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Outline

• Speculative Execution

• Spectre Attack and Speculative Load Hardening (SLH)

• Break SLH via control flow transfer and variant-time executions

• Fix SLH  Ultimate SLH and performance evaluation
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Speculative Execution

Resolve condition takes time
• Compute condition
• Fetch value from main memory
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The condition may also be true this time

Read memory and write to Y

Keep executing
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is resolved to be true

Let’s retire these executions

Check branch history

13

Condition used to be true



Speculative Execution

The condition may also be true this time

Read memory and write to Y
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The condition may also be true this time
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path
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Speculative Execution
Check branch history

Condition used to be true

The condition may also be true this time

After a while, the condition 
is resolved to be false

Let’s squash these executions, 
start executing on the correct 
path

Exit

Don’t want misprediction next time, update 
branch history
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Spectre Attack
I want to leak entire virtual space 
memory. 
It would be good if I can execute 
the code with an out-of-bound 
index
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The speculative execution is 
based on branch history.
I think I could poison the branch 
history…

I want to leak entire virtual space 
memory. 
It would be good if I can execute 
the code with an out-of-bound 
index
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Spectre Attack Keep feeding in-bound index

Feed an out-of-bound index
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Flush arrayLen

According to branch history, I 
predict index is in-bound

Read array[index] and access array2

It’s a misprediction. Not a big deal.
I rollback all executions.

The cache status 
has been changed

Flush array2

You leak architecture changes
• Cache status
• Execution port contention
• Power consumptions
• ……
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Speculative Load Hardening (SLH)

Implemented in LLVM

Track speculative state

Poison loaded value / address
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Speculative Load Hardening (SLH)

37

Track speculative state

Poison loaded value / address

Conditional update cannot be speculated

Poison the value with -1 to avoid race 
condition between flushing the pipeline 
and loading memory
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• SLH hardens memory reading
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Leak via control flow transfer
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Flush the outer branch
• Brings > 150 cycles speculation window

The inner branch is resolved much faster

Instructions are sent to various execution ports
I measure which port is being used. 
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Compiled by USLH



Mitigation Result
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On i7-10710U:
Executing a pair of SQRTSD and MULSD:

• 65536:             5 cycles
• 2.34e-308:      7 cycles

Do constant-time 
computing
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The code can be speculatively executed.
Measure the execution time. 

I wait until the 
branch is 
resolved

Constant-time under speculative execution. 
No spectre attacks!

I doubt it.

Okay, constant-time computing is 
slow. I use non-constant-time 
computing for public data  
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Fetch Decode

Front-end Back-end

Execute Write-back

How is an instruction handled by the processer 

Review pipeline stages
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Reorder Buffer (ROB)

Micro-op

FIFO

Reservation Station (RS)

Port 0 Port 1 Port 2 …

out-of-order execution

Update ROB

Commit

In-order

In-order

ROB and RS has 
limited Resource

Execution Engine
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ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

It takes 150 
cycles to 
resolve it

It can’t be executed. 
The condition is 

flushed

Variant-time execution under speculation
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ROB
Reservation Station (RS)

Port 0 Port 1 Port 2Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Variable time 
execution

What if we have 
more variable-time 
instructions?

Variant-time execution under speculation
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Variable time 
execution

What if we have 
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time instructions?
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ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Independent 
instructions

sqrtsd mulsd

the load may not 
happen, if RS is not 
freed before the 
resolve of branch

Spectre Attack on variant-time executions
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Fixing SLH
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ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Independent 
instructions

sqrtsd mulsd

Floating point instructions 
can only be executed after 
the resolve of branch 
condition
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Summary

• SLH is good, but it is not perfect

• Variable-time executions also leak secret in speculative execution 

• Accessing a secret-independent memory may also leak information

• USLH costs more, but it is still better than disabling speculative 
execution
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