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Abstract

Cloud computing has transformed data management and IT practices for organiza-
tions and individuals alike, offering unmatched scalability, flexibility, and cost-efficiency.
However, it comes with privacy concerns, as the cloud service providers can access
all processed data. Trusted Execution Environments (TEEs) are one potential solution,
offering a new form of isolation that even locks out the infrastructure operator. Attacks
from any software component outside the TEE are thwarted by novel access restrictions
while physical attacks are prevented by memory encryption. Even the operating system
or hypervisor cannot overcome these restrictions. With Intel SGX, Intel TDX, and AMD
SEV-SNP, both major x86 CPU vendors offer TEEs on their server CPUs. This thesis
scrutinizes the extent to which the current TEE generation delivers on their security
promises.

We start this thesis by describing the isolation mechanisms implemented by SGX, TDX,
and SEV-SNP. Building on these insights, we demonstrate that the trend to use determin-
istic memory encryption without integrity or freshness has several shortcomings. We
show that monitoring deterministic ciphertexts for changes allows leaking information
about the plaintext, which we exploit on SEV-SNP. SGX and TDX prevent straightforward
exploitation by restricting software attackers from reading and writing the ciphertext,
while SEV-SNP only restricts writing. Next, we challenge the security of such access re-
strictions by showing that an attacker with brief physical access to the memory modules
can create aliases in the address space that bypass these safeguards. We exploit this on
SEV-SNP to re-enable write access for software attackers, culminating in a devastating
attack that forges attestation reports, undermining all trust in SEV-SNP. On SGX and
TDX, such attacks are mitigated by a dedicated alias check at boot time.

Finally, we examine the security of VM-based TEEs against single-stepping attacks,
which allow instruction-granular tracing and have led to numerous high-stakes attacks
on SGX. We show that SEV-SNP is also vulnerable to single-stepping and provide a
software framework enabling easy access to single-stepping on SEV for future research.
Next, we analyze the single-stepping security of Intel TDX, which comes with a built-in
mitigation comprising a detection heuristic and a prevention mode. We uncover a flaw
in the heuristic that stops the activation of the prevention mode, thereby re-enabling
single-stepping on TDX. Furthermore, we unveil an inherent flaw in the prevention
mode that leaks fine-grained information about the control flow.





Kurzfassung

Cloud-Computing hat das Datenmanagement und die IT-Praktiken für Organisationen
und Einzelpersonen gleichermaßen durch seine unvergleichliche Skalierbarkeit, Flexibil-
ität und Kosteneffizienz transformiert. Es bringt jedoch Datenschutzbedenken mit sich,
da die Cloud-Anbieter auf alle verarbeiteten Daten zugreifen können. Trusted Execution
Environments (TEEs) sind eine mögliche Lösung für die Datenschutzbedenken. Sie bieten
eine neuartige Form der Isolation, die sogar den Infrastrukturbetreiber umfasst. Angriffe
von jedweder Software außerhalb der TEE werden durch neue Zugriffsbeschränkungen
verhindert und physische Angriffe werden durch Speicherverschlüsselung verhindert.
Selbst das Betriebssystem oder der Hypervisor können diese Restriktionen nicht über-
winden. Mit Intel SGX, Intel TDX und AMD SEV-SNP bieten beide großen Hersteller
von x86 CPUs TEEs auf ihren Server-CPUs an. Diese Doktorarbeit untersucht, inwieweit
die aktuelle TEE-Generation ihre Sicherheitsversprechen einhält.

Wir beginnen mit einer detaillierten Erklärung, wie SGX, TDX und SEV-SNP ihre Isola-
tionsgarantien umsetzen. Darauf aufbauend zeigen wir, dass der Trend deterministische
Speicherverschlüsselung ohne Integrität oder Frische zu verwenden mehrere Schwächen
aufweist. Wir zeigen, dass das Überwachen von deterministischen Chiffretexten auf
Veränderungen, Informationen über den Klartext preisgibt, und demonstrieren Angriffe
auf SEV-SNP. SGX und TDX verhindern eine einfache Ausnutzung solcher Angriffe,
indem sie Lese- und Schreibzugriffe von Softwareangreifern auf den Chiffretext un-
terbinden, während SEV-SNP nur Schreibbeschränkungen implementiert.

Als Nächstes stellen wir die Sicherheit solcher Zugriffsrestriktionen infrage, indem wir
zeigen, dass ein Angreifer mit kurzzeitigem physischem Zugang zu den Speichermod-
ulen Aliase im Adressraum erzeugen kann, die diese Sicherheitsvorkehrungen umgehen.
Wir nutzen dies auf SEV-SNP aus, um den Schreibzugriff für Softwareangreifer erneut
zu ermöglichen, was zu einem verheerenden Angriff führt, der es erlaubt Attestierungs-
berichte zu fälschen und somit sämtliches Vertrauen in SEV-SNP untergräbt. SGX und
TDX verhindern solche Angriffe durch eine dedizierte Suche nach solchen Aliasen
während des Systemstarts.

Abschließend untersuchen wir die Sicherheit von VM-basierten TEEs gegen Single-
Stepping-Angriffe, welche eine instruktionsgranulare Beobachtung der Ausführung



viii

ermöglichen und bereits in mehreren gravierenden Angriffen auf SGX verwendet wur-
den. Wir zeigen, dass SEV-SNP ebenfalls anfällig für Single-Stepping ist, und stellen
ein Software-Framework bereit, um Single-Stepping auf SEV für zukünftige Forschung
zugänglich zu machen. Als Nächstes analysieren wir Intel TDX, dass über eine einge-
baute Single-Stepping Gegenmaßnahme verfügt, die aus einer Erkennungsheuristik und
einem Präventionsmodus besteht. Wir decken einen Fehler in der Heuristik auf, der die
Aktivierung des Präventionsmodus verhindert und damit erneut Single-Stepping auf
TDX ermöglicht. Darüber hinaus enthüllen wir einen inhärenten Fehler im Präventions-
modus, der feingranulare Informationen über den Programmablauf verrät.
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Part I

Security Analysis of Confidential VMs
on Modern Server Architectures





1
Introduction

The shift toward cloud computing has revolutionized how individuals and organizations
manage their data and computation. As businesses strive for scalability, flexibility, and
cost-efficiency, the cloud has become an indispensable infrastructure. An essential build-
ing block for cloud computing is sharing the same physical hardware between multiple
tenants using compartments called Virtual Machines (VMs) for isolation. Initially, security
efforts centered on safeguarding the cloud service provider from malicious tenants and
ensuring isolation between tenants. However, soon it crystallized that data privacy is
one major hindrance for moving computations to the cloud, as the cloud service provider
can spy on the data processed on its infrastructure. Regular encryption schemes can
only protect data at rest and in transit but not data that is being computed on. While,
Fully Homomorphic Encryption (FHE) schemes [38] and Garbled Circuits [10] can solve this
issue, they have not been broadly adopted due to their performance overhead when
protecting general purpose computations. Trusted Execution Environments (TEEs) have
emerged as a powerful alternative, providing hardware-based mechanisms to isolate
and protect computations from the infrastructure operator. They aim to protect against
attacks from all software on the host system and also against attackers with physical
access. To achieve this, they build on a hardware root of trust that is part of the CPU itself.
Currently, there are three major TEEs available on x86 server systems: Intel SGX [31],
AMD SEV(-SNP) [4] and Intel TDX [55]. Intel SGX was released in 2015 and isolates
individual processes, while AMD SEV (announced 2015, most recent update SEV-SNP in
2020) and Intel TDX (announced 2021) protect Virtual Machines (VMs). VMs protected
by TEEs are also referred to as confidential VMs (cVM). All three TEEs are publicly
available in commercial clouds [39, 88]. However, recent advancements focus more on
AMD SEV and Intel TDX as they promise a lift-and-shift solution for securing existing
VM deployments, which are the building block of most cloud-based infrastructure.

Since the release of Intel SGX, TEEs have been scrutinized by the academic research
community. In this thesis, we group the resulting attacks into four categories: attacks
on memory encryption, attacks on architectural isolation, attacks on microarchitectural
isolation, and physical attacks.

All considered TEEs encrypt their data before writing it to memory via a hardware
memory encryption unit built into the memory controller of the CPU. The main intention
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is to safeguard data against physical attacks that try to read the information directly
from the memory modules, such as cold boot attacks [128]. The initial Intel SGX design
employed strong memory encryption with cryptographic integrity and freshness. While
secure against adaptive attacks, this approach significantly constrained the ability of
SGX to handle large amounts of memory, limiting its applicability for many industry
use cases. AMD SEV, Intel TDX and the updated, scalable SGX thus opted for memory
encryption based on lightweight tweaked block ciphers without integrity or freshness
for their memory encryption. As we will learn throughout this thesis, on its own, such
a design only offers sufficient protection in scenarios like a cold boot attack, where the
attacker can only access a single snapshot of the encrypted data. However, without
additional means, the way that TEEs integrate into the untrusted host system enables
software-level attackers to read and write the encrypted data repeatedly. Several attacks,
including contributions of this thesis, demonstrated that the ability to manipulate or
repeatedly read the encrypted data is sufficient to subvert the isolation guarantees of
SEV [14, 76, 79, 80, 123]. With SEV-SNP, AMD introduced write restrictions, while Intel
SGX and TDX prohibit reading and writing.

After loading data into the CPU, TEEs must ensure proper architectural and microar-
chitectural isolation to guard against software attackers. Such isolation properties have
been extensively studied in “classic” attacker models, where an unprivileged process or
a VM tries to infer information about other parts of the system. Most attacks are based on
timing variations when querying microarchitectural structures like data and instruction
caches [7, 85, 97, 127], address translation caches [40, 115], branch predictors [34, 35] and
execution ports [2]. The strong TEE attacker model, which includes privileged software
components like the operating system or the hypervisor, helps to significantly reduce the
noise for such attacks. In addition, it includes several side-channels that would be out of
scope with the standard attacker model that assumes a trusted operating system and
hypervisor. Most of these side-channels revolve around the fact that the untrusted host
needs to remain in control of certain hardware components, such as hardware timers and
resource management, like memory allocation. Using control over memory allocation,
an attacker can infer the memory access patterns of TEEs with page granularity [126],
which is known as the page fault controlled-channel. Later, it was shown that the host
system’s control over the APIC timer allows it to interrupt the TEE after every instruction,
resulting in instruction-granular traces of its execution [20, 122, 124]. This type of attack
is commonly known as single-stepping. Combined with well-established side-channels,
such as cache attacks, single stepping provides attackers with a powerful toolkit for
monitoring the code executing inside the TEE. Combined with partial knowledge about
the executing code, such observations can be used to leak information about data that
influences the control flow or memory accesses of the program. Most publications fo-
cus on cryptographic libraries and extract secret keys [12, 89, 91, 108]. However, Xu
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et al. [126] show that general-purpose software, like image decoding, is also affected,
leaking information about the processed data.

In principle, well-known implementation techniques called data oblivious constant time
prevent such leakages. However, research has repeatedly shown that implementing data
oblivious constant time correctly, especially against a single-stepping adversary, is error-
prone [91, 108]. While rewriting small applications or cryptographic libraries to use this
technique is feasible, rewriting all software is infeasible. Thus, data oblivious constant
time is ill-suited for the VM-based TEE model, given its large and complex software
stacks. Due to the severity of these issues, which led to numerous exploits against
SGX and SEV, Intel TDX comes with a built-in countermeasure against single-stepping.
In addition, Intel SGX recently [30] received an update to retrofit a countermeasure.
However, the TDX countermeasure still allows for a slightly weaker subvariant of single-
stepping [122] and neither of the countermeasures prevent the page fault side-channel.

1.1 Main Contributions

In this thesis, we analyze the security of TEEs on modern server architectures, focusing
on the two VM-based solutions AMD SEV and Intel TDX. We show novel attacks and
propose improved TEE designs to mitigate them.

In summary, we:

• Show limits of deterministic memory encryption for TEEs To be able to scale to
large memory sizes, modern TEEs like AMD SEV-SNP, Intel TDX, scalable Intel SGX
and ARM CCA all opted to use deterministic memory encryption. On their own,
these ciphers leak whether the same plaintext value is encrypted more than once
and whether a write operation changes the underlying plaintext. Many applications
and algorithms that are commonly used inside TEEs leak secret data through their
memory access behavior if the attacker can observe the aforementioned patterns.
Thus, most TEEs implement access rights mechanisms to prevent attackers from
observing the ciphertext. We show that the countermeasures implemented by
SEV-SNP are insufficient. Based on this flaw, we show end-to-end attacks that
leak encryption keys from state-of-the-art constant time implementations. Finally,
we propose mechanisms to mitigate the issue in software and provide a proof-
of-concept implementation to prevent the leakage of register values of userland
applications when context switching to the kernel. Wichelmann et al. [118, 119]
build on these ideas and provide automated tools to protect user space applications
themselves. Deng et al. [32] show how to automatically detect vulnerable code
locations.
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• Show security risks of memory encryption without integrity and freshness for
TEEs To support scaling to large memory sizes, modern TEEs such as AMD SEV-
SNP, scalable Intel SGX, and ARM CCA have adopted block ciphers that lack
robust cryptographic integrity or freshness guarantees for encrypting their memory
content. Only Intel TDX offers integrity protection via a 28-bit MAC. However,
the MAC is not backed by secure on-chip memory but resides on the DRAM
together with the data it aims to protect and is only secure if protected against
brute-force attacks. Without integrity and freshness, a memory encryption scheme
cannot detect if the ciphertext has been manipulated or if an old ciphertext has
been replayed. To prevent attacks based on manipulated ciphertexts, most TEEs
implement access rights-based checks that prevent attackers from manipulating the
raw ciphertext. We show an attack mechanism that creates aliases on the physical
address layer, defeating the access rights checks of SEV-SNP and possibly ARM
CCA. We demonstrate a powerful end-to-end attack against SEV-SNP that enables
attackers to forge attestation reports and thus fully undermine the system’s root of
trust.

• Show Single-Stepping Attacks on Confidential VMs Prior to our work, single-
stepping attacks have not been explored for VM-based TEEs. We show that both
AMD SEV-SNP and Intel TDX are vulnerable to this class of attacks. On both
platforms, the core mechanism of using the APIC timer as an interrupt source
remains unchanged. However, the fact that VMs are interrupt-aware and run a fully-
fledged operating system poses additional challenges that we need to overcome.
For SEV-SNP, we provide an extensive, reusable software framework that already
found some adoption [37, 131].

In contrast to SEV-SNP, Intel TDX comes with a dedicated single-stepping counter-
measure that tries to detect single-stepping attacks via a heuristic and subsequently
activates a prevention mode to prevent the attacker from repeatedly interrupting
after a deterministic number of instructions. We analyze its security guarantees
in-depth and discover two flaws. The first one shows a flaw in the heuristic that
allows circumventing the activation of the prevention mode completely and thus
re-enables single-stepping attacks. In addition, we show a new technique for fil-
tering zero-steps, as the previously used methods do not work with Intel TDX.
The second flaw exploits a weakness in the design that still allows the attacker
to infer the number of executed instructions. While weaker than single-stepping,
such instruction counting attacks still reveal fine-grained information about the
control flow, enabling exploitation of non-constant time behavior. We demonstrate
the feasibility of our attack primitives by leaking cryptographic keys from wolfSSL
and OpenSSL.
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• Identify New Attack Surfaces in Legacy VM Components One of the main allures
of confidential VMs is their promise to secure existing VM workloads without
requiring extensive changes. We show that traditional software components expose
major security risks when used in the context of confidential VMs. LUKS2, the de
facto standard for disk encryption allows an attacker to trick Linux into using a
decryption primitive that leaks the key via the cache side-channel. The OVMF UEFI
version (when writing the undeSErVed trust paper) mapped all pages as executable,
making it easy to inject code by exploiting flaws in the memory encryption.

1.1.1 Individual Publications

This section gives a summary of all papers that make up the main contributions of this
thesis. The full text of all publications can be found in Part II.

A Systematic Look at Ciphertext Side Channels on AMD SEV-SNP In this paper, we
provide novel insights on the applicability of ciphertext side-channels to TEEs. This class
of attacks was first demonstrated in the CipherLeaks paper by Li et al. [80], but they only
analyzed the effect on SEV’s VMSA data structure, which stores the VM’s register values
during context switches to the hypervisor. AMD released a firmware patch to secure the
VMSA against ciphertext side-channels. In our paper, we demonstrate that ciphertext
side-channel attacks affect the whole memory of confidential VMs and categorize them
into two primitives: dictionary attacks and collision attacks. We demonstrate end-to-end
attacks against OpenSSL and OpenSSH that leak encryption keys. Furthermore, we show
that the way Linux stores user space register during context switches to the kernel is
highly susceptible to ciphertext side-channel attacks. This enables the construction of
a general-purpose primitive that can be used to leak partial register information from
any user space process inside the confidential VM. These attacks clearly show that
AMD’s mitigation is insufficient. Furthermore, we analyze both hardware and software
countermeasures to secure TEEs against the presented attacks. We provide a proof-of-
concept implementation to secure the context switch mechanism of Linux. Follow-up
work by Wichelmann et al. [118, 119] builds on our ideas to develop automated tooling
to protect applications against ciphertext side-channel attacks.

This paper was published at the IEEE S&P 2022 conference and is joint work with
Mengyuan Li, Jan Wichelmann, Thomas Eisenbarth, Radu Teodorescu, Yinqian Zhang [76].
The full text is in Chapter 9.

SEV-Step: A Single-Stepping Framework for AMD-SEV In SEV-Step, we demon-
strate that SEV-SNP virtual machines can be reliably single-stepped using the APIC
timer. Previously, single-stepping attacks were demonstrated for process-based TEEs,
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particularly for Intel SGX. In addition, we provide a reusable framework to facilitate
future research, which has already gained some traction in the community [37, 131].
Besides single-stepping, we also show that AMD CPUs/SEV VMs leak information
about the executed instruction via the interrupt latency, similar to the results in prior
work for Intel SGX [19]. We demonstrate the capabilities of our framework in an attack
case study against LUKS2 disk encryption. In this scenario, the attacker manipulates the
unauthenticated metadata of the encrypted disk to trick the VM into decrypting the disk
with an implementation that is vulnerable to cache-side channels.

SEV-Step was published at the Conference on Cryptographic Hardware and Embedded Sys-
tems (CHES), 2024 [124]. The full text is in Chapter 7. SEV-Step is joint work with Jan
Wichelmann, Anja Rabich and Thomas Eisenbarth.

TDXdown: Single-Stepping and Instruction Counting Attacks against Intel TDX In
TDXdown, we analyze the built-in single-stepping countermeasure of Intel TDX and
show two attacks: full single-stepping and StumbleStepping. Intel’s countermeasure is
based on a heuristic that tries to detect single-stepping attacks and a prevention mode
that gets activated by the heuristic to prevent the attack. Our first attack exploits a flaw
in the detection heuristic whose decision is partially based on a timing measurement.
By throttling the frequency of the CPU core, the attacker can ensure that the heuris-
tic never detects single-stepping attempts. As a result, the prevention mode is never
activated, allowing to single-step TDX with techniques similar to prior work [20, 124].
For our second attack, StumbleStepping, we exploit an inherent flaw in the prevention
mode that leaks the number of instructions executed by the TD, which is still sufficient
to exploit secret-dependent control flow. As a separate contribution, we provide an
in-depth analysis of secret dependent control flow in nonce truncation implementations
in state-of-the-art crypto libraries. Using our single-stepping and StumbleStepping prim-
itives, we exploit nonce truncation leakages in wolfSSL and OpenSSL. Finally, we discuss
improved designs for single-stepping countermeasures. After our disclosure, Intel up-
dated the detection heuristic but did not change the prevention mode. Instead, they refer
developers to their implementation guidelines for preventing secret-dependent control
flow.

TDXdown was published at the ACM CCS 2024 conference and is joint work with Florian
Sieck and Thomas Eisenbarth [122]. The full text is in Chapter 8.

BadRAM: Practical Memory Aliasing Attacks on Trusted Execution Environments
In BadRAM, we show how manipulating the information on the SPD chip on DDR4 and
DDR5 DRAM modules can be used to create aliases in the physical address space of the
CPU. For most memory modules, the manipulation requires brief physical access, while
some memory modules allow overwriting this information from software. The aliases can
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be used to overcome physical address-based access rights checks, as, e.g., used by Intel
SGX and SEV-SNP. Without the access rights check for write protection, SEV-SNP cannot
uphold its integrity guarantees and again becomes susceptible to ciphertext manipulation,
replay attacks, and manipulations of the address space layout. We show an end-to-end
attack that breaks the remote attestation mechanism of SEV-SNP, undermining all trust in
the system. For classic Intel SGX, the strong memory encryption which provides freshness
and integrity, prevents such attacks but still allows for fine-grained write pattern leakage.
Scalable Intel SGX and Intel TDX perform a dedicated alias check during system boot and
deactivate themselves if aliases are found. AMD released firmware updates to mitigate
our attacks.

BadRAM was published at the IEEE S&P 2025 conference and is joint work with Jesse
De Meulemeester, David Oswald, Thomas Eisenbarth, Ingrid Verbauwhede, Jo Van
Bulck [87]. The full text is in Chapter 9.

undeSErVed trust: Exploiting Permutation-Agnostic Remote Attestation In unde-
SErVed trust, we show a flaw in the (remote) attestation of SEV and SEV-ES, allowing an
attacker to generate the same attestation value for each 16-byte granular permutation of
the initial VM image. Based on this flaw, we demonstrate how an attacker can reorder
the code of the widely used OVMF UEFI, to set up a return oriented programming attack
that eventually allows executing arbitrary code in the SEV VM. We demonstrate an
end-to-end attack where the attacker leaks the keys of the VM’s encrypted disk. While
we propose countermeasures to increase the complexity of exploiting the found issues,
we conclude that they cannot be fully mitigated for SEV-ES due to the lack of integrity
protection for the VM’s memory layout. Independent of our paper, AMD addressed
these issues with SEV-SNP which is not affected by our attacks.

undeSErVed trust was published at the 15th IEEE Workshop on Offensive Technologies in
2021 and won the best paper award [125]. The full text is in Chapter 5. undeSErVed trust
is joint work with Jan Wichelmann, Florian Sieck and Thomas Eisenbarth.

1.2 Other Contributions

In addition to the previously discussed main contributions, I also worked on several
publications that are not part of this thesis. In the following, I will briefly summarize the
papers and my contributions.
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SEVurity: No Security Without Integrity Breaking Integrity-Free Memory Encryption
with Minimal Assumptions In SEVurity, we analyze the security of SEV-ES against
ciphertext manipulation, showing code injection attacks simply by re-using existing
ciphertext blocks at new memory locations. SEV-ES was the most recent version of SEV
when the paper was published.

Prior research uncovered that SEV uses AES in the Xor-Encrypt mode, where a physical
addressed-based tweak is XORed to the plaintext before encryption. We provide addi-
tional details on reverse engineering the exact tweak values and show that more recent
AMD CPUs use the Xor-Encrypt-Xor mode, which offers better security guarantees.

Knowledge of the encryption mode and tweak values is a crucial prerequisite for our
code injection attack. For the attack, we first build a dictionary of known plaintext
ciphertext blocks. To this end, we assume that the kernel version is known and show how
an attacker can locate the ciphertext of the kernel code in memory to build the dictionary.
To inject code at a memory location, the attacker searches the dictionary for a ciphertext
block that would decrypt to the desired instruction when copied to the new memory
location. This step requires knowledge of the physical address-based tweak values. For
the Xor-Encrypt-Xor mode, the attacker also needs to apply the XOR difference between
the old and the new tweak value to the ciphertext before decryption. Otherwise, the
plaintext would be randomized during decryption. Using our dictionary, we show that
the attacker can gain control over 2 bytes out of a 16-byte ciphertext block. Using this
primitive, we inject a code gadget into the SEV VM that allows the attacker to encrypt
arbitrary plaintext, i.e., the attacker gains control over all 16 bytes. The injected values
can be executed as code or used as data.

This paper was published at the IEEE S&P 2020 conference [123]. I am the first author,
with Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth as co-authors. SEVurity
is the paper version of my master thesis and thus is not included as a main contribution
in this thesis.

SNI-in-the-head: Protecting MPC-in-the-head Protocols against Side-channel Anal-
ysis In this paper, we analyze the security of proof systems based on the MPC-in-the-
head paradigm against differential power analysis side-channel attacks. We show that
the MPC-in-the-head approach does not provide inherent side-channel security. In a case
study, we demonstrate an attack on the ZKBoo protocol, which is for example used by the
Picnic post-quantum signature scheme. Afterward, we propose (n+ 1)-ZKBoo, a refined
version of the protocol, which is immune to the presented attacks by using gadgets with
the “strong non-interference” property. We apply (n+ 1)-ZKBoo to Picnic and conduct
practical experiments to verify its security against differential power analysis.
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The paper was published at the ACM SIGSAC Conference on Computer and Communications
Security in 2020 and is joint work with Okan Seker, Sebastian Berndt, and Thomas Eisen-
barth. I worked on the implementation and performance evaluation of the proposed
countermeasure in Picnic.

Side-Channel Protections for Picnic Signatures In the paper, we analyze masking
countermeasures for signature schemes based on the MPC-in-the-head paradigm to
protect them against side-channel attacks, focusing on physical side-channels like EM
emanations. We show that the state-of-the-art masking scheme for MPC-in-the-head
is vulnerable when used with the Picnic signature scheme. Next, we develop an im-
proved masking scheme, that is also easier to integrate into other schemes and has a
smaller overhead on the signature size. We implement our masking approach for the
Picnic3 signature scheme and validate our implementation by performing extensive EM
emanations experiments.

The paper was published at the Conference on Cryptographic Hardware and Embedded
Systems (CHES) in 2021 and is joint work with Diego F. Aranha, Sebastian Berndt, Thomas
Eisenbarth, Okan Seker, Akira Takahashi and Greg Zaverucha (alphabetical order) [8]. I
performed the EM emanation experiments.

Cipherfix: Mitigating Ciphertext Side-Channel Attacks in Software In Cipherfix, we
harden existing binaries to be secure, even if they are executed in a TEE that is vulnerable
to ciphertext side-channel attacks. We focus on cryptographic implementations and use
taint tracking to find all memory locations storing sensitive data. Afterward, we use
static binary instrumentation on the original binary code to rewrite all accesses to secret
data to use masking. The core masking/unmasking step only uses CPU registers, which
we assume to be secure against ciphertext side-channels, as discussed in prior work.
Since the masks change on every write, so are the corresponding ciphertexts, mitigating
the ciphertext side-channel.

The paper was published at the 32nd USENIX Security Symposium in 2023 and is joint
work with Jan Wichelmann, Anna Pätschke and Thomas Eisenbarth [118]. I helped in
the conception of the countermeasure and the performance evaluation.

SNPGuard: Remote Attestation of SEV-SNP VMs Using Open Source Tools In
this SoK-style paper, we show which steps are required to properly attest SEV-SNP
VMs for two different use cases. For the first use case, we ensure the confidentiality
and integrity of the payload code executing in the VM, which requires to establish a
secure channel to transmit a disk encryption key. In the second use case, we only ensure
the integrity, making the startup process less involved. While the individual software
components required for these workflows already exist, their documentation is scattered
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and scarce. Furthermore, they are not trivial to integrate with each other. We provide
additional documentation in the paper and combine all components in an easy-to-use
and easy-to-extend software framework.

The paper was published at the 7th Workshop on System Software for Trusted Execution
(SysTEX’24) workshop in 2024 and is joint work with Gianluca Scopelliti [121]. I am the
main author.

1.3 Outline

This thesis is structured into three parts. Part I contains background information and a
detailed overview of the state of the art regarding attacks and defenses on TEEs. Part II
contains the full text of the publications that form the main contribution of this thesis.
?? contains a short CV, providing an overview of my academic career. The first part is
structured as follows.

In Chapter 2, we provide background information on the x86 architecture with a focus
on its isolation mechanisms. We show how hardware-accelerated virtualization extends
these mechanisms before closing the background chapter with an introduction to TEEs.

We start Chapter 3 with a detailed, technical description of how Intel SGX, AMD SEV,
and Intel TDX implement their isolation guarantees, complementing the background
information from the previous chapter. Afterward, we provide a detailed summary
of the research landscape regarding TEE security, grouping the results into four cate-
gories: attacks on memory encryption (Section 3.2), attacks on architectural isolation
(Section 3.3), attacks on microarchitectural isolation (Section 3.4) and physical access
attacks (Section 3.5). Chapter 4, closes the first part with my conclusion of the current
state of TEE security and an outlook to interesting challenges for future work.



2
Background

In this chapter, we provide essential background information on the x86 architecture
and on Trusted Execution Environments (TEEs). For the x86 architecture, we focus on its
isolation mechanisms since these are the most relevant to understanding TEEs. We start
with general concepts like CPU privilege levels and virtual memory and then proceed
to hardware-accelerated virtualization on modern x86 CPUs. Afterward, we introduce
the general concept of TEEs and refer the reader to Section 3.1 for a detailed technical
description of the isolation mechanism used by the TEEs considered in this thesis.

2.1 x86 Systems Architecture

In this section, we provide a succinct description of the features of the x86 CPU architec-
ture that are important for this thesis. Furthermore, we explain basic operating systems
concepts and how they are implemented on x86. For a more detailed description, we
refer the reader to the excellent books Computer Architecture - A Quantitative Approach [43]
and Operating Systems: Three Easy Pieces [9] on which this section is based.

The x86 architecture defines a set of instructions, general purpose and system/configura-
tion registers that software can use to interact with the CPU. Instructions are the building
blocks for programs and range from simple arithmetic operations like an addition (add) to
memory accesses (mov) or control flow transfer instructions (call, jmp). General purpose
registers offer readily accessible storage and serve as operands for instructions. Finally,
there are various system/configuration registers that allow configuring the behavior of
the CPU, or track state, like the address of the currently executing instruction.

2.1.1 Isolation Mechanisms

An operating system is the fundamental software running on the CPU. Its task is to manage
resources such as CPU time, memory, and attached hardware devices like hard drives or
network cards. It offers an API with high-level abstractions for these resources that can
be used by regular applications. The core part of the operating system is called kernel.
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Another important task for modern operating systems is to implement strict security
policies that prevent, e.g., a malicious or buggy program from interfering with other
programs or the operating system itself. To this end, operating systems make use of
the features of the x86 architecture to implement a privilege hierarchy and to isolate
different programs, which are also referred to as processes, using the concept of privilege
levels and virtual memory. In this thesis, we focus on the Linux operating system, which
is the most popular operating system for severs. However, most concepts apply to all
operating systems.

Privilege Levels The first mechanism that the operating system uses to implement its
security and isolation guarantees is privilege levels. The x86 architecture supports four
hierarchical privilege levels, which are referred to as ring 0 to ring 3. Ring 0 is the most
privileged level and is usually used for the operating system, while ring 3 has the least
privileges and usually runs regular user programs. Ring 0 is also referred to as kernel mode
or kernel space while ring 3 is commonly referred to as userland or user space. The current
privilege level mainly restricts the kind of instructions that can be executed and which
CPU configuration registers can be accessed. Instructions that can only be executed in
ring 0 are also referred to as privileged instructions. Important examples are access to
the cr3 configuration register, which controls the current address space, and the lidt

instruction for configuring interrupt handlers. In addition, certain configuration features,
like the access rights configuration stored in page tables, may also reference the current
privilege level to impose restrictions. After power on, the CPU starts in ring 0, and the
operating system sets up its isolation mechanisms by preparing address spaces and
configuring interrupts before eventually executing user space applications by dropping
to ring 3.

Virtual Memory The second important isolation mechanism that operating systems
use is virtual memory. Due to legacy reasons, the x86 architecture supports several
addressing modes. We restrict ourselves to 64-bit long mode, which is the addressing
mode that modern operating systems set up. On x86, we distinguish between two kinds
of addresses: physical addresses and virtual addresses. A physical address is of global
scope and refers to a unique location in memory. It is used by the Memory Management
Unit (MMU) of the CPU to load the requested location from the memory modules. A
virtual address, on the other hand, is only valid in the scope of the current address space,
which is defined by the page tables pointed to by the cr3 register. Virtual addresses are
translated to physical addresses via page tables. Section 2.1.1 shows an overview of the
translation process for a three-level page table. The Linux kernel uses five-level page
tables by default on most x86 systems.

When software performs a memory access, the CPU uses the page tables referenced
by the cr3 register to translate the virtual address to a physical address. Besides the
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Figure 2.1: Example of a three-level page table. The cr3 register points to the root of the page table.
The entries of the intermediate page table stages point to the base address of the next stage,
while the entries of the final page table stage point to 4096-byte aligned physical addresses.
In addition to the address, page table entries also contain configuration metadata, like access
rights. The virtual address is divided into multiple parts, which specify the offsets in the
intermediate page table stages and the offset in the final physical address.
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address translation, page tables allow specifying access rights for a virtual address, like
“read-only”, “read+write”, and “execute”. In addition, page tables can restrict access to a
virtual address to ring 0. By default, page tables manage memory in chunks of 4096 bytes,
which are referred to as pages. Thus, all access rights have at least 4096-byte granularity.
The main advantage of page tables is that they allow the operating system to virtualize
physical memory, providing each process with its own view on memory. The concept
of virtual memory enables the operating system to isolate itself from userland but also
userland processes from each other. In addition, it allows processes to use arbitrary
addresses without the need to consider the memory usage of other processes.

Interrupts Operating systems isolate themselves from user space processes using the
privilege levels and page table mechanisms of the CPU. Interrupts are used to allow
the operating system to regain control if certain events occur. In more detail, the x86
architecture differentiates between interrupts, exceptions, and traps. Interrupts refer to
events that are asynchronous to the currently executing code, like a package arriving at
the network card. Exceptions and traps are, instead, related to the currently executing
instruction. Exceptions refer to error conditions, like a division by zero or an invalid
memory access, e.g, due to insufficient permissions (page fault exception). Finally, traps
are caused by special instructions that consciously want to trigger a context switch to
the operating system. The most common example is the syscall instruction, which
user space application issue to use the API exposed by the operating system. To handle
interrupts, exceptions and traps, which we also refer to as events, the operating system
prepares an Interrupt Descriptor Table (IDT) and activates it via the privileged lidt in-
struction. For each event, the IDT includes a configuration entry that specifies a software
routine to handle it. When an event occurs, the CPU automatically transitions to ring
0 and invokes the handler defined in the IDT. Additionally, the CPU saves a reference
to the next instruction of the interrupted program, allowing the operating system to
resume execution at that point using the iret instruction. However, the operating system
is responsible for storing the remaining state, like the values of the general purpose
registers.

One crucial interrupt on the x86 architecture is the APIC timer interrupt. This is a
countdown timer that the operating system programs to ensure that it regains control
after a fixed amount of time. The primary use case is to implement scheduling algorithms
that run multiple user space processes in a time-sliced fashion.

2.1.2 Caches

Building storage that is large, delivers high throughput and maintains low random
access latency presents a significant technical challenge. As a result, modern CPUs
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Figure 2.2: Cache with n sets and m ways. The index bits are used to select a cache set. Next, the
cache tag and the valid bit in the metadata bits are used to select the correct entry from the m
ways. Finally, the cache line offset bits determine the byte granular position in the cache line.

can execute much faster than the main memory is able to serve requests. The main
memory is also referred to as Dynamic Random Access Memory (DRAM) and is located
on external memory modules called Dual Inline Memory Modules (DIMMs) that the CPU
communicates with over the memory bus using the Double Data Rate (DDR) protocol. To
alleviate the performance impact of the relatively slow DRAM, the CPU comes with a
set of small but very fast cache memory. The cache memory is organized in a hierarchy,
usually ranging from level 1 (L1) to level 3 (L3), with L1 being the fastest and smallest
cache. On L1, there is usually one dedicated cache for instructions and one dedicated
cache for data. On all other levels, code and data are usually stored in the same cache.
Accessing the L1 cache takes 3 to 5 CPU clock cycles, while the L2 cache takes 10 to 20
cycles, and the L3 cache takes 30 to 50 cycles. A DRAM access takes roughly 200 to 500
cycles. Usually, each CPU core has its own L1 cache and L2 cache, while the L3 cache
is shared between multiple cores. Whenever a memory access is performed, the CPU
first checks whether the data already resides in the cache before accessing the DRAM.
Similarly, writes can also be cached, postponing the slow DRAM access. Caches are
organized into sets and ways, as depicted in Figure 2.2. Each memory address is assigned
to precisely one cache set via a hash function that is based on the virtual address (L1
cache) or parts of the physical address (L2,L3 cache). Each cache set consists of multiple
ways, each of which can store a 64-byte chunk of memory, which is commonly referred
to as a cache line. In addition, for each way, the cache stores a unique identifier for the
cached address called cache tag as well as some metadata like a valid bit or dirty bit.
The cache tag is derived from the physical address. When querying a cache for a given
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address, all ways of the corresponding cache set are accessed in parallel, checking the
cache tag and the valid bit to identify if there is a match. After an initial warm-up phase,
all cache ways usually contain valid entries. Thus, subsequent memory accesses that
are not stored in the cache need to evict an existing entry. While CPU vendors do not
disclose their replacement policies, independent research revealed that most modern
AMD and Intel CPUs use an approximation of the Least Recently Used (LRU) algorithms
called Pseudo LRU (PLRU) [13]. A long line of research exploits the timing difference
between a cache hit and a cache miss as a side-channel to leak information about the
memory accesses of other security domains on the system [7, 85, 97, 127].

In addition to the caches for DRAM data, the CPU also has caches to store address
translations from the page tables. This class of caches is called Translation Lookaside Buffer
(TLB) and is also organized in a hierarchy.

2.2 x86 Virtualization

This section provides a concise introduction to hardware-accelerated virtualization on
modern AMD and Intel CPUs. For additional details, we refer to the book Modern Op-
erating Systems [113] and to AMD’s and Intel’s manuals [5, §15],[51, §24]. Since most
publications in this thesis focus on AMD CPUs, certain details in the following descrip-
tion, especially the names of instructions, are specific to AMD CPUs. However, Intel’s
and AMD’s approach to hardware-accelerated virtualization is very similar.

In recent years, industry use cases shifted heavily towards cloud computing, where cloud
service providers offer computational resources as a service. For efficient resource usage,
cloud service providers run workloads for multiple mutually distrusting customers on
the same hardware. While the process abstraction provided by operating systems enables
running applications from different users on shared hardware, the shared operating
system kernel presents a large attack surface for potential exploits by malicious programs.
In addition, customers might require a specific operating system or version. Virtualization
addresses these issues by introducing a new kind of CPU compartmentalization, called
Virtual Machines (VMs). For the contained software, a VM simulates all interfaces of a
bare metal x86 computer system, enabling to run whole operating systems with their
own set of user space applications inside the VM. The software component that manages
the VMs is referred to as the hypervisor or more general host system. With virtualization,
the operating system does not need to be adapted to run in a VM. However, for efficiency
reasons, some operating systems include paravirtualized drivers that can consciously
communicate with the hypervisor, allowing the use of more efficient interfaces. In the
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following, we describe the three main areas that require virtualization: CPU privilege
levels, memory subsystem and interrupts.

2.2.1 CPU

As discussed in Section 2.1, x86 CPUs support four different privilege levels. To virtu-
alize unmodified operating systems, the hypervisor needs to enable the VM to execute
privileged instructions, which can only run on ring 0. At the same time, the hypervisor
also needs to protect itself from the VM. To resolve this clash, hardware accelerated
virtualization adds a new dimension to the privilege levels which we refer to as host
mode and guest mode. Figure 2.3 shows an overview. In each mode, software has access
to all CPU privilege levels. On AMD CPUs, the host mode can transfer the CPU into
guest mode using the newly added VMRUN instruction, which takes a pointer to the Virtual
Machine Control Block (VMCB) data structure as an argument. Using the VMCB, the host
mode can configure the hardware such that certain instructions are intercepted and trap
to the host mode, which is referred to as a #VMEXIT. There are two main use cases for
interception. The first use case is to intercept the execution of certain instructions in
order to emulate them. For example, the hypervisor might want to intercept the cpuid

instruction to modify the information about specific hardware details. Another example
are the rdmsr and wrmsr instructions, which are used to access configuration registers.
The second use case is intercepting certain interrupts, exceptions, or traps. For example,
the hypervisor usually wants to ensure that the APIC timer interrupt is intercepted to
ensure that it always regains control after a fixed time slice. Another important example
is handling page fault exceptions, which we will discuss in the next section.

In addition to event interception, hardware-accelerated virtualization also saves and
restores parts of the CPU register state to facilitate context switching between the two
modes. Among others, this includes the instruction pointer and the value of certain con-
figuration registers for the address space (cr3), interrupt handlers (idtr), and interrupt
enablement status (rflags).

2.2.2 Memory

Hardware-accelerated virtualization introduces a second level of page tables, known as
Nested Page Tables (NPTs) on AMD systems, to facilitate efficient memory virtualization.
The NPTs are managed by the hypervisor and inaccessible to the VM. When context
switching into a VM, the hypervisor specifies the memory address of the root of the
NPT via a field in the VMCB. In guest mode, the VM manages the guest page tables
via the regular cr3 register. From the VM’s point of view, these are the only page tables.
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Figure 2.3: Schematic overview of host- and guest mode on CPUs with hardware-accelerated
virtualization. Each mode allows access to all privilege levels, but the host mode can configure
the hardware such that certain instructions and events trap to the host mode which is dubbed
#VMEXIT. In addition, the hardware automatically loads and saves certain state when transi-
tioning between host and guest mode.

However, upon performing a memory access in guest mode, the hardware will use the
result of walking the guest’s cr3 page tables as input into the NPTs instead of directly
performing the memory access. Thus, the addresses managed by the guest are referred to
as Guest Virtual Addresses (GVAs) and Guest Physical Addresses (GPAs). Translation faults
while walking the guest page tables lead to a regular page fault exception that is usually
handled by the VM. Translation faults while walking the NPTs lead to a newly added
Nested Page Fault (NPF) exception that traps to the hypervisor. The NPTs contain the
same permission and status bits as regular page tables. If the type of memory access
performed by the VM is not allowed in the NPTs a NPF exception is generated. Building
on this mechanism, the hypervisor can implement virtualization for memory reads
and writes to certain memory pages. This mechanism is, for example, used to emulate
memory-mapped device interfaces.

2.2.3 Interrupts and Devices

Interrupt virtualization enables the hypervisor to inject virtual interrupts, exceptions,
and traps into the VM. To this end, the hypervisor specifies the event as part of the VCMB
before calling VMRUN. After entering the VM, the hardware will deliver the corresponding
interrupt to the VM. Recent Intel [51, §30.6] and AMD [5, §15.36.21] CPUs offer a more
efficient mechanism for interrupt injection that does not require a #VMEXIT. To this end,
the hardware has built-in support for virtualizing the interrupt controller itself. The
virtualized interrupt controller offers the hypervisor an interface for interrupt injection
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and presents them to the VM via the corresponding register in the VM’s virtualized view
on the interrupt controller.

Combined with interrupt interception, and triggering a nested page fault on specific
memory accesses, interrupt injection can be used to virtualize internal and external
devices. To this end the hypervisor advertises the device to the VM but ensures that
all read and write accesses to the interfaces of the device trap to the hypervisor. There
are two classes of such interfaces. The first one is configured via specific instructions
like rdmsr/wrmsr or in/out. The hypervisor can use instruction intercepts to learn the
requested state manipulation during writes and to replace the results of reads with
the virtualized state. The second interface maps the configuration registers of a device
directly into the virtual address space, allowing manipulation via the regular mov instruc-
tion for memory reads and writes. This is referred to as Memory Mapped I/O (MMIO).
To virtualize MMIO interfaces, the hypervisor uses the NPTs to ensure that memory
accesses to those pages encounter an NPF exception. By decoding the faulting memory
access the hypervisor can infer the data argument for memory writes or replace the
results of memory reads.

A typical example of device emulation is the APIC timer, which operating systems use to
generate a periodic “tick” for implementing tasks like process scheduling. As such, both
the host system and the VM require the APIC timer. However, there is only one physical
APIC timer on each CPU core. In addition, allowing the VM to handle the physical APIC
timer interrupt would open up the hypervisor to denial of service attacks from the VM.
After intercepting a state manipulation request by the VM, the hypervisor programs
the physical APIC timer to interrupt at the required point in time, i.e., the minimum of
both the requested interrupt from the host and the requested interrupt from the VM.
After intercepting the physical interrupt, the hypervisor determines whether the VM’s
virtualized APIC timer has reached zero. If this is the case, it injects a virtual APIC timer
interrupt into the VM.

2.3 Trusted Execution Environments

In this section, we provide general background on TEEs. For an in-depth technical
description of the TEEs considered in this thesis, we refer to Section 3.1. This chapter is
based on the technical documentation of Intel SGX [31], AMD SEV [4, 5, 64, 65] and Intel
TDX [55, 57].

TEEs are a new form of compartmentalizing computer systems. Traditionally, the operat-
ing system, or more general software in ring 0 (in host mode), has full control over the
hardware and all software. This mode of operation works well if the physical computer
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system is owned by the same entity that wants to execute software on the system. With
cloud computing, this is no longer the case. The cloud service provider operates a large
cluster of servers and rents them to customers. For scalability and usability reasons,
customers usually do not rent a whole physical server but only rent access to a VM
or other virtualized compute environments that are running on the physical servers.
Using traditional access rights management, the cloud service provider has full access to
all code and data that is processed on its platform since it operates both the hardware
and the hypervisor software. Current encryption techniques can only efficiently protect
data at rest and in transit but cannot enable efficient computation on the data while it is
encrypted. Thus, customers have to trust the cloud service provider not to spy on their
data while they compute on it. TEEs are a CPU feature that promises to lock out the cloud
service provider, or more generally privileged software, from accessing a compartment
like a VM or a process. Depending on the implementation, the mechanism is enforced
by firmware or a dedicated coprocessor that are under the control of the CPU vendor,
whom the user still has to trust. This is also referred to as the (hardware) root of trust.

Early designs, like ARM TrustZone, only allow creating a single VM-like compartment
that is protected from the rest of the system and thus dubbed Secure World. Thus, this
design is not well suited for the cloud computing use case, which involves multiple,
mutually distrusting customers who share the same hardware. Later, on x86, Intel SGX
enabled to protect individual processes, which are called enclaves. While SGX allows
multiple instances, software initially had to be rewritten to work with SGX, and early
versions heavily restricted the amount of memory available to enclaves. Later versions
greatly improved the memory limit and offered improved software frameworks, called
library OS (libOS) to ease running existing software in enclaves without the need for
modifications. However, SGX enclaves cannot use ring 0 or run a full-fledged OS. In
recent years, the industry shifted more towards the VM-scoped TEEs AMD SEV and
Intel TDX. Both only require minimal changes to the protected software and integrate
very well into the cloud computing ecosystem, which already relies heavily on VMs. In
the remainder of this section, we restrict ourselves to Intel SGX, AMD SEV and Intel
TDX.

On a technical level, TEEs are based on two mechanisms: Attestation to prove that the
initial state of the TEE instance is secure and Isolation at runtime to prevent an attacker
from manipulating the TEE instance.

2.3.1 Isolation Mechanisms

For isolation, we differentiate between access rights-based isolation and cryptographic
isolation. As depicted in Figure 2.4, the former protects the data against software-level
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Figure 2.4: Overview of the protection mechanisms employed by TEEs.

attackers while it resides in plaintext on the system-on-chip, while cryptographic isolation
protects the data against attackers that try to access the data on the DRAM, which includes
both software-level and physical access.

TEEs use memory encryption to protect their data before it gets written to DRAM. To
achieve this, they use dedicated hardware memory encryption engines that are part of
the MMU. The main intention is to protect the data against physical attackers who have
direct access to the DRAM modules. One well-known example of such an attack are
cold boot attacks [128] where the attacker exploits that DRAM retains data even after
power is cut, especially if cooled to low temperature. This enables attackers to move
the DIMM to a different computer to read out its content. The initial, “classic” Intel
SGX design used Merkle-Tree based memory encrypted schemes with both integrity
and freshness. However, classic Intel SGX has strict limitations on the maximal memory
size, as Merkle-Tree based encryption schemes do not scale well to large memory sizes.
The more recent scalable Intel SGX, Intel TDX, and AMD SEV switched to lightweight,
tweaked block cipher-based encryption schemes to meet the requirement to protect large
amounts of memory. The memory encryption keys are managed through the root of
trust.

In addition to memory encryption, all x86 TEEs also employ access rights restrictions to
prevent software outside the TEE from writing to its memory. SGX and TDX also prohibit
reading. As we will learn later in this thesis, implementing read and write restrictions
is crucial for the security of TEEs if their memory encryption does not ensure integrity
and freshness. Besides restricting direct access to the memory of the TEE, the data must
also be protected while it resides in the various caches of the CPU. To this end, TEEs
ensure that attackers cannot perform memory accesses that lead to the same cache tag by
either ensuring that the attacker cannot access the physical address to begin with or by
including additional TEE context identifiers into the cache tag.
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Finally, the register content and CPU state of the TEE instance also needs to be protected.
To this end, the root of trust is involved in the context switch from the TEE instance to the
host, storing the register content and relevant CPU state into the private memory of the
TEE. Similarly, when switching back to the TEE, the host has to use an API of the root of
trust, which loads the previously stored execution context. For the initial context switch
into the TEE, the host system has to use a well-defined entry point, which is ensured via
the attestation process described in the next paragraph. As part of the context switch, the
root of trust also loads/unloads the correct memory encryption key.

2.3.2 Attestation

The attestation process aims to prove to a (remote) party that their code is running inside
a TEE instance and that the host system meets certain security requirements. This step is
critical for, e.g., the cloud computing scenario as the customer would otherwise again
need to trust the cloud service provider.

To create a new TEE instance the TEE owner (e.g. the customer of a cloud service provider)
has to interact with the untrusted host system, which in turn has to use the API provided
by the root of trust. First, the TEE owner specifies their initial code image in plaintext
and sends it to the host system. The image also specifies the entry point(s) and, for
VM-based TEEs, the initial register values. While creating a TEE instance, the root of
trust grants the host access to a set of bootstrapping API functions that allow the host
to load arbitrary code and data into the TEE instance. The loaded data is protected by
the memory encryption and access restriction mechanisms of the TEE. When executing,
the TEE performs its code and data accesses with its memory encryption key. Thus,
the bootstrapping API is the only mechanism through which the host system can load
content into the TEE. To ensure that the host system does not perform any malicious
changes to the initial image, the bootstrapping API internally computes a hash value
over the loaded data that also takes into account the memory layout of the loaded data.
After loading the initial image, the host system informs the root of trust to mark the TEE
instance as ready, at which point the host can no longer use the bootstrapping API for
this TEE instance. Next, we explain how the TEE owner can verify the correct execution
of the bootstrapping procedure through attestation.

There are two variants of attestation: pre- and post-attestation. With pre-attestation, the at-
testation report has to be generated and verified before the TEE instance can be launched.
In contrast, with post-attestation, the code inside the TEE instance is responsible for
requesting the attestation report. Intel SGX, AMD SEV, and Intel TDX all use post-
attestation because it provides more flexibility. Thus, we restrict ourselves to this scenario.
Since the initial code image must be sent to the untrusted host in plaintext, it should
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not contain any secret data like cryptographic keys anyway, eliminating most scenarios
where the TEE instance must not be started before attestation has been completed.

With post-attestation, the host starts the TEE at a well-defined entry point. A common
use case is that the code in the TEE waits for the TEE owner to engage in the attestation
process. To this end, the TEE owner sends a request to the TEE, which may include
custom data like a nonce or a public key. Upon receiving this request, the TEE instance
calls the root of trust to generate an attestation report. The attestation report is a data
structure that contains the hash over the initially loaded data, security-relevant system
configuration, and software version numbers, as well as the custom data provided by
the TEE owner and the TEE instance. In addition, it may also contain custom data from
the TEE instance. The attestation report is signed by a key that is private to the root of
trust and can be verified by the TEE owner using a public key infrastructure operated by
the CPU vendor. Thus, the TEE can send the report to the TEE owner without additional
transport encryption. The CPU vendor’s public key infrastructure is also what proves to
the TEE owner that their code is indeed protected by TEE technology.

A common use case is that the initial code image makes use of the custom data fields
in the attestation report to exchange public key pairs with the TEE owner in order to
build an encrypted channel. The public/private key pair of the TEE instance is not part
of the initial image but generated on-the-fly, to prevent extraction by the untrusted host
system. After verifying the attestation report, the TEE owner can use the channel to send
additional secrets to the TEE instance, like an encryption key that the TEE can use to
load additional code and data or to access to some external service.
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State of the Art

In this section, we provide a detailed overview of the security research on x86 confi-
dential VMs. To provide a more holistic view, we also discuss the design and certain
research results for the process-scoped Intel SGX TEE. We start by explaining the core
isolation mechanism of Intel SGX, Intel TDX, and AMD SEV. Next, we present research
results categorized by attacks on the memory encryption system (Section 3.2), attacks on
the architectural isolation (Section 3.3), and attacks on the microarchitectural isolation
(Section 3.4)

3.1 TEE Designs

In this section, we discuss how Intel SGX, Intel TDX, and AMD SEV implement their
isolation guarantees. We categorize the isolation mechanisms into the following areas:
host access restrictions, page tables management, encryption key management, mem-
ory encryption, and interrupt handling. For a general introduction to TEEs we refer
to Section 2.3.

With “host access restrictions”, we refer to architectural means to prevent privileged
software-level attackers from reading and/or writing to the memory of TEEs. The main
intention is to counteract certain weaknesses of lightweight but scalable memory encryp-
tion schemes.

Another key isolation area is the management of page tables. On the one hand, the
untrusted host system should remain in control of memory management. On the other
hand, exposing the page tables of the TEE to the attacker undermines the integrity of its
memory layout and enables coarse-grained tracking of its memory accesses.

To protect against physical attackers, TEEs use memory encryption. In addition, most
TEEs allow the use of a unique memory encryption key for each TEE instance, providing
additional protection against cross-TEE data leakage.

Finally, the handling of exceptions and interrupts also plays a vital role for the security
of TEEs. Traditional VMs require the virtualization of several interrupts and assume a
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Figure 3.1: Intel SGX is a process-scoped TEE where each instance, called enclave, is tied to a
regular process. An instruction set extension allows interacting with enclaves in a remote
procedure call manner.

trusted hypervisor. VM-based TEEs still require interrupt virtualization but also need to
guard against malicious interrupt injections from the now untrusted hypervisor.

3.1.1 Classic Intel SGX

Intel Software Guard Extensions (SGX) [31, 41] is a process-scoped TEE that was introduced
in 2015. To differentiate it from later versions, which have a drastically different design
in some key areas, we refer to it as classic SGX if we need to distinguish between the
two versions. Each Intel SGX instance is a process that consists of an untrusted host part
and a trusted enclave part, as shown in Figure 3.1. The host part can enter the enclave
at well-defined entry points by using the EENTER and ERESUME instructions that are part
of the instruction set extension that comes with SGX. Similarly, an enclave can either
synchronously switch back to the host part via the EEXIT instruction or is automatically
switched back due to an asynchronous event, like an interrupt. From the host’s point of
view, interacting with the enclave is similar to performing a remote procedure call. Since
SGX is process-based, enclaves cannot use ring 0.

Host Access Restrictions All enclave memory must reside in a memory area named
Enclave Page Cache (EPC), which is part of the Processor Reserved Memory (PRM). The PRM
is a physically contiguous memory area, which the host has to reserve early during boot
by writing its physical address range to two MSRs. Afterward, the host is prevented from
writing to this memory range. Reading will return a fixed value instead of the actual
content.

Page Table Management For SGX enclaves, the untrusted operating system manages
the regular page tables [31, §5.2.3]. However, SGX maintains a kind of shadow page table
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called Enclave Page Cache Metadata (EPCM) that resides inside the EPC. For each page that
should be useable by an enclave, the EPCM stores the identity of the enclave, the expected
virtual address, and the expected read, write, and execute permission status of the page.
Violations lead to a page fault or general protection fault [51, §35.3] During enclave
construction, the operating system has access to instructions that allow it to specify the
expected values as mandated by the enclave owners enclave image. In addition, the SGX
firmware ensures that each physical page can only be assigned to one enclave. To filter if
a given memory access needs to be validated against the information in the EPCM, the
hardware/firmware checks if the physical address resides in the protected EPC range.

Encryption Key Management For classic SGX, memory encryption is exclusive to en-
claves. There is only one memory encryption key that is used for all EPC memory.

Memory Encryption Classic Intel SGX uses a custom encryption scheme based on AES
Counter Mode (AES-CTR) in combination with a Merkle-Tree to achieve cryptographic
integrity and freshness. On each write, a fresh nonce is generated using a 56-bit counter
value combined with a value derived from the physical address where the ciphertext is
stored. Thus, the ciphertext is bound to a memory location, and the same plaintext never
encrypts to the same ciphertext. The integrity and freshness properties are achieved by
computing a Message Authentication Code (MAC) for each ciphertext block, including the
expected nonce. Finally, a Merkle-Tree protects the integrity and freshness of the nonces
and MACs. The Merkle-Tree itself is protected by storing its root in secure memory inside
the CPU package, which is assumed to be inaccessible to physical attackers.

While providing strong cryptographic guarantees, the Merkle-Tree severely limits the
ability to protect large amounts of memory. For each memory read/write, the relevant
path in the Merkle-Tree needs to be checked/updated, introducing additional latency
as well as computational and memory bandwidth overhead. Since the height of the
Merkle-Tree increases with the amount of protected memory, so does the overhead.
Finally, storing the Merkle-Tree and MAC values introduces roughly 25% memory
overhead. Intel SGX limits the size of the protected memory to 256 MB, which are shared
among all enclaves [49]. While there are academic papers [36, 112] that propose design
improvements, they were not adopted by industry. Instead, recent TEE designs favor
performance over cryptographic guarantees, abandoning Merkle-Tree based designs.
Starting with its 12th generation Intel Core Processors, Intel no longer supports classic
SGX [50].

Interrupts With SGX, interrupts and exceptions always lead to a context switch to the
untrusted host. SGX enclaves do not have the notion of an interrupt or exception handler
in the sense of the x86 architecture. However, similar behavior can be implemented via
software conventions.



30 Chapter 3: State of the Art

In more detail, when the processor executes in enclave mode, interrupts and exceptions
always cause an Asynchronous Enclave Exit (AEX). The AEX allocates a new frame from
the State Save Area (SSA) of the current enclave thread to securely store the execution
state of the enclave before context switching to the host system. The SSA is organized as
a stack and resides in secure enclave memory that is inaccessible to the untrusted host.
After handling the interrupt/exception, the host system may use the ERESUME instruction
to transparently reenter the enclave, consuming the topmost SSA frame. Alternatively,
the untrusted host system can also make use of the regular EENTER instruction to enter
the enclave with a fresh state at one of its entry points. This mechanism can be used
to run a handler inside the enclave that may inspect and modify the SSA frame saved
during the AEX. Afterward, the handler code can cause a synchronous exit to request
the untrusted host to resume the enclave via ERESUME, consuming the topmost SSA
frame, which now has been potentially modified by the handler in the enclave. While
conceptually similar, this is not an interrupt handler in the sense of the x86 architecture
but rather a software-defined convention.

With the introduction of AEX-Notify [30] in 2023, there exists a configuration option to
prevent the untrusted host from transparently resuming the enclave via ERESUME after
an AEX. This mechanism is used to implement a software-based countermeasure against
single-stepping attacks. We refer to Section 3.3.3 for additional details.

3.1.2 Scalable Intel SGX

Starting with the 3rd Generation of Intel Xeon Scalable Processors in 2021, Intel intro-
duced an overhauled version of SGX [63], targeting the protection of large, existing
applications in the cloud computing use-case. We refer to this version as scalable SGX if
we need to differentiate it from the previous version.

The page table management and interrupt behavior of scalable SGX is the same as for
classic SGX.

Memory Encryption Depending on the exact CPU model, scalable SGX uses the newly
introduced Total Memory Encryption (TME) or Total Memory Encryption Multi Key (TME-
MK) engine and allows for enclaves sizes up to 512 GB per CPU socket. For memory
encryption, both use 128-bit AES with in the XEX encryption mode with tweak and ciphertext
stealing (XTS). The tweak values are boot-time static tweak values and derived from the
physical address [53], i.e. each 16-byte memory block uses a different tweak. Thus, they
do not provide integrity or freshness guarantees.

Host Access Restrictions Like classic SGX, scalable SGX uses the concept of a physically
contiguous, fixed-size EPC and prevents code outside of enclaves from accessing EPC
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memory. In addition, scalable SGX repurposes one bit of the Error correction code memory
(ECC), which is required for using scalable SGX, for usage as a 64-byte granular ownership
bit [63]. The ownership bit is managed by the hardware as follows: If the CPU operates
in enclave mode and writes to a memory location inside the EPC, the ownership bit is
set. If the CPU writes to memory while not operating in enclave mode, the ownership
bit of the accessed memory location is cleared. Similarly, the CPU enforces the following
checks whenever the CPU reads from memory: If the CPU is inside enclave mode and
reads from an EPC memory location with the ownership bit cleared, it will terminate,
and the SGX feature will be disabled. If the CPU is not in enclave mode and reads
from memory with the ownership bit set, it will read a fixed value instead of the actual
content. In contrast to the existing physical address-based EPC read/write restrictions,
the ownership bit-based approach cannot be circumvented by physical aliasing attacks,
which we discuss in Section 3.5.1.

Encryption Key Management Scalable SGX is available on CPUs that only support
TME but also on systems that support TME-MK. The main difference between these two
memory encryption technologies is that TME only supports one encryption key. We did
not find literature that describes the key management. We assume, that with TME, there
is an additional key, that is exclusive to SGX. Similarly, we assume that with TME-MK,
one of the keys is reserved for use with SGX.

3.1.3 AMD SEV-SNP

AMD Secure Encrypted Virtualization (SEV) [65] is a VM-scoped TEE that was introduced
in 2016. TEE-protected VMs are also referred to as confidential VMs (cVMs). In 2017,
AMD released the iterative update SEV Encrypted State (SEV-ES) [64] and in 2020 the
latest version SEV Secure Nested Paging (SEV-SNP) [4] was released. If not indicated
otherwise, we refer to SEV-SNP in this thesis. As shown in Figure 3.2, SEV builds on
AMD’s existing virtualization infrastructure. In contrast to Intel SGX and Intel TDX, SEV
uses a dedicated coprocessor as its hardware root of trust, which is referred to as the AMD
Secure Processor (SP). The SP exposes an API to the hypervisor for creating and managing
SEV VMs. Entering and exiting SEV VMs does not require an explicit interaction with the
SP but repurposes the existing VMRUN instruction and the #VMEXIT event from the regular
virtualization feature, although enhanced with additional functionality on the microcode
level. The strong isolation guarantees require several changes to the hypervisor, especially
for handling #VMEXIT events, since the VM’s register file is no longer accessible to the
hypervisor.

Page Table Management Since SEV is VM-scoped, we have to consider two classes of
page tables, as explained in Section 2.2.2. The guest page tables are managed by the SEV
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Figure 3.2: AMD SEV VMs integrate into the system architecture similar to regular VMs.

VM and are inaccessible to the untrusted hypervisor. However, the Nested Page Tables
(NPTs) that translate Guest Physical Addresses (GPAs) to Host Physical Addresses (HPAs)
are under the control of the hypervisor. With SEV-SNP, an additional mechanism called
Reverse Map Table (RMP) was introduced to ensure that the hypervisor cannot perform
arbitrary changes to the GPA to HPA mappings in the NPT [4]. In essence, the RMP acts
as a trusted shadow page table that is used to validate the translations provided by the
NPT. During boot, the hypervisor has to donate a physically contiguous memory range
for the RMP by writing its start- and end address to the RMP_BASE and RMP_END MSRs[5,
§15.36.3]. After initializing the SEV-SNP subsystem, the hypervisor can no longer directly
access this memory range.

The RMP is a linear table that is indexed by the HPA. For each HPA, the RMP stores
several attributes. The most important one is the Assigned attribute, which indicates
if this page belongs to a SEV VM, the host system, or firmware. We will refer to this
as guest-owned, hypervisor-owned and firmware-owned. For guest-owned pages, the RMP
additionally stores the expected GPA, the validation status, and the ASID, which maps
the entry to a concrete VM instance. For firmware-owned pages, the hypervisor also has
to set the Immutable bit in the RMP entry. Once set, this bit prevents the hypervisor from
updating the entry in the future without coordinating with the AMD SP.

The basic workflow for managing memory for VMs via the RMP works as follows: To
assign a memory page to a VM, the hypervisor uses the rmpupdate instruction to change
the following fields: Assigned, expected GPA, and the ASID of the assigned VM. However,
rmpupdate will always reset the Validated field. Whenever the VM triggers a page table
walk, the hardware page table walker uses the result of the GPA to HPA translation
from the untrusted NPT to consult the RMP. If the memory page is not assigned to the
currently executing VM, the hardware aborts the access and generates a RMP page fault.
Otherwise, the Validated bit is consulted. If the bit is unset, the hardware injects a #VC
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into the VM, informing the VM about the address for which the validation failed. If the
VM considers the GPA benign, it can use the pvalidate instruction to set the Validated
bit and continue with the memory access. Whenever the Validated bit is set upon a RMP
check initiated by a memory access from a SEV-VM, the hardware will verify that the
GPA used as input to the RMP matches the GPA stored in the RMP. Otherwise, the access
is aborted with a RMP page fault. In summary, the hypervisor can still make arbitrary
changes to the mapping in the NPT, but the RMP check ensures that the VM is notified
about changed mappings. Note, that the access rights and status bits in the NPT are not
validated by the RMP.

Memory Encryption On SEV-SNP enabled CPUs, 128-bit AES with the Xor-Encrypt-Xor
(XEX) mode is used for memory encryption. The tweak values use boot-time generated
randomness and are derived from the physical address, i.e., each 16-byte memory block
uses a different tweak. Each SEV VM, has its own encryption key. AES-XEX does not
offer any integrity or freshness guarantees. The only exception to this is how the Virtual
Machine Save Area (VMSA) is handled. This data structure stores the VM’s state, e.g., its
register file, during context switches from the VM to the hypervisor. Since SEV-ES, the
VMSA is protected with an integrity check value during context switches. For SEV-SNP,
since the “MilanPI-SP3 1.0.0.5” firmware version, the data in the VMSA gets masked with
a nonce before encryption/after decryption to prevent ciphertext side-channel attacks [3]
which we discuss in Section 3.2.2. In contrast to the two Intel SGX variants, SEV does not
impose any artificial limitations on the amount of memory that can be used for the TEE
instances, and the memory pages do not have to reside in a physically contiguous pool.
One bit of the physical address space is repurposed to determine if a memory access
should get routed through the memory encryption engine. This mechanism allows
software to access the raw ciphertexts of encrypted memory locations.

Host Access Restrictions Prior to SEV-SNP, privileged software attackers had read and
write access to the encrypted memory of SEV VMs. With SEV-SNP, the RMP prevents
software-level attackers from writing the memory of the SEV VM. To this end, the
hardware performs a RMP check during any page table walks related to write accesses
by the host. The RMP verifies that the accessed physical address is marked as hypervisor-
owned in the RMP. Otherwise, the access is aborted with a page fault.

Encryption Key Management SEV uses a different memory encryption key for each
VM and also supports encrypting the memory of the host system. To associate memory
encryption keys to a VM, SEV repurposes the Address Space Identifier (ASID) [6, 65]. The
ASID is an identifier that is part of all memory accesses on the system (VM and host). It
extends the TLB tag and thus alleviates the need to flush the whole TLB when context
switching to the hypervisor or another VM. The ASID of the hypervisor/host system is
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hardwired to 0. The hypervisors can arbitrarily change the ASIDs of VMs by changing
the corresponding field in the Virtual Machine Control Block (VMCB).

With SEV, the ASID is also used to tag instruction and data cache entries to secure the
data of SEV VMs while it resides unencrypted in these caches. When creating a SEV
VM, the hypervisor must activate an unused ASID by interacting with the SP via the
SNP_ACTIVATE command. Afterward, the SP creates a new memory encryption key and
associates it with the given ASID. If the hypervisor wants to recycle an ASID, it has
to first deregister it via another call to the SP, which will ensure any potential cache
entries with that ASID are flushed. After allocating an ASID, the hypervisor can use the
launch API of the SP to set up the encrypted initial image of the new SEV VM. Finally,
when launching the VM, the hypervisor specifies the VM’s ASID as part of its VMCB. At
this point, the hypervisor can arbitrarily manipulate the ASID value in the VMCB, e.g.,
swap the ASID of an attacker-controlled VM with the ASID of a victim VM. However,
AMD argues [65] that after such a swap, both VMs would immediately crash since they
would decrypt their code with a different key, which is extremely unlikely to result in
valid instructions. Li et al. [78], show that this assumption only partially holds prior to
SEV-SNP. We refer to Section 3.4.3 for more details.

Interrupts SEV VMs inherit the existing interrupt and exception virtualization features
from AMD’s implementation of hardware-accelerated virtualization, which is called
Secure Virtual Machine (SVM) [5, §15]. To virtualize these events, SVM allows configuring
that certain interrupts or exceptions transparently lead to a #VMEXIT. Furthermore, SVM
has a feature to allow the hypervisor to inject virtual interrupts or exceptions into the
VM.

With SEV-SNP, AMD introduced additional security features for interrupt injections [5,
§15.36.16], [4]. Restricted Injection limits the legacy SVM interrupt injection interface and
only allows the injection of one fixed “doorbell” interrupt. After processing the doorbell
interrupt, the VM has to engage in a communication protocol with the hypervisor to
receive the actual payload interrupt. Alternate Injection is supposed to work in tandem
with Restricted Injection and allows hiding the communication step of Restricted Injection
from the OS inside the VM by making use of AMD’s Virtual Machine Privilege Levels
(VMPLs) feature. Among other things, VMPLs enable the implementation of a trusted
shim inside the SEV VM that engages in the communication protocol with the hypervisor
required for Restricted Injection. The Alternate Injection feature enables the trusted
shim to inject the fetched interrupts into the VM’s OS, that is running in a lower VMPL,
using the legacy interface. Thus, the VM’s OS does not need to be aware of the changes
introduced by the Restricted Injection feature.

In order to emulate certain interrupts or exceptions, the hypervisor needs access to
specific register values of the VM. However, since SEV-ES, the register state of the VM is
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Figure 3.3: Overview of the Intel TDX architecture. The TDX module acts as a trusted layer
between the TD and the untrusted hypervisor. Architecturally, it is isolated from the hypervisor
via the newly added SEAM CPU mode.

encrypted during context switches and thus inaccessible to the hypervisor. To resolve
this issue, SEV uses a shared memory protocol between the VM and the hypervisor to
share information in such instances.

3.1.4 Intel TDX

Intel Trust Domain Extensions (TDX) [55] is the most recent TEE by Intel that offers the
creation of confidential VMs that Intel also refers to as Trust Domains (TDs). It was an-
nounced in 2021, and CPUs with TDX became publicly available with the 5th generation
Xeon Scalable CPU series in December 2023. TDX builds on a newly added CPU mode
called Secure Arbitration Mode (SEAM). Figure 3.3 shows an overview of the architecture.
The SEAM mode is split into two sub-modes: VMX root and VMX non-root, which mirror
the existing Virtual Machine Extensions (VMX) modes used for virtualization. The TDX
module runs in SEAM VMX root mode, and creating TDs is exclusive to this mode. It acts
as a trusted software layer between the TDs and the untrusted hypervisor. However, the
TDX module is not intended to replace the hypervisor and delegates most resource man-
agement tasks to it. The TDs themselves run in VMX non-root mode. These dedicated
CPU modes act as an anchor to enforce several policies.

Page Table Management Since TDX is a VM-based TEE, memory accesses by a TD
require both Guest Virtual Address (GVA) to Guest Physical Address (GPA) and GPA to Host
Physical Address (HPA) translation. The former is performed by the regular page tables,
which are managed and located inside the TD. The latter is performed by the Extended
Page Tables (EPT), which are Intel’s pendant to the NPTs on AMD systems. With TDX,
the EPTs are split into two sub-tables: One for shared pages and one for private pages.
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Whether a page is treated as shared or private depends on a repurposed bit of the GPA,
i.e., the software inside the TD can control this status [57, §9]. For shared pages, the
hardware page table walker will use the shared EPTs, which are directly managed by
the hypervisor. For private pages, the hardware page table walker will use the private
EPTs, which are managed by the TDX module and thus protected from direct access by
the hypervisor. Instead, the hypervisor has to use an API exposed by the TDX module
to modify the private EPTs. The TDX module ensures that the hypervisor cannot add
the same host physical address as a private page to two TDs. If private pages are added
while the TD is running, the TD is informed about the change. The TDX modules’ API
for the private EPTs does not allow direct modifications of the access rights and status
bits after creating the EPT entry. However, it still offers the functionality to temporarily
block an address translation, causing a regular page fault when the TD tries to access
it.

Memory Encryption TDX uses Total Memory Encryption-Multi-Key (TME-MK), the succes-
sor of TME. This feature was also briefly advertised as Multi Key Total Memory Encryption
(MKTME). Like TME, TME-MK uses 128-bit AES-XTS with a tweak value that is derived
from boot-time randomness and the physical address and is thus unique for each 16-byte
memory chunk. Each TD uses its own encryption key and AES-XTS does not offer in-
tegrity protection or freshness. However, TDX implements two additional mechanisms to
protect the integrity: logical integrity protection and cryptographic integrity protection.
For both, TDX uses the ECC bits in the DRAM to store security-critical metadata. The
logical integrity mode is only an access prevention mechanism and is implemented via a
single status bit stored in the repurposed ECC bits. It tracks if the untrusted host tried
to write to a memory location that is used by a TD and will subsequently prevent the
memory location from being used by a TD. In addition, if the hypervisor tries to read
a memory location used by a TD, it will always read a fixed pattern. The upcoming
paragraph on access restrictions explains this in more detail. The cryptographic integrity
mode additionally protects the data via a SHA-3 based MAC with 28-bit tags that are
also stored in repurposed ECC bits. MAC verification errors permanently disable a
memory location to prevent brute force attacks on the short MAC. Like SEV, TDX does
not artificially limit the memory size of TDs, nor does it require the memory pages to
reside in a physically contiguous, boot-time allocated memory pool.

Key Management TME-MK repurposes parts of the upper physical address bits as a
KeyID. The PCONFIG instruction is used to associate a KeyID with an AES key. With
TDX, the KeyID range is split into a private and a public range at boot time. Only the
SEAM CPU mode, exclusive to the TDX module and TDs, is allowed to use PCONFIG with
private KeyIDs. In addition, trying to perform a memory access with a private KeyID
outside of SEAM mode will result in a page fault.
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Access Restrictions TDX imposes restrictions on read and write operations [57, §9].
To implement the read and write restrictions, TDX repurposes one ECC bit to store
additional metadata for each 64-byte memory block. This feature is also referred to as
logical integrity protection. For each block, it stores the TD-bit to indicate whether this
block belongs to a TD Initially, the TD-bit is zero. When the CPU performs a memory
access using a private KeyID, i.e., it is operating in SEAM mode, the TD-bit is set for the
accessed memory location. Otherwise, the TD-bit gets cleared. When the CPU performs a
read with a private KeyID and the memory location does not have the TD-bit set, a fixed
value is returned, and an exception is generated. The TDX module handles the exception
and will eventually terminate the TD. When the CPU operates outside of SEAM mode
and tries to read a memory location that has the TD-bit set, a fixed value is returned, but
no exception is generated. As the ECC bits are fetched on each memory access anyway,
this mechanism does not reduce the memory bandwidth of the system. While the host
can write to memory locations with the TD bit set, this will trigger a “poison” mechanism
that leads to a fatal exception the next time a TD tries to access it.

Interrupts Similar to AMD SEV, Intel TDX is by default interrupt aware, making use of
Intel’s hardware accelerated Virtual Machine Extensions (VMX) feature [55],[57, §11.10].
We refer to the interrupt paragraph of the SEV description in Section 3.1.3 for a short in-
troduction to the concept of interrupt virtualization. Contrary to SEV, the Intel hardware
suppresses the injection of interrupt vectors 0 to 31 into TDs. This range includes the Non
Maskable Interrupt (NMI) and most exceptions. To inject NMIs, the hypervisor has to use
the API of the TDX module. For maskable interrupts, which are not in the range of 0 to 31,
TDX uses the concept of posted interrupts, which builds on Intel’s APIC virtualization.
The hypervisor has access to a data structure called Posted Interrupt Descriptor where it
can queue interrupts that it wants to inject into the TD. To notify the TD about pending
interrupts, the hypervisor can either use an API function of the TDX module or send
an inter-processor interrupt with a dedicated vector to the core that executes the TD.
Both methods act as a doorbell. Upon receiving the doorbell, the hardware takes the
interrupts queued in the posted interrupt descriptor and injects them into the TD by
manipulating the corresponding registers of the virtualized APIC.

3.2 Attacks on Memory Encryption

In this section, we discuss attacks that exploit weaknesses in the memory encryption
system of TEEs. First, we summarize attacks that actively manipulate ciphertexts or copy
them to new memory locations, exploiting the lack of integrity protection and freshness
observed in recent TEE designs. Such attacks were primarily shown against SEV versions
prior to SEV-SNP, which did not prevent software-level attackers from writing to the
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memory of the TEE. Afterward, we discuss passive attacks that only require read access to
leak information from ciphertext patterns exhibited by deterministic memory encryption
modes. From the considered TEEs, only SEV-SNP allows software-level attackers to read
the encrypted memory of the TEE. However, the software-based Rowhammer attack
or an advanced physical attacker could potentially overcome software access rights
restrictions, expanding the scope of these attacks to scalable Intel SGX and Intel TDX.

3.2.1 Ciphertext Manipulation

Before SEV-SNP, software-level attackers could modify the ciphertext of the protected
VMs. Such manipulations have been explored in two forms. Buhren et al. [14] use
ciphertext manipulation as a primitive to introduce faults into computations. Another
line of work [33, 79, 123], introduces ciphertext moving attacks, where the attacker copies
ciphertext from one location to another to build encryption/decryption oracles or to
cause unexpected behavior in software using the modified data. In contrast to fault
attacks, the ciphertext does not decrypt to randomized plaintext with ciphertext moving
attacks

Exploiting Software Write Access Buhren et al. [14] show that attackers can exploit
memory encryption without integrity protection to perform classical data fault attacks.
Simply flipping a bit in the ciphertext will lead to a randomized plaintext. However,
without integrity protection, the encryption system cannot detect this manipulation.
They demonstrate a well-known fault attack against RSA CRT. The authors conduct their
experiments on AMD Secure Memory Encryption (SME), which uses the same encryption
engine as SEV but focuses on protecting the host memory and does not provide any
TEE capabilities. However, their attack would also be possible with SEV. With SEV-
SNP, software-level attackers can no longer write to the memory of protected VMs,
mitigating the attack. The same is true for scalable Intel SGX and Intel TDX. In principle,
Rowhammer attacks could be used to manipulate the ciphertext without the need for
architectural software-level access. While scalable SGX, Intel TDX, and AMD SEV-SNP
are only available on server CPUs, that require ECC memory, Cojocar et al. [29] show that
ECC memory is not sufficient to prevent Rowhammer. Nonetheless, we are not aware of
any published Rowhammer attacks on these systems. In contrast to scalable SGX and
SEV-SNP, classic Intel SGX and Intel TDX could detect the manipulated ciphertext due
to their integrity features. For TDX, this is an optional feature.

Ciphertext Moving Attacks Ciphertext moving attacks have been used in two scenar-
ios to build encryption/decryption oracles on AMD SEV versions prior to SEV-SNP. Both
require the attacker to know the tweak values of the encryption system. Du et al. [33]
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and Wilke et al. [123] analyzed the encryption mode of SEV in detail and show that for
each physical address bit i ≥ 4 there is a 16-byte tweak vector ti. The tweak value for a
physical address p is computed as

T (p) :=
n−1⊕
i=4

bit(p, i) · ti,

where bit(p, i) represents its i-th least significant bit. For first-generation EPYC CPUs,
they reverse engineer the exact tweak values, exploiting that the tweaks are static and
have low entropy. However, starting from the second-generation EPYC CPUs, the tweak
values have high entropy and are regenerated at boot-time, making the brute-force-based
reverse engineering approach infeasible. Finally, the AES-XEX encryption of a message m

at address p is defined as EncK(m, p) := AESK (m⊕ T (p))⊕ T (p). Some first-generation
EPYC CPUs used AES-XE instead of AES-XEX. For brevity, we only describe the attacks
for the AES-XEX mode.

For the first attack scenario, demonstrated by Du et al. [33] and by Li et al. [79], the
attacker requires access to a mechanism that copies data into/out of the VM to build
encryption/decryption oracles. Let us assume the VM runs a network reachable service
that accepts some form of payload data that temporarily gets stored at memory address
A inside the VM. The attacker’s goal is to store the encryption of plaintext m at address B
inside the VM. First, the attacker sends the payload m⊕ T (B)⊕ T (A), which the service
running inside the VM will store at address A. Thus, the ciphertext CA at address A

is AESK (m⊕ T (B)⊕ T (A)⊕T (A))⊕T (A) Using the page fault controlled-channel, the
authors infer when the data has been written to A. Next, they copy the ciphertext from A

to B and XOR T (A)⊕ T (B) to the ciphertext CA. Let C ′
A be the manipulated ciphertext.

When the VM accesses address B, the ciphertext will decrypt to

DecK(C
′
A, B)

= AESK
−1 (m⊕ T (B)⊕ T (A)⊕T (A)⊕ T (B))⊕ T (A)⊕ T (A)⊕ T (B)⊕ T (B)

= AESK
−1 (m)

= m

Using a service that copies data out of the VM, an attacker can build a decryption oracle
in a similar manner. Li et al. [79] show that DMA bounce buffers can be used as a
mechanism to copy data into/out of the VM, which only requires that the VM uses some
(virtual) device that performs DMA operations.

The second attack scenario, demonstrated by Wilke et al. [123], does not require any
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network reachable service inside the VM nor DMA bounce buffers. Instead, they use a
known plaintext to ciphertext dictionary as their source for ciphertexts. To manipulate
the plaintext at a given memory location, the attacker searches through their dictionary
to find a ciphertext that decrypts to the desired plaintext at the targeted memory location.
The authors show that about 8 MB of known plaintext is sufficient to reliably control
2 bytes of a 16-byte ciphertext block. To obtain the dictionary, they assume that the
Linux kernel binary used by the VM is known to the attacker and show how to locate
it in memory at runtime. Using this primitive, they demonstrate how to inject small
code gadgets into the VM. They show how to manipulate the control flow by inserting
ret instructions into functions before their actual end. Furthermore, they show how to
construct a more complex code gadget, which allows to bootstrap a primitive that grants
control over all 16 plaintext bytes of a ciphertext block. The core idea is that the injected
program constructs the desired value inside a CPU register and then pushes the register
to its stack memory to encrypt it with the VM’s key.

In summary, ciphertext moving attacks require that the attacker can read and write the
encrypted memory of the TEE and that the encryption system does not have freshness.
More specifically, they require that a ciphertext created at one memory location can be
decrypted at another memory location without yielding randomized plaintext. From the
TEEs considered in this thesis, the encryption systems of scalable Intel SGX, AMD SEV,
Intel TDX, and potentially ARM CCA all have this property. However, only SEV allows
privileged software-level attackers to read and write the raw ciphertext of protected VMs.
Starting with SEV-SNP, ciphertext moving attacks are mitigated by two mechanisms.
First, SEV-SNP disallows writing to the VM’s memory, preventing copying ciphertexts
from one location to another. Second, CPUs with SEV-SNP use high entropy tweak
values that cannot be reverse-engineered. In combination with the AES-XEX encryption,
copying a ciphertext to a new memory location would result in randomized plaintext.

3.2.2 Ciphertext Side-Channels

Ciphertext side-channels are a class of attacks against TEEs that exploit deterministic
memory encryption. They were introduced by Li et al. [80] in 2021 and generalized by
Li et al. [76]. In [80], Li et al. introduce ciphertext side-channel attacks in the context of
the VM Save Area (VMSA) of AMD SEV. The VMSA is part of the hardware-accelerated
virtualization interface. Among other information, it stores the register values of the VM
upon a context switch to the hypervisor. Throughout the lifetime of a VM, the VMSA is
stored at a fixed physical address. Thus, the encryption system always uses the same
tweak value, resulting in a one-to-one mapping between plaintexts and ciphertexts. Li
et al. build a dictionary of ciphertext to plaintext mappings to leak the value of certain
registers of the VM from the ciphertext of the VMSA. To obtain such a mapping, the
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authors assume that the attacker knows the code of the UEFI firmware executed by the
VM. For confidential VMs, this is usually the case as it is part of the public initial code
image. They locate several points in the code of the UEFI where (i) a context switch to
the hypervisor is triggered and (ii) the value of certain registers is known to the attacker.
For (ii), they use hard-coded values as well as values that follow a simple logic, i.e.,
are incremented in a loop. They apply pattern matching to the VM’s exit behavior to
detect which exits belong to the previously analyzed instances. As a register value only
requires 8 bytes, the VMSA stores two register values in one 16-byte ciphertext block
for most registers, making dictionary building challenging. However, specific registers,
like rax, are stored in isolation. Nonetheless, Li et al. show that they can learn enough
mappings to build exploits. For example, they show how to learn the mappings for
all values from 0 to 128 for rax. Based on this, they demonstrate end-to-end attacks
against the RSA and ECDSA implementation in OpenSSL. In both cases, they exploit
that there is a loop over the key that uses a function call to fetch small chunks of the
key during each iteration. The function returns the chunk of the key in the rax register.
Using the page fault side-channel, Li et al. trigger a VM exit when this function returns
and infer the value of rax by using the dictionary to leak the secret key. AMD released a
firmware patch to mitigate ciphertext side-channel attacks against the VMSA [3]. The
patch retrofits nondeterministic encryption to the VMSA page by applying a randomly
generated mask to the plaintext before encryption/after decryption.

In their follow-up paper, Li et al. [76] show that the Linux kernel itself, as well as com-
monly used cryptographic libraries, also exhibit memory access patterns that are ex-
ploitable via ciphertext side-channel attacks. Even worse, the memory addresses used
by these applications are not known in advance. Thus, AMD’s mitigation is incomplete
and cannot easily be extended to solve all instances of ciphertext side-channel leakages.
The authors show that attacks similar to the one on the VMSA can also be applied in the
context of user space to kernel space context switches in Linux, during which the kernel
has to store the register values of the user space program. Immediately after the context
switch, Linux stores the register values on the aptly named entry stack, whose location
is fixed per CPU. Before scheduling another user space thread, Linux stores the register
values to a data structure fixed during the lifetime of the user space thread. In addition,
they show that the stack memory usage of the ECDSA implementation of OpenSSL is
also vulnerable to dictionary attacks. Furthermore, they show another leakage pattern
dubbed collision attacks, where it is sufficient to observe whether or not the ciphertext
changes without the need to recover the actual plaintext. This pattern is commonly
exhibited by the constant time swap operation used in constant time implementations
of cryptographic algorithms. The authors also discuss the applicability of ciphertext
side-channel attacks to other TEEs. They state that classic Intel SGX is not vulnerable
because it uses nondeterministic memory encryption and that scalable Intel SGX and
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Intel TDX are, in principle also vulnerable to ciphertext side-channel attacks. However,
their access rights management prevents software-level attackers from directly accessing
the ciphertext, preventing straightforward exploitation.

Deng et al. [32] developed an automated tool that scans cryptographic code for access
patterns vulnerable to ciphertext side-channel attacks. Their approach is based on dy-
namic taint tracking and static symbolic execution. They report over 200 vulnerable code
locations in the RSA, ECDSA, and ECDH implementations of OpenSSL, MbedTLS, and
WolfSSL. However, ciphertext side-channel attacks have applications beyond crypto-
graphic code. Yuan et al. [130] show that ciphertext side-channels can leak the weights
of deep neural network models. Their attack only needs to observe a single inference
to reconstruct models that achieve between 77% and 97% accuracy, depending on the
software stack used for the observed inference. In another paper, Yuan et al. [129] ex-
plore the recovery of image and video inputs processed by neural networks, including
transformers. They successfully reconstruct images and videos that are visually indistin-
guishable from the original inputs. Moreover, they use the recovered inputs to train their
own model and use it to generate adversarial inputs for the original model.

Countermeasures Nondeterministic memory encryption completely eliminates the
ciphertext side-channel. However, the most recent x86 TEEs have abandoned nonde-
terministic memory encryption technologies due to the considerable overhead when
protecting large amounts of memory. While the architectural access restrictions imple-
mented by Intel’s TEEs prevent straightforward exploitation, they could be overcome by
the Rambleed [71] subvariant of Rowhammer or by advanced physical attackers. Starting
from revision 1.55, the SEV ABI specification mentions a “ciphertext hiding” feature,
indicating that AMD is working on a mitigation [6]. However, no additional details are
provided. Several works instead explore countermeasures that retrofit nondeterministic
encryption on the software level. Li et al. discuss 3 basic approaches: interleaving data
with a nonce, masking data before writing it to memory, and changing the memory
location of the data on each write to ensure that a different tweak value is used. They
provide a proof of concept mitigation against the attack on the userland to kernel context
switch mechanism by changing the memory location where the register file is stored
on each context switch. The following works assume such a protection for register val-
ues. Wichelmann et al. [118] explore masking-based countermeasures for user space
applications and provide an automated toolchain to protect the secret key and all de-
rived values in cryptographic code. To this end, they use dynamic taint tracking and
instrumentation to identify all memory locations containing secret data and static binary
instrumentation to rewrite the corresponding memory accesses to use a secure masking
gadget. Their evaluation of several cryptographic implementations shows an average
overhead of factor 2.4 up to 17.5, depending on the security parameters. Wichelmann
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et al. [119] aim to provide holistic protection against various leakage sources, including
the ciphertext side-channel. Their approach divides the code into uniform chunks and
requires the current code block and the currently processed data to be loaded into a
scratchpad. Both code and data are loaded through a software Oblivious RAM (ORAM)
construction, and the location of the scratchpads is changed after each load to prevent
ciphertext side-channels. In addition, data is protected using the interleaving strategy.
They divide each 16-byte data chunk into 8 bytes of payload data and an 8-byte nonce
that is updated on each write. Due to the holistic protection that includes cache attacks
and single-stepping, they observe tremendous overheads ranging from factor 169 for a
small example up to factor 100,019 the ECDH implementation in mbedTLS.

3.3 Attacks on Architectural Isolation

Trusted Execution Environments need to uphold their security guarantees against a
privileged attacker that can make full use of the vast amount of architectural features
and mechanisms of modern x86 CPUs. A long line of work shows how (partial) access to
page tables, control over high-frequency interrupt sources, interrupt virtualization, and
power management features can be used to subvert the security guarantees of TEEs. In
this section, we discuss the resulting attacks, focusing on single-stepping and the recent
single-stepping mitigation attempts.

3.3.1 Page Fault Controlled-Channel

Page fault controlled-channel attacks enable the attacker to monitor the memory accesses
of TEEs with 4 KB granularity. They were introduced by Xu et al. [126] and since then
been used by nearly all attack papers on SGX [17, 83, 91, 95], SEV [44, 80, 93, 104, 123]
and TDX [122]. While Xu et al. [126] focus on showing that certain applications leak text
documents or image outlines via the page fault controlled-channel, most of the attacks
cited above use them to synchronize with the state of the application before applying a
subsequent attack.

For SGX and SEV-SNP, the attacker leverages their direct access to the page tables to
reduce the access permissions to a page. On the next access of the given type by the
TEE, a page fault exception is generated, which leads to a context switch to the attacker-
controlled operating system/hypervisor. Both SGX and SEV-SNP report the access type
but mask the lowest 12 bits of the faulting address.

On TDX, the hypervisor does not have direct access to the EPTs that perform the GPA
to HPA translation for private TD memory. Thus, it can no longer force page faults by
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manipulating the access rights bits. However, the TDX module, which mediates the
hypervisor’s access to the EPTs, still exposes two dedicated API functions to temporarily
prevent the TD from accessing a page. The first function [56, §3.6.2.1] is a generic block
that triggers a page fault exception on any type of access. However, the TDX module
sanitizes the information passed to the hypervisor, hiding the access type and the lowest
12 bits of the faulting address. Wilke et al. [122], show that even without the access type,
the information is still sufficient to track the execution state of applications inside TDX.
The second function [56, §5.3.3] allows only blocking write accesses and is intended to
reduce the downtime phase of live migration.

Disabling or severely restricting the attacker’s ability to trigger page faults would dras-
tically improve the security of TEEs. For TDX, write blocking for migration could be
made an optional feature. The primary use case for the regular block function cited in
the TDX manuals are TLB shootdowns [56, §9.7]. TLB shootdowns are required when
removing or changing an existing mapping in the EPTs. The hypervisor needs to ensure
that all vCPUs of a TD atomically switch to the updated EPT entry and do not use stale
TLB entries. The ability to block a translation alleviates the need to stop the execution on
all vCPUs synchronously. For TDs, updating EPT entries during runtime is already a
complex operation due to the need for the TD to accept mapping changes in order to
prevent malicious address layout manipulations. Thus, switching back to a less efficient
synchronous mechanism might be a worthwhile tradeoff if it removes the need for a
page block mechanism.

For AMD SEV, the use cases for page blocking are similar. To prevent an attacker from
manipulating the access rights in the NPT, the Reverse Map Table (RMP) mechanism could
be extended to additionally verify the value of the access rights bits during page table
walks and terminate the VM upon mismatches. In addition, the RMP would need to be
consulted on every page table walk, not just for write operations.

For both Intel SGX variants, the EPCM already stores the expected read, write, and
execute permissions for each page. However, currently, violations trigger page fault
exceptions and thus leak the memory access to the untrusted operating system. Instead,
for high-security demands, the enclave could simply terminate upon page faults.

3.3.2 Page Remapping

Morbitzer et al. [92, 93, 94] show that, prior to SEV-SNP, a privileged attacker can use
their control over the Nested Page Tables (NPT), to reorder the address space of a SEV VM
with page granularity. Thus, they can, e.g., change which data an application reads at a
certain address.
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As explained in Section 3.1, the NPT performs the Guest Physical Address (GPA) to Host
Physical Address (HPA) translation and is under the control of the untrusted hypervisor.
In the SEVered attack [92, 93], Morbitzer et al. show how to construct a decryption
oracle. To this end, they assume a network-reachable service in the VM that returns a
resource to the attacker. While serving the request, the service copies the resource into
a network package. For the attack, they change the GPA to HPA mapping of the GPA
that contains the resource and thereby change the data that the network service will
read and eventually send to the attacker. Since the NPT can only be used to remap with
4 KB page granularity, the alignment and size of the resource dictate which parts of a
page can be leaked. They demonstrate the attack for Apache, Nginx, and OpenSSH. To
infer the GPA of the targeted resource, they start by repeatedly querying the service
and use the page fault controlled-channel to observe the memory accesses performed
by the VM. Using the resulting GPAs as a candidate set, they query different resources
of the service to reveal which GPA belongs to the targeted resource. In their follow-up
work [92], Morbitzer et al. show how to use the page fault controlled-channel to infer the
GPA of cryptographic secrets like TLS or disk encryption keys and subsequently leak
them using the SEVered attack. In [94] Morbitzer et al.show that the basic mechanism of
the SEVered attack can also be used to inject arbitrary code into the VM.

With SEV-SNP, NPT remapping attacks are mitigated by the RMP mechanism, which can
detect if the hypervisor changed the GPA to HPA mapping and subsequently prohibits
the memory access. For Intel TDX, the hypervisor has to use an API exposed by the TDX
module to access the EPT, Intel’s pendant to the NPT. The TDX module enforces certain
restrictions and notifies the TD if a mapping gets changed. For both SGX variants, the
attacker has direct access to the page tables, but the trusted EPCM is used to verify that
the virtual to physical mapping has not been changed since the enclave was created.

3.3.3 Single-Stepping

Single-stepping attacks try to interrupt the targeted TEE as frequently as possible, ideally
after every instruction. This enables the attacker to obtain fine-granular information
about the execution state and control flow of the TEE. Several works [42, 75, 89] explored
the idea on Intel SGX, but failed to achieve single instruction granularity. In SGX-Step,
Bulck et al. [20] demonstrate reliable, instruction-granular single-stepping. Similarly, Li
et al. [80] first applied the idea to SEV-SNP and Wilke et al. [124] demonstrate reliable
single-stepping. Intel TDX was released with a built-in single-stepping countermeasure,
but Wilke et al. [122] reveal flaws that again enable them to single-step TDX. Combined
with the page fault controlled-channel, single-stepping enables fine granular tracking
of the execution state of the TEE. At the time of writing, there are countermeasures for
SGX [30] and TDX [57, §17.3].
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Mechanism The core primitive for single-stepping attacks is the same on SGX, SEV-
SNP, and TDX. Constable et al. [30], provide a detailed root-cause analysis. The attacker
exploits that external interrupts lead to an exit from the TEE, returning control to the
attacker. The attacker programs the APIC timer to trigger an external interrupt shortly
after the TEE was entered. To achieve single-stepping, the interrupt must arrive during
the execution of the first instruction inside the TEE. The exact timing does not matter, as
interrupts are only processed at instruction boundaries. However, without additional
measures, the interrupt sometimes arrives too early or too late, causing zero-steps or
multi-steps. To avoid multi-stepping, the attacker needs to artificially prolong the time
required to execute the first instruction. To this end, they flush the page that contains the
first instruction from the CPU caches, including the TLB. For SGX, it also has been shown
that resetting the Accessed bit in the page tables prolongs the time required for the page
table walk. For TDX, the attacker additionally needs to overcome the detection heuristic
of the built-in countermeasure. We explain this in more detail in the countermeasures
paragraph.

Prolonging the execution time of the first instruction does not help to avoid zero-steps.
However, in contrast to multi-steps, zero-steps do not lead to a loss in precision. Thus, it
is sufficient if they can be detected and filtered. Section 3.3.4 discusses attacks based on
zero-steps. To filter zero-steps on SGX, Bulck et al. [20] check if the Accessed bit in the page
tables is again set to one after being reset before the stepping attempt. On SEV, Wilke
et al. [124] exploit the lack of isolation in the performance counters, using the “retired
instructions” event to infer the exact step size. For TDX, neither of the two methods work,
as the attacker does not have access to the GPA to HPA page tables, and, according to the
manuals, the performance counters are isolated. Instead, Wilke et al. [122] use a cache
attack to check if the code page of the first instruction has been accessed.

Attacks Single-stepping has been used for various attacks. Instruction counting attacks
use single-stepping together with the page fault controlled-channel to reveal the control
flow of the TEE with instruction granularity [20, 91, 122, 124]. This allows to, e.g., exploit
non-constant time behavior in cryptographic libraries in order to leak encryption keys [91,
108]. Gast et al. [37] exploit the lack of performance counter isolation on SEV-SNP in
combination with single-stepping to create even more fine-grained traces of the VM’s
execution. Interrupt Latency attacks analyze the time between entering and exiting
the TEE while single-stepping. Bulcket al. [19] demonstrated that the timing reveals
information about the executed instruction. For example, generating a random number
with rdrand takes significantly more cycles than an add instruction. Distinguishing, e.g.,
different ALU instructions from each other proves difficult due to the similar timings.
Furthermore, the authors show that data-dependent timing of, e.g., the div instructions
can be distinguished. However, in most instances, distinguishing instruction types or
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data operands requires a high amount of measurements. Finally, single-stepping is also
used as a generic Amplifier by simply improving the synchronization of the attacker
with the victim code to reduce noise [11, 18, 48, 61, 98, 102, 108, 131].

Countermeasures Since the release of SGX-Step in 2017, single-stepping has been
used in the vast majority of attacks on SGX. Several academic papers try to detect
single-stepping heuristically by monitoring interrupt rates or performance monitoring
counters [25, 73, 96]. By design, these heuristics can generate false positives in noisy
real-world settings, which have significant consequences, as the proposed solutions
typically terminate the enclave when violations are detected.

Shih et al. [107] use the deprecated Transactional Synchronization Extensions (TSX) to
redirect all enclave interruptions to a handler inside the SGX enclave, hiding the actual
location at which the interrupt occurred from the OS. While they focus on the page
fault controlled-channel, their use of TSX should also prevent single-stepping. Lang
et al. [72] dynamically relocate data at runtime to obscure the signal of any memory
access-related side-channel, including single-stepping. They use the deprecated TSX
extension to enforce that their relocation primitives are executed without interruption,
especially without single-stepping.

Chen et al. [24] propose OS modifications to execute an enclave without any interruption
and use a checking mechanism inside the enclave to verify this invariant. To this end,
they place a canary in the State Save Area (SSA) inside the enclave, which would get
overwritten by the Asynchronous Enclave Exit (AEX) mechanism, which handles context
switches due to interrupts. The enclave software periodically checks the canary and
terminates execution if a violation is detected. The requirement for completely unin-
terrupted execution of the enclave restricts the ability of the OS to manage resources
efficiently. However, it could be an interesting tradeoff for enclaves with high-security
demands.

Wichelmann et al. [119] ensure that applications do not leak information while being
single-stepped. To this end, they apply a code transformation that slices the program
into uniform code blocks and also ensures that code fetches and data accesses are routed
through a software-based Oblivious RAM (ORAM) construction, which obscures all page
access patterns. While very generic, their approach comes with very high overhead.
None of these countermeasures have found widespread adoption.

With AEX-Notify [30], Constable et al., in 2023, released the first countermeasure for Intel
SGX, that targets the root cause of single-stepping. The paper is joint work between Intel
and academic researchers. The core idea of the countermeasure is to prevent the attacker
from slowing down the execution of the first instruction. They show that without this
slowdown, the APIC timer and other interrupt sources are not precise enough to cause
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reliable singe-stepping. Undoing the slowdown is performed by the AEX-Notify handler,
a software routine running inside the enclave that needs to be executed every time the
enclave is interrupted, i.e., after every AEX. The AEX-Notify handler prefetches the code
and data of the next payload instruction to undo any artificial slowdowns. It is split
into a regular section that mainly computes the addresses that need to be prefetched
and a small critical section that does the actual prefetching. If the critical section is
interrupted, the AEX-Notify handler will get re-executed from the start. Otherwise, the
AEX-Notify handler continues to execute at the interrupted location since it does not
leak any information via its control flow.

Using the existing SGX ABI, it is not possible to ensure that the AEX-notify handler is
executed after every AEX because the untrusted host can resume the enclave via the
ERESUME, which makes the interruption transparent for the enclave. In more detail, the
AEX stores the current state of the enclave, and the ERESEUME instruction transparently
reloads the state as part of the context switch into the enclave. We refer to Section 3.1.1
for more details.

The AEX-Notify firmware update introduces the AEXNOTIFY flag, which is under the
control of the enclave. If the flag is set at the time of the AEX, a subsequent ERESUME does
no longer resume the enclave from the stored state but instead behaves like the regular
EENTER instruction, allowing the enclave to enforce the execution of the AEX-Notify
handler. In addition, the firmware update adds the EDECCSSA instruction that allows
the enclave to consume the state stored during the AEX. This enables the AEX-Notify
handler to eventually resume execution at the point of interruption without relying on
the untrusted host.

Intel’s most recent TEE, Intel TDX, was released with a built-in countermeasure against
single-stepping attacks. The countermeasure builds on the fact that with TDX, the hy-
pervisor has to go through the trusted TDX module to run a TD. Similarly, the CPU
returns to the TDX module instead of the untrusted hypervisor for all TD exits. For most
exit reasons, the TDX module eventually returns control to the hypervisor. To prevent
single-stepping, the TDX module applies a heuristic to decide whether the current TD
exit is due to a single-stepping attack. To this end, the number of retired instructions
and the time elapsed since the preceding TD entry is measured. If either more than
two instructions have been executed or at least 4096 cycles have passed since TD entry,
the exit is classified as benign. Otherwise, the single-stepping prevention mode gets
activated. The prevention mode ensures that the TD executes an additional, randomized
number of instructions before the TDX module hands back control to the hypervisor. To
this end, the TDX module invokes the TD multiple times, executing a single instruction
on each invocation.
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Wilke et al. [122] show that by downclocking the core of the TD and TDX module, they
can ensure that the detection heuristic always classifies the time since the last TD entry
as sufficient. As a result, the prevention mode is never activated. Without the prevention
mode, TDX can be single-stepped using techniques similar to SGX-Step [20] and SEV-
Step [124]. The downclocking itself can be performed from software, e.g., via the cpufreq
driver of the Linux kernel. Besides single-stepping, Wilke et al. also show a second attack
primitive, which they call StumbleStepping. For StumbleStepping, they exploit that the
prevention mode inherently leaks the number of instructions it executes in the TD via a
cache side-channel, thus still allowing instruction counting attacks.

Intel addressed the single-stepping attack from Wilke et al. with TDX module version
1.5.06 [54] by changing the detection heuristic so that it no longer relies on the time
between TD entry and exit. However, there still is a fallback to the old heuristic for cer-
tain TD configurations. Intel will not provide mitigations against the StumbleStepping
instruction counting primitive. Instead, Intel requires developers to ensure their code
is not vulnerable to instruction counting, by strictly adhering to the constant-time pro-
gramming paradigm.

For AMD SEV, there are no countermeasures against single-stepping attacks. Due to the
lack of a trusted layer between the SEV VM and the hypervisor the TDX countermeasure
cannot easily be adopted. However, it might be possible to implement countermeasures
similar to AEX-Notify via a slight firmware change that ensures that the SEV VM cannot
be transparently resumed but always executes an adapted version of the AEX handler
after each interruption.

3.3.4 Zero-Stepping

Zero-stepping attacks try to repeatedly measure the effect of an instruction without
requiring to execute the targeted TEE instance multiple times. They can be used against
instructions inside the TEE as well as against the context switch into the TEE itself.
In both cases, the attacker ensures that no instruction inside the TEE retires, enabling
infinite repeated measurements. This allows the exploitation of side-channels with a
very low signal-to-noise ratio. There are two main approaches for zero-stepping attacks:
timer-based and page fault-based.

Timer-based zero-stepping is closely related to single-stepping attacks. However, instead
of trying to avoid zero-steps, the attacker actively chooses a short APIC timer interval to
ensure that they only zero-step, i.e., only the instruction for the context switch is retired.
For SGX, Chowdhuryy et al. [28] show that the ERESUME instruction, which is usually used
to context switch into the enclave, has a serializing effect. Thus, no payload instruction
of the enclave is in-flight if it is already interrupted during the ERESUME instruction.
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However, as ERESUME restores the register state of the enclave by loading it from the SSA
frame, the instruction is an interesting target in itself. Schwarz et al. [106] use timer-based
zero-stepping to leak register values of SGX enclaves via an MDS attack. On AMD SEV,
Wang et al. [116] explore timer-based zero stepping against the VMRUN instruction, which
performs the context switch into SEV VMs. However, they only performed experiments
for the plain SEV version. They use the MSR_CORE_ENERGY_STAT MSR to observe the
current power consumption of the CPU. Surprisingly, they are able to differentiate not
only between data operands but also between different instructions inside the SEV VM.
This indicates that although only the VMRUN instruction is executed architecturally, at
least one instruction inside the SEV VM is already in-flight. This is especially interesting
because intuitively, there should be a dependency between the VMRUN instructions and the
first instruction inside the VM, as VMRUN restores the VM’s register file and address space.
The authors do not further analyze the root-cause of the observed power leakage.

For page fault-based zero-stepping, the attacker manipulates the page tables (c.f. Sec-
tion 3.3.1) to ensure that the targeted instruction inside the TEE always experiences
a page fault and is thus never retired. In contrast to timer-based zero-stepping, the
context switch into the TEE completes. Although the targeted instruction never retires,
other instructions that follow the targeted instruction (in program order) may also be
already in-flight due to out-of-order execution unless they have a dependency on the
targeted instruction. For SGX, several works [17, 90, 106, 109] use this mechanism to
repeatedly observe the context switch or the first instructions in the enclave via various
side-channels.

Lipp et al. [83] use zero-stepping against Intel SGX in combination with the RAPL inter-
face, which allows measuring the power consumption of the CPU. They show that an
attacker can differentiate between different instructions and instruction operands. The
paper does not state which zero-stepping variant is used, but given the results from [28],
only page fault-based zero stepping should allow observing effects of instructions inside
the enclave. Chowdhuryy et al. [28] also explore using the deprecated Intel TSX instruc-
tion set extension to repeatedly observe the effect of an instruction without retiring
it.

Countermeasures For Intel SGX, the AEX-Notify single-stepping countermeasure
from [30] et al. provides partial protection against zero-stepping. We refer to Section 3.3.3
for an introduction to AEX-Notify. Since the interrupt handler provided by AEX-Notify
prefetches the code and data operands of the first payload instruction, it should not
be possible to use the first payload instruction as an anchor for page fault-based zero-
stepping. The AEX-Notify handler is split into a regular part and a small, critical part.
If the handler is interrupted during the critical part, it restarts from the beginning on
the next entry, whereas the regular part continues at the interrupted location. Thus, an
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attacker could zero-step individual instructions in the regular part or repeatedly trigger
the re-execution of the whole interrupt handler. Similar to the ERESUME instruction, the
interrupt handler must also restore the register file. This could potentially be exploited
in zero-stepping attacks. However, further research is required to determine how the
AEX-Notify handler interacts with zero-stepping attacks.

Intel TDX was released with a built-in countermeasure against page fault-based zero-
stepping. The TDX module tracks the number of page faults without architectural
progress. After reaching a certain threshold, it refuses to enter the TD until the hypervisor
corrects the mappings. The single-stepping countermeasure of TDX also prevents zero-
stepping, as the triggered prevention mode executes at least one instruction in the TD.
SEV does not have countermeasures against any zero-stepping variant.

3.3.5 Interrupt Injection

VM-based TEEs like SEV or TDX allow the untrusted hypervisor to inject interrupts
and exceptions into the VM to facilitate virtualization. For SGX, popular SDK and
libOS implementations enable a similar concept. We refer to Section 3.1 for additional
background information on interrupt injection mechanisms. Schlüter et al. [104, 105] and
Sridhara et al. [111] show that by injecting unexpected interrupts, the attacker can use
side effects of the interrupt/exception handlers to manipulate the execution state of the
TEE or to trigger malicious behavior in an application.

In Heckler, Schlüter et al. [105], analyze the security of AMD SEV-SNP, Intel TDX, and
ARM CCA against interrupt/exception injection attacks, finding vulnerabilities on SEV-
SNP and TDX. Both TEEs allow the hypervisor to inject the 0x80 syscall interrupt. As
the syscall handler stores the exit code in the rax register, triggering a syscall at arbitrary
code locations inside the VM allows the attacker to manipulate the register state of the
TEE. Based on this primitive, they show how to bypass authentication checks in both
OpenSSH and the sudo program, enabling an attacker to open a shell and gain root
privileges.

Furthermore, Schlüter et al. show that on SEV-SNP, the hypervisor can also inject ex-
ceptions like “Divide by 0” (0x0) into SEV VMs, while TDX blocks direct injection of
vectors 0x0 to 0x31, which covers standard exceptions and NMIs. Injecting exceptions
enables an attacker to trigger signal handlers of user space applications, again allowing
to manipulate the execution state through side effects of these handlers.

For SEV-SNP, combining the recently introduced Restricted Injection and Alternate Injection
modes, in principle, allows to implement a trusted shim layer inside the VM that could
filter and sanity check injected interrupts. However, the authors state that this is not yet
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implemented. Intel TDX prevents the hypervisor from directly injecting interrupt/excep-
tion vectors in the range of 0x0 to 0x31. Instead, the hypervisor has to use an API of the
trusted TDX module, which applies filtering. The authors state that none of the vectors
allowed by TDX have handlers with exploitable side effects. To mitigate their attack, the
authors suggest adding syscalls (0x80) to the list of filtered interrupt vectors for TDX.
Orthogonal to the proposed changes the authors also show how the 0x80 handler of the
guest kernel can implement filtering by checking whether the interrupt was externally
injected. However, they state that prohibiting externally injected 0x80 breaks some legacy
use cases.

In WeSee, Schlüter et al. [104] show similar attacks but focus on the SEV-SNP specific
#VC interrupt. This interrupt is part of the paravirtualized communication interface
between the hypervisor and the VM that is used to, e.g., share required register state to
enable the emulation of instructions, like cpuid. It is usually triggered by the hardware
upon execution of said instructions, to instruct the guest kernel to share state with the
hypervisor. As such, the authors argue that there is no valid use case requiring the
hypervisor to inject a #VC externally. Thus, they suggest blocking the injection at the
firmware/hardware level. As a workaround, the authors also discuss strategies for the
guest Linux kernel to validate the reason for the #VC exception but ultimately deem this
approach as too error-prone due to the code complexity of the #VC handler.

Sridhara et al. [111] analyze the security of Intel SGX against interrupt/exception injec-
tion attacks. As discussed in Section 3.1.1, SGX is process-scoped and does not have a
hardware-based mechanism for injecting events like interrupts or exceptions. However,
many SGX SDKs and libOS implementations provide a software interface to facilitate
the injection of exception-like events to, e.g., handle a division by zero inside the enclave
or to implement inter-thread or inter-enclave communication. Sridhara et al. find multi-
ple instances where malicious injections can manipulate the behavior of SGX enclaves.
Similar to the previously discussed attacks, most of the found vulnerabilities can be
mitigated via additional filtering logic in the corresponding handler to verify that the
injected exception is benign.

3.3.6 Software-based Undervolting

It is well-known that computations on a CPU can be faulted by changing its operating
voltage or frequency and by exposing it to light impulses or electromagnetic impulses [47].
For many cryptographic algorithms, like RSA or AES, faults allow key-recovery attacks.
However, fault attacks have mostly been explored in the context of a physical attacker that
uses external gear, like a laser, to induce faults. To be more energy efficient, modern CPUs
allow Dynamic Voltage and Frequency Scaling (DVFS) in order to save power and prevent
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overheating. Several works explore using (undocumented) software interfaces related to
DVFS to induce faults without the need for physical access by either overclocking [114]
or undervolting [26, 66, 95, 99, 100] the CPU.

Tang et al. [114] explore software-induced fault attacks on a Nexus 6 phone that uses
the ARMv7 architecture. They show that a privileged attacker can induce faults by
overclocking individual CPU cores via memory-mapped configuration registers. The
authors demonstrate attacks against the ARM TrustZone TEE, extracting cryptographic
keys from protected applications and loading self-signed applications into the TEE. Qiu
et al. [99] show similar attacks against ARM TrustZone by undervolting the CPU.

On Intel CPUs, several works [66, 95, 99, 100] use an undocumented MSR that is part of
the DVFS interface to undervolt the CPU in order to induce faults. They demonstrate
fault attacks against classic Intel SGX enclaves, including a fault attack on AES-NI, Intel’s
hardware-accelerated AES implementation. To mitigate these attacks, Intel deployed a
microcode update that disables the exploited undervolting interface and includes the
disablement status in the SGX attestation report. In PMFault, Chen et al. [26] exploit
software vulnerabilities in the Baseboard Management Controller (BMC) of a Supermicro
X11SSL-CF board, to undervolt the CPU by sending commands directly to the voltage
regulators via the Power Management Bus (PMBus). The BMC provides remote parties
with management capabilities similar to those achieved by physical access and is com-
monly integrated into server mainboards. They demonstrate similar attacks against
classic Intel SGX as the previously discussed papers that used an MSR for undervolting.
However, Intel’s microcode update does not prevent their attack primitive. Furthermore,
the software version of the remote management interface is not part of the Intel SGX
attestation, making it hard for a remote party to assess the security of the system. While
recent Supermicro mainboards mitigated the vulnerabilities in the BMC that the authors
exploited to get direct access to the PMBus, the authors argue that malicious PCI-E
devices might also be used to carry out their attack since they are also connected to
the PMBus. Finally, their attack challenges the security architecture of Intel SGX, which
claims not to place any assumptions on the BIOS or the remote management interface.

Orthogonal to Intel’s mitigations that disable the interface required for undervolting,
Kogler et al. [69] explore software countermeasures to detect faults. While they prototype
their solution with Intel SGX, their technique could potentially transfer to other TEEs.
Their solution is based on two insights. The first insight is that MSR-based undervolting
on Intel CPUs requires at least 57.7 µs and thus affects a large slide of instructions. The
second insight is that the multiplication instruction (mul) is the most susceptible to faults
if the CPU is undervolted. Based on this, they construct a mul based gadget that checks if
it has encountered a fault. Next, they develop an extension for the LLVM compiler to
automatically insert their gadget into the code during compilation using the “density”
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of the gadget as a security parameter. Their analysis shows that placing the gadget
after every one to two payload instructions detects 99% of the attacks and causes an
overhead of 148.8%. If their gadget detects a fault, they suggest terminating the enclave.
To prevent an attacker from repeatedly restarting the enclave, which could eventually
allow them to overcome the probabilistic detection mechanism, they suggest using the
EPID attestation mode of SGX to throttle the restart rate of an enclave on a given CPU.
This approach requires a trusted third party. In principle, the mitigation from Kogler
et al. could also apply to other undervolting or faulting mechanisms like PMFault or
the hardware-based undervolting mechanisms that will be presented in Section 3.5.2.
However, further analysis regarding the assumptions on the temporal resolution that an
attacker can achieve is required.

3.3.7 Other

In this section, we briefly summarize relevant architectural attacks that do not fit into the
previous categories.

Zhang et al. [131], show that on AMD systems, the attacker can use the invd instruction
to drop memory writes of SEV VMs. On x86, writing a value usually only changes the
entry in the cache instead of immediately writing to DRAM due to performance reasons.
The corresponding cache line is marked as “dirty”. Under normal operation, flushing
or evicting a dirty cache line will write the value to DRAM to persist the change. The
privileged invd instruction allows marking all cache entries as invalid/free without
triggering a write-back to DRAM, effectively discarding the value of all dirty cache lines.
The authors show that this instruction can be used while SEV VMs run on the system.
An attacker can interrupt the VM after a security-critical write operation and issue an
invd instruction to discard the newly written value, causing subsequent read operations
to return the old value instead. However, invd does not allow for a fine-grained discard
as it marks the whole L1 and L2 cache of the executing core (including the sibling core)
and the last level cache of the current core complex invalid. The authors work around
this issue by using eviction sets to trigger a write-back for all but the targeted cache set
before issuing the invd instruction. AMD mitigated the issue with a microcode update.
On Intel CPUs, the invd instruction leads to a general protection fault if either SGX or
TDX is enabled.

Buhren et al. [16] uncover a flaw in the boot procedure of the AMD Secure Processor
(SP) that allows them load and execute arbitrary code on the SP. The SP is a security
coprocessor that is part of the system-on-chip of an AMD EPYC CPU and forms the
hardware root of trust for SEV. Thus, executing attacker-controlled code on the SP
completely undermines all security guarantees of SEV. The authors successfully extract
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a CPU-specific key that is used to prove the authenticity in, e.g., remote attestation,
allowing them to set up a “fake” SEV environment while still providing valid attestation
reports. They demonstrate their attack on Zen 1 EPYC CPUs. Furthermore, they show
that there is no rollback prevention for the SP firmware on Zen 1 CPUs, preventing AMD
from mitigating the exploited flaw via a simple software update. They state that the
only way to prevent a rollback is to revoke the keys that signed the vulnerable firmware
versions. AMD EPYC CPUs from Zen 2 onward are not affected by this issue.

Several works [44, 117] exploit that before SEV-ES, the register state of SEV VMs was not
encrypted during context switches to the hypervisor. This allows attackers to easily read
and manipulate the register values of the VM.

Wilke et al. [125] show that prior to SEV-SNP, the attestation mechanism is permutation
agnostic. An attacker can reorder the initial VM image with 16-byte granularity without
changing the attestation measurement. This undermines all trust in the attestation of SEV
and SEV-ES VMs. They exploit this ability to create malicious code gadgets and show
how they can be used to gain arbitrary code execution capabilities. Their exploit is partly
enabled by the fact the VM’s UEFI image is not hardened against attacks since these are
infeasible or out of scope when running on physical hardware or a regular VM. This again
highlights the importance of thoroughly examining legacy VM software components
before deploying them in a confidential VM environment, which operates under a
significantly different threat model. Independent of their research, AMD mitigated the
reordering issues in the attestation with SEV-SNP.

Radev et al. [101] and Hetzelt et al. [45] investigate the security of interfaces between
the VM and the hypervisor, highlighting that numerous commonly used Linux software
components and drivers fail to implement adequate input sanitization, which is crit-
ical when dealing with an untrusted hypervisor. Hetzelt et al. [45] show a fuzzer, to
automatically discover such vulnerabilities in Linux device drivers.

3.4 Attacks on Microarchitectural Isolation

After a TEE loads data from DRAM, it resides in plaintext inside CPU. To prevent
unauthorized access, TEEs introduce additional tagging mechanisms to enable isolation
in microarchitectural structures like CPU caches or the TLB. In this section, we discuss
the impact of cache attacks and Meltdown/Spectre/MDS attacks on TEEs.
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3.4.1 Cache Attacks

Cache attacks are a well-known side-channel that can leak memory access patterns. They
have been used to leak information across processes [97, 127] or even co-located VMs [7,
85] in the context of an unprivileged attacker.

Several works demonstrate cache attacks against classic Intel SGX[12, 89, 108]. The strong
attacker model allows minimizing system noise and using single-stepping to achieve the
optimal temporal resolution. As a mitigation to [17] Intel added a mechanism to flush
the L1 data cache during context switches [58, 108].

On AMD SEV and Intel TDX, the integration of multi-key memory encryption into the
system architecture has strong implications for cache attacks that require shared memory,
like Flush+Reload. Both AMD’s and Intel’s memory encryption systems embed metadata
into the physical address, which alters the cache tag. On Intel TDX, each TD has its own
Total Memory Encryption Multi Key (TME-MK) KeyID which is encoded in the upper bits
of the physical address and thus also part of the cache tag [52]. On AMD SEV, each
memory access is associated with an Address Space Identifier (ASID). In addition, one bit
of the (guest) physical address, dubbed C-bit, is repurposed to select whether or not the
memory access is routed through the memory encryption engine. Both, ASID and C-bit
are part of the cache tag [78].

For both TDX and SEV, architectural isolation mechanisms prevent a privileged attacker
from performing memory accesses with a KeyID/ASID used by a confidential VM (cVM)
instance. This implies that the attacker cannot get a cache hit on data accessed by the
cVM, nor can they use the clflush instruction to flush it. While SEV offers an additional
mechanism that allows the hypervisor to flush the memory of the cVM with page
granularity [5, §15.34.9], the inability to get a cache hit remains. Thus, the attacker cannot
perform Flush+Reload cache attacks.

The TME-MK memory encryption engine used by TDX comes with an additional cache
coherency mechanism that re-enables the hypervisor to flush the memory of TDs with
cache line granularity [59]. Since the KeyID is part of the cache tag, it would allow the
same memory location to reside in the cache multiple times under different KeyIDs. The
coherency mechanism prevents such aliasing by flushing the existing entry. Using this
mechanism, an attacker can perform Flush+Reload-style attacks against TDX by using
an aliased memory access as both, the flush and the reload primitive. Wilke et al. [122]
observe that the access times after flushing via an aliased memory access are even higher
than regular DRAM access times. This is most likely because reloading again causes a
flush. Scalable SGX is available on processors that support only TME but also on newer
processors that support TME-MK. We conjecture that on TME-MK-enabled systems, one
KeyID is reserved for SGX, leading to the same side effects as for TDX.
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More recent AMD CPUs support a similar cache coherency mechanism [5, §15.34.9].
Wilke et al. [124], tried implementing the Load+Reload [82] cache attack on such a CPU
and observed RAM access times instead of the expected L2 access times, indicating that
there could be a similar, implicit flush as with TDX. However, in their experiments all
cache lines of the accessed page show high access times, not only the targeted one.

Cache attack primitives that do not rely on shared memory, like Prime+Probe, are unaf-
fected by the KeyID/ASID side effects described in the preceding paragraphs. Wilke et
al. [124], show a Prime+Probe cache attack against AMD SEV.

3.4.2 Meltdown, MDS and Spectre Attacks

In this section, we briefly introduce Meltdown, Microarchitectural Data Sampling (MDS),
and Spectre attacks and discuss their applicability to TEEs.

Meltdown [84] mainly affects Intel CPUs and exploits that their microarchitecture already
performs memory accesses before all access rights checks have been completed. While
illegal memory accesses are eventually detected and aborted, the microarchitectural state
partly persists and can be used to leak information, e.g., via the cache. Meltdown has also
been shown on certain ARM CPUs [84], while AMD CPUs are reported to be immune [22].
MDS attacks [21, 90, 103, 106] leak data from microarchitectural buffers, exposing data
handled within the CPU, especially in the context of Simultaneous Multithreading (SMT).

Spectre [68] attacks exploit the speculative execution capabilities of modern CPU designs.
Speculative execution enhances performance by allowing the CPU to predict the outcome
of control flow transfers, enabling the CPU to speculatively continue executing rather
than waiting until the target of the control flow transfer has been resolved. With Spectre,
the attacker mistrains the corresponding prediction units of the CPU to influence the
path of speculative execution. While instructions and memory accesses executed due to
misspeculation are never architecturally committed, they often leave a footprint in the
microarchitectural state, allowing to leak data. Cache state is the most common leakage
mechanism. There are several Spectre variants. In Spectre v1 [68], mistrained speculation
for conditional direct branches is used to perform out-of-bounds memory accesses. At-
tackers can use this to speculatively access arbitrary values in the victim’s address space.
To leak speculatively accessed values, most attacks require code locations that perform a
memory access based on the result of the speculative out-of-bounds read shortly after
the branch. Afterward, the attacker can probe the cache to infer information about the
accessed memory location. Spectre v2 [68] targets indirect branches and mistrains the cor-
responding Branch Target Buffer (BTB) to speculatively execute attacker-controlled code
paths. This equips the attacker with capabilities similar to return-oriented programming
or jump-oriented programming, enabling them to stitch together several code snippets to



58 Chapter 3: State of the Art

induce malicious behavior. Spectre-RSB [70, 86] is similar to Spectre v2 but targets return
instructions, which use the Return Stack Buffer (RSB) for predicting the target address.
On Intel CPUs from the Skylake microarchitecture upwards, the prediction for return
instructions may use the BTB as a fallback for deeply nested function call chains, as the
RSB has a limited size. In the following, we will treat Spectre-RSB as a subvariant of
Spectre v2. Spectre v4 [110] exploits speculation in the context of store-to-load forwarding
such that a misspredicted dependency between a load and a prior store leads the CPU to
access stale data.

Intel SGX For Spectre v1, SGX requires the enclave developer to deploy software
countermeasures like inserting lfence instructions or using USLH [132]. For Spectre
v2, Intel CPUs with the Indirect Branch Restricted Speculation (IBRS) feature implicitly
ensure that the prediction of indirect branches for code running inside an enclave is
isolated from the untrusted part of the system. This behavior is independent of the
software-controlled enablement of IBRS [60]. Chen et al. [23] demonstrate that before
IBRS, Spectre v2 attacks against SGX were possible. Several MDS attacks have been
demonstrated against SGX [90, 103, 106]. Intel addressed these issues with microcode
updates and added silicon changes to subsequent CPU generations [103, 106]. Recent
Intel CPUs are not vulnerable to Meltdown and MDS attacks. The mitigation status of a
CPU can be queried via the IA32_ARCH_CAPABILITIES MSR.

Intel TDX The TDX module employs several countermeasures to protect TDs against
Spectre attacks [1]. To prevent Spectre v1 attacks, the TDX module uses the lfence

instruction as a barrier before processing attacker-controlled input. For Spectre v2, the
TDX module ensures that Enhanced Indirect Branch Restricted Speculation (eIBRS) is en-
abled, which isolates the SEAM non-root CPU mode, at which TDs execute, from the
remaining system in terms of indirect branch prediction. To mitigate cross TD Spectre
attacks, the TDX module issues an Indirect Branch Predictor Barrier (IBPB) whenever a
TD is moved to a new logical processor. IBPB acts as a speculation barrier, preventing
any preceding instructions from influencing the branch prediction of subsequent in-
structions. Furthermore, the TDX module also employs software countermeasures to
protect against Spectre-BHB. To protect against Spectre v4, the TDX module ensures
that Speculative Store Bypass Disable (SSBD) is activated. Finally, the TDX module checks
the IA32_ARCH_CAPABILITIES MSR to ensure that it executes on hardware that is not
vulnerable to Meltdown and MDS attacks.

AMD SEV With SEV-SNP, AMD offers additional protection against Spectre v2 for
the VM [5, §15.36.17]. The Branch Target Buffer Isolation feature ensures that no branch
target entries originating from code running outside the SEV VM are used while the SEV
VM executes. In addition, the Indirect Branch Prediction Barrier (IBPB) on Entry feature
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of SEV-SNP can be used to ensure that the hardware always inserts an IBPB barrier
before entering the VM. Finally, SMT Protection can be enabled to ensure that while the
vCPU thread of a SEV VM is actively running, the sibling SMT thread cannot be used.
For Spectre v1, the SEV VM has to use software countermeasures like inserting lfence

instructions or USLH [132]. Similar to Intel CPUs, AMD CPUs also support Speculative
Store Bypass Disable (SSBD) to prevent Spectre v4. However, we did not find documen-
tation on whether SEV can ensure the enablement. As previously mentioned, AMD
processors are reported to be immune against Meltdown. Similarly, most MDS attacks do
not affect AMD but the SEV documentation [4, 5, 6] does not state any dedicated checks
or countermeasures.

3.4.3 Other

In CROSSLINE, Liet al. [78] analyze the ASID based isolation of AMD SEV and show
two attacks for plain SEV and SEV-ES. With SEV, the ASID selects the VM’s memory
encryption key and tags the cache and the TLB to ensure proper isolation. We refer
to Section 3.1.3 for more background information. The key idea of the two attacks is
to use the hypervisor’s control over the ASIDs to swap the ASIDs of a victim VM and
an attacker-controlled VM. AMD states that this should not lead to security issues, as
the VMs should crash when executing their next instruction since they decrypt their
code with a different key, leading them to execute randomized values as instruction [65].
The first CROSSLINE attack uses the hardware page table walker to build a decryption
primitive. To his end, they remap the GPA of the VM’s root page table in the NPT and
mark all other pages as not present. Afterward, they change the ASID of the attacker VM
to the victim VM’s ASID. On the next memory access of the attacker VM, the hardware
page walker still tries to interpret the content of the remapped page as a page table entry.
If the content of the page adheres to the page table format, the page table walker will
generate a page fault since all pages previously have been marked as inaccessible in the
NPT. The page fault reveals the decrypted content of the supposed page table entry, using
the victim VM’s key due to the ASID manipulation. No information is revealed if the
content of the page does not adhere to the page table entry format. The author’s analysis
shows that, excluding actual page tables, only a small amount of memory satisfies the
page table entry format. With SEV-SNP, the required NPT remapping is prevented by the
Reverse Map Table (RMP). While the authors describe that the attack requires a victim and
an attacker VM, whose ASIDs are swapped, I suspect that this attack should also work
by simply modifying the NPT of the victim VM. The second CROSSLINE attack shows
that the attacker VM can reuse TLB entries of the victim to execute a few instructions.
However, to leak data to the attacker, they require access to the VM’s register file, which
is prevented with SEV-ES.
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In a subsequent publication, Li et al. [81] perform further analysis on the TLB manage-
ment of SEV prior to SNP. According to their experiments, the TLB is tagged with the
ASID, the logical core partition (isolating the two logical cores of a physical core), the
C-bit, and the “VM mode”, i.e., “plain”, “SEV”, “SEV-ES” and “SEV-SNP”. They discover
that it is the untrusted hypervisor’s responsibility to flush the TLB when vCPUs are
moved to a new logical core, allowing an attacker to suppress TLB flushes. Li et al. show
two attack scenarios, which both assume that the attacker controls a process running
in the VM. In the first scenario, they assume that the VM has at least two vCPUs, one
executing the victim process and one the attacker process. The hypervisor time-slices
both on the same logical core. For the attack, the victim is interrupted at virtual address
VAa using, e.g., the page fault controlled-channel. Next, the hypervisor flushes the TLB
and runs the attacker process, using its own vCPU, to load a malicious gadget at VAa,
which, e.g., overwrites a crucial register value. Afterward, the victim vCPU is again
scheduled but without flushing the TLB. Thus, it reuses the poisoned TLB entry, execut-
ing the attacker-controlled instruction. In the second scenario, the authors assume only
one vCPU, where the TLB state would usually be destroyed by the cr3 update inside
the VM that is part of context switching between the victim and the attacker process. Li
et al. demonstrate that this can be circumvented by temporarily moving the vCPU to a
new logical core before performing the cr3 update. They also highlight that applications
like Nginx, Apache, and the lesser-known Dropbear SSH server spawn a new process
for each connection, that reuses the same address space layout as the parent. OpenSSH
also spawns such child processes but explicitly rerandomizes the address space. They
argue that such a child process can act as the attacker-controlled process assumed in the
previous attacks. In an attack case study, they demonstrate that an attacker can bypass
the password check of Dropbear SSH, using the TLB entries of a concurrently executing
benign login. With SEV-SNP, the hardware enforces correct TLB flushing, preventing this
class of attacks [77].

3.5 Physical Access Attacks

In addition to protecting against privileged software-level attackers, most TEEs also
consider physical attackers, at least for the DRAM interface. The TDX white paper states
that the attacker model includes “CSP insiders (e.g., technician) that can attempt a HW
attack to extract Cloud Tenant’s secrets or spoof Tenants data/memory by hooking
into system interfaces (DDR bus).” [55]. SGX considers the “. . . DRAM and the bus
connecting it to the CPU chip to be untrusted.” [31]. The SEV-SNP white paper states that
“While certain physical attacks such as DRAM cold boot attacks (where DRAM chips are
analyzed off-line) can be blocked by these technologies, on-line DRAM integrity attacks,
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such as attacking the DDR bus while the VM is actively running, are out of scope. These
attacks are very complex and require a significant level of local access and resources
to perform” [4]. In this section, we discuss attacks on the DRAM interface as well as
hardware-based mechanisms for undervolting the CPU.

3.5.1 Memory Bus

All x86 TEEs employ memory encryption to protect data before writing it to DRAM.
However, the DDR protocol used on the memory bus remains unprotected. In addition,
the physical sockets in which the memory modules are placed make it easy to access the
individual physical pins of the bus. The memory modules are also referred to as DIMMs.
On a high level, the DDR protocol specifies a location on the DIMM and whether data
should be read or written. A DRAM address reflects the physical structure of the DIMM
module and is defined in terms of ranks, banks, rows, and columns, while the CPU uses
the concept of a one-dimensional physical address space. During system initialization,
the BIOS discovers the installed DIMMs and sets up the physical address to DRAM
mapping inside the Memory Management Unit (MMU) of the CPU. Similar to page tables
for virtual memory, the MMU transparently translates physical addresses to DRAM
addresses whenever the CPU performs a memory access. Meulemeester et al. [87] and
Hopkins et al. [46] show that manipulating the DDR read/write request can be used
to overcome memory access restrictions implemented by the CPU while Lee et al. [74]
passively observe the memory bus to leak metadata of the memory accesses.

In BadRAM, Meulemeester et al. [87] show how an attacker with brief physical access
can manipulate the physical address to DRAM address mapping to overcome physical
address-based access restrictions, including the write access prevention introduced with
SEV-SNP. They demonstrate the attack for both DDR4 and DDR5. To achieve this, they
manipulate the data on the Serial Presence Detect (SPD) chip of the DIMM, which stores
metadata like the memory size of the DIMM and does not use any form of authentication
or data integrity mechanism. For most DIMMs, the manipulation requires one-time
physical access, while some DIMMs even allow such changes from software. For their
attack, Meulemeester et al. double the advertised size of the memory module. As a result,
the physical address to DRAM address mapping created by the BIOS during system
boot uses one additional “ghost” row-bit for the DRAM address. However, the DIMM
itself silently ignores the “ghost” row-bit, leading to aliasing where each location on the
DIMM is accessible by two physical addresses. This aliasing is completely transparent for
the CPU. SEV-SNP blocks access to a contiguous physical range of memory to bootstrap
its RMP mechanism for protecting the integrity of SEV VMs. However, by using aliased
physical addresses, an attacker can again manipulate the data, rendering the mechanism
ineffective. Based on this, Meulemeester et al. demonstrate an attack that completely
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breaks the attestation mechanism of SEV-SNP. They also show that aliasing allows an
attacker to overcome the EPC read/write protection of classic Intel SGX. However, due
to the strong memory encryption, the attacker still cannot manipulate or replay data
but only observe memory writes at a 64-byte granularity. Meulemeester et al. state that
scalable Intel SGX and Intel TDX are not affected by these attacks, since they explicitly
search for aliases during the boot process and disable the TEE features if any are found.

Hopkins et al. [46] show an FPGA-based DRAM interposer for DDR3 memory. In this
context, an interposer is a physical man-in-the-middle device that is located between the
DIMM and the actual physical memory socket on the mainboard of the computer. Their
interposer allows redirecting memory reads/writes to a different location on the DIMM
and can be dynamically controlled by the attacker. Leveraging this primitive, they show
that an attacker can overcome any memory isolation mechanism that is based on physical
addresses. The authors evaluate their attack on a CPU without TEE capabilities and show
VM breakouts and privilege escalation attacks. On a TEE capable CPU, their interposer
would enable the attacks described in the previously discussed BadRAM paper. Even
worse, since the access redirection/aliasing is not static, like in the BadRAM paper, boot
time alias checking cannot prevent the attack this time. However, modern, TEE-capable
CPUs require at least DDR4 ECC memory, which requires much faster bus speeds than
DDR3, for which Hopkins et al. build their interposer. Whether an FPGA-based design
can scale up to such speeds remains an open problem.

Lee et al. [74] use a passive interposer to capture the DRAM addresses transmitted over
the memory bus. They perform their experiments on CPUs with classic Intel SGX support
and DDR4 memory. In contrast to the interposer by Hopkins et al., their interposer is
commercially available but costs roughly $170,000. The captured DRAM addresses reveal
the memory accesses of the CPU with cache line granularity. In contrast to regular cache
attacks, their approach has no noise or runtime overhead. They demonstrate attacks that
exploit secret-dependent memory accesses in SGX enclaves.

As we have explained in Section 3.1, scalable Intel SGX and Intel TDX both repurpose
a single ECC bit as the “TD-bit”. The TD-bit marks memory as inaccessible for the
untrusted host system. TDX also uses the ECC bits to store a 28-bit MAC that is only
secure because mechanisms on the CPU prevent brute force attacks. Thus, an attack
mechanism that grants direct access to the data, e.g., by manipulating the data transmitted
over the memory bus, would have severe security implications for SGX and TDX.

3.5.2 HW-based Undervolting

In this section, we describe attacks that use physical access to manipulate the voltage of
the CPU in order to cause data faults or glitches. In contrast to software-based attacks (c.f.
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Section 3.3.6) that rely on certain MSRs for configuring Dynamic Voltage and Frequency
Scaling (DVFS), mitigating these hardware-based attacks is more challenging.

In VoltPillager, Chen et al. [27] undervolt the CPU by sending manipulated commands to
the physical Voltage Regulator (VR) on the mainboard. The VR is connected to the CPU via
the Serial Voltage Identification (SVID) bus which allows the CPU to dynamically control
the supplied voltage. For their attacks, Chen et al. attach a microcontroller to the SVID
bus to inject malicious requests onto the bus that temporarily drop the supplied voltage.
Using this primitive, they show attacks similar to the ones presented in the software-
based undervolting research [26, 66, 95, 99, 100]. The authors, e.g., show fault attacks
against an RSA encryption running inside an Intel SGX enclave that allows to recover
the secret key. While the authors only demonstrate their attacks on Intel CPUs, they state
that the exploited mechanism should also affect other CPU vendors, like AMD.

In One Glitch to Rule Them All, Buhren et al. [15] use similar methods as Chen et al. [27] to
undervolt AMD EPYC CPUs. Instead of targeting code executing on the main CPU, they
show a fault attack against the AMD Secure Processor (SP), an ARM-based coprocessor
that is part of the system-on-chip. Crucially, the SP is the hardware root of trust for AMD
SEV. Early during the boot process, the SP loads a public key from external memory
and verifies its authenticity and integrity by comparing it to a hash value stored in on-
chip memory. Afterward, the public key is used to verify the authenticity and integrity
of subsequent code stages. Buhren et al. perform a glitch attack on the verification of
the public key itself, allowing them to load their own key. This enables them to load
manipulated versions of the subsequent code stages, gaining full control over the SP,
which constitutes the hardware root of trust of SEV. They load a manipulated SEV
firmware that allows the hypervisor to decrypt the memory of all SEV VMs while still
issuing valid attestation reports. They demonstrate the attack on Zen 1, Zen 2, and Zen 3
CPUs. Thus, their attack affects SEV-SNP.

Both Chen et al. and Buhren et al. conclude that countermeasures against hardware-
based undervolting are difficult. They argue that protecting the messages on the bus
to the VR is insufficient as an attacker could easily swap out the VR itself due to its
exposed position on the mainboard. Integrating the VR directly into the system-on-
chip could make manipulations much harder. Another suggested approach is adding
voltage monitoring circuitry to the CPU that tries to detect unexpected fluctuations in
the supplied voltage and subsequently terminates the execution. Orthogonal to securing
the hardware interface, the software-based “detect&abort” countermeasure from Kogler
et al. [69] (.c.f Section 3.3.6) could potentially be applied here as well.





4
Conclusion

TEEs are a promising solution for ensuring data privacy in the context of cloud com-
puting. As we have seen throughout this thesis, the strong TEE attacker model exposes
several attack vectors that have led to numerous exploits. However, we have also seen
continuous advancements in security mechanisms and mitigations that prevent many of
the presented attacks. In my opinion, two areas are of particular interest for future TEE
designs.

A recent trend in TEE design is partially shifting the trust anchor from the CPU to the
DRAM modules. Classic SGX was the first widely available x86 TEE and focussed on
protecting small, dedicated, security-critical applications. It uses a Merkle-Tree based
memory encryption scheme with cryptographic integrity protection and freshness. The
root of the tree is protected by secure, on-chip memory. As a result, classic SGX can treat
the DRAM as entirely untrusted. However, the encryption scheme has a high time, space,
and memory bandwidth overhead and does not scale well to large memory sizes. This
is in contrast to many industry use cases for TEEs that demand protecting large legacy
applications and complex software stacks. These needs were addressed by AMD SEV
and later by Intel TDX. Both are VM-scoped, enabling a more straightforward adoption
of existing software deployments. Scalable Intel SGX only partially addresses these
needs. While it has a drastically increased memory size, it is still limited to processes. To
efficiently scale to large memory sizes, SEV, scalable SGX, and TDX use tweaked block
ciphers for memory encryption instead of a Merkle-Tree based design. The downside of
this approach is that these schemes neither provide cryptographic integrity protection
nor freshness. Intel TDX offers a separate mechanism to provide integrity protection via
a SHA-3-based MAC with 28-bit tags but stores them together with the payload data and
not on secure on-chip memory. As we have seen in Section 3.2 such encryption schemes
are only secure in combination with access rights restrictions. Without integrity protection
the attacker must be prevented from manipulating the ciphertexts and without freshness
or nondeterministic encryption the attacker must not repeatedly read the ciphertexts.

To this end, AMD SEV, Intel TDX, and scalable Intel SGX employ additional access
rights mechanisms. However, by design, such mechanisms cannot enforce any restriction
for physical attackers. Thus, these TEEs have to trust that the physical connection to
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the DRAM is secure and that the DRAM module itself is benign. As we have seen in
Section 3.5.1, the memory bus and the DRAM modules are highly exposed to physical
attacks, due to their external placement on the mainboard. However, the high bus speed
of modern DDR4 and DDR5 DRAM makes memory bus interposer attacks technically
challenging, requiring further research. Another attack avenue could be the software-only
Rowhammer attack [67], which allows indirectly accessing memory locations, overcom-
ing architectural access restrictions.

Implementing efficient access restrictions on the CPU that include privileged software
components is non-trivial. To ensure optimal memory management, both SEV and
TDX allow using arbitrary memory pages for their VMs, rendering a simple range
check, as used by SGX, insufficient. AMD chose to implement a mechanism based
on a flat page table called RMP, which itself resides in a small physically contiguous
memory area protected by a range check. However, AMD only performs checks for
write accesses, still leaving SEV-SNP exposed to the read-based ciphertext side-channel
attack. I suspect this is due to performance considerations, as consulting the RMP comes
with a time and memory bandwidth overhead. Starting from revision 1.55, the SEV ABI
specification mentions a “ciphertext hiding” feature, indicating that AMD is working on
a mitigation [6]. Intel instead repurposes one bit of the ECC memory to store whether
a memory location can be accessed by the host. The ECC bits are also used to store the
previously mentioned MAC. Thus, no additional memory access is required to perform
the access rights check. While very efficient, repurposing ECC bits again places trust
assumptions on the physical memory bus and the DRAM modules, which are hard to
verify.

To what extent TEEs with tweaked block cipher-based memory encryption can withstand
(advanced) physical attackers is an interesting future research direction. A hybrid system
that allows storing critical secrets in a classic SGX-like environment could be an interest-
ing approach but would require extensive changes to existing software architectures. On
a physical level, verifying the current trust assumptions by authenticating the DRAM
modules or integrating them more closely with the CPU would help to reduce the risk of
physical attacks.

Another interesting area of TEE security, which has seen many recent developments,
is side-channel security. In Section 3.3, we have seen that Intel SGX, AMD SEV, and
Intel TDX all leak information about the control flow and memory accesses of the pro-
tected code. While the page fault side-channel only provides coarse-grained information,
single-stepping enables the attacker to build instruction-granular traces. However, this
information can only be weaponized if the control flow or memory accesses of the code
are tied to “secret” data. In principle, it is well understood how to avoid both issues
for cryptographic libraries by applying the data oblivious constant time programming



67

paradigm. However, academic research over and over found subtle control flow varia-
tions in state-of-the-art cryptographic libraries claiming to be constant time [91, 108, 122].
While the tooling for automatically detecting constant-time violations has improved as
well [62, 120], this still raises questions about the practicality of consistently achieving
constant-time behavior in the face of a single-stepping adversary. Even worse, both SEV
and TDX are intended to protect entire VMs containing vast amounts of general-purpose
software, like databases, key-value stores, or image processing. In many scenarios, the
processed data needs to be considered secret in the sense of constant time program-
ming. For certain applications, it has been shown that even the coarse-grained page fault
controlled-channel is sufficient to leak data [126]. Rewriting large amounts of general-
purpose software to adhere to the constant time programming paradigm is infeasible.
Thus, TEEs need built-in, principled mitigations against this attack class, to enable the
deployment of software components without the need for TEE-specific hardening. Intel
started to address the issue and released a single-stepping countermeasure for SGX
in 2023. In addition, Intel TDX was released with a built-in countermeasure against
single-stepping. However, the latter still allows for a slightly weaker subvariant of single-
stepping, and it seems unlikely that Intel will change the design [122]. None of the
countermeasures mitigates the page fault controlled-channel. Finding robust counter-
measures that can protect VM-based TEEs against both attacks is an interesting direction
for future research.

While the previous paragraphs highlight shortcomings of current TEE designs, I want to
stress that exploiting these shortcomings, as well as most other attacks described in this
thesis, is non-trivial. In contrast to plain VMs or containers, TEEs significantly raise the
security level of cloud computing. I am excited to continue working in this area, helping
to shape more secure future TEE designs.
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undeSErVed trust: Exploiting Permutation-Agnostic
Remote Attestation

Luca Wilke, Jan Wichelmann, Florian Sieck and Thomas Eisenbarth.

University of Lübeck

The ongoing trend of moving data and computation to the cloud is met with concerns
regarding privacy and protection of intellectual property. Cloud Service Providers
(CSP) must be fully trusted to not tamper with or disclose processed data, hampering
adoption of cloud services for many sensitive or critical applications. As a result, CSPs
and CPU manufacturers are rushing to find solutions for secure and trustworthy
outsourced computation in the Cloud. While enclaves, like Intel SGX, are strongly
limited in terms of throughput and size, AMD’s Secure Encrypted Virtualization (SEV)
offers hardware support for transparently protecting code and data of entire VMs,
thus removing the performance, memory and software adaption barriers of enclaves.
Through attestation of boot code integrity and means for securely transferring secrets
into an encrypted VM, CSPs are effectively removed from the list of trusted entities.
There have been several attacks on the security of SEV, by abusing I/O channels to
encrypt and decrypt data, or by moving encrypted code blocks at runtime. Yet, none of
these attacks have targeted the attestation protocol, the core of the secure computing
environment created by SEV. We show that the current attestation mechanism of
Zen 1 and Zen 2 architectures has a significant flaw, allowing us to manipulate the
loaded code without affecting the attestation outcome. An attacker may abuse this
weakness to inject arbitrary code at startup—and thus take control over the entire
VM execution, without any indication to the VM’s owner. Our attack primitives allow
the attacker to do extensive modifications to the bootloader and the operating system,
like injecting spy code or extracting secret data. We present a full end-to-end attack,
from the initial exploit to leaking the key of the encrypted disk image during boot,
giving the attacker unthrottled access to all of the VM’s persistent data.

1 Introduction

An increasing number of software applications, from enterprise management software to
messengers used in nearly everyone’s daily life, rely on storing information and perform-
ing computations in the cloud. Solutions are moved from local, trusted environments
to the data centers of big cloud service providers, and are now running in untrusted
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environments under control of a third party—in order to save costs, reduce management
effort and to improve scalability.

The loss of trust comes with significant challenges for services such as banking, private
secure messaging or health services, which require strict isolation and confidentiality
to ensure the safety of their assets and to comply with data privacy laws: Computing
resources in the cloud are often shared, which in case of broken isolation does allow
co-located users to spy on each other [24, 31, 45]. Another concern is the security of the
cloud service provider’s systems themselves, where internal or external attackers may
leverage elevated privileges for extracting private data.

In order to deliver isolated, confidential and authenticated execution and processing
of data in an otherwise untrusted setting, processor vendors added hardware features
to build a root-of-trust and ensure confidential computing in a local Trusted Execution
Environment (TEE). One example is AMD Secure Encrypted Virtualization (SEV) [1, 6,
28], which allows to run VMs confidentially and isolated from their hypervisor. AMD
added new features to SEV with every generation of its processor architecture. In 2017,
The first generation of EPYC processors (Zen) came with the initial version of SEV. The
second generation (Zen 2) added an encrypted state for context switches with SEV-ES [27]
and was released in 2019. The newest addition, SEV-SNP [3], will be available on the
third generation of EPYC processors (Zen 3), which are set to be released in early 2021.
Intel TDX [25] aims to provide a similar solution, but is only available as a concept
as of writing this work. With Intel Software Guard Extensions (SGX) [9, 18, 26], Intel
offers an established TEE which enables software vendors to run smaller programs in
isolated enclaves. All of these solutions provide memory encryption during execution,
and attestation of the software loaded into the TEE.

Recently, cloud service providers like Microsoft and Google started to offer confidential
computing environments which isolate the customer’s software using Intel SGX [32] or
AMD SEV [22]. Popular examples, like the secure private messenger Signal, are already
using these technologies to protect the sensitive data of their customers [39]. Moreover,
open source solutions enable simple development and deployment of software for TEEs
[10, 11, 20].

A fundamental challenge for TEEs is having to guarantee their promises against attackers
with system level privileges, resulting in a large variety of attacks [15, 16, 17, 33, 38, 44].
In this work, we extend the arsenal of attacks against TEEs and in particular against
AMD SEV, with an attack targeting and circumventing its very core of trust, the remote
attestation.

Remote attestation allows the owner of a software, which runs in a confidential or trusted
execution environment, to verify the initial integrity and authenticity of the software
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loaded into the TEE, which afterwards is preserved at runtime by the properties of the
TEE. Generally, remote attestation works by creating a signed measurement, usually a
hash, of the initially loaded application through the trusted hardware and sending this
measurement to the software owner for verification. In case of AMD SEV, the trusted
hardware is an additional on-chip co-processor called Secure Processor (SP), which
cannot be externally controlled.

1.1 Our Contribution

If the attestation process, however, is broken, the isolation and confidentiality guarantees
of AMD SEV are inconsequential as the software owner cannot be sure whether their
intended software was loaded or whether an attacker manipulated it during startup.

In this work, we

• show that the measurement used in AMD SEV’s attestation is block permutation-
agnostic, meaning that changing the order of measured memory blocks does not
affect the attestation outcome, and thus allows the attacker to modify the execution
flow without detection by the VM’s owner;

• construct an universal attack primitive, which reorders the measured blocks of an
initially loaded UEFI and sets up a Return-oriented Programming (ROP) chain to
load and execute arbitrary code;

• demonstrate a full end-to-end attack which leaks the key of an encrypted disk
image, and gives the attacker full control over the VM’s operating system;

• propose several countermeasures and discuss why the underlying problem ulti-
mately cannot be solved under SEV Encrypted State (SEV-ES).

1.2 Attack Overview

The attack described in this work targets the measurement of the initially loaded binary
during startup of an SEV-ES-protected Virtual Machine (VM), which we also refer to
as the “guest”. When the VM is started, the hypervisor instructs the AMD SEV secure
processor to load the initial binary, e.g. an Open Virtual Machine Firmware (OVFM)
UEFI binary, into encrypted memory and calculate a measurement of the initial VM
content using the LAUNCH_UPDATE_DATA and LAUNCH_MEASURE commands. We find that
the initial binary can be split into blocks as small as 16 bytes, which we are able to load in
an arbitrary order using LAUNCH_UPDATE_DATA, while still getting the same measurement
when calling LAUNCH_MEASURE. This allows us to construct our own execution flow, which
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we use for redirecting the stack pointer to an unencrypted shared page. Consequently, we
leverage this control over the stack to mount a ROP attack, allowing us to write arbitrary
code and data into the encrypted VM’s memory. We use the injected code to leak the
protected secret values which have been provided by the guest owner. As our meddling
with the block ordering does not change the launch measurement, AMD SEV’s remote
attestation will succeed and the guest owner will be unaware of our changes to their
VM’s execution flow.

1.3 Responsible Disclosure

We responsibly disclosed our findings to AMD via Email on January 19th, 2021. AMD
requested an embargo until May 11, 2021 and provided us with the following statement:
“AMD has assigned CVE-2021-26311 for this issue and provided mitigations in the
SEV-SNP feature available for enablement 3rd Gen AMD EPYC™ processors. AMD
appreciates the coordination efforts made by the research team.”.

2 Background

2.1 AMD SEV

In 2016, AMD introduced their Secure Memory Encryption (SME) and SEV technolo-
gies [28], which were implemented only in 2017 with the first generation of EPYC
processors (Zen 1). SME offers hardware-based encryption of RAM content. The memory
encryption key is managed by the SP, an ARM-based co-processor, and is thus never
accessible by system software. The encryption/decryption takes place directly in the
on-die memory controllers. Each page table entry has a special status bit, which controls
whether the associated page is encrypted or not. The whitepaper [28] does not explain
the mode of operation in detail, but only states that AES with an 128-bit key and a
physical address-based tweak is used. In [19, 44] it is shown that early versions use the
Xor-Encrypt (XE) or Xor-Encrypt-Xor (XEX) encryption mode with static, low entropy
tweak values, while later versions use stronger, randomized tweak values. In addition,
none of the encryption modes offer integrity protection.

While SME uses the same key for all memory pages, SEV adds the ability to encrypt the
memory content of VMs with different keys, that are only known to the SP but not to the
Hypervisor (HV), preventing a malicious HV from directly reading the memory content
of its guests. However, VMs can also share pages with the HV. In addition, the SP offers
an API to the HV to manage the SEV-protected VMs. This includes a mechanism to attest
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the initially loaded code of the VM and a mechanism to securely move secrets into the
VM.

SEV-ES was introduced by AMD in 2017 and implemented in 2019 with the second
generation of EPYC processors. It addresses one major remaining attack surface of SEV:
The unencrypted Virtual Machine Control Block (VMCB), a data structure storing certain
configuration bits as well the VM’s register values on context switches. Certain sensitive
parts of the VMCB were moved to a substructure called Virtual Machine State Save Area
(VMSA) that is encrypted and integrity protected on context switches to the HV, and thus
prevents an attacker from inferring or modifying a VM’s state during context switches.

However, there are also several instructions that need interaction with the HV, like cpuid,
which previously shared and received data with/from the HV via the VM’s registers. To
enable this with SEV-ES, AMD introduced a new communication mechanism between
HV and VM, consisting of the Guest Hypervisor Communication Block (GHCB) and a
new exception called VMM Communication Exception (#VC). The GHCB is simply a
shared page, that gets setup by the VM. Instructions that require data sharing with the
HV cause a #VC, allowing a VM exception handler to share the data via the GHCB.

SEV Secure Nested Paging (SEV-SNP) aims to address several remaining issues, like
remapping attacks due to the HV’s control over the nested page tables, or attacks on the
missing integrity protection. It was announced by AMD in January 2020 [3] and will
only be available on the 3rd gen EPYC processors, that are set to be released after the
submission deadline. The most important change is the introduction of an additional
page table called Reverse Map Table (RMP), to which the HV only has mediated access.
The RMP aims to ensure a one-to-one mapping between GPAs and HPAs, and will
prevent the HV from writing to VM memory, mitigating problems arising due to the
lacking integrity protection.

2.2 Booting physical and virtual environments

When booting a physical system, the CPU is in a well-defined state, but completely
unaware of its environment. Its program counter is set to start execution at a fixed
address, which points to a FLASH or EPROM. Firmware is loaded from this start position
and is responsible for initializing the memory controller, creating a memory mapping for
RAM, and configuring I/O peripherals. On modern computers, this firmware usually
is UEFI-based, which is platform specific and performing the aforementioned tasks.
The advantage of UEFI compared to legacy BIOS is its standardization of the platform
initialization procedure [42]. The UEFI is configurable through variables in a non-volatile
memory (e.g. NVRAM), so configuration is persisted over restarts. Additionally, it can
provide secure boot, which allows to build up a chain of trust from the UEFI to the finally
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loaded kernel of the OS. In this chain, the UEFI, which contains a set of configurable
certificates and keys, forms the root of trust. Every component of the chain verifies its
successor before handing over the execution [42].

When the UEFI finishes the system configuration, it hands over the control to an EFI
binary [42], which usually is an OS bootloader, e.g. Grub [21]. The bootloader sets up
the stage for the OS kernel, loads the kernel into memory and calls its main method.
However, an EFI binary does not necessarily have to be a bootloader.

In case of booting a virtual environment, e.g. with QEMU [37], the process is similar:
When the hypervisor starts up the virtualization, it launches an UEFI. For virtual envi-
ronments, OVMF [41] is a common choice. OVMF performs the necessary virtual system
configuration and hands over control to a bootloader [12]. The bootloader, which is just
a regular EFI application, can be provided in different ways. Usually it is expected to
be located on a FAT-formatted disk with GUID partition table [42], thus requiring the
guest owner to provide the hypervisor with a disk image. Another way is to include the
bootloader, i.e. the EFI application, into the UEFI volume which also contains the UEFI
firmware [13].

3 SEV(-ES) Guest Launch Process

In this section, we describe the typical workflow required to launch an SEV-secured VM,
as described in [6] and implemented in AMD’s patches to the the Linux kernel [4] and
QEMU [5]. This includes encrypting an initial code image, proving its integrity to the
guest owner, and loading secret data without leaking it to the HV.

3.1 Prerequisites

There are three parties involved in launching a SEV VM: The guest owner, the HV and
the SP. The guest owner wants to start a SEV-secured VM. The HV is typically controlled
by the cloud service provider. In order to provide the SEV functionality, the HV must
interact with the API provided by the SP.

The goal of the launch process is to enable the HV to prove to the guest owner that the
initial content is trustworthy. Furthermore, it enables the guest owner to send secrets, like
disk encryption or SSH keys, to the VM in a secure manner. The entire launch process is
illustrated in Figure 1.

For each VM, the SP maintains a Guest Context (GCTX) that, among other values, contains
a handle, the VM Encryption Key (VEK), the launch digest (LD), and the current state.
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Guest Owner Secure ProcessorHypervisor

PDH_CERT_EXPORT

Load guest

LAUNCH_START

Certificates, Public Key

Session Info, Public Key

LAUNCH_UPDATE_DATA

LAUNCH_UPDATE_VMSA

LAUNCH_MEASURE

Nonce, HMAC

Host Phys. Addr., Length
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Secret Data
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VMRUN

UNINIT
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RUNNING
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Figure 1: SEV Guest Launch Process. This simplified illustration shows the various states during
VM startup and attestation. First, keys are exchanged and a cryptographic session is estab-
lished. In the LUPDATE state, the hypervisor loads the guest and then asks the SP to encrypt it
via repeated LAUNCH_UPDATE_∗ commands. The final LAUNCH_MEASURE call retrieves a signed
hash of the loaded guest data. If the guest owner approves, various secret data can be safely
loaded into the VM during the LSECRET state. On completion, the hypervisor and the VM
transition into the RUNNING state, and the VM is executed.
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Table 1: Overview of the VM-specific commands provided by the SP in different states. For
brevity, commands that are not relevant for our work were omitted.

State Command → New State
UNINIT LAUNCH_START → LUPDATE

LUPDATE LAUNCH_UPDATE_DATA → LUPDATE

LAUNCH_UPDATE_VMSA → LUPDATE

LAUNCH_MEASURE → LSECRET

LSECRET LAUNCH_SECRET → LSECRET

LAUNCH_FINISH → RUNNING

RUNNING (other commands)

The VEK is a VM-specific key used for memory encryption. The launch digest contains a
hash value of the VM contents loaded during the launch measurement phase. The state
determines which API commands are usable.

Table 1 shows an overview of the states along with the usable commands and the
resulting state transitions. We omitted all states and commands related to migrating
VMs between different hosts, as we do not use them in this paper. In addition to the
VM-specific commands, there are several commands which affect the SP itself. They are
used to update its firmware and to generate or export cryptographic key material.

Before any VM-specific commands are issued, the HV starts an ECDH key exchange by
issuing the PDH_CERT_EXPORT command, upon which the SP exports a public ECDH key
and some certificates. The latter are part of a public key infrastructure, that is ultimately
rooted at an AMD controlled key hardcoded into the SP. The HV then sends this data to
the guest owner.

3.2 UNINIT state

A new VM assumes UNINIT as initial state. In order to start the launch process, the guest
owner verifies the authenticity of the ECDH key sent by the HV. Then they use their own
ECDH key pair to derive the Transport Encryption Key (TEK), the Transport Integrity
Key (TIK) and some other keys used for transport security. Afterwards, they send this
data together with a configuration object called POLICY to the HV.

Upon receiving the data from the guest owner, the HV calls the LAUNCH_START command,
which finalizes the ECDH handshake between guest owner and SP. The SP can now
derive the shared secret and use it to unwrap/verify the received data. Next, it initializes
the GCTX using the received guest policy and generates a new VEK.
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3.3 LUPDATE state

In the LUPDATE state, the HV has access to three primary commands: LAUNCH_UPDATE_DATA,
LAUNCH_UPDATE_VMSA and LAUNCH_MEASURE. The LAUNCH_UPDATE_DATA command allows
the HV to specify a guest handle, a 16 byte aligned Host Physical Address (HPA) PADDR
and a multiple of 16 bytes L as a length. The SP will then in-place encrypt the next L bytes
starting at PADDR with the VEK of the VM denoted by the handle. In addition, the launch
digest field of the GCTX is updated with the plaintext of the encrypted data (see Section
5.1). The intention of LAUNCH_UPDATE_DATA is to encrypt and measure the initial content
of the VM, such that the HV can no longer modify it. Encrypting the initial content is
mandatory, since the VM initially assumes that all memory accesses are encrypted, so it
can only execute the initial code if it has been encrypted beforehand.

The LAUNCH_UPDATE_VMSA command is only applicable to SEV-ES VMs and works very
similar to LAUNCH_UPDATE_DATA, except that it can only load 4096 bytes, as it is intended
to encrypt the VMSA. In addition, it also initializes the VMCB. While not enforced, this
is intended to be called only once. Again, the launch digest is updated with the loaded
data.

The third and final command, LAUNCH_MEASURE, generates a launch measurement and
transfers the VM to the LSECRET state. The measurement consists of a 128-bit nonce
MNONCE and a 256-bit HMAC MEASURE, that is calculated as follows:

1. Replace launch digest (LD) with hash(LD)

2. Calculate

HMAC(0x04 ∥ API_MAJOR ∥ API_MINOR

∥ BUILD ∥ POLICY ∥ LD
∥ MNONCE, TIK)

MNONCE is generated by the SP, API_MAJOR and API_MINOR and BUILD specify the version
of the firmware on the SP. POLICY is the configuration structure that was sent by the
guest owner in the UNINIT state.

Next, the HV sends the launch measurement to the guest owner, in order to prove that
it did not manipulate the initial content. It is assumed that the guest owner and the
HV/cloud service provider negotiated the initial content of the VM, e.g., that the guest
owner stated that they want a specific UEFI version to be loaded. Thus, the guest owner
has all the information required to compute the HMAC themselves and compare it to
the value they received.
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After successfully checking the launch measurement, the guest owner can be sure that the
initial memory content matches their specification. Since, on startup, the VM treats any
memory as encrypted, it is unlikely that the HV can achieve any meaningful manipulation
of the VM’s code and data by tampering with its memory. The only possibility for the
HV to encrypt data with the VM’s key is by using the designated LAUNCH_UPDATE_∗
commands, but, as already explained, this has the side effect of updating the launch
digest and thus changing the HMAC sent in the attestation report, allowing detection
by the guest owner. As only the SP and the guest owner know the TIK used to key the
HMAC, the HV cannot produce valid HMACs itself.

3.4 LSECRET state

After the VM has transitioned into the LSECRET state, two commands become available:
LAUNCH_SECRET and LAUNCH_FINISH. The LAUNCH_SECRET command again allows to en-
crypt data with the VM’s VEK. However, contrary to the previous commands, the data
passed to the command now is encrypted with the TEK and integrity protected by an
HMAC keyed with the TIK. Both keys are only known to the SP and the guest owner. If
the integrity check fails, the command aborts. The guest owner can use this mechanism
to safely send confidential data (e.g., disk encryption keys) to the VM, while using the HV
as a proxy. The HV could refuse to relay the data to the SP, but it can neither manipulate
the data nor call the command with self-generated data, as it does not know the TIK
needed to pass the HMAC check.

Finally, the LAUNCH_FINISH command transitions the VM into the RUNNING state, indicat-
ing that the VM is ready to be started. The LAUNCH_SECRET and LAUNCH_FINISH commands
are disabled afterwards.

4 Attacker Model

The attacker model is in line with SEV’s security model: The attacker controls the hy-
pervisor, and is able to modify arbitrary physical memory and run or pause the VM
according to their wishes. However, they are not able to read or modify the current
register state and program counter of the VM, as its state is encrypted using SEV-ES.

They know the initially launched code, since that needs to be available in plaintext in
order to be loaded into the VM. We assume that the attestation is working in so far that
the attacker has to actually load and attest the supplied initial code image, and cannot
simply replace it with their own. We also assume that the attestation protocol is carried
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out correctly, such that the guest owner is assured that supposedly the correct image was
loaded, and subsequently launches the virtual machine.

The attacker is not able to read or modify encrypted disk images without knowing the
corresponding key. Finally, we consider the SP itself to be secure.

5 Exploiting SEV’s Permutation Agnostic Launch
Measurement

Given the VM attestation process laid out in Section 3, we show how an attacker can
deviate from the intended startup process in order to make the VM execute arbitrary
code, which corresponds to a full break of confidentiality and integrity.

In a first step, we show that SEV’s launch measurement can be tricked into producing
the same measurement for any blockwise permutation of the initial VM content. We
illustrate how an attacker can use this flaw to construct an encryption/decryption/code
execution gadget, that runs within the VM, but does not change its launch measurement
and thus cannot be detected by the guest owner. Finally, in Section 6, we discuss the
implications of our attack for the transition from initially attested code to code residing
on a virtual hard disk, and demonstrate how we can use our attack to leak secrets.

5.1 Breaking the Launch Measurement

First, we show how a malicious HV can abuse a flaw in the launch process to change the
semantics of the loaded data without changing the launch measurement.

As described in Section 3, the HV uses the LAUNCH_UPDATE_DATA command to load and
encrypt the initial memory content of the VM. The command takes a 16-byte aligned
HPA PADDR and a multiple of 16 bytes as length L, and then in-place encrypts L bytes
starting at PADDR with the VM’s VEK. In addition, the command updates the launch
digest which is later used in the launch measurement.

In our experiments, we observed that the content of the launch digest is neither influ-
enced by the HPAs passed to LAUNCH_UPDATE_DATA, nor by the used block size and the
resulting varying number of calls to the command. Instead, the encrypted data is simply
“appended” to the launch digest. While the official documentation is unclear at this point,
we suspect that the launch digest internally manages a SHA-256 hash state, which is
updated each time after a certain amount of data was inserted.
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Sequence 1

Sequence 2

Figure 2: Two encryption sequences, yielding the same launch measurement GCTX.LD for
different orders of memory blocks. In the first sequence, the memory pages A (address 0x1000)
and B (address 0x2000) are encrypted in memory order, i.e., LAUNCH_UPDATE_DATA is first called
for block A, then for block B. In the second sequence, the blocks are swapped in memory: A
now resides at address 0x2000, while B is at address 0x1000. By changing the order of calls to
LAUNCH_UPDATE_DATA, we are able to acquire the same value for GCTX.LD in sequence 2 as for
the “correct” ordering in sequence 1. The guest owner thus has no means for distinguishing
which sequence has been used by the HV.

This implies that the HV can change the memory layout of the loaded data without any
impact on the resulting hash value, as long as it makes sure that the order in which the
data is passed to LAUNCH_UPDATE_DATA matches the original order. The modified ordering
is illustrated in Figure 2.

5.2 Constructing Malicious Code Gadgets

We can now use our observations to construct malicious code gadgets, solely by moving
around 16-byte blocks and triggering interaction with the HV.

The general idea is very similar to the approach presented in [44], where the authors
leverage control over the first and last bytes of 16-byte blocks to stitch together a sequence
of “payload” instructions and direct jumps, which they subsequently use to build an
encryption oracle within the VM. However, we cannot change a block’s content here, as
this would be detected during attestation.



5 Exploiting SEV’s Permutation Agnostic Launch Measurement 103

We first scan the binary of the initial VM content, which, in our case, can be split up into
230’000 16-byte blocks, for the instructions that we want to execute in our gadgets. For
this, we are not bound to the originally intended decoding order: As x86 instructions
have variable length and are not prefix-free, starting to decode the binary with different
offsets can lead to different valid instructions. On the downside, this also means that
decoding may fail because it encounters an invalid instruction encoding. To address
this, we only look for “payload” instructions which reside at the end of a block or are
followed by a direct jump, such that we can proceed to the next block.

Finally, we analyze the control flow of the original program to find a location where we
can place our gadget, so it is executed at some point during the startup of the VM. We
also make sure that our changes to the block ordering do not destroy the code needed to
boot up the VM to the point where our gadget is entered.

5.3 Encryption/Execution Gadget

We can now use this block chaining technique to build a code gadget that enables the
HV to encrypt (and decrypt) arbitrary data with the VEK and inject it into the VM.

For this, we assume that the VM is started with the default OVMF UEFI provided by
AMD as initial memory content. Note that the ideas presented here are also applicable to
other UEFI implementations that support SEV.

The encryption/execution gadget is constructed in two stages:

1. Permute the initial VM content, creating a gadget that maps the stack to an unen-
crypted shared memory page;

2. Use the control over the stack to construct a ROP gadget that copies data from
the unencrypted shared page to encrypted memory and execute it as code. This
code may later copy decrypted memory back to the shared page, or can be used to
conduct other, more complex attacks.

Stage 1 In the first stage, we want to set the VM’s stack (i.e., its rsp register) to an
unencrypted memory page, to allow manipulation by the HV. Until reaching either long
mode or legacy Physical Address Extension (PAE) mode, the VM’s memory accesses are
unconditionally treated as encrypted. Afterwards, the C bit in the page table controls
whether a page is accessed in encrypted or unencrypted mode. The only exception are
page table walks and instruction fetches, which are always treated as encrypted [1, Sec
15.43.4, 15.34.5].
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c6eb 1c da 7c 00 6b 01 19 6c 0e 6e 55 98 ec 77

10 fc 04 c0 9e 53 c4 db bd 69 66 7a c1 0f a2

12 80 fb ea ea 88 78 54 39 f1 24 ca 48
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c3 dc ad d9 9d 34 65 e0 c2 56 c4 99 dd 07 f6

jmp 0x1e

cpuid

jmp 0x1e

eb 1c

mov esp, ecx
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Execution

Figure 3: Sequence of 16-byte blocks for setting the stack pointer to a HV-controlled address. The
shown 16-byte blocks were taken from various places in the initial code image and moved
to an address which is reached by the execution flow. The jmp instructions allow us to chain
several blocks and skip potential junk bytes in between. After the stack pointer has been
changed, the ret statement reads its return address from HV-controlled memory and thus
triggers a ROP chain.
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After startup, OVMF quickly progresses to long mode. While constructing its long mode
page tables, OVMF also sets up a shared page for the GHCB protocol [2], which, under
SEV-ES, is required to handle the emulation of instructions that need to share data with
and/or receive data from the HV (c.f. Section 2.1).

To load the address of the shared GHCB page into the rsp register, we opted for the
following payload instruction sequence:

• cpuid

Fills the eax, ebx, ecx and edx registers with processor feature information. As
shown in previous work [44], one can abuse that this instruction is emulated by
the HV and fill the ecx register with the virtual address of the shared GHCB page.

• movesp, ecx

Updates the stack pointer with the address of the shared page. Note the usage of 32-
bit registers: This has the advantage of having a shorter instruction encoding than
the 64-bit equivalent, while still being sufficient, as in OVMF the virtual address of
the shared page is hardcoded to a small constant.

• ret

Starts the ROP chain. As the stack pointer now points to the unencrypted shared
page, the HV can place arbitrary return addresses (and other values) on the stack,
which allows to conduct a classic ROP attack.

The resulting block chain is illustrated in Figure 3. To ensure the right timing for sending
the manipulated cpuid register values, the HV simply counts the number of emulated
cpuid instructions, which is deterministic in the executed OVMF code.

Stage 2 Coming from Stage 1, we now have full ROP capabilities.

In order to load additional data into the VM and execute it as code, we need to construct
a ROP chain that copies data from the unencrypted stack to a memory location that is
marked as encrypted. Then, we jump to that address using a ret instruction. This indirect
approach of encrypting the code before execution is necessary, since, as mentioned in
Stage 1, instruction fetches always assume that the underlying memory is encrypted. We
abuse that, at the time of gadget injection, OVMF’s page tables have all pages marked as
readable/writable, without having a "no execute" bit. This simplifies our attack, since
we do not have to build a ROP chain for modifying the page tables first.

Our resulting ROP chain is illustrated in Figure 4. It only needs three gadgets, and allows
us to write 8 bytes to an arbitrary 64-bit address. We can then reuse the chain to write
complex new code into the VM. In Section 6, we show how this code can be used to leak
disk encryption keys.
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(1) 0x00000000fffd1ad0    pop rax
                          pop rbx
                          ret

(2) 0x00000000fffcef21    pop rdx
                          ret

(3) 0x00000000fffcfde6    mov qword ptr [rax], rdx
                          xor eax, eax
                          pop rbx
                          pop rbp
                          pop r12
                          ret

Figure 4: ROP chain for writing data to VM memory. The ROP chain consists of three gadgets. Each
gadget begins with a payload instruction (highlighted blue) and ends with a return statement,
potentially with a few other instructions in between. Gadget (1) loads an unencrypted 8-byte
address from the stack and writes it into rax. Gadget (2) loads an unencrypted 8-byte value
from the stack and writes it into rdx. Finally, gadget (3) stores the value from rdx at the address
pointed to by rax. The memory write in (3) triggers encryption of the data stored in rdx, as
the address in rax points to encrypted memory.

In summary, we have seen that SEV’s launch measurement mechanism is flawed, as it
only attests that an arbitrary 16-byte granular permutation of the initial data has been
loaded. Next, we have demonstrated the creation of malicious code gadgets just by
swapping around 16-byte blocks. We have shown an instantiation of such a gadget, that
maps the VM’s stack to a shared page and employs a ROP attack to write additional data
and execute it as code.

6 Attack Case Study

With our encryption and code execution gadget from Section 5.2, the attacker gains
control over the initially executed code, and is able to insert their own. In the following,
we highlight critical moments in the startup of a SEV-secured VM, and show how we
can use our attack to take it over.

6.1 Experimental Setup

Our experiments are performed on a second generation AMD EPYC Processor 7232P.
The firmware of the SP is version 24 build 0a [7] (most recent at time of writing). On
the HV side, we use Linux Kernel 5.6 from the official AMD repository [4] (extended
with our attack code) and QEMU [36] to start the VM. QEMU was extended with



6 Attack Case Study 107

AMD’s SEV-ES patches [5] and the proposed patches for the secret injection mecha-
nism from [14] (see Section 6.3). Inside the SEV-ES victim VM, we run OVMF [40] and
Grub [21]. Both were extended with the secret injection mechanism patches from [14].
We provide our proof-of-concept code alongside with the used software online at
https://github.com/UzL-ITS/undeserved-trust.

6.2 Trust Gap

For simplicity and scalability, only a small part of the VM’s code is attested. In most cases,
it suffices to attest a tiny initial code image, which takes owner-supplied secrets to load
and decrypt a much larger encrypted disk image, which in turn contains the operating
system and the processed data. The operating system can be considered trusted, as
the attacker should not be able to modify the encrypted disk image without being in
possession of the key.

The primary challenge is bridging the trust gap between the attested initial code image,
which is available in plaintext, and the encrypted operating system: The guest owner
needs to be able to supply secret information for decrypting the disk image, without an
attacker being able to learn those secrets.

If an attacker gains access to a disk encryption key, they also gain unthrottled read/write
access to all of the VM’s data, even after the VM was shut down. They can abuse this
access to extract secret data or manipulate the operating system.

6.3 Securely Injecting Secrets

To address this challenge, SEV offers the LAUNCH_SECRET command, which allows the
guest owner to inject arbitrary secret values into the VM.

Since there is not yet a standardized toolchain, we focus on the proposed launch flow
from [14], which has some of its patches already merged into the respective upstream
repositories. Note that any other possible launch process will also need to bridge the
aforementioned trust gap, and will thus be quite similar to the launch flow discussed
here.

The proposed launch flow works as follows: The initial attested code image consists of
both the OVMF UEFI binary and the Grub bootloader, which thus cannot be modified
by a malicious HV. The UEFI performs the initial startup, and then transfers control to
the bootloader, which in turn unlocks an encrypted disk image and boots the contained
Linux kernel.

https://github.com/UzL-ITS/undeserved-trust
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5e pop rsi ; source address
5f pop rdi ; destination address
59 pop rcx ; n
f3 a4 rep movsb ; copy n bytes
f4 hlt ; halt VM

Figure 5: Code gadget for copying data. The register values are passed via the stack, to minimize
the size of our injected code: By using the string copy instruction repmovsb, we can fit the
entire gadget into 6 bytes, so we only need a single execution of the ROP chain from Figure 4.
Since we only leak the secret, we halt the VM after copying the data; however, if we wanted
to copy more data, we could replace the hlt instruction by a ret instruction and execute the
gadget multiple times with different parameters.

Both OVMF and Grub have been adjusted to respect the secret injection mechanism: At
build time, OVMF includes a configuration table, which specifies the Guest Physical
Address (GPA) where the HV (QEMU) should inject the secret. While preparing the VM
startup, the HV scans the OVMF binary, locates the configuration table and subsequently
injects the secret at the indicated address. OVMF then passes the secret to the Grub
bootloader, which uses it to unlock the disk.

6.4 Leaking the Disk Encryption Key

Given our attack primitives from Section 5, leaking the disk encryption key is quite
straightforward. We already know the length of the secret data, since the HV is respon-
sible for receiving the encrypted secret from the guest owner and forwarding it to the
SP via LAUNCH_SECRET, which expects a public length parameter. In addition, we know
the GPA of the secret from OVMF’s configuration table. Using our ROP chain, we can
now inject a small code gadget which loops over the secret data and copies it into shared
memory. The code gadget is shown in Figure 5.

We halt the VM after extracting the secret; however, to avoid detection by the guest
owner, we could also use our copy gadget to repair the code which we damaged by
our block moving approach. Then, potentially after injecting further spy code into the
previously encrypted disk image, we resume the boot process.

7 Mitigations

Our attacks severely undermine the validity of AMD SEV’s remote attestation. Unfortu-
nately, it is not possible to fully mitigate our attack with the current capabilities of SEV-ES,
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due to the lack of page remapping protection, which will only be available with SEV-SNP
on upcoming 3rd generation EPYC processors. Nonetheless, we discuss changes that
could be applied to systems limited to SEV-ES, to make exploitation harder.

7.1 Increasing the Block Size

A simple countermeasure, which renders creating an exploit by reordering code blocks
much harder, is to increase the minimal size of each measured block.

Given, e.g., our OVMF binary of 3.5 MB, a block size of 16 bytes yields around 230’000
blocks; for a block size of 4 kB, this number shrinks to merely around 900, greatly reducing
a malicious HV’s ability to find a block ordering that produces meaningful code, although
it does not completely mitigate it. Note that LAUNCH_UPDATE_DATA already supports large
block sizes: To improve performance, the corresponding kernel code tries to process
contiguous physical memory blocks, which are chosen as large as possible.

Currently the protocol does not support specifying a certain block size or including it
in the launch digest. However, it would be possible to implement a fixed block size
without any changes to the protocol, by hardcoding a size of 4 kB (page) or even 2
MB (huge page) directly in the SP firmware. This way, the guest owner just needs to
require the corresponding firmware version during attestation. Since the version check
is already included in the protocol and the HV only has to update the SP firmware, this
countermeasure is rather cheap. Only the SP firmware and client applications which
verify the launch digest have to be changed.

7.2 Potential Changes to the Attestation Protocol

In order to further increase the power of the proposed countermeasure or even fully
close the vulnerability, one may also include the physical addresses in the measurement
and attestation, or increase the size of the measured blocks and add the block size to the
measurement hash. This could be achieved by computing

hi = hash(hi−1 ∥HPAi ∥ datai) or

hi = hash(hi−1 ∥ block_sizei ∥ datai)

on each call i to LAUNCH_UPDATE_DATA, for a total of n calls, and submitting the list of ad-
dresses or block sizes along the measurement hn. Both of these changes require changing
the protocol of the remote attestation, since the address list or list of block sizes must be
sent along the measurement itself.
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However, both approaches are intrinsically limited by the underlying hardware assump-
tions and address mappings which are in place during virtualization. The HV can still
legally reorder physically contiguous 4 kB pages, since it controls the mapping of host
physical to guest physical memory addresses through its control over the Nested Page
Table (NPT). I.e., the hypervisor is capable of performing page remapping attacks, as
already exploited by Morbitzer et al. [35]. Thus, both approaches are limited to assure the
correct order within and for the size of one memory page, which can already be achieved
with fixing the block size to 4 kB (2 MB) as described in the previous section. The only
advantage of including the physical addresses in the measurement is that we can ensure
the order inside a 4 kB page, while still allowing 16 byte blocks as the smallest block
size.

In conclusion, the attestation process is in need of fixing the loaded binary to addresses
within the guest’s address space: Adding the guest physical address, instead of the host
physical address, to the measurement, and assuring that a remapping between guest
physical address and host physical address after the initial allocation will be detected by
the secure processor, would completely close the vulnerability described in this work.
However, SEV-ES does not allow to detect a page remapping and thus only allows for a
partial mitigation.

7.3 Changes in SEV-SNP

AMD SEV-SNP [3] is an upcoming extension to SEV-ES, which is only supported on the
third generation of EPYC processors. As those only become available after the submission
deadline, the following is solely based on the documentation [1, 3, 8].

One of the major changes in SEV-SNP is the introduction of the Reverse Map Table
(RMP). The RMP is an additional page table, indexed by the HPA of a page. It adds
several new attributes, mostly for distinguishing VM and HV pages, such that the HV
cannot write to guest pages. In addition, the RMP contains the GPA of VM pages and can
be used to ensure a one-to-one mapping between GPA and HPA to prevent remapping
attacks. In contrast to traditional page tables, the HV does not have full control over the
RMP, as it must use hardware- and firmware-mediated ways to access it.

While the general flow of the launch process does not appear to have changed, there are
two essential changes to the LAUNCH_UPDATE_DATA command, preventing our attack. The
first one implements the idea that we also proposed in Section 7.1: The HV must either
pass a 4 kB or a 2 MB page to the command (however, 2MB pages are internally treated
as multiple 4 kB pages). The second change is the calculation of the launch digest. The
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hash is now finalized after each call to the launch command and calculated as follows:

hi = hash(hi−1 ∥ hash(datai) ∥ block_sizei ∥ . . . ∥GPAi),

where “. . . ” represent additional fields that we omitted for brevity. Due to hash finaliza-
tion after each call, the launch digest hn now reflects the amount of LAUNCH_UPDATE_DATA
calls used to load the data. In addition, the GPA field is of special interest, because it in-
cludes the memory layout, as it is observed by the guest, in the measurement. According
to the documentation, the GPA value is computed by the SP and also stored in the RMP.
Furthermore, the page is marked as a guest page. The GPA value is enforced, because the
hardware page table walker checks that the GPA to HPA mapping in the NPT matches
the one in the RMP.

8 Related Work

Since the initial release of AMD’s memory encryption technology, first SME and later SEV,
there has been a wide range of attacks against its security guarantees. Hetzelt et al. [23]
exploited the unencrypted register state of the first version of SEV to construct simple
encryption/decryption oracles. In addition they explored memory replay attacks.

Du et al. [19] unveiled the encryption mode, tweak values and the resulting lack of
integrity protection of SME on Ryzen processors, which is closely related to SEV on
EPYC processors. They used this knowledge in addition with a network service inside
the VM to create an encryption oracle on a simulated version of SEV, which was not yet
available.

Li et al. [30] used the lack of integrity protection combined with the knowledge of
the tweak values to construct encryption as well as decryption oracles. For this, they
exploited the fact that Direct Memory Access (DMA) operations issued by the VM are
mediated by the HV through shared memory pages.

Wilke et al. [44] extended the analysis of the encryption mode and the tweak values to first
generation EPYC and EPYC-embedded CPUs, unveiling an updated encryption mode.
They showed how to abuse the missing integrity protection combined with knowledge of
the tweak values, to bootstrap an encryption oracle from malicious code gadgets, solely
by moving around ciphertext blocks in memory. However, the attack does not work on
second generation EPYC CPUs, as these feature an enhanced randomization of tweak
values. While our attack follows a similar approach of reordering memory blocks, it does
not rely on the encryption mode at all, and is therefore also applicable to the currently
available second generation EPYC CPUs.
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Morbitzer et al. [35] leveraged the HV’s control over the NPT as well as the page fault
side channel to construct a decryption oracle. Similar to Du et al. [19], they require a
service running in the VM. In their follow-up paper [34], they showed how to locate
pages containing secrets, like OpenSSH keys, in the VM.

Werner et al. [43] showed that it is possible to use the unencrypted register values in the
first SEV version to reconstruct the code executed in the VM. Furthermore, they showed
how to use Instruction Based Sampling, a performance counter subsystem, to fingerprint
code executed in SEV-ES VMs.

Radev et al. [38] described multiple attacks, exploiting insufficient value sanitization at
the HV to VM boundary. For example, they showed how to trick the VM into treating
arbitrary memory accesses as Memory Mapped I/O (MMIO), as well as into using
malicious virtualized cryptographic accelerators provided by the HV. In addition, they
demonstrated how faking cpuid results can be used to corrupt the VM page tables to
mark all pages as unencrypted. They then used the unencrypted stack to launch a ROP
attack, similar to our stage 2 gadget. However, in contrast to our attack, the page table
manipulation used by them can be detected by a simple software countermeasure, as
described in their paper.

Li et al. [29] demonstrated that the “security by crash” philosophy behind AMD’s use of
the Address Space Identifier (ASID) for mapping VMs to their memory encryption keys
is flawed, as a malicious HV can swap the ASIDs of an attacker VM and the victim VM
to leak limited amounts of data.

Buhren et al. [15] explored another attack vector by analyzing the firmware loading
mechanism of the SP. They discovered a bug allowing them to load customized firmware
on the SP, breaking the hardware root of trust.

9 Conclusion

In this work, we have shown that the current attestation mechanism of SEV has a
significant flaw, as it allows the HV to reorder blocks of the initially loaded image without
influencing the launch measurement, leaving the guest owner unaware of our attack. We
have been able to use this vulnerability to redirect execution and inject arbitrary code
into the encrypted VM, giving us full control over its execution flow. Moreover, we have
shown how this vulnerability in the remote attestation allows us to extract secret data
and conduct other attacks, like manipulating the booted operating system.

The attack described in this work undermines the validity of AMD SEV’s remote at-
testation and thus its trustworthiness as a trusted execution environment. Especially,
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when authenticated and confidential execution in otherwise untrusted environments
are required, additional means for verifying the authenticity of the loaded and executed
software should be taken into consideration, until the vulnerability is fixed.

We have described possible changes to the firmware of the secure processor, allowing
for a simple and reasonably secure mitigation which could be rolled out by means
of a firmware update to existing EPYC processors of the first and second generation.
However, as argued in Section 7, we do not think that it is possible to completely close
this vulnerability with the capabilities of SEV-ES. If the information provided in the
SEV-SNP white paper holds, full protection should only become available with the third
generation EPYC processors.
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Hardware-assisted memory encryption offers strong confidentiality guarantees for
trusted execution environments like Intel SGX and AMD SEV. However, a recent study
by Li et al. presented at USENIX Security 2021 has demonstrated the CipherLeaks
attack, which monitors ciphertext changes in the special VMSA page. By leaking
register values saved by the VM during context switches, they broke state-of-the-art
constant-time cryptographic implementations, including RSA and ECDSA in the
OpenSSL.

In this paper, we perform a comprehensive study on the ciphertext side channels.
Our work suggests that while the CipherLeaks attack targets only the VMSA page,
a generic ciphertext side-channel attack may exploit the ciphertext leakage from
any memory pages, including those for kernel data structures, stacks and heaps.
As such, AMD’s existing countermeasures to the CipherLeaks attack, a firmware
patch that introduces randomness into the ciphertext of the VMSA page, is clearly
insufficient. The root cause of the leakage in AMD SEV’s memory encryption—the
use of a stateless yet unauthenticated encryption mode and the unrestricted read
accesses to the ciphertext of the encrypted memory—remains unfixed. Given the
challenges faced by AMD to eradicate the vulnerability from the hardware design, we
propose a set of software countermeasures to the ciphertext side channels, including
patches to the OS kernel and cryptographic libraries. We are working closely with
AMD to merge these changes into affected open-source projects.

1 Introduction

For years, the main obstacle to cloud adoption has been a lack of trust in Cloud Service
Providers (CSP). The concept of confidential Virtual Machine (VM) has been enabled by
an emerging security feature in modern CPUs, dubbed Trusted Execution Environment
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(TEE), which removes the need to trust the CSP [15]. Aiming at providing data-in-
use protection, confidential VM uses hardware-based memory encryption to protect
the integrity and the confidentiality of VMs against both physical access attacks and
privileged software-level attacks. Another key benefit of confidential VM is that any
VM can be deployed as confidential VM on systems that support them, without costly
adaption and rewriting that is necessary to turn applications into secure enclaves [12].
Due to the enormous market potential, all main processor vendors have released or are
working on releasing confidential VM features in their server CPU lines, including AMD
Secure Encrypted Virtualization (SEV) [23], Intel Trust Domain Extension (TDX) [19],
and ARM Confidential Compute Architecture (CCA) [8].

Currently, only AMD’s confidential VM solution—AMD SEV—is available and has been
deployed in public clouds [15, 29]. Since its first deployment, SEV has been exhaustively
analyzed by the security community. Due to the powerful adversarial scenario of a
malicious hypervisor, several weaknesses have been found, including unauthenticated
encryption [10, 14, 36], Nested Page Table (NPT) remapping [17, 30, 31], unprotected
I/O [26], and unauthorized Address Space Identifiers (ASID) [25]. With the newest
version of SEV—the recently released SEV-SNP (Secure Nested Paging [3])—most of the
attacks are now mitigated.

The only software-based attack that still applied to SEV-SNP is CIPHERLEAKS [27], a
novel side-channel attack where a malicious hypervisor can steal the secret keys of RSA
and ECDSA algorithms in the OpenSSL implementation by monitoring the guest VM
Save Area (VMSA). Specifically, SEV’s memory encryption engine adopts a deterministic
XOR-Encrypt-XOR (XEX) mode of operation. For each physical address, the same 128-bit
plaintext block is always encrypted to the same ciphertext block during the life cycle of
the VM. Meanwhile, whenever there is a guest-host world switch, register values are
encrypted and then stored in the VMSA. With the power of read access to the guest
VM’s VMSA area, the malicious hypervisor can continuously monitor and record the
ciphertext of encrypted registers. The authors show that the ciphertext of certain registers
(e.g., RAX) can be used to inspect inner execution states of cryptographic algorithms and
eventually reveal the private key or secrets.

Due to its severity, AMD recently released a microcode patch (MilanPI-SP3_1.0.0.5) [2]
to mitigate the CIPHERLEAKS attacks. The microcode patch enables the 3rd generation
AMD EPYC processors (Milan series) to include a nonce into the encryption of the VMSA
area, such that the link between the plaintext and the ciphertext is broken. As such,
CIPHERLEAKS attacks against register values in the VMSA are no longer feasible. Note
that the patch only changes the encryption of the VMSA, while the remaining memory
space of the VM is still protected with the same deterministic XEX encryption as before.
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In this paper, we perform a comprehensive study on the exploitability of leakage caused
by ciphertext in encrypted VM memory and try to answer the question:

Are current cryptography implementations still safe when an attacker has access to the
ciphertext of the encrypted memory?

We broadly group ciphertext side channel attacks into two categories: the dictionary attack
and the collision attack. We show that these two classes of attacks can be applied to general
memory regions during cryptographic activities, including kernel data structures, stacks,
and heaps, which all lead to key leakage. Most main cryptography libraries (including
OpenSSL, WolfSSL, GnuTLS, OpenSSH, and libgcrypt) are shown to be vulnerable against
the ciphertext side channel.

Contribution. The contributions of this paper can be summarized as follows:

• Systematically studies the ciphertext side channel in the entire memory of SEV-
protected VMs. It shows that the ciphertext side channel can be exploited in all memory
regions, including kernel structures, stacks, and heaps.

• Presents end-to-end ciphertext side-channel attacks against the ECDSA implementa-
tion of the OpenSSL library. Other main cryptography libraries (including OpenSSL,
WolfSSL, GnuTLS, OpenSSH, and libgcrypt) are also shown to be vulnerable to the
ciphertext side channel.

• Discusses both hardware and software countermeasures. Presents a kernel patch
to mitigate ciphertext side channels caused by kernel structures. The ciphertext side
channel can be mitigated when adopting the kernel patch together with software fixes
for cryptographic libraries.

Responsible disclosure. We disclosed the generic ciphertext side-channel attacks on
kernel data structures, heaps, and stacks to the AMD SEV team in August 2021. Hence-
forth, we provided more supplementary materials via email communications. AMD has
acknowledged the vulnerability and had several discussions with us about potential
countermeasures and stated interest in a kernel level fix. While hardware countermea-
sures might not be feasible in the near future for both performance and design concerns,
AMD assisted us with the development of the software countermeasures, including both
kernel patches (Section 6) and helping us get connected to other projects like OpenSSL.

We also disclosed the vulnerability on the code level to the communities of cryptography
libraries (including OpenSSL, WolfSSl, GnuTLS, OpenSSH and libgcrypt). At the time
of writing, we had received feedback from both OpenSSL and WolfSSL. They both
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acknowledged the concerns and recognized the necessity of addressing this vulnerability
from software. WolfSSL has already provided a draft version of software fixes.

Paper outline. The rest of the paper is organized as follows: Section 2 introduces nec-
essary background of this paper; Section 3 illustrates the root causes of ciphertext side
channels in general; Section 4 shows how an attacker can break current cryptography
implementations by monitoring ciphertext changes in the operating system’s process con-
trol block; Section 5 shows that the secret leakage can also be caused by stack variables
and heap buffers in user space; Section 6 discusses the potential countermeasures, includ-
ing a kernel patch and application fixes; Section 7 discusses the threat of ciphertext side
channels to other confidential VM implementations; Section 8 presents state-of-the-art
related work and Section 9 concludes the paper.

2 Background

2.1 Secure Encrypted Virtualization

AMD Secure Encrypted Virtualization (SEV) is a trusted execution environment (TEE)
supported by AMD server-level EPYC processors with “Zen" Architecture. SEV aims
at providing confidential virtual machines for cloud customers. In SEV’s threat model,
other virtual machines, as well as the cloud host itself, are considered untrusted. The
attacker may execute arbitrary code at the privileged hypervisor level and may also have
physical access to the machine (e.g., DRAM chips) [23]. To achieve this ambitious goal, a
dedicated security subsystem consisting of the AMD Secure Processor (AMD-SP) and an
AES memory encryption engine is introduced by SEV to protect data in use.

Hardware Memory Encryption. When SEV is enabled, the cryptographic isolation
provided by Hardware Memory Encryption protects the confidentiality of the VM.
Specifically, the VM’s memory pages are always stored in encrypted form, and the VM
encryption keys are guarded by the AMD-SP. SEV adopts a 128-bit AES encryption with
the XOR-Encrypt-XOR (XEX) encryption mode, which incorporates a physical address-
specific tweak such that the same plaintext yields different ciphertexts for each memory
location. However, for a fixed address, an identical plaintext always yields the same
ciphertext.

Nested Page Tables (NPT) and the page fault controlled channel. When SEV is enabled,
the address translation between the VM’s guest physical addresses and the host physical
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addresses is managed by the hypervisor with the help of a NPT, which is a two-layer
page table consisting of a Guest Page Table (GPT) and a Nested Page Table (NPT). The
GPT is managed inside the guest VM and thus protected by the VM encryption key. The
NPT is solely managed by the hypervisor.

As shown in prior work [25, 31, 36], the hypervisor can leverage the control over the
NPT to intercept the execution of the guest with page granularity. To achieve this, the
hypervisor can unset the Present bit (P bit) in the NPT. The next time the VM tries to
access the corresponding guest physical page, a nested page fault (NPF) will be generated,
revealing the addresses of the access and the causes.

SEV extensions. Two extensions of SEV have been introduced by AMD to add additional
security protections since SEV’s first release in 2016.

The second generation of SEV is called SEV-ES (Encrypted State) [22], which was first
introduced in 2017. SEV-ES adds additional protection for CPU registers. Prior to SEV-ES,
CPU registers were stored unencrypted in the Virtual Machine Control Block (VMCB)
during world switches from the VM to the hypervisor (VMEXIT). In SEV-ES, the hard-
ware automatically encrypts the registers in a designated Virtual Machine Save Area
(VMSA) along with additional integrity protection. In addition, a guest-host commu-
nication protocol was introduced for instructions that need to expose registers to the
hypervisor (e.g., CPUID, RDMSR, etc.). A VMM Communication handler (#VC handler)
inside the guest VM assists the instruction emulation. Specifically, the #VC handler
intercepts those instructions with the help of hardware, passes necessary register values
to a shared area called Guest-Host Communication Block (GHCB), triggers a special
VMEXIT by the VMGEXIT instruction, and reads the resulting register values from the
GHCB afterwards.

The third generation of SEV is called SEV-SNP (Secure Nested Paging) [3], which was
released in 2020. As a response to attacks which used remapping or modification of
guest memory in order to inject code into the VM [36], a structure called Reverse Map
Table (RMP) was introduced. It maintains a second translation of host physical addresses
to guest physical addresses as well as keeps track of the ownership of memory pages,
and thus, prevents the hypervisor from modifying or remapping the guest VM’s private
memory. Most of the existing attacks against SEV and SEV-ES can be mitigated by
SEV-SNP (Section 8).

2.2 Ciphertext Attacks against SEV-SNP

Ciphertext attacks against SEV-SNP were first introduced by Li et al. in CIPHERLEAKS [27].
The work exploited leakage caused by the ciphertext of the registers inside the VMSA.
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Specifically, by inspecting the ciphertext stored in the VMSA during VMEXITs, an attacker
could (1) infer the execution state of a known binary inside the guest VM, and (2) build
a ciphertext-plaintext mapping for certain registers. For example, the ciphertext of the
RAX register could reveal the return value of function calls. Since the ciphertext was
deterministic, functions that returned the same value produced an identical ciphertext
for the RAX register inside the VMSA, which is sufficient for the attacker to distinguish
secret-related data content and steal secrets from an application using the OpenSSL
library.

In response to that attack, AMD added additional randomization when encrypting and
saving register values into the VMSA during VMEXITs [2]. Thus, the ciphertext of the
register state is now completely different even if the register values inside CPU did not
change between two VMEXITs, which fully mitigates the CIPHERLEAKS attacks.

2.3 Off-chip Attacks

Off-chip attacks are usually classified into stolen DIMM attacks and bus snooping attacks.
Stolen DIMM attacks directly grab data from the Non-Volatile Memory (NVM) or per-
form cold boot attacks on volatile memory [33]. Bus snooping attacks target the data
transmission between two components of the computer (e.g., CPU and DRAM). These
attacks involve both data eavesdropping and even data altering [12].

Off-chip attacks are also considered as one of the potential attacks in a TEE’s threat
model [3]. While the plaintext is protected inside the chip and can hardly be inspected,
all data outside the CPU might be inspected, either on the external memory buses or
on the NVM. TEEs like Intel SGX and AMD SEV protect data outside the CPU by an in-
chip memory encryption engine. While it is widely accepted that attacks by monitoring
the data bus flow can be thwarted by memory encryption [34], researchers move their
attention to the unencrypted address bus [12]. Recent results [24, 32] showed that an
attacker could recover some data by monitoring memory address patterns. For those
attacks, an interposer is needed to be installed on the DIMM socket. The interposer can
duplicate signals on the memory bus and pass the data to a signal analyzer on the fly
with CPU cycle granularity.

2.4 Operating System Context Switch

Under x86_64, there are four different privilege levels that can be used to implement a
hierarchy in the software [4, Sec. 4.9.1]. Under Linux, ring 0 is used to run the kernel,
while ring 3 is used to run user space applications. When a privilege level change occurs,
e.g. due to an interrupt or exception, the CPU automatically switches to a separate stack
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and fills it with some information about the previous software. The stacks are configured
in the Task State Segment (TSS). The register values, however, remain unchanged and
are not stored by a hardware mechanism [4, Sec. 12.2.5]. Under Linux, one TSS per CPU
is used, meaning that each CPU has its own set of stacks. Most Interrupt/Exception
handlers use TSS managed stacks as an entry point to intialy store the register values,
before eventually copying them to the so-called thread stack. The thread stack is part of
the Process Control Block (PCB, also called task_struct in Linux), a data structure that
bundles all information related to a process/thread. The saved registers are referred to
as the pt_regs structure, which simply consists of the register values stored next to each
other.

Note that in other scenarios a context switch is also used to describe a switch between
different processes and threads. In this work, we always refer to the aforementioned
privilege level change if not stated otherwise.

3 A generic ciphertext side channel

In this section, we are going to show that the ciphertext-based attack demonstrated in the
CIPHERLEAKS paper is not limited to the VMSA register storage mechanism of SEV-SNP,
but applies to any deterministically encrypted memory. We define a generic attacker
model and show two primitives that allow the attacker to infer memory contents and
runtime behavior of any application which relies on deterministically encrypted memory
for protecting the confidentiality.

3.1 Attacker Model

We consider the standard threat model of confidential VM: The attacker has both software
and physical access to the system, i.e., they have unrestricted administrator capabilities
and can physically access the machine. The confidential VM shields the VM’s secrets
from the attacker by encrypting the memory consumed by the user’s application, using
a deterministic memory encryption scheme with an address-based tweak, such that the
ciphertext depends on the encryption key, the plaintext and the current physical address.
Specifically, we target SEV-SNP, which also prevents the attacker from remapping mem-
ory containing ciphertext to other physical addresses, denies them write access to any
encrypted memory, but leaves the attacker the ability to read ciphertext by software.
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Figure 1: Encryption block configurations with different exploitability by the dictionary attack. In
the first scenario (a), most of the block’s plaintext is constant, with the secret being the only
variable. Thus, the attacker can build a one-to-one mapping of ciphertexts to secrets. In (b),
the block also contains a loop counter i, so there are many different ciphertexts mapping to
the same secret. If the attacker can always observe the secret for a specific fixed value of i, they
may still be able to build a dictionary, as this is equivalent to scenario (a). In the last scenario
(c), the secret is followed by a random nonce which is regenerated before spilling secret to the
memory. This prevents the attacker from creating a dictionary, as he never observes the same
ciphertext twice.

3.2 Attack Primitives

We suggest two general methods for exploiting deterministic memory encryption: A
dictionary attack and a collision attack.

Dictionary attack. A dictionary attack is applicable when a secret-dependent variable
features a small, predictable value range with a fixed memory address. In this case, the
attacker can build a dictionary of ciphertext-plaintext mappings for this variable and
selectively recover the plaintext. This is a generalization of the approach taken in the
CIPHERLEAKS attack, where the authors learned ciphertext mappings for the registers
stored in the VMSA.

Contrary to CIPHERLEAKS, the dictionary attack targets arbitrary memory locations
and variable types. Two examples about recovering ECDSA key using stack variables
(Section 5.1), or registers stored during a context switch (Section 4) are presented. While
this attack is quite powerful, it is restricted by the number of possible plaintexts for a
given encryption block, since the attacker cannot tell which part of the plaintext has
changed when observing a new ciphertext. If the targeted variable shares an encryption
block with other variables which get new values frequently (e.g., a loop counter), the
number of possible plaintexts becomes too large to efficiently build a mapping, as is
illustrated in Figure 1. We use this fact in Section 6.2 to propose a countermeasure which
appends random nonces to small variables.

Collision attack. A collision attack transfers the concept of secret dependent code exe-
cution to memory writes. In secret-dependent branching, the attacker exploits that the
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Algorithm 1 Constant time swap (CSWAP)

Require: Byte arrays a, b of same length and decision bit c
mask ← 0− c ▷ 0− 1 underflows to 0xff
for i← 0 to length(a) do

x← a[i]⊕ b[i]
x← x & mask
a[i]← a[i]⊕ x
b[i]← b[i]⊕ x

end for

targeted algorithm executes a certain code region depending on specific values of a secret
value (e.g., an if statement checking key bits). By observing the access pattern to the
respective code chunks, the attacker can learn the secret. A common countermeasure
is so-called constant-time code, i.e. code that always exhibits the same control flow and
memory accesses, independent of the secret. This is usually achieved by converting
secret-dependent branch decisions into fixed expressions, which compute all possible
results of a given operation and then use a mask to pick the desired one. One such
primitive is the constant time swap CSWAP (Algorithm 1), which is used for example by
the Montgomery ladder: CSWAP takes two variables a and b and a (secret) decision bit
c. If the bit is set, the values of a and b are swapped; if the bit is cleared, a and b remain
unchanged. The depicted code gadget always executes the same amount of instructions
in the same order, and always accesses the same memory addresses, making it resistant
against microarchitectural side-channel attacks.

But, if the attacker is able to observe whether the values of a or b change, they can
immediately learn the decision bit ci. The collision attack again exploits the fact that
ciphertext blocks are deterministic. However, contrary to the dictionary attack, the
attacker does not aim to learn the direct mapping of ciphertexts to actual plaintext values,
but they only check whether certain ciphertexts repeat or change. Going even further,
if the attacker knows that a memory write was executed (e.g., through a control flow
side-channel), but they do not see any ciphertext change, they learn that the instruction
wrote the same value as was present in memory before. Given knowledge of the executed
program, they may use this to infer more information other than the traditional control
flow.

4 Leakage due to context switch

We now take the dictionary attack primitive from Section 3 and show how it can be used
for extracting register values from a VM running with SEV-SNP. After CIPHERLEAKS,
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AMD published a firmware patch which added protection to the VMSA area [2]. How-
ever, the VM-hypervisor world switch is not the only occasion where the entire register
state is written to memory. When moving from user space to kernel space (e.g., after an
interrupt or an exception), the Linux kernel pushes all register values of the user program
onto the stack, and then copies those into the PCB of the current thread, such that the
exception handler can access the register values through the pt_regs structure. The PCB
address is fixed per-thread, allowing an attacker to build a dictionary of register values by
causing repeated interrupts within the VM and observing the resulting ciphertexts. We
show how an attacker can use nested page faults to indirectly trigger internal user-kernel
context switches and use the learned register values to attack the constant-time ECDSA
implementation of OpenSSL. Given their source code, similar attacks should also be
applicable in WolfSSL, GnuTLS, OpenSSH, and libgcrypt.

4.1 Leaking Register Values via Context Switches

Forcing context switches in the VM. SEV-SNP restricts the hypervisor’s ability to inject
interrupts and exceptions into the VM, so we will show how a malicious hypervisor can
work around this limitation by forcing the VM to pause at a certain execution point until
a “natural” internal context switch is triggered, which should also be detectable by the
hypervisor.

First, the hypervisor interrupts the targeted application at certain execution points by
using the well-known page fault controlled channel, that allows the attacker to force
a NPF when the VM tries to access or execute a given page. However, the NPF itself
does not lead to a context switch inside the VM, as it is immediately intercepted by
the hypervisor. To do so, the hypervisor now simply waits for a short amount of time
and then resumes the VM without handling the NPF. As a result, the attacker can trap
the execution of the targeted program and the victim application cannot resume its
execution. After a short amount of waiting time, a time-driven internal context switch
will be performed by the guest OS, which updates the victim application’s register values
in main memory (pt_regs).

Even though the internal context switch is out of the hypervisor’s control, we show that
the VM-host interaction mechanism adopted by SEV can work as an indicator of a fin-
ished context switch. Specifically, we observed that the guest VM has frequent interaction
with the hypervisor through reading and writing hypervisor-managed registers of the
Advanced Programmable Interrupt Controller (APIC), like IA32_X2APIC_TMR1, which are
used for scheduling and timekeeping. These RDMSR and WRMSR accesses result in a special
exception called #VC exception inside the VM, as they require the VM to share registers
with the hypervisor. The #VC exception handler inside the VM then calls VMGEXIT after
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Figure 2: Workflow of how #VC exceptions are handled. Red arrows represent a context switch
between processes.

putting the necessary register values into the GHCB (shown in Figure 2a). As the #VC
exception is handled in VM’s kernel space, a VMGEXIT also indicates a user-kernel context
switch. Thus, the hypervisor simply waits for a VMGEXIT with the appropriate exit code,
as an indicator of updated registers’ ciphertext in pt_regs. We analyze the necessary
pause time for triggering a VMGEXIT in Section 4.4.

Other than the traditional #VC handler mechanism, SEV-SNP has another option to adopt
a more secure VM-host communication mechanism that moves the APIC emulation
into the trust domain of the guest VM. As shown in Figure 2b, the VM is divided into
multiple Virtual Machine Privilege Levels (VMPLs) that provide additional hardware
isolated abstraction layers. However, the hypervisor can still sense a finished context
switch due to the interaction triggered by the hypercall from VMPL0.

Locating pt_regs after VMEXIT. Besides using the VMGEXIT to detect a context switch,
the attacker can also use it to locate the pt_regs struct. For that, after reaching a VMGEXIT,
the attacker clears the P bit for all guest pages and resumes the VM. This will hand back
control to the #VC handler in the VM, which will subsequently try to copy the results of
the emulated instruction from the GHCB to pt_regs. Since all guest pages were marked
as not present, this causes a nested page fault. In our experiments, the second NPF caused
by data page read access after resuming the VM is the memory page containing pt_regs.
We did not encounter any false positives during our experiments.
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4.2 Attacking Constant-time ECDSA

In this section, we demonstrate how to use the context switch primitive from the previous
section to attack the constant-time ECDSA implementation in OpenSSL. More precisely,
we show that the adversary can infer the nonce k in the constant-time ECDSA algorithm
by inspecting the ciphertext changes in the pt_regs structure of the targeted process.
This can then be used to recover the secret key.

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a widely used signature
algorithm that works as follows:

1. Prepare the curve parameters (CURVE, G, n), where G is the elliptic curve base
point of prime order n.

2. Prepare a key pair by choosing uniform dA ∈ Z∗
n. dA is the private key. The public

key is QA = dAG.
3. Generate a cryptographically secure random integer k ∈ Z∗

n (also known as the
nonce k).

4. Calculate a non-zero r by r = (kG)x mod n (only the x-coordinate of the resulting
point is used).

5. Calculate s = k−1(h(m) + rdA) mod n, where m is the message and h(m) is a hash
of m. (r, s) then forms the ECDSA signature pair.

A predictable or leaked nonce k allows to immediately recover the private key dA by:

dA = r−1((ks)− h(m)) mod n.

Targeted ECDSA implementation. Our attack targets the ECDSA implementation of
the OpenSSL library1 for the curve secp384r1 that is commonly used for TLS/SSL
connections. The goal of our attack is to steal the nonce k and thus infer the private
key dA. In OpenSSL, ECDSA signing is handled by the ECDSA_do_sign function, which
in turn calls ec_scalar_mul_ladder to calculate r. Note that the implementation of the
function is specifically designed to protect k against side channel attacks (Listing 6.1).

Identify instruction pages. Besides monitoring context switches and locating pt_regs
via the methods shown in the previous part, we also need to identify the appropriate
code locations in order to intercept the guest VM at proper execution points, which gives
the attacker the opportunity to extract valuable ciphertext. In our work, we combine
the widely-used page fault controlled side channel [26, 31, 35, 36] with performance
counters to build a fine-grained tool to identify instruction pages’ physical addresses.

1Commit: c4b2c53fadb158bee34aef90d5a7d500aead1f70.
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Listing 6.1: Part of the elliptic curve scalar multiplication ec_scalar_mul_ladder() from OpenSSL.
The function uses the Montgomery ladder algorithm and constant-time primitives to protect
the secret scalar k against side channels.

int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
...
for (i = cardinality_bits - 1; i >= 0; i--) {

kbit = BN_is_bit_set(k, i) ^ pbit;
// kbit is used to determine the conditional swap

EC_POINT_CSWAP(kbit,r,s,group_top,Z_is_one);
// single step of the Montgomery ladder

if (!ec_point_ladder_step(group, r, s, p, ctx)){
ERR_raise(ERR_LIB_EC,
EC_R_LADDER_STEP_FAILURE);
goto err;

}
// pbit helps to merge CSWAP with that of the next iteration

pbit ^= kbit;
}

Specifically, we make use of the Retired Instructions counter [6, Event PMCx0C0], which
can be configured to only count the amount of retired instructions inside the VM and
thus reveal the number of instructions executed between two pages faults. The attacker
can simply build a template of the retired instruction counts for code paths in a known
binary. In our experiments, we were able to locate the target pages on the fly, without
relying on repeated access patterns.

4.3 End-to-end attack against Nginx

We now show the steps needed to steal the nonce k generated by an Nginx webserver.
The nonce, together with the corresponding signature, allows the attacker to recover the
secret key of the server.

➀ Send HTTPS request. The attacker sends a HTTPS request to the Nginx server in
order to trigger the targeted code paths.

➁ Locate target function in physical memory. Right after sending the HTTPS request,
the attacker clears the P bit of all VM pages. The attacker then locates the guest physical
addresses of the functions ec_scalar_mul_ladder() (gPA0) and BN_is_bit_set (gPA1)
using the page fault channel combined with the retired instruction counter.

➂ Locate pt_regs. The attacker pauses the VM for a while (e.g., by trapping the VM in
the NPF handler for a few milliseconds) when they intercept a NPF of gPA0. They then
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use the method from Section 4.1 to find the physical address gPA3 of the current thread’s
pt_regs structure.

➃ Single-step loop iterations. The attacker iteratively clears the P bit of gPA1 to pause the
VM when it enters BN_is_bit_set. After intercepting the corresponding NPF for gPA1,
the attacker clears the P bit for gPA0, causing an NPF when the ret instruction inside
BN_is_bit_set is executed, i.e. the function tries to return to ec_scalar_mul_ladder().
The attacker then pauses the VM in the gPA0 NPF for a while (several milliseconds)
and resumes the VM without handling the NPF. The attacker might observe several
consecutive NPFs for gPA0, but keeps the P bit cleared until a VMGEXIT is encountered.

➄ Record the ciphertext and recover the nonce k. The attacker records the cipher-
text of the RAX field in pt_regs after the VMGEXIT, which contains the return value of
BN_is_bit_set at this execution point. The conjunct register stored near RAX in pt_regs
is R8, which remains unchanged during the for loop. The attacker then sets the P bit of
gPA0, clear the P bit of gPA1 in order to intercept BN_is_bit_set for the next iteration and
repeat step ➃. After 384 iterations, the attacker has collected a sequence of ciphertexts.
Since RAX can only take two distinct values, they can recover the nonce k with only 1 bit
of entropy.

4.4 Evaluation

All experiments throughout this paper were conducted on an AMD EPYC 7763 64-
Core Processor. The host kernel (branch sev− snp− part2− rfc4), QEMU (branch
sev− snp− devel), and OVMF (branch sev− snp− rfc− 5) were directly forked from
AMD SEV’s GitHub repository [5]. The victim VMs were protected by SEV-SNP and
used the unmodified guest kernel provided by AMD (branch sev− snp− part2− rfc4).
The victim VMs were configured with 2GB DRAM, 30GB disk, and one virtual CPU
(vCPU). However, the capacity of the victim VMs (including vCPU, DRAM, and disk) is
not relevant for the attack procedure.

For the attack on Nginx, an unmodified Nginx server and an OpenSSL library were
installed inside the victim VMs. The Nginx version is 1.21.3, which was released on 07
Sep. 2021. The Nginx server supports HTTPS requests with a self-signed ECC certificate
with 384-bit key. The curve used is secp384r1. The OpenSSL was forked from OpenSSL’s
Github repository (Commit: c4b2c53fadb158bee34aef90d5a7d500aead1f70) and was
modified to log the ground truth after the signing procedure, so we could verify the
extracted secret.

Proof of concept code is available at https://github.com/UzL-ITS/sev-ciphertext-s
ide-channels/.

https://github.com/UzL-ITS/sev-ciphertext-side-channels/
https://github.com/UzL-ITS/sev-ciphertext-side-channels/
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Figure 3: Relationship between udelay interval and internal context switch.

Identifying target functions. To estimate the attacker’s ability to locate target functions
on the fly, we sent 500 consecutive HTTPS requests. For each request, we monitored the
page access pattern along with the number of retired instructions and tried to locate the
target functions in real-time. The reference page access pattern and the corresponding
performance counter values were collected in a different VM with the same Nginx and
OpenSSL version, but without SEV-SNP’s protection and with a different kernel version,
to show the pattern’s independence of the exact kernel version.

In 496 out of those 500 requests, the target function’s physical addresses were successfully
located, while a miss was reported for the remaining four requests. The average time
needed to locate the target functions was 59.28 milliseconds with a standard deviation of
2.12 milliseconds. No false positive was reported.

Context-switch latency. To collect the ciphertext of the updated pt_regs, the attacker
needs to wait until an internal context switch, which is the most time-consuming part
of the end-to-end attack. In our implementation, the attacker pauses the VM by calling
udelay(< interval >), which takes a delay in microseconds. We evaluated both the
proper interval for a direct context switch and the average waiting time. Since the
attacker doesn’t set the P bit at the execution point unless observing the VMGEXIT, the
attacker might get several repeated NPFs in a row. Figure 3a shows the number of NPFs
we observed under different intervals. We usually directly detected a context switch
when interval was larger than 2000 (two milliseconds). Figure 3b shows the average
waiting time. It usually took four milliseconds until an internal context switch occurred,
thus we paused the victim VM by using udelay(4000) in our attack.

Performance. We repeated the attack 50 times and measured the overall time for an
end-to-end attack. The average time was 8.53 seconds with a standard deviation of 0.33
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seconds. The main latency is caused by waiting for an interval context switch. For a
384-bit nonce k, the attacker can intercept 384 * 5 = 1920 NPFs for gPA0 in total. In our
setting, we chose to wait for a context switch every time when intercepting an NPF
of gPA0. However, for each iteration, only one out of five NPFs is caused by the ret

instruction inside BN_is_bit_set. Thus, the attacker could also choose to only wait and
grab ciphertext at that NPF. By doing that, approximately 6 seconds (384 * 4 * 4ms)
waiting time can be avoided. However, one side effect is that some internal events (e.g.,
an unexpected context switch) might cause a repeated NPF of gPA0, which will confuse
the attacker and reduce the accuracy. In our implementation, the average accuracy for
the recovered nonce k is 89.1%.

5 Exploiting memory accesses in user space

In the previous section, we have seen how an attacker can exploit the context switch
mechanism of the Linux OS inside the VM to leak register values of running processes. We
now turn our attention to leakages directly caused by the victim application’s memory
access behavior. We demonstrate that the OpenSSL ECDSA code from the previous
section is also vulnerable to the dictionary attack targeting stack variables, and show an
example of the collision attack against the EdDSA implementation in OpenSSH.

5.1 Breaking Constant-time ECDSA via Dictionary Attack

As shown in Listing 6.1, ec_scalar_mul_ladder uses several local integer variables: kbit
controls the conditional swaps by EC_POINT_CSWAP in the for loop. Assuming that ki
refers to the i-th bit of k, at the beginning of a loop iteration, pbit stores ki−1. After calling
BN_is_bit_set(k, i) to retrieve ki, kbit stores ki−1⊕ ki−2 (XOR). pbit is later updated to
ki at the end of the iteration.

Stack layout. We target the 16-byte memory block where pbit is stored. By our observa-
tion, the memory block containing pbit also contains additional variables, which is not
surprising given the small size of pbit. In our case, pbit, kbit and cardinality_bits
all share the same 16-byte memory block. The cardinality_bits variable does not
change during the runtime of the for loop from Listing 6.1. Thus, the value range of the
ciphertext is only dependent on the secret, i.e. pbit and kbit.

Recovering k from ciphertext pairs. Recall that, at the end of each loop iteration, pbit
stores the i-th bit of the nonce k. The attacker thus can recover k if they can infer the value
of pbit in each iteration. We use gPA0 to denote the guest physical address of the stack
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Table 1: All possible pbit and kbit pairs when intercepting BN_is_bit_set() in
ec_scalar_mul_ladder(). The letters A to D represent the 16-byte ciphertexts the attacker
may observe, which depend on the values of kbit and pbit. The value of kbit and pbit in
the i+ 1-th iteration is updated depending on ki.

i-th iteration i+ 1-th iteration
pbit kbit Pair ki pbit kbit Pair

0 0 A 0 0 0 A
0 0 A 1 1 1 D
0 1 B 0 0 0 A
0 1 B 1 1 1 D
1 0 C 0 0 1 B
1 0 C 1 1 0 C
1 1 D 0 0 1 B
1 1 D 1 1 0 C

page where pbit is stored, and gPA1 for the address of BN_is_bit_set(). Similar to the
attack in Section 4.1, the attacker uses the page fault controlled channel in combination
with the retired instructions performance counter for locating the pages.

The attacker records the ciphertext of gPA0 when he intercepts the NPF of BN_is_bit_set()
(gPA1), which corresponds to the state after the previous loop iteration (i.e., pbit still has
its old value). As shown in Table 1, in the ith iteration, the attacker can observe one of
four possible pbit and kbit pairs. We use the letters A to D to denote the four possible
ciphertexts. At the end of the i-th iteration, pbit and kbit are updated according to ki (0
or 1). Thus, when the attacker intercepts the NPF of gPA1 in the i+ 1-th iteration, there
are 8 possible observation cases.

They then analyze the ciphertext of gPA0 to (1) locate the offset of the 16-byte block where
pbit is in and to (2) infer the value of pbit for this iteration. For (1), the attacker can easily
identify the offset because they should observe the four different ciphertext randomly but
repeatedly at a certain offset, which reveals the ciphertext changes of the pair (pbit, kbit).
For (2), the attacker can infer the value of pbit by analyzing two subsequent ciphertext
of (pbit, kbit) as shown in Table 1. The attacker applies the following algorithm to
recover the pbit sequence: In the first iteration, both kbit and pbit are initialized to 1,
thus producing ciphertext D. The attacker then finds an n-th iteration that has the same
ciphertext as the following n+ 1-th iteration. Then (pbit, kbit) for the n-th and n+ 1-th
iterations must either be A or C. If the next n+ x-th iteration with a different ciphertext
produces a ciphertext other than D, then the ciphertext for nth and n+ 1th iterations must
be C. Otherwise, the ciphertext represents A. After identifying A, C, and D, the remaining
ciphertext represents B.
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5.1.1 Attack Steps

➀ Locate the two target physical addresses. The attacker first needs to locate the guest
physical addresses of the target stack page gPA0 and the target function page gPA1 . We
use the same methods as in Section 4.1 to locate the pages.

➁ Intercept the for loop. The attacker iteratively clears the P bit in the NPT to interrupt
the execution of the for loop. Specifically, the attacker clears the P bit of gPA0 when a
NPF of gPA1 is intercepted and clears the P bit of gPA1 when a NPF of gPA0 is intercepted
later. The attacker thus tracks the internal execution states of the for loop.

➂ Record the ciphertext of gPA0. Given the structure of the loop, there are 5 NPFs for
both gPA0 and gPA1 for one iteration. Thus, for a 256-bit nonce k, the attacker needs to
intercept 256 * 5 = 1280 NPFs for both gPA0 and gPA1. In each iteration, the first NPF
for gPA0 is triggered when BN_is_bit_set finishes execution and the program tries to
touch the stack page where (pbit and kbit) is in. At this execution point, both kbit

and the pbit are not yet updated. The attacker records the ciphertext of the whole stack
page since the offset of pbit and kbit change slightly between different runs of the
algorithms.

➃ Infer the value of k. After all 256 iterations of the for loop, the attacker determines
the offset and recovers the nonce k using the strategy we introduced in Section 5.1.

5.1.2 Evaluation

The test platform was the same as described in Section 4.4. Instead of targeting the
secp384r1 curve, we picked a different curve secp256k1, which is widely used in Bitcoin,
to show that the attack works for different curves. The victim VM computes an ECDSA
signature by calling ECDSA_do_sign in the OpenSSL library. We repeated the attack 50
times. In 92% of the attempts, we could recover the nonce k with 100% accuracy. After
identifying the target functions, which we only needed to do once, the average time used
to conduct the attack is 1.23 seconds with a standard deviation of 1.01 seconds.

5.2 Breaking Constant-time EdDSA via collision attack

In the previous attack case studies we have used the dictionary attack primitive by
guessing and recording plaintext-ciphertext mappings. We now show how the attacker
can break constant-time EdDSA by monitoring the collision of the secret dependent
value’s ciphertext. While the attack would also be applicable to the constant time swaps
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used by the ECDSA variant described above, we show how the collision attack can work
on the constant time EdDSA implementation of OpenSSH with the ed25519 curve. As
this implementation processes the secret in a batched manner, it is less susceptible to the
dictionary attack previously applied to the ECDSA implementations.

The EdDSA signature algorithm [9] works similar to ECDSA, with the most noticeable
difference being the deterministic nonce generation to prevent attacks based on flawed
random number generators. The algorithm works as follows:

1. Provide a valid EdDSA parameter set (CURVE, G, n, c, l, H) with 2c · l = |CURVE|,
where G is the elliptic curve base point of prime order l and thus l ·G = 0. H is a
cryptographic hash function with 2b output bits.

2. Prepare a key pair. Choose a secure random b-bit string dA as the secret key. Calcu-
late the public key QA = dsG, where ds is derived from the hash of dA.

3. Deterministically compute a nonce for the signature as k = H(Hb,...,2b−1(dA) ∥m),
where m is the message.

4. Calculate R = kG.
5. Calculate s = k +H(R ∥QA ∥m) · ds mod l. The final EdDSA signature is defined

as the tuple (R, s).

Targeted EdDSA implementation. We target the EdDSA implementation of OpenSSH
8.2p1, which is the version shipped with the latest Ubuntu LTS 20.04. The targeted
implementation uses the ed25519 curve. More precisely, we attack the multiplication
R = kG to learn k which then allows us to recover ds from s, by computing

ds = (s− k) ·H(R ∥QA ∥m)−1 mod l.

While ds is not the actual private key dA, it is sufficient to create valid signatures.

Listing 6.2 shows the function performing the calculation k ·G. The arithmetic is imple-
mented using a windowing technique with pre-computed partial sums in a lookup table.
First, in line 6, the secret scalar is broken down into 3-bit chunks. In addition, a transfor-
mation is applied converting the chunks to signed values. However, this is reversible.
Lines 12 and 13 in the for loop contain the main multiplication work. In choose_t the
partial sum is loaded from the precomputation table in a cache attack resistant manner
by accessing multiple values and choosing the correct one using a constant time swap
operation. Line 13 performs the actual multiplication.

For our attack, we focus on the constant time swap operation cmov_aff that is used in
choose_t. Both functions are shown in Listing 6.3. The idea of the attack is to use the
collision attack to leak the value of b, which corresponds to ds in our EdDSA description,
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Listing 6.2: Function performing the multiplication of the secret scalar with the curve base point.
In the original code, the variable k is named s.style

void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *k) {
signed char b[85];
int i;
ge25519_aff t;
sc25519_window3(b,k);
choose_t((ge25519_aff *)r, 0, b[0]);
fe25519_setone(&r->z);
fe25519_mul(&r->t, &r->x, &r->y);
for(i=1;i<85;i++) {

choose_t(&t, (unsigned long long) i, b[i]);
ge25519_mixadd2(r, &t);

}
}

in the calls to cmov_aff. We compare the values of t before and after the function call.
While the constant-time swap will write to the memory locations regardless of the value
of b, to be secure against cache and timing side channels, the actual value that is written
still depends on b. Although the written data has a large value range, making a dictionary
attack infeasible, it suffices to compare the ciphertext of t before and after the call to
cmov_aff without knowing the plaintext for the ciphertext. The information whether the
ciphertext value has changed or not allows us to directly infer b.

After leaking the value of b, the attacker inverts the operations applied in sc25519_window3
(Listing 6.2) to recover the secret scalar k. Knowing k and the corresponding signature
(R, s) allows to recover ds, which is sufficient to create arbitrary valid signatures. Know-
ing ds is not equal to knowing the secret key dA, as the latter is still required to compute
the nonce k according to step 3. However, only a party knowing the private key dA can
detect this subtle difference.

5.2.1 Attack Steps

➀ Trigger the OpenSSH server. The attacker opens an SSH connection with the server,
and explicitly requests the usage of the EdDSA key. EdDSA is enabled in the default
configuration under Ubuntu.

➁ Locate the target physical addresses. The attacker uses the page fault controlled
channel and the performance counter technique from Section Section 4.1) to infer the
physical addresses of the choose_t and fe25519_cmov functions.
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1 static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b) {
2 fe25519_cmov(&r->x, &p->x, b);
3 fe25519_cmov(&r->y, &p->y, b);
4 }
5

6 static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b) {
7 fe25519 v;
8 int i = 0;
9 *t = ge25519_base_multiples_affine[5*pos+0];

10 cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],equal(b,1) | equal(b,-1));
11 cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],equal(b,2) | equal(b,-2));
12 cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],equal(b,3) | equal(b,-3));
13 cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],equal(b,-4));
14 fe25519_neg(&v, &t->x);
15 fe25519_cmov(&t->x, &v, negative(b));
16 }

Listing 6.3: Swap and lookup table access functions.

➂ Intercept execution before and after the constant time swap operation. The attacker
then uses the page fault controlled channel to intercept the execution of the VM by
unsetting the P bit of the targeted pages in the NPT.

➃ Take snapshots of the buffer t. The attacker obtains the physical address of the buffer
t by tracking the write access pattern during the execution of the constant time swap
operation using the NPF side channel. The attacker then steps the loop using the page
fault controlled channel and takes snapshots of the buffer t in each iteration.

➄ Recover the secret scalar t. Using the snapshots of the buffer t before and after each
call to fe25519_cmov in choose_t (note that cmov_aff wraps this function), the attacker
can immediately deduce the value of b. After knowing the value of b, the attacker inverts
the windowing and sign transformation operations applied in sc25519_window3(b, s) to
obtain the secret scalar k. The attacker uses the first parameter R of the signature that the
server sends in step ➀ to validate the value of k, and extracts the signing secret ds from
the second parameter S of the signature using k.

5.2.2 Evaluation

We ran the end-to-end attack 500 times. In 86% of the attacks, we could fully recover the
signing secret with 100% accuracy. Of the failed attack runs, only 7 where due to errors in
detecting the correct code pages. The remaining errors are most likely misdetections of
the memory location of the buffer t. The average runtime of the attack was 7.9 seconds
with 2.2 seconds standard deviation.
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6 Countermeasures

There are two categories of countermeasures against the attacks presented in this paper:
First, the underlying issue may be addressed at the architectural level, which would
likely be the most reliable approach. Otherwise, the identified problems can be also
tackled at the software level, with a certain performance overhead. We discuss both
hardware/architecture-based and software-based countermeasures, and point out meth-
ods for hardening existing software against the attacks presented in this paper.

6.1 Architectural Countermeasures

There are two possible hardware approaches for closing the ciphertext side channels.
However, both approaches introduce high overhead.

First, one may change the encryption mode of SEV to use probabilistic encryption: a ran-
dom nonce or incremental counter is included in the encryption and is updated on each
memory write, effectively randomizing the resulting ciphertexts on each write. However,
probabilistic memory encryption requires additional memory for storing the nonces. For
example, Intel SGX combines AES-based probabilistic encryption with MACs to achieve
confidentiality, integrity and replay protection. In SGX, data is encrypted in a tweaked
counter mode, where the nonce depends on both the physical address of the encrypted
memory block and a 56 bit counter value, to ensure replay protection [16]. The counter
values are kept in the integrity tree, together with the MAC tags that ensure integrity pro-
tection. Only the head nodes of the tree are stored on-chip, while the remaining integrity
tree remains in memory and needs to be checked on each memory access, resulting in a
significant memory and latency overhead.

A second approach is preventing the attacker from reading the VM’s physical memory:
On a software/firmware layer, this could be achieved by using a similar RMP mechanics
as in SEV-SNP (Section 2.1), which already prevents write accesses through an additional
RMP check. However, this would introduce a certain overhead when applied to all read
operations due to the more frequent read access and the extra RMP lookup. For example,
for a single read access inside the VM, a series of RMP checks are needed, including
four checks for the 4-level GPT and one check for the data page. For each GPT level,
four additional RMP checks are needed for the 4-level NPT. In addition, on-chip access
control may still be susceptible to the off-chip attacks described in Section 2.3.
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6.2 Software-based Countermeasures

While hardware-based countermeasures would be preferable due to stronger security
guarantees, their feasibility and practicality demand further validation. Thus, in the
following sections, we describe general methods for mitigating the vulnerabilities on a
software level. There is no single software-based method that is perfectly suited for all
scenarios, as kernel structures, stack, and heap are all vulnerable. Thus, we present how
applications can mitigate ciphertext side channels in three different ways, building on
the assumption, that register values are immune to the ciphertext side channel. However,
as shown in Section 4, this is not the case, as the kernel stores the registers’ content in
memory upon context switches. Thus, we also present how the ciphertext side channel
caused by register states stored inside kernel structures can be mitigated with a kernel
patch, to achieve the invariant of secure registers (Section 6.3), and measure the kernel
patch performance (Section 6.4).

Secret-aware register allocation. If secret-related variables would fit into a register, but
are kept in memory due to register pressure, changing the register allocation strategy
may be worth pursuing. The secret-related variables can be protected by staying inside
the register during their lifecycle and never being spilled to memory.

In order to do that, compiler-level modifications are needed. Even though developers can
suggest the compiler to keep some variables into registers by applying a register hint
(e.g., registerintvar;), the variables are not guaranteed to be placed inside registers.
Thus, a compiler can be modified to prioritize variables marked as ‘secret’ when allocat-
ing registers. An example of a similar scheme is GINSENG [38], which employs a custom
register allocation strategy and a secure storage in a TEE to shield sensitive variables
from a malicious operating system. In case a register containing a secret must be spilled
to the stack anyway (e.g., it is frequently used in function calls or large variables), it can
be protected using a random mask as described in the later software-based probabilistic
encryption part.

Limiting reuse of memory locations. Both the dictionary attack and the collision attack
rely on repeated writes to a fixed physical memory address. Thus, limiting reuse of
a fixed memory address leads to fresh ciphertext and can prevent the attacker from
inferring secrets via the ciphertext.

To achieve this, the application developer has to identify and rewrite vulnerable code
sections. For example, in our collision attack (Section 5.2), the conditional swap operation
should not be written to be performed in-place, but should store the result in a newly
allocated memory area. In this way, an attacker always observes a fresh ciphertext in a
new location, independent from the value of the decision byte ci.
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Software-based probabilistic encryption. If the aforementioned methods are not appli-
cable, one can mimic probabilistic encryption in software and add a random nonce to
the secret data each time when the data is written to the memory.

This can be approached in two ways: First, one can modify the memory layout of the
affected data structures to include random nonces in between, such that each memory
block gets a sufficient amount of random bits. Second, the memory layout is left as-is, but
a second buffer of the same size is allocated for storing masks, which are then XOR-ed
onto the plaintext.

The first approach can be implemented by reserving the high 8 bytes of each 16-byte
encryption block for a random nonce, while the low 8 bytes are used for payload. When
storing a value in this block, the nonce is incremented to ensure that the ciphertext
changes. In addition, the old plaintext must be overwritten with a random value before
storing the new plaintext, to keep the attacker from detecting consecutive writes of the
same value. In the second approach, the nonces and the data are stored in separate
locations, and the nonces are XOR-ed onto the data as a mask. On each memory write,
the corresponding location in the mask buffer is resolved, the mask value is updated and
then XOR-ed to the new plaintext. Finally, the masked plaintext is written to the desired
memory address. As the nonces are high entropy values and updated independently of
the written data, they are not susceptible to the dictionary attack or collision attack. Due
to its high locality, the first approach is better suited for small variables (e.g., variables
on the stack), while the second approach has better support for pointer arithmetic and
should thus be used for buffers and complex data structures. Both countermeasures could
be implemented as a compiler extension, that automatically applies them to variables
marked as secret.

6.3 Software-based Countermeasures: Kernel Context Switch

While the generic software-based countermeasures are sufficient to protect applications
in user mode, they make the critical assumption that registers are immune to ciphertext
side channels. However, our attack in Section 4 shows that the attacker can inspect
the ciphertext in the kernel’s pt_regs structure to infer register values. To mitigate the
ciphertext leakage on register-level, we developed a kernel patch that protects registers
during context switches. We focus on the Linux kernel, but similar methods can also be
applied to other operating systems.

Specifically, the kernel patch protects the pt_regs structure, which stores x86-64 user
space registers as described in Section 2.4. We present two methods for securing this
structure. One is to insert a random nonce alongside each register. The other is to
randomize the stack location on each context switch.
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Storing a nonce alongside registers. A random 64 bits nonce can be stored next to each
register (64-bit) to add enough randomization. In this way, on a context switch, the kernel
doesn’t simply push all registers to the stack, but interleaves them with pushes of a
random value, which is incremented on every context switch. This method gives us 64
bits of security, which makes it impossible for the attacker to infer the plaintext even
for long running VMs. However, this strategy comes with a major caveat: It requires
significant changes to existing highly-optimized code paths, as a lot of exception/signal
handling functions rely on the exact offset of the registers in pt_regs and would thus
may not be adapted by the upstream kernel committee.

Context switch stack randomization. As an alternative strategy, we adapt the mem-
ory address randomization idea to the kernel entry point stack. Instead of inserting
nonces between the saved registers, we randomize the address of the stack where the
exception/interrupt handlers store the register values of the interrupted user space
application.

This method is much less intrusive than the nonce approach and easy to hide behind a
feature flag, as we only need to keep track of stack pages and replace the stack pointer
on each exit from kernel space to user space. However, it also comes with a high memory
overhead, as we have to reserve a lot physical memory only for the kernel entry point
stacks. Also, at some point we will run out of physical memory, giving us a hard limit on
the reachable entropy.

For example, if we assume that we have 8 GB of physical memory which can be freely
used for our stack countermeasure, with a stack size of 4 KB (one page) we get 221 possible
stack locations (21 bits of entropy). This is significantly less than the 64 bits obtained
with the nonce approach, but still considerably reduces the attack bandwidth, as the
attacker would have to wait until a stack page repeats. To assess the practicality and the
resulting overhead, we implemented the stack randomization countermeasure in the
Linux kernel.

6.4 Case Study: Randomizing pt_regs Location

For our case study, we focused on the common exception and interrupt path described
by idtentry_body which is defined in arch/x86/entry/entry_64.S. The idtentry_body
path is e.g. used for the high frequency page fault exception as well as for the local APIC
timer interrupt. The latter is especially interesting, as it is the main driver in determining
if a task has used up its time slice, leading to a reschedule to a different task. While
interrupts and exceptions can also occur when the CPU is already in kernel mode, we
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restrict our countermeasure to events that interrupt a user space application, as they
contain the register values that we want to protect.

Since the thread stack is empty upon entering the kernel from user space, we can simply
replace it with a newly allocated stack. For the entry stack, randomizing the stack upon
entry to the kernel is more difficult, as all general purpose registers hold user data and
thus cannot be used to perform the change. To circumvent this, we randomize the stack
on the exit path before returning back to user space. Thus upon the next entry, we have a
fresh entry stack.

Using the regular memory allocation mechanisms of the Linux kernel for the stack
allocation proves difficult, as they were not build with guarantees regarding not returning
a recently freed page upon a new allocation. In addition, they share a common memory
pool with the rest of the system, which increases the collision probability under high
memory load, if taking random pages from the pool. Instead we allocate a large chunk
of memory at boot time and manage the stacks in a first-in-first-out queue, maximizing
the time between reuses.

To evaluate the performance of our prototype implementation, we call the cpuid instruc-
tion 10 million times in a tight loop from a user space application. Under SEV, this is an
emulated instruction that will directly trigger the modified code paths in idtentry_body
without doing further expensive computations, allowing us to efficiently measure the
performance impact of the modifications to the context switch. Using this strategy, we
measured a total average overhead of 1063 nanoseconds per context switch with standard
derivation 4.93. We also ran a modified benchmark, where the application also loops
over a large memory buffer each iteration, to measure the additional cache pressure
created by randomizing the kernel stack. We ran the experiment 1000000 times resulting
in a total average overhead of 2232 nanoseconds with standard derivation 297.

7 Discussion

Secure encryption of large memory. Memory encryption is a basic building block used
in TEEs to establish the confidentiality of data that leaves the CPU. Ideally, a probabilistic
authenticated encryption scheme needs to be used, as was implemented for the first
generation of Intel SGX [16]. However, managing and updating authentication tags and
counter values consumes additional storage, costs latency and decreases the memory
bandwidth for payload data. Thus, we do not believe that integrity trees can scale to
protect large amounts of memory, as it is required for the confidential VM usage model.
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To cope with these conflicting properties, many confidential VM designs use a mixture
of cryptography and additional, architectural permission checks to achieve their security
guarantees. Since random memory access latency is a critical performance property
for the entire system, ECB would be the best candidate from a performance point of
view. However, the independent encryption of all memory blocks with the same key
leaks repetition patterns, as there is only one ciphertext for each plaintext. Thus, current
confidential VM designs (AMD SEV [23]), but also designs to be commercially available
in the near feature (Intel TDX [19] and ARM CCA [7, 8]) all adopt a tweaked block cipher,
like AES XTS/XEX. Table 2 shows a more comprehensive overview. These modes offer
a middle ground between performance and security, as the tweak mechanism offers
a cheap way to ensure that the same plaintext encrypts to different ciphertexts when
stored in two different addresses. However, for a given memory block, there is still only
one ciphertext for each plaintext. As we have seen throughout this paper, this is the root
cause of the ciphertext side channels.

To prevent attacks on the missing integrity protection, systems like SEV-SNP or Intel TDX
and Intel SGX prevent untrusted parties from writing to protected memory[3, 13]. Intel
TDX and SGX also prevent read accesses to the ciphertext[13, 19]. However, as discussed
in Section 2.3, these checks do not prevent physical attacks like bus snooping.

Finally, the implementation of access right checks also comes with technical hurdles. On
the one hand, they need to be fast, as they influence the memory access latency. On the
other hand, static approaches that simply block access to a fixed range, like in Intel SGX,
hinder efficient memory use and scaling. These hurdles remain open research questions
to be answered in the future works.

Side-channel resistant cryptosystems. With decades of studies on micro-architectural
side channels, including cache or TLB side channels, building side-channel resistant
cryptographic implementations has become a common practice. Most practically used
cryptographic libraries adopt some levels of side-channel defenses, to prevent exploita-
tion from a remote attacker [1] or another user on shared machines [39, 40]. The known
best practice for defeating side channels is data-oblivious constant-time implementation,
which dictates the execution time of the cryptographic operations (or an arbitrary por-
tion of it) is constant regardless of the secret values used in the computation and that
branch decisions or memory accesses may not depend on secret values. Data oblivious
Constant-time implementation has been shown to defeat all known micro-architectural
side-channel attacks, except the ciphertext side-channel attacks discussed in this work.

The ciphertext side channel opens up a new way of exploiting cryptographic code, which
the data oblivious constant-time implementation is no longer sufficient to guard against.
Given the difficulties of securing accesses to the ciphertext through memory access or
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bus snooping (Section 2.3), we envision cryptographic code to be used in TEEs with large
memory needs to adopt a new paradigm that achieves indistinguishability not only on
execution time and access patterns, but on the ciphertext values. We hope our work will
inspire a new research direction on secure implementation of cryptography, such as tools
to automate the discovery of such vulnerabilities, compilers to transform a vulnerable
code to a secure one, or formal provers to assert the absence of such vulnerabilities.
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Table 2: Comparison of hardware memory encryption-based TEEs. Drop-In replacement means that applications do not need to be
adjusted to work with the TEE. * denotes the release time of the whitepapers while the commercial machine is not available yet. † to
our understanding only a recommendation for a possible instantiation.

Project Vendor Release TCB type TCB size Drop-In
replacement Encryption mode Block size

SEV [23] AMD 2016 VM No Limit ✓ XE or XEX 128-bit
SEV-ES [22] AMD 2017 VM No Limit ✓ XE or XEX 128-bit
SEV-SNP [3] AMD 2020 VM No Limit ✓ XEX 128-bit

SGX [13] Intel 2015 Enclave 256 MB [18] ✗ AES-CTR + integrity + freshness 128-bit
SGX on Ice Lake SP[20, 21] Intel 2021 Enclave up to 1 TB ✗ XTS 128-bit

TDX [19] Intel *2020 VM No limit ✓ XTS 128-bit
CCA[7] ARM *2021 VM No limit ✓ AES XTS or QARMA† 128-bit†
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8 Related work

To protect SEV-protected VMs against an untrusted cloud service provider, SEV adopts
some additional designs atop traditional Virtualization. Some of those adjustments are
challenged, including AES memory encryption, the I/O bounce buffer and ASID-based key
management. Meanwhile, some designs inherited from AMD’s traditional hardware-based
virtualization are also proven to be insecure under the assumption of the untrusted host,
including the VM control block, Nested Page Tables, and ASID-tagged TLB entries. Besides
the Ciphertext leakage caused by VMSA, this section summarizes other attacks against
SEV.

Intercept plaintext in VMCB (SEV). The original SEV allows the adversary to intercept
and manipulate register values inside the unencrypted VMCB. Several existing works
exploit the unencrypted VMCB vulnerability. Hetzelt et al. showed that the attacker could
control the VM’s execution and perform ROP attacks [17]. Werner et al. showed that the
attacker can infer VM’s instructions, fingerprint applications, and steal secret data [35].
From SEV-ES, registers are encrypted and stored in VMSA. For SEV-ES, an additional
integrity check is performed on every VMRUN. For SEV-SNP, the RMP table restricts
software’s write access towards the VMSA area.

Manipulate Nested Page Table (SEV-ES). By changing the mapping between the guest
physical address and the system physical address in the nested page table, the attacker
can disturb the VM’s execution and turn the VM’s benign activities into malicious activi-
ties. In the SEVered attack [31], Morbitzer et al. showed that programs with a network
interface (e.g., web server) could be used to decrypt the VM’s memory. Specifically, the
attacker sends some file query requests to the webserver inside a SEV-enabled VM
and then remaps the guest physical address belonging to those data files to some host
physical addresses of private data. The private data will then be sent back to the at-
tacker. The latest SEV-SNP mitigates this vulnerability by prohibiting the hypervisor
from unauthorized NPT remapping.

Note that the hypervisor-controlled nested page table also results in a page-level con-
trolled channel. The page fault controlled channel is widely used in numerous attacks
against AMD SEV ([25, 27, 35, 36], etc.), and is used to infer the VM’s activities and step
its execution. SEV-SNP also suffers from this controlled channel. According to SEV-
SNP’s whitepaper [3], the page-level controlled channel is not in the scope of SEV-SNP’s
designed features.

Modify encrypted memory (SEV-ES). Before SEV-SNP, the hypervisor had write access
to the VM’s memory, which led to some delicate attacks ([10, 14, 36], etc.) that broke the
integrity of SEV-enabled VMs by carefully overwriting their encrypted memory. Wilke
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et al. [36] improved the analysis of the encryption modes on Zen 1 Embedded CPUs,
discovering the updated XEX encryption mode and extending the reverse engineering
of the tweak function. Using the tweak values in combination with a known plaintext-
ciphertext dictionary, they built malicious code gadgets by copying ciphertext blocks
in memory. Based on that, they bootstraped an encryption oracle. From Zen 2 onwards
these attacks are no longer possible due to an improved tweak function.

Tamper with the I/O bounce buffer (SEV-ES). Because of the encrypted memory, DMA
is not directly supported in SEV. A shared bounce buffer (SWIOTLB) is then introduced
for I/O traffic. For incoming I/O traffic, the guest VM copies the data from the bounce
buffer to its private memory. For outgoing I/O traffic, the guest VM copies the data from
the private memory to the bounce buffer. The memory copy activities give the attacker
a chance to construct encryption and decryption oracles. Li et al. [26] showed that the
attacker could overwrite I/O traffic to encrypt/decrypt the VM’s memory stealthily.
SEV-SNP or processors with XEX mode memory encryption can mitigate this attack.

ASID-based momentary execution (SEV-ES). In SEV, including SEV-ES and SEV-SNP,
the Address Space Identify (ASID) is managed by the untrusted hypervisor. While ASIDs
play some rather important roles in SEV-enabled VMs, including cache tagging, TLB
tagging, and identifying the VM encryption keys, the hypervisor has the ability to modify
a VM’s ASID during the VM’s lifecycle. SEV relies on a “Security-by-Crash” principle
that an improper ASID always causes a meaningless VM crash, assuming good behavior
of the hypervisor. Li et al. [25] exploited this improper principle and introduced the
CROSSLINE attacks. The authors showed that the attacker could extract the victim
VM’s encrypted memory blocks by setting an adversary-controlled attacker VM and
changing the attacker VM’s ASID to the victim VM’s ASID. Because of the lack of ASID
checks, the hardware always tried to execute the VM directly, which enabled momentary
execution and a time window for leaking secrets. Even though SEV-SNP still gives
the hypervisor the permission of ASID management, the additional ownership check
mitigates the CROSSLINE attacks by restricting read access from the attacker VM to the
victim VM.

ASID-tagged TLB (SEV-ES). Li et al. studied the hypervisor controlled TLB flush prob-
lem in SEV and SEV-ES [28] and presented TLB poisoning attacks. A TLB control field
inside the VMCB controls the TLB flush during VMRUN. The authors exploited the fact
that the hypervisor can skip TLB flushes by intentionally clearing the TLB control field.
By doing so, the attacker could breach the TLB isolation between vCPUs from the same
VM. The authors showed that an SSH connection controlled by the attacker could reuse
other SSH connections’ TLB entries and bypassed the login authentication. SEV-SNP
adds a hardware-controlled TLB flush mechanism to mitigate this vulnerability.
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Permutation agnostic attestation (SEV-ES). Wilke et al. [37] exploited that the attestation
mechanism of SEV and SEV-ES was not able to detect permutations of the attested
data in memory on a 16-byte granularity. They further showed how an attacker can
use the ability to reorder code blocks to construct malicious code gadgets allowing to
encrypt/decrypt arbitrary data. This attack is mitigated with SEV-SNP.

Voltage glitching attack (SEV-SNP). Buhren et al. studied a fault injection attack against
AMD-SP, named voltage glitching attack [11]. Different from other works in this section,
voltage glitching attack needs additional equipment (including a µController and a flash
programmer) and real-physical access to SEV’s machine. By inducing errors in AMD-SP’s
bootloader and implanting a malicious SEV firmware, voltage glitching attack are shown
to be able to extract secrets used in SEV’s remote attestation.

9 Conclusion

In this paper, we have performed a comprehensive study on the ciphertext side channels.
Our work extends ciphertext side-channel attack to exploit the ciphertext leakage from
all memory pages, including those for kernel data structures, stacks and heaps. We have
also proposed a set of software countermeasures, including patches to the OS kernel and
cryptographic libraries, as a workaround to the identified ciphertext leakage.

As a general design lesson, deterministic encryption modes like XEX must be combined
with both read and write protection to prevent software-based attacks. To also prevent
physical memory attacks, freshness and integrity protection are required.
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SEV-Step: A Single-Stepping Framework for AMD-SEV

Luca Wilke, Jan Wichelmann, Anja Rabich and Thomas Eisenbarth.

University of Lübeck

The ever increasing popularity and availability of Trusted Execution Environments
(TEEs) had a stark influence on microarchitectural attack research in academia, as
their strong attacker model both boosts existing attack vectors and introduces several
new ones. While many works have focused on Intel SGX, other TEEs like AMD SEV
have recently also started to receive more attention. A common technique when
attacking SGX enclaves is single-stepping, where the system’s APIC timer is used to
interrupt the enclave after every instruction. Single-stepping increases the temporal
resolution of subsequent microarchitectural attacks to a maximum. A key driver
in the proliferation of this complex attack technique was the SGX-Step framework,
which offered a stable reference implementation for single-stepping and a relatively
easy setup. In this paper, we demonstrate that SEV VMs can also be reliably single-
stepped. To lay the foundation for further microarchitectural attack research against
SEV, we introduce the reusable SEV-Step framework. Besides reliable single-stepping,
SEV-Step provides easy access to common attack primitives like page fault tracking
and cache attacks against SEV. All features can be used interactively from user space.
We demonstrate SEV-Step’s capabilities by carrying out an end-to-end cache attack
against SEV that leaks the volume key of a LUKS2-encrypted disk. Finally, we show
for the first time that SEV is vulnerable to Nemesis-style attacks, which allow to
extract information about the type and operands of single-stepped instructions from
SEV-protected VMs.

1 Introduction

Microarchitectural side-channel security of computer systems has been one major pillar
of computer security research in recent years. In microarchitectural attacks, the adversary
aims to infer/extract secret information through observations of the system’s microarchi-
tectural state. With the ever increasing popularity and availability of Trusted Execution
Environments (TEEs), side-channel attacks are more relevant than ever, as the attacker
model of TEEs includes powerful system-level attackers. Naturally, such an attacker
has more capabilities to observe the system’s microarchitectural state, extending the
potential attack surface. While attacks targeting TEEs build on a variety of data sources,
like cache state, microarchitectural buffers or power reporting interfaces, they share the
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property that they have to synchronize their data sampling with the execution flow of
the victim. For example, monitoring the cache state only leaks meaningful information
if the victim is about to perform a vulnerable memory access. An increased temporal
or spatial resolution of the attacker’s ability to infer the victim’s execution state often
drastically improves the amount/quality of leaked data.

One commonly used technique with both Intel SGX and AMD SEV is disabling certain
memory pages, such that the victim is forced to handle a page fault when it tries to
access those pages [35, 43, 45, 48, 54, 60]. This allows the attacker to synchronize with
the victim’s execution flow on a page-granular level. For Intel SGX, researchers tried to
further increase the resolution by interrupting the SGX enclave with a high frequency,
e.g., by using the system’s APIC timer. Eventually, Van Bulck et al. demonstrated in
SGX-Step [16] that an attacker can even achieve the maximum temporal resolution of
interrupting the victim after every single instruction. However, besides this technical
improvement over prior work that was only able to interrupt SGX enclaves every few
instructions, they were also the first to introduce a reusable framework. Now, at the time
of writing this paper, SGX-Step has been used in 33 publications [14], clearly showing
the benefits of reusable building blocks in a research area where the technical challenges
and nuances are ever increasing.

While, for example, page fault tracking is also commonly used in SEV, most prior work
has either not released any artifacts at all [20, 34, 35, 36, 46, 58] or artifacts that are highly
specific to the demonstrated attack [60, 61]. Exceptions to this are [45] and [33]. The
framework from [45] allows to track pages accessed by the SEV VM as well as remapping
pages, but only applies to the first two versions of SEV. In addition, it does not allow to
interactively react to page faults in a synchronous manner, making it unsuitable for many
types of side-channel attacks. While the framework from [33] offers such interactivity, it
also is restricted to page fault granularity.

Our Contribution

is twofold: First, we introduce reliable single-stepping in the context of SEV(-SNP). The sec-
ond contribution is making interactive single-stepping, page fault tracking and eviction
set-based cache attacks available in a single, reusable framework. Our framework shifts
most of the complex attack logic from kernel space into user space, allowing the devel-
opment of new attacks entirely with user space code. In the hope that the framework
inspires a similar community as SGX-Step, we dubbed it SEV-Step. Concurrent to our
work, PwrLeak [57] also uses single-stepping, but only with plain SEV VMs, which are
insecure anyways due to the unencrypted register state [22, 58]. They do not provide a
rich framework and do not analyze the reliability.
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Furthermore, to showcase the capabilities of our framework as well as its academic
relevance, we demonstrate an end-to-end key extraction attack against a SEV VM and
utilize SEV-Step to detect and quantify instructions based on their execution time. The
end-to-end cache attack succeeds in extracting a LUKS2 disk encryption key from a
SEV-protected VM using a single trace. The SEV-Step-based instruction latency analysis
confirms that an attacker can leak information about the type and operands of certain
instructions in SEV by measuring the time required for single-stepping them. Such
classification was previously shown for SGX by Van Bulck et al. in Nemesis [15].

In summary, this work

• introduces reliable single-stepping against SEV VMs;

• provides a reusable framework facilitating future attack research against SEV;

• steals disk encryption keys in an end-to-end cache attack; and

• shows SEV’s vulnerability to Nemesis-style [15] attacks.

The remainder of the paper is organized as follows: Section 2 provides background
about relevant x86 system architecture and SEV. Section 4 starts with a general overview
over the SEV-Step framework, before explaining its implementation in detail. Next,
Section 5 evaluates the single-stepping and cache attack features of the framework.
Finally, Section 6 demonstrates an end-to-end cache attack stealing disk encryption keys
and shows that SEV is vulnerable to Nemesis-style [15] attacks.

2 Background

This section is structured as follows: First, we provide general background information
on relevant x86 (micro)architecture and AMD’s virtualization technology. Next, we
introduce AMD SEV. Finally, we discuss related work.

2.1 AMD SVM

AMD Secure Virtual Machines (SVM) is AMD’s instruction set extension for hardware-
accelerated virtualization. It introduces the concepts of guest mode and host mode. Both
modes have the full set of privilege levels of the x86 architecture. However, in guest mode
certain instructions have slightly different semantics in order to enable the virtualization
concept. As shown in Figure 1, from host mode, we can enter the guest mode using the
VMRUN instruction. The CPU runs in guest mode until an intercepted event occurs, which
leads to a VMEXIT, returning the execution flow to the instruction immediately following
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Figure 1: Basic control flow of a hypervisor using hardware assisted virtualization on AMD. After
some initial setup (1), the hypervisor enters the main control loop. The VMRUN instruction takes
care of performing the context switch into the VM (3). Afterwards, the VM is running until
a VMEXIT event occurs (4), upon which the hardware restores the host context and resumes
the execution immediately after the VMRUN instruction where the exit is handled, (5) before the
VM is entered again.

the VMRUN instruction used to enter the VM. For both, VMRUN and VMEXIT, the hardware
takes care of storing/restoring the current context, like the register values.

The host mode can pass a configuration struct called VMCB to the VMRUN instruction
to configure, among other things, which events lead to a VMEXIT. This interception
mechanism enables the host/hypervisor (HV) to transparently simulate certain behavior
to the guest. Furthermore, the mechanism enables the HV to ensure that it stays in control
of the hardware by causing periodic VMEXITs through APIC timer interrupts. Interrupt
handling is discussed in detail in the next section.

SVM also introduces the concept of nested page tables (NPT) easing the virtualization
of memory. With NPT, VM can no longer address real physical memory with its page
tables. Instead the memory subsystem uses a second set of page tables, the hypervisor-
controlled NPT, to translate the so-called Guest Physical Addresses (GPA) of the VM’s
page table to real physical addresses.

2.2 APIC and APIC Timer

According to the AMD Programmer’s Manual [3, Sec. 16], the Advanced Programmable
Interrupt Controller (APIC) is located between the CPU core and the rest of the system. It
is responsible for providing the CPU core(s) with interrupts. Those interrupts can either
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originate from sources local to the APIC, like the APIC timer interrupt, or from sources
remote to the APIC, e.g., from the IOAPIC.

The APIC timer is part of the APIC Controller. It is a counter that is decremented with
a configurable frequency. Once it reaches zero, it generates an interrupt. It can either
be used in oneshot mode or in periodic mode. The latter restarts the timer once it
reaches zero, while the former does not. The APIC timer is commonly used by the OS to
implement periodic jobs like process scheduling [3, Sec. 16.4.1].

2.3 Interrupt Handling in AMD SVM

Under the x86 architecture, the delivery of interrupts is controlled via the EFLAGS.IF field.
If set to 0, interrupt delivery is suppressed. This is called masking an interrupt. Masked
interrupts are held waiting/pending until EFLAGS.IF is set to 1 again[3, Sec. 8.1.4].

In contrast to exceptions or traps, interrupts are inherently asynchronous to the cur-
rently executing program. However, instead of immediately aborting program execution,
they are only processed on instruction boundaries, meaning that the currently executing
instruction will still be retired before the interrupt is handled [3, Sec 8.2.24].

When using AMD’s SVM to run a virtual machine, we distinguish between physical
interrupts and virtual interrupts. Physical interrupts are interrupts that are actually
generated by the hardware. As discussed in the previous section, the HV can configure
the VMCB such that certain interrupts lead to a VMEXIT, returning control from the
guest mode to the HV. However, to facilitate virtualization, the HV may decide to “pass
on” the interrupt to the VM as a virtual interrupt. This mechanism is called interrupt
injection and is performed via configuration fields in the VMCB.

To ensure that the VM cannot simply mask all physical interrupts using its version of
the EFLAGS.IF register, the HV can configure the VMCB such that the VM’s EFLAGS.IF
flag only affects virtual interrupts. This way, the VM cannot prevent actual physical
interrupts from being delivered [3, Sec. 15.21].

2.4 AMD SEV

AMD Secure Encrypted Virtualization (SEV) [29] is a Trusted Execution Environment
(TEE) protecting whole virtual machines from a malicious HV and to some extent against
physical attackers. It builds on the AMD SVM hardware acceleration for virtualization.
These kinds of TEEs are also known as confidential VMs. With SEV, each VM’s memory
content is encrypted with AES-128 using the XOR-Encrypt-XOR (XEX) [53] mode before
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leaving the main processor. A dedicated co-processor, the AMD Platform Security Pro-
cessor (PSP), forms the root of trust of the system. It takes care of securely handling the
memory encryption keys and offers an API to the HV to setup and manage SEV VMs.
While located inside the main processor, for example in the cache, each VM’s data is
assigned a different tag, called Address Space Identifier (ASID) to ensure isolation. After
the initial release of SEV, there were two iterative enhancements called SEV-ES [28] and
SEV-SNP [2], the latter being the latest version.

2.5 Attacks on AMD SEV

Since its release, there has been a long line of attacks against AMD SEV.

Unencrypted VMCB: In [22, 58] the authors exploit the unencrypted VM register state
inside the VMCB, which has been mitigated with SEV-ES.

Nested Page Tables: In [22, 44, 45, 46] the authors exploit the HV’s control over the
nested page tables to remap pages either leaking data or injecting code. These attacks
are mitigated with SEV-SNP.

Encryption Mode: In [11] the attacker exploits the unauthenticated encryption to fault
computations inside the VM by flipping ciphertext bits. [20, 60] reverse engineer the
encryption mode together with the tweak values and show how this can be used to leak
or inject data into the VM. However, on more recent EPYC CPUs, the updated XOR-
Encrypt-XOR (XEX) [53] mode prevents the tweak reverse engineering, and SEV-SNP
additionally prohibits writes to the VM’s memory. [35] show that the bounce buffers
required for I/O interaction between HV and VM in combination with the insufficient
binding of ciphertext to its memory location prior to the XEX mode can be used to
leak/inject data. Finally, [33, 36] demonstrate than even with SEV-SNP, the attacker
can still exploit the fact that the memory encryption mode is deterministic to leak data
through a side-channel.

Miscellaneous: In [57] the authors exploit the software-accessible power reporting
features on AMD CPUs to unveil the type of executed instructions. However, the attack
was only demonstrated with plain SEV, and the applicability to more recent versions is
uncertain. In [12, 13] Buhren et al. show hardware-based power glitching attacks against
SEV’s root of trust, the Platform Security Processor (PSP), granting them custom code
execution on the PSP. Further attacks on SEV versions prior to SEV-SNP also exploited
flaws in the ASID-based isolation [34], in the calculation of the attestation value [61], as
well as in the software interface between HV and VM [52].
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2.6 Interrupt-Based Single-Stepping

The idea of improving the temporal resolution of microarchitectural attacks via triggering
frequent interrupts was first explored in the context of SGX. There are several works [21,
32, 42] that significantly improved the temporal resolution from the page fault level
down to a few instructions. However, reliable single-stepping was only achieved with
SGX-Step [16].

While the general techniques for single-stepping SGX enclaves and SEV VMs are similar,
the technical implementation is quite specific to the targeted platform. For SGX, the
Asynchronous Enclave Exit (DBLP:conf/uss/ConstableBCXXAK23) mechanism can
conveniently be used to place the attacker framework code close to the enclave entry/exit.
For SEV, we need to modify the KVM kernel module and thus also need to implement
a communication mechanism between the kernel space and user space part of our
implementation. Furthermore, we need to modify the virtual interrupt delivery logic
to prevent the injection of virtual APIC timer interrupts while single-stepping the SEV
VM. Finally, SEV VM’s usually run a fully fledged OS consisting of the Linux kernel and
dozens of user space applications while SGX enclaves are more narrowly scoped. Thus,
targeting a specific program inside a SEV VM is more involved.

The idea of APIC timer-based stepping was first applied to SEV in Cipherleaks [36].
However, they did not achieve reliable single-stepping (c.f. Figure 3 in [36]) and did not
publish any code artifacts. Concurrent to our work, PwrLeak [57] also uses APIC timer-
based single-stepping. However, they only performed their experiments on the outdated,
plain SEV variant (not on SEV-ES or SEV-SNP) and do not provide a comprehensive
framework. They also do not discuss reliability.

2.7 Cache Attacks

Since CPUs are much faster than main memory, they use caches to store recently accessed
data in order to minimize latency. Modern CPUs usually use set-associative caches,
where each memory address maps to a specific location in the cache, called the cache
set. Each cache set has a limited amount of slots to store data, called ways. If all ways
of a cache set are used, new data will evict one of the older entries. Each cache entry is
identified via a unique tag value. Cache attacks use timing to infer whether a certain
address is currently cached or not. As shown in many works [8, 19, 41, 51], an attacker
can use this to leak secrets from other processes/entities on the system.

In Prime+Probe [41, 50], the attacker accesses a specifically crafted set of memory ad-
dresses, a so-called eviction set, to fill up a cache set. Next, the attacker waits for the
victim to perform a memory access. Finally, the attacker accesses the eviction set again,
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measuring the required time. A long access time indicates that the victim’s memory
access mapped to the same set, and thus evicted one of the attacker’s entries.

The Load+Reload [40] attack is a more recent variation of the Prime+Probe attack. It
exploits a specific behavior of the way predictor present on AMD CPUs since the Bull-
dozer microarchitecture: Accesses to the same physical address but with different virtual
addresses always encounter a L1 data cache miss. This allows an attacker to perform the
Prime+Probe step using only a single memory access for each step, irrespective of the
number of ways the cache has.

Another popular cache attack is Flush+Reload [63]. Like with the Load+Reload attack,
Flush+Reload requires shared memory between the attacker and the victim. First, the
attacker uses an architectural flush command, like clflush, to remove the shared data/-
code from the cache. As with the other techniques, the attacker waits for the victim to
execute. To probe if the victim has accessed the memory location, the attacker finally
measures the time required to access the flushed data with his mapping.

3 Attacker Model

In this paper, we assume a software-level attacker with full system-level privileges, which
matches the threat model of AMD SEV. Using these capabilities, the attacker acts as a ma-
licious hypervisor running a modified Linux kernel. Furthermore, the attacker can freely
tweak nearly all system settings, like fixing the CPU frequency or disabling hardware
cache prefetchers. However, a few features, like the availability of simultaneous multi
threading (SMT) or the firmware version of the root of trust are part of the attestation
report [6]. Thus their configuration status is visible to the VM owner. The attacked VMs
are protected with AMD SEV-SNP. Due to SEV’s attestation feature, the software inside
the VM is assumed to be benign and under the VM owner’s control.

4 SEV-Step Design

In this section, we first motivate the design of SEV-Step and its components, and then
describe each component in-depth. The framework consists of the following main com-
ponents: Single-stepping, page fault tracking and eviction set-based cache attacks.
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4.1 Design Goals

We identified two major design goals for SEV-Step: Interactivity and reusability.

Interactivity: One key component for side-channel attacks in general is to precisely link
the (micro)architectural observations with the victim’s execution state. In the context of
TEEs, like Intel SGX or AMD SEV, this is commonly achieved by interrupting the victim
at defined points in its execution state, allowing the attacker to either prepare or sample
the (micro)architectural state. Thus, the SEV-Step framework should not only allow the
attacker to interrupt the VM, but also notify the attacker about the interruption, keeping
the VM paused until the attacker signals that they are ready for the VM to resume.

Reusability: Since features like page fault tracking or programming the APIC timer
require the use of certain privileged OS resources, it is natural to implement them directly
inside the OS kernel. However, patching the kernel comes with several downsides. Small
errors can easily lead to system crashes or hard-to-debug instabilities. Furthermore,
the programming environment is limited to C, without any external libraries. Finally,
recompiling the Linux kernel is quite resource-intensive, leading to long iteration times
during development. Thus, we aim for a design that only implements the basic primitives
that are dependent on privileged OS resources inside the kernel. These primitives are then
made available to a user space library via an API allowing the development of complex
attack logic in the richer and less error-prone programming environment available to user
space code. Given our first goal of interactivity, this requires us to build a synchronous,
bidirectional channel between the kernel space and the user space components. In
addition, bundling the API in a separate library also makes it easy to separate attack
specific logic from the framework code itself. This is showcased in the end-to-end attack
in Section 6.1, which is a completely separate code base that only links to the SEV-Step
library.

4.2 User Space API

We built SEV-Step on top of AMD’s reference hypervisor implementation for SEV, which
is based on the Linux KVM kernel module and QEMU.

Figure 2 shows an overview of the interaction between user space and kernel space in
SEV-Step, as well as the basic workflow of the framework. The left-hand side shows the
kernel space part, while the right-hand side shows the user space part. There are two
communication channels between the kernel space and the user space part: ioctls and
shared memory.
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Figure 2: Overview of the kernel space and user space parts of the SEV-Step framework. There are
two communication channels: An ioctl API, and communication over shared memory. Sending
and acknowledging (single-stepping) events is done over shared memory. Upon sending an
event, the kernel space part blocks until the event is acknowledged, delaying the next VMRUN.
Both waiting for new events and for acknowledgments are implement via active polling to
reduce latency. As changes to the VM can only be made upon the next exit, the ioctl API only
updates a central configuration struct, deferring the application of the changes to the next
exit. However, in combination with the blocking event handling, the user space library can
synchronize these changes to the VM state.

Ioctls are a commonly used approach to implement kernel space to user space APIs.
An ioctl is a basically a wrapper system call, that can be filled with custom behavior.
However, being a system call, they require a full user space to kernel space context
switch. In addition ioctls do not allow the kernel space to push events to user space.
Thus, we only use ioctls for low-frequency operations, like initialization or configuration.
For the high-frequency page fault and single-step event notifications, we use a custom,
lightweight protocol over shared memory.

As explained in Section 2.1, the core part of the KVM hypervisor kernel module is a con-
trol loop around the VMRUN instruction. For the SEV-Step framework, we mainly add
additional control logic before and after the VMRUN instruction, that, e.g., primes/probes
the cache or starts the APIC timer. In addition, we also need to patch KVM’s page fault
handling code and overwrite the default APIC timer handling. This additional control
logic can be configured via the ioctl API. As we can only reconfigure the VM between
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VMRUNs, the ioctl API inherently is not synchronized with the control loop, i.e., changes
only take effect on the next entry/exit from the VM. While this seems to contradict the
interactivity design goal, the situation can be resolved by the blocking event notification
mechanism explained in the next paragraph.

When a VMEXIT occurs due to a single-step or page fault event, the kernel space part uses
the shared memory channel to deliver an event to the user space counterpart. However,
after sending the event, the kernel space does not continue the execution of the VM, but
instead waits for the user space to acknowledge the event, keeping the VM in a paused
state. This enables the user space part to make configuration changes via the ioctl API
that immediately take effect on the next VMRUN. In addition, the semantics conveyed by
the page fault/single-step events allow the user space application to deduce the internal
state of the VM, as required by the interactivity design goal.

To synchronize the memory accesses to the shared memory area, both sides actively poll
a spin-lock. Compared to, e.g., mutexes, which might lead to an immediate reschedule
when encountering an already taken lock, this results in lower overhead.

4.3 Single-Stepping

This section describes how single-stepping is implemented in the SEV-Step framework.
We start by describing the basic mechanism before giving more details on tweaking the
mechanism to achieve reliable single-stepping.

First, the HV uses the VCMB configuration structure, which is passed to the VMRUN
instruction when entering the VM, to ensure that an APIC timer interrupt leads to a
VMEXIT (c.f. Section 2.3). Next, the HV programs the APIC timer and enters the VM
with the VMRUN instruction. Once the timer expires, the resulting interrupt results in
a VMEXIT, handing control back to the HV. This workflow is part of the HV’s regular
operations, as it uses the APIC timer anyway to implement a periodic tick/callback.
Next, we discuss how to use this mechanism to achieve single-stepping.

As explained in Section 2.3, the hardware does not immediately trigger a VMEXIT upon
receiving, e.g., a timer interrupt. Instead, the interrupt handling, and thus the VMEXIT,
is postponed until the next instruction boundary is reached. As shown in Figure 3,
to achieve single-stepping, we need to configure the timer such that the interrupt is
triggered before the first instruction in the VM’s execution flow is finished. However,
the timer interval also needs to be long enough for the first instruction of the VM to
be issued into the execution pipeline. Otherwise, the VM would exit without having
executed a single instruction. If the APIC timer interval is too large, multiple instructions
are executed. We call these events, single-, zero- and multi-step, respectively.
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Figure 3: Timeline of the executed instructions during a HV to VM context switch. As the APIC
timer interrupt is only processed at instruction boundaries, we get timing windows instead of
discrete points in time, at which the interrupt leads to zero-, single- or multi-steps. The bottom
row depicts that, internally, the execution of an instruction consists of several stages.

Increasing Single Step Time Window

As shown in the bottom half of Figure 3, the execution of an instruction can be decom-
posed into multiple parts. While the time between issuing and retiring an instruction
might be very short, e.g., when executing a nop instruction, the other steps still require
some time. This is the case especially when the CPU needs to fetch the instruction from
memory and, if applicable, resolve other memory addresses used by the instruction. In
our experiments, we found that the size of the single-step window is not dominated
by the instruction’s type itself, but rather by the instruction-agnostic execution stages
(fetch, decode, . . . ). To enable reliable single-stepping, an attacker must ensure that the
execution of the VMRUN instruction always takes roughly the same amount of time and
that the single-step window never drops below a certain threshold.

In order to maximize the time required for the first instruction executed inside the VM,
we explored flushing the VM’s Translation Lookaside Buffer (TLB) entries as well as
resetting the “accessed” bit [3, Sec. 5.4.1] of the page containing the first instruction
that would be executed after the VMRUN. By flushing the VM’s TLB entries, we ensure
that accessing the code page that contains the first instruction always requires a time-
consuming page table walk to translate the address. The same applies to all memory
operands used by the instruction. The intention behind resetting the “accessed” bit is
similar. If cleared, the hardware has to set the accessed bit again [3, sec. 5.4.2]. According
to the Intel SGX-specific AEX-Notify [18] paper, this requires substantial time and is one
of the key factors for reliable single-stepping on Intel SGX. We evaluate the effects in
Section 5.1.

Finally, we tweak the system configuration as follows to ensure a stable execution
speed. We pin the kernel thread running the VM to a dedicated CPU core, that does
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not run any other tasks. This is implemented via the isolcpus, nohz_full, rcu_nocbs
and rcs_nocb_poll Linux kernel parameters [37]. In addition, we ensure a stable CPU
frequency by either disabling dynamic frequency scaling altogether (if the BIOS permits
it), or by pinning the CPU frequency using the Linux cpufreq subsystem [62]. Finally,
we disabled hardware cache prefetchers in the BIOS. Since SEV aims to protect against a
privileged system-level attacker, all of these changes are within the threat model.

Preventing Virtual Timer Interrupts

As explained at the start of Section 4.3, the Linux OS uses the APIC timer to implement a
periodic tick/callback. Thus, while the HV handles the physical APIC timer interrupts,
it also needs to emulate the interrupt for the VM. As explained in Section 2.3, AMD’s
hardware assisted virtualization offers the concept of virtual interrupts to achieve this.
Thus, whenever the APIC timer interrupts the VM, the KVM hypervisor would usually
inject a virtual timer interrupt into the VM upon the next VMRUN. As a consequence,
the Linux OS in the VM jumps to its corresponding interrupt handler. As a result, an
attacker would not single-step any user code, but only the VM’s APIC timer interrupt
handler. Thus, we need to modify this part of KVM’s logic to prevent any virtual timer
interrupt injection while we single-step the VM. For our attacks, we did not observe
any instabilities in the VM’s execution due to the inhibited interrupt. As a workaround
for potential issues with very long single-step phases, we could periodically allow the
injection of the virtual timer interrupt.

Determining the Step Size

To properly determine the APIC timer timeout value, we need a feedback channel
enabling us to observe the amount of instructions executed by the guest. In SGX-Step [16]
the “accessed” bit of the page table entry corresponding to the page containing the
current instruction is used to differentiate single-steps and zero-steps. However, it cannot
be used to detect multi-steps, which is only possible by running the enclave in debug
mode to observe its instruction pointer. While these two methods also work in SEV,
we additionally have access to the VM’s performance counter events. As demonstrated
in [33], there is a performance counter for retired instructions that can be configured to
only consider instructions executed by the VM. Thus, evaluating the counter before and
after entering the VM immediately reveals the step size.
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4.4 Page Fault Tracking

For page fault tracking, SEV-Step uses the well-known control of the HV over the nested
page tables [34, 45, 60]. By modifying the present, no-execute and read/write bits of a
page, the HV can force the VM to encounter a page fault that also reveals the type of
access. While being more coarse-grained than single-stepping, page fault-based tracking
is significantly faster. Thus, for many attack scenarios, it is beneficial to rely on the coarse-
grained page fault mechanism as much as possible before enabling single-stepping. For
example, an attacker could use page fault tracking to get notified when the VM is about
to execute a code page containing a series of secret-dependent memory lookups. Only
then, the attacker activates single-stepping, allowing them to, e.g., perform a cache attack
against each individual memory access.

4.5 Cache Attacks

To use SEV-Step’s cache attack capabilities, the attacker first needs to perform some
initial configuration like locating and defining the cache attack targets. Afterwards, while
single-stepping the VM, the attacker can request that a cache attack is performed for the
next single-step. The resulting step event is enriched with the measured data.

In the remainder of this section, we discuss how we measured execution times on our
system as well as the applicability of the Prime+Probe, Load+Reload and Flush+Reload
(c.f. Section 2.7) cache attacks in the context of SEV.

Measuring Access Times

As, e.g., discussed in [40], the rdtsc and rdtscp instructions return very coarse-grained
timing data on AMD CPUs since the Zen microarchitecture. This makes them unsuitable
for cache attacks without averaging over several iterations. Prior work suggests either
using a so-called counting thread [39] or the rdpru instruction [4, 38, 40]. While the
latter could be disabled for unprivileged users, we assume an attacker with kernel-
level privilege. In the following sections, we use the rdpru instruction due to the lower
footprint on the microarchitectural state compared to the counting thread.

In addition to measuring the access time, we can also use performance counters to gather
information about the cache state. As described earlier (c.f. Section 4.3), SEV does not
offer protection/isolation for performance counters. For the level 2 (L2) cache, there are
performance counters for “L2 Cache Miss from L1 Data Cache Miss” and “L2 Cache
Hit from L1 Data Cache Miss” [5, Sec. 2.1.17.2]. However, as there is no performance
counter for L1 data cache hits or misses, we still require the access time to infer the L1
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result in order to interpret the L2 events. E.g., if we have a L1 cache hit, the difference in
both counters would be zero, leaving us with an inconclusive result until evaluating the
access time.

Flush+Reload

The HV can easily obtain a mapping to any of the VM’s memory pages by using the
nested page tables. However, as explained in [34], in SEV the cache tag is extended with
the current ASID and the encryption status of the corresponding page (C-Bit), effectively
allowing the same data to reside in the cache multiple times. As the HV has a different
ASID than the VM (as discussed in [34] the HV could technically change its ASID, but
this would basically prevent it from executing any further code), it cannot get a hit on
the data brought into the cache by the VM, when accessing the data via its own mapping.
Thus, the HV cannot perform the reload part of the Flush+Reload attack.

Load+Reload

As flush-based attacks do not work with SEV, we need to look at eviction-set based
approaches. One particularly efficient method is the AMD-specific Load+Reload attack,
as it only needs a single memory access in each stage. In the original paper [40], the
authors only demonstrated the Load+Reload attack in the context of one user space
process attacking another. We were able to reproduce the attack with a malicious hyper-
visor attacking a regular (non-SEV) VM. However, when targeting any type of SEV VM
(plain, ES, SNP), the observed effect on the cache changes. Instead of getting an L1 data
cache miss and an L2 hit for the evicted address, we observed RAM access times for the
whole memory page to which the evicted address refers. We were not able to conclusively
verify the cause for this behavior. However, we suspect that this is related to the “Cache
Coherency across encryption Domains” feature [3, Sec 15.34.9] available on our CPU.
The manual states that without this feature, the HV is required to manually flush a data
page of the VM before accessing it, if it wants to read the latest data. Thus, it is possible
that the HV’s access to the aliased mapping also internally triggers a cache flush.

Prime+Probe

As the specialized eviction-set technique of the Load+Reload attack does not work with
SEV, we opted for the generic Prime+Probe attack. To reduce cache noise, we chose to
implement the prime and probe steps in the kernel space. This way, they can be placed
immediately before and after the VMRUN instruction. The eviction set finding itself is
implemented in user space, to allow for maximal flexibility. We found that on our CPU
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Table 1: Results of single-stepping the same nop slide program while: Resetting the “accessed”
bit before each step (A-Bit), flushing the guest TLB before each step (TLB), doing both (TLB +
A-Bit). For the rows with multi-steps, the timer value is the smallest value that did not only
produce zero-steps. � M-Step denotes the average amount of instructions executed during a
multi-step.

Timer 0-Step 1-Step M-Step � M-Step

BASELINE 0x31 6401 1534 32 37
A-BIT 0x31 6399 1548 50 34
TLB 0x33 1158 4000 0 0
TLB + A-BIT 0x33 1116 4000 0 0

the first 24 bits of the page frame number need to be equal for two pages to be mapped
to the same L2 cache set. Next, the user space application passes the virtual addresses of
the eviction set(s) to the kernel space component, which will create internal mappings to
the used pages. The additional kernel mappings are required as the address space of the
user space application will not be mapped during the prime and probe steps performed
immediately before and after the VMRUN instruction.

5 Evaluation

We evaluated SEV-Step on a Dell PowerEdge R6515 Server with a 3rd generation EPYC
7763 CPU. The attacked VM was protected with SEV-SNP, running Ubuntu 22.10 with an
unmodified Linux 5.19.0-26 kernel (starting with 5.19, the mainline Linux kernel supports
running as a SEV-SNP guest). The attacker-controlled host is running our modified SEV-
Step kernel that is based on AMD’s patched Linux 5.14 kernel. The SEV-Step framework,
as well as the code for the evaluation and attacks presented in this paper, is available at
https://github.com/sev-step/sev-step.

5.1 Single Step Reliability

For the reliability evaluation, we analyzed four different scenarios, based on the ideas
described in Section 4.3. The results are shown in Table 1. We define reliability as “not
performing multi-steps” while still performing some single-steps. Starting with an initial
guess for the timer value, we iteratively decrease it until any further decrease would
result in only performing zero-steps. For all scenarios, we try to single-step a code block
consisting of 4000 nop instructions.

https://github.com/sev-step/sev-step
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In the baseline scenario, we try to achieve single stepping only using the APIC timer, i.e.,
without combining it with other (micro)architectural tweaks. As depicted in the table,
this approach fails. Setting the timer value to 0x30 results in only zero-steps but 0x31
already gives us 32 multi-steps.

Next, we analyze the effect of resetting the “accessed” bit as well as flushing the VM’s
TLB entries. As explained in Section 4.3, the intention behind these tweaks is to increase
and homogenize the timing window leading to a single-step. Resetting the “accessed”
bit does not have any significant effect. However, flushing the VM’s TLB drastically
improves the situation, enabling us to execute the targeted program without any multi-
steps. As expected, combining both methods does not yield a significant improvement.

In addition to the slide of nop instructions discussed here, in Section 6.1, we single-step
the real world Linux kernel AES encryption and decryption code as well as a more
diverse set of instruction microbenchmarks.

5.2 Event Handling Performance

To evaluate the performance of the event sending mechanism, we compare handling
all events in kernel space with sending them to user space. As both page faults and
single-steps use the same basic mechanism, we restrict our analysis to the code path
sending single-step events. For simplicity, we again use the nop slide program introduced
in Section 5.1. Note that the performance of the event mechanism is independent of the
stepped instructions. Without sending events to user space, we require on average 1.007

ms per single-step event, with a standard deviation of 0.0054 ms. Sending events to user
space requires an average 1.616 ms per single-step event, with a standard deviation of
0.01548 ms. While the user space event handling requires roughly 60% more time, we
believe this overhead is acceptable given the substantial improvements in usability and
attack development.

5.3 Cache Attack

We now evaluate SEV-Step’s Prime+Probe attack implementation. As discussed in Sec-
tion 4.5, the Load+Reload and Flush+Reload attacks do not work with SEV. We tested
the Prime+Probe attack against both the first level data cache (L1D) and the level two
cache (L2). However, as the L1D showed a high amount of noise, we only evaluate the
L2 variant here.

For the experiment setup, we assume that the guest physical addresses of both the
test program and a given lookup table have already been recovered by the attacker,
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e.g., by using the page fault side-channel in combination with the “retired instructions”
performance counter [33]. Next, we use page fault tracking to detect when the code is
about to be executed, and then start single-stepping to interrupt the code immediately
before and after each memory access to the lookup table. We analyze two variants of
a crafted assembly snippet that alternates between accessing offset 64 (byte) and 960
(byte) in a cache line-aligned 16 · 64 byte lookup table (similar to the T-tables attacked
in Section 6.1). In the first variant, we placed a lfence instruction between the memory
accesses, while for the second variant, the memory accesses are performed back-to-back.
Then we classify the data using a previously determined timing threshold. In the first
variant, we get a success rate of 0.94, while for the second variant we only get a success
rate of 0.13. While the second variant does indeed have higher cache noise, upon closer
examination, one of the “noisy” cache sets is often related to the next upcoming memory
access, i.e., despite the fact that we are single-stepping, future memory accesses are
already fetched out-of-order and thus leave a cache trace. We discuss these effects in
more detail in Section 6.1, where we demonstrate an end-to-end cache attack against
the Linux kernel’s AES implementation. We did not observe any cache trace when zero-
stepping an instruction, indicating that the context switch needs to fully complete before
any instructions from the VM are issued to the execution pipeline.

6 Case Studies

To demonstrate the capabilities of the SEV-Step framework, we performed two case stud-
ies. In the first one, we explore the common workflow of using a SEV VM in combination
with an encrypted disk image. We show how an attacker can use the cache attack and
single-stepping features of SEV-Step to recover the AES volume key of a disk encrypted
with LUKS2. In the second case study, we analyze to which degree SEV-protected VMs
are vulnerable to Nemesis-style attacks [15]. For this, we enrich the single-step events
with precise time measurements. To the best of our knowledge, these kinds of attacks
were not explored in the context of SEV before.

6.1 Cache Attack on Disk Encryption

We show an end-to-end, single trace cache attack that is able to steal the volume key of a
disk encrypted with cryptsetup+LUKS2, which is a disk encryption system commonly
used with Linux. First, we briefly introduce disk encryption, which is a highly relevant
workflow for SEV and confidential VMs in general. Next, we describe how we can force
the disk encryption system to decrypt the disk using a cipher implementation vulnerable



6 Case Studies 177

to cache attacks. Finally, we explain the technical details required for gathering the cache
traces and how we recovered the volume key from them.

Linux Disk Encryption

A common approach for deploying SEV VMs is providing the HV with an encrypted disk
image and a bootloader. The bootloader is attested through the SEV API and receives the
disk password from the user. It then opens the disk image, loads the kernel binary into
memory, and transfers control to the kernel. Finally, the kernel unlocks the disk image
again and mounts the contained file system. This workflow allows to keep the attested
initial code image small, improving performance and reducing the attack surface.

Under Linux, the disk encryption infrastructure [47] is split into a user space and a kernel
space part. The kernel contains the disk driver and implementations for several ciphers
that can be consumed by user space applications via an API. An example for this is the
popular full disk encryption suite cryptsetup.

The kernel crypto infrastructure provides a flexible architecture of basic ciphers and
so-called “templates”. The former are plain block ciphers (or message digests), the
latter implement additional logic on top of existing ciphers. This is commonly used to
represent block cipher modes like CBC or XTS. Part of the kernel crypto API is the CAPI
specification format, that allows to describe composed ciphers in a structured manner.
For example, capi : xts(ecb(aes))− plain64 invocates the XTS driver with AES in ECB
mode and a sector number-based IV generator.

Since Linux supports a wide range of architectures, there may be different variants of a
cipher, each optimized for a certain architecture version. Each implementation is assigned
two names: The cra_name, which is equal for all implementations of a given primitive,
and the cra_driver_name, that uniquely identifies a specific implementation. The CAPI
format supports both names. If a cra_name is provided, a static scoring system is used to
select the best implementation for the current system. If a cra_driver_name is specified,
the kernel uses that specific implementation if available.

The LUKS2 [10] format commonly used with cryptsetup allows specifying the block
cipher for the encrypted disk in the CAPI format. As this value is neither encrypted
nor authenticated, it can be arbitrarily manipulated, as, e.g., shown in [56]. The CAPI
string is directly passed to the kernel crypto API. We discovered that the Linux kernel
shipped with Ubuntu 22.10 contains several symmetric cipher implementations that are
highly vulnerable to cache attacks. In the next section, we show two approaches how a
malicious hypervisor can combine these weaknesses, by first tricking the VM into using
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its secret disk encryption key with a vulnerable algorithm and then extracting the key
from the resulting leakage via a cache attack.

Forcing Vulnerable Ciphers

On our test systems, cryptsetup defaults to capi : xts(ecb(aes))− plain64 for LUKS2
encrypted disks. XTS [23] is a tweaked block cipher mode commonly used for disk
encryption. It uses two keys: The first key is used to generate a so-called tweak value
by encrypting the current disk sector number. This tweak value, multiplied with a
number representing the current offset inside the disk sector, is then XORed to the actual
payload data before and after encrypting/decrypting it using the second key. Using the
weaknesses described in the previous section, the malicious HV changes the disk header
to capi : xts(ecb(cast6))− plain64 before passing the disk to the VM, tricking the VM
into using the vulnerable CAST6 implementation. As the disk content was initially
encrypted with AES, this does not yield meaningful plaintext, preventing the disk from
being mounted properly. Nevertheless, the decryption routine is still invoked roughly
66k times before the mount operation eventually fails, providing sufficient opportunity
to leak the key.

A second, more stealthy approach, is exploiting the ability to force a specific cipher
implementation. The attacker replaces the capi : xts(ecb(aes))− plain64 specification
by capi : xts(ecb(aes− generic))− plain64, such that the AES cipher is instantiated
with a leaky T-table based implementation. While we verified that such substitutions
work for “templates”/composed ciphers, there is one remaining problem when applying
it to the XTS implementation in Linux. Only the cipher instantiation for the payload
data encryption/decryption is selected based on the exact value specified in the CAPI
string. The cipher instantiation for the tweak generation always uses the priority-based
cra_name to select the best implementation. As all SEV-enabled systems support AES-NI,
this prevents us from leaking the tweak encryption key. Thus, during the key recovery, we
cannot recompute the tweak value which is a prerequisite for recovering the second key,
used for encrypting the actual payload data. However, as shown in the next paragraph,
a malicious HV can suppress the availability of AES-NI altogether, forcing the VM to use
the vulnerable implementation for both instances of AES.

The VM uses the cpuid instruction to determine whether AES-NI is available. As the
HV can intercept this instruction, it can arbitrarily manipulate the reported features.
All versions prior to SEV-SNP cannot detect such manipulations. With SEV-SNP, a new
mechanism was added to provide trustworthy cpuid information [6]. During the attesta-
tion process, the HV has to commit to a set of cpuid bits, that are additionally verified by
the AMD Platform Security Processor (PSP). Depending on the specific cpuid entry, the
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PSP enforces different policies. Some entries are required to match the value on the host,
but the AES-NI feature is allowed to be disabled [5, Sec. 2.1.5.3]. Thus, the VM owner
has to be aware of the subtle security implications of disabling AES-NI and ensure that
their expected attestation value enforces enablement of AES-NI.

As the technical aspects of the cache attack are similar and the AES key recovery is more
interesting, we opted for AES in our end-to-end attack. This also leaves the possibility
that the VM owner remains unaware of the attack, as the disk mount succeeds.

Performing the Cache Attack

In preparation for the cache attack, we need to solve three challenges: We have to ➀

locate the AES code and detect its execution, ➁ locate the instructions accessing the AES
T-tables, and ➂ locate the AES T-tables.

Similar to prior work [33, 36, 45], we solve ➀ through the page fault controlled channel.
As explained in the previous section, the decryption of a single XTS-encrypted data block
consists of two AES invocations using different keys. To build the page fault sequence
fingerprint, we trace all of the kernel’s page accesses while triggering disk decryption
operations. By manual analysis we found that the page fault sequence in Table 2 uniquely
identifies the execution of the relevant AES functions. While KASLR randomizes the
location of the kernel’s .text section at each boot, the contents and order of the .text

section itself are not randomized. Furthermore, there are several techniques to break
KASLR in the SEV context [46, 60]. Thus, we encode the page fault sequence relative
to the start of the .text section instead of using absolute addresses, allowing its usage
across reboots. Note that for the final attack, it suffices to track the pages of the sequence
one by one, i.e., we no longer need to trigger a page fault on every memory access as we
did while generating the fingerprint.

For ➁, we first analyze the assembly code of the AES functions in an offline phase. This
allows us to build a list of all instructions accessing the T-table, each annotated with
the number of instructions executed since the start of the function. Then, during the
attack, we single-step the VM’s execution once we reach the targeted AES functions. By
comparing the number of executed steps with the information gathered in the offline
phase, we know whether we need to perform the cache attack for the next instruction.

To ➂ locate the AES T-tables, we “sacrifice” the first memory access instruction of the
encrypt/decrypt AES functions: Instead of performing the cache attack, we mark all
pages as not present, yielding a list of all pages accessed during the execution of the
instruction. We empirically verified that the final page fault before the instruction’s
retirement corresponds to the page of the T-table.
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Table 2: Page fault sequence uniquely identifying the execution of the AES encrypt and decrypt
operations performed during the decryption of a single payload data block of the VM’s disk.
Accesses with the “Marker” role don’t correspond to an operation that we want to observe,
but are required to accurately track the execution flow. The “PFN Offset” field states the offset
of the page containing the function relative to the start of the kernel’s .text section (measured
in 4096 byte pages).

Name PFN Offset Role

xts_decrypt 0x65c Marker
crypto_cipher_encrypt_one 0x64b Marker
crypto_aes_encrypt 0x65f Tweak generation
crypto_aes_encrypt 0x660 Tweak generation
crypto_ecb_decrypt 0x65b Marker
crypto_aes_decrypt 0x660 Payload decryption
crypto_aes_decrypt 0x661 Payload decryption

With the preparation done, we can now single-step the encryption/decryption functions,
and perform a L2 Prime+Probe attack on each T-table access. As a T-table has 256 4-byte
entries and thus covers 16 cache lines, we need to measure 16 cache sets for each access.

Recovering the AES Key

Given the cache measurements, we now conduct an offline analysis to recover the two
AES keys used by the AES-XTS disk encryption. First, we discuss how we overcame the
challenge of out-of-order accesses in our cache traces. Afterwards, we describe our key
recovery algorithm.

Although the VM’s execution is single-stepped during the cache attack, we still observe
a high amount of cache noise, as shown in Figure 4. Upon closer examination, most
of the cache noise is correlated to future (out-of-order) memory accesses to the same
T-table. While those are not actually retired due to the APIC timer interrupt used for
single-stepping being processed immediately after the current instruction, their cache
traces persist. This reasoning is supported by our experiment in Section 5.3, where we
analyzed a synthetic cache attack victim with and without lfences between the memory
accesses and found that the version with fences does not show this behavior. For our
attack, a given memory access usually influences up to four preceding accesses to the
same lookup table. This matches the round structure of AES, where each T-table is
accessed four times with a data dependency between the accesses of different rounds.

As we also have actual cache noise, as well as occasional accesses to the same cache
set within four memory accesses, separating the actual access from the noise proved
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Figure 4: First 10 accesses to the first T-table of crypto_aes_encrypt. The X axis shows the cache
sets covering the T-table, indexed from 0 to 15. The bars on the Y axis show if the cache set is
considered high or low for that access. For each memory access, the actually expected cache
set is striped and colored red. Due to out-of-order execution, each expected cache set leaves a
trail of high cache sets in the preceding accesses.

challenging. We opted for a machine learning-based approach with a sequential neural
network model consisting of 3 dense layers with 182, 64 and 16 neurons, respectively,
as well as two dropout layers to enhance generalization by preventing overfitting. For
the input encoding, we map each memory access to a binary vector, containing the
cache traces of the access that we want to classify as well as for the 8 preceding and
subsequent accesses. We use 8 instead of 4 accesses in each direction to better improve
handling of situations where two close-by memory accesses use the same cache set. We
label each input with a one hot encoding of the expected memory access. For the first
and last 8 accesses, we use zeroes to fill up the missing preceding/subsequent accesses.
Table 3 shows the accuracy of the classifier in our experiments. The cache traces for
crypto_aes_decrypt classification contain a significantly higher amount of noise, leading
to a worse classification.

For our key recovery, we use XTS decryptions for disk offsets that have known or
easily guessable plaintext and that are always accessed during a mount operation. This
includes certain magic offsets that are searched for file system headers, and the file system
structures themselves. In the first step, we break the key that is used for encrypting the
IVs (sector numbers), yielding the tweak. In the second step, we remove the tweak from
the ciphertext and then break the key used for decrypting the payload. To break a key,
we first guess a number of bits and then check whether that guess is consistent with the
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Table 3: Accuracy of the ML-based classifier for the recorded AES cache traces. We trained a
dedicated model for each T-table. For crypto_aes_encrypt we used approximately 60k training
and 11k testing samples. For crypto_aes_decrypt we used approximately 74k training and 14k
testing samples. The varying amount is due to outlier removal.

Target Accuracy

crypto_aes_encrypt - Lut 0 0.9050
crypto_aes_encrypt - Lut 1 0.9037
crypto_aes_encrypt - Lut 2 0.8971
crypto_aes_encrypt - Lut 3 0.8610

crypto_aes_decrypt - Lut 0 0.6771
crypto_aes_decrypt - Lut 1 0.6860
crypto_aes_decrypt - Lut 2 0.6919
crypto_aes_decrypt - Lut 3 0.2545

T-table measurements, before guessing the next bits. This way, we can discard enough
candidates to avoid searching the entire key space. By ordering the candidate cache
sets by the probability that is returned by the classifier and discarding measurements
with more than 7 candidates, the time needed for finding the correct key can be further
reduced.

End-to-End Attack

To test our attack implementation, we created a LUKS2 disk with an ext4 filesystem and
a random encryption key. We manipulated the header as described to call the vulnerable
aes− generic implementation in the kernel, and disabled AES-NI in the VM. When the
kernel running inside the SEV VM starts mounting the encrypted disk, we execute steps
➀ to ➂ to locate the relevant instructions and data structures. We continued with tracing
70 XTS decryptions, from which 34 involved a known plaintext, applied the classifier to
the measured cache accesses, and then invoked the key recovery. Due to the cache noise
issues described in the previous section, our key recovery requires roughly 13 hours on
the 96-core EPYC 7763 CPU that we used throughout the evaluation. Thus, while not
computationally trivial, the attack is feasible. Note that our attack required a single mount
operation, making the attack hard to detect and evade.

6.2 Instruction Latency Attack

As a second case study, we analyzed whether the interrupt timing-based Nemesis at-
tack [15] also applies to SEV. The core idea of the Nemesis attack is to use the time
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between single-steps to infer the type of instruction executed, or extract information
about its operands. The correlation between the time required for a single-step and the ex-
ecuted instruction stems from the fact that the interrupt used to drive the single-stepping
is only processed on instruction boundaries. Thus, the single-step timing correlates to
the time required by the executed instruction. The Nemesis paper analyzed this attack
vector for Intel SGX and the Sancus enclave on a TI MSP430 microcontroller. To the best
of our knowledge, we are the first to analyze this attack vector on AMD SEV.

Measuring Latency

For measuring the latency of a single-step, we use the rdpru instruction to read the Actual
Performance Frequency Clock Count (APERF) MSR, as discussed in Section 4.5. For older
Zen processors (prior to Zen 2), the APERF MSR can be read with rdmsr instead of rdpru.
As depicted in Figure 5, we obtain a timestamp as close as architecturally possible before
and after the VMRUN instruction. The sti instruction in line 14 is required by the
virtualization interface and sets RFLAGS.IF to 1, enabling maskable external interrupts.
However, it only takes effect after the next instruction has executed, thus our timing
measurement cannot be disturbed by interrupts before entering the VM. When leaving
the VM, the hardware automatically sets the global interrupt flag (GIF) to 0. This flag
disables external interrupts and thus no such interrupt can trigger between line 15 and
16. As a result, our timestamp code runs in line 19 even before the handler for the APIC
timer interrupt that caused the VM exit is executed. The measurement code itself imposes
a minimal overhead by storing the timestamps prior to executing VMRUN.

Differentiating Instructions

To empirically test the distinguishability of individual x86 instructions based on their
latencies, i.e., the difference between the timestamp prior to and directly after VMRUN, we
perform experiments in the form of microbenchmarks similar to those of Nemesis [15].
We execute an instruction slide of 1,000 assembly instructions and collect the latencies of
each single-step. We repeat this procedure 100 times for a total of 100,000 measurements.
Unlike with SGX-Step, we do not need to check the “accessed” bit in the page table entry
to filter for zero-steps, but can directly use performance counters to evaluate the number
of zero, single- and multi-steps, as described in Section 5.3. For our analysis, we pick
instructions with a range of latencies based on benchmarks done by Abel et al. [1].

Figure 6a shows the latency distributions of a selection of x86 instructions. Using SEV-
Step, we can distinguish low-latency instructions such as add or mul from high-latency
instructions such as rdrand or lar. We also note that, while instructions such as nop, add
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1 ; start APIC timer
2 movl %edx, (%r8)
3 ; timestamp before VMRUN
4 lfence
5 movl $1, %ecx
6 rdpru
7 shl $32, %rdx
8 or %rdx, %rax
9 lfence

10 ; save timestamp to stack
11 push %rax
12 ; Prepare VMCB arg
13 ; and enable interrupts
14 mov %rdi, %rax
15 sti

16 ; Enter VM
17 vmrun %rax
18 ; Execution resumes here
19 ; after VMEXIT
20 cli
21
22 ; timestamp after VMRUN
23 lfence
24 movl $1, %ecx
25 rdpru
26 shl $32, %rdx
27 or %rdx, %rax
28 lfence
29 ...

Figure 5: Assembly code for measuring the time for a single-step event. To reduce system noise
to a minimum, we place the time measurement directly inside the kernel space hypervisor
code and as close as possible to entering and leaving the VM.

or mul are harder to discern due to their similar latencies and micro-ops, we can still
distinguish the average execution time given sufficient repetitions.

6.2.1 Differentiating Data Operands

For determining the distinguishability of data dependent operations, we replicate the
experiments of Nemesis regarding unsigned integer division div with the divisor rbx
fixed to 0xffffffffffffffff while varying the dividend rdx : rax. According to the
AMD hardware optimization manual, the “hardware integer divider unit has a typical
latency of 8 cycles plus 1 cycle for every 9 bits of quotient” [7, p. 36]. This suggests
that there should also be a correlation between the significant bits of the dividend and
the measured latencies. As can be seen in Figure 6b, while the median latencies for
div64− 1, div64− 2 and div64− 3 increase with the size of the dividend, div64− 0

does not follow this trend. We also observe that the latency differences between the divs
are significantly less prominent than those reported for SGX in the Nemesis paper.
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(a) Latency distribution of a selection of x86 instructions.

(b) Latency distribution of the x86 div instruction with
varying dividend operands and the divisor rbx fixed to
0xffffffffffffffff.

Figure 6: Latency microbenchmarks with 100,000 executions of each instruction.
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7 Discussion

7.1 Zero/Single-Step Countermeasures

There are several works that try to protect SGX enclaves against single-stepping-based
attacks [17, 30, 31, 49, 55], but none of them found widespread adoption. In 2022 Intel
in collaboration with researchers [18] from the academic community released the AEX-
Notify extensions [24] [25, p. 199-204] for SGX that make the enclave interrupt-aware,
allowing it to execute custom handler code before resuming at the interrupted instruction.
The AEX-Notify paper [18] uses this interrupt awareness to execute a code gadget that
aims to ensure that the first payload instruction of the enclave will execute fast by
ensuring that the instruction as well as its operands are fully cached. This way they aim
to prevent reliable zero-/single-stepping.

According to the Intel TDX Module Spec [27, Sec 17.3], TDX has been designed with
countermeasures for zero-/single-stepping attacks. To prevent single-stepping attacks, a
trusted domain (equivalent to SEV VM) can still execute a small randomized amount
of instructions if it gets interrupted within approximately 4k cycles after being entered.
To additionally prevent zero-steps via missing page table permissions, the TDX module
limits the number of page faults that may occur without forward progress and thus
forces the HV to ensure proper page table configuration before it can resume the trusted
domain.

Given the novelty of single-stepping attacks against AMD SEV, we are not aware of any
countermeasures. In contrast to the AEX-Notify countermeasure that has to cope with
the architectural limitations of SGX, the TDX approach seems more principled. However,
in contrast to the TDX design, for SEV there is no trusted layer between the HV and the
VM that could e.g. prevent the VM from being entered after a certain amount of faults
without forward progress. We leave the design of countermeasures to future work.

7.2 Preventing Vulnerable Algorithm Selection

As demonstrated in Section 6.1, an attacker can exploit the unmodified LUKS2 header
in combination with the Linux kernel’s expressive CAPI specification language, to trick
the VM into decrypting its disk using cryptographic implementations vulnerable to
side-channel attacks. One possible solution is to remove all vulnerable implementations
from the Linux kernel, and replace them by constant-time code. If this is deemed un-
practical, the API should flag all vulnerable implementations as such and provide a
way to allow its users to explicitly disallow their usage. Another strategy would be to
add a checksum preventing the LUKS2 header manipulation. However, that case would
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require to explicitly specify an implementation for the crypto algorithm. Otherwise,
the kernel’s priority-based system might still select a vulnerable implementation under
certain system configurations.

We used a side-channel leakage analysis tool [59] in combination with a custom QEMU
plugin to analyze the Linux kernel’s crypto primitives for the secret oblivious memory
access and constant time properties. Due to limitations of QEMU, we were not able
to analyze AVX-based implementations. We found significant leakages in many other
symmetric ciphers, for example aes-generic, aes-fixed-time1, blowfish-asm, blowfish-generic,
camellia-asm, camellia-generic, cast5-generic and cast6-generic.

We disclosed our findings regarding the LUKS2 header manipulation and its impact on
using LUKS2 in the context of confidential VMs to the cryptsetup/LUKS2 team2. As a
result, they changed the CAPI parsing part of cryptsetup to disallow the selection of
specific implementations. However, this does not help if all implementations known to
the Linux kernel are vulnerable, as it is the case for the blowfish cipher.

8 Conclusion

In this paper, we have demonstrated that SEV-SNP VMs can be reliably single-stepped,
which greatly increases their vulnerability against a wide range of microarchitectural
side-channel attacks. In the hope to ease future research in this direction, we introduced
SEV-Step, a reusable framework allowing the development of complex attacks from
user space. We have demonstrated the framework’s capabilities with two in-depth case
studies. The cache attack against the Linux disk encryption infrastructure revealed
that even with SEV-SNP, the implementation of protected VMs remains brittle due to
continuing prevalence of vulnerable code. The clash between the attacker model for
which these systems have been designed with their usage in the context of confidential
VMs exposes them to powerful software-level attacks in virtualized environments. Given
that not only AMD SEV but also Intel TDX [26] and ARM CCA [9] employ the confidential
VM model, their security under this new threat model should be analyzed with more
scrutiny. Finally, in the second case study, we have demonstrated that SEV is vulnerable
to timing-based instruction classification. Like the Nemesis attack on SGX, we were able
to confirm that instruction sequences can be reconstructed in SEV. While the timing
variation is smaller than in SGX, repeat measurements can reveal even small variations
due to data-dependent execution time of instructions such as div.

1Despite the name, this is simply the aes-generic implementation with interrupts disabled (from the VM’s
point of view). The external APIC timer interrupt used for single-stepping is not influenced by the
VM’s internal interrupt enablement status, so our attacks would still work.

2https://gitlab.com/cryptsetup/cryptsetup/-/issues/809
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TDXdown: Single-Stepping and Instruction Counting
Attacks against Intel TDX

Luca Wilke*, Florian Sieck* and Thomas Eisenbarth

University of Lübeck

Trusted Execution Environments are a promising solution for solving the data privacy
and trust issues introduced by cloud computing. As a result, all major CPU vendors
integrated Trusted Execution Environments (TEEs) into their CPUs. The biggest threat
to TEE security are side-channel attacks, of which single-stepping attacks turned out
to be the most powerful ones. Enabled by the TEE attacker model, single-stepping
attacks allow the attacker to execute the TEE one instruction at a time, enabling
numerous controlled- and side-channel based security issues. Intel recently launched
Intel TDX, its second generation TEE, which protects whole virtual machines (VMs).
To minimize the attack surface to side-channels, TDX comes with a dedicated single-
stepping attack countermeasure.

In this paper, we systematically analyze the single-stepping countermeasure of Intel
TDX and show, for the first time, that both, the built-in detection heuristic as well
as the prevention mechanism, can be circumvented. We reliably single-step TDX-
protected VMs by deluding the TDX security monitor about the elapsed processing
time used as part of the detection heuristic. Moreover, our study reveals a design flaw
in the single-stepping countermeasure that turns the prevention mechanism against
itself: An inherent side-channel within the prevention mechanism leaks the number
of instructions executed by the TDX-protected VM, enabling a novel attack we refer
to as StumbleStepping. Both attacks, single-stepping and StumbleStepping, work on the
most recent Intel TDX enabled Xeon Scalable CPUs.

Using StumbleStepping, we demonstrate a novel end-to-end attack against wolfSSL’s
ECDSA implementation, exploiting a control flow side-channel in its truncation-based
nonce generation algorithm. We provide a systematic study of nonce-truncation
implementations, revealing similar leakages in OpenSSL, which we exploit with our
single-stepping primitive. Finally, we propose design changes to TDX to mitigate our
attacks.

1 Introduction

Data privacy concerns and legal regulations still hinder processing of sensitive data
in the cloud. Such outsourced computation requires implicit trust in the cloud service
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provider, that has full control over the machines that make up the cloud, and thus over the
processed data. Trusted Execution Environments (TEE) are thriving due to the promise
of protecting computations and data even from privileged adversaries with full control
over the systems, e.g. over the hypervisor software. Effectively, TEEs lock out the cloud
service provider and enable verifiably protected data processing on remote machines.
Early designs like Intel SGX focused on protecting single processes and required the
developer to adjust their application to the TEE. While the introduction of the library OS
approach [6, 7, 49] partially solved this problem, a newer and more scalable approach is
taken by the newest generation of TEEs, namely Intel Trust Domain Extensions (TDX) [21],
AMD SEV [3, 25, 26], ARM Confidential Compute Architecture [5], as well as IBM Secure
Execution [16]. This newest TEE generation protects entire virtual machines (VMs) and
can thus be used as a drop-in solution to protect existing applications in the cloud with
only minimal adjustments.

While removing the hypervisor from the trust base promises a wide range of use cases, it
also comes with challenges and has severe implications for security. In fact, it introduces
an attacker model in which the attacker has full system control. Thus, the adversary has
a broad arsenal of mechanisms to gleam information from the protected code running
inside the TEE. Since their introduction, TEEs have been extensively scrutinized by
security researchers, revealing that microarchitectural side-channels remain an Achilles
heel of current TEE designs: Soon after the release of SGX it was shown that control
over the page table allows the hypervisor or OS to learn detailed information about the
control flow of TEE-protected code [58]. Subsequent work demonstrated that numer-
ous microarchitectural features such as caches [14, 32, 50] or branch prediction [13, 27]
provide an even more fine-grained resolution of secret-dependent control flows or data
accesses.

Interrupt driven single-stepping [11, 56], a powerful attack technique against Intel SGX
and AMD SEV, greatly increases the temporal and spatial resolution of side-channel
attacks on SGX [10, 31, 41, 45, 46, 47, 48] and on AMD SEV [43, 44, 51, 56, 59]. As such
it poses a particularly severe threat for the security of TEEs. One especially powerful
attack that builds on single-stepping is instruction counting. There, the attacker combines
page fault information with single-stepping to reveal the target’s control flow with intra-
page precision, allowing them to exploit even the smallest secret-dependent control flow
deviations [11, 32, 33].

Thus, a good defense mechanism against single-stepping attacks is an important building
block for securing TEEs. Given the long line of attacks on SGX, Intel recently published
AEX-Notify [12] in collaboration with academic researchers. AEX-Notify introduces a
hardware-software co-design that makes the enclave interrupt-aware and allows it to
prevent single-stepping attacks by providing a special interrupt handler.
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To ensure resistance against similar attacks on Intel TDX, Intel early on conducted
several security reviews for TDX [1, 19]. As part of this effort, TDX provides a built-in
countermeasure against single-stepping attacks. In contrast to the AEX-Notify approach,
the TDX single-stepping countermeasure does not depend on the software inside the TEE.
Instead, the countermeasure is implemented inside the TDX module, TDX’s security
monitor. The countermeasure consists of a detection heuristic and a special single-
stepping prevention mode that gets activated by the heuristic. We present the first
systematic investigation of Intel’s single-stepping countermeasure and show two attacks
that overcome different aspects of the countermeasure.

The first attack on the Intel TDX single-stepping countermeasure exploits a weakness in
its detection heuristic to prevent the activation of the single-stepping prevention mode.
The heuristic is partially based on the elapsed time between entering and exiting the
protected VM, which is very small if the VM is single-stepped. We manipulate the TDX
module’s sense of time, causing it to observe normal execution times, although the VM is
single-stepped. While this vulnerability should be mitigatable by updating the detection
logic, defining a safe and sound rule set is not trivial.

The second attack, StumbleStepping, exploits the inherent side-channel attack surface
of the TDX single-stepping prevention. The intended effect of the single-stepping pre-
vention mode is to stop the hypervisor from obtaining fine-grained insights into the
protected VM’s progress. StumbleStepping, however, exploits the prevention mode’s inher-
ent cache side-channel to leak the number of instructions executed by the protected VM.
As such, StumbleStepping exploits a systematic issue that is not easily fixable, meanwhile
providing a somewhat weaker leakage than single-stepping.

To demonstrate the capabilities of StumbleStepping in exploiting small leakages, we target
a minuscule leakage found in the current ECDSA implementations of wolfSSL. The
leakage was already identified in [52], but was deemed unexploitable by the authors. We
show that this leakage can actually be captured by StumbleStepping and is exploitable for
select choices of elliptic curves. We provide an extensive analysis of the ECDSA leakage,
revealing similar problems in OpenSSL, which we exploit with our single-stepping
primitive.

In summary, we:

• Demonstrate an attack that renders the TDX single-stepping countermeasure inop-
erative and enables single-stepping on TDX

• Introduce the StumbleStepping attack, an inherent cache side-channel in the single-
stepping countermeasure of TDX that leaks the number of instructions executed by
the TD
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• Use StumbleStepping and our single-stepping primitive, to leak ECDSA keys in a
novel nonce truncation-based attack against wolfSSL and OpenSSL

• Provide an extensive analysis of nonce truncation leakages in ECDSA implementa-
tions including wolfSSL and OpenSSL

The code to reproduce our results is available at https://github.com/UzL-ITS/tdxdo
wn.

The remainder of this paper is structured as follows: Section 2 introduces required back-
ground information. Next, Section 3 analyzes the TDX single-stepping countermeasure
in detail. Section 4 and Section 5 introduce and evaluate the two main attack primitives
of this paper. Section 6 analyzes nonce truncation-based control flow leakages in ECDSA
implementations. Afterwards, in Section 7 we present two attack case studies, exploit-
ing wolfSSL’s ECDSA leakage using StumbleStepping and OpenSSL’s ECDSA leakage
via our single-stepping primitive. Finally, we discuss limitations and countermeasures
in Section 8.

Responsible Disclosure We officially reported our findings to Intel’s PSIRT team on
October 11, 2023. Using our proof of concept code they reproduced our attacks and
issued CVE 2024-27457. Intel is working on a countermeasure against the single-stepping
attack and states that future TDX module versions after 1.5.0.6 should no longer be
affected. Intel will not provide countermeasures against instruction counting attacks like
StumbleStepping as part of the TDX module and instead refers to their Software Security
Guidance information [24] to solve this issue on the application level.

We contacted wolfSSL and OpenSSL with our findings concerning leaking nonce bits in
their ECDSA implementations. The findings were acknowledged for both libraries. At
the time of submission, wolfSSL fixed the vulnerability in version 5.6.6 and assigned CVE
2024-1544. OpenSSL does not assign CVEs for "same physical system side-channel" [40]
vulnerabilities but acknowledged it and is working on a fix.

2 Background

2.1 TDX

Intel Trust Domain Extensions (TDX) [21] is a Trusted Execution Environment (TEE) that
protects whole VMs. The protected VMs are called Trust Domains (TD). Figure 1 shows
an overview of the TDX architecture. The so-called TDX module forms the core of the
design. In contrast to regular VMs, the hypervisor needs to invoke the TDX module’s
SEAMCALL API to manage TDs. Crucially, only the TDX module can enter TDs. Exits

https://github.com/UzL-ITS/tdxdown
https://github.com/UzL-ITS/tdxdown
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Figure 1: Unlike with regular VMs, the hypervisor does not have direct access to TDs but has to
manage them via the TDX module. Based on Figure 5.2 from [21].

from a TD return control to the TDX module instead of to the hypervisor. Thus, the TDX
module forms a trusted layer between the untrusted hypervisor and the TD.

To protect the TDX module, it resides in a newly-added, protected memory range. Fur-
thermore, TDX introduces a new CPU mode called Secure Arbitration Mode (SEAM) that
is split into two sub modes VMX root and VMX non-root. The TDX module runs in the
SEAM VMX root mode, while TDs run in the SEAM VMX non-root mode. To protect
against physical attackers the memory used by the TDs is encrypted using Multi Key
Total Memory Encryption (MKTME) [18]. MKTME allows the use of different encryption
keys based on the KeyID, an identifier that is encoded by re-purposing the upper bits
of the physical address. With TDX, the KeyID range is split into shared and private.
Using private KeyIDs is restricted to the new SEAM CPU mode and thus to the TDX
module and TDs. In addition, an access right-based mechanism is used for additional
security when the CPU is outside the SEAM mode. Reading protected memory returns a
fixed pattern to guard against ciphertext side-channel attacks [28, 30]. Writing taints the
memory location, leading to a fatal error the next time the TD tries to access it.

2.2 TDX Control Data Structures

The data structures describing a TD are managed by the TDX module [22, Sec. 6]. One
such control data structure is the Trust Domain Virtual Processor State (TDVPS), which
describes the state of each virtual CPU of a given TD. The memory for the data structure is
initially allocated by the hypervisor and then passed to the TDX module, which encrypts
the memory with a private MKTME KeyID. Thus, while knowing the memory addresses
of the TDVPS, the hypervisor is forced to use the TDX module’s API to interact with the
content of the data structure.
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2.3 Cache Attacks on Intel TDX

As explained in Section 2.1, TDX encrypts the TD’s memory with MKTME which has
a severe impact on the applicable cache side-channels. Since the MKTME KeyID is
encoded in the physical address bits, it is part of the cache tag. As a result, accessing
the same data with different KeyIDs would, in theory, lead to different cache tags and
thus in different decryptions of the same physical data residing in the cache at the same
time. However, a coherency mechanism ensures that an existing entry using a different
KeyID is flushed prior to loading the data with the new KeyID. This behavior enables
Flush+Reload style cache attacks where the attacker accesses TD memory with a different
KeyID, to evict it from the cache [1, 23]. Without this mechanism, an attacker could not
perform Flush+Reload attacks, as they can neither perform flushes nor memory accesses
with the TD’s KeyID.

2.4 Instruction Counting Attacks

Instruction counting is a single-stepping-based side-channel attack against TEEs that
aims to infer fine-grained control flow information. The attacker is assumed to know the
executed binary. Then, they combine the coarse grained page fault controlled-channel [58]
with a single-stepping attack, to reconstruct the victim’s control flow with instruction
granularity. Instruction counting attacks can even detect if two code branches of equal
length execute memory accesses at different points in the instruction sequence [11, 33].
To guard against such attacks, security critical code, should employ the data oblivious
constant-time paradigm: Neither the execution path nor any memory accesses may
depend on secret data. While hard to implement, these properties defeat all known
side-channel attacks.

2.5 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant of DSA on elliptic
curves [38]. In order to sign a message, one chooses an elliptic curve E(Fp) over a finite
field Fp and a generator G of order n. Next, the signer generates a long-term secret
key d ∈ [1, n − 1] and the corresponding public key Q = d · G, which is a point on
the elliptic curve. Finally, for every signature, the signer generates a new unique nonce
k ∈ [1, n− 1] which they must keep secret. The signature is then computed over the hash
h of the message and comprises the tuple (r, s). The signer calculates r = xr mod n with
(xr, yr) = k ·G and s ≡ k−1(h+ r · d) mod n.

The security of the long-term key d in ECDSA depends heavily on the choice of the
nonce k. A slight bias in the randomness of k allows to recover the secret key. While
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the sampling algorithm used by most ECDSA implementations produces sufficiently
random numbers, an attacker can also obtain such a bias via side-channel information [4,
42, 52]. To reconstruct the secret key d from signatures for which the attacker has partial
information about k, there are two common approaches. Both first recover k and then use
it to compute d. The first approach formulates the problem as a shortest vector problem
(SVP) and solves it via lattice reduction techniques like LLL or BKZ [15, 39]. Recently,
Albrecht et al. [2] improved the performance of the lattice reduction approach by com-
bining it with enumeration and sieving with predicate, allowing to exploit smaller biases
while also requiring fewer biased signatures. The second approach by Bleichenbacher [8]
is based on Fourier analysis.

2.6 Attacker Model

We assume the default TEE attacker model, where an attacker with root privileges
on the system tries to attack a program running inside the TEE [11, 29, 35, 55]. Most
importantly for this work, the attacker is capable of using the page fault controlled-
channel, programming the APIC timer and controlling the processor frequency. For
our experiments, we disabled all hardware cache prefetchers, Intel SpeedStep, as well as
hardware controlled P-states. The latter is important to allow the Linux cpufreq driver to
control the CPU frequency. We do not assume physical access.

This is in line with the Intel TDX attacker model [21]. A real world example is a malicious
or compromised cloud service provider that tries to leak data from a customer’s TD.

3 TDX Single-Stepping Countermeasure

Single-stepping is a powerful attack mechanism that has been successfully deployed
against major TEEs like SGX [11, 31, 33, 41, 45, 46] and AMD SEV [43, 44, 51, 56, 59]. It
uses the attacker’s control over the APIC timer to interrupt the TEE after every instruc-
tion. Besides enhancing existing side-channel attacks, it can also be used for so-called
instruction counting attacks, to reveal the TEE’s control flow at the instruction level,
allowing the exploitation of minuscule leakages in e.g. cryptographic libraries. Given
the devastating effects of single-stepping attacks, Intel TDX comes with a built-in coun-
termeasure which consists of a heuristic to detect single-stepping interrupt patterns and
subsequently activates a prevention mode. In the remainder of this section we explain
both mechanisms in detail. An overview of the single-stepping countermeasure is given
in Figure 2.
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Figure 2: The hypervisor starts the TD by calling the TDX module (1.1) which in turn enters the TD
(1.2). When the TD exits (2), the TDX module applies a heuristic to check for single-stepping.
If yes, it activates the prevention mode (PM) and re-enters the TD for a randomized number
of times (PmSteps), before disabling the PM mode, as indicated by the circle in the top left part.
On each entry, a special configuration is used to ensure that the TD only executes a single
instruction.

TDX Interrupt Architecture On both, Intel SGX and AMD SEV, single-stepping attacks
exploit the fact that external interrupts, like the APIC timer interrupt, abort the execution
of the TEE and return control to the attacker controlled OS or hypervisor. Intel TDX,
however, has a different design. Neither can the attacker controlled hypervisor directly
enter the TD nor do exits from the TD immediately return control to the hypervisor, as
discussed in Section 2.1. Instead, there is a trusted intermediate layer, called the TDX
module, which runs in a special CPU mode and offers so-called SEAMCALLs to the
hypervisor for managing TDs. While this design still allows a malicious hypervisor
to program the APIC timer such that it interrupts the TD shortly after it is entered,
the resulting exit is now handled by the TDX module, as shown in Figure 2. Thus,
the malicious hypervisor cannot immediately observe if the TD was interrupted. Since
the TDX module is not intended to replace the hypervisor, there are many instances
in which the TDX module eventually needs to notify the hypervisor about the TD
interruption to allow the expected virtualization behavior. To prevent interrupt-based
single-stepping attacks, the TDX module makes an attempt on deciding whether a certain
interrupt pattern is benign or if it is part of an attack. In the former case, the TDX module
immediately returns to the hypervisor, while in the case of a detected attack it continues
to execute the TD for a randomized amount of cycles via the single-stepping prevention
mode, before eventually handing back control to the hypervisor.
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Single-Stepping Detection Whenever the TD is exited due to an interrupt, the TDX
module measures and evaluates two properties to decide if the current interrupt behavior
is benign or if the hypervisor tries to perform a single-stepping attack. In Figure 2 both
checks are summarized as “Is single-step attempt?”.

The first analyzed property is the number of bytes the TD’s instruction pointer (RIP) has
advanced since the last exit. If RIP has advanced by more than two times the number of
bytes required for the longest x86 instruction, the TDX module can be sure that at least
two instructions have been executed, i.e., the TD has not been single-stepped [20].

The second analyzed property is the time that has elapsed since the TD was entered via
the TDX module. To obtain the elapsed time, the TDX module stores a rdtsc timestamp tB
before entering and a timestamp tA after exiting the TD. If “sufficient” time td = tA − tB
has passed, the current interrupt behavior is classified as benign. In version 1.5 of
the TDX module the threshold is set to 4096 rdtsc increments [20]. If either at least
two instructions have been executed or sufficient time has passed between entries, the
behavior is classified as normal. Otherwise, the TDX module activates the single-stepping
prevention mode.

Prevention Mode The core idea of the prevention mode is to execute a randomized
number of instructions PmSteps inside the TD before finally informing the hypervisor
about the initial interrupt. To implement this, after detecting a potential single-stepping
attempt, the TDX module first disables all interrupts to block the hypervisor from further
interfering with the execution of the prevention mode. Since the TDX module runs in
the privileged SEAM VMX root mode, the prevented interrupts even include NMIs and
SMIs [36, Sec. 1.3.4]. Next, the TDX module enters the TD with the Monitor Trap Flag,
causing it to exit after executing exactly one instruction [17, Sec 26.5.2, Vol 3C]. This
process is repeated in a loop until PmSteps instructions have been executed, as depicted
by the circle in the top left of Figure 4.

In essence, the single-stepping prevention mode single-steps the TD PmSteps times from
the TDX module while preventing the hypervisor from architecturally observing or
interrupting the TD. When the control is eventually returned to the hypervisor, it is
unaware of the TD’s exact progress.

4 Single-Stepping Trust Domains

In this section, we demonstrate how to circumvent the single-stepping detection heuristic
from the previous section, re-enabling single-stepping attacks on TDX. In essence, we
delude the TDX module about the elapsed time between entering and exiting the TD by
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reducing the frequency of the CPU core running the TD. Thereby, we exploit that the
rdtsc timestamp counter’s frequency is unaffected by CPU frequency scaling.

4.1 Attack Primitive Description

The TDX module classifies a TD interruption as benign if sufficient time has passed
since entering the TD, as explained in Section 3. More precisely, the time span td between
entering and exiting the TD is measured inside the TDX module by comparing the rdtsc
value tB shortly before entering and tA shortly after exiting the TD. The goal of the
attacker is to trick the TDX module into measuring td ≥ 4096 while only executing one
instruction in the TD.

On modern Intel CPUs the rdtsc timestamp counter is incremented at a constant frequency
instead of being tied to the current CPU frequency [17, Sec 18.17, Vol 3B]. We combine this
rdtsc behavior with the malicious hypervisor’s ability to configure the current operating
frequency of the core on which the TDX module and the TD are running: Using a constant
frequency for rdtsc implies that the demanded 4096 timestamp counter increments always
take the same wall clock time. Meanwhile, lowering the frequency of the victim core
slows down its execution speed. By setting the frequency low enough, entering the TD,
executing one instruction and leaving the TD already takes more than 4096 timestamp
counter increments. Consequently, with the modified CPU frequency in place, we are
able to use the APIC timer to interrupt the TD after every instruction while still ensuring
that the TDX module measures td ≥ 4096 and does not trigger the single-stepping
prevention.

Reliable Single-Stepping To use the APIC timer for single-stepping, we need to ensure
that the corresponding interrupt hits during the execution of the first instruction. As
described in [11, 12, 56], we flush the TD’s Translation Lookaside Buffer (TLB) to prolong
the execution time of the first instruction and therefore increase the timing window that
leads to single-stepping. By choosing the timer such that it arrives rather at the start of
the single-stepping window than at the end, we prevent multi-stepping.

While this causes occasional zero-steps, we can detect them by running a cache attack
against the code page currently executed by the TD. We use the KeyID-based Flush+Reload
mechanism from [1, 23], which results in a very strong signal with access timing differ-
ences higher than DRAM reads. The hypervisor flushes all cache lines corresponding to
the code page before entering the TD and reloads all lines after exiting the TD. A long
reload time signals the execution of an instruction within the TD. In the next paragraph,
we describe how we obtain the address of the code page.
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Finally, similar to SEV-Step [56], we have to modify the hypervisor to suppress virtual
APIC timer interrupts while single-stepping the TD. Otherwise, the TD would jump to
the corresponding interrupt handler, instead of executing the targeted code.

Adding Spatial Information For a meaningful interpretation of the single-stepping data,
we need to correlate it with the currently executing code in the TD. To achieve this, we
use the well known page fault side-channel [29, 33, 35, 37, 45, 55], that leaks both code and
data accesses with page granularity, in order to detect the currently executing application
via template attacks. In contrast to other TEEs like SGX or SEV, the page tables for the
TD’s private memory are inaccessible to the attacker, since they are managed by the
TDX module. As a result, we cannot modify the access permission bits to force page
faults. However, the TDX module still offers a dedicated API that allows the hypervisor
to temporarily block access to any TD page, albeit without the ability to only remove
individual access permissions from the page.

Zero-Stepping While we try to minimize zero-stepping for instruction counting attacks,
another line of research has shown that it can be used to boost microarchitectural side-
channels by allowing to repeatedly measure the effect of the same instruction [48]. For
this work, we consider further exploration of zero-stepping attack primitives on TDX
out of scope.

4.2 Attack Primitive Evaluation

In this section, we evaluate our primitive for single-stepping TDX with a synthetic target.
The experiments were performed on a 5th generation Intel Xeon Gold 6526Y with a base
frequency of 2800 MHz. The processor runs the TDX module in version 1.5. We ran the
evaluation in a default Ubuntu 23.10 environment and we implemented the code of
the attack primitive on top of the Ubuntu Linux kernel in version 6.5 with the official
TDX patches. To break the rdtsc based time check in the single-stepping heuristic, we
configure the CPU frequency of the core running the TD and the TDX module to the
lowest possible value of 800 MHz.

To validate that our single-stepping primitive works reliably, we verify that we do
not multi-step and that we dependably detect zero-steps. Therefore, we run the loop
from Listing 8.1 in the TD and measure 3 different scenarios: Executing the loop once
(8 instructions), nine times (56 instructions) and ten times (62 instructions). We repeat
the measurement for every scenario 10,000 times. The code for the single-stepping
evaluation purposely contains NOPs as these are the shortest instructions and do not load
any parameters from memory. For the evaluation we assume that the address of the code
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Listing 8.1: Evaluation target for single-
stepping.
mov qword ptr[r8], 42

loop_label:
dec rax
nop
nop
nop
nop
jnz loop_label
mov qword ptr [r9], 42

Listing 8.2: Evaluation target for Stumble-
Stepping.
mov qword ptr[r8], 42

loop_label:
dec rax
jnz loop_label
mov qword ptr [r9], 42

Figure 3: Synthetic programs for evaluating the stepping primitives from Section 4 and Section 5.
We block access to the memory locations pointed to by r8 and r9, using the resulting page
faults as the start and end trigger for the attack.

page of the target program as well as the addresses pointed to by r8 and r9 are known to
the attacker.

We evaluate the attack in the release TDX mode as well as in debug mode. In debug mode,
the TDX module offers additional API calls, e.g. reading the current instruction counter.
Thereby, we can immediately check that no multi-steps occur and that all zero-steps are
detected by the cache attack. In release mode, we check that after filtering zero-steps,
the remaining event count matches the expected number of instructions. Again, we do
not encounter any errors. We did not observe meaningful differences between the two
modes with regard to single-stepping. When running the three evaluation scenarios we
execute 1,260,000 instructions and observe only 0.8% zero-step events.

5 StumbleStepping: Leaking Instruction Counts

In this section, we describe a second attack primitive, that we dub StumbleStepping,
allowing an attacker to perform instruction counting attacks against the TD. As dis-
cussed in Section 2.4, instruction counting attacks are commonly used to exploit secret-
dependent control flow in, e.g., cryptographic libraries. StumbleStepping works, even if
the single-stepping attack from the previous section is mitigated, i.e., the TDX module cor-
rectly activates the single-stepping prevention mode. In contrast to our single-stepping
attack, it exploits a conceptual weakness of the countermeasure instead of a flawed check-
ing logic. In essence, StumbleStepping turns the prevention mode upon itself and employs
a cache attack to leak the number of instructions executed by the TD. An overview of the
attack procedure is shown in Figure 4.
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Figure 4: Overview of the steps required for APIC timer-based StumbleStepping attacks against
TDX. The Attacker spawns a new thread to concurrently probe the pages with the victim’s
TDVPS using the KeyID-based Flush+Reload attack. The double ended arrow in step (6.a)
represents the prevention mode (c.f. Section 3) and means that the TDX module re-enters the
TD several times, before eventually resuming with step (7).

5.1 Attack Primitive Description

The core idea of StumbleStepping is to employ a side-channel attack (1.b) against the single-
stepping prevention mode implemented inside the TDX module. The side-channel attack
runs in parallel to the execution of the TDX module, on a separate core (1.a). In contrast
to the single-stepping primitive, we do not want to avoid detection but deliberately
trigger the countermeasure. After detecting a potentially malicious interrupt pattern
(4 and 5), the single-stepping prevention mode of the TDX module re-enters the TD
several times (6.a), before returning control to the hypervisor (7). The TDX module
configures the TD such that on each entry the TD executes only a single instruction
(6.a). For StumbleStepping, we exploit that the TDX module leaks the number of times it
re-enters the TD via a cache side-channel (1.b). For each TD entry (6.a), the TD’s TDVPS
pages are accessed (6.b). This data structure describes the state of the TD, e.g., the vCPU’s
register file. Note that the information stored in the TDVPS pages is encrypted and thus
inaccessible to the hypervisor. However, by running a cache attack in parallel to the
execution of the countermeasure inside the TDX module, the hypervisor can leak the
number of accesses to the TDVPS pages and thus the number of instructions executed by
the TD. To continuously leak the number of executed instructions, the hypervisor sends
APIC timer interrupts such that the countermeasure mode is always active (4). For the
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cache attack, we again use the KeyID-based Flush+Reload mechanism.

Improving Temporal Resolution To obtain reliable information, we require a high
temporal resolution for our cache attack, such that we do not miss any of the TDX
module’s accesses to the TDVPS structure. Thus, we only monitor a single cache line of
the TDVPS. In addition, we again decrease the CPU frequency of the core running the
TDX module while setting the frequency of the attacker’s core to the highest possible
value, increasing the effective sampling rate of our attack.

However, in order to ensure that we do not accidentally trigger the single-stepping
attack from the previous section, circumventing the activation of the single-stepping
prevention mode, we cannot clock down the TD’s core to the lowest possible value of 800
MHz. Instead, we have to keep it running above 1.6 GHz. Thus, once the single-stepping
detection heuristic has been fixed, the temporal resolution could be doubled by using
the lowest frequency.

Adding Spatial Information As with the single-stepping primitive in Section 4, we use
the page fault controlled-channel to correlate the information from StumbleStepping with
the currently executing code page for a meaningful interpretation. The randomized
bursts in which StumbleStepping executes the TD prevent the attacker from terminating
the attack at a arbitrary instruction. However, we can exploit that the TDX module aborts
the single-stepping prevention mode upon page faults to precisely stop the execution at
a defined code location.

In summary, combined with page fault information, StumbleStepping reveals the TD’s
control flow with intra-page resolution, allowing to exploit minuscule secret-dependent
control flow leakages. In contrast to single-stepping, it does not allow to pause the
execution after every instruction.

5.2 Attack Primitive Evaluation

For evaluating the StumbleStepping primitive, we performed all experiments remotely on
an Intel provided machine with a TDX enabled 4th generation Xeon Platinum 8480CTDX
processor. Furthermore, we verified that the attack primitive still works on a 5th genera-
tion Intel Xeon Gold 6526Y which introduces public availability of Intel TDX. The 4th
generation CPU used the TDX module software version 1.0 and the 5th generation CPU
used version 1.5. For the 5th generation Intel Xeon processor, we ran the evaluation in a
default Ubuntu 23.10 environment and implemented the code of the attack primitive
on top of the Ubuntu Linux kernel in version 6.5 with the official TDX patches. The
evaluation on the 4th generation CPU was conducted on Ubuntu 22.04 with kernel
version 5.19. We evaluate StumbleStepping with a synthetic target.
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Profiling TDVPS Accesses For StumbleStepping, we exploit that each TD entry leads to
accesses to the TDVPS data structure which we want to observe via a cache attack in
parallel to the execution of the TDX module. We again use the KeyID-based Flush+Reload
mechanism and measure between 600 and 1000 cycles when accessing a cache line that
has previously been accessed by the TDX module, which is much higher than the DRAM
access time caused by a regular cache attack. To maximize the temporal resolution, we
only observe one cache line of the TDVPS structure. We observe, that the number of
observed cache misses per TD entry varies depending on the monitored offset inside
the TDVPS pages. In an offline profiling step, we determine the offset with the lowest
amount of noise, by running StumbleStepping against a calibration target several times,
sweeping over every cache line aligned offset. On our machine, offset 0x128 in the third
TDVPS page gives a stable correlation, with two accesses per TD entry.

Accuracy To evaluate the accuracy of our counting primitive, we use the synthetic code
snippet from Listing 8.2. We choose a loop with only one instruction instead of an if-else
construct as it allows us to easily scale the number of executed instructions while still
allowing differences as small as two executed instructions between two runs. For the
evaluation, we assume that the memory locations pointed to by r8 and r9 are known to
the attacker.

Figure 5 shows the resulting data for 1 to 5 loop iterations which corresponds to 4 to
12 executed instructions. Figure 6 shows the data for 100 to 105 loop repetitions which
corresponds to 202 to 212 instructions. The results clearly show that the measurement
noise increases when we observe longer program sequences. However, the distributions
for different iteration counts only partially overlap and the means are easily distinguish-
able. Thus, when using only a single measurement, there is a certain error probability
when trying to distinguish events with almost the same amount of executed instructions.
However, repeating the measurement multiple times eliminates the error. For events
with larger instruction differences, a single measurement is sufficient.
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Figure 5: Inferred instruction count for 1 to 5 repetitions of the loop from Listing 8.2 repeating
using 10,000 measurements. The dotted lines show the mean value.

Figure 6: Inferred instruction count for 100 to 105 repetitions of the loop from Listing 8.2 using
10,000 measurements. The dotted lines show the mean value. We removed a total of 17 outliers
above 300 inferred instructions.
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6 Leaking ECDSA Keys from Biased Nonce Truncation

As discussed in the preceding sections, single-stepping attacks are frequently used to
leak secret-dependent control flow. To protect against such attacks without relying on
countermeasures employed by the TEE, cryptographic libraries should use the data
oblivious constant-time programming paradigm. However, developing constant-time
code at the instruction level is a challenging task. In this section we present, in detail, a
control flow-based leakage during the derivation of the random and secret nonce k of
the ECDSA signing process.

In essence, there are two established ways to generate a random nonce mod n: A modular
reduction-based truncation of the randomly generated value or rejection sampling of
random values until a value k < n is drawn. Implementations of the latter method
usually do not leak a nonce bias. However, implementations of the former are more
prone to leak information, as they require a division which is more complex to implement
in a side-channel resistant manner. Both methods are listed in the FIPS digital signature
standard [38, Sec. A.3.1, A.3.2].

While Weiser et al. [52] already discussed this leakage in modular reduction-based
truncation, they deemed it negligible and did not further investigate it. We analyze this
leakage in full detail and show that, depending on the curve, in fact up to 15 bits of the
nonce are leaked. Additionally, we systematically investigate the usage of truncation for
nonce computation in multiple cryptographic libraries, finding leakages in wolfSSL and
OpenSSL. We evaluate the introduced leakage and its exploitability depending on the
curve and the curve’s modulus.

Root Cause To ensure that the nonce k is smaller than the curve’s modulus n, both
wolfSSL and OpenSSL use truncation via modular reduction of a random byte string.
The byte string has a bit length greater than the bit length of the curve order n. Next,
both libraries perform a modular reduction, reducing the random byte string to a value
smaller than n. Therefore, on a high level, both libraries consider the two top most words
of the numerator ktop and the top most word of the denominator ntop. Next, they compute
qtop =

ktop
ntop

to estimate the quotient q = k
n

. Afterwards, they check whether n · qtop > k. If
this condition is true, qtop is decremented. This decrementation is implemented as a loop,
meaning the number of times qtop has to be decremented is reflected in the execution
count of the loop. The number of loop iterations in turn can be observed by a side-channel
attacker and leaks information about the nonce’s most significant bits.

Investigated Libraries and Curves Table 1 lists all libraries we investigated during this
work and whether they use truncation or rejection sampling. Of the analyzed libraries,
only wolfSSL and OpenSSL use truncation. We initially found the leakage by analyzing
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Table 1: ECDSA nonce generation in different libraries.

Library Version Nonce Derivation Vuln. c’time
version inc.

wolfSSL 5.6.4 truncation yes limited1

OpenSSL 3.2.0 truncation yes no2

Nettle 3.9.1 rejection sampling no N/A3

Mbed TLS 3.5.1 rejection sampling no N/A3

botan 3.2.0 rejection sampling no N/A3

nss 3.9.4 rejection sampling no N/A3

1 Only for curves secp256,384,521; not enabled by default
2 Constant-time variant not yet implemented
3 Not applicable; the default is rejection sampling

wolfSSL with Microwalk [53, 54]. Using the obtained knowledge, we were able to analyze
the remaining libraries manually.

The remainder of this section is structured as follows. First, we give details on our analysis
methodology. Next, we present the discovered leakages in wolfSSL and OpenSSL in
more detail and discuss their exploitability.

6.1 Analysis Methodology

Before giving the results on the individual implementations in the analyzed libraries, we
describe our analysis workflow.

Simulated Side-Channel Traces In order to calculate the maximum obtainable infor-
mation and plot the bias introduced to the nonce k, we simulate side-channel traces
by adding counters to the targeted code, to observe the occurrence of certain control
flow events. We give more details on these events in the next sections. For each curve
and library we collect 10 million signatures. Per signature, we store the values of the
injected event counters, the signed hash h, the ECDSA signature values r and s, as well
as the nonce k. For the latter, we again modify the libraries as the nonce is not usually
exported. We stress that these modifications do not introduce secret-dependent changes
to the control flow and thus do not influence the code’s leakage properties. Afterwards,
we divide the collected samples into sets, one set per observable control flow event
combination. Within each set, we analyze the distribution of the bit values of k. We refer
to a distribution of nonce bit values simply as distribution.
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Table 2: Maximum obtainable leakage in terms of mutual information (MI) and fully leaked bits
(FB) for different curves in wolfSSL and OpenSSL. The MI values are rounded. The full bit
(FB) value reports on those bits which have the same value for all nonces in a distribution.
The event column specifies the event combination which corresponds to the leakage and the
probability of the event combination.

wolfSSL OpenSSL

Curve Event MI / FB Event MI / FB

(W1, W2) [bit / bit] (O1, O2) [bit / bit]
Pr[A = a] Pr[A = a]

bp224r1 (2, *) 1.6 / 1 (1, 0) 7 / 6
0.09 1.6 · 10−4

bp320r1 (3, *) 3 / 3 (2, *) 3 / 3
< 0.002 1.7 · 10−3

bp384r1 (2, *) 3.5 / 0 (1, *) 3.5 / 0
0.05 0.05

secp160r1 (2, *) 15.6 / 15 (1, *) 15.8 / 15
1.5 · 10−5 1.3 · 10−5

Leakage Quantification To quantify the leakage, we calculate I , the mutual information
(MI) per distribution. Therefore, we use I =

∑i<bitlen(G)
i=0 H(B) − H(B|A = a) with B

being the random variable describing a single bit value over the alphabet {0, 1}, A the
random variable describing the distribution of nonces, and G the generator of the curve.
The number of distributions per curve depends on the number of discernible events.
The probability Pr[A = a] of a nonce falling into one of the distributions is calculated by
dividing the number of samples with a specific event combination by the total number
of signatures collected for the curve.

Since we subdivide all nonces recorded during sampling into disjoint sets, we are inter-
ested in the overall information gain on all nonce bits per distribution rather than the
gain over all distributions. Thus, we do not sum over all distributions when calculating
the MI but only consider the distribution of the considered event combination.

While the MI precisely captures the leakage from an information theoretic point of view,
most key reconstruction algorithms require knowing the value of individual bits with
high certainty. Thus, we also analyzed which bits of each nonce always have the same
value for a given event combination. We call these full bits. Comparing MI and full bits
gives an insight on how much of the MI is distributed over small biases in different
bits. All leaking bits are most significant bits (MSB). We analyzed the curves secp128r1,
secp160r1 and secp192r1 as well as the R1 Brainpool curves for 160, 192, 224, 256, 320
and 384 bits for wolfSSL and OpenSSL.
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Listing 8.3: Simplified version of the leaking _sp_div_impl (wolfssl/wolfcrypt/src/sp_int.c)
function which divides a by d and is called during the nonce generation. The snippet is not
self-contained and only intended to highlight the control flow. The colored Event comments
mark points in the control flow that leak information about the nonce.

1 int _sp_div_impl(sp_int* a, d, r, trial) {
2

3 for (i = a->used - 1; i >= d->used; i--) {
4 //Calculate trial quotient
5 t = sp_div_word(a->dp[i], a->dp[i-1], dt);
6 do {
7 for (j = 0; j < d->used; j++) {...}
8 for (j = d->used; j > 0; j--)
9 //Event W2

10 if (trial->dp[j] != a->dp[j + o])
11 break;
12

13 if (trial->dp[j] > a->dp[j + o]) { t--; }
14 //Event W1

15 }while (trial->dp[j] > a->dp[j + o]);
16 }
17 };

The most important findings are summarized in Table 2 and the results for the remaining
curves and control flow events can be found in Table 3 in Section A. Per curve and library,
we specify the control flow events which cause leakage in the event column. In the next
two sections, we describe the leakages and the corresponding events in more detail.

6.2 Nonce Leakage in wolfSSL

For analyzing the leakage in wolfSSL, we use the default compile configuration with
additional hardening parameters and options to enable smaller ECC curves as well as
Brainpool curves. While the default implementation of wolfSSL’s math functionality is
supposedly constant-time [57], the default ECC sign functionality makes use of trun-
cation for generating k. With additional, non-default compiler flags, wolfSSL includes
implementations which use rejection sampling, but these are only available for the curves
secp256, secp384 and secp521.

Leaking Control Flow Events A simplified version of the algorithm for nonce truncation
in wolfSSL is shown in Listing 8.3. Event W1 in line 14 describes the number of times the
do-while loop was executed and thus how often the estimated quotient was decremented.
As a shorthand, we use W1 = x if W1 occurred x times. The event W2 counts which words
of the estimated quotient and nominator are relevant for the comparison to decide on
the decrementation of the variable t.
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Figure 7: Distribution of the nonce bits for curve secp160r1 in wolfSSL given event
(W1 = 2,W2 = ∗). The y-axis shows the percentage of nonces for which the value of the
corresponding bit is 1. The 15 most significant bits are always 1.

Leakage Quantification

Figure 7 shows the bias introduced to the nonce when W1 = 2, i.e. there are two iterations
of the do-while loop. While this event only happens with a probability of approximately
1.5 · 10−5, it reveals that 15 MSBs of the nonce are 1. Note, the bit length of the curve
order of secp160r1 is 161 bit, contrary to what the name suggests. However, the order’s
MSBs are all 0, except for the most significant bit. Thus, the order of secp160r1 is only
slightly larger than 2160, meaning the likelihood of a k with 161 bits is very small. Within
the 10 million samples we collected, most (about 50%) have a k of size 160 bit, but there
was no sample with a k of size 161 bit. Consequently, we assume the most significant bit
of k to be 0 and known by default.

The curve brainpoolp320r1 and brainpoolp384r1 show a leakage of 3 bit and 3.5 bit. The
distributions are shown in Figure 10 in the Appendix. Though the brainpoolp384r1 curve
does not leak any bit without error, i.e. no full bits (c.f. Section 6.1), there is less than
2% error in each of the biases of the 4 top most significant bits. For the brainpoolp224r1
curve, wolfSSL only shows negligible leakage.

Leakage Exploitability The leakage observed for secp160r1 is exploitable with conven-
tional LLL reduction techniques. In Section 7.3 we demonstrate the key reconstruction
for secp160r1 from real side-channel traces as a case study for StumbleStepping.

For evaluating the exploitability of the leakages for the curves brainpoolp320r1 and
brainpoolp384r1, we use the predicate with sieving technique from Albrecht et al. [2] and
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extend their implementation to also support MSB prefixes containing bits other than 0, as
the leaked MSB prefixes are 0b110 and 0b1000, respectively. The work of Albrecht et al.
suggests, that 4 bits are required to reconstruct keys for 384 bit curves. Thus, our 3.5 bit
leakage in the brainpoolp384r1 curve is a borderline case. However, our data shows that
we can also use the 4 MSBs as full bits, accepting a small additional error. The error can be
countered by resampling the subsets of the obtained signatures used for reconstruction
and running the key reconstruction multiples times with different subsets.

While the key reconstruction terminates in a reasonable time, it never succeeds. To verify,
that the error is not due to the small error probability of the individual bits, we also
performed additional key reconstruction experiments on simulated data: We simulate
the leading 4 bit 0b1000 leakage from our side-channel experiments without errors.
However, the reconstruction does not succeed either. Using a simulated, error free 5 bit
leakage, the reconstructions succeeds. To verify the correctness of our changes to the
implementation of Albrecht et al. [2] we validate that the reconstruction for a simulated
4 bit non-zero MSB leakage for the NISTP384 curve, which they used as a benchmark,
succeeds. Since this validation was successful, we assume that more than 4 bits are
required for brainpoolp384r1, in contrast to NISTP384.

The 3 bit leakage for the brainpoolp320r1 was too small to be exploited with the methods
of Albrecht et al. in our experiments.

6.3 Nonce Leakage in OpenSSL

For analyzing OpenSSL, we compile it with the default configuration, which uses trun-
cation with modular reduction to compute the nonce k. From the OpenSSL code and
corresponding comments, we could infer that it is envisaged to implement the computa-
tion of the estimated quotient in constant-time. However, this feature is not used and
during the course of the responsible disclosure we learned that it is not implemented.

Leaking Control Flow Events We show a simplified version of the procedure used for the
division during nonce truncation in Listing 8.4. It is comparable to the procedure used in
wolfSSL, however, contains slightly different observable side-channel events. Event O1

in line 9 describes how often the estimated quotient is decremented. Additionally, we
observe the event O2 in line 14 which describes whether the remainder of the division
overflows during the procedure of decrementing the variable q. We do not consider the
if-clause following event O2. Though it changes the control flow we did not observe any
differences in the resulting bit distributions when using it as a differentiator.

Leakage Quantification In Figure 8, we show that there is a 7 bit leakage for curve brain-
poolp224r1. As detailed in Table 2, only 6 of these 7 bits are full bit leakages. However,
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Listing 8.4: Simplified version of the leaking bn_div_fixed_top (openssl/crypto/bn/bn_div.c)
function which divides num by divisor and is called during the nonce generation. The snippet is
not self-contained and only intended to highlight the control flow. The colored Event comments
mark points in the control flow that leak information about the nonce.

1 int bn_div_fixed_top(BIGNUM* dv, rm, num, divisor,
2 BN_CTX *ctx) {
3

4 for (i = 0; i < loop; i++, wnumtop--) {
5 for (;;) {
6 if ((t2h < rem) ||
7 ((t2h == rem) && (t2l <= n2)))
8 break;
9 //Event O1

10 q--;
11 rem += d0;
12 if (rem < d0) //don't let rem overflow
13 break;
14 //Event O2

15 if (t2l < d1)
16 t2h--;
17 t2l -= d1;
18 }}};
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Figure 8: Distribution of nonce bits for brainpoolp224r1 curve in OpenSSL given event
(O1 = 1, O2 = 0). The y-axis shows the percentage of nonces for which the value of the corre-
sponding bit is 1. The 6 most significant bits are 0b110101 for all samples. The 7th bit is 1 for
more than 99% of all samples.
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since the error for the 7th bit is small, we can integrate it into the key reconstruction as
well. This leakage is only observable in the OpenSSL implementation as a differentiation
by the event O2 is required. For the secp160r1, brainpoolp320r1 and brainpoolp384r1
curve, OpenSSL shows similar leakage as wolfSSL.

Leakage Exploitability The 7 bit leakage for curve brainpoolp224r1 is exploitable. To
reconstruct the key, we use our extended variant of the predicate with sieving tech-
nique from Albrecht et al. [2]. We present the result in our single-stepping case study
in Section 7.2. The maximum leakage and exploitability for the curves secp160r1, brain-
poolp320r1 and brainpoolp384r1 corresponds to the analysis in Section 6.2.

6.4 Leakage Analysis Summary

We observe that the truncation of the secret nonce k leaks a varying number of most
significant bits, depending on the order of the ECDSA curve. The order of the curve
serves as denominator during nonce truncation. While we observe only small leakages
for curves with an order that consist of only 1 valued bits in the MSBs, we see large
leakage in the opposite case, i.e., few 1 valued bits in the MSBs of the curve’s order.

In contrast to what is reported in previous work [52], we find that the bias introduced
through modular reduction during nonce creation is not always negligible, but depends
on the order n of the curve. We show that in certain situations, a substantial bias is
introduced and observable through side-channels. Additionally, note that FIPS 186.5 [38]
states in A3.1 that implementations which use truncation during nonce creation shall
use an additional 64 bit of randomness to avoid a bias to k. While wolfSSL is following
this advice, k is still biased. We assume that the advice in FIPS 186.5 refers to the overall
distribution of k, but does not take into account additional side-channel information.

7 Case Studies

In the following we evaluate both our attack primitives on real-world cryptographic
libraries and demonstrate their ability to leak the ECDSA nonce k, allowing us to recon-
struct the private key. Our attack targets are the nonce leakages described in the previous
section. We first explain our attack approach in general and then give details for the
specific primitives and attacks targets.
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7.1 Attack Approach

The general attack approach is the same for both attacks and splits into an online and an
offline phase.

Offline Phase In the offline phase, we build the mapping from the number of observed
instructions per trace to the occurrence count of the events. Additionally, to be able
to use single-stepping and StumbleStepping we need to find page fault trigger points,
such that the number of instructions executed between the trigger points allows us to
infer the number of times the control flow passes the observed event. To infer when the
victim is about to be executed, we generate a page fault based template. For all tasks, we
use a semi-automated approach combining static binary analysis and dynamic binary
instrumentation.

Online Phase In the online phase, the attacker first needs to determine the guest physical
addresses of certain functions inside the target in order to instantiate the page fault
sequence template from the offline phase. Afterwards, they can use the template to start
single-stepping or StumbleStepping for tracing the TD when the targeted code is about to
be executed. This allows us to count the executed instructions between the trigger points.
For the evaluation, we streamlined the attack scenario by calling the target libraries from
a self-written program, that triggers the signature generation and supplies the attacker
with the guest physical address of the target library. As several works [28, 29, 30, 35]
against AMD’s confidential VM solution SEV, as well as confidential VM like systems
in general [9], have already demonstrated that an attacker can locate applications in
memory by observing access patterns, it is a valid assumption that the attacker can
infer the guest physical addresses for the page fault template. We want to stress that
the addresses used for the template are only from the target library, not from the calling
application. To maximize the performance, we implemented our attack logic inside the
Linux KVM hypervisor kernel module.

7.2 Single-Stepping brainpoolp224r1

The first case study shows the reliability and high resolution of our single-stepping
primitive. We extract the private ECDSA key from the side-channel leakage in the nonce
generation process for the brainpoolp224r1 curve in OpenSSL as described in Section 6.
The attack was executed on the same platform as the single-stepping evaluation. The
possible event combinations for brainpoolp224r1 in OpenSSL are (O1, O2): (0, ∗), (1, 0),
(1, 1). The event (1, 0) corresponds to signatures with the nonce bias required for our
attack. This event corresponds to leaving the inner for-loop in Listing 8.4 before event
O2 = 0 in Line 14 but only after executing event O1 = 1 in Line 9 once.
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Offline Phase Due to the code structure, we cannot use page accesses to distinguish
the events. Instead, we use page accesses shortly before and after the loop to trigger
single-stepping. Using our trigger points, we measure 32 steps for the event (0, ∗), either
38 for 39 steps for the nonce bias event (1, 0), and 42 or 43 steps for the event (1, 1). The
variable amount of steps for the events (1, 0) and (1, 1) is caused by the or-condition
in Listing 8.4 before the event O1 and some code restructuring by the compiler.

Online Phase As explained in the attack approach, we first obtain the guest physical
address for the attacked code sequence in OpenSSL to instantiate the page fault template
which we use to single-step only the execution of the nonce truncation. Our attack code
requires on average 32.98 ms per signature. Without an ongoing attack, a signature
requires on average 0.33 ms. To recover the key, we need 33 signatures with the nonce
bias event (O1, O2) = (1, 0), i.e. 38 or 39 counted steps. Given the low probability of
the event, we need to observe 170,000 signatures. Collecting all signature traces takes
approximately 94 minutes. The reconstruction of the long-term key is conducted as
described in Section 6.3 and requires 1.5 seconds on an Intel Xeon E-2286M.

7.3 StumbleStepping secp160r1

In this section, we exploit the nonce leakage in the secp160r1 curve from Section 6 with
StumbleStepping. We choose wolfSSL as target for the attack and run the experiments on
the same platform used for the evaluation of the StumbleStepping primitive.

The possible event combinations for secp160r1 are (W1,W2): (1, 1), (2, 1), (2, 2). The event
W1 describes the number of times the do-while loop in Listing 8.3 is executed. The events
(2, 1), (2, 2) correspond to signatures with the nonce bias required for our attack.

Offline Phase Due to the code structure, we cannot use page accesses to distinguish the
events. Instead, we use page accesses shortly before and after the outer loop to trigger
StumbleStepping. Using our trigger points, the events (1, 1), (2, 1), (2, 2) correspond to 178,
230 and 239 executed instructions.

Online Phase As explained in the attack approach, we first determine the required guest
physical address for the attacked code sequence in wolfSSL, instantiate the page fault
template and then start the StumbleStepping primitive to trace only the execution of the
nonce truncation. Our attack code requires on average 4.77 ms per secp160r1 signature.
Without an ongoing attack, a signature requires on average about 0.01 ms.

To recover the key, we require 12 signatures with a biased nonce, i.e. two occurrences
of the event W1. Since the probability for two occurrences of event W1 is very low, we
need to observe 700,000 signatures. Collecting all signature traces takes approximately
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Figure 9: Side-channel data for the StumbleStepping attack on the secp160r1 curve in wolfSSL. The
legend states the actual number of executed instructions while the x-axis shows the inferred
number of instructions. In total, we collected data for 700,000 signatures.

56 minutes. The measurement results are shown in Figure 9. As expected from the
evaluation of the toy examples in Section 5.2, the measurements contain some noise. Still,
we are able to distinguish the two relevant event groups, which differ by 52 instructions,
without errors. Using the LLL approach described in Section 2.5, the key recovery finishes
in 1.7 seconds on an Intel Xeon E-2286M.

8 Discussion

In this section we suggest improvements to the current single-stepping countermeasure
design and discuss limitations of our StumbleStepping primitive.

8.1 Improved Single-Stepping Detection

We propose to only rely on the progress of the instruction counter to detect single-
stepping. As discussed in AEX-Notify [12], single-stepping requires the attacker to
artificially slow down the execution of the first instruction, e.g. via a TLB flush. The
authors further show that consequently the attacker cannot reliably interrupt the SGX
enclave after the second instruction, i.e. the attacker cannot “two-step”. Based on these
results, changing the heuristic to enforce that at least two instructions have been executed
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prevents repeatedly interrupting the TD after x instructions. If less than two instructions
have been executed the prevention mode gets activated.

8.2 Improved Single-Step Prevention Mode

In this section, we propose changes to the single-stepping prevention mode, to mitigate
the instruction count leakage. For our StumbleStepping attack in Section 5, we observe
memory accesses to the TD’s TDVPS management data structure to infer the number of
executed instructions. Thus, one could consider adding additional accesses to this data
structure from the TDX module to introduce noise to any potential side-channel measure-
ments relying on these accesses. However, the fact that each iteration of the invocation of
the TDX single-stepping prevention mode requires a TD entry and exit exposes a large
microarchitectural attack surface, potentially allowing for other measurable effects. For
example, simply measuring the time between the APIC timer interrupt firing and control
being handed back to the hypervisor already reveals coarse grained information about
the number of instructions executed by the TD.

Thus, as a more profound solution, we propose to extend the Monitor Trap Flag mecha-
nism currently used when executing the TD in single-stepping prevention mode. Instead
of trapping after one instruction, the mechanism could directly support to execute a
randomized number of instructions in one burst. As a result, only a single TD entry
is required regardless of the number of instructions executed by the single-stepping
prevention mode, mitigating the instruction count leakage at its root.

8.3 AEX-Notify based Countermeasure

Orthogonal to the TDX single-stepping countermeasure, that is split into detection and
prevention, it should also be possible to port the countermeasure from AEX-Notify[12]
to VM-based TEEs like TDX. They execute a special interrupt handler that prefetches
the first instruction to undo any artificial slowdowns that would be required for single-
stepping. Since VMs are already interrupt aware, it should be possible to simply execute
this interrupt handler every time the TD is entered. With the original AEX-Notify design,
the security of the TEE depends on the runtime inside the protected enclave to use their
interrupt handler. With TDX, this could be improved by moving the prefetching step to
the TDX module, instead.
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8.4 Limitations of StumbleStepping

Compared to instruction counting attacks that use single-stepping, as e.g. CopyCat [33],
the StumbleStepping attack from Section 5 provides slightly weaker leakage. Since we can-
not pause the TD after every instruction, we cannot distinguish balanced if-else branches
that only differ in the relative order of their memory accesses. This is only possible with
single-stepping, as it allows removing page access rights after every memory access
instruction.

8.5 Attack Overhead

The case studies in Section 7.2 and Section 7.3 show different relative overheads intro-
duced to the signature computation time by the attack code. While the single-stepping
attack on OpenSSL in Section 7.2 slows down the execution approximately by a factor 100,
the signature creation with a running StumbleStepping attack on wolfSSL in Section 7.3
is roughly 500 times slower.

These differences can be attributed to multiple factors. First, we use different single-
stepping mechanisms in both primitives. While StumbleStepping implicitly single-steps
the TD by setting the MTF flag, the single-stepping primitive uses the APIC timer.
Furthermore, the observed instruction sequences have different lengths and finally, the
page fault sequences required to trigger the attack have different lengths.

9 Related Work

We start this section, by reviewing existing security flaws found in TDX before giving a
summary of existing attacks on ECDSA.

9.1 TDX

To the best of our knowledge, this is the first academic paper attacking the Intel
TDX single-stepping countermeasure. However, Intel commissioned several security
reviews [1, 19] to assess and improve the security of TDX.

Single-Stepping In Intel’s security review [19], a straightforward single-stepping attack
against an early TDX version was developed. However, Intel states that this is mitigated
since TDX module version 1.0. Our evaluation targets use version 1.0 and version 1.5
and thus break Intel’s countermeasure. During the disclosure process, Intel stated TDX
module versions after 1.5.0.6 will contain additional security measures.
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Page Fault Controlled-Channel The authors of [1] discuss that the memory blocking
feature of the TDX API can be used to implement page fault controlled-channel attacks,
recovering the TD’s control flow with page granularity.

Cache Attacks In [1] they also describe how the MKTME KeyID in combination with the
cache coherency protocol enables Flush+Reload-style cache attacks on TDX. In addition,
they state that the monitor and mwait instruction can be used to implement cache attacks,
similar to [60].

9.2 ECDSA Key Recovery

Weiser et al. [52] perform a systematic study of ECDSA nonce leakages. They already dis-
covered the leakage described in this work, but classify it as negligible and do not further
investigate it. However, our results show that the leakage depends on the curve order and
that it introduces large biases for some curves. CopyCat [33] uses instruction counting
with SGX to exploit side-channels in modular inversion and elliptic curve scalar multipli-
cation. In TPM-Fail [34], the authors also exploit the elliptic curve scalar multiplication,
however in the context of TPM implementations. In Ladderleak [4], the authors use a tim-
ing side-channel in combination with roughly half a billion signatures for a 163 bit curve
to exploit nonce leakages smaller than 1 bit, building on Bleichenbacher [8]. Moreover,
Ryan [42] investigates leakages introduced through non-constant-time implementations
of the modular reduction of r · d and r · d+ h.

10 Conclusion

Intel’s most recent TDX TEE comes with a built-in countermeasure against single-
stepping attacks. In this work, we have demonstrated the first attacks against this coun-
termeasure. We developed two attack primitives: Single-stepping TDs by outwitting
the detection heuristic and counting the TD’s instructions with StumbleStepping. The
former fully breaks the countermeasure by manipulating the CPU frequency to pass
a time check in the single-stepping detection heuristic. The second attack exploits the
side-channel properties of the single-stepping countermeasure, revealing a systematic
flaw in the current design that leaks the number of executed instructions via a cache
side-channel. We propose design changes to mitigate both attacks. As a second ma-
jor contribution, we have performed an extensive analysis of nonce truncation-based
leakages in ECDSA signatures, revealing vulnerable implementations in wolfSSL and
OpenSSL. We exploit our findings in two attack case studies: one against curve secp160r1
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in wolfSSL using StumbleStepping and one against curve brainpoolp224r1 in OpenSSL
using our single-stepping primitive.
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Table 3: Maximum obtainable leakage in terms of mutual information (MI) and fully leaked
bits (FB) for different curves in wolfSSL und OpenSSL. This table complements Table 2. Data
collection described in Section 6.1.

wolfSSL OpenSSL

Event MI/FB Pr[A=a] Event MI/FB Pr[A=a]

(W1, W2) [bit / bit] (O1, O2) [bit / bit]

bp160r1

- - - (0, *) 0.1 / 0 0.81
(1, 0) 1.3 / 1 0.11
(1, 1) 1 / 1 0.08

bp192r1

- - - (0, *) 0.4 / 0 0.64
(1, 0) 0.7 / 0 0.13
(1, 1) <0.1 / 0 0.23

bp256r1

(1, 1) 0.2 / 0 0.24 (0, *) 0.4 / 0 0.85
(1, 2) 0.6 / 0 0.61 (1, *) 1.1 / 0 0.15
(2, *) 1.1 / 0 0.15

bp224r1

(1, 1) <0.1 / 0 0.35 (0, *) 0.1 / 0 0.92
(1, 2) 0.3 / 0 0.56 (1, 0) 7 / 6 1.6 ·10−4

bp320r1

(1, 1) <0.1 / 0 0.16 (0, *) 0.3 / 0 0.54
(1, 2) 0.6 / 0 0.38 (1, 0) 0.1 / 0 0.28
(2, 3) <0.1 / 0 0.38 (2, *) 3 / 3 1.7 ·10−3

(2, 4) <0.1 / 0 0.8

bp384r1

(1, 1) 0.6 / 0 0.25 (0, *) 0.7 / 0 0.95
(1, 2) 0.8 / 0 0.70 (1, *) 3.5 / 0 0.05

secp128r1

(1, 1) <0.1 / 0 0.30 (0, *) <0.1 / 0 0.77
(1, 2) 0.3 / 0 0.47 (1, *) 1.3 / 1 0.23
(2, *) 1.3 / 1 0.23

secp192r1

(1, *) 0.2 / 0 0.5 (0, *) 0.2 / 0 0.5
(2, *) 0.2 / 0 0.5 (1, *) 0.2 / 0 0.5
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The growing adoption of cloud computing raises pressing concerns about trust
and data privacy. Trusted Execution Environments (TEEs) have been proposed as
promising solutions that implement strong access control and transparent memory
encryption within the CPU. While initial TEEs, like Intel SGX, were constrained to
small isolated memory regions, the trend is now to protect full virtual machines, e.g.,
with AMD SEV-SNP, Intel TDX, and Arm CCA. In this paper, we challenge the trust
assumptions underlying scaled-up memory encryption and show that an attacker
with brief physical access to the embedded SPD chip can cause aliasing in the physical
address space, circumventing CPU access control mechanisms.

We devise a practical, low-cost setup to create aliases in DDR4 and DDR5 memory
modules, breaking the newly introduced integrity guarantees of AMD SEV-SNP. This
includes the ability to manipulate memory mappings and corrupt or replay cipher-
text, culminating in a devastating end-to-end attack that compromises SEV-SNP’s
attestation feature. Furthermore, we investigate the issue for other TEEs, demon-
strating fine-grained, noiseless write-pattern leakage for classic Intel SGX, while
finding that Scalable SGX and TDX employ dedicated alias detection, preventing our
attacks at present. In conclusion, our findings dismantle security guarantees in the
SEV-SNP ecosystem, necessitating AMD firmware patches, and nuance DRAM trust
assumptions for scalable TEE designs.

1 Introduction

Cloud computing has become an important paradigm that takes advantage of the econ-
omy of scale by sharing platform resources among mutually distrusting tenants. Tra-
ditionally, a privileged hypervisor software layer orchestrates and isolates different
guest Virtual Machines (VMs). However, in this paradigm, cloud users must assume
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the hypervisor to be free from exploitable vulnerabilities, as well as trust the cloud
service provider’s administrators, staff with physical access, and local law enforcement.
In response to these concerns, Trusted Execution Environments (TEEs) have been de-
veloped, including AMD’s Secure Encrypted Virtualization (SEV) [48], Intel’s Software
Guard Extensions (SGX) [46, 58] and Trusted Domain Extensions (TDX) [31], and Arm’s
Confidential Compute Architecture (CCA) [6]. TEEs aim to facilitate private computa-
tions even in the presence of an untrusted hypervisor, guarding against both privileged
software-level and hardware-level attacks.

To this end, TEEs implement strong, hardware-enforced access control mechanisms to
protect data in use within the trusted CPU package while transparently encrypting
all data before writing it to untrusted off-chip DRAM. Therefore, TEEs safeguard data
confidentiality against advanced physical adversaries employing cold boot attacks [84]
or DRAM interposers [50]. Initial TEE designs, like Intel SGX, prioritized additional
strong cryptographic integrity and freshness protection to thwart data modification
and replay attacks. However, ensuring freshness requires secure on-chip storage for
the root of the integrity tree, which does not scale effectively with larger memory sizes.
Consequently, these initial designs are limited to a relatively small memory region (i.e.,
128 or 256 MB) [26]. A clear industry shift, exemplified by Scalable SGX, TDX, SEV, and
CCA, has since extended protection to full VMs, thereby scaling memory encryption
to encompass the entire DRAM. However, this expansion may come at the cost of
theoretically reducing the strength of cryptographic integrity guarantees against physical
adversaries [46].

While it has been established that data encryption cannot conceal address access pat-
terns [19, 50], and scaling up memory encryption may introduce powerful ciphertext side
channels [51, 54] in code that is otherwise constant time, no practical integrity breaches
have been demonstrated to date. One reason for this is that the cost of such advanced
physical attacks is considered to be exceedingly high. For instance, the sole previous
hardware attack that managed to extract access patterns from SGX’s memory encryption
engine required a prohibitive investment of $170,000 for a DDR4 DRAM interposer [50].
It is worth noting that this interposer requires continuous physical access and may not
even be fast enough to manipulate or replay data, let alone target more recent DDR5
technologies. Thus, in this paper, we analyze the remaining DRAM trust assumptions,
considering the following fundamental questions:

Can the memory subsystem, especially DRAM modules, be manipulated to break integrity protec-
tions in scalable, new-generation TEE designs? Are these attacks viable for low-cost adversaries
with minimal or no physical access?

Exploring a new research direction, we focus our attention on the memory subsystem’s
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initialization process, which is conducted at boot time by BIOS system software in con-
junction with DRAM module configuration data, both of which are explicitly distrusted
from the perspective of CPU-based TEEs. Specifically, we introduce a novel, platform-
agnostic technique to double the apparent size of DDR4 and DRR5 memory modules
by unlocking and manipulating the onboard Serial Presence Detect (SPD) chip, which
provides a standardized method for reporting physical memory properties to the BIOS.
We dub such manipulated memory modules BadRAM. Notably, our practical, low-cost
SPD manipulation setup requires only brief, one-time physical access and can be built
for approximately $10. Moreover, we find that certain DRAM vendors incidentally leave
SPD unlocked, potentially enabling software-only attacks without any need for physical
access.

In our attacks, we double the apparent size of the Dual Inline Memory Module (DIMM)
installed in the system to trick the CPU’s memory controller into using additional “ghost”
addressing bits. These addressing bits will be unused within the virtually enlarged
DIMM, creating an interesting aliasing effect where two different physical addresses now
refer to the same DRAM location. We develop a practical reverse-engineering method
to locate these aliases and show that they can be exploited to bypass access control
restrictions, including those implemented by TEEs. Most impactful, in the case of AMD
SEV-SNP, we show that BadRAM attackers can tamper with or replay ciphertexts and
even manipulate the crucial reverse map table data structure, thereby re-introducing
potent page-remapping attacks [61, 62, 63] that initially prompted the development
of SEV-SNP. Building upon these primitives, we construct a comprehensive, end-to-
end attack that allows replaying the cryptographic launch digest used in SEV-SNP’s
attestation process. We experimentally demonstrate that this capability permits the
launching of arbitrarily modified VM images without altering their attestation report,
consequently undermining all trust in the SEV-SNP ecosystem.

Next, we analyze the effect of our BadRAM aliasing primitive on the security of other
popular TEEs beyond AMD SEV-SNP. We find that “classic” Intel SGX incorporates
suitable cryptographic integrity protections that effectively thwart ciphertext replay or
corruption attacks but still allow BadRAM adversaries to discern precise, noiseless write
access patterns at a fraction of the cost of prior work [50]. Conversely, Scalable SGX and
TDX include a trusted code module that explicitly checks the physical memory space for
aliases during boot time, preventing our attacks at present. Following our responsible
disclosure, AMD plans to introduce a similar countermeasure through a firmware update
for SEV-SNP.



244 Chapter 9: BadRAM

Contributions

Our main contributions are as follows:

• We present a novel physical memory aliasing primitive based on malicious SPD
data that bypasses TEE-imposed access-control restrictions at low cost and with
one-time physical access.

• We show how malicious SPD configurations break AMD SEV-SNP’s memory
integrity feature, allowing to remap pages and corrupt or replay ciphertexts.

• We present an end-to-end attack on SEV-SNP’s attestation, allowing arbitrary
changes to the VM.

• We demonstrate low-cost, fine-grained, noiseless write-pattern leakage for classic
Intel SGX.

• We discuss existing countermeasures as well as improvements to harden TEEs
against BadRAM.

Responsible Disclosure

We disclosed the SPD aliasing attacks with proof-of-concepts to break SEV-SNP to AMD
on February 26, 2024. AMD acknowledged our findings, which they are tracking under
CVE-2024-21944 and AMD-SB-7022, and requested an embargo until December 10, 2024.
Notably, AMD’s official CVSS assessment (AV : L/AC : H/PR : H/UI : N/S : C/C : N/I : H/A : N)
acknowledges that BadRAM attacks can be mounted by local, software-only attackers
without physical access (e.g., via SSH). For the issue in classic Intel SGX, we did not deem
disclosure necessary at this point, as the underlying problem of write-pattern leakage
has been demonstrated before. To mitigate our findings, AMD will interactively check
the DRAM configuration using “AMD Secure Boot loader firmware”. Section A contains
AMD’s verbatim response.

Open Science

To ensure the reproducibility of our results, and to enable future science on memory-
aliasing attacks and defenses, we open-source our practical SPD tools and evaluation
scenarios at https://github.com/badramattack/badram.

https://github.com/badramattack/badram
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2 Background

2.1 AMD Secure Encrypted Virtualization

AMD’s Secure Encrypted Virtualization (SEV) [48] is a TEE that protects virtual machines
against privileged software attackers, such as a malicious hypervisor. The intended use
case is to run VMs in the cloud without needing to trust the cloud service provider. SEV
uses a combination of access rights and memory encryption to protect the VM’s data.
Before writing data to DRAM, it is encrypted with AES XOR-Encrypt-XOR (AES-XEX)
using a tweak value derived from the physical address [48, 67, 80]. The encryption keys
are managed by the AMD Secure Processor (SP), which forms the hardware root of trust
for the system. The SP offers an API to the hypervisor to manage encrypted VMs. To
protect the VM’s plaintext data inside the system-on-chip, e.g., while it is in the cache,
the data is tagged with a VM-specific identifier to restrict access to the corresponding
VM. The updated version SEV Encrypted State (SEV-ES) [47] added encryption to the
previously unprotected VM register file. The latest version, SEV Secure Nested Paging
(SEV-SNP) [1, 5], mainly adds integrity protection to both the VM’s memory content and
its memory layout, preventing an attacker from writing to an encrypted VM’s memory
from software and restricting their ability to remap the VM’s secure memory pages.
Both mechanisms are implemented via an additional, hardware-managed data structure
called the Reverse Map Table.

2.2 DRAM Organization

A DIMM consists of a number of SDRAM chips that are grouped together into ranks.
Each of these dies contains grids of DRAM cells, consisting of a number of rows and
columns, which are grouped together into banks. Each memory location within the
DIMM is uniquely defined by its rank, bank group, bank, column, and row. Multiple
DIMMs can be present in the system, organized into channels. Each channel can be
accessed in parallel.

Accessing a certain memory location first requires activating the corresponding row. As
only one row can be open at a time within a bank, switching between rows incurs a
performance penalty. The translation of physical address to DRAM address bits, per-
formed by the memory controller, is, therefore, not a one-to-one mapping. For instance,
the channel, rank, and bank bits are typically obtained by XORing different physical
address bits together [65, 76]. This spreads consecutive addresses over different channels,
ranks, and banks, reducing the performance overhead.
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2.3 Serial Presence Detect

The Serial Presence Detect (SPD) chip is a serial Electrically Erasable Programmable
Read-Only Memory (EEPROM) part of a DIMM that contains the module’s configuration
data. This data includes, for instance, the physical properties of the DIMM (e.g., size,
speed), as well as its metadata (e.g., serial number, manufacturing date). The SPD data
encoding is standardized by JEDEC. On a high level, the EEPROM is divided into four
blocks for DDR4 and 16 blocks for DDR5. In DDR4, the base configuration and end-user-
programmable sections are stored in blocks 0 and 3, respectively, while in DDR5, they
are stored in blocks 0–1 and 10–15.

Communication with the SPD chip takes place over the System Management Bus (SMBus)
for DDR4 and the JEDEC Module Sideband Bus (SidebandBus) for DDR5. These are
two-wire interfaces based on I2C and I3C, respectively. Upon boot, the BIOS reads out
the EEPROM of every connected DIMM to configure the system based on the reported
parameters. This interface can also be exposed to software, allowing software to query
the parameters of the connected DRAM modules.

Write Protection

To protect against accidental overwrites, each block can be optionally write protected.
As per JEDEC specification, this write protection must be reversible, though doing so
requires physical access to the DIMM. For DDR4, reverting the write protection requires
connecting I2C addressing pin SA0 to VHV (7–10 V) and issuing the Clear all Write
Protection (CWP) command [44]. For DDR5, the protection status is stored in registers
MR12 and MR13, which can be modified by tying the HSA pin to ground [45].

JEDEC-compliant modules are required to protect blocks 0–1 for DDR4 and 0–7 for DDR5.
Additionally, they must not set protection for the end-user-programmable blocks, which
are, for instance, used to specify user-defined overclocking profiles through Intel XMP or
AMD EXPO.

3 BadRAM Memory Aliasing Primitive

An adversary able to change the values of the SPD can trick the system into assuming
different DIMM properties than those that are physically present. In this section, we use
this idea to build up a primitive that creates physical memory aliases by making the
DRAM appear larger than it actually is. In Sections 4 and 5, we explore the implications
of this aliasing effect on TEE security.
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Figure 1: High level overview of the memory configuration steps performed by the BIOS. An
incorrect DIMM topology can be either the result of a malicious SPD, or a malicious BIOS.

To manipulate the reported DRAM size, the attacker needs to interfere with the memory
initialization. This initialization is performed by the BIOS, which configures the memory
controller based on the data reported by the SPD chip, as shown in Figure 1. As BIOSes
are proprietary, we instead consider modifying parts of the SPD information to perform
a data-driven attack against a benign BIOS.

3.1 Attacker Model

For our attacks, we assume an attacker with (i) root privileges on the target system and
(ii) one-time physical access to a DIMM module installed in the system. Assumption
(i), i.e., software root access, is the standard adversary model in the TEE context and in
principle also includes arbitrary code execution in the BIOS. However, as BIOSes are
notoriously inaccessible to end users, we introduce assumption (ii), recognizing that
TEEs generally assert a degree of protection against physical DRAM attacks. Intel SGX
and TDX explicitly consider the DRAM subsystem untrusted [26, 35]. Similarly, AMD
SEV-SNP considers certain DRAM attacks, such as cold boot attacks, as part of their
threat model, while “on-line DRAM integrity attacks, such as attacking the DDR bus
while the VM is actively running” are considered out of scope as they are deemed “very
complex and require a significant level of local access and resources to perform” [1].

For our attacker model, we only require one-time physical access to manipulate the
data on the DIMM’s SPD chip. This could, for example, be performed by a malicious
employee at a cloud service provider or through a supply-chain attack, without adding
extra hardware to the system or leaving physical traces. We also note that we encountered
off-the-shelf DRAM modules with disabled write protection, cf. Table 1, where the SPD
could be potentially overwritten purely from software. Once the manipulated DIMM is
installed, the attacker is no longer required to have physical access to the targeted system
and can carry out the subsequent steps remotely from software.
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Figure 2: Raspberry Pi Pico setup to unlock and modify DDR4 and DDR5 SPDs.

01234567

WP7 WP6 WP5 WP4 WP3 WP2 WP1 WP0MR12

WP15 WP14 WP13 WP12 WP11 WP10 WP9 WP8MR13

Figure 3: Encoding of MR12 and MR13 for DDR5 [45]. BadRAM SPD modification attacks require
bits 0 and 7 of MR12 to be clear.

3.2 Modifying SPD Contents

Experimental Setup

To physically interface with the SPD chip, we connected a standard Raspberry Pi Pico
to the I2C interface exposed on the DIMM, as shown in Figure 2. This offers a direct
connection to the EEPROM, enabling read and write access, and allows to disable any
potential write protection. As the SPD lacks authentication measures, its contents can be
altered without detection by the system. This has been used before to adjust the DIMM’s
frequency [27, 49], or to create counterfeit memory modules [73]. Note that while DDR5
supports I3C, it remains backward compatible with I2C and defaults to I2C on power
on [45]. The total setup cost to perform SPD modifications, which includes the Raspberry
Pi Pico and DDR sockets, is approximately $10. Section B includes a full parts list.

DRAM Vendor Analysis

We analyzed several off-the-shelf DDR4 and DDR5 memory modules, including RDIMMs,
UDIMMs, and SODIMMs, as summarized in Table 1. Performing a BadRAM attack re-
quires modifications to block 0 for DDR4 and blocks 0 and 7 for DDR5 (as DDR5 stores
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Figure 4: An incorrect configuration of the memory controller can result in unused address bits.
Two addresses that only differ in the ghost bit alias to the same physical location inside the
DRAM memory as this bit is ignored.

the CRC in a separate block). The protection of these blocks is defined by WP0 for DDR4
and bits 0 and 7 of register MR12 for DDR5 (cf. Figure 3).

We found that most, though not all, memory modules lock the base configuration by
default, as required by JEDEC, though they do not all set the remaining protection bits
equally. We experimentally verified the ability to remove this protection with physical
access as per the JEDEC specification. This operation can be performed entirely using
the Raspberry Pi, with DDR4 only requiring an additional 7–10 V source, such as a boost
converter or a 9 V battery. Notably, we found at least two off-the-shelf DDR4 DIMMs
(Corsair1 and Corsair2) that leave the base configuration entirely unprotected, possibly
exposing them to software-only BadRAM attacks. In specific cases, this may even lead
to accidental corruption of the SPD, a known problem for some motherboards [56].
However, as these particular modules are UDIMMs, they are not compatible with our
test server systems.

3.3 Creating Memory Aliases

With the ability to modify the SPD data, we can change the base configuration information
of the DIMM. While not changing the underlying physical properties of the DIMM,
this will change the properties as perceived by the host system. For instance, we can
change the addressing that is used for the DIMM. The memory controller relies on this
information to construct its physical-to-DRAM address mapping. This mapping depends,
for instance, on the number of bits that are required to address each level of the DIMM’s
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Figure 5: Encoding of byte 5 of the SPD’s content, representing the SDRAM addressing [41, 42].
This byte is part of block 0 in the SPD.

hierarchy [65, 76]. An incorrect configuration, as reported by the SPD, can create an
inconsistent memory view between the CPU and DIMM. For instance, if the SPD reports
more addressing bits than are actually used by the module, effectively increasing the size
of the DIMM, the CPU will accordingly incorporate these bits into its mapping. However,
since these “ghost” bits are not used by the DIMM, they are effectively ignored, creating
aliases in the CPU’s memory view.

Concretely, we consider modifying the SPD to report one additional address bit, not
used by the DIMM. This effectively doubles the apparent size of the module. From the
CPU’s perspective, an additional address line will be driven, which is not connected to
the DIMM and thus ignored by the addressing logic on the DIMM. This discrepancy
in addressing between the CPU and DIMM results in two DRAM addresses, which
only differ in the unused “ghost” bit, mapping to the same DRAM location, as shown in
Figure 4. These aliases are invisible to the memory controller: from the CPU’s perspective,
these are two distinct addresses. As a result, they can bypass access control checks based
on physical addresses, for instance, in the context of TEEs.

SPD Encoding

As mentioned before, the required information to correctly address the DIMM is stored
in the SPD. For instance, byte 5 encodes the number of row and column bits in use by
the DIMM, as shown in Figure 5. To introduce an additional DRAM address bit, we can
modify this byte to either increment the number of rows or columns. This necessarily
also requires a modification to the DRAM density per die (byte 4, bits 0–3 for DDR4 and
bits 0–4 for DDR5), which has to be updated to reflect the doubled capacity due to the
additional addressing bit. Finally, the CRC bytes must be updated to match the modified
content.

When booting a system containing a DIMM with a modified SPD, we found that
some BIOSes may cache the SPD contents of the DIMM based on its serial number.
This is, for instance, the case in coreboot, an open-source BIOS implementation [17,
src/include/spd_cache.h]. The changes in the SPD may, therefore, not be applied if the
module was already part of the system before. Modifying the serial number (bytes 325–
328 for DDR4 or 517–520 for DDR5) simulates inserting a different module and thus
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forces the system to re-read the modified addressing information in the EEPROM. This
behavior highlights that these memory mapping manipulations could also be performed
by a malicious BIOS, which we discuss further in Section 6.1.

In our experiments, we opted to increment the number of row address bits. These bits are
typically mapped to the highest physical address bits [65, 76], making unintended aliases,
which impact system stability, less likely. Additionally, the column bits are typically
combined in linear functions to determine the channel, rank, and bank, making the
search for aliases more complicated. Assuming common DIMM properties (i.e., a 64-bit
interface, an 8 kB row size, and 16 (32) banks for DDR4 (DDR5)), all single-rank DIMMs
with a capacity up to 16 GB for DDR4 and 32 GB for DDR5 will have at least one free
row address bit. This capacity increases with additional ranks; the maximal capacity
for DIMMs susceptible to row-based BadRAM attacks for common rank configurations
is given in Table 2. In practice, however, this restriction does not significantly limit the
attack surface as servers typically have many DIMM slots and only one modified DIMM
is required for our attacks.

Finding Memory Aliases

In contrast to the simple example from the previous paragraph, physical address bits need
not map one-to-one to DRAM address bits. The ghost bit, therefore, does not necessarily
correspond to a single physical address bit. Thus, finding two aliasing addresses may
require scanning the entire physical memory space. However, this step needs to be
done only once per memory configuration, as the mapping is deterministic. On a high
level, we can search for the alias of address A by writing a marker value to it and
scanning the remaining memory for another appearance of this marker. The process is
slightly complicated by memory scrambling [84], where the memory controller XORs a
randomized scramble pattern to the payload data before writing it to DRAM to even out
the electrical load on the memory bus. As the scramble pattern is based on the physical
address, a different pattern will be applied when reading from address A and its alias,
hiding that they are, in fact, containing the same marker value.

To find the aliased address for A, we use the approach shown in Algorithm 2. The
flush operations are required because there is no cache coherency for aliased physical
addresses. By comparing the XOR values on line 7, we ensure that the effect of memory
scrambling cancels out. Note that for this one-time search, we temporarily disable mem-
ory encryption features like AMD SME [3, §7.10] or Intel TME-MK [33], as they encrypt
the memory contents using AES with an address-based tweak. This is no longer a linear
operation, and thus cannot be canceled out by an XOR-based comparison. For both
SME and TME-MK, the encryption status can be configured with page granularity at
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Algorithm 2 Search alias for physical address A.

1: for each page-aligned physical address B ̸= A do
2: m1,m2 ← 64 random bytes;
3: flush (B) ; write_mem (A,m1) ; flush (A)
4: g1 ← read_mem(B); flush (B)
5: write_mem (A,m2) ; flush (A)
6: g2 ← read_mem(B)
7: if m1 ⊕m2 = g1 ⊕ g2 then
8: return B
9: end if

10: end for

runtime or for the whole system via BIOS settings. Some mainboards also allow memory
scrambling to be disabled in the BIOS, simplifying the alias scanning to just looking for a
second appearance of the marker value.

Evaluation

We evaluated our memory aliasing primitive on three different systems, which we refer
to as AMD1, Intel1, and Intel2 (cf. Table 3). On all systems, we modified the SPD to report
one additional row and thus twice the actual memory size. To ensure stable system
operation, we must prevent the kernel and all applications from using the introduced
ghost memory regions to avoid accidental overwrites. We achieve this via the Linux
kernel command line parameter memmap = nn$ss, which marks the memory region ss to
ss+ nn as reserved, preventing the system from using it [55]. On all systems, booting
with the upper half of the memory blocked by memmap resulted in a largely stable system.
Our alias search implementation consists of a user space application implementing the
core logic in Algorithm 2, assisted by a small Linux kernel module that enables direct
access to arbitrary physical addresses.

The alias search revealed that on the two Intel systems, the ghost row address bit corre-
sponded to a single physical address bit. On Intel1, this bit corresponded to the most sig-
nificant physical address bit, whereas for Intel2—a dual-socket system—it corresponded
to the second most significant bit, with the most significant one specifying the socket.
On AMD1, on the other hand, the memory was fractured into multiple chunks, with
each chunk having a separate aliasing function. Furthermore, we observed that the exact
layout was influenced by the memory regions blocked with memmap. Nonetheless, the
system was stable enough to successfully carry out the attacks on SEV-SNP that are
described in Section 4. We suspect that the address space fracturing could be related to
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“memory hoisting” [4, 40], which allows applying offset-based modifications to the way
physical addresses map to DRAM.
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Table 1: Write protection and addressing (highlighted) for various DIMMs. Full version in
Appendix (Tables 7 and 8).

Manufacturer Type

DDR4 WP0 WP1 WP2 WP3 Row Col.
Corsair1 UDIMM ✗ ✗ – – 15 10
Corsair2 UDIMM ✗ ✗ ✗ ✗ 16 10
Crucial1 SODIMM ✓ ✓ ✓ ✗ 16 10
Kingston1 RDIMM ✓ ✓ ✗ ✗ 16 10
Kingston2 RDIMM ✓ ✓ ✗ ✗ 17 10
Kingston3 RDIMM ✓ ✓ ✗ ✗ 17 10
Kingston4 UDIMM ✓ ✓ – – 16 10
Micron1 RDIMM ✓ ✓ ✓ ✗ 17 10
Micron2 RDIMM ✓ ✓ ✓ ✗ 18 10
Micron3 RDIMM ✓ ✓ – – 16 10
Micron4 RDIMM ✓ ✓ ✓ ✗ 17 10
Samsung1 UDIMM ✓ ✓ ✗ ✗ 16 10
Samsung2 SODIMM ✓ ✓ ✗ ✗ 16 10
SK hynix1 RDIMM ✓ ✓ ✗ ✗ 17 10
SK hynix2 RDIMM ✓ ✓ – – 17 10
SK hynix3 UDIMM ✓ ✓ ✗ ✗ 15 10
SK hynix4 UDIMM ✓ ✓ ✗ ✗ 16 10
SK hynix5 SODIMM ✓ ✓ ✗ ✗ 15 10

DDR5 MR12 MR13 Row Col.
Kingston5 RDIMM 0xff 0x3c 16 10
Kingston6 RDIMM 0xff 0x00 16 10
Kingston7 RDIMM 0xff 0x00 16 10
Samsung3 RDIMM 0xff 0x01 16 10
SK hynix6 RDIMM 0xff 0x01 16 10
SK hynix7 UDIMM 0xff 0x01 16 10

Write Protection Addressing

Table 2: Maximal DIMM capacity susceptible to row-based BadRAM attacks.

Maximal DIMM Capacity

Ranks DDR4 DDR5

1 16 GB 32 GB
2 32 GB 64 GB
4 64 GB 128 GB
8 128 GB 256 GB
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Table 3: Overview of evaluation systems used in this paper.

System TEE Mainboard CPU DIMM(s) DRAM

AMD1 SEV-SNP ASRock ROMED8-2T EPYC 7313P 1×Micron1 DDR4
Intel1 Classic SGX Intel NUC7i3BNH i3-7100U 1×Crucial1 DDR4
Intel2 Scalable SGX Supermicro X12DPi-NT6 Xeon 6330 16×Micron3 DDR4
Intel3 TDX ProLiant DL320 Gen11 Xeon 5515+ 8×Kingston7 DDR5



256 Chapter 9: BadRAM

4 Breaking AMD SEV-SNP

In this section, we show how the BadRAM primitive can be used to break SEV-SNP’s
newly introduced central memory integrity claim: “[. . .] if a VM is able to read a private
(encrypted) page of memory, it must always read the value it last wrote” [1]. To this
end, SEV-SNP imposes additional restrictions on the untrusted hypervisor to protect
the integrity of the VM’s memory layout and prohibit writing to its encrypted pages. In
this section, we first explain how these features are implemented and then show how
the protection can be broken using the BadRAM primitive. Finally, we demonstrate
an end-to-end attack that breaks SEV-SNP’s attestation, allowing an attacker to make
arbitrary changes to a protected VM without changing its attestation report, breaking all
trust in SEV-SNP.

With virtualization, there are two sets of page tables: the regular page tables used by the
unenlightened OS inside the VM, and the Nested Page Tables (NPT) managed by the
hypervisor. The addresses used by the VM are called Guest Virtual and Guest Physical
Addresses (GPAs). The NPT is used to translate guest physical addresses to actual Host
Physical Addresses (HPAs). With SEV, the hypervisor is in control of the NPT, allowing
it to remap a GPA to a different HPA or to map two GPAs to the same HPA.

SEV-SNP’s integrity features are implemented via the newly introduced Reverse Map
Table (RMP). The RMP is a linear table that contains one entry for each HPA page that
should be assignable to SEV-SNP VMs. Each RMP entry records various attributes. The
most important ones are whether the page is used by an SEV-SNP VM and, if so, the
GPA at which the page is supposed to be mapped within the VM. Following AMD’s
nomenclature, we will call pages used by SEV-SNP VMs guest-owned and all other pages
hypervisor-owned. The RMP has to be allocated before architecturally enabling SEV-SNP,
by specifying its physically contiguous memory range via the RMP_BASE and RMP_END
MSRs [3, §15.26.4]. Afterward, the hypervisor can no longer write to this memory region.
Instead, it has to use a newly introduced set of instructions that grant it restricted access
to the RMP. Thus, in contrast to the NPT, the information in the RMP is trustworthy.
In the following, we show how we can use the BadRAM primitive to break both the
memory layout integrity and the memory content integrity introduced by the RMP.

4.1 Breaking Memory Layout Integrity

Prior to SEV-SNP, there was no mechanism for a VM to detect changes in the GPA to HPA
mapping performed by the hypervisor-controlled NPT. Morbitzer et al. exploited this for
their SEVered attacks [61, 62, 63], which use the ability to swap the memory mapping of
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Figure 6: Mapping manipulation required for remapping attacks on SEV-SNP. The hardware
checks that the HPA, as translated by the NPT, matches the expected GPA specified in the
RMP. This enables the hardware to detect malicious mapping changes through the hypervisor
controlled NPT. Thus, the attacker needs to change both mappings. The RMP manipulation
requires our BadRAM primitive. The figure shows the entries after the swap has been per-
formed.

two pages in conjunction with a service running inside the VM, to decrypt arbitrary VM
memory, inject hypervisor chosen plaintext and execute arbitrary code in the VM.

To prevent these kinds of attacks, SEV-SNP consults the RMP upon each page table walk
caused by the VM to verify the integrity of the GPA to HPA mapping. The RMP assigns
each guest-owned page a valid bit and an expected GPA. When the hypervisor first
assigns a page to the SEV VM via the rmpupdate instruction or uses one of the other
instructions to update the page’s status, the valid bit is reset to 0. When a VM accesses
a page with the valid bit set to 0, the VM is informed via a #VC exception, allowing it
to validate the page if it deems the potential GPA change benign, e.g., the first time it
accesses the page. For the validation, it needs to use the pvalidate instruction, which stores
the current GPA of the page in the RMP and sets the valid bit to 1. When a VM accesses
a page with the valid bit set to 1, where the expected GPA stored in the RMP does not
match the GPA in the NPT, the hardware aborts the access and generates a nested page
fault exception.

Using the BadRAM primitive, the hypervisor can circumvent the write protection of
the RMP itself and, thus, make arbitrary changes to the stored GPA values without
clearing the valid bit. Crucially, we find that the RMP’s content is not encrypted. Thus,
the hypervisor can directly write to the RMP and does not have to resort to replaying
previously captured ciphertexts. As a result, the hypervisor can trivially swap the GPA-
to-HPA mapping of two pages, by swapping both the GPA-to-HPA mapping in the
NPT and the expected GPA in the corresponding RMP entry, as shown in Figure 6. This
re-enables SEVered attacks [61, 62, 63], which, in conjunction with a service running
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in the VM, allow both decryption and encryption of SEV-SNP VM memory as well as
code execution. Note that, as each GPA is inherently associated with exactly one RMP
entry at a time, the hypervisor still cannot map two GPAs to the same HPA at the same
time. However, such aliasing is not required for the cited attacks. If desired, adversaries
can use single-stepping, e.g., SEV-Step [81], to precisely manipulate RMP entries at a
maximal, instruction-level temporal resolution.

Proof-of-Concept

We implemented an elementary proof-of-concept on the AMD1 system, using a single
BadRAM memory module, showing that we can swap the mapping of two protected
VM addresses. For the implementation, we modified the Linux kernel on the host system
to provide an API to manipulate NPT entries. In addition, we use our previous kernel
module for direct physical memory access to parse the RMP and modify it through a
BadRAM alias.

4.2 Breaking Memory Content Integrity

Safeguarding the integrity of encrypted memory content in SEV-SNP is not enforced via
cryptographic measures, but solely relies on the RMP. If SEV-SNP is enabled, the RMP is
consulted for each memory write performed by the hypervisor [3, Table 15-39]. If the
targeted page is guest-owned, the write attempt is blocked. Crucially, using the BadRAM
primitive, we can circumvent this RMP protection by ensuring that the alias is hypervisor-
owned. While the hypervisor can now write to guest-owned pages, their content is still
encrypted with AES-XEX. As AES-XEX does not offer integrity, the guest cannot detect
if a ciphertext has been manipulated. Instead, a modified ciphertext simply decrypts
to a randomized value, i.e., it is not possible to make controlled semantic changes to
the plaintext. Nonetheless, manipulating the ciphertext can be used as a capable fault
primitive, e.g., against cryptographic schemes [11].

Since AES-XEX does not offer freshness, the hypervisor can also use the BadRAM primi-
tive to replay previously captured ciphertexts. The tweak value used for the XEX mode
depends on the HPA and boot-time randomness. Thus, ciphertexts can only be replayed
to the same physical memory address they were read from. Otherwise, the mismatch-
ing tweak values lead to a randomized, garbage plaintext, similar to corrupting the
ciphertext. As each SEV VM uses a different encryption key, ciphertexts can also not be
replayed across different SEV VMs.
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Proof-of-Concept

We implemented an elementary proof-of-concept on the AMD1 system, showing that we
can randomize the content of a memory buffer inside the VM by modifying its aliased
ciphertext from the hypervisor. To this end, we modified the Linux kernel on the host
system to provide a convenient API for GPA-to-HPA translations. In addition, we use our
previous kernel module for direct physical memory access to perform the modification
through the BadRAM alias of the targeted address.

4.3 End-to-End attack on SNP’s Attestation

In this section, we transition from integrity to confidentiality by demonstrating how the
replay attack primitive discussed in the previous section can be leveraged to compro-
mise AMD’s crucial attestation feature, thereby undermining all trust in the SEV-SNP
ecosystem.

SEV-SNP Attestation

Following common TEE design patterns, an SEV VM’s lifecycle is split into two major
phases:

1. In GSTATE_LAUNCH, the hypervisor creates the VM and prepares its memory content
by using the corresponding launch API functions of the Secure Processor (SP), SEV’s
hardware root-of-trust. First, the hypervisor donates memory for the guest context
data structure to the SP. The hypervisor has to mark the donated memory page as
a firmware page in the RMP, preventing future writes. Next, the SP encrypts the
donated memory using its memory encryption key and initializes the guest context.
The guest context is the central data structure describing the SEV VM. Among
other information, the guest context stores the launch digest, a cryptographic hash
representing both the initial memory content and the initial memory layout of the
VM.

2. Next, the initial memory content of the SEV VM is loaded by the hypervisor via
the SNP_LAUNCH_UPDATE command offered by the SP. This command encrypts the
memory with the VM’s memory encryption key, without revealing the key to
the hypervisor. On each invocation, the SP updates the launch digest inside the
guest context accordingly. Eventually, the hypervisor uses the SNP_LAUNCH_FINISH
command to transition the VM into the GSTATE_RUNNING state, which disables the
launch commands API. The GSTATE_RUNNING state marks the VM as “runnable”,
allowing the hypervisor to start the VM via the VMRUN instruction.
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Figure 7: Online phase of the launch digest replay attack that breaks SEV-SNP’s attestation. In
step ➀ the correct image, together with a signed representation of the expected launch digest,
is transferred to the hypervisor. In step ➁, the hypervisor modifies the requested VM image to
contain a backdoor. As a result, the launch digest after step ➂ does not match the launch digest
of the original image. However, in the offline phase (not depicted), the hypervisor captured
the ciphertext of the correct launch digest using the BadRAM primitive, which it now replays
in step ➃. As a result, the launch digest again matches the expected value, passing the checks
in steps ➄ and ➅.
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There are two attestation mechanisms that can be used to verify the computed launch
digest. First, the guest owner can prepare a so-called identity block (IdBlock), which,
among other information, contains the expected launch digest. The IdBlock is an optional
parameter that can be passed to the SNP_LAUNCH_FINISH command to make the SP check
the launch digest before marking the VM as runnable. The second mechanism is more
dynamic and allows the software in the VM to request an attestation report from the SP
at runtime. The attestation report is signed by the SP and contains all information that is
relevant for the guest owner to remotely verify the security of their running SEV-SNP
VM. The launch digest is at the core of the attestation report, as it proves to the guest
owner that only the expected code and data have been loaded into the VM and that the
memory layout is as expected.

In the following, we will show how the hypervisor can use the BadRAM primitive
to manipulate the initial VM content, while still presenting the guest owner with the
expected launch digest regardless of the used attestation mechanism.

Replaying the Launch Digest

Our attack comprises an offline and an online phase, exploiting that after receiving the
VM image, the hypervisor can create an arbitrary amount of SEV-SNP instances for the
image without having to interact with the guest owner. Figure 7 shows an overview of
the online phase of the attack on IdBlock-based attestation.

In the offline phase, the hypervisor starts the VM without any modifications to the initial
memory content and captures the encrypted launch digest from the guest context page,
before terminating the VM. As the hypervisor initially allocates the guest context page
before donating it to the SP, it knows the physical address of the guest context page. In
Figure 7, this would be equal to launching the requested image without modifications
in step ➁, capturing the ciphertext of the launch digest (LD) field in step ➃ before
terminating the launch process early.

In the online phase, the hypervisor donates the same physical memory page as in the
offline phase to be used as the guest context page. Every time an SEV VM is created,
the SP assigns it a fresh memory encryption key. Thus, the hypervisor cannot use any
of the VM’s ciphertext from the offline phase for replay attacks. However, the memory
encryption key of the SP itself is only regenerated when the system reboots. Crucially,
the guest context pages of all SEV VMs are encrypted with the SP’s single memory
encryption key. Since both the physical memory location of the guest context page and
the memory encryption key are the same between the online and the offline phase, the
hypervisor can replay the ciphertext of the benign launch digest from the offline phase in
the online phase. Thus, after receiving the requested VM image in step ➀ the hypervisor
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can make arbitrary changes in step ➁, as it can simply replay the previously captured
benign launch digest in step ➂ before finalizing the VM in step ➃, which triggers a check
of the launch digest in step ➄. Due to the replay, the check succeeds, and the SP marks the
VM as runnable in step ➅. Note that the alternative, VM-triggered attestation procedure
can only take place after step ➅ and is, thus, also rendered useless by the launch digest
replay.

To determine the exact offset of the 48-byte launch digest inside the encrypted guest
context page, we use an empirical approach and dump the ciphertext of the guest context
page between calls to SNP_LAUNCH_UPDATE. Next, we compute the difference between
these dumps, revealing that only the 64 bytes from offset 0x460 to 0x4A0 change every
time. Due to the 16-byte block size of SEV’s memory encryption, the difference is only
16-byte granular. We correlate this information with the publicly available source code
of the SP’s firmware [2, sev_rmp.h : 226], indicating that the array for the measurement
is not 16-byte aligned, causing our replay to also overwrite the IMIEn field as well as
parts of the 16-byte GOSVW field [5, Table 6]. However, both fields represent configuration
options that cannot change between capturing and replaying, since we have to start the
SEV-SNP VM with the same configuration options both times anyway.

End-to-End Attack

We analyze the use case where SEV-SNP is used together with a disk image, to bring up
a fully-fledged VM, as described in [24, 57, 66, 79]. The disk image needs to use regular
Linux full disk encryption to ensure the confidentiality and integrity of its content,
as SEV-SNP does not offer any protection for virtual disks. The VM first boots into
a minimal environment that runs a small server to provide the attestation report to
the guest owner and subsequently establishes a secure communication channel. This
minimal environment corresponds to the image that gets loaded in step ➀ in Figure 7 and
thus is protected by the SEV-SNP. After verifying the report, the guest owner uses the
secure channel to send the disk decryption key to the VM, which subsequently unlocks
the disk and boots into the rich Linux environment contained inside the now-unlocked
disk.

In our attack, we insert a backdoor in the minimal VM boot environment to leak the
secret disk encryption key to the hypervisor. After a successful launch digest replay
with BadRAM, the attestation report does not reveal this malicious modification, and the
guest owner sends the disk encryption key as usual, thereby leaking it to the hypervisor.
Using the key, the hypervisor has full read and write access to the encrypted disk image,
allowing for arbitrary modifications or data leakage. After bootstrapping into the (now
compromised) rich environment, the minimal boot environment is no longer accessible
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Table 4: Vulnerability of popular TEEs to BadRAM attacks.

TEE Crypto Read Write Replay Mitigations

SEV-SNP (§4) AES-XEX ✓ ✓ ✓ –
Classic SGX (§5.1) AES-CTR ✓ ✗ ✗ Strong crypto
Scalable SGX (§5.2) AES-XTS ✗ ✗ ✗ Alias check
TDX (§5.3) AES-XTS ✗ ✗ ✗ Alias check

Arm CCA† (§5.4) AES-XEX/
QARMA

Ciphertext access

Design suggests need for alias check

†Only based on design documents as hardware is not yet available.

to the guest owner, making the attack undetectable. Alternatively, the malicious code
could also be enhanced to delete itself before allowing the guest owner to log into the
VM.

We fully implemented and ran the end-to-end attack on the AMD1 system, using a single
BadRAM memory module (cf. Table 3). To facilitate the replay of the launch digest,
we modified the Linux kernel on the host system to ensure that the offline phase and
the online phase use the same physical memory address for the guest context page.
Furthermore, we modified the kernel code that calls the SNP_LAUNCH_FINISH command
of the SP to capture the launch digest in the offline phase and to replay it in the online
phase.

5 Analyzing DRAM Trust in Popular TEEs

In this section, we extend our analysis to the security assumptions that Intel’s and Arm’s
TEE designs place on the memory subsystem and discuss whether their assumptions can
be undermined by our BadRAM primitive. Our findings are summarized in Table 4.

5.1 Classic Intel SGX

Memory Encryption

The original Intel SGX architecture considered the DRAM as entirely untrusted storage,
featuring a dedicated Memory Encryption Engine (MEE) to encrypt and integrity-protect
all enclave data stored in memory [26]. The MEE uses an AES-CTR-based cryptographic
scheme that ensures the confidentiality, integrity, and freshness of the ciphertexts. It
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Figure 8: Using the BadRAM aliases, an adversary can monitor the EPC of classic SGX for changes
in ciphertexts, revealing the write pattern. As SGX uses a fresh counter on every write, the
ciphertext changes on every write, independent of the plaintext.

features a Merkle tree that guarantees the freshness of the counter values by storing
the root of the tree in on-chip memory, inaccessible to malicious DRAM, with a fresh
counter value generated on every memory write. Additionally, a 56-bit Message Authen-
tication Code (MAC) ensures the integrity of the ciphertext. Therefore, both replayed and
manipulated ciphertexts can be detected, locking the processor upon such violations.

In addition to strong cryptographic memory protection, SGX also prevents any read
and write attempts by privileged software to enclave memory. This is implemented by
reserving a physically contiguous memory range called the Enclave Page Cache (EPC),
early during boot. Afterward, the hardware can prevent unauthorized accesses via a
simple bounds check on the physical address.

Write Access Patterns

Crucially, BadRAM attackers can circumvent SGX’s contiguous EPC check, enabling read
and write access to enclave ciphertexts from software. While ciphertext modifications
would be detected by the MEE, BadRAM attackers may still monitor the ciphertext for
changes as a capable side-channel. Figure 8 shows that, when the enclave writes to its
private memory, the corresponding ciphertext always changes, regardless of whether
the underlying plaintext has changed. This is because the MEE is explicitly designed to
assign a fresh counter on every write, protecting against the content-based ciphertext
side-channels demonstrated on SEV platforms [51, 54].

Therefore, although the contents of memory accesses are effectively protected by the
MEE, BadRAM adversaries who monitor relative changes in ciphertext over time can
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precisely deduce the location of write operations. As the CPU always writes back a
whole cache line at a time, the obtained write address pattern has a spatial resolution
of 64 bytes, which can be observed at a maximal, instruction-level temporal granularity
using a single-stepping framework like SGX-Step [14]. This provides a more fine-grained
leakage compared to an adversary that is only able to deterministically monitor page
faults [83]. Additionally, in contrast to cache side channels [60], the obtained write pattern
is deterministic and noiseless.

The sole previous study [50] that showcased DRAM address leakage on SGX necessitated
continuous physical access and equipment costs reaching $170,000, making it unfeasible
for most adversaries. Notably, however, such a full interposer-based setup can also reveal
the read pattern, which is not possible with the BadRAM aliasing attack since reading
does not alter the ciphertext.

Evaluation

We experimentally validated that classic SGX does not contain any mitigations against
memory aliases by successfully booting the Intel1 system with a single BadRAM memory
module (cf. Table 3). We implemented an elementary enclave that writes to a random
offset within a 4096-byte page-aligned buffer. A privileged software adversary monitor-
ing page faults would be unable to distinguish two writes to different offsets within this
buffer as they fall within the same page. With the BadRAM aliases, however, we were
able to deterministically infer the offset at a 64-byte, cache line granularity by comparing
the ciphertexts in the EPC before and after the victim wrote to it.

5.2 Scalable SGX

Memory Encryption

The requirement to maintain a dedicated Merkle tree in the classic SGX design does
not scale well to large EPC sizes, prompting Intel to transition to a new, “Scalable” SGX
design for Xeon server processors [46]. Scalable SGX abandoned the MEE and instead
repurposes Intel Total Memory Encryption (TME).

TME uses AES-XTS to encrypt the entire physical memory range, but does not offer
cryptographic integrity or replay protection. Thus, an adversary that can write to the
EPC memory range, for instance, through an alias, would be able to corrupt or replay
ciphertexts similar to our attacks on SEV-SNP. Indeed, similar to SEV, the tweak values
used for AEX-XTS solely depend on the physical address and do not change during
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runtime. Thus, adversaries capable of reading encrypted EPC data would also be able to
perform ciphertext side-channel attacks [51, 54].

Alias Checks

Notably, we found that Scalable SGX comes with dedicated architectural countermea-
sures against BadRAM aliasing attacks [38, 46]. Particularly, Intel differentiates between
“outside-in” and “inside-in” aliasing.

First, outside-in aliasing refers to the situation where an EPC page has an alias that itself
is not part of the EPC. To protect against these kinds of attacks, Scalable SGX repurposes
one of the DRAM Error Correcting Code (ECC) metadata bits as an “ownership” bit to
specify whether the cache line is part of the EPC [46]. If the CPU is not currently executing
an SGX enclave, the memory controller returns a fixed pattern for read accesses to cache
lines that have the ownership bit set. This mitigates ciphertext side-channel attacks from
software. Writing to EPC memory while the CPU is not executing an SGX enclave clears
the ownership bit, which will be detected the next time an enclave tries to access the
corrupted memory location.

Second, inside-in aliasing refers to the situation where an EPC page has an alias that
itself is also part of the EPC. To protect against these, a trusted code module explicitly
checks the physically contiguous EPC range for aliases before enabling SGX at boot time.
On Xeon CPUs with Scalable SGX, the EPC can be as large as 512 GB, totaling 1 TB for
a dual-socket system [34]. Initially, this check was part of SGX’s MCHECK authenticated
code module [39]. However, starting with 4th generation Xeon scalable processors, alias
checking is now handled by a dedicated Alias Checking Trusted Module (ACTM) [38]
that builds on Intel TXT [37] to run without trusting the BIOS.

Evaluation

We experimentally validated this behavior on Intel2 (cf. Table 3), where we introduced
BadRAM aliases by incrementing the number of row bits on all DDR4 DIMMs. On this
system, the second most significant physical address bit maps to the unused row address
bit and thus defines the aliases. When configuring a small EPC size such that there are
no inside-in aliases, SGX enclaves could be instantiated. As specified, reading enclave
memory from the aliases returned a fixed, all-zero value. When increasing the EPC size in
order to create aliases within the EPC, the system did not boot into the operating system
and reported a system initialization error (code 91). While the error code is unspecific, it
suggests that the inside-in alias check detected an alias, as reverting to smaller EPC sizes
cleared the error.
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5.3 Intel TDX

Intel Trusted Domain Extensions (TDX) is Intel’s latest TEE, moving away from the
enclave-based paradigm to support confidential VMs, similar to AMD SEV, which are also
referred to as Trusted Domains (TDs) [31]. Similar to SGX on Xeon scalable processors,
TDX relies on Total Memory Encryption-Multi-Key (TME-MK) to provide memory
confidentiality by encrypting its contents with AES-XTS. In contrast to SGX, however,
TDX does not come with the concept of a fixed-size EPC, lifting any artificial limits
on the total amount of memory used for TDs. Instead, TDX only uses the approach
introduced with Scalable SGX to provide logical integrity protection and to prevent
outside-in aliasing via a dedicated “TD-owner” ECC bit. Additionally, TDX introduces
optional cryptographic integrity protection by storing a 28-bit MAC in the ECC bits
for each cache line. This MAC is computed over the ciphertext, address-based tweak,
TD-owner bit, and MAC key, and ensures the integrity of the cache line. If the integrity
check fails, the memory location is marked as “poisoned” to prevent an attacker from
brute-forcing the MAC [36, §16.2.1.1].

To prevent inside-in aliasing, TDX also relies on the ACTM to ensure that the BIOS con-
figured the system correctly and that there are no aliases. However, to our understanding,
the whole physical memory now has to be checked for aliases. As a result, it should not
be possible to enable TDX in the presence of any memory alias, preventing all BadRAM
attacks.

Evaluation

We experimentally verified the alias check behavior on Intel3 (cf. Table 3). In contrast to
the prior experiment on Intel2 for Scalable SGX, the TDX-enabled system still booted,
but we were unable to instantiate TDX or SGX when using either a single or multiple
BadRAM modules. From this, we assume that the ACTM does indeed check the entire
physical memory space for aliases. The different behavior is most likely a refinement in
the alias check handling.

5.4 Arm CCA

Similar to SEV and TDX, Arm CCA is a VM-scoped TEE, though it is not yet commercially
available. Like the aforementioned TEEs, CCA considers some attacks on DRAM to be
in scope [6, 8] and features memory encryption as its primary defense. Additionally,
the most critical data structures—belonging to the EL3 monitor that warrants CCA’s
security—receive extra protection [6]. They are stored either in on-chip memory, inac-
cessible to an attacker controlling external memory, or in external memory, but with
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additional integrity guarantees. The only exception is the Granule Protection Table
(GPT) [7, §4], which is stored entirely in external memory and enforces memory isolation
against software attackers, similar to SEV’s RMP.

For memory encryption, CCA recommends AES-XEX or QARMA, which do not offer
cryptographic integrity protection nor freshness. As a result, Arm CCA could be suscepti-
ble to BadRAM attacks, unless an alias check is performed similar to Intel’s ACTM check
for Scalable SGX and TDX. While the most critical data structures appear to be protected
against these attacks through on-chip memory, the GPT and memory belonging to the
realm management monitor and the realms themselves may still be vulnerable. Thus, as
with SEV, both outside-in and inside-in aliasing may be possible, though we were unable
to verify these claims due to the unavailability of CCA hardware.

6 Discussion and Mitigations

In this section, we discuss the feasibility of BadRAM attacks that are performed solely
in software, without the need for one-time physical access. Next, we discuss mitiga-
tions and possibly more advanced DRAM attacks that may impact currently employed
countermeasures.

6.1 Software-Only Adversaries

Up to this point, we have assumed an attacker with one-time physical access to the
DIMMs, allowing the attacker to disable the module’s write protection and overwrite
the contents of the SPD. However, the SPD EEPROM may also be exposed over the
SMBus or SidebandBus, allowing read and write access to the EEPROM by a privileged
software-based adversary. Additionally, as the initialization of the memory controller
performed by the BIOS is based on the reported SPD values, a malicious BIOS may spoof
these values for a similar effect.

SMBus & SidebandBus

The SPD chip is connected to the rest of the system via the SMBus or SidebandBus
for DDR4 and DDR5, respectively. This interface may be exposed to software, like the
decode− dimms utility from Linux’s i2c− tools that provides comprehensive informa-
tion on the connected memory. Performing BadRAM attacks by leveraging this interface
requires the ability to write to the SPD base parameter section to change the addressing
information. However, a DIMM may set its SPD write protection to disable writes to this
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section. Additionally, some memory controllers have protections in place that prevent
writes to the SPD chip from software (e.g., through the SPD Write Disable (SPDWD) bit
on the Intel PCH [32]), though some manufacturers allow this protection to be disabled
in the BIOS, for instance to support on-DIMM RGB lighting [18].

BIOS

The BIOS reads out the SPD contents and configures the system based on the reported
values, as shown in Figure 1. An adversary in control of the BIOS could change these
values before configuring the system. This effectively enables BadRAM attacks without
the requirement for physical access. However, as the BIOS is a complex, proprietary
component (which might be cryptographically authenticated [20, 64]), this attack vector
is significantly more complicated than modifying the SPD directly. While there are some
efforts to create open-source firmware, such as coreboot, they currently do not support
the newest TDX and SEV-SNP platforms.

Spoofing the SPD contents is done in practice, for instance, on devices with soldered
memory, such as certain laptops and smartphones. As these devices do not have a
physical SPD chip, their memory characteristics are stored in the BIOS image, allowing
the BIOS to configure the system. In case of multiple memory configurations, a jumper
selects the correct SPD contents. Furthermore, in Section 3, we observed on some of our
evaluation platforms that the BIOS caches SPD data based on the DIMM’s serial number,
providing further evidence of the BIOS’s ability to spoof SPD data.

6.2 Countermeasures

The key weakness exploited in our BadRAM attacks is the implicit trust placed on
the BIOS to correctly configure the memory controller. The BIOS, in turn, trusts the
information it reads from the DIMM’s SPD chip.

Improving SPD Security

To increase the complexity of the attack, future DRAM generations could consider
allowing permanent write protection on the base configuration blocks within the SPD.
In fact, this was possible up to DDR3 [43], though not required. Removing the ability
to modify the addressing parameters in the EEPROM requires the attacker to either
physically replace the entire SPD chip, or modify the part of the BIOS that programs the
memory controller, significantly increasing the complexity of the attack. This does not
prevent attacks, though, as shown in Section C.
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Validating Memory Layout

A more principled mitigation is to check the memory configuration during system boot
to ensure there are no aliases. However, as such alias checks become part of the system’s
trusted computing base, the code must be protected from manipulations, e.g., by the
BIOS, essentially requiring a low-level TEE.

A straightforward way to ensure that there are no aliases is to iteratively scan the entire
DRAM memory space of each DIMM. However, this requires at least one read and
one write operation to each address, making it impractical for systems with many or
large DIMMs. Instead, each address bit can be verified separately. For each bit, we can
consider two addresses that only differ in that specific bit. By writing a random value
to the first address, we can check if this bit is used by reading the second address. If
the read returned the same value we wrote to the first address, both addresses point
to the same physical location, and the bit we considered is not used by the DIMM.
The memory controller could even use this technique to discover the DIMM topology
without relying on the BIOS or SPD to provide this information. If we ensure the integrity
of the memory controller’s firmware, this could be one solution to isolate the alias-
checking code from the untrusted system. However, in the face of a hardware-level
attacker, scanning for aliases is likely susceptible to time-of-check to time-of-use attacks,
as discussed in Section 6.3.

As described in Sections 5.2 and 5.3, Intel has implemented an alias check for Scalable SGX
and TDX using their TXT technology [37, 38]. We experimentally confirmed the presence
of such alias checks, but did not find any documentation on the specific implementation
and scope of the employed scanning algorithm.

Strong Cryptography

Using strong cryptographic primitives for memory encryption that provide memory
integrity and freshness almost entirely mitigates the security risks introduced by memory
aliasing. In addition, they can uphold their security guarantees against hardware attacks
on external memory without the risk of time-of-check to time-of-use attacks. However,
practical designs often face scalability limitations. While MACs can be used to ensure
data integrity and integrity trees to provide freshness, both methods introduce memory
overheads that scale linearly with the total amount of protected memory. Additionally,
ensuring freshness requires storing the root of the integrity tree in on-chip SRAM, which
is expensive. Furthermore, these primitives introduce performance overhead for every
memory access: verifying the integrity of a read requires traversing the tree and com-
puting the corresponding MACs, while writes similarly require updating these values.
As a result, the depth of the tree must be limited in practice, constraining the amount of
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protected memory and thus making large memory sizes impractical. For instance, Classic
Intel SGX—one of the few commercial TEEs providing cryptographically secure memory
integrity protection—supports only up to 128 MB or 256 MB of protected memory while
incurring a performance overhead of up to 14 % [26].

Protecting large amounts of memory with both strong cryptography and acceptable
overhead is a challenging research question. Recent academic works provide more
scalable designs by employing skewed [71] or mountable Merkle trees [23], increasing the
arity of the integrity tree by reducing the counter size [68, 72], dynamically adjusting the
tree’s height and arity [75], and changing the underlying cryptographic primitives [30].
While these approaches enable integrity protection for larger memory sizes, they have
not been adopted by industry. Furthermore, even with strong integrity and freshness
guarantees, attacks on the external memory may still enable high precision, sub-page
access pattern leakage, as discussed in Section 5.1. Thus, software still needs to follow
oblivious, constant-time programming paradigms to avoid such leakages.

6.3 Unverified Trust in DRAM Hardware

The analysis in this paper shows that most recent TEEs place some degree of trust in the
memory system and DRAM without verifying it. Partial exceptions are Intel Scalable
SGX and TDX, which check for memory aliasing at boot time, detecting permanent
manipulations to the DRAM addressing. One example of this unverified trust is the way
Intel, AMD, and Arm implement replay protection for their VM-based TEEs. Instead
of using cryptographic freshness to prevent replay attacks, they use an access rights
mechanism to prevent an attacker from writing to protected memory. This protection
breaks if the attacker is able to modify the DRAM content via a channel that is not subject
to the access control mechanisms.

The SPD manipulation from this paper essentially shows a data-driven attack against
an otherwise benign BIOS. However, another attack angle would be a full DRAM inter-
poser [50] or a DRAM module with manipulated hardware that, e.g., allows arbitrary
read and write to the memory content via a second interface that is only available to
the attacker. Such a hardware attacker could easily hide any manipulations from a boot
time alias check, like the one performed by Intel. Hopkins et al. [29] discuss such modi-
fied memory modules for DDR3 and also implemented an FGPA-based prototype that
attaches to the DRAM slot and acts as an interposer. It allows the attacker to redirect
memory accesses to protected regions. We found one company that sells memory mod-
ules that come with data processing units, allowing to execute custom code directly on
the DIMM [74]. However, their DIMM is currently restricted to a few mainboards, none
of which support TDX.
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7 Related Work

We start this section by reviewing existing work on memory aliasing attacks. Next, we
discuss existing attacks on AMD SEV-SNP and how BadRAM re-enables some attacks
previously mitigated by SEV-SNP. Finally, we survey hardware attacks on TEEs.

Memory Aliasing

Breuer et al. consider memory aliasing in a security context [10] and define two types:
“software aliasing,” where multiple logical addresses map to one physical address, and
“hardware aliasing,” where multiple physical addresses map to one logical address. They
observe that the latter case can, e.g., arise when the number of address lines exceeds the
bit width of the CPU arithmetic and develop methods to “certify” the safety of machine
code in this scenario. More recently, Intel contributed a vulnerability class, “CWE-1257:
Improper Access Control Applied to Mirrored or Aliased Memory Regions” [59], to
MITRE’s Common Weakness Enumeration list.

In research on virtualization security, Wojtczuk [82] speculated in 2016 that malicious
memory aliasing may be induced by modifying the contents of a DIMM’s SPD but did
not further evaluate this attack surface. Furthermore, they only discuss software access to
the SPD, which does not work if the SPD is locked. However, as shown in Table 7, most
manufacturers seem to lock the SPD. In BadRAM, we show how to unlock the SPD chip
with a low-cost setup and explore the resulting attacks in depth. For the opposite case of
software aliasing, Guanciale et al. show that virtual aliases with different attributes can
be used to construct cache-based side-channel attacks [25].

Software Attacks on AMD SEV

Initial attacks [28, 77] exploit that, prior to SEV-ES, the unencrypted Virtual Machine
Control Block (VMCB) allowed read and write access to the VM’s register file during
context switches.

A long line of attacks [28, 61, 62, 63] exploits the hypervisor’s control over nested page
tables, breaking the integrity of the VM’s memory layout. The SEVered attack [62] uses
this attack primitive to trick services inside the VM to encrypt and decrypt arbitrary
data. SEV-SNP was designed to mitigate this class of attacks by introducing the RMP
that provides integrity to the VM’s memory layout. With BadRAM, we break the RMP,
re-enabling these attacks.

In [22, 80], the authors unveil the details of SEV’s tweaked encryption mode, showing
flaws that allow reverse engineering the tweak values. Exploiting the known tweaks,
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[53, 80] show that by adjusting for the tweak differences, moving ciphertexts in memory
allows building mechanisms to encrypt and decrypt arbitrary data. All SEV-SNP-enabled
CPUs use strong tweak values, mitigating these attacks. Buhren et al. [11] exploit the
missing integrity protection to perform fault attacks by flipping ciphertext bits, which
is mitigated with SEV-SNP by the RMP’s write protection. Our BadRAM primitive re-
enables this attack. Li et al. [51, 54] introduce ciphertext side-channel attacks, showing
that the boot-time fixed tweak values used by SEV allow leaking access patterns of the
executing code. This attack is not mitigated on SEV-SNP. Starting with revision 1.55 from
September 2023, the SEV-SNP spec [5] mentions a “ciphertext hiding” feature but does
not provide further details.

Schlüter et al. [69, 70] exploit the hypervisor’s ability to inject unexpected interrupts. In
combination with insufficient sanitization by the Linux kernel running in the VM, they
are able to change the VM’s register values, allowing them to eventually read/write
memory and execute arbitrary code. While SEV-SNP does provide additional hardware
features to mitigate these attacks, there is currently no software support. Wilke et al. [81]
show that the external APIC timer interrupt can be used to single-step SEV-SNP VMs,
enhancing the resolution of side-channel attacks. There is no mitigation for SEV-SNP.
Single-stepping is also used by [70, 85]. Cachewarp [85] exploits a microcode bug to drop
cache write-backs, which has been fixed by an update. CrossLine [52] exploits improper
ASID checks prior to SNP.

In summary, SEV-SNP is currently vulnerable to the following software attacks: interrupt
injection [69, 70], ciphertext side-channel [51, 54], and single-stepping [81]. Using the
BadRAM primitive from this paper, we re-enable fault attacks [11] as well as SEVered [62,
63] attacks, essentially downgrading SEV-SNP back to SEV-ES. With the attack on the
attestation presented in this paper, we break all trust in the SEV-SNP ecosystem.

Physical Attacks on DRAM and TEEs

An attacker with physical access to the CPU can, for example, manipulate the CPU
voltage, which may introduce faults within the code running on the system [9]. The
VoltPillager and PMFault attacks show how an attacker can inject faults into SGX enclaves
by sending packets on the various voltage regulator interfaces used on modern Intel
CPUs [15, 16]. Similarly, Buhren et al. glitch the AMD Secure Processor over the same
interface to break the confidentiality and attestation features of SEV-SNP [12, 13].

For DRAM specifically, Hopkins et al. [29] present a DDR3 interposer that remaps
attacker-controlled addresses to protected ones when inserted between a DIMM and
the CPU. They discuss placing the interposer directly on the DIMM’s IC but opt for an
FPGA-based implementation for their prototype that only supports DDR3 up to 800 MHz.
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Similarly, Lee et al. use a commercial interposer, with a purchase price of $170,000, to
capture the addresses on the DRAM bus [50]. While SGX encrypts the EPC contents,
it does not protect the addresses. Their attack, dubbed Membuster, uses the captured
access pattern as a side-channel to uncover secrets in non-constant-time code. On simpler,
embedded systems, merely shorting or connecting an address line with tweezers or a
sewing needle may, in certain cases, suffice to overcome security functionality, such as
the memory protection in the Nintendo Wii [78] or the boot process of an embedded
Linux system [21].

In contrast to BadRAM, the attacks from this section require attaching additional physi-
cal hardware to the system, limiting their applicability, e.g., in data centers with strict
physical access checks and inspections.

8 Conclusion

In this paper, we presented a novel primitive that challenges the notion in modern TEEs
that scalable memory encryption in combination with software-based access control
suffices to provide integrity guarantees against untrusted DRAM. While commonly as-
sumed to require expensive equipment and extensive physical modifications, we showed
how integrity guarantees can be practically invalidated using off-the-shelf components
for approximately $10 and one-time physical access to the DRAM module. To this end, we
modified the DIMM’s SPD data to create aliases in the physical address space that can ef-
fectively circumvent software-based access restrictions. Moreover, incorrectly configured
DIMMs may even enable software-only attacks.

We demonstrated how the BadRAM primitive can be used to invalidate the newly
introduced integrity guarantees provided by AMD SEV-SNP, breaking all trust by re-
playing critical attestation reports in an end-to-end attack. Additionally, we analyzed
the boot time countermeasures baked into Intel’s Scalable SGX and TDX to fend off
aliasing attacks. Since our BadRAM primitive is generic, we argue that such counter-
measures should be considered when designing a system against untrusted DRAM.
While advanced hardware-level attacks could potentially circumvent the currently used
countermeasures, further research is required to judge whether they can be carried out
in an impactful attacker model.
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Table 5: DIMM connections to interface with the SPD on DDR4 and DDR5.

DDR5 DDR5
Pin DDR4 (UDIMM & SODIMM) (RDIMM)

SDA 285 5 5
SCL 141 4 4
Addressing 139, 140, 238 148 148
3.3 V in 284 151 3
5 V in – 1 –
Vss 283 6 6

Table 6: Bill of materials for the DDR4/DDR5 setup.

Component Cost [$]

Raspberry Pi Pico 5
DDR4/DDR5 socket 1–5 each
Pull-up resistors <0.1
9 V battery† 2
†Only for unlocking DDR4.

A AMD Response

We include AMD’s statement in response to our responsible disclosure below:

AMD’s public SEV-SNP whitepaper states invasive physical attacks are out-
of-scope. However, due to the low cost of this physical attack, and the relative
ease of implementing a mitigation, AMD has chosen to pursue a mitigation
to improve customer security.

To mitigate the vulnerability described in CVE-2024-21944, AMD is adding a
basic assurance test to the boot process to ensure that DRAM address aliasing
attack cannot be done using SPD spoofing. AMD Secure Boot loader firmware
will measure the DRAM’s response to address bits and take action to prevent
SPD spoofing if the results don’t match SPD address bit settings.

AMD Firmware rollout has a complex software supply chain involving
IBV, ODM/OEM and cloud providers. This is further complicated when
a firmware fix requires system reboot. The rollout process will take some time
for AMD to qualify the firmware update, which will then be released into the
AMD Platform Initialization (PI) package for integration into customer BIOS.
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Table 7: Write protection status and addressing information for various DDR4 modules.

Write Protection Addressing Bits

Manufacturer Type Serial Number WP0 WP1 WP2 WP3 Rank Bank Row Col. Capacity [GB]

Corsair1 UDIMM CMV4GX4M1A2133C15 ✗ ✗ – – 0 4 15 10 4
Corsair2 UDIMM CMK16GX4M2E3200C16 ✗ ✗ ✗ ✗ 0 4 16 10 8
Crucial1 SODIMM CT16G4SFD824A.M16FE ✓ ✓ ✓ ✗ 1 4 16 10 16
Kingston1 RDIMM KSM32RS8/8HDR ✓ ✓ ✗ ✗ 0 4 16 10 8
Kingston2 RDIMM KSM32RS8L/16MFR ✓ ✓ ✗ ✗ 0 4 17 10 16
Kingston3 RDIMM KTH-PL432/16G ✓ ✓ ✗ ✗ 0 4 17 10 16
Kingston4 UDIMM KVR26N19S8/8 ✓ ✓ – – 0 4 16 10 8
Micron1 RDIMM MTA36ASF4G72PZ-3G2R1 ✓ ✓ ✓ ✗ 1 4 17 10 32
Micron2 RDIMM MTA36ASF8G72PZ-3G2F1 ✓ ✓ ✓ ✗ 1 4 18 10 64
Micron3 RDIMM MTA9ASF1G72PZ-3G2E2 ✓ ✓ – – 0 4 16 10 8
Micron4 RDIMM MTA18ASF2G72PZ-2G9J3R ✓ ✓ ✓ ✗ 0 4 17 10 16
Samsung1 UDIMM M378A2K43DB1-CTD ✓ ✓ ✗ ✗ 1 4 16 10 16
Samsung2 SODIMM M471A2K43EB1-CWE ✓ ✓ ✗ ✗ 1 4 16 10 16
SK hynix1 RDIMM HMA82GR7DJR4N-XN ✓ ✓ ✗ ✗ 0 4 17 10 16
SK hynix2 RDIMM HMAA4GR7AJR8N-XN ✓ ✓ – – 1 4 17 10 32
SK hynix3 UDIMM HMA41GU6AFR8N-TF ✓ ✓ ✗ ✗ 1 4 15 10 8
SK hynix4 UDIMM HMA82GU6JJR8N-VK ✓ ✓ ✗ ✗ 1 4 16 10 16
SK hynix5 SODIMM HMA41GS6AFR8N-TF ✓ ✓ ✗ ✗ 1 4 15 10 8

Table 8: Write protection status and addressing information for various DDR5 modules.

Write Protection Addressing Bits

Manufacturer Type Serial Number MR12 MR13 Rank Bank Row Col. Capacity [GB]

Kingston5 RDIMM KF548R36RB-16 0xff 0x3c 0 5 16 10 16
Kingston6 RDIMM KSM48R40BS8KMM-16HMR 0xff 0x00 0 5 16 10 16
Kingston7 RDIMM KSM48R40BD8KMM-32HMR 0xff 0x00 1 5 16 10 32
Samsung3 RDIMM M321R2GA3BB6-CQK 0xff 0x01 0 5 16 10 16
SK hynix6 RDIMM HMCG78MEBRA115N 0xff 0x01 0 5 16 10 16
SK hynix7 UDIMM HMCG78AEBUA084N 0xff 0x01 0 5 16 10 16

Table 9: Write protection status and addressing information for the DDR3 module used in
Section C.

Addressing Bits

Manufacturer Type Serial Number SWP PSWP Rank Bank Row Col. Capacity [GB]

SK hynix8 UDIMM HMT351U6BFR8C-H9 – ✓ 1 3 15 10 4
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B SPD Setup

The I2C connections to the SPD EEPROM are exposed on the DIMM. When installed in a
system, these connections are used to connect to the SMBus or SidebandBus. However,
they can also be used in an offline setup to access the EEPROM with a microcontroller.
Table 5 provides the pin mapping for DDR4 and DDR5 to interface with the chip. Note
that DDR5 requires different connections for RDIMMs and UDIMMs, as they operate at
different voltages.

To modify the SPD contents, we use a Raspberry Pi Pico, which we connect to an addi-
tional DIMM socket to avoid soldering to the module’s edge connectors directly. Note that
these sockets are keyed differently for DDR4 and DDR5, as well as for DDR5 RDIMMs
and DDR5 UDIMMs. Figure 2 shows this setup with a DDR5 RDIMM connected to a
Raspberry Pi Pico. Table 6 provides the bill of materials and estimated component cost,
totaling around $10.

When connecting the addressing pins to ground, the EEPROM will be assigned I2C
peripheral address 0x50. Any write protection on DDR4 can be cleared by connecting
SA0 (pin 139) to VHV (i.e., 7–10 V) and issuing the Clear all Write Protection (CWP)
command by writing to peripheral address 0x33 [44]. For DDR5, connecting HSA (pin
148) to ground allows modifications to be made to MR12 and MR13, the registers holding
the protection status [45] (cf. Figure 3). In both cases, these changes are persistent.

C BadRAM attacks on DDR3

While we mainly considered attacks on DDR4 and DDR5 in this paper, the BadRAM
primitive is, in principle, also applicable to older DDR generations as they all use the
SPD to store their topology information. These older generations, however, do allow the
manufacturer to set Permanent Software Write Protection (PSWP) to the SPD [43]. For
DIMMs with this permanent protection set, performing BadRAM attacks would require
either physically replacing the SPD chip or performing the attacks through the BIOS, as
discussed in Section 6.1. Specifically for DDR3, the required modifications to the SPD
content are identical to those required for DDR4, as the addressing encoding and CRC
location did not change. The only notable difference is that DDR3 only supports up to 16
row address bits, compared to the 18 bits for DDR4 and DDR5. Additionally, the location
of the module’s serial number for DDR3 is stored in bytes 122 through 125, which may
be required to be modified if the BIOS caches the SPD contents.

We evaluated the DDR3 BadRAM primitive on a Dell OptiPlex 990 DT with a CN-
0VNP2H mainboard and an Intel Core i7-2600 with a single DDR3 UDIMM memory
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Figure 9: DDR3 setup to perform BadRAM attacks. The DDR3 DIMM has its SPD chip removed
and is instead connected to a Raspberry Pi. The additional wires are connected to the power
button, but are not required for the attack.

module (HMT351U6BFR8C-H9) installed. We physically removed the SPD chip from
the DDR3 DIMM as it had PSWP (cf. Table 9) and connected the exposed pads to a
Raspberry Pi 3 Model B+, as shown in Figures 9 and 10. We then configured the I2C
interface of the Raspberry Pi to emulate an SPD EEPROM with modified addressing
information to make the DIMM appear twice the size. On this system, the introduced
ghost bit corresponded to the most significant physical address bit. This experiment
shows that older DDR generations are also vulnerable to BadRAM attacks.
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Figure 10: Closeup of the removed SPD chip from the DIMM in Figure 9. Note that some
connections are made to the vias on the backside.

D Meta-Review

The following meta-review was prepared by the program committee for the 2025 IEEE
Symposium on Security and Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1 Summary

This paper demonstrates an attack that exploits the lack of authentication and protection
of DIMM information that is stored and retrieved via the Serial Presence Detect interface
to bypass the memory integrity guarantees of AMD SEV-SNP. The paper shows how
manipulation of the information (via reprogramming through the SPD interface) can
result in an incorrect view of available memory leading to memory aliasing.

D.2 Scientific Contributions

• Identifies an Impactful Vulnerability

• Provides a Valuable Step Forward in an Established Field

• Independent Confirmation of Important Results with Limited Prior Research

• Establishes a New Research Direction

• Creates a New Tool to Enable Future Science
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D.3 Reasons for Acceptance

1. This paper identifies an impactful vulnerability. This paper demonstrates an archi-
tectural gap in AMD SEV-SNP that allows bypassing memory integrity protections
for confidential VMs. The paper exploits the SPD interface available on DIMMs
that allow re-programming of DIMM metadata (in-compliance with the JEDEC
standard) to present the host SoC with a ‘bad’ view of memory that leads to mem-
ory aliasing. The memory aliasing is then used to manipulate the RMP table that
holds security metadata for individual memory pages and thereby, bypass the
protections affered by the RMP. The paper demonstrates and end-to-end attack
where the measurement in the attestation doesn’t match the measurement of the
actual memory content of a confidential VM.

2. This paper provides a valuable step forward in an established field and indepen-
dently confirms results with limited prior research. Memory aliasing attacks by
manipulation of DIMM metadata have been known for a while. Intel SGX and
TDX provide protections against such attacks through a proprietary set of checks
(whose details are not public). This paper actually confirms that the checks imple-
mented by these two technologies are effective against the attacks outlined in the
paper which provides for the first time, independent verification of the security
claims. The paper also explores for the first time, the SPD interface, requirements
underlying the SPD interface that allow reprogramming of DIMM metadata by
the JEDEC standard as well as effects of manipulating the DIMM metadata via
the SPD interface. Since there are no existing mechanisms/standardized ways to
protect this DIMM metadata, the identified vulnerabilities will need a workaround
(just like TDX and SGX do). The paper also demonstrates the viability of affecting
the security posture of a TEE whose trust boundary is confined to the SoC via
corruption of a system/platform component that is likely vulnerable to supply
chain attacks.

3. This paper establishes a new research direction. Existing countermeasures to the
outlined attacks have been proprietary (and emerging ones will likely also be so)
to detect memory aliasing. Changing DIMM standards to include more systematic
countermeasures will likely have a long tail. So, this paper highlights the need to
devise mechanisms that can work with existing DIMM standards in the public
domain—ones that lend themselves to systematic analysis instead of a heuristic
that relies on randomly checking for aliases but still scale for use in cloud settings.

4. The paper creates a new tool for future science: The authors are committed to
making their attack framework available for other researchers to explore other
offensive and defensive countermeasures.
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