-dependent branches. Moreover,
CacheAudit [17] tracks relational information about memory blocks to compute upper
bounds for leakages. In contrast with these works, Microwalk-CI finds any leakage with
byte granularity.

DATA [62] and its (EC)DSA-specific extension [61] find microarchitectural and timing
side-channels in binaries via dynamic binary analysis. The trace alignment approach of
DATA is based on computing pairwise differences between traces, leading to a computa-
tion time that is quadratic both in the number of traces and in the trace length. While it
yields more leakage candidates after a single pass, it needs more computational resources
and thus is not a suited for use in a CI environment. Abacus [6] identifies secret-dependent
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memory access instructions using symbolic execution. Then, the authors use Monte Carlo
sampling to estimate the amount of leaked information. A shortcoming of the approach
is that Abacus only uses one trace and therefore suffers from low coverage. dudect [46]
measures timing behavior in a statistical way without any model of the underlying
hardware, which is fast, but also yields imprecise results. ctgrind [33] and TIMECOP [39]
search the code for secret-dependent jump or memory accesses like table-lookups and
variable-time CPU instructions, but are rather manual.

Analysis of JavaScript code recently received more focus in the research community as it
is widely used in browsers including many security-critical workloads. Basic properties
of JavaScript regarding security of code have been widely analyzed [30, 31, 52, 57].
Just as in other programming languages, various attacks on secret-dependent behavior
have been conducted [51, 53]. A common prerequisite for exploiting timing-dependent
properties of code is having precise timers [47], though this can be bypassed [53]. Apart
from countermeasures like disabling timers or blocking certain functionality [50], little
work has gone into finding non-constant-time JavaScript code.

8 Conclusion

With Microwalk-CI we have shown how one can design a side-channel analysis frame-
work that is suitable for integration into a day-to-day development workflow. We have
presented a new trace processing algorithm that merges the recorded traces into a call
tree, allowing us to precisely localize and quantify leakages in a short time frame. More-
over, by “dockerizing” the analysis, we have provided the means for easy and fast usage
without the necessity of understanding the details of the framework.

With the design and implementation of a tracer for JavaScript and the integration with
Microwalk-CI, we have built the first comprehensive constant-time verifier for JavaScript
code and demonstrated how analysis techniques originally developed for binary anal-
ysis can be used for interpreted or just-in-time compiled languages. Microwalk-CI is
constructed in a modular fashion and allows to add tracing backends for other languages
with limited effort.

Overall, Microwalk-CI carries the potential to increase the side-channel security for many
popular libraries written in potentially any programming language, and raises awareness
for the risks of non-constant-time code in new communities.
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Universität zu Lübeck

RISC-V is an emerging technology, with applications ranging from embedded devices
to high-performance servers. Therefore, more and more security-critical workloads
will be conducted with code that is compiled for RISC-V. Well-known microarchi-
tectural side-channel attacks against established platforms like x86 apply to RISC-V
CPUs as well. As RISC-V does not mandate any hardware-based side-channel coun-
termeasures, a piece of code compiled for a generic RISC-V CPU in a cloud server
cannot make safe assumptions about the microarchitecture on which it is running.
Existing tools for aiding software-level precautions by checking side-channel vul-
nerabilities on source code or x86 binaries are not compatible with RISC-V machine
code.

In this work, we study the requirements and goals of architecture-specific leakage
analysis for RISC-V and illustrate how to achieve these goals with the help of fast
and precise dynamic binary analysis. We implement all necessary building blocks for
finding side-channel leakages on RISC-V, while relying on existing mature solutions
when possible. Our leakage analysis builds upon the modular side-channel analysis
framework Microwalk, that examines execution traces for leakage through secret-
dependent memory accesses or branches. To provide suitable traces, we port the
ARM dynamic binary instrumentation tool MAMBO to RISC-V. Our port named
MAMBO-V can instrument arbitrary binaries which use the 64-bit general purpose
instruction set. We evaluate our toolchain on several cryptographic libraries with
RISC-V support and identify multiple leakages.

1 Introduction

Executing workloads in cloud environments with shared hardware resources is becoming
more and more important, promising great flexibility and scalability. From a security
viewpoint, however, this trend comes with a number of challenges, as shown by manifold
examples of attacks that exploit microarchitectural side-channels in cloud systems [21,
22, 53].
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While most of these cloud systems and the corresponding attacks are based on the
conventional x86 architecture, a new architecture called RISC-V is gaining traction in
both embedded applications and general-purpose hardware. The royalty-free license [4]
of RISC-V enables affordable hardware through lower development costs, and helps
innovation: For example, there now are several open-source CPU designs which can
be analyzed and extended by anyone [26, 33, 45], promising the development of new
hardware features like secure trusted execution environments (TEEs) which avoid the
issues of existing commercial solutions. The software support for the RISC-V platform
is growing as well, with major compiler vendors adding backends for emitting RISC-V
machine code, which in turn allows porting operating systems like Linux.

The growing importance of RISC-V in general-purpose and cloud computing, coupled
with a wide spectrum of CPU designs from various vendors, still necessitates caution
to prevent repeating the mistakes that caused a lot of security issues on the established
platforms. One particular example is microarchitectural timing leakage in cryptographic
libraries, where subtle differences in how the microarchitecture processes certain opera-
tions lead to exploitable leakages, allowing a co-located attacker running on the same
hardware as the victim code to extract cryptographic secrets. By microarchitectural tim-
ing leakage, we refer to architectural traces only, excluding transient execution attacks.
As most of the existing RISC-V hardware finds usage in the IoT or the automotive do-
main, there has been more focus on physical attacks like power side-channels, and little
work on analyzing the co-location scenario so far. However, it is likely that many attack
vectors from x86 and ARM will apply to RISC-V systems as well. While there are several
proposals for hardware countermeasures that would address this issue (e.g., resistant
cache designs [11, 43, 49]), it is unlikely that all CPU vendors will include one of those
mitigations in their processors. Thus, absent a proven hardware-based countermeasure,
software-level mitigations are needed.

By now, most established libraries address timing leakages by employing so-called
constant-time code, i.e., code that exhibits the same control flow and memory access
pattern independent of its secret inputs. However, the new compiler backends and
different instruction set of RISC-V may re-introduce leakage previously fixed at source
level [3, 10]. In addition, there is ongoing work on assembly-level implementations of
cryptographic primitives, which are carefully optimized to fully utilize the underlying
hardware to achieve best performance [44], but may have subtle leakages. While there
are lots of approaches for finding leakages on source-level or via generic languages, those
cannot detect leakage introduced by the compiler. Finally, most of the corresponding
proof-of-concept implementations lack usability [23] or do not apply to RISC-V.

In this work, we discuss the requirements of analyzing RISC-V software for side-channel
leakages, and show how an established side-channel analysis framework can be adapted
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to also support RISC-V binaries. For that, we build upon the Microwalk framework [51],
that analyzes execution traces in order to identify vulnerabilities, and then yields a
detailed leakage report. While Microwalk generates its execution traces through dynamic
binary instrumentation (DBI), no such tool is yet available for RISC-V. Thus, we develop
the first DBI tool for RISC-V, called MAMBO-V, which sets up on the MAMBO toolkit [18]
for ARM, and show how we can use this tool to generate Microwalk-compatible traces.
We evaluate our leakage analysis toolchain on several cryptographic libraries with
support for RISC-V, and uncover multiple vulnerabilities.

1.1 Our Contribution

In summary, our contributions are:

• We analyze the similarities and differences between RISC-V and established ar-
chitectures in terms of side-channel vulnerabilities, and extract requirements for
building side-channel-resistant software on RISC-V.

• We implement MAMBO-V, a RISC-V port of the ARM-based DBI tool MAMBO,
enabling us to natively instrument RISC-V binaries.

• We include MAMBO-V in the Microwalk framework for finding timing side-
channels in software binaries, building the first toolchain for automatically an-
alyzing RISC-V programs.

• We analyze several RISC-V builds of cryptographic libraries and detect various
leakages.

The source code is available at https://github.com/UzL-ITS/MAMBO-V.

1.1.1 Responsible Disclosure

We disclosed the potentially exploitable AES vulnerabilities to the developers of the
respective libraries, who all acknowledged our findings. They were mostly aware of the
issues of the relevant implementations, and WolfSSL and OpenSSL have (undocumented)
compiler flags which partially fix the leakages (see Section 6.3). At the time of submission,
there is ongoing work on patches that ensure that the default implementations are secure,
or on appropriate documentation changes.

https://github.com/UzL-ITS/MAMBO-V
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2 Background

2.1 RISC-V

RISC-V is a reduced instruction set computer (RISC) load-store architecture, with a focus
on broad availability through permissive licensing and high modularity to support all
applications from small low-power IoT devices over personal mobile devices to large-
scale general purpose computers. Its open-source character allows easy extensibility
through a so-called base-plus-extension instruction set architecture (ISA). As a RISC
architecture, only designated instructions operate on memory, whereas the arithmetic
merely happens in registers. The most important standardized extensions for RISC-V
are I, M, A, C, F, D, Zicsr and Zifencei, which are often grouped together as RV64GC.
Also, more specialized extensions are drafted and partially ratified, such as the vector
extension and scalar cryptographic extension [42]. Instruction encodings are designed to
simplify hardware implementations to increase performance and efficiency [47].

2.2 Dynamic Binary Instrumentation

Binary instrumentation allows inserting code into an existing binary in order to monitor
or modify the program’s behavior. The insertion points are determined through user-
supplied rules or callback functions.

Static binary instrumentation (SBI), also called binary rewriting, permanently inserts in-
strumentation code into the binary in an offline phase [12]. While this approach promises
a small runtime overhead, it is error-prone due to relying on a correct disassembly of the
program. In addition, SBI cannot handle special cases like just-in-time compilation or
self-modifying code.

In dynamic binary instrumentation (DBI), the instrumentation code is added with the help
of an instrumentation framework at runtime. The DBI framework combines application
and instrumentation code and executes the resulting code directly on the target platform.
DBI engines introduce a slightly higher overhead than SBI due to the code translation
at runtime, but most prevalent instrumentation frameworks feature optimizations like
caching, so each code block needs to be instrumented only once. Popular DBI engines
include Intel Pin [30], DynamoRIO [9], QBDI [39] and the heavyweight analysis frame-
work Valgrind [35], which were initially built for x86 and then, in some cases, extended
to also support other architectures like ARM’s AArch32 and AArch64.

However, as ARM is a RISC architecture and thus quite different to x86, x86-specific
optimizations in a DBI engine may have little or even negative effects. MAMBO [18] is a
DBI tool specifically designed and developed for ARM, making it suitable for efficiently
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handling RISC architectures. In addition to some ARM-specific optimizations, MAMBO
has general DBI features like a cache for storing already instrumented code and scanning
new code in basic block units. Moreover, it supports behavioral transparency, which
means that the execution of all ABI-compliant binaries is guaranteed to be correct. The
application binary interface (ABI) defines the calling convention, which includes register
allocation for parameters and stack pointer behavior.

2.3 Microarchitectural Side-Channels

In a cloud setting, usually, many processes from different customers share the same
underlying hardware. These processes may work with sensitive data, which should
not be leaked to an attacker. While there are many architectural safeguards in place to
prevent data from flowing from one process to another directly, there are more subtle
side-channels that use properties of the underlying microarchitecture to extract some
information from the running code. One prominent example are so-called cache attacks [1,
7, 37, 53], where the attacker brings the (shared) CPU cache into a known state, and
then monitors changes to this state in order to learn whether the victim has accessed
data within a certain address range. This way, the attacker can infer the code line the
victim is currently executing, or determine the index of a table lookup. Besides the cache,
there are many more shared resources that the attacker can monitor and exploit, like
the translation look-aside buffer [19] and the branch prediction unit [2]. Note that we
only consider attacks that target architectural traces, so transient execution attacks like
Spectre [25] are out-of-scope.

A commonly used software-based countermeasure against side-channel attacks is con-
stant-time code without any secret-dependent memory accesses or branches [3]. This
code exhibits the same control flow and data flow independent of the processed secret,
so a side-channel attacker cannot learn anything by looking at an execution trace as
provided by a cache attack. As cryptographic implementations are a primary target for
side-channel attacks, most current cryptographic libraries feature constant-time code.

2.3.1 Leakage Detection Tools

To ease checking implementations for side-channel vulnerabilities, numerous tools and
approaches have been proposed. Tools that analyze source code include ct-fuzz [20] that
uses a specialized form of fuzzing, ct-verif [3] based on formal verification methods
and CaSym [8] that symbolically executes the source code. Moreover, there are vari-
ous tools that analyze binaries through static techniques, like BINSEC/REL [10] using
symbolic execution, CacheS [46] combining symbolic execution with taint analysis, or
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CacheAudit [14] which uses formal methods to find leakages on all paths of a program.
Finally, dynamic binary approaches comprise statistical timing measurements like in
dudect [40], constraint modeling in Abacus [5], as well as trace alignment in DATA [48] or
trace merging in Microwalk [51].

3 Overview

We first describe requirements and our approach for analyzing the side-channel security
of RISC-V implementations running in a co-located setting.

3.1 Analysis Approach

As described in Section 2.3, there are numerous tools and approaches for finding side-
channel leakages in software. Any useful tool should unify the following properties [23,
51]: First, it should accurately localize the respective leakages, so the developer can
directly understand the cause of a leakage and start building a patch. Then, the analysis
should be fast enough, so there is immediate feedback whenever there is a code change.
Finally, to aid adoption in the developer community, the tool should not be too hard to
set up and use.

To check whether RISC-V code is leakage-free, focusing on the source code alone is
insufficient. For example, there have been cases where a misguided compiler pass “op-
timized” constant-time code, producing binaries with leakages that are not present in
the source code [3, 24]. Daniel et al. [10] further provide an extensive evaluation of
different compiler versions, optimization levels and target architectures, showing that
constant-time properties always need to be validated on the binary level. Compiling the
code for x86 and using existing analysis tools is not sufficient either, as x86 compilers may
use different optimization passes than RISC-V compilers. In addition, x86 has special
extensions like AES-NI or the pclmulqdq instruction for carry-less multiplication (used
in Galois counter mode), which may substitute otherwise leaking code paths.

The necessity to work with RISC-V specific assembly leaves the option to use either static
or dynamic binary analysis. While static binary approaches offer some guarantees that
purely dynamic tools cannot give, they often suffer from poor performance and require
lots of manual interaction. On the other hand, dynamic analysis is heavily dependent
on the achieved coverage, i.e., leakage can only be found in code that is actually exe-
cuted. However, for cryptographic implementations, it was found that a small number
of random test cases is sufficient to cover the relevant code [48, 51]. In addition, dynamic
analysis is easy to use, as the user only has to call the respective primitives.



184 Chapter 7: MAMBO-V

MAMBO-V

Microwalk Plugin

Microwalk}15:l@Wdd[#n 
mD*-w{UB |)h 
-GF4'S9\jQ.7 
li  >7_B-7oQ 
Y3R!z5`v9[M[ 
$ImC:'   !5k

Trace

}15:l@Wdd[#n 
mD*-w{UB |)h 
-GF4'S9\jQ.7 
li  >7_B-7oQ 
Y3R!z5`v9[M[ 
$ImC:'   !5k

Trace

}15:l@Wdd[#n 
mD*-w{UB |)h 
-GF4'S9\jQ.7 
li  >7_B-7oQ 
Y3R!z5`v9[M[ 
$ImC:'   !5k

Trace

Library

Report

Figure 1: RISC-V side-channel analysis overview. MAMBO-V instruments a RISC-V library and
generates execution traces, which are subsequently analyzed using Microwalk. The resulting
analysis report then helps the developer to find and fix the identified leakages.

3.2 Toolchain

With the aforementioned requirements in mind, we picked the Microwalk framework [50,
51] as a basis for our RISC-V leakage analysis. Microwalk uses DBI to generate execution
traces from user-supplied programs, and offers several analysis modules that compare
these traces in order to find leakage. While the authors originally designed Microwalk
for x86 binaries, its modular structure and generic trace format encourage addition of
trace generators for other architectures.

This leaves the problem of generating Microwalk-compatible execution traces for RISC-V.
At the time of writing, there is no generic DBI framework for RISC-V available, that
offers the necessary flexibility for generating the information Microwalk needs. Another
requirement is transparency, such that the execution traces are not influenced by the
DBI engine itself, which would otherwise distort the analysis result. Instead of building
a new DBI framework, we decided to port an existing framework for another RISC
architecture, that is MAMBO [18] for ARM. The similarities between ARM and RISC-V
allow us to reuse most of the general-purpose logic from MAMBO, like plugin handling
or memory management. Our port, named MAMBO-V, implements the most significant
performance optimizations from MAMBO, which are inline hash table lookups and
direct branch linking. Additionally, we add support for atomic sequences, which need
special handling on RISC-V hardware. We are working with the maintainers of MAMBO
to contribute our RISC-V patches to the main project.

The resulting toolchain is illustrated in Figure 1.
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4 MAMBO-V Implementation

We now describe our RISC-V port of the MAMBO DBI framework, named MAMBO-V. We
give an overview over its generic features and discuss notable performance optimizations
as well as RISC-V specifics to be considered.

4.1 Instrumentation Approach

4.1.1 Target Platform

MAMBO-V targets RV64GC platforms, i.e., processors with support for the RV64I base
instruction set and its most common extensions. Like MAMBO, MAMBO-V aims for
behavioral transparency: Binaries that are compliant to the standard RISC-V ABI are
executed correctly. This does not affect the correctness of our side-channel analysis, as we
can expect that compilers emit standard-compliant code and that the analyzed programs
are not malicious.

4.1.2 Execution Model

Just as the ARM implementation of MAMBO, MAMBO-V unifies the instrumentation
framework and the target application in a single process. On startup, a custom ELF
loader reads the RISC-V ELF file and potential dependencies of the target application
into the memory of the MAMBO-V process, such that the engine can access the target’s
full code. After initialization is done, MAMBO-V’s dispatcher proceeds loading and
translating chunks of the target’s code on-the-fly, while inserting instrumentation at the
points specified by the user. Each chunk consists of a single basic block, i.e., a sequence
of instructions with a single entry point at the beginning and a single exit point at the
end. This way, the dispatcher can safely hand over control to the translated chunk, and
reclaim it after the chunk has fully executed.

4.1.3 Plugin API

In order to facilitate the usage of MAMBO-V for application developers who want
to analyze their applications, we also ported the plugin API from MAMBO. A plugin
contains user-supplied functions, which are called at certain events, e.g., when translating
a basic block. With these functions, the user can then insert instrumentation code during
translation. Other supported events are function entry/exit, threads and system calls. In
our analysis, we primarily utilize the instrumentation to insert trace writing code.



186 Chapter 7: MAMBO-V

4.1.4 Optimizations

To speed up analysis, we have ported a number of performance optimizations from
MAMBO. Most of the overhead that arises during DBI comes from the code translation
and context switches between the dispatcher and the target application. The most notable
optimization is the code cache, which is a common feature of DBI frameworks: It is
located outside the target application’s address space and stores a limited amount of
translated basic blocks. This avoids re-translation of frequently executed code, improving
overall performance significantly. Other optimizations are hash tables for faster resolution
of translated blocks and direct branch linking to speed up jumping between different
blocks in the code cache without invoking a costly context switch to the dispatcher.

4.2 New Features for RISC-V

4.2.1 Atomic Sequences

A challenge we encountered on RISC-V cores are tightly constrained atomic sequences,
which ensure exclusive memory operations for multiprocessor systems and process
synchronization. Software locks for resources that should only be accessed by a single
thread or process at a time are often translated to atomic loops by the compiler. An atomic
loop contains an atomic sequence, which begins with a load-reserved (LR) instruction
and ends with a store-conditional (SC) instruction. The atomic loop loops over the atomic
sequence until the SC eventually succeeds. The result of the SC instruction depends
on whether the reserved value was accessed during the atomic sequence and on the
environmental constraints defined by the ISA. Among others, the ISA defines a maximum
of 16 consecutive instructions between LR and SC, and allows only the base (I) instruction
set, disallowing loads, stores, backward jumps or calls.

While the compiler enforces the constraints within an atomic sequence, the instrumen-
tation done by MAMBO-V can insert arbitrary instructions that break one of the above
constraints. Figure 2 shows an example of how a direct port of MAMBO would add
unconstrained instructions to an atomic sequence: First, the original loop in Figure 2a is
split into two blocks because of the conditional branch in line 3. Then, the resulting code
cache blocks undergo optimization and are instrumented as shown in Figure 2b, leading
to the insertion of unconstrained instructions (line 3-5). The result is a non-sequential
sequence that includes loads, stores, calls, and potential backward jumps, and is therefore
not guaranteed to succeed on RISC-V. However, requiring all instrumentation to adhere
to the constraints would cause some instrumentation features to be lost in the process.

On ARM, where atomic sequences are available as well, MAMBO allows users to freely
insert instrumentation, which when breaking a constraint causes undefined behavior,
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1:
2:

loop:

3:
  LR.D a1, (s3)

4:
  BNE  a1, zero, loop

5:
  SC.D a1,   a0, (s3)
  BNE  a1, zero, loop

# a0: value to store

# s3: memory address
# a1: lock status

(a) Original lock-acquire-loop.

block1:1:
  LR.D a1, (s3)2:
  <branch condition evaluation>3:
  <call trace_conditional_branch>4:

5:
block2:6:
  SC.D a1,   a0, (s3)7:
  BNE  a1, zero, loop8:

  <cond. branch to block1 or block2>

(b) Instrumented lock-acquire-loop.

Figure 2: Exemplary instrumentation of a lock-acquire-loop: The instrumentation may insert
unconstrained instructions (marked in blue) into the atomic sequence, e.g., add a function
call with parameters to trace a conditional branch instruction. In order to set the argument
registers, the original register contents have to be written to the stack using an unconstrained
store instruction.

but does not affect stability on ARM Cortex processors. However, on our SiFive U54 core,
violating a constraint can block the SC instruction from succeeding entirely, leaving the
process stuck in a deadlock. We encountered such a deadlock when instrumenting the
dynamic linker.

Thus, for reliable instrumentation on RISC-V cores, we designed a lightweight and
behaviorally transparent solution for handling atomic sequences: We use hardware-
assisted software emulation to relax the hardware constraints by replacing the LR and the
SC instructions. The LR is replaced by an equivalent normal load instruction, which marks
the beginning of the software-emulated atomic sequence. To emulate the reserve, we
also back up the original value for later comparison. The subsequent code is not bound
by constraints anymore and safe for arbitrary instrumentation. Finally, we replace the
SC instruction with a semantically equivalent atomic sequence that conditionally stores
the new value if the value at the destination is equal to the previously created backup.
Since we include a native atomic sequence to check for changes at the destination, our
emulation remains thread-safe. The observable behavior of the emulated atomic sequence
is nearly identical to the original, with the only difference being that the emulation cannot
detect stores on the reserved value that do not modify it. To the best of our knowledge,
this difference does not effectively change the semantics of the emulated sequence, and
therefore the traces remain identical.

4.2.2 Global Pointer and Thread Pointer Register

In contrast to ARM, the RISC-V standard calling convention defines a global pointer
register gp and a thread pointer register tp. Applications use these registers to access
structures such as the global offset table and global/thread-local variables. MAMBO-V
does not share these structures with its client, so gp and tp must be updated on each of the
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context switch between MAMBO-V and the client. Originally, on ARM, a unidirectional
context switch was sufficient, as the dispatcher does not make assumptions on register
contents on entry. Thus, only the context of the client is fully saved when entering the
MAMBO-V context and restored when leaving again. To support the distinct gp/tp
contexts on RISC-V, we implemented a full context switch for these two registers, while
keeping the unidirectional context for all other registers to minimize the overhead.

4.2.3 Shorter Jump Encoding

RISC-V and ARM do not have direct branch instructions that take an absolute immediate
address. Due to different instruction encodings, the maximum range of ARM branch
instructions is ±128 MiB, while on RISC-V it is only ±1 MiB. The code cache in MAMBO-
V can be much larger than 1 MiB. Hence, for MAMBO-V, we decided to use indirect jumps
to transfer control flow back to the dispatcher. Loading the address and performing
the jump takes 14 additional bytes in the code cache, but due to the long lifetime of
translated code and runtime overhead of the client-dispatcher context switch the effect
on the overall performance and memory consumption is negligible.

5 Side-Channel Leakage Analysis

In the following, we describe our approach for finding architecture-specific leakage in
code compiled for RISC-V with the help of MAMBO-V. We focus on implementations of
cryptographic algorithms, as their impact on the security of systems and communication
is high. However, the concepts do apply to any scenario where secret information should
not be exposed to an attacker recording execution traces. As discussed in Section 3, source-
level analysis is often not sufficient, and binaries may contain leakages even though
the original source code is constant-time. Therefore, we opted for a binary approach
based on RISC-V-specific DBI for execution trace generation and Microwalk for leakage
analysis.

5.1 Leakage Model

We adopt the leakage model as specified for Microwalk [51]: We supply the attacker with
an implementation, a number of secret inputs and corresponding execution traces. An
execution trace consists of a sequence of all executed instructions and accessed memory
addresses, but does not contain actual processed data. The attacker also gets access to all
public inputs and outputs. We consider the implementation constant-time if all traces
are identical, i.e., when the attacker does not learn anything about the secret input by
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looking at a trace. In other words, in a constant-time program, the observed control flow
and memory accesses are independent of the secret inputs.

This leakage model assumes a rather strong attacker, as the known side-channel attacks
can only retrieve a fraction of the information expressed in a full execution trace. For
example, cache attacks are limited to granularities of 32 or 64 bytes on most systems,
and control flow tracking techniques like single-stepping only work in very specific
scenarios. Due to the lack of suitable hardware, there has not yet been much work on
side-channels for RISC-V. Thus, while we expect similar vulnerabilities on upcoming
RISC-V processors as are already known for other architectures, sticking to a strong
leakage model is the safest way forward. We only consider secret-dependent control flow
and memory accesses that are architecturally reachable, so transient execution attacks
are out-of-scope.

5.1.1 Implementation in Microwalk

Microwalk implements the above leakage model through a simple dynamic analysis
pipeline, which generates secret inputs (called test cases), collects and preprocesses cor-
responding execution traces, and finally compares those traces with each other. If Mi-
crowalk finds a difference between two or more traces at a given code position, this
difference is reported as leakage, as an attacker may exploit this difference to tell apart
two or more secret inputs. If all traces are identical, the attacker does not learn anything
about the underlying secret inputs, and the implementation is reported as non-leaking.

5.2 Required Information

Microwalk uses a common generic execution trace format to run its analysis modules
on, so we build a toolchain that collects RISC-V execution traces and converts them
into Microwalk’s format. Microwalk already offers two raw trace preprocessors, one for
converting source-based execution traces from languages like JavaScript, and another one
for binary traces from compiled code. While the binary trace preprocessor was originally
written for x86, we found that its raw trace format is generic enough to also be used on
other architectures. We thus only need to create a trace generator for RISC-V, that emits
raw execution traces in the same format as the existing Intel Pin module (Figure 3).

A raw binary execution trace from Microwalk’s Intel Pin module combines the following
information:

• taken/non-taken branches, with source and (if applicable) target address;

• memory accesses, with instruction address and accessed memory address;
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Trace Generation Trace Preprocessing Analysis

Intel Pin (x86)
Jalangi2 (JavaScript)

Binary
Source-based Mem. Access Trace

Call Tree
MAMBO-V (RISC-V)

Test
Cases

Leakage
Report

Figure 3: Microwalk pipeline with a new trace generation module based on MAMBO-V. Each
trace generation module may emit either source-based or binary execution traces, which are
then preprocessed into a common trace format that can be parsed by all analysis modules.

• heap/stack allocation blocks, with start and end address;

• start and end addresses of the memory-mapped executable binaries.

We collect this data using a plugin for the MAMBO-V DBI framework.

5.3 MAMBO-V Trace Plugin

5.3.1 Interaction with the Target Program

In order to analyze a cryptographic primitive, the primitive has to be made available
to the DBI framework. We follow Microwalk’s approach by asking the user to supply
a small function that receives a test case file with secret inputs and then calls the cryp-
tographic primitive. Our MAMBO-V plugin registers a function call event callback for
detecting execution of that function, so it can detect when test case execution starts
and ends. This method has the advantage that we do not need to re-instrument the
binary for each test case, but can reuse the existing instrumentation, which speeds up
trace generation significantly. Before the first test case begins, we record a trace prefix,
that contains initializations of all global objects that may be referenced during test case
execution.

5.3.2 Recording Control Flow and Memory Accesses

When a test case begins, which is signaled by the respective event callback, our plugin
opens a new binary trace file. We also register an instrumentation callback, which is
called whenever a new basic block is instrumented. In this callback, we check each
instruction for control flow and memory accesses, and add instrumentation to that
instruction if necessary. The resulting instrumented code then writes to the trace file
whenever the respective instruction is executed. To avoid tracing information outside
our target functions, the plugin receives a list of binaries that should be traced.



6 Evaluation 191

5.3.3 Tracking Memory Allocations

Microwalk needs both a list of allocated heap memory blocks and the regions of the
memory-mapped executables. To collect heap blocks, we register function call and function
return event callbacks for the malloc, calloc, realloc and free functions, and log their
parameters and return addresses. For the static memory regions, we hook into the VM
operation event handler and extract the required information from VM_MAP events, which
are triggered whenever a new ELF file is loaded.

6 Evaluation

To evaluate the performance of our toolchain and assess the current state of side-channel
security on RISC-V, we analyze a number of frequently used cipher and signature func-
tions for several popular libraries. We describe the experimental setup, analyze the
performance of trace creation and analysis, and discuss and evaluate the discovered
leakages. The results are summarized in Table 1.

6.1 Experimental Setup

As described in Section 3, we combine MAMBO-V with Microwalk to natively analyze
the leakage of binaries on RISC-V. We record the traces with MAMBO-V on a Microchip
PolarFire SoC FPGA Icicle Kit with four SiFive U54 cores featuring RV64GC. The trace
analysis with Microwalk is executed on an AMD Ryzen 9 7950X with 16 cores.

6.1.1 Libraries

Due to its modular structure, the RISC-V architecture allows for a broad range of target
applications, from small embedded devices to server CPUs. To reflect this, we chose to
analyze WolfSSL [52] and Mbed TLS [31] as examples for libraries that support many
architectures and that are optimized for the embedded market. OpenSSL [36] and GNU
Nettle [16], on the other hand, are general purpose cryptography libraries that are used
across different architectures and chip sizes. In addition, as an example of a library
specifically written for RISC-V, we investigated SCL (SiFive Cryptographic Library) [44].
Finally, as a reference for constant-time implementations, we included libsodium [29].
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Table 1: Result of leakage analysis of several cryptographic libraries on RISC-V. “Tr. CPU” shows
the CPU time for generating the raw traces and “An. CPU” the CPU time for trace preprocess-
ing and analysis. The columns “# Lkgs.” and “# Uniq.” show the total and unique number of
detected leaking code lines.

Target Type Tr. CPU An. CPU # Lkgs. # Uniq.
WolfSSL [52] 5.5.4

AES-ECB cipher 1 sec < 1 sec 157 157
AES-GCM aead-cipher 2 sec < 1 sec 493 184
ChaCha20-Poly1305 aead-cipher < 1 sec < 1 sec 0 0
Ed25519 signature 36 sec < 1 sec 0 0
ECDSA (secp192r1) signature 880 sec 7 sec 105 10

Mbed TLS [31] 3.3.0
AES-ECB cipher 2 sec < 1 sec 68 68
AES-GCM aead-cipher 4 sec < 1 sec 216 76
ChaCha20-Poly1305 aead-cipher 7 sec < 1 sec 0 0

OpenSSL [36] 3.0.0
AES-ECB cipher 115 sec < 1 sec 52 52
AES-GCM aead-cipher 117 sec < 1 sec 166 60
ChaCha20-Poly1305 aead-cipher 117 sec < 1 sec 0 0
Ed25519 signature 556 sec 4 sec 0 0
ECDSA (secp192r1) signature 3128 sec 30 sec 1647 284

GNU Nettle [16] 3.8.1 with GMP [15] 6.2.1
AES-ECB cipher 2 sec < 1 sec 32 32
AES-GCM aead-cipher 3 sec < 1 sec 108 40
ChaCha20-Poly1305 aead-cipher 2 sec < 1 sec 0 0
Ed25519 signature 104 sec 4 sec 0 0

SCL - SiFive Cryptographic Library [44] 20.08.00
ECDSA (secp256r1) signature 102 sec < 1 sec 5 2

libsodium [29] 1.0.18
ChaCha20-Poly1305 aead-cipher 2 sec < 1 sec 0 0
Ed25519 signature 12 sec < 1 sec 0 0

6.1.2 Analyzed Primitives

We wrote analysis wrappers for AES-ECB, the authenticated encryption schemes AES-
GCM and ChaCha20-Poly1305, and the signature algorithms Ed25519 and ECDSA (curve
secp192r1; secp256r1 for SCL). The wrappers initialize the necessary environment and
call the target functions, if supported by the respective library. We skipped the ECDSA
implementations in GNU Nettle and Mbed TLS, as those are comparably slow and thus
lead to traces which exceed the limited resources of our evaluation platform.

All libraries and target wrappers were cross-compiled with the RISC-V GNU Compiler
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Toolchain 12.2.0 [41] for RV64GC and ISA specification 2.2. We built all libraries with
default options and appropriate additional security flags as stated in their documentation.
All libraries except OpenSSL are built with optimization level -O2. OpenSSL was built
with optimization level -O3.

6.1.3 Test cases

We generated 16 test cases for each primitive by creating 16 random keys, and supplied
these test cases to the target function. Since Microwalk measures differences in the
execution traces, any other input outside the test cases must be kept constant to avoid
false positives. Therefore, inputs such as initialization vectors were set to fixed values.
Random values like the ephemeral key in ECDSA were generated by custom test case-
dependent RNGs. We opted for using smaller key sizes, as the cryptographic procedures
are invariant of the key size, and larger key sizes increase the resource consumption of
the leakage analysis without uncovering further vulnerabilities [51].

6.2 Performance Results

The performance of the side-channel analysis on RISC-V depends on the time required
for tracing the target function and analyzing the traces. The runtime for all targets is
summarized in Table 1.

6.2.1 Tracing

The duration of tracing 16 executions for each target is inherently constrained by the
limited performance of the SiFive U54 core. For the symmetric ciphers and Ed25519,
the tracing took at most a few minutes, which suggests that our toolchain is suitable
for everyday use on a developer’s computer. With newer and more performant RISC-V
cores, the tracing time should further decrease.

One outlier is OpenSSL, where a majority of the tracing time was spent in the library
initialization, which is mostly irrelevant for the leakage analysis. To reduce this overhead,
the developer could disable most features when compiling the library for vulnerability
evaluation and target low-level functions.
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6.2.2 Analysis

With one exception, the trace preprocessing and analysis of nearly all targets took less
than 5 seconds. The fast analysis allows for frequent execution of any test. The outlier,
ECDSA for OpenSSL, was slowed down by preprocessing the huge traces, so optimizing
the tracing time should fix this as well.

6.3 Vulnerabilities

The leakage analysis for the chosen popular libraries shows many vulnerabilities across
the board, except for libsodium which only implements a limited number of ciphers and
signature algorithms that allow for an implementation with better resistance against
timing attacks by design. Indeed, all analyzed implementations of ChaCha20-Poly1305
and Ed25519 are constant-time. We summarize the results in Table 1 in the columns “#
Lkgs.” (total leakages) and “# Uniq.” (unique leakages). An instruction or function can
be called or reached from multiple contexts, thus potentially leaking different secrets
with varying leakage severity. Therefore, we also count unique occurrences of leaking
instructions.

In-depth analysis of the libraries showed that most provide specific assembly implemen-
tations for x86 and other architectures that use constant-time primitives. For RISC-V
though, due to lack of specifically optimized implementations, the libraries fell back
to default ones, which often turned out to be non-constant-time, even when using the
hardening flags specified in the documentation.

6.3.1 Symmetric Ciphers

All analyzed AES-ECB implementations leak secret information through their timing
behavior. The examined libraries do not provide RISC-V-specific code, but fall back to
their default C/C++ implementations, which use either T-table or S-box lookups for
AES encryption and round key generation. Previous work has shown that table lookups
are exploitable by timing measurements [7]. The number of unique leakages varies
between the different libraries depending on whether the encryption rounds are unrolled
and how the final step is scheduled. After informing the OpenSSL developers that we
found several leakages in the default AES-ECB implementation, we were pointed to an
undocumented compiler flag that enables an alternative AES implementation, which
we verified to be constant-time. However, they also stated that the flag leads to a 95%
performance loss, which is why it is not enabled by default.
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The authenticated encryption algorithm AES-GCM builds upon the same primitives as
AES-ECB and thus also shows the same table lookup leakage for the encryption step.
In addition, the GCM mode adds authentication through computation of a GHASH,
which involves encryption of a 128-bit string of zeros and the IV. The result of the latter
encryption is used for the final computation of the authentication data. The multiplication
used for the GHASH is implemented with a hash lookup table, where the accessed index
depends on the current ciphertext and the hash value of the previous block.

We compared the leakage result of AES-GCM on RISC-V for the libraries OpenSSL and
Mbed TLS against the analysis on x86. While the RISC-V binaries contain many leakages
as explained above, we observed no leakages for x86 binaries. The x86 implementa-
tions use the AES-NI hardware extension for encryption and the clmul extension for
computation of the GHASH. Until such extensions are available for RISC-V, crypto-
graphic libraries must feature constant-time software implementations. For WolfSSL,
we learned during disclosure that there is a GCM_SMALL flag, which enables a non-table-
based GHASH implementation. While designed (and documented) primarily for small
code size, we found that it is constant-time and thus a secure alternative for the default
implementation.

6.3.2 Asymmetric Signature Algorithms

None of the analyzed implementations of Ed25519 shows any non-constant-time behav-
ior, emphasizing its inherent resistance against timing attacks, even though there are
no specific assembly implementations for RISC-V. However, we found leakage for all
analyzed implementations of ECDSA, especially in the implementation from OpenSSL.
Even the specially crafted RISC-V implementation from SCL reveals non-constant-time
behavior, though the library is not yet deemed production-ready. Despite the high num-
ber of potential vulnerabilities, we found that all analyzed ECDSA implementations use
blinding, rendering the discovered leakages likely unexploitable.

7 Discussion and Future Work

7.0.1 Limitations of Microwalk

As we base our analysis on Microwalk, we inherit some of its limitations. Currently,
Microwalk only supports deterministic implementations. Thus, all entropy must come
from the secret inputs. While this scenario works well with symmetric and constant-time
asymmetric cryptographic primitives, it has some issues with blinded implementations
which obscure the computation by randomizing the input parameters. Disabling the
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randomness is not sufficient either, as this would just expose leakages which are nor-
mally obscured by blinding. As a solution, Microwalk should be extended to support
randomized implementations. Another limitation of Microwalk’s analysis algorithm is
the possibility of several small leakages higher up in the call chain hiding leakages fur-
ther down, though we did not observe this during our evaluation. Finally, Microwalk’s
dynamic approach heavily depends on the coverage. While it was found that few random
test cases usually suffice [48, 51], the user should check that all relevant code locations
have been reached.

7.0.2 Other Applications of MAMBO-V

While we used MAMBO-V for generating execution traces, the tool is far more versatile.
The plugin API supports a variety of different callbacks, making it on par with other
widely-used frameworks like Intel Pin. For example, new plugins can aid with control-
flow checks or help in bug detection. The broad similarities to ARM allow reusing
analysis code originally written for MAMBO with little adjustments.

7.0.3 Leakage Analysis on ARM

The proximity of RISC-V and ARM suggests that the MAMBO-V trace generator plugin
can be ported to the original MAMBO implementation with little adjustments. With that
plugin, one could generate execution traces from ARM binaries, and analyze these traces
for side-channel vulnerabilities using Microwalk, yielding a dynamic leakage analysis
toolchain for ARM. Thus, our toolchain comprising a tracer plugin and Microwalk
provides a solid basis for fast and accurate side-channel leakage analysis on various
systems.

8 Related Work

8.0.1 Analysis of Code on Intermediate Representations

Instead of instrumenting code natively, the machine code can be lifted to a generic in-
termediate representation. This approach is taken by the ongoing RISC-V port [38] of
the heavyweight instrumentation framework Valgrind [35] and the full-system emulator
QEMU [6], which do an emulated analysis of RISC-V instructions on the intermediate
representations of the respective framework. Thereby, it is possible to re-use existing anal-
ysis tools like memory leaks detection or call graphs. Apart from that, the whole system
reverse engineering tool PANDA [13] provides a way to capture an execution trace, replay
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it afterwards and combine it with extensive analysis through different plugins. However,
emulated analysis meets a different objective than analyzing architecture-specific leakage,
as the leakage may be hidden during lifting to the intermediate representation. Further-
more, the emulators impose a very high overhead and are too resource-consuming to
use them in restricted environments or for an efficient analysis with Microwalk.

8.0.2 Side-Channel Analysis

Side-channel attacks on RISC-V are receiving growing attention by security research.
Apart from the timing side-channels we analyze in this work, there have been efforts
to secure RISC-V implementations against leakage through power side-channels [32].
Further, electromagnetic leakage builds the basis for a successful fault attack in [34],
showing that manifold leakage channels need to be addressed. As some RISC-V systems
also support out-of-order execution, they are susceptible to Spectre [25] attacks [17, 27].
Recently, it was shown that data can be leaked from speculative execution through cache
attacks [28]. The vulnerability to Spectre-style attacks further motivates the develop-
ment of a framework to automatically detect timing side-channels in software, because
apart from direct exploitation, the timing differences can also be used as a way to leak
speculatively accessed secrets.

8.0.3 Hardware-Based Countermeasures

A RISC-V working group developed a number of extensions intended for secure cryp-
tography, which were ratified in 2022 [42]. This includes hardware-acceleration for
symmetric encryption and hash functions, but also the Zkt extension, which specifies
constant-time properties for certain instructions. If a vendor implements the Zkt exten-
sion, certain arithmetic instructions are guaranteed to have data-independent execution
time. However, solely instruction-based approaches are insufficient, as most vulnera-
bilities are caused by higher-level data-dependent behavior. Yu et al. propose support
for oblivious memory accesses, which would block most timing side-channels [54] and
thus go far beyond simply avoiding data-dependent instruction latency like in the Zkt
extension. With hardware-integrated fully automated Boolean masking [45], hardly any
software-level precautions need to be taken against power side-channels. To protect
against data leakages in ALU, memory and memory interfaces, INVITED [32] uses
state-of-the-art masking techniques.

However, these hardware mechanisms are always applied, not only for secret inputs,
making the solutions potentially inefficient for workloads where only a small fraction
of all executed instructions is truly security-critical. Moreover, in a cloud scenario, the
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clients have limited control about the hardware actually used, making secure software
implementations indispensable.

9 Conclusion

In this paper, we have presented the first comprehensive side-channel analysis for im-
plementations of cryptographic primitives on RISC-V. We have shown that some of the
most popular open-source cryptographic libraries lack proper side-channel resistance
on RISC-V. For our work, we have studied the requirements for leakage detection on
RISC-V and designed a thorough approach to incorporate all requirements into a mature
side-channel analysis framework that we have extended with all necessary building
blocks. We have based our analysis toolchain on Microwalk and augmented the frame-
work with the necessary RISC-V specific tracing capabilities by implementing the DBI
tool MAMBO-V. Our evaluation pinpoints several potentially exploitable leakages that
should be fixed by the developers and emphasizes the need for complete and precise
side-channel analysis capabilities on RISC-V to pave the way for secure computations on
shared RISC-V hardware in the cloud.
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Trusted execution environments (TEEs) provide an environment for running work-
loads in the cloud without having to trust cloud service providers, by offering addi-
tional hardware-assisted security guarantees. However, main memory encryption as
a key mechanism to protect against system-level attackers trying to read the TEE’s
content and physical, off-chip attackers, is insufficient. The recent Cipherleaks at-
tacks infer secret data from TEE-protected implementations by analyzing ciphertext
patterns exhibited due to deterministic memory encryption. The underlying vulner-
ability, dubbed the ciphertext side-channel, is neither protected by state-of-the-art
countermeasures like constant-time code nor by hardware fixes.

Thus, in this paper, we present a software-based, drop-in solution that can harden
existing binaries such that they can be safely executed under TEEs vulnerable to
ciphertext side-channels, without requiring recompilation. We combine taint track-
ing with both static and dynamic binary instrumentation to find sensitive memory
locations, and mitigate the leakage by masking secret data before it gets written
to memory. This way, although the memory encryption remains deterministic, we
destroy any secret-dependent patterns in encrypted memory. We show that our proof-
of-concept implementation protects various constant-time implementations against
ciphertext side-channels with reasonable overhead.

1 Introduction

The current trend for data processing and provisioning of infrastructure heads towards
cloud computing, with many co-located clients sharing the same physical hardware
instead of working in isolated self-hosted environments. To protect different clients from
each other, as well as the hypervisor from the clients, virtual machines (VMs) are used
to provide isolation. However, especially when processing sensitive data, users may
also want isolation from the hypervisor for data privacy or regulative reasons. This
kind of isolation can be provided by trusted execution environments (TEEs), which
model the hypervisor as an untrusted party. To achieve this kind of isolation, TEEs use a
combination of additional access rights and cryptography to prevent the hypervisor, or
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more general, any privileged attacker, from reading the content of the TEE or interfering
with its execution state.

Nevertheless, sharing the same hardware leads to traces in shared resources like caches
which in turn provides an attack surface for timing or microarchitectural side-channels [6,
10, 28, 34, 40]. A widely used countermeasure against these side-channels is constant-time
code that is data oblivious, i.e., does not access memory or decide for branch targets
based on secrets [1, 52]. To support developers, there are various mostly automated
constant-time analysis tools that observe different properties of software traces for find-
ing microarchitectural or timing leakage that could lead to exploitable side-channels [1,
17, 49, 50, 51, 52]. As these tools advance the constant-time properties of code, leak-
ages get smaller and harder to find, though recent research has shown that even very
small leakages are exploitable, especially when the strong attacker model of TEEs is
considered [5, 36, 47].

The recent Cipherleaks paper [33] and its follow-up [31] introduced a new attack vector
on code running in TEEs, dubbed the ciphertext side-channel. The core idea is that some
TEEs use deterministic memory encryption, resulting in a one-to-one mapping between
plaintexts and ciphertexts for a given memory block. As a result, the attacker can correlate
changes in the ciphertext to the processed data. For example, the secret decision bit of
a constant-time swap operation can be leaked by observing whether the ciphertext of
the corresponding memory location changes, showing that state-of-the-art constant-time
code is not secure under this attacker model. Thus, this attack vector demands for new
analysis methods and countermeasures.

In this work, we introduce an analysis technique to mitigate ciphertext side-channel
leakages in constant-time code. A naive approach hardening every memory write access
would result in a very high performance overhead. Thus, our technique uses secret-
tracking to pinpoint critical memory accesses, that are then safeguarded by randomiz-
ing observable write patterns such that the resulting binary does not leak information
through the ciphertext side-channel. By combining static and dynamic approaches, we
design a solution that covers all program components and works without recompila-
tion.

1.1 Our Contribution

We present the CIPHERFIX framework, the first general-purpose drop-in mitigation for
ciphertext side-channel-based leakages. This includes the following contributions:
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• We propose an analysis technique based on dynamic taint analysis to find all
secret-containing memory locations in constant-time binaries that are potentially
vulnerable to the ciphertext side-channel.

• We employ dynamic binary analysis to locate stack variables and enable context-
aware tracking of heap allocations, in order to support robust static instrumentation.

• We develop a mitigation technique, based on static binary instrumentation, that
hardens the software binary across library boundaries without requiring recompi-
lation and that provides three different security levels.

• We evaluate our proof-of-concept implementation of CIPHERFIX regarding perfor-
mance and security on various primitives from four widely-used cryptographic
libraries and discuss the effects of different mitigation approaches.

Our source code is available at https://github.com/UzL-ITS/Cipherfix.

Outline. After providing background in Section 2, we give an overview over the design
of CIPHERFIX in Section 3. In Section 4, we present our dynamic analysis, which we use
to build the static mitigation as described in Section 5. We evaluate the performance and
security of our mitigation in Section 6. Finally, in Section 7, we discuss design decisions
of CIPHERFIX and point out angles for future work.

2 Background

2.1 Secure Encrypted Virtualization

AMD Secure Encrypted Virtualization (SEV) is a trusted execution environment (TEE)
that is designed as a drop-in solution to protect whole virtual machines. It encrypts the
RAM content of the VM with an encryption key inaccessible to the hypervisor [26]. The
latest iteration, SEV Secure Nested Paging (SEV-SNP) [3], prevents the hypervisor from
remapping or modifying VM memory, thwarting attacks like [12, 20, 32, 37, 53]. For the
memory encryption, SEV uses AES-128 in the XOR-Encrypt-XOR (XEX) [45] mode of
operation, where a tweak value is XOR-ed before and after encryption. SEV derives the
tweak values from the physical address of a 16-byte memory block and a random seed
generated at boot time.

https://github.com/UzL-ITS/Cipherfix


210 Chapter 8: Cipherfix

2.2 Ciphertext Side-Channel

The ciphertext side-channel was first introduced in [33] and later generalized to arbitrary
memory regions and implementations in [31]. Both papers extract cryptographic keys
from state-of-the-art constant-time cryptographic implementations running in SEV-SNP
VMs. While the attack vector in [33] has been fixed on a firmware level [2], the attacks
from [31] remain unaddressed. The core idea is exploiting the deterministic encryption
at a fixed memory location, to leak information by precisely observing changes in the
ciphertext and correlating them with the (known) executed code.

The authors of [31] introduce two attack variants: The collision and the dictionary attack.
Both attacks exploit repeated write operations to the same memory address. The collision
attack extracts information from observing the same ciphertext over multiple writes.
One common example is the cswap pattern (Figure 1): A variable is always written, but
depending on a secret decision bit the old or the new value is selected. While in the
former case the deterministic ciphertext remains unchanged, in the latter case a new
value is written, producing a different ciphertext. Thus, by observing the ciphertext of
the memory location before and after the cswap, the attacker can immediately infer the
secret decision bit. In the dictionary attack, the attacker does not only rely on collisions,
but maps ciphertexts to (partially) known plaintexts. As the dictionary attack relies on
repeating ciphertexts as well, mitigating the collision attack also mitigates the dictionary
attack.

While the attacks above target values explicitly written to memory by the application,
they can also be used to extract register values. For this, the authors of [31] exploit that the
operating system running in the SEV-protected VM stores the user space register values
upon context switches on the stack. This mechanism allows an attacker to extract secrets
residing in registers by forcing context switches and observing the ciphertexts. However,
the authors also describe how to fix this issue, by randomizing the stack layout.

2.3 Binary Instrumentation

Binary instrumentation allows modifying compiled programs without access to the
source code. This is commonly used to insert new code that gathers information.

Dynamic binary instrumentation (DBI) gives the opportunity to include the archi-
tectural state by executing the analysis routines while the program is running. There
are numerous DBI frameworks, e.g., Valgrind [39], Intel Pin [35], DynamoRIO [9] or
DynInst [11]. The Intel Pin framework compiles and inserts analysis instructions at
runtime through an x86 just-in-time (JIT) compiler. The code is processed in units called
basic blocks, which are defined as instruction sequences that have a single entry and exit
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cswap(p, q, b): 
  c = ~(b - 1);   // b = 0 -> c = 00...00
  t = c & (p ^ q);
  p ^= t;
  q ^= t;

(a) Constant-time swap of p and q, depending on bit b.

Ciphertext of p

b before cswap after cswap

0 e4c80f2a e4c80f2a

1 e4c80f2a aa2f2a61

(b) Ciphertext of p, before and after calling
cswap.

Figure 1: cswap and resulting ciphertexts for the encrypted RAM accessible by the attacker. 1a
shows the procedure of a constant-time swap. Depending on the value of a secret decision
bit b, the values p and q are swapped (b = 1), or left as-is (b = 0). 1b shows the effect on the
resulting ciphertext: If the ciphertext did not change, the attacker can infer that b = 0; if the
ciphertext changed, the attacker learns that b = 1.

point. Through a number of callbacks, a so-called Pintool specifies the analysis code to
be inserted during JIT compilation. The original instructions and the analysis code are
combined such that the instrumentation is transparent to the analyzed program.

Static binary instrumentation (SBI) results in a modified standalone binary that is ob-
tained by the use of rewriting or redirecting techniques. The execution of an instrumented
binary does not depend on an instrumentation framework, which means that the main
overhead comes from the inserted analysis code [4]. However, static instrumentation
struggles with analyzing indirect branches, shared libraries and dynamically generated
code [30, 35]. There are different approaches for adding analysis code to the binary at
specific instrumentation points and then redirecting the control flow, such that both
analysis and original application code are executed in the right order. To avoid breaking
references, the instrumented code can be put into a separate .instrument section. An
instrumentation point then redirects execution to this section, either through software
breakpoints via the int3 [38] instruction and a custom signal handler, or through direct
jumps via so-called trampolines [11, 23, 24]. It is possible to combine multiple approaches
to minimize their shortcomings, e.g., by inserting 5-byte jumps where possible, and
falling back to 2-byte jumps or int3 when not enough space is available. An example of
trampoline-based instrumentation is illustrated in Figure 8 in the appendix. Recent bi-
nary rewriting approaches further optimize the instrumentation through using available
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metadata for lifting [54] or symbolization of references [19].

2.4 Dynamic Taint Analysis

Dynamic taint analysis (DTA) tracks the flow of selected information through a program
during code execution. The data to be tracked is marked as a taint source, and its propaga-
tion is defined through a taint policy. The policy also determines the taint sinks that can be
reached by the data. All instructions that process secret data are considered for the taint
propagation. Data flow tracking can be done in various granularities, whereby byte-level
tracking is the most commonly used. For each memory location and register, there is
shadow memory containing the taint label information, so the performance overhead is
directly connected to the granularity. If too much data is marked as tainted, this is called
overtainting; tainting too little data is referred to as undertainting [4, 27, 46].

A widely-used x86 taint analysis tool providing fast taint propagation based on Intel
Pin is libdft [27]. In order to also support 64-bit binaries, libdft has been extended
for VUzzer64 [44] and the AngoraFuzzer [14]. The data flow-based byte-level taint
propagation in libdft64 is implemented through handwritten rules for every instruction
class.

3 CIPHERFIX Design

We first give an overview of the generic design of our ciphertext side-channel counter-
measure.

3.1 Attacker Model

We assume an attacker that tries to extract secret information from a TEE, that is protected
with a deterministic block-based memory encryption with address-dependent tweaks.
The attacker knows the exact binary which is executed by the victim, but cannot access
secret data that is stored within the TEE. They have root access to the machine running
the TEE and are able to read the entire encrypted memory, but cannot decrypt or modify
it. Furthermore, the attacker can make use of a controlled channel that allows them
to track and interrupt the code running inside the victim’s TEE. This means that they
can reconstruct the entire control flow of the targeted application and annotate it with
snapshots of the corresponding ciphertexts in memory. One instance of such a scenario
is a malicious hypervisor attacking a VM that is protected with AMD SEV-SNP. Finally,
we assume that potential operating systems running alongside the targeted application
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inside the TEE do properly protect register values from ciphertext side-channels attacks,
as discussed in Section 2.2.

3.2 Countermeasure Requirements

Our overall goal is to produce a hardened binary which does not contain leaking memory
writes. The countermeasure should not only protect the targeted program itself, but all
its dependencies as well, as leakage may span multiple libraries (e.g., a crypto library
calls memcpy in libc), and library developers are unlikely to widely adopt ciphertext
side-channel countermeasures themselves. Finally, we target application developers who
build code on top of third-party libraries and who do not have the necessary insight
to manually fix leakages in those libraries. Thus, a drop-in solution with little manual
interaction is desirable here.

There are two major approaches to this: One could either create a compiler extension
that rewrites vulnerable memory accesses at compile time, or modify existing binaries
through SBI. A pure compiler-based solution needs to recompile all dependencies, which
is complex and requires manual intervention. A combination of DBI and SBI can work
directly with the compiled binaries and, given sufficient coverage, accurately identify
and harden vulnerable memory writes. For these reasons, CIPHERFIX aims for a bi-
nary instrumentation-based solution. The trade-off between binary vs. source-based
approaches is further discussed in Section 7.1.

3.3 Protecting Memory Writes

In order to protect an existing binary from being attacked through a ciphertext side-
channel, the content-based patterns of write accesses to memory have to be obscured.
In [31], the authors propose various approaches for randomizing observed ciphertexts:
First, by limiting reuse of memory locations through using a new address for each
memory write; second, by interleaving data with random nonces; and third, by applying
a random mask when writing data. The first approach uses the fact that different memory
addresses get different tweak values in the memory encryption, but has a high overhead
when applied outside of well-defined conditions. The second approach requires extensive
changes to data structures, which has many pitfalls and needs to be done by the compiler.
Due to lower overhead and higher practicability, we thus opt for the last approach, i.e.,
we add a random mask whenever an instruction writes secret data to main memory. We
further discuss the different approaches in Section 7.3.

The masking of data takes place before memory writes and after memory reads. To store
the masks belonging to a particular memory chunk (e.g., a C++ object), we allocate a
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mask buffer of the same size, so there is a one-to-one mapping of data bytes to mask bytes.
When writing data, we generate and store a new mask, XOR it with the plaintext, and
store the masked plaintext; when reading, we read the mask and then decode the masked
plaintext. Note that we need to ensure that at no point non-encoded secret data is written
to memory, so all decoding must be done in secure locations like registers.

3.4 Tracking Data Secrecy at Runtime

While masking all memory writes provides good protection, it comes with a high over-
head. In fact, only a fraction of all memory writes relate to secret information: As we
assume that the implementation is constant-time, there is no secret-dependent control
flow, so, for example, return addresses pushed onto the stack by function calls can be
safely written in clear text. The same is true for the data structures used by the heap
memory allocator to keep track of memory chunks. Finally, there may be a point where
data is no longer considered secret, e.g., when sending a signature over the network.
We thus aim to find and protect those instructions that actually deal with secret data.
However, this is non-trivial, as there may be instructions that access both public and
secret data, depending on the context (e.g., from memcpy).

Thus, we need a way to detect at runtime whether a given memory address should
be considered secret, i.e., whether the data at that address is masked, and whether we
should apply a new mask when writing to said address. We propose two approaches
for storing this secrecy information (Figure 2): In the first approach, which we denote
CIPHERFIX-BASE, we allocate another buffer of the same size as the mask buffer, called
the secrecy buffer. In the second approach, CIPHERFIX-FAST, we encode this information
directly into the mask buffer.

3.4.1 Storing secrecy information separately

In CIPHERFIX-BASE we allocate a buffer that holds the secrecy information for each
memory location. If a byte is public, the corresponding secrecy byte is 0x00; if a byte is
secret, the secrecy byte is 0xff. The secrecy buffer is initialized on allocation, and may be
updated during the lifetime of the object. This construction allows us to read and update
data without branching, as we can combine the secrecy value S with the mask M via a
bitwise AND (⊗), before applying it to the data via a bitwise XOR (⊕): When reading, we
compute P = P̂ ⊕ (M ⊗ S), so we only decode the stored (potentially masked) plaintext
P̂ if the address is considered secret. For writing, we always generate and store a new
mask, and then compute P̂ = P ⊕ (M ⊗ S) for plaintext P . As we make no assumptions
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11 22 33 44 59 f1 c0 49

public secret

data
00mask

secrecy ff00 00 00 ff ff00 ff

00 1c 6d 48 d3 f3 0d

plaintext 4411 22 33 11 2244 33

(a) CIPHERFIX-BASE

11 22 33 44 59 f1 c0 49

public secret

data
00mask 00 00 00 48 d3 f3 0d

plaintext 4411 22 33 11 2244 33

(b) CIPHERFIX-FAST

Figure 2: CIPHERFIX-BASE stores the secrecy information in a separate buffer, and uses it to decide
whether a given mask byte should be applied or not. This allows to safely have non-zero mask
bytes behind public data, as they are ignored if the corresponding secrecy bytes are zero. In
contrast, CIPHERFIX-FAST stores this information directly in the mask buffer, i.e., a mask byte
is zero iff the corresponding data is public.

about the mask, this generally functions as a one-time pad: The mask M is fully random
and independent from the plaintext P , thus P̂ is independent from P as well.

3.4.2 Storing secrecy as zero masks

By separating mask and secrecy information, CIPHERFIX-BASE can generate uniform
masks, yielding a one-time pad encoding. However, this comes at a cost: First, we get
high memory overhead by allocating the mask and secrecy buffers. Second, each read
is replaced by three reads, namely to the data, mask and secrecy buffers. To reduce this
overhead, we make an observation: If the data is public, ANDing the mask and the
secrecy value yields zero; if the data is secret, we use the mask value directly. Thus, for
CIPHERFIX-FAST, we merge the secrecy information and the mask into the mask buffer,
by setting the mask to zero when the data is public, and to a random non-zero value
otherwise.

For writes, we check whether the old mask is zero before generating a new one, saving
a memory write in some cases; for reads, we directly XOR the mask value, saving a
memory read compared to CIPHERFIX-BASE. Thus, in addition to the reduced memory
overhead, we get a performance improvement due to fewer memory accesses. We discuss
the security implications of this in Section 6.3.

3.4.3 Reducing risk of mask collision

While CIPHERFIX can be used with secret data of any size, the width of the masks
influences the robustness against attackers that observe ciphertexts over longer periods
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11 22 33 44 59 f1 c0 49data
00mask

secrecy ff00 00 00 ff ff00 ff

00 1c 6d 48 d3 f3 0d

11 22 33 44 e0 41 6a 58

00

ff00 00 00 ff ff00 ff

00 1c 6d f1 63 3f 1c

plaintext 4411 22 33 11 2244 33 4411 22 33 11 2244 55

Figure 3: Extended write in CIPHERFIX-ENHANCED. Instead of updating only w = 8 data and
mask bits at offset 6, CIPHERFIX-ENHANCED extends the write to w′ = 32 bits, by also updating
the mask of the surrounding three bytes, reducing the probability of a mask collision.

of time. For example, for a w = 8 bit wide mask, a mask collision can be expected in
as few as

√
2w = 16 writes. To address this issue, we propose CIPHERFIX-ENHANCED,

which, as an extension of CIPHERFIX-BASE, converts writes with a size w below a certain
threshold to a bigger size w′ that is considered safe: Instead of updating w bits, we
generate a new mask of size w′ bits and update w′ data bits at once. This is possible due
to architectures like x86 supporting multiple write sizes from 1 byte to 8 bytes (and even
more with vector instructions). We thus read and decode the existing masked plaintext
P̂ ′ around the given address, merge it with the new plaintext P and then re-encode it. A
write access protected with CIPHERFIX-ENHANCED is illustrated in Figure 3.

3.5 Toolchain

The CIPHERFIX framework is a drop-in solution that analyzes existing binaries with DTA
to identify vulnerable code and then statically instruments the binaries to mitigate the
detected leakages. CIPHERFIX consists of two distinct steps (Figure 4). In the analysis
step, a taint analysis tool detects instructions and memory locations like stack frames
and heap objects, that touch secret data. In parallel, a structure analysis tool extracts
information about basic blocks and register/flag usage per instruction to aid the static
mitigation. Finally, the mitigation step uses the analysis results to statically instrument the
vulnerable binaries, inserting masking code for secret memory accesses and installing
infrastructure for initializing newly allocated memory. In the following sections, we
discuss the respective steps in more detail.
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Dynamic Analysis
Static variable detection
Find memory allocations
Find memory accesses

Structure Analysis
Basic block detection
Track register usage
Track flag usage 

Vulnerable
Binary 

Mitigation

Static instrumentation
Mask memory accesses 

Hardened
Binary 

Figure 4: Structure of the CIPHERFIX framework. The vulnerable binary is dynamically analyzed
and then hardened through static instrumentation.

4 Leakage Localization and Preprocessing

In order to protect read/write operations, we first need to identify all vulnerable memory
locations and the instructions accessing them. Our static mitigation relies on some
additional structural information, i.e., the offsets of basic blocks and liveness of registers
and flags. In the following, we describe our leakage localization technique and the other
analysis steps.

4.1 Dynamic Secret Tracking

With the help of DBI and DTA, we can collect information that is only available at runtime.
As constant-time code does not include secret-dependent control-flow, DTA covers all
paths of the implementation. For the cases of non-constant control flow in public paths,
we use multiple iterations of the program with different inputs. We further discuss this
in Section 7.2. If an exact analysis is not possible, we stay on the safe side and avoid
undertaining so that in combination with full path coverage we reliably identify all secret
accesses.

Our proof-of-concept implementation is based on libdft64 data flow tracking. When com-
bined with a Boolean taint, we found that byte-level tainting of memory is fast enough to
analyze complex cryptographic libraries while maintaining a high accuracy. While that
leads to some overtainting (i.e., some memory locations get protected unnecessarily), we
avoid undertainting. We also extended libdft64 by adding support for many SSE/AVX
vector instructions, which are heavily used in optimized cryptographic code. All in all,
we added 4355 lines of code (LoC) to libdft64 for new instruction support and 2269 LoC
for our tracking logic.
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4.1.1 Taint policy

We offer several venues for specifying taint sources, depending on the use case: First,
if the main application itself can be easily recompiled (e.g., a custom network program
linked against OpenSSL), the developer can call a special classify function, which
takes a memory address and a size parameter. The taint analysis Pintool tracks this
function and introduces taint for the corresponding memory when observing a call. In
addition, we support fully automated assigning of taint sources without recompilation:
Many cryptographic implementations read their private keys from the file system, so by
intercepting the open and read system calls we can detect accesses to such files and taint
the incoming data.

Our policy does not introduce taint sinks in the classical way; instead, those consist of all
traced memory accesses and information that is needed for the static countermeasure.
However, we offer a declassify function that explicitly marks data as no longer secret,
i.e., all associated taint is deleted. In addition, functions that transmit data over insecure
channels (e.g., network functions) remove taint as well. Thereby, we ensure that data that
is meant to be publicly available does not get damaged by remaining secrecy features.

4.1.2 Tracking secret-related instructions

In order to protect memory accesses in our mitigation, we need to identify all instructions
that read or write secret data at some point of the execution. The analysis distinguishes
between three different cases: For instructions that only process public data there is no
need to apply any ciphertext side-channel protection, whereas for instructions that only
process private data the content written to memory always gets randomized. Finally,
there are instructions that only occasionally access secrets and thus need to be able to
distinguish between public and secret memory. As the latter may come with a certain
performance overhead, the information about secrecy of accessed memory should be
included in the taint analysis result used for the static mitigation.

4.2 Identifying Memory Locations

As the taint analysis itself tracks secrets only through “raw” memory addresses, it
misses a lot of context: For example, there is no distinguishing between heap and stack
memory, and which function a given accessed stack frame belongs to. However, for a
static mitigation, we need certain information about each object in memory, like where it
is allocated and which offsets need to be protected. There are various kinds of memory
locations, i.e., static variables in the binary itself and dynamically allocated heap blocks
and stack frames, so we need to distinguish between those cases.
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4.2.1 Finding static variables

During the execution of cryptographic code, some instructions access data that lies
within the memory region of the mapped binary, i.e., static initialized or uninitialized
variables. Since we cannot access source-code level information about the program, we
develop a method to locate these variables and determine their size, as we aim to only
protect those that contain secret information. These fine-grained memory objects keep
their secrecy status during the whole execution (i.e., if a variable contains secrets at
some point, it is secret from the beginning until the end of a program run). For the static
variable detection, we implemented a small Pintool with 338 LoC that collects traces of
memory accesses in the data segments, matches these accesses to contiguous blocks in
the binary’s memory region and then produces an output file that can be parsed by the
main taint tracking Pintool.

4.2.2 Heap allocations

Heap allocations are tracked through explicit (de)allocations, e.g., the malloc, realloc,
calloc and free standard library functions. Similar to the static variables, the secrecy
status of a heap object is kept for its entire lifetime. However, the heap layout may be
different for each execution, so we cannot rely on fixed addresses to identify a heap
object. Generating a flat list of heap allocations and retrieving the secrecy information
using a counter variable is not useful either, as this restricts the hardened binary to a
single control flow path. Instead, we use the call stacks of the heap allocations: Apart
from rare cases where allocations are done in a loop, the call stack of each allocation
is unique and thus suitable for identifying it both during analysis and at runtime. The
call stack of an allocation is determined by keeping track of all calls and returns during
analysis and emitting the current call stack whenever an allocation function is observed
(Figure 5).

As for heap objects the application itself has full control over their layout and the stored
data types may vary depending on context, we cannot safely make assumptions about
relative offsets within a heap object. Thus, we opted for marking the entire object as
secret whenever a part of it gets tainted. While this overapproximation may lead to a
slightly higher overhead due to protecting more instructions than strictly necessary, it
reduces complexity and makes the static mitigation more robust. We also found that in
practice the impact is limited, as generally the size of a heap object correlates with the
amount of (private) data stored in it (e.g., big integer objects).
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call <multiply>11e1:

call <malloc>140b:

1432:

call <sign>1007:

call <malloc>

secret

call <multiply>1211:

call <malloc>140b: public

secret

Call Tree Allocation Call Stacks

1007 140b11e1

1007 140b1211

1007 1432

Figure 5: Call tree and resulting call stacks for three heap allocations. The call stack is accompa-
nied with secrecy information, i.e., whether a secret block was allocated. The offsets of call
instructions that lead to at least one secret allocation are marked bold and red; the offsets of
instructions that only lead to public allocations are marked green. This information is directly
reused in the instrumentation (see Section 5.2.2).

4.2.3 Tracking stack frames

The stack memory area is characterized by rather liberal (de)allocation and access strate-
gies, which makes separating individual stack frames difficult and thus complicates
tracking the exact offsets and lifetimes of secret variables. An easy solution would be
marking the entire stack as secret and protecting all instructions that ever access stack
memory, but this would introduce a lot of unnecessary overhead, since the stack is mostly
used for temporarily storing registers and small local variables that often do not contain
secret data. Instead, in order to avoid overtainting and the aforementioned performance
penalty, we developed a generic stack frame tracking strategy that allows to keep track of
secret data throughout the program execution by means of stack frame offsets. Contrary
to the heap, the stack usually conforms to fixed patterns built by the compiler, so we
can assume that relative offsets within a function’s stack frame are valid over multiple
executions.

Our proof-of-concept implementation does not rely on source code or function symbols,
but works with any standard-conforming binary. The stack allocation tracking consists
of identifying function calls, mapping a call target to an actual function for which a stack
frame initialization of the static instrumentation is needed and determining its respective
stack frame size, and building a list of secret offsets within that stack frame.

Most function calls are detected through call/ret-pairs; in addition, our analysis in-
cludes a heuristic for detecting tail calls, i.e., when a function is exited via a jmp instruction
to another function. Calls to functions in shared libraries present another challenge, as
the application invokes those through a call to the .plt section, which may in turn jump
into the dynamic runtime linker to resolve the actual function call target. In order to find
the function in the shared library and not its stub code in the caller’s .plt section, we
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need to follow the resolution process in the dynamic linker until we reach the actual call
target. This is done through a state machine that keeps track of the current linking state
and generates a mapping of .plt offsets to the corresponding functions.

After detecting a function, we proceed with determining its stack frame size. This is
achieved through several means: First, there may be explicit stack frame allocations
through instructions like push/pop and sub/add, which directly modify the stack pointer.
In addition, the x86-64 ABI permits functions to freely use a small chunk above the stack
pointer (which usually marks the end of a stack frame), the so-called red zone. We handle
this by updating the stack frame size whenever we observe an access outside a known
stack frame.

4.3 Binary Structure Analysis

Contrary to DBI, where the executed code is recorded and instrumented at runtime, SBI
must apply all changes in an offline manner, without being able to handle unexpected
states. Our proof-of-concept SBI-based mitigation needs further information besides
the DTA results, namely the precise bounds of all basic blocks and, for each instruction,
the usage of registers and status flags. The latter is necessary since the masking opera-
tions need scratch registers to store intermediate results, and inadvertently clobber the
status flags. While this information can be collected through static liveness analysis or
heuristics [19, 54], we decided to employ dynamic analysis here as well, as we already
have the necessary code coverage from the DTA. This approach marks only registers
and flags that are indeed used, avoiding unnecessary saves/restores and thus reducing
the runtime overhead. We created a specialized Pintool with 599 LoC that collects the
aforementioned information and passes it to the SBI tool.

5 Static Mitigation

With the information from the dynamic analysis we can now statically instrument the
affected binaries, hardening them against ciphertext side-channel attacks. We identify
consecutive basic block chains (functions), which are then copied and instrumented at
a new section in the binary. The original code locations are replaced by a number of
jumps to their instrumented counterparts, following an optimized trampoline-approach
described in Section 2.3. We then modify all vulnerable memory accesses to apply
masks, such that each of these memory writes is randomized. The resulting hardened
binaries are self-contained, i.e., they can be executed without an external instrumentation
framework.
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mov rcx, qword [rbp-0x20]00: ; read encoded (?) data

mov rax, qword [rbp-0x3ffff020]04: ; read mask

and rax, qword [rbp-0x2ffff020]0b: ; AND secrecy value

xor rcx, rax12: ; decode (?) data

shr rcx, 815: ; do actual computation

rdrand rax19: ; generate random mask

jnc 191d: ; retry on failure

mov qword [rbp-0x3ffff020], rax23: ; store new mask

and rax, qword [rbp-0x2ffff020]2a: ; AND secrecy value

xor rcx, rax31: ; encode (?) data

mov qword [rbp-0x20], rcx34: ; store encoded (?) data

Figure 6: Assembly code generated by CIPHERFIX-BASE for the instruction
shr qword [rbp-0x20], 8, that accesses both public and secret memory. As an in-
place shift, it has to first read and decode the left operand, compute the shift, and then encode
and store the result. The instrumentation tool identified rax and rcx as scratch registers,
which did not need to be preserved.

5.1 Masking Memory Accesses

After copying all affected basic blocks to a separate section, we can replace the vulnerable
memory accesses by hardened instruction sequences. As described in Section 3.4, we
mitigate the ciphertext side-channel by adding a random mask to each memory write to
a secret location. Some instructions have read and write accesses (e.g., arithmetic with a
memory operand acting both as source and destination), so they may need decoding and
encoding (Figure 6). String operations like rep movsq are replaced by an explicit loop
that decodes each word of the source data and re-encodes it for the destination, as not
the entire copied memory block may be secret. Our proof-of-concept implementation
supports protection of common arithmetic and move instructions, and a number of
vector instructions that occur in cryptographic code.

Each memory block is accompanied by a mask buffer and a secrecy buffer, which have
a constant distance dM resp. dS to the memory block’s address. Using a constant dis-
tance saves expensive look-ups for finding the appropriate buffers, reducing the total
overhead of the mitigation. For our test setup, we found that dM = 0x3ffff000 and
dS = 0x2ffff000 work well. These provide sufficient memory space while still fitting
into the signed 32-bit memory displacement immediate which is supported by x86-64,
and avoid penalties like aliasing when two addresses share too many low bits.
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5.1.1 Updating the masks

Apart from initializing the mask and/or secrecy buffers during setup (see Section 5.2),
we need to update the mask values before every write operation. To ensure that masks do
not have repeating or easily exploitable patterns, we sample them from a pseudorandom
number generator (PRNG). As we want to keep the overhead low, any such PRNG should
have a small code footprint and require as few registers as possible, which rules out
most classic software-based PRNGs. A natural choice on x86-64 is the rdrand instruction,
which fills a single general purpose register with random bytes. The instruction offers
cryptographically secure randomness. However, its security guarantees also lead to a
noticeable slowdown when the instruction is used extensively.

To work around this, we devised two additional PRNGs for mask generation. The first
one, named AES, makes use of the AES-NI vaesenc instruction to repeatedly apply the
first round of AES to an initially random 16-byte state with a random 16-byte round key.
The second PRNG is XorShift128+, a widely-used and fast full-period generator [48], for
which we created a vectorized implementation. In both cases, the new mask is extracted
from the state. For best performance, the AES PRNG needs two vector registers and
the XorShift128+ PRNG needs three. We found that usually enough such registers are
available, and, if not, the overhead for the additional save/restore is still smaller than
calling rdrand. We discuss the properties of the different PRNGs in Section 6.3.1.

5.1.2 Scratch registers and flags

For some operations, we need additional scratch register space for storing intermediate
results. Since we are restricted to working with an existing binary, we cannot exclude
registers from being allocated by the compiler and thus have to look for registers which
hold stale values, or save those values in a secure location. We use the results from the
structure analysis in Section 4.3 to identify suitable registers. To save general purpose
registers, we prefer using SSE vector registers via the vmovq and vpinsrq instructions, as
those are fast and immune to ciphertext side-channels. In the rare case where no vector
register is available, we store the scratch register’s original value in memory. To avoid
the expensive masking when writing a secret value to memory, we prioritize registers
that the taint tracking did identify as not holding secret data.

Similar to the registers, our instrumentation may overwrite status flags through the
encoding/decoding instructions. To save and restore single flags, we use the setcc

instruction family, while for multiple flags we rely on the lahf instruction, which copies
the entire flag state into the ah register.
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5.2 Managing Mask and Secrecy Buffers

The instrumented instructions assume that there is a mask buffer and a secrecy buffer
with a constant distance to the accessed memory address. Thus, for each memory block
that is accessed by such an instruction, we need to allocate a mask buffer at the corre-
sponding address and initialize it with random data, if it contains secret data. This comes
with a few challenges: First, there are several ways of allocating memory, namely the
stack, the heap and static fixed-size arrays in the binary itself. Then, not all memory
blocks in these regions are considered secret, so their masks and secrecy values need
to be initialized context-aware. In the following, we discuss strategies for handling the
various memory regions.

5.2.1 Stack

The stack is allocated by the operating system at application start and is used for storing
return addresses, register values and small local variables. The taint analysis produces
stack frame information for each function, which contains the size of the stack frame
and the relative offsets where secret data is stored. Accordingly, we insert a small code
gadget at the beginning of each function, that prepares its stack frame by generating
a random mask or setting the secrecy value for the respective offsets. The mask and
secrecy buffers for the stack are allocated on startup; the constant buffer distances work
well for the stack, as it usually resides within a well-known memory range and does not
grow beyond a few megabytes.

5.2.2 Heap

For most Linux applications, the heap is a contiguous memory region that is managed by
the standard library’s allocator. The heap starts at a random base address, and is resized
via the brk system call. The user then typically allocates memory by calling malloc or
realloc, which ensure that enough heap memory is available and return an appropriate
memory range.

To guarantee that there are mask and secrecy buffers backing the entire heap region, we
instrument the brk system call and (de)allocate corresponding memory each time the
heap grows or shrinks. The buffers are initially set to zero. We also replace the malloc

and realloc calls by custom code, which ensures that the corresponding mask and
secrecy buffers are correctly initialized depending on whether the allocated memory
should contain secret data or not. To identify the particular heap allocation, we resort to
tracking its call stack, as explained in Section 4.2.2. We achieve this through an allocation
tracker, which is an integer residing at a fixed memory address, and which is updated
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Allocation Tracker
0...0001

0...0011

0...0111

0...0010

0...0101

0...0011

Call Tree

call <multiply>11e1:

call <malloc>140b:

1432:

call <sign>1007:

call <malloc>

secret

call <multiply>1211:

call <malloc>140b: public

secret

Figure 7: Allocation tracking for the example from Figure 5. Each time a call instruction is
executed, the allocation tracker is shifted to the left, and 1 is added when this particular call
is part of a call tree leading to an allocation of a secret heap object. On return, the tracker is
shifted back to the right. The malloc/realloc handler code then checks whether the allocation
tracker has the value 2n − 1, i.e., whether it is all ones starting with the least significant bit. In
this case, the new heap object is considered secret; else, it is public.

on each call instruction that is part of a call stack that leads to a heap allocation. Before
each call, we left-shift the tracker variable, and add 1 if the call is part of a call stack that
leads to allocation of a secret heap memory object. With our allocation tracker, we can
reliably handle heap allocations even if we encounter non-constant control flow or when
a function is reused in a different context. An example is illustrated in Figure 7.

Contrary to malloc, the realloc function allows resizing or reallocating an existing heap
memory object, while keeping its contents. As the new object may have a different secrecy
setting than the old one, we have to ensure that the data is correctly decoded, copied and
encoded. However, realloc itself is not aware of the masks and secrecy information, so
to avoid losing information, our realloc handler copies the old data, mask and secrecy
buffers to a separate memory location, runs realloc, and then restores the contents at
the new location with the appropriate encoding.

If the instrumented program allocates lots of memory, the constant distance to the mask
and secrecy buffers may be insufficient, as the heap could at some point overlap with
its mask buffers. In this case, one could replace the affected malloc calls by a custom
allocator, that is injected into the instrumentation and operates outside the usual heap
area. Note that this still limits the maximum memory object size to the distance between
a memory address and its buffers, i.e., at most two gigabytes, if the instrumentation
should do without another scratch register for computing larger offsets.

5.2.3 Static arrays

Finally, the binary may have a number of static global variables, which reside in its data
sections. We embed the information about static memory objects containing secret data
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in the instrumented binary. On startup, an initialization routine walks through this list
and allocates and initializes the respective mask and secrecy buffers.

5.3 Implementation

We created a proof-of-concept implementation of our mitigation in C#, which takes the
dynamic analysis results and the target program and produces statically instrumented
binaries. The instrumentation tool has 7346 LoC, which includes a specifically developed
library for patching ELF64 files.

5.3.1 Instruction instrumentation

The instrumentation tool loads and parses the outputs from the taint tracking and the
structure analysis tools, and decodes the target ELF files. Then, for each individual
binary, the instrumentation is applied: First, we look for contiguous basic block chains
and identify appropriate code locations for inserting jumps to instrumentation code.
Next, we replace each memory accessing instruction marked by the DTA by a masked
version. After handling all basic blocks, we obtain a list of unmodified and instrumented
instructions, grouped by their respective basic blocks. In a final step, we re-assemble
those instructions and write them into a newly allocated ELF section, while patching the
basic blocks in the old .text section to jump to the instrumentation code.

5.3.2 Initialization

After the instruction-level instrumentation is done, we need to install infrastructure for
handling the int3 signals and some initialization code that allocates mask and secrecy
buffers. For this, we created an instrumentation header, which consists of 966 lines of
assembly code interleaved with some static constants which are later replaced by the
instrumentation tool. The instrumentation header hooks into the constructor of each
binary, which is executed by the dynamic linker when a binary is loaded into memory.
This way, we ensure that our initialization runs before all other application code. The
initializer of the main program sets up the signal handler, and determines the stack size
and base address. Then, it allocates mask and secrecy buffers for the stack. The initializers
of the main program and of all dynamic libraries iterate through the list of secret static
variables deposited by the instrumentation tool, and allocate and initialize mask and
secrecy buffers.
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6 Evaluation

We now evaluate the performance and security of the different CIPHERFIX variants. We
analyze whether there is remaining leakage with regard to collision attacks, and discuss
trade-offs between security and performance.

6.1 Experimental Setup

We evaluate our proof-of-concept implementation of CIPHERFIX against a number of
typical algorithms which are used in widespread protocols like TLS or SSH. To observe
variations caused by different implementations of the same primitive, we spread our
analysis over several common libraries, that are OpenSSL 3.0.2, WolfSSL 5.3.0, Mbed TLS
3.3.0 and libsodium 1.0.18. As primitives which were shown to be vulnerable to ciphertext
side-channel attacks [31], we picked EdDSA (Ed25519) and ECDSA (secp256r1), and
verified that these are still vulnerable in the given implementations. [33] demonstrated
an attack against the RSA signature scheme, which we included as well. We also added
ECDH (X25519) as a primitive that is widely used in cryptographic protocols and likely to
be vulnerable as well. As additional benchmarks, we included the symmetric primitives
AES-GCM and ChaCha20-Poly1305, the hash function SHA-512, and finally the Base64
decoding function as a non-cryptographic algorithm, that is nevertheless often present
in cryptographic applications.

The analysis, instrumentation and all measurements were performed on an AMD EPYC
7763 CPU with Zen3 microarchitecture, which supports SEV-SNP. All libraries were
compiled with GCC 9.4.0 on Ubuntu 20.04.4 LTS. MbedTLS was linked statically, while
the other libraries were linked as shared libraries.

6.2 Performance

To get the information necessary for the mitigation, we ran the dynamic analysis as
described in Section 4. We found that we achieve sufficient coverage by executing each
target 10 times with random inputs in a loop, except for WolfSSL RSA, which required 20
due to high control flow variation introduced by blinding. In all cases, the time required
for dynamic analysis was less than 5 minutes, with around 80% of the time taken by the
register tracking in the structure analysis, and most of the remaining time by the taint
tracking. The most expensive target, Mbed TLS ECDH, required tracking 170 532 009
executed instructions (5167 unique). While the register tracking could be scrapped in
favor of a faster but potentially less precise static liveness analysis (as done by several
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binary rewriting tools), note that these steps are executed offline and only need to be
done once to protect a binary, so we deem an analysis time of a few minutes acceptable.

6.2.1 Runtime overhead

To measure the runtime overhead of the different CIPHERFIX variants, we executed each
target with 1000 random inputs, averaged the measured execution times, and computed
the relative overhead compared to the original implementation. An overview of the
resulting overall slowdowns of the different CIPHERFIX variants is given in Table 2.
As expected, CIPHERFIX-FAST has the lowest overhead, CIPHERFIX-ENHANCED has
the highest, and CIPHERFIX-BASE lies in between. The slowdown of CIPHERFIX-BASE

compared to CIPHERFIX-FAST is caused by the additional read for each protected memory
access; in most cases, CIPHERFIX-ENHANCED performs quite similar to CIPHERFIX-BASE,
except for the symmetric primitives and utility functions which have a vastly higher
number of 1-byte writes.

Moreover, generating masks with rdrand introduces a much higher overhead than with
one of the other PRNGs. This is caused by the continuous reseeding of the underlying
shared hardware PRNG, in combination with rdrand not being designed for sampling
random numbers at a high frequency. The smallest overhead is achieved with the AES

PRNG, as it consists of a single vaesenc instruction and only needs two vector registers.
A detailed overview over all runtime overhead measurements is given in Table 1.

6.2.2 Code properties contributing to overhead

We identified several major factors that determine the overhead when hardening a par-
ticular implementation with CIPHERFIX. First of all, code that heavily relies on memory
accesses for dealing with secret information is clearly more susceptible to overhead intro-
duced by instrumentation than code that performs most computations in registers. This
becomes apparent when comparing the RSA implementations of Mbed TLS and WolfSSL:
Though for WolfSSL a higher percentage of the memory accesses is instrumented (78%
writes vs. 65%), Mbed TLS has an order of magnitude more memory operations than
WolfSSL and thus gets a higher overhead. Similarly, some instructions are more expen-
sive than others in terms of ciphertext side-channel hardening: For example, arithmetic
directly applied to memory operands requires a full decoding and re-encoding cycle (cf.
Figure 6), which is slow due to direct data dependencies between the steps. We observed
this for Mbed TLS ECDSA, which gets a much higher overhead (7.1x vs. 1.6x) than the
comparable implementation in WolfSSL, mostly due to expensive adds in a hot code
path.
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Table 1: Runtime overhead of instrumented binaries. For each CIPHERFIX variant and PRNG, we
measured the execution time in milliseconds (ms) of 1000 executions of each primitive and
the corresponding overhead factor to the original implementation. The target AES refers to
AES-GCM, the target CC20 to ChaCha20-Poly1305. The last row shows the geometric mean of
the respective overheads for each CIPHERFIX variant.

Target orig
CF-FAST CF-BASE CF-ENHANCED

AES XS+ rdrand AES XS+ rdrand AES XS+ rdrand

lib
so

di
um EdDSA time 29 159 166 1159 189 248 1133 214 245 1134

factor - 5.5x 5.7x 40.0x 6.5x 8.6x 39.1x 7.4x 8.4x 39.1x

SHA512 time 9 14 20 196 21 22 194 22 25 194
factor - 1.6x 2.2x 21.8x 2.3x 2.4x 21.6x 2.4x 2.8x 21.6x

m
be

dT
LS AES time 104 297 377 2849 364 371 2576 1204 1213 2683

factor - 2.9x 3.6x 27.4x 3.5x 3.6x 24.8x 11.6x 11.7x 25.8x

Base64 time 10 12 13 58 16 16 45 28 30 46
factor - 1.2x 1.3x 5.8x 1.6x 1.6x 4.5x 2.8x 3.0x 4.6x

CC20 time 144 324 332 2945 542 570 2952 1785 1721 3059
factor - 2.3x 2.3x 20.5x 3.8x 4.0x 20.5x 12.4x 12.0x 21.2x

ECDH time 1855 3674 3778 8559 9425 9440 14 419 9926 10 208 14 827
factor - 2.0x 2.0x 4.6x 5.1x 5.1x 7.8x 5.4x 5.5x 8.0x

ECDSA time 472 3367 3558 8920 3912 3929 8297 4265 4301 8374
factor - 7.1x 7.5x 18.9x 8.3x 8.3x 17.6x 9.0x 9.1x 17.7x

RSA time 896 3276 3777 28 886 5436 5339 27 148 5527 5663 27 208
factor - 3.7x 4.2x 32.2x 6.1x 6.0x 30.3x 6.2x 6.3x 30.4x

O
pe

nS
S

L ECDH time 172 541 550 2408 664 657 2323 708 807 2369
factor - 3.1x 3.2x 14.0x 3.9x 3.8x 13.5x 4.1x 4.7x 13.8x

ECDSA time 516 939 1121 7181 1795 1855 9980 2051 1973 10 072
factor - 1.8x 2.2x 13.9x 3.5x 3.6x 19.3x 4.0x 3.8x 19.2x

W
ol

fS
S

L AES time 147 268 269 793 400 403 880 397 402 879
factor - 1.8x 1.8x 5.4x 2.7x 2.7x 6.0x 2.7x 2.7x 6.0x

CC20 time 167 428 432 2787 596 630 2802 1157 1242 2874
factor - 2.6x 2.6x 16.7x 3.6x 3.8x 16.8x 6.9x 7.4x 17.2x

ECDH time 146 258 437 4217 544 565 4070 541 558 4070
factor - 1.8x 3.0x 28.9x 3.7x 3.9x 27.9x 3.7x 3.8x 27.9x

ECDSA time 1092 1704 1954 15 765 3945 3834 18 631 3883 3897 19 654
factor - 1.6x 1.8x 14.4x 3.6x 3.5x 17.1x 3.6x 3.6x 17.1x

EdDSA time 60 124 156 1897 279 265 1759 280 290 1761
factor - 2.1x 2.6x 31.6x 4.7x 4.4x 29.3x 4.7x 4.8x 29.4x

RSA time 133 248 334 2901 588 605 2863 602 651 2870
factor - 1.9x 2.5x 21.8x 4.4x 4.5x 21.5x 4.5x 4.9x 21.6x

average factor - 2.4x 2.7x 16.8x 3.9x 4.0x 17.3x 5.1x 5.3x 17.5x
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Table 2: Performance measurements for the different CIPHERFIX variants and PRNGs. Each entry
shows the geometric mean of the runtime overhead over all targets compared to the original,
uninstrumented binary.

AES XS+ rdrand

FAST 2.4x 2.7x 16.8x
BASE 3.9x 4.0x 17.3x
ENHANCED 5.1x 5.3x 17.5x

Finally, the overhead is influenced by the general structure of the instrumented code, and
the optimization capabilities of the binary rewriting framework. A framework operating
at basic block level could perform better than our proof-of-concept implementation,
which instruments each instruction in isolation to ease leakage analysis and debug-
ging. For example, scratch registers may not need to be restored between usages, and
instructions could be reordered to avoid saving status flags. This is particularly relevant
as the compiler tends to interleave arithmetic instructions that have direct status flag
dependencies with memory accesses (e.g., add-mov-adc).

A detailed overview over the observed memory accesses is given in Table 3 in Ap-
pendix B.

6.3 Security

In the following, we illustrate reasons for remaining collisions after applying the different
variations of CIPHERFIX and evaluate its practical security.

6.3.1 Leakage sources

As we assume full path coverage of the implementation (see Section 7.2) and our taint
tracking does not undertaint, all vulnerable instructions are identified and protected.
Thus, the only remaining source of leakage are collisions of the masks or the masked
plaintexts: With CIPHERFIX-BASE, the secrecy information is stored in a separate buffer. If
the mask M is fully random and independent from the plaintext P , the masked plaintext
P̂ becomes independent from P as well. However, the attacker can access both ciphertexts
CP̂ = Encpt(P̂ ) and CM = Encmask(M), so they are able to detect whether P̂ or M appear
repeatedly. If the data memory block is rarely changed and the number of protected bits is
sufficiently low, a mask collision is possible and may leak information about the plaintext.
A similar issue can occur with CIPHERFIX-FAST, which stores the secrecy information
directly in the mask buffer by setting the mask to zero for public values. We can assume
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that the attacker knows the ciphertext C0 = Encpt(0) of an unmasked zeroed data block,
as memory usually is zero initialized. If they observe C0 again after a write of P with
mask M ̸= 0, they can use that C0 = Encpt(P ⊕M) and thus P = M to infer that P ̸= 0.
These leakages through masks or masked plaintexts are mostly relevant for 1-byte writes
to variables in memory blocks with little other activity. With CIPHERFIX-ENHANCED,
we enforce a minimum width of masked data, which further reduces the probability of
mask collisions and other non-unique writes at the cost of a slightly higher overhead.

Another factor is the quality of the PRNG used for mask generation, for which we
identified two primary criteria. First, the pseudorandomness should not correlate with
the plaintexts: For example, simply incrementing the masks may lead to many collisions
of the masked plaintexts in algorithms that use linear arithmetic. Second, deterministic
PRNGs should have a sufficient cycle length, to keep an attacker from reliably triggering
the same mask at the same address during the application’s runtime. Rdrand offers the
fastest available solution for cryptographically secure pseudorandomness. However,
given the subsequent memory encryption, the used PRNG does not necessarily need
to be cryptographic, as long as it satisfies the above criteria and thus does not tend to
generate repeating masks or masked plaintexts. XorShift128+ has a cycle length of 2128−1

and passes all BigCrush tests of the TestU01 suite [29], though it has some weaknesses [22].
Our custom one-round AES PRNG passes all BigCrush tests and seems to perform well in
practice, but does not have a guaranteed cycle length. We leave this analysis to future
work.

6.3.2 Observed collisions

To analyze potentially remaining ciphertext collisions, we extended the taint tracking to
export a full trace of all memory writes alongside corresponding secrecy information.
We then created a Pintool that generates a trace of all memory writes for an instru-
mented binary. As each original memory access may be replaced by multiple memory
accesses during instrumentation, we inserted special marker instructions that denote
the beginning and end of a particular instrumented memory access sequence. With
this information, we align the traces using a custom evaluation tool, and proceed with
checking whether there are repeated writes of the same secret value to the same address.
As the dictionary attack builds upon the collision attack, finding no collisions implies
security against all known ciphertext side-channel attack primitives. We found that using
the same amount of test cases for our evaluation as for the initial taint tracking was
sufficient, as due to the size and complexity of the evaluated targets systematic issues
already appear during the first few executions.

We were able to confirm the suspected remaining leakages with our evaluation. For
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example, there are several thousand collisions for CIPHERFIX-BASE and CIPHERFIX-FAST

with the Mbed TLS AES-GCM target, which encrypts 16 KiB of plaintext using AES-NI
and has 812 120 1-byte writes, which is 66% of its total writes. The observed collisions
both included repeating masks and cases where applying a new mask to a new plaintext
led to the same result. All colliding 1-byte writes were related to sequential writing into
an array, e.g., when data is copied or buffers are cleared between different processing
steps. The corresponding collisions had high temporal locality and the respective 16-byte
blocks only appeared exactly two times, so while there is some leakage, its exploitability is
limited. With CIPHERFIX-ENHANCED, all collisions disappeared. All observed collisions
in the analyzed targets were for 1-byte writes, which suggests that restricting CIPHERFIX-
ENHANCED to 1-byte writes (and possibly 2-byte writes) is sufficient. We encountered
almost no 2-byte writes in our experiments. We further discuss the security impact of the
collisions in CIPHERFIX-FAST in Section 6.4.

We did not see any relevant difference between the particular PRNGs: The number
of collisions is roughly equal, and there was no 32-bit mask collision even for the tar-
gets with the highest number of instrumented writes. This suggests that they are all
generally suited for generating masks for the evaluated primitives within the given
constraints. Nevertheless, the decision for a particular PRNG should not be made easily,
as is discussed in the next section.

6.4 Balancing Security and Performance

Each variant and PRNG comes with its own advantages and drawbacks. We point out
some guidelines for choosing the best composition for a given use case.

6.4.1 Properties of the implementation

To determine the most suitable variant of CIPHERFIX, one should look at the properties
of the given implementation. For example, symmetric primitives, which showed a huge
amount of 1-byte writes in our evaluation, do not necessarily need to be hardened
against ciphertext side-channels. With hardware extensions like AES-NI and CLMUL,
we found that leakage is mostly restricted to copying of inputs and outputs between
encryption rounds. Thus, if the same buffer is reused for multiple blocks, the attacker
may occasionally learn that a particular plaintext block or parts of it repeat. Whether this
is tolerable depends on the specific use case.
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6.4.2 Choosing a CIPHERFIX variant

While CIPHERFIX-FAST has the least performance overhead, it has the additional risk of
leaking whether the mask and the plaintext are equal, as described in Section 6.3.1. While
we did not observe that particular scenario, we saw several 1-byte collisions in WolfSSL’s
X25519 cswap implementation. This suggests that CIPHERFIX-FAST and CIPHERFIX-BASE

are dangerous even for algorithms with a very small number of 1-byte writes. Future
work may develop a further variant that uses a merged mask/secrecy buffer but widens
small writes to 4 bytes, to get both the performance benefit of CIPHERFIX-FAST and
the protection of CIPHERFIX-ENHANCED. For deciding between CIPHERFIX-BASE and
CIPHERFIX-ENHANCED, we generally recommend choosing the latter due to the better
protection of 1-byte writes. While we observed a higher performance overhead, the
difference was almost exclusively caused by the symmetric primitives which do a lot of
1-byte operations. Excluding the symmetric implementations from the geometric mean
yields an overhead of 5.2x for CIPHERFIX-ENHANCED versus 4.9x for CIPHERFIX-BASE

and the XorShift128+ PRNG.

6.4.3 Choosing a PRNG

Despite the high security guarantees, the considerable performance overhead of CIPHER-
FIX with rdrand suggests that this PRNG is not suitable for use with primitives that
have a lot of vulnerable memory accesses. On the other hand, our custom AES PRNG is
very fast and did not exhibit more collisions than the other PRNGs in our experiments,
but is not well examined in terms of statistical properties and cycle length. Thus, as
a compromise, we suggest using a fast PRNG that is well-analyzed and meets the cri-
teria outlined in Section 6.3.1, such as XorShift128+, which only introduced a slightly
higher overhead than AES. As a workaround for an insufficient cycle length or concerns
that a high number of samples may expose weaknesses, the PRNG may be periodically
reseeded with fresh entropy via instructions like rdseed, e.g., each time before the hard-
ened primitive is executed. Finally, a production-level implementation of CIPHERFIX may
combine different PRNGs, like a fast one for hot code paths and rdrand elsewhere.

6.4.4 Practical impact of overhead

Note that we focused our performance analysis on isolated cryptographic primitives,
which does not reflect their typical use case. Instead, they are usually embedded into a
higher-level application like a network protocol, which limits the practical influence of a
moderate overhead in a specific component. For example, in TLS, only the handshake
is subject to asymmetric cryptography that needs to be hardened against ciphertext
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side-channel attacks. The predominant part of the protocol’s runtime, the symmetric
encryption and transmission of the payload, may not need as much costly protection.

7 Discussion

We conclude our study with a discussion of some design decisions of CIPHERFIX, and
point out possible angles for future work which may improve accuracy and perfor-
mance.

7.1 Source Code vs. Binary Instrumentation

Instead of instrumenting binaries, the implementations could be hardened during com-
pilation: As the compiler can freely adapt the code layout and is not restricted during
register allocation, it can generate more efficient binaries. However, this comes with some
obstacles. First, a source-based approach would need to be able to deal with handwritten
assembly code, which is abundant in highly-optimized libraries like OpenSSL or libc.
This assembly code is opaque to the compiler, but can be handled transparently by binary
instrumentation.

A second obstacle is a leakage analysis that spans multiple libraries. At the beginning,
the application developer would need to checkout the source code of all relevant depen-
dencies, such that they can be recompiled with the appropriate protection. The compiler
can then conduct a static data flow analysis that identifies all program points that may
come in contact with secret data [8]. As we found during our experiments, a particular
library may call a function in another library with secret parameters, so conducting a
leakage analysis on a library in isolation is insufficient. This leaves two options: First, the
leakage analysis can choose to protect the parameters of the entire outward facing API
of a given library, such that all incoming function calls are assumed as passing secret
data. However, this significant overapproximation is likely to neutralize the performance
benefit of a compiler-based solution. Thus, as a second option, we may try to conduct
the leakage analysis over all code bases at once. This is hindered by the fact that static
analysis of a large code base like OpenSSL or libc is already difficult, and even more so
when looking at several such code bases with different build systems and structure. At
the very least, it would require lots of manual tuning by the application developer.

An alternative to binary rewriting that is worth exploring for a production-level imple-
mentation of CIPHERFIX is a hybrid approach combining dynamic analysis and compiler-
based instrumentation: First, a dynamic analysis is conducted over all libraries as de-
scribed in Section 4. However, the results are then not used to instrument the binaries
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using SBI, but are sent back to the compiler. A suitable level for this is the intermediate
representation (IR) of LLVM: The IR can be executed through a VM, enabling dynamic
analysis. At the same time, it is abstract enough to still allow compiler optimizations
between inserting the masking code and generating ELF binaries. Applying the analysis
and instrumentation to IR also avoids the practical problems of dealing with large code
bases, as those can be normally translated and linked into IR files. However, contrary to
binary rewriting, this method still requires some effort from the library developer, and
cannot straightforwardly deal with handwritten assembly code, that would need to be
lifted to an equivalent IR representation first. Finally, advanced binary rewriting engines
that generate symbolized reassemblable disassembly already offer performance similar
to the compiler.

7.2 Analysis Coverage

Independent of the approach on instrumentation, we need to find all loads and stores
that ever deal with protected data. Missing instructions during the secrecy analysis may
lead to loading or storing invalid data, which can in turn cause functional incorrect-
ness or crashes of the hardened binary. In constant-time implementations, there are no
secret-dependent branches and memory accesses. However, it is useful to support some
secret-independent control flow variation, e.g., for error handling or processing messages
of varying length. As our analysis is dynamic, we have to rely on our inputs generating
sufficient coverage, that is covering every possible execution path between classification
and declassification of secrets. The secret tracking must not underapproximate (under-
taint), as this may lead to missing leakages or instability due to instructions that cannot
handle masked data. Overapproximation (overtainting) is acceptable to speed up leak-
age analysis, but may lead to unnecessary instrumentation and thus a higher runtime
overhead. We found that few random inputs were sufficient to get the coverage needed
for our analysis; however, one could also employ techniques like fuzzing to maximize
the chances of finding all relevant code paths, especially when applying CIPHERFIX to
non constant-time code. Fuzzing and a larger test case body would only impact the
overhead of the offline analysis step.

Another approach for achieving full coverage is using a purely static analysis, which may
be conducted either on binaries or as part of a pure compiler-based solution. However,
even for the smaller exploitable primitives, we measured several tens of millions of
executed instructions for a single dynamic analysis iteration, which poses a huge amount
of instructions to analyze for a static analysis. To make this feasible, the static analysis
would need to make some approximations, which would in turn increase the runtime
overhead of the mitigation.
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7.3 Alternatives to Masking

Our masking approach ensures that the written values are independent from the actual
plaintexts. However, as mentioned in [31], instead of randomizing the values written to
the same address, it is also possible to randomize the address itself. This approach would
need a separate memory area for secret data. The area can, for example, be implemented
as a queue with used and free space that is updated with each write. The original memory
locations then point to the corresponding block in the secure memory area. The resulting
memory overhead becomes a security parameter: The bigger the secure memory area, the
lower the risk of collisions. In early experiments, we found that the instrumentation for
this approach would have significantly higher overhead due to the management of the
queue. It is better suited for narrow cases where code that deals with a well-defined data
structure is hardened manually, e.g., the register save/restore during a kernel context
switch. In our setting, we do not see an advantage of using randomized addresses instead
of masking.

In a compiler-based setting, it is also possible to securely store data by interleaving it
with random nonces. For example, each 16-byte block in AMD SEV can be split into two
8-byte halves, where the first half receives the payload, while the second half is treated
as a nonce that is incremented on each write. Note that this has to be done in a single
step, so the entire block may need to be buffered in a vector register, that is then written
at once. This method guarantees that there are no collisions for 264 writes to a given
block, and has a higher locality of memory accesses, as no mask buffer is necessary. In
addition, reads are almost as fast as for unprotected data, as no decoding is necessary.
However, it has a high implementation complexity, as the compiler has to detect code
that uses pointers to iterate over arrays and adjust such loops accordingly. Finally, the
compiler needs to install logic for detecting unaligned accesses that may span multiple
payload blocks, introducing a different kind of overhead. Nevertheless, interleaving may
be worth exploring for programming languages that abstract away the memory layout
of data structures and do not allow raw pointers.

7.4 Compatibility to CFI

Along with constant-time code and ciphertext side-channel mitigations, there are further
mechanisms for ensuring secure code execution, an important one being control flow
integrity (CFI) protection. For example, Intel and AMD provide the so-called control flow
enforcement technology (CET), that detects unwanted control flow modifications through
a shadow stack and by enforcing that indirect jumps and calls point to special endbr64
instructions. Besides inserting direct jumps to the instrumentation section, which may
be avoided by using a more sophisticated binary rewriting framework, our ciphertext
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side-channel mitigation does not modify the control flow. Indirect branches still point to
endbr64 instructions, and the call stack is left untouched. Thus, CIPHERFIX is compatible
with CFI mechanisms like CET.

8 Related Work

Dynamic taint analysis is a software analysis technique that is implemented in a variety
of tools [15, 16, 18, 25, 27, 42]. Data flow based information tracking can support finding
vulnerabilities in source or binary code. On the one hand, it can be used to increase the
branch coverage of fuzzers like the AngoraFuzzer [14] or VUzzer [44] by checking on
which bytes of secret inputs branching decisions are based. On the other hand, taint
analysis can help to keep sensitive data always encrypted in memory through data
protection tools like DynPTA [41] which is a compiler-based approach.

Automated analysis of side-channels in binaries focuses on finding non-constant-time
behavior by analyzing leakages that can be modeled in different ways. There is a number
of tools, which use DBI to observe leakages at runtime [51, 52] or detect secret-dependent
accesses through symbolic execution [17, 49, 50]. Those existing tools for finding side-
channel leakages do not cover the ciphertext side-channel attack vector, as it is not
originated from a deviation in the behavior of memory accesses, but rather from the
content of write accesses which affects the ciphertexts. However, they can be used to
initially verify whether the code is constant-time, as non-constant-time code is even
easier to attack than through the ciphertext side-channel.

Memory protection mechanisms implement the protection of sensitive data in memory.
Data space randomization (DSR) [7] randomizes the representation of data that is stored
in memory, with the aim of thwarting control flow hijacking attacks. This is done by
instrumenting the code so that masks are added to or removed from variables before
or after memory load and store operations. CoDaRR [43] extends DSR with a protection
against leaking the masks that are used for DSR so that rerandomization prevents from
recovering the secrets through attacking masks. These solutions are source code-based
and thus not applicable for our tool.

Static binary instrumentation builds the basis for binary-level analysis and protection
tools with different ways to insert additional code. The trampoline SBI approach is
used by tools like Detours [24] and PEBIL [30] which relocate functions to newly-added
.text and .data sections together with a redirection to these sections through 5-byte
jumps. The technique is extended with inserting int3 when a jump instruction does
not fit in BIRD [38] and short 2-byte intermediate jumps in DynInst [11, 23]. In our
work, we implemented an optimized combination of different jumps and int3 to build a
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lightweight static instrumentation. For a production-level implementation of CIPHERFIX,
a sophisticated instrumentation framework should be used, but for our study, a custom
tool tailored to the interaction with the dynamic analyses was easier integrated. Another
way of coping with 5-byte jumps is instruction punning, as implemented in LiteInst [13]
and E9PATCH [21]. This technique uses address offset bytes in a jump instruction to also
encode instructions, so fewer bytes need to be overwritten. For our mitigation implemen-
tation, we did not employ instruction punning, as it introduces additional complexity
and memory overhead due to the jump targets being scattered over a large memory
area. RetroWrite [19] uses symbolization to generate reassemblable assembly that can
be equipped with instrumentation passes and yields an optimized instrumented binary.
Layout-agnostic binary rewriting can be performed with Egalito [54] that uses metadata
to lift the program into a specialized intermediate representation. These approaches
yield more efficient binaries, but need additional support for stripped binaries and some
forms of inline assembly as used by libraries like OpenSSL, respectively.

9 Conclusion

In this work, we have presented a drop-in technique for automatically protecting binaries
from leaking processed secrets through a ciphertext side-channel. Our approach com-
prises finding vulnerable code parts and then protecting them by preventing observable
ciphertext changes based on secret data. The leakage localization technique combines
dynamic binary instrumentation and dynamic taint analysis to protect only those mem-
ory accesses that deal with secrets or secret-derived data. The mitigation introduces
randomness such that the plaintexts written to memory change for each write, leading to
corresponding unique ciphertexts. We have shown that the highest security level of our
proof-of-concept implementation can detect and mitigate all leaking memory accesses,
with a very small probability of remaining leakage. Since there is no indication of fixes
for existing or upcoming hardware, CIPHERFIX is a suitable approach for protecting
software against the ciphertext side-channel.
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A Static Instrumentation Example

55 push rbp

48 89 e5 mov rbp, rsp

85 d2 test edx, edx

74 0e je 1a

8a 0e mov cl, byte [rsi]

88 0f mov byte [rdi], cl

48 ff c7 inc rdi

48 ff c6 inc rsi

ff ca dec edx

eb ee jmp 08

c9 leave

c3 ret

00:

01:

04:

0a:

0c:

0e:

10:

13:

16:

18:

08:

48 83 ec 18 sub rsp, 0x10

1a:

1b:

e9 xx xx xx jmp instrument+00

xx

85 d2 jmp 11

74 0e je 1a

e9 xx xx xx jmp instrument+0c

xx

e9 xx xx xx jmp instrument+08

xx

ff ca dec edx

eb ee jmp 08

c9 int3

c3 ret

00:

04:

05:

0a:

0c:

10:

11:

15:

16:

18:

08:

83 ec 18 (invalid)

1a:

1b:

55 push rbp

48 89 e5 mov rbp, rsp

85 d2 test edx, edx

74 0e je instrument+1a

8a 0e mov cl, byte [rsi]

88 0f mov byte [rdi], cl

48 ff c7 inc rdi

48 ff c6 inc rsi

ff ca dec edx

eb ee jmp instrument+08

c9 leave

c3 ret

00:

01:

04:

0a:

0c:

0e:

10:

13:

16:

18:

08:

48 83 ec 18 sub rsp, 0x10

1a:

1b:

.text: .text: .instrument:

Figure 8: A simple memcpy implementation (left), and the resulting static instrumentation (right).
The basic blocks of the original code are separated by dashed lines, control flow edges are
marked with arrows. The first basic block has sufficient space for a direct 5-byte jump to the
instrumentation code. The second basic block only has 4 bytes, but the third basic block offers
space for two 5-byte jumps, so the second basic block gets a 2-byte jump to the third basic
block (offset 11) and from there a 5-byte jump to the instrumentation code. For the fourth basic
block, all remaining space in the other basic blocks is already consumed, so it has to use an
int3 instruction. Execution that ends up at the beginning of any of the original basic blocks is
always redirected to their counterparts in the .instrument section.
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B Evaluation Results

Table 3: Memory accesses that have to be instrumented. Writes are split by their size, whereby
#n denotes the number of n-byte writes. % instr. reads/writes shows the respective total
percentage of instrumented accesses. Each target was iterated 10 times.

Target # reads
instr. reads

# writes
instrumented writes

# % #1 #2 #4 #8 #16 #32 %

libsodium

EdDSA 648 453 448 415 69 441 736 4681 0 0 372 600 6180 1160 87
SHA512 200 328 82 722 41 104 000 810 0 0 58 718 4800 784 62

mbedTLS

AES 1 887 551 1 403 255 74 1 237 457 812 120 0 42 20 715 30 256 304 70
Base64 195 458 16 020 8 128 552 23 599 0 0 5130 0 0 22
CC20 1 737 111 1 487 956 86 1 105 221 641 280 0 250 910 217 60 140 10 068 87
ECDH 37 328 410 3 454 726 9 18 773 246 0 0 881 397 1 566 188 0 1 172 058 19
ECDSA 7 120 602 3 301 437 46 3 748 086 14 240 10 260 673 1 447 753 7674 123 806 49
RSA 21 203 381 12 012 577 57 12 068 011 1950 10 360 804 7 303 398 1243 122 320 65

OpenSSL

ECDH 4 799 917 390 344 8 2 532 111 2750 0 2550 248 691 62 470 10
ECDSA 12 041 083 5 463 996 45 6 950 318 2329 0 524 025 2 671 708 1492 3762 46

WolfSSL

AES 3 661 782 1 550 484 42 288 454 13 150 0 90 630 60 427 10 234 0 60
CC20 2 603 432 1 547 406 59 994 267 320 320 0 476 140 25 893 20 020 0 85
ECDH 2 317 955 1 753 953 76 1 916 549 1248 0 10 752 1 409 475 20 0 74
ECDSA 19 969 154 11 606 148 58 9 519 250 721 0 543 354 5 292 431 258 140 1584 64
EdDSA 1 213 466 694 483 57 884 122 4711 0 11 560 568 368 40 82 66
RSA 2 350 077 1 886 260 80 1 193 204 1351 0 106 801 753 096 20 580 46 176 78
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Obelix: Mitigating Side-Channels through Dynamic
Obfuscation

Jan Wichelmann, Anja Rabich, Anna Pätschke, and Thomas Eisenbarth.

Universität zu Lübeck

Trusted execution environments (TEEs) offer hardware-assisted means to protect
code and data. However, as shown in numerous results over the years, attackers
can use side-channels to leak data access patterns and even single-step the code.
While the vendors are slowly introducing hardware-based countermeasures for some
attacks, others will stay unaddressed. This makes a software-level countermeasure
desirable, but current available solutions only address very specific attack vectors or
have a narrow leakage model.

In this work, we take a holistic view at the vulnerabilities of TEEs and design a tool
named OBELIX, which is the first to protect both code and data against a wide range
of TEE attacks, from cache attacks over single-stepping to ciphertext side-channels.
We analyze the practically achievable precision of state-of-the-art single-stepping
tools, and present an algorithm which uses that knowledge to divide a program into
uniform code blocks, that are indistinguishable for a strong attacker. By storing these
blocks and the program data in oblivious RAM, the attacker cannot follow execution,
effectively protecting both secret code and data. We describe how we automate our
approach to make it available for developers who are unfamiliar with side-channels.
As an obfuscation tool, OBELIX comes with a considerable performance overhead,
but compensates this with strong security guarantees and easy applicability without
requiring any expert knowledge.

1 Introduction

With ongoing digitization, there is a growing demand for hardware-enforced security
that cannot be bypassed by privileged malicious parties on the same system. This applies
to moving sensitive data processing to the cloud, but also to local applications which
verify the user’s identity or enforce the validity of software or content licenses. Owners of
sensitive workloads may want to protect both their secret data and their code. Processor
vendors recognized these demands and designed a variety of so-called Trusted Execution
Environments (TEEs) that use hardware access control and cryptography to restrict access
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to code and data to its owner. Examples are Intel SGX [28] for user-space processes, and
AMD SEV [5] and Intel TDX [30] for whole-VM protection.

However, in recent years, there have been numerous examples of how gaps in the threat
model and implementation issues can be exploited to tamper with the executed code or
extract secret data. For example, all currently available TEEs are known to be vulnerable
to microarchitectural side-channels like TLB and cache attacks [6, 24, 45]. For simplicity,
we refer to those as timing side-channels. An attack method that is more specific to TEEs is
single-stepping [13, 59], which allows an attacker to precisely measure the execution of
single instructions. While those attacks do not allow direct access to the protected data,
the attacker gets valuable information about the TEE’s execution state, which may be
used to partially derive the currently processed data and code, e.g., through counting
instructions [41] or measuring their execution time [12, 46]. Another TEE-related attack
vector are ciphertext side-channels [36, 37], where the attacker frequently reads encrypted
memory and observes whether the ciphertext at a specific address changes, breaking
common constant-time primitives.

For each of those attacks, there are numerous proposed countermeasures and tools,
which focus on protecting the secret data [21]. Only few hardware-based methods were
deployed by CPU vendors yet, so software-level countermeasures are necessary. For
example, timing attacks can be mitigated by writing constant-time code or linearizing
existing code [8]. Recently, with AEX-Notify [18], a hardware-assisted single-stepping
countermeasure for Intel SGX was introduced, but that does not apply to other TEEs in the
field. Some libraries employ custom-crafted constant-time code to defend against timing
and single-stepping attacks, but that code still remains vulnerable to ciphertext side-
channel attacks [36]. At the time of writing, the only available automated countermeasure
for ciphertext side-channels is Cipherfix [58], which relies on dynamic taint tracking and
binary rewriting and thus lacks the stability needed for practical deployment. Writing
robust code that is immune to all known attack vectors requires expert knowledge, takes
a lot of resources and still is not guaranteed to be side-channel free. Finally, it is not
straightforwardly possible to protect the code itself against extraction by the attacker,
which may be desirable if it, for example, contains secret algorithms.

In this work, we take a broad view at security issues on TEEs. We classify currently
known attack vectors against commonly available TEEs, and discuss the suitability of
existing software-level defenses, finding that each only addresses a subset of attacks.
Subsequently, we show how those attack vectors can be averted with a single, modular
drop-in countermeasure that does only require minimal action from the user. Contrary
to other mitigation approaches, our approach named OBELIX does not only aim to
protect secret data, but also the executed algorithms, against all relevant side-channel
vulnerabilities. OBELIX takes and advances the ideas from Obfuscuro [2], to build a
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dynamic obfuscation engine which runs within any TEE and can reliably protect code
and data against extraction. Based upon an evaluation of the practical capabilities of a
single-stepping attacker, we design an algorithm to partition machine code into a set
of uniform code blocks, which are indistinguishable for said attacker. By storing the
code blocks and the associated data in an ORAM, we effectively prevent the attacker
from learning anything about the executed code and data. We present a proof-of-concept
implementation for OBELIX as an LLVM compiler extension, and apply it to a number of
programs.

1.1 Our Contribution

We present OBELIX, a drop-in obfuscation engine that automatically mitigates a wide
range of TEE-related attacks. For that, we:

• discuss existing countermeasures and determine the properties needed for a generic
mitigation;

• evaluate Linear ORAM and Path ORAM for their suitability within an untrusted
client setting with small amounts of data;

• analyze an attacker’s ability to distinguish instructions through single-stepping;

• design an algorithm to split a program into uniform code blocks which are indis-
tinguishable to an attacker;

• show how to combine these components into a single comprehensive countermea-
sure.

The source code of our proof-of-concept implementation is available at https://github
.com/UzL-ITS/obelix.

2 Background

2.1 Trusted Execution Environments

Trusted Execution Environments (TEEs) offer hardware-based isolation for protecting
a program’s execution against privileged adversaries on the same system. Starting
with small user-space enclaves in Intel SGX [19] with at most 96MB of storage, modern
TEEs are nowadays able to protect whole virtual machines (VMs). Common features
of TEEs are memory encryption, hardware-enforced memory access prevention and
runtime attestation. However, their implementation differs greatly. For example, Intel

https://github.com/UzL-ITS/obelix
https://github.com/UzL-ITS/obelix


252 Chapter 9: Obelix

SGX reserves a small amount of physical memory for the enclave, which is integrity
protected, features fresh ciphertexts (only SGX version 1 [31]) and cannot be accessed
by any other party than the running enclave. In contrast, the current version of AMD
SEV [5] only actively prevents unauthorized write accesses to enclave memory, while
relying on its (deterministic) memory encryption for averting illegitimate reads.

2.2 Side-Channel Attacks

TEEs are designed to protect against architectural attackers, i.e., malicious privileged
processes on the same system which try to directly tamper with the execution. However,
the threat models of many TEEs exclude side-channel attacks [28]. A side-channel attacker
does not access private data directly, but tries to derive the data by observing seemingly
unrelated channels. A simple example is measuring the execution time of the program to
learn about the length of the processed data. Due to many performance optimizations and
shared resources, the microarchitecture of CPUs exhibits lots of side-channel leakages. A
prominent example are cache attacks, where the attacker learns whether victim data was
recently accessed by manipulating and observing the cache state [1, 6, 45]. Other examples
are attacks through the TLB [24] or contention of execution ports [4]. For simplicity, we
refer to those as timing attacks. Software vulnerability to side-channel attacks is mostly
rooted in its handling of secret data. If a program makes a secret-dependent memory
access or executes a secret-dependent chunk of code, the attacker can use one of the
above side-channel attack primitives to learn which data or code was accessed and thus
reconstruct the secret.

2.3 TEE-Specific Side-Channel Attacks

While there are already numerous side-channel vulnerabilities on common systems,
TEEs with their unique threat model are particularly susceptible. Various attacks [10,
20, 23, 40, 51] show how leakage can be used recover secrets from executions deemed
protected. Not only the parts of the execution inside the TEE but also control mechanisms
from outside the protected memory region, like page management, can leak information
to the attacker. SGX uses protected areas for the enclave page tables, but these can still be
stealthily monitored via the cache [14, 57], or the access rights can be manipulated [61] by
the OS. However, an attacker can not only leak secrets by observing microarchitectural
effects of unprotected implementations. The encrypted memory of VM TEEs is not
completely protected from the hypervisor, and the strong attacker scenario allows for
very precise and fine-grained observations that enable further attacks.
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2.3.1 Ciphertext side-channel attacks

The ciphertext side-channel [36, 37] is an example of a more structural leakage. Cipher-
text side-channels are unique to systems that use deterministic memory encryption in
combination with read access for a hypervisor to the encrypted memory. While TEEs
like Intel SGX version 1 only protect a small amount of memory and can thus keep fresh
nonces needed for non-deterministic encryption, this does not scale for TEEs which
manage gigabytes of memory, like VMs. Thus, TEEs like Intel SGX version 2 [31] and
AMD SEV employ deterministic memory encryption, where the same plaintext written
to the same address results in the same ciphertext. However, while Intel SGX prohibits
unauthorized reads, AMD SEV allows the malicious hypervisor full read access to the
ciphertexts. If an implementation now does multiple write accesses to the same address
depending on a few secret bits, the attacker can label the few resulting (and repeating)
ciphertexts and infer the secret [36, 37]. This attack is unique in a way, as constant-time
implementations, which are usually considered the standard countermeasure for many
side-channel attacks, are particularly vulnerable. There are no publicly stated plans
of AMD for introducing an effective prevention of ciphertext reads, and it is unclear
whether other upcoming TEEs like Intel TDX [30] and ARM CCA [38] are immune to this
class of attacks. Thus, protecting against ciphertext side-channels is left to software.

2.3.2 Single-stepping attacks

Another TEE-specific attack vector is single-stepping. As the TEE threat model explicitly
considers privileged attackers, they can configure the CPU to precisely interrupt the
enclave after every instruction. With dedicated frameworks such as SGX-Step [13] or SEV-
Step [59], they can conduct very fine-grained measurements. For example, by measuring
the latency of instructions, it is possible to tell apart certain opcodes and alignments [12,
46]. Another powerful primitive is instruction counting to learn loop iteration counts [11]
or the length of small intra-cache line secret-dependent branches [41]. Finally, single-
stepping allows for precisely applying cache attacks against the data accessed by a single
instruction, enabling exploits of small vulnerabilities with as few as one measurement [55,
59], which is impossible with ordinary cache attacks due to their comparatively low
temporal resolution.

2.4 ORAM

To defend against timing attackers in the cloud, one needs to conceal the memory access
patterns. One such solution is Oblivious RAM (ORAM) [22]. ORAM was originally
designed for large databases which do not fit in a trusted local client and thus are stored
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on an untrusted server. However, ORAM can also be adapted to aid side-channel defenses
for both hiding code and data [2, 48, 49]. A straightforward ORAM technique is Linear
ORAM, where the client sequentially accesses all data blocks, discarding all but one.
While easy to implement, this approach doesn’t scale for large amounts of data. Thus,
numerous other algorithms were proposed. One of particular interest for side-channel
defense is Path ORAM [56], where the data is stored in a tree. On each access, the path
containing the searched data is sent to the client. The client then replaces the address of
the searched data by a random one, and writes the entire path back into the tree. Data
which could not be written back (because all nodes in the path are already used) is kept
in a local stash and only written back at the next access. The mapping of addresses to
leafs in the tree is stored in a local position map, which may be implemented as a Path
ORAM as well, leading to recursively nested Path ORAMs. This way, the protocol offers
a logarithmic complexity.

3 Defenses Against Attacks on TEEs

In the following, we describe the attacker capabilities in a TEE setting and identify gaps
in existing hardware-assisted and software-level defense mechanisms. In line with this,
we show that an existing software defense, Obfuscuro [2], can be broken through modern
single-stepping techniques.

3.1 Attacker Model

In line with the standard TEE attacker model, we assume a privileged attacker, who
acts as a malicious hypervisor with read access to enclave memory. The memory itself
is encrypted. The attacker has no way of decrypting the memory or modifying it, and
execution state such as register values is considered safe. The TEE is susceptible to
single-stepping attacks, i.e., the attacker can deterministically interrupt the enclave with
precise instruction granularity. This single-stepping capability allows for counting the
instructions that are executed in the enclave as well as precise measurements of their
individual cache usage, execution latency and, in some cases (integer division), even
operand-dependent latency. We evaluate the practically feasible attacker capabilities in
this regard for two exemplary systems in Section 7. Attack vectors requiring transient
execution are considered out of scope. Adversaries attempting to leverage attacks from
within a TEE on the hypervisor or neighboring TEEs are not within the attacker model.
Finally, we assume that the code running in the enclave is bug-free and does not exhibit
software-level vulnerabilities.
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3.1.1 Goals of the Attacker

We consider two major adversarial objectives: First, they are interested in the (secret)
data the program processes. Second, they want to learn which algorithms are executed
in the enclave, and, by extension, maybe even extracting parts of the executed code. In
fact, the logic running in the enclave may be intellectual property that should be kept
confidential, or the owner may not want to expose implementation details. The attacker
tries to collect execution traces through various side-channels and reverse engineer
the program’s control and data flow, aiming to deduce which kinds of algorithms are
deployed, and perhaps even identify specific modules.

3.2 Hardware-Assisted Single-Stepping Prevention

Most side-channel attacks are considered out-of-scope by TEE vendors and respon-
sibility is shifted to the user (e.g., Intel SGX [28, Sec. Protection from Side-Channel
Attacks]). However, for single-stepping, a few countermeasures are under development.
AEX-Notify [18] makes Intel SGX enclaves interrupt-aware and can thereby hinder
instruction-granular observations. However, AEX-Notify does not get applied on all
older processors [27], and has not yet been thoroughly scrutinized by the research commu-
nity. During the evolution of the newer virtual machine TEEs, single-stepping protection
gets partially factored in the design process. For Intel TDX, single-stepping is restricted
by randomly limiting the number of instructions executed after an interrupt through
the TDX module [30, Sec. 17]. At the time of writing, no countermeasures are proposed
against single-stepping for AMD SEV and ARM CCA.

3.3 Software Leakage Defenses

Due to limited availability of hardware-based security mechanisms, software-level ap-
proaches are necessary. For the three main attack classes, timing side-channels, single-
stepping and ciphertext side-channels, numerous manual and (semi-)automated counter-
measures were proposed. In the following, we broadly classify them and show how they
can protect against algorithm fingerprinting and exfiltration of secret data. The results
are summarized in Table 1.

3.3.1 Constant code and data patterns

Constant control flow and constant data access patterns (also called constant-time code)
are popular building blocks for secret-independent code. While the executed code is as-
sumed to be publicly known, the secret data being processed must be protected. The idea
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Table 1: Defenses against algorithm inference (Alg. inf.) and secret data exfiltration (Sec. data exf.)
through the attack classes timing leakage /, single-stepping  and ciphertext side-channels ⋆.
Checkmarks ✔ show protection against the given leakage class, crosses ✘ that no protection is
achieved, and a diamond ✧ indicates that protection depends on the granularity of the defense.
OBELIX combines oblivious code and data patterns with ciphertext freshness to protect against
both algorithm inference and secret data exfiltration.

Defense
Alg. inf. Sec. data exf.

/  /  ⋆

Constant code and data patterns ✘ ✘ ✔ ✔ ✘

Oblivious code and data patterns ✔ ✧ ✔ ✧ ✘

Ciphertext freshness ✘ ✘ ✘ ✘ ✔

of constant-time code is that for any pair of different secret inputs the program executes
the same instructions and accesses the same memory addresses. An attacker collecting
an execution trace via timing side-channels like cache leakage thus should not be able to
use the trace to derive information about the secret inputs. If implemented properly [41],
constant-time code also helps against single-stepping attacks, as the instructions that are
executed and the observable memory accesses are always the same and independent of
the secret.

A related approach is randomization, where independent noise is added to decorrelate
the observed trace from the secret inputs. However, this only works for certain algorithms
(e.g., exponent blinding for RSA) and requires high manual effort. There is also a risk
of leaking the random value while applying it to the input or removing it from the
output.

3.3.2 Oblivious code and data patterns

While constant-time code reliably hides secret data from the attacker, it is trivial to extract
the control flow and use that to infer which algorithms are currently running. In order to
also hide the executed code, oblivious control flow and data access patterns are necessary.
We define oblivious control flow as follows: Given a program that is divided into a set of
single-entry/single-exit blocks, the attacker cannot distinguish which block is currently
executed. This directly requires that an attacker also cannot learn the block’s identity via
monitoring the data accessed by it. In contrast to constant control flow, code rewritten to
have oblivious control flow may still contain secret-dependent branches, but those are
invisible to the attacker.

The efficacy of oblivious code against attacks depends on the block structure and the
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surrounding controller logic. For example, due to their low temporal resolution, typical
cache attacks cannot distinguish blocks whose size does not exceed the size of a cache
line, even if the blocks have slightly varying instruction counts. However, with more
powerful single-stepping attacks, the attacker can precisely count the instructions in a
block and even measure their individual latency. To combat such attacks, the blocks must
be carefully crafted to exhibit a uniform profile (Section 4.3).

3.3.3 Ciphertext freshness

Ciphertext side-channel leakage is caused by deterministic memory encryption in TEEs.
When secrets are repeatedly written to the same address (e.g., in a typical constant-time
swap pattern), the attacker can learn those by observing whether the ciphertext changes.
By forcing freshness of the ciphertexts on each write, the leakage can be eliminated.
There are three ways of introducing freshness on software level: First, one could XOR
the data before each write with a random mask, such that the ciphertext is independent
of the secret. Second, one could interleave the data with random fresh values (e.g.,
counters) which are updated on every write. A third method is address rotation, which
takes advantage of the address-dependent tweak values used in memory encryption.
When a variable is copied to a new memory location on each write, it results in a new
ciphertext even if the variable’s contents are not changed. All methods require heavy
instrumentation and bookkeeping to automatically apply them to existing programs [58].
Note that ciphertext freshness is only necessary for secret data, as the code usually is
written to a random memory location once and does not change during runtime.

3.4 Obfuscuro

A solution that partially addresses the issue of code inference is Obfuscuro [2]. However,
it is susceptible to single-stepping and ciphertext side-channel attacks. Following the
oblivious code approach, Obfuscuro greedily divides the program into a number of code
blocks which start with a memory access and have a fixed length of 64 bytes, which is the
size of an x86 cache line. The code blocks are fetched from a Path ORAM and copied into
a fixed memory region called scratchpad. Data obliviousness is achieved through another
Path ORAM, which holds 64-byte data blocks. For each code block, exactly one data
block is fetched from the ORAM and copied into a data scratchpad. This way, a cache
side-channel attacker only sees accesses to oblivious memory and the fixed scratchpads.
Though the code blocks generated by Obfuscuro may have varying instruction counts
and latencies, the limited temporal resolution of a cache attack prevents the attacker
from effectively exploiting this.
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3.4.1 Single-stepping attack

With single-stepping, temporal resolution is vastly increased, and the attacker can distin-
guish blocks by counting instructions. The instruction counts allow to assign labels to
individual code blocks, helping identification of branches and the underlying algorithm.
If the algorithm is partially known and contains secret-dependent branches, the attacker
may be able to extract secret information. Further information is gained by additionally
measuring instruction latencies. We evaluate the observable latencies in Section 7.2 and
show that even for fixed instruction counts, leakage persists.

3.4.2 Other issues

Besides the vulnerability to single-stepping, Obfuscuro has a number of other issues.
First, it only focuses on Intel SGX, which was complemented by VM-based TEEs after
the paper’s publication. Thus newer threat models are missing, e.g., it does not take into
account ciphertext side-channels, which can leak the identity of a code block even quicker
(Section 4.4). Then, it makes several assumptions that greatly simplify implementation
complexity but reduce practical relevance of the security and performance evaluation.
For example, Obfuscuro makes a single memory access at the beginning of a block,
which the attacker can distinguish as being a load or store by monitoring the instruction
latency, or, if possible, by checking whether the ciphertext of the data scratchpad changes.
Another restriction is lack of support for position-independent code, which is non-trivial
due to code being copied to a scratchpad before execution, breaking relative branches.

To summarize, while the Obfuscuro approach is a good first step at side-channel proof
code obfuscation in TEEs, it does not protect against strong adversaries and has several
practical limitations.

4 OBELIX Design

In the taxonomy of countermeasures in Section 3 we observed that there is a lack of
hardware-based mitigations, and typical software techniques only protect against specific
attack classes. We show how we can combine common mitigation approaches in a single
drop-in tool, called OBELIX, which defends against all attack classes through specifically
hardened oblivious code. In this section, we describe the general design of OBELIX, which
includes its execution model, realization of oblivious accesses and defenses against the
different attacks. Then, in Section 5, we show how we can generate uniform code blocks
which are indistinguishable by the attacker. Finally, in Section 6, we explain how we can
apply OBELIX to a program.
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Figure 1: OBELIX execution engine overview. The code controller fetches the next code block and
starts executing it (➀). Then, possibly multiple times, the code block may request a certain
memory address from the data controller (➁ ➂) and access it (➃). Finally, the code block
redirects the execution back to the code controller to fetch the next block (➄).

4.1 Execution Model

The core of OBELIX is its execution engine, which is depicted in Figure 1. Its design
is inspired by Obfuscuro [2], but has several key conceptual and technical differences.
During compile time, the program is decomposed into structurally uniform code blocks,
which are intended to be indistinguishable by a side-channel attacker. Similarly, data is
divided into equally sized blocks, which can happen transparently at runtime.

We use two ORAMs for storing code and data blocks, respectively. Each ORAM is
managed by a dedicated controller. When execution enters the code controller, it fetches
the next code block from the code ORAM, copies it into the code scratchpad, and ➀

starts executing it. If the code block wants to read or write data, it ➁ jumps into the data
controller, which copies the desired memory location into the data scratchpad and ➂

jumps back. Then, the code block ➃ accesses the data in the data scratchpad. If the code
block does not need data at the given time, dummy data is copied to the scratchpad
instead. Each request to the data controller has a flag marking whether the code block
wants to write to the given memory location; if that flag is set for the previously fetched
data, the data scratchpad will be written back into the data ORAM first. Finally, execution
➄ leaves the code block and jumps to the code controller, in order to fetch the next block.
Given a suitable ORAM implementation and constant-time controllers, a timing attacker
gains no direct information about the original location of the accessed code or data. The
code and data scratchpads themselves are protected by the TEE’s memory encryption.
This way, we achieve security against timing attackers trying to exfiltrate data or infer
the executed code.

Multiple data accesses per block Steps ➁ to ➃ may be repeated several times within
a code block. If the instrumented application wants to store data, multiple data controller
accesses per code block become mandatory, as we cannot interchange loads and stores at
the same offset within a code block without leaking the nature of the access to a timing
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attacker. Conveniently, this design can also better represent the load-to-store ratio, which
typically heavily favors loads, reducing the number of total executed code blocks and
thus expensive code ORAM queries. To be indistinguishable by an attacker, code blocks
are generated in a way that they always have the same sequence of loads and stores.

4.2 Choosing an ORAM Engine

Most ORAM schemes described in literature are designed for handling millions of
entries in large databases stored on an external server. In addition, they often assume
that the ORAM controller (client) is trusted, i.e., that the attacker only resides on the
server/network side. For TEEs, due to their vulnerability to various local side-channel
attacks, the ORAM controller is observable by the adversary as well. The controller thus
needs to be suitably hardened, likely by implementing it in a constant-time fashion. In
the following, we briefly discuss two popular ORAM schemes, Linear ORAM and Path
ORAM, and which approach we take for our code and data controllers.

A simple and secure approach is Linear ORAM [22], where we iterate over the entire
data set and retrieve the desired data via a constant-time selection primitive. Let N be
the number of blocks. As we access all blocks, the complexity of Linear ORAM is O(N).
Note that there are numerous possible optimizations, like dividing highly repetitive data
(e.g., uniform code blocks) into arrays of indexes into pre-computed maps, achieving
compression without compromising on security.

Another simple but asymptotically much faster approach is Path ORAM [56], with a
complexity of only around O(logN). However, this protocol and others building on top
of it only apply to the aforementioned client/server scenario, and the client is inherently
non-constant-time. Most problems are caused by the path fetch, where an entire path
is copied into a local buffer, and then written back into the tree. For ORAM bucket size
B, the fetch results in B logN block accesses and writes. When writing back the path,
we must not leak which entries are written back, which are copied into the stash, and
which nodes are filled with dummy data. This means that we need to touch every buffer
entry for every path node in the worst case, which results in (B logN)2 accesses. For a
recommended bucket size of B = 4 [56], this means that the break-even point to Linear
ORAM is at around N ≈ 1900, not counting other factors like bad spatial locality of
accesses, the high cost of frequent memory stores, and the linear scan of the position
map.

Data controller For each data access, we need to always fetch two adjacent blocks, the
first being the one actually pointed at and the second for supporting an unaligned access
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to the first. The block size Sdata is bounded by 8 ≤ Sdata ≤ 32, as the maximum non-
vectorized memory access width on x86 is 8 bytes, and two blocks must fit into a single
64-byte cache line to not leak unaligned accesses to a cache attacker. For these parameters
and reasonable N , Linear ORAM outperforms Path ORAM by a wide margin.

Code controller Code blocks have a much larger size Scode ≥ 64, making Path ORAM
more attractive. However, as explained above, N needs to be sufficiently large to over-
come the penalty from the frequent path write-backs and memory stores. In our evalua-
tion, we did not encounter a program where Path ORAM performed well, so we use an
optimized Linear ORAM for the code controller as well.

4.3 Protecting Against Single-Stepping

Unlike typical timing attacks (e.g., cache side-channels), single-stepping offers a very fine-
grained view of execution. First, an attacker can simply single-step each code block and
count instructions [41]. As we showed in Section 3.4, filling each block until a fixed size
(64 bytes) is reached leads to easily distinguishable code blocks. In OBELIX, we address
instruction counting by dividing each code block into a fixed number of instruction slots.
Moreover, we ensure that loads and stores are always placed at the same offsets within
a block’s instruction list. This way, the attacker always observes the same instruction
counts.

A stronger attack is additionally measuring the latency of every executed instruction [12].
The resulting latency profile of a code block leads to a unique fingerprint, allowing
the attacker to reconstruct a sequence of executed blocks. This sequence reveals the
structure of the control flow, which may in turn expose the underlying algorithm or
allow inferring secret data if the original implementation was not constant-time. OBELIX

assigns each instruction slot a certain instruction class, which only contains instructions
that are indistinguishable for the given measurement setup.

However, it is possible that a fixed latency pattern is still insufficient for full protection
against single-stepping attackers: In some cases, the alignment of an instruction influ-
ences its measured latency due to peculiarities of the CPU frontend [46]. This can be
avoided by placing each instruction slot at a fixed alignment, and filling the remainder of
each slot with an instruction that does not expose the aforementioned latency variations,
like a multi-byte no-op.
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4.4 Preventing Ciphertext Side-Channel Attacks

With the previously described countermeasures, even precise timing measurements can-
not distinguish individual code blocks. However, several current and proposed full-VM
TEEs employ deterministic memory encryption, i.e., at a fixed memory location a given
plaintext always yields the same ciphertext. Deterministic encryption is problematic for
the code and data scratchpads, as an attacker can easily assign a label to each executed
code block by observing the ciphertext of the code scratchpad. Similarly, the attacker can
track data blocks by keeping label/ciphertext pairs, and updating the ciphertext part
whenever they notice a change of the data scratchpad following a store from the code
block.

As described in Section 3.3.3, there are three methods for ensuring ciphertext freshness:
Adding a random mask, interleaving with a counter, and rotating store addresses.

4.4.1 Protecting code

For the code scratchpad, masking is not an option, as code must be provided in plain
form to be executable by the processor. Interleaving is disadvantageous as well, as the
code would need to be modified to jump over or incorporate the counters, reducing
efficiency of code blocks. The last option, rotating the location of the code scratchpad for
each block, has neither of those disadvantages and is thus best suited for protecting the
executed code. While there may be eventual repetition of code ciphertexts, a sufficiently
large pool of locations greatly reduces the probability that a certain code block ends up
twice at the same address [36]. Aside from that, we found that picking a different code
scratchpad location for each next block actually improves performance due to decreasing
machine clears from self-modifying code (see Section 8.1).

4.4.2 Protecting data

Since we allow the program to modify data, we need to protect both the scratchpad and
the ORAM. Masking and interleaving both increase memory usage by 100%. However,
rotating addresses of large memory objects is even more costly, so it is only suitable for
small regions, i.e., the data scratchpad. Effective masking requires a continuous supply
of randomness, which was found to be quite costly [58]. For this reason, we recommend
protecting larger amounts of data with interleaving. In a Linear ORAM implementation,
this means splitting up data into chunks of E

2
bytes for encryption block size E, and

putting counter values of E
2

bytes in between, such that each encryption block consists
of a data chunk and a counter. Each time we write back into the ORAM, we increment
every counter, so we get new ciphertexts for every ORAM entry. Interleaving guarantees
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that a ciphertext can only repeat after at least 28·
E
2 = 24E iterations (i.e., 264 for 16-byte

encryption blocks), contrary to masking, where a fast non-cryptographic random number
generator may lead to accidental collisions.

5 Single-Stepping Resistant Code Blocks

As shown in the execution engine overview in Figure 1, we divide the code into same-
sized blocks, which are obliviously fetched and copied into a fixed code scratchpad at run-
time. While this protects against timing attackers with limited resolution, single-stepping
offers instruction granularity and hence allows precisely counting and measuring the
instructions executed within a block. We thus need to devise a way to generate uniform
blocks, which exhibit a fixed structure and latency pattern that even a single-stepping
attacker cannot distinguish. At the same time, the uniform blocks should not increase
performance overhead compared to the naïve greedy block creation approach.

There are two major ways to approach this. First, one could modify the instruction
scheduler in the compiler to emit a suitable instruction sequence, in a similar approach
as for Very Large Instruction Word (VLIW) architectures. However, this requires writing
a new instruction scheduler or at least heavily modifying the existing one, making this
approach very complex and hard to maintain. We thus picked the other approach, which
instead of ensuring that the generated machine code conforms to a certain pattern,
computes a block pattern that is optimized for the existing machine code. The machine
code is then post-processed and divided into blocks in an instrumentation pass.

To achieve this, we first show how we can group instructions into classes, which contain
instructions mutually indistinguishable from each other by single-stepping. We then
first discuss the high-level layout of code blocks, and conclude with the uniform pattern
generation algorithm.

5.1 Classifying Instructions

As a first step, we need to determine which instructions fall into the same classes, i.e., can
be used interchangeably without leaking their identity to the single-stepping attacker. To
minimize the number of classes and avoid a lot of dummy instructions per block, we
focus on the base instruction set, i.e., scalar arithmetic and memory accesses, and disable
more volatile extensions like vector arithmetic. The general purpose instructions cover
all common use cases.
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mov r14, r15;00:

imul r14, r15;40:

80:

c0:

dec counter;100:

jmp 40;

jnz 00;

jmp 80;

jmp c0;

jmp 100;mov r14, r15;

imul r14, r15;

Figure 2: Microbenchmark for the mov and imul instructions. We execute each instruction two
times in an ABBA pattern, always aligned to a cache line, to avoid bias from other CPU
components.
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Figure 3: Histograms and t-test progressions for some instruction latency experiments on Intel
SGX.

5.1.1 Measurement setup

While resources like uops.info offer very precise latency information, this kind of preci-
sion is in practice not achievable by an attacker, who has a lower temporal resolution
due to noise from the enclave entry/exit context switches. We thus devise an own mi-
crobenchmark specifically for single-stepping. For each pair of instructions, we generate
a standardized gadget which is designed to minimize noise from other CPU components,
and measure it 1 000 000 times. An example gadget for the x86 mov and imul instructions
is shown in Figure 2.

uops.info
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5.1.2 Results

After composing the instruction gadgets, the microbenchmark is loaded into an SGX
enclave (respectively, an application running inside an AMD SEV VM). Our test systems
are two machines, first an Intel Core i7-9750H CPU (Coffee Lake) with 16 GB of RAM,
running Ubuntu 22.04.3 LTS with a custom kernel version 5.9, and an AMD EPYC 7763
(Zen3) with 128 GB of RAM, running Ubuntu 22.04.3 LTS with a custom kernel 5.19 with
SEV-Step patches. Both systems were thoroughly configured to have as little noise as
possible, e.g., by disabling dynamic frequency scaling and memory prefetchers, isolating
cores from the kernel scheduler, disabling SMT, and minimizing overall system load.
This way, we emulate a strong attacker who is able to conduct measurements with the
maximum possible precision. We single-step the benchmark, recording 1 000 000 samples
for every executed instruction.

As visible in Figure 3, the Intel SGX instruction measurements are quite noisy and
produce multiple peaks in the histograms (for AMD, see Figure 7 in the appendix). Most
of the variation is caused by the context switches to/from the enclave, where, among
other activities, the entire execution state is saved/restored from memory. As a method to
get a quantification of the attacker’s capabilities to distinguish the latency distributions
of two instructions, we employ Welch’s t-test with a threshold of 4.5 [50]. If |t| < 4.5,
we conclude that the instructions are not distinguishable for 1 000 000 measurements.
To find out whether t converges, we plot its progression with an increasing amount of
measurements.

Figure 3a and Figure 3b show the histograms for a comparison of mov reg, reg vs.
imul reg, reg respectively div reg. Per uops.info, on our Coffee Lake CPU, mov has a
latency of 0.25, imul a latency of 3 to 4, and div a latency of 5 to 89. As is apparent in the
histograms, imul is nearly indistinguishable from mov, while div clearly deviates. This is
supported by the t-tests: For imul, t stays well below the threshold (Figure 3d), while for
div it immediately deviates (Figure 3e), expressing clear distinguishability by an attacker.
We conducted those measurements for several types of arithmetic instructions, and identi-
fied two classes with instructions which were indistinguishable for our sample count: The
first one, named class1, contains all standard arithmetic like addition, multiplication and
bit shifts, effective address computations and (conditional) register/immediate moves.
The second one, class2, contains only the division instructions. However, as indicated
by the uops.info measurements, those exhibit an operand-dependent latency range, so
they may leak some information on their operands. If this leakage is not tolerable, we
recommend avoiding such instructions until security features like Intel DOIT [25] become
available, which enforce data operand-independent execution times. As a temporary
workaround, we could remove and emulate such instructions by common arithmetic.

uops.info
uops.info


266 Chapter 9: Obelix

Input Function
BB1

BB2

BB3

Pattern Generation
BB1

BB2

jmp controller

ptradjust

ptradjust

class1

class1

read

class2
class1

write

Protected Function

optimal
pattern

Figure 4: The function instrumentation process (left) and an example code block (right). Using the
basic block profile from the input function, we compute costs for different pattern candidates,
which are generated by a genetic algorithm. The basic blocks are then translated according to
the optimal pattern, yielding a protected version of the function.

Note that, while mov and imul turned out indistinguishable in our experiments, they
should be distinguishable by an attacker doing enough measurements, as they have
a slightly different latency. In fact, with far more than the million measurements in
our experiment, a difference may eventually become apparent. However, gathering
so many measurements for a real target is very difficult in practice, especially if the
target deploys application-level mitigations which prevent repeated execution. This is
supported by another observation, that noise causes the t-test to first signal a leakage,
but then drop below the threshold again. This effect is apparent in Figure 3d, where
t briefly approaches 4.5 and then drops to almost 0 again. In our sanity check where
we compared two identical inc instructions (Figure 3c and Figure 3f), the t-test falsely
signaled a leakage.

We conclude that, while it is impossible to prove that an attacker cannot distinguish two
instructions from the identified equivalence classes if given an even better optimized
experiment environment and sufficient measurements, we deem it very unlikely in
practice. If the user decides that this risk is too high, they can still increase the number of
classes and narrow the latency interval of the contained instructions.

5.2 High-Level Block Layout

A code block always executes from its beginning, and concludes with an unconditional
jump to the code controller at its end. The exit jump is preceded by a single (conditional)
move instruction which determines the address of the next block to execute. Between the
entry and exit points the block can have an arbitrary sequence of application instructions
and memory accesses.
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5.2.1 Instruction slots

To ensure a fixed block length and avoid leakage due to varying instruction alignment,
we partition each code block into a number of instruction slots, as explained in Section 4.3.
In practice, every instruction slot has a size of 8 bytes and holds one instruction of up to
7 bytes and one multi-byte no-op filling up the remainder of the slot. Most instructions
from the x86 base instruction set fit into 7 bytes; notable exceptions are moves with a
64-bit immediate and address expressions with 32-bit displacements, which we split into
a sequence of equivalent shorter instructions before instrumentation. We verified that the
multi-byte no-op instructions recommended by the CPU vendors are indistinguishable
through single-stepping.

5.2.2 Position-independent code

Modern programs usually employ position-independent code, which means that the code
and data can be mapped to an arbitrary virtual address during startup. To access a global
variable on x86-64, a RIP-relative addressing mode is used, i.e., the address is computed
dependent on the current instruction pointer. However, this becomes a problem when the
code is dynamically copied into a scratchpad at runtime. We handle this by introducing
a special instruction class, called ptradjust, which adds the difference between the
addresses of the code scratchpad and the original code to the pointer. If an instruction
uses a RIP-relative addressing mode, it is translated to be followed by such a pointer
adjustment.

5.2.3 Memory accesses

A code block may contain multiple memory accesses. Consistent with the uniformity
requirement, each access is located at a fixed position within the block and always
performs the same type of memory access (load or store). A memory access consists of
the following components: We first need to load the address of the memory location
we want to access, and the offset to which we want to return in the code block. Both
are stored in general-purpose registers reserved for the code and data controllers, as we
want to avoid polluting the application’s stack. We then jump into the data controller,
which performs the ORAM fetch and copies the desired memory into the data scratchpad.
Subsequently, we execute the memory access instruction, where we have replaced the
address operand by an access to our data scratchpad. With careful optimization, we
managed to fit a memory access into 24 bytes, i.e., three instruction slots. We also ensured
that all instructions involved in a memory access have a consistent latency.
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5.2.4 Code block size

The code block exit point is directly preceded by three fixed instruction slots, which are
needed for emulating conditional jumps. Thus, with the exit jump, the code block end
takes four instruction slots. If we assume that a function both loads and stores data, we
need another 6 slots for memory accesses. This means that without any other instructions
any block already needs 10 slots, which are 80 bytes. The code block size directly impacts
performance, as larger blocks mean fewer costly code ORAM fetches, but may also come
with an increased number of dummy memory accesses. Security is also affected: In
theory, the block size and pattern can be selected in a way that the function’s biggest
basic block can be encoded into a single code block. However, this may leak a lot about
the function’s internal structure, so smaller blocks are desirable. We found that a block
size of 160 bytes (20 instruction slots) is a reasonable upper bound.

5.3 Generating an Efficient Block Pattern

Given the overall block structure, we now need to determine a good sequence of classX
instructions and memory accesses. For this, we first compute profiles for the protected
functions. These are then used in the second step to estimate the runtime cost of convert-
ing a function to each of the generated code block pattern candidates, so we can choose
an optimal candidate in the end. The instrumentation process is illustrated in Figure 4.

5.3.1 Getting profiles for basic blocks

To generate a profile for a function, we traverse its basic blocks and then their machine
instructions, assigning each one of the following classes: load (memory reads), store
(memory writes), ptradjust (for converting RIP-relative pointers to absolute ones), and
class* for the various instruction latency classes. Basic blocks are also given a weight,
which is higher if they appear in a loop or child function.

5.3.2 Cost function

To estimate the efficiency of any pattern candidate, we devised a function that takes a
pattern candidate and the weighted basic block profiles, and then simulates the basic
block translation as it would occur in the actual instrumentation. Nearly all runtime
cost is caused by ORAM fetches, so we want to both minimize the number of executed
code blocks and dummy memory accesses. For each basic block i, we thus count the
number of resulting code blocks bi and the number of dummy loads li and stores si
which need to be generated due to mismatches between the original code and the block
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pattern. Given weight wi, the cost for instrumenting basic block i is then computed as
cost(i) = wi · (bi + li + 2si). Stores are weighted double due to the higher runtime cost of
writing to memory. That cost function balances the number of code blocks and memory
accesses, but may be adjusted to better reflect workloads that have lots of code or handle
large amounts of data.

5.3.3 Computing the pattern

Given the cost function, we can now look for a pattern that minimizes the estimated
runtime cost when applied to the given basic blocks. The pattern search has a few
constraints: First, there is a fixed number of instruction slots per code block which need to
be filled. The pattern must contain all instruction classes present in the profiles. Then, for
good runtime performance, we want to avoid inserting too many dummy instructions.
As a final constraint, the algorithm should not take too much time to run, to avoid
slowing down the compilation.

Brute-force search One approach for finding a suitable pattern is a brute-force search:
For example, for a small block size of 96 bytes (12 slots) and both read and write accesses,
we need to distribute two memory accesses and two classX instructions. The resulting
search space is reasonably small and can be fully scanned easily. However, for larger
block sizes, the search space quickly grows, making brute-force search infeasible in the
generic setting.

Genetic algorithm As a more efficient alternative, we devised a simple genetic algo-
rithm. Initially, we generate a population of P random pattern candidates. Then, all
candidates are validated, i.e., we ensure that mandatory instruction classes and the
suffix is present. If a mandatory class is missing, we write it into one or more random
slots. After computing the cost function for each candidate, we take the top t candidates
with the lowest costs and store them in a set T . We then create a copy T̃ which contains
slightly mutated versions of the candidates from T with random insertions, deletions and
modifications. Subsequently we crossover T and T̃ to a new population P̃ by combining
random prefixes and suffixes of the respective elements. We then set P := P̃ ∪ T ∪ T̃ , so
we keep both the top candidates in their original and slightly mutated versions. Finally,
we replace duplicates by entirely new random candidates and repeat the process.

We limit the genetic search both by number of generations (10 000) and total runtime (10
seconds). The number of top candidates was set to t = 15, leading to a population size
of |P | = 2t2 + 2t = 480. We also fine-tuned several other parameters like the mutation
rates. In our experiments, we seldom reached the generation cap, usually running a
few thousand generations. In fact, for all targets which we evaluated, our algorithm



270 Chapter 9: Obelix

converged within the first few hundred generations, and even running it for a way longer
time did not yield a better result.

As a result, we now have a code block pattern that fits the given function and minimizes
the number of ORAM queries for dummy accesses.

6 Implementation

As we work towards a generic TEE protection framework with as little manual interven-
tion as possible, we need to automate almost all instrumentation steps. OBELIX initially
asks the user to mark the functions that need protection. Everything else is taken care of
by a number of LLVM 17 compiler passes. First, we propagate the function markers to
all child functions in the respective call tree. Then, we identify data which is accessed
within said call tree, so we can generate initialization calls for the data controller. Finally,
after computing a code block pattern for the functions to be instrumented, we rewrite
the machine code of the marked functions to fit the pattern, and add a jump to the code
controller entry point at the top of the parent function. In total, we added 9710 lines to
LLVM.

In this section, we describe the aforementioned instrumentation steps and the implemen-
tation of the code and data controllers.

6.1 Marking Functions Needing Protection

As we only want to protect particularly sensitive portions of the program, we ask the
user to mark the corresponding functions with a dedicated attribute (Figure 5). This
is the only manual step required by OBELIX. Given an annotated parent function, we
want to instrument its entire call tree, to avoid leaving secure mode in between and thus
leaking control flow. We cannot use an optimal pattern for every child function, as this
would allow the attacker to distinguish them during oblivious execution. Instead, we
need to compute a single pattern for the entire call tree. To enable this, we create a copy
of each child function which is then associated with the call tree parent function. We
leave annotations on all copied child functions, such that they are processed together
with the parent and later loaded into the same code ORAM.

Calls to external functions Calls to functions not residing in the same library are
more challenging, and currently not supported by our implementation. The other library
may be compiled with a different compiler and/or not support OBELIX at all. Thus, upon
encountering a call to an external function, we would need to temporarily switch back
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[[clang::obelix]]
int func1(void *buf, int n) {
    ...
}

[[clang::obelix("extern")]]
int OBELIX(func1)(void *buf, int n);

int main(...) {
    buffer = ...;
    int result = OBELIX(func1)(buffer, 5);
}

library.c:

main.c:

Figure 5: Library function annotated with a custom attribute (C23 syntax) that indicates to the
compiler that the function should be protected (top). For calls from the application, the user can
annotate the function prototype with a specialized version of the attribute (bottom), allowing
the compiler to insert the necessary data ORAM initialization call for the buffer variable. The
OBELIX preprocessor macro adjusts the function name to allow the user to use both the original
and the protected versions of the func1 function.

from oblivious to normal execution, and resume oblivious execution when the external
function returns. This switch would temporarily break obliviousness as the attacker now
knows the precise location in the program, and what external function it relies on. By
introducing a random number of dummy blocks around the context switch we could
again establish a secure state, assuming that there are only very few external calls in the
function. Due to the loss of obliviousness and introduction of unprotected code into a
secure context we advise against external calls, and recommend moving those outside
the protected call tree.

6.2 Initializing the Data ORAM

The functions in the protected call tree work with various types of data: They may take
pointers to input data, write output buffers, access global values or store local variables
on the stack. Those addresses must be present in the data ORAM. We automate this
by scanning the function parameters, analyzing the stack frame layout and detecting
accesses to global variables, and then generating an ORAM insertion call for each pointer.
This works as long as we can determine the size of each object at compile time, and those
objects do not contain pointers to further objects. If we want to support nested objects,
we need static points-to and type analysis. At the time of writing, due to a breaking
change beginning with LLVM 15 that removed type information from pointers in IR,
only older LLVM versions are supported by corresponding static analysis tools. As a
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temporary workaround for the missing analysis and to ensure that OBELIX is stable even
when a used memory object is not contained in the data ORAM, we created a fallback in
the ORAM fetch logic that detects missing addresses and lazily inserts them on demand,
at the cost of briefly violating obliviousness due to changing the size of the ORAM.

6.3 Ciphertext Side-Channel Protection

To defend against ciphertext side-channel attacks, we use the methods described in
Section 4.4. The entire logic exists in the data and code controllers, and can thus easily be
enabled without changes to the code blocks, depending on whether the TEE is vulnerable
to ciphertext side-channels or not. We rotate the code scratchpad each time we fetch
a block. For our benchmarks, we use a code block size of 160 bytes and ten memory
pages (40 960 bytes) for hosting the scratchpad. This leads to 160 possible 256-byte
aligned locations. The size of the pool of possible scratchpad locations has little impact
on performance once it is fully allocated, so it can be easily expanded if desired.

To protect data, we rotate the data scratchpad similar to the code scratchpad, and apply
interleaving to the data ORAM. For performance, we chose a data block size of 16 bytes,
so the data scratchpad, which holds two blocks, fits in an AVX2 vector register. The
data ORAM itself is a single contiguous array of blocks, where the mapping of original
pointers to ORAM indices is kept in a separate list. As the encryption block size is 16
bytes, each data block is divided into two halves and interleaved with 8-byte counters,
which are incremented on each store. Since we must update both the counter and the
data at the same time, we use vpunpck* instructions to merge counter and data into a
single vector register, which is then written back. This way, we never store the same
plaintext at the same location.

6.4 Controller Implementation

We complement the compile-time instrumentation with a runtime library, which contains
the code and data controllers and the ORAM implementations. The controller code is a
mix of fully constant-time C and assembly code to ensure that it does not leak parts of
the protected execution state or the addresses which are fetched from the ORAMs. The
ORAM operations are vectorized to maximize throughput, using blending with a mask
instead of cmov. We defer oblivious write-back operations until the next fetch, reducing
load on the memory system.
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Figure 6: Single-stepping measurements of two code blocks from a square & multiply function.
The blue bars represent a “square, mod” code block, while the orange bars map to “square,
multiply, mod”. The numbers above the bars are the corresponding t-test result.

6.5 Correctness

To ensure that our protection preserves program semantics, every replacement of an
instruction must have the same architectural behavior. When entering the controllers,
status flags and register values are saved and later restored. Finally, dummy instructions
are selected to be effective no-ops with zero side-effects: For instruction class class1,
the instruction add reg, 0 would have a suitable latency, but affects status flags. On
the other hand, lea reg, [reg+0] has the same latency, but does not have any such
side-effects. For class2, it is more difficult to find a dummy instruction, as there is no
no-op instruction with similar latency to div, which affects status flags. As a workaround,
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Table 2: Benchmark of several example programs with the different OBELIX variants on our AMD
machine. All times are given in microseconds, the overheads are factors relative to the original
execution time (orig).

Target
orig
(µs)

I-FIXEDLENGTH II-FIXEDCOUNT III-FIXEDPAT. IV-ALIGNEDPAT. V-CIPHERTEXT

time factor time factor time factor time factor time factor

small

matmul 0.053 37 703x 38 720x 38 706x 35 660x 38 708x
modexp 0.217 49 229x 50 231x 37 169x 35 163x 37 171x

mbedTLS

aes 0.134 401 2983x 403 3010x 196 1463x 192 1424x 217 1607x
base64 0.785 363 454x 440 559x 413 526x 397 506x 425 541x
cc20 0.455 2045 4526x 2068 4806x 1802 4208x 1799 4205x 1869 4403x
ecdh 890.6 90M 101 019x 90M 102 910x 68M 77 361x 69M 78 439x 78M 88 852x
rsa 1061.9 50M 47 107x 59M 55 959x 48M 45 716x 48M 44 694x 83M 78 750x

div instructions are enclosed with infrastructure that ensures that flags are correctly
preserved, making class2 instructions and their dummy equivalents take two instruction
slots.

7 Evaluation

We now evaluate the security and performance of OBELIX. We use the same processors
as in our latency analysis in Section 5.1.

7.1 OBELIX Variants

In order to understand the characteristics of different security levels, we devised five
variants of OBELIX, which can be selected when compiling the target program. The first
variant is named I-FIXEDLENGTH, where we build code blocks greedily by putting a
memory read and a write at the beginning and then adding as many instructions until the
code block is filled. This is the Obfuscuro approach. The second variant II-FIXEDCOUNT

is similar, but uses a fixed instruction count instead of filling the code block, to thwart
instruction counting attacks. We set the instruction count to 10 for a code block size of
160 bytes (20 8-byte slots).

The variant III-FIXEDPATTERN is the first to actually enforce the pattern generated by our
algorithm in Section 5.3, and thus is resistant to Nemesis-style [12] latency measurement
attacks. Variant IV-ALIGNEDPATTERN adds no-op padding to ensure that all instruc-
tions are aligned at 8-byte boundaries, to eliminate the risk of alignment-based timing
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differences [46]. V-CIPHERTEXT uses the same code blocks, but additionally enforces
ciphertext freshness.

7.2 Security Evaluation

We built a small example program, called modexp, which computes a modular expo-
nentiation of integers with a standard leaky square & multiply algorithm. The given
implementation has a secret-dependent branch, either performing a “square, mod” op-
eration, or “square, multiply, mod”. For different OBELIX variants, we analyze how an
attacker can try to distinguish the resulting code blocks after 10 000 executions. Given the
constant-time ORAM implementation, they are not able to use timing attacks to find out
which block is currently executed, and the ciphertext side-channel countermeasures pre-
vent straightforward labeling. Thus, the attacker may resort to single-stepping, to count
instructions or tell them apart by measuring their latency differences. Figure 6 shows the
result for the aforementioned operations. We did not observe penalties from instruction
alignment [46] in our examples, so we left out the measurements for III-FIXEDPATTERN,
which look identical to IV-ALIGNEDPATTERN.

We see that for variant I-FIXEDLENGTH, which builds blocks greedily until they are filled
(the Obfuscuro approach), the different instruction counts are immediately apparent
to an attacker, which confirms our findings in Section 3.4. Variant II-FIXEDCOUNT

addresses this by using a fixed instruction count per block. However, the div is placed at
another offset within the block, allowing the attacker to distinguish them via a latency
measurement. Finally, with IV-ALIGNEDPATTERN, instructions are assigned to fixed
slots with identical alignment, and the t-test reports no leakage for div. Due to noise,
we observe false-positive differences between xor and imul, which disappear when
conducting more measurements.

We thus conclude that, within the limits discussed in Section 5.1, an attacker is not able
to distinguish code blocks which use a fixed and aligned code block pattern, making
OBELIX secure in our attacker model.

7.3 Performance

To analyze the performance impact of OBELIX, we applied it to a number of targets. We
first evaluated two small example programs, modexp and matmul from Obfuscuro. To
show that OBELIX works with a large real-world library, we applied it to a representative
set of cryptographic primitives from MbedTLS [39]. We ran 1000 measurements per target
and computed the mean execution times and overheads. The results are summarized in
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Table 2. Additionally, Table 3 shows the compilation time, code size and memory usage
overhead of (the most expensive) variant V-CIPHERTEXT.

As is visible in the results, performance overhead is rather high, especially for large
programs. We found that the main contributors to the overhead are the ORAM queries
and machine clears due to self-modifying code detection (see Section 8.1). Clearly, a
large program which handles lots of data also leads to more expensive ORAM queries
per code block and per memory access, and thus a higher overhead. We also note that
OBELIX variants with a fixed block pattern often perform better than the Obfuscuro-
equivalent baseline I-FIXEDLENGTH. This is mostly due to memory accesses placed at
more convenient locations, leading to comparatively fewer code blocks.

As ORAM queries are a main bottleneck, finding a more efficient ORAM implementation
is highly desirable. For example, it was shown that ORAM queries can be sped up
notably by offloading them to an FPGA [43]. We leave development of faster side-channel
resistant ORAM algorithms to future work.

The compilation time directly depends on the parameters used for the genetic algorithm
and the number of call trees which need an individual optimal code block pattern. While
we used a rather high threshold of 10 seconds for the pattern search, we found that it
can be safely reduced to 2 seconds without any loss of quality for the non-asymmetric
examples, reducing the compilation overhead by 80%. The binary size depends on the
number and size of code blocks. At runtime, memory usage is additionally influenced by
the size of the data ORAM and the overhead introduced by the ciphertext side-channel
protection.

We conclude that the performance overhead may be too high for large and complex
programs such as asymmetric cryptography. However, for medium-sized programs
which are only executed on occasion or run asynchronously (such as a license check
running on an end user’s system), the overhead can be justified given the broad security
guarantees of OBELIX. By underlining the high usefulness of ORAM for side-channel
protection, we hope to inspire further research to identify efficient ORAM schemes.

8 Discussion

8.1 Circumventing Self-Modifying Code Detection

Both Intel and AMD CPUs guarantee that self-modifying code (SMC) is executed cor-
rectly, i.e., the CPU always runs the latest version of the machine code that exists in
memory. To achieve this, the CPU vendors deploy various mechanisms, e.g., checking
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Table 3: Build time, code size and memory usage of the example programs protected with variant
V-CIPHERTEXT. Build time and code size are given for the entire library binary, while memory
usage is estimated for the isolated primitives.

Target Build time
(s)

Code size
(KB)

Memory usage (KB)

original instrum.

small 0.1 6.4
matmul 2.5 11.1 2204 2216
modexp 2.2 12.7 2204 2240

mbedTLS 5.9 697
aes 31.5 769 2472 2712
base64 31.5 732 2392 2504
cc20 28.1 864 2528 2768
ecdh 29.0 1915 2752 5916
rsa 53.5 2818 2788 6384

whether pending stores touch addresses currently present in the pipeline (AMD) or in
the instruction cache (Intel). These are barely documented and cause severe penalties, as
upon detecting SMC the entire CPU pipeline gets flushed (machine clear) [47].

As we overwrite the code scratchpad with the next code block, we trigger an SMC
condition. Memory fences and serializing instructions (as recommended by the docu-
mentation) after the code scratchpad store do not fix this issue, which we suspect is due
to out-of-order execution and possibly prefetching. We found that the code scratchpad
rotation from our ciphertext side-channel protection significantly improves performance.
On AMD, we could further reduce the observed penalties by adding a number of dummy
div instructions before jumping into the new code block, to prevent the CPU from ex-
ecuting it out-of-order before the store has completed. Still, on AMD, SMC machine
clears are responsible for up to 50% of the observed overhead in small targets; on Intel,
it is up to 90%. We leave a thorough analysis of the SMC detection mechanisms and
suitable workarounds to future work. Circumventing the performance penalties of SMC
detection is an interesting research question, the answer to which may help speed up
both OBELIX-like code hardening frameworks and common just-in-time compilers.

8.2 Integrity Protection

Another attack class relevant for TEEs are fault injection attacks which try to corrupt the
data, code or computations within the enclave. While we did not include them in our
proof-of-concept implementation of OBELIX, its modular structure and the clear separa-
tion of concerns is particularly suited for implementing effective countermeasures.
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Attacks against memory integrity such as Rowhammer [33] bypass the CPU protections
and flip bits directly in physical memory. While Intel SGX checks memory integrity, AMD
SEV fully relies on its memory encryption to prevent targeted modifications. However,
even if the attacker is not able to place their own plaintext, they can still tamper with
data in order to break cryptographic implementations such as RSA-CRT [32]. OBELIX can
address this by introducing an own layer of integrity checks in the ORAM controllers
and the code blocks.

Preventing undervolting attacks like Plundervolt [42] which target the integrity of com-
putations in the processor itself is more involved, but possible. For example, in the
Plundervolt paper the authors stated that they could fault multiplication instructions,
but not simpler arithmetic like addition or shifts. To harden OBELIX against such attacks,
one could systematically identify such vulnerable instructions, and replace them in the
controllers and code blocks by sequences of instructions which are less susceptible to
faulting. In combination with a memory integrity protection as discussed above and the
built-in control flow obliviousness which complicates targeting vulnerable code sections,
this should greatly reduce the attack surface.

8.3 Transient Execution Attacks

While we considered transient execution attacks such as Spectre [15, 34] out-of-scope,
OBELIX already provides good protection against such attacks: Due to partitioning the
code into branch-free blocks, which are pulled from an ORAM in a rather expensive
operation, the attacker has little opportunity to trigger speculative execution of code
blocks. The indirect branches necessary to jump between the code block and controller
are vulnerable to Spectre-BTB, but this can be addressed by endbr64 instructions at the
controller entry points, the code block entry point and in the code block memory accesses.
endbr64 was introduced with Intel CET and enforces that indirect jumps always end at
such an instruction, greatly reducing the number of gadgets reachable by manipulating
pointers of indirect jumps (even speculatively [26, p. 17.3.8]). This leaves hardening the
controller, which can be done using conventional methods.

9 Related Work

A number of publications propose single-stepping countermeasures to thwart fine-grained
measurements of enclaves and their state. Proposals like T-SGX [53] or MoLE [35] try
to protect leaking executions from being interrupted, but they depend on TSX, which
is known to introduce vulnerabilities and was therefore disabled on lots of processors
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via a microcode update [29]. Varys [44], Déjà-Vu [17] and HyperRace [16] check AEX
to prevent single-stepping, but with a limited scope. AEX-Notify [18, 27] successfully
deployed a hardware-assisted way of making enclaves interrupt-aware to mitigate single-
stepping attacks. However, it is limited to SGX. For Intel TDX, the TDX module ensures
that single-stepping is no longer precise and deterministic [30] by allowing to execute
a random number of instructions after an interrupt, but this only reduces the accuracy
of stepping and does not prevent side-channel leakage in general. Nothing similar to
the TDX module has yet been proposed for AMD SEV or ARM CCA. Therefore, other
ways to protect the code running in TEEs are needed to ensure that secrets are not leaked
during execution.

Compiler-based side-channel mitigations have been proposed for various protection levels.
SGX-Shield [52], Klotski [62] and deterministic multiplexing [54] only hide accesses to
code at page level granularity and thereby do not protect against cache attacks. Tools
that result in data-oblivious execution include Constantine [8] as well as SGX-specific
approaches like Obliviate [3], Raccoon [48], ZeroTrace [49] and DR.SGX [9]. However, they
do not aim to protect the executed code itself, so attackers can still infer information about
the used algorithms. As discussed in Section 3.4, Obfuscuro [2] has the goal of code and
data obliviousness, but does neither protect against single-stepping attacks nor ciphertext
side-channel leakage. A Nemesis countermeasure for specific embedded targets has been
proposed by Winderix et al. [60], who equalize secret-dependent branches by aligning
basic blocks in a way such that their latency profiles become indistinguishable. This
has also been adapted in a thorough analysis and mitigation approach [7]. However,
their work is tailored to embedded targets without critical optimizations such as caches
or out-of-order execution, as they require deterministic instruction timings. On more
complex processors, an attacker can mount a cache attack to observe which part of a
balanced branch is executed or which memory address is accessed, bypassing the latency
trace protection.

10 Conclusion

In this work, we have showcased OBELIX, a compiler-based drop-in software-level de-
fense against various side-channel based attacks. Our approach is based on oblivious
code execution and data accesses by using Linear ORAM together with uniform code
blocks which are indistinguishable even for strong side-channel attackers in a TEE sce-
nario. We have shown that OBELIX successfully safeguards implementations against
different attack classes. Due to its modular structure, OBELIX can be easily extended with
defenses for other attack classes in the future. In summary, even for application develop-
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ers without expertise in side-channel defense, OBELIX provides a way to automatically
protect implementations against all relevant attack classes.
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A SEV-Step Measurements
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Figure 7: Histograms for our instruction latency experiments on AMD SEV, analogous to those
depicted in Figure 3 for Intel SGX.
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B Meta-Review

The following meta-review was prepared by the program committee for the 2024 IEEE
Symposium on Security and Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1 Summary

This paper presents Obelix, a framework to mitigate side-channel attacks in trusted
execution environments (TEEs). By leveraging a linear oblivious RAM model and enforc-
ing uniform code blocks, Obelix can prevent attackers from gaining insights into both
executed code and accessed data.

B.2 Scientific Contributions

• Addresses a Long-Known Issue

• Provides a Valuable Step Forward in an Established Field

• Creates a New Tool to Enable Future Science

B.3 Reasons for Acceptance

1. This paper addresses a long-known issue. Recent work has revealed numerous
vulnerabilities that attackers can exploit to tamper with the executed code or secret
data in trusted execution environments. This paper aims to protect both the code
and data against relevant side-channel vulnerabilities in TEEs.

2. The paper provides a valuable step forward in an established field. There are
numerous existing countermeasures, but most of them focus on protecting the
secret data, and only a few are deployed into the hardware by vendors. Obelix
takes a holistic view of the vulnerabilities and designs solutions that can protect
both code and data against a wide range of TEE attacks at the software level.

3. The paper creates a new tool to enable future science. Obelix is implemented as an
LLVM compiler extension, and the authors will make it publicly available, thereby
facilitating future research.
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B.4 Noteworthy Concerns

While Obelix offers valuable security enhancements, its deployment could lead to consid-
erable overhead. This work evaluates that with micro-benchmarks, but it lacks thorough
evaluations of real-world, full-fledged applications.
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