
Breaking and Fixing Speculative Load Hardening

Zhiyuan Zhang
University of Adelaide

Supervisors: Yuval Yarom and Chitchanok Chuengsatiansup

1

Outline

2

Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, Yuval Yarom, “Breaking and Fixing
Speculative Load Hardening”, eprint https://eprint.iacr.org/2022/715.

Outline

3

Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, Yuval Yarom, “Breaking and Fixing
Speculative Load Hardening”, eprint https://eprint.iacr.org/2022/715.

Attack Mitigation Semantic Proof

Outline

4

Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, Yuval Yarom, “Breaking and Fixing
Speculative Load Hardening”, eprint https://eprint.iacr.org/2022/715.

Attack Mitigation Semantic Proof

Outline

• Speculative Execution

• Spectre Attack and Speculative Load Hardening (SLH)

• Break SLH via control flow transfer and variant-time executions

• Fix SLH  Ultimate SLH and performance evaluation

5

Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, Yuval Yarom, “Breaking and Fixing
Speculative Load Hardening”, eprint https://eprint.iacr.org/2022/715.

Speculative Execution

6

Speculative Execution

7

Speculative Execution

Resolve condition takes time
• Compute condition
• Fetch value from main memory

8

Speculative Execution

Resolve condition takes time
• Compute condition
• Fetch value from main memory

Let’s predict the branch condition

9

Speculative Execution
Check branch history

10

The condition may also be true this time

Condition used to be true

Speculative Execution

The condition may also be true this time

Read memory and write to Y

Keep executing

Check branch history

11

Condition used to be true

Speculative Execution

The condition may also be true this time

Read memory and write to Y

Keep executing

After a while, the condition
is resolved to be true

Check branch history

12

Condition used to be true

Speculative Execution

The condition may also be true this time

Read memory and write to Y

Keep executing

After a while, the condition
is resolved to be true

Let’s retire these executions

Check branch history

13

Condition used to be true

Speculative Execution

The condition may also be true this time

Read memory and write to Y

Keep executing

After a while, the condition
is resolved to be false

Check branch history

14

Condition used to be true

Speculative Execution
Check branch history

Condition used to be true

The condition may also be true this time

After a while, the condition
is resolved to be false

Let’s squash these executions,
start executing on the correct
path

Exit

15

Speculative Execution
Check branch history

Condition used to be true

The condition may also be true this time

After a while, the condition
is resolved to be false

Let’s squash these executions,
start executing on the correct
path

Exit

Don’t want misprediction next time, update
branch history

16

Spectre Attack

17

Spectre Attack
I want to leak entire virtual space
memory.
It would be good if I can execute
the code with an out-of-bound
index

18

Spectre Attack

19

The speculative execution is
based on branch history.
I think I could poison the branch
history…

I want to leak entire virtual space
memory.
It would be good if I can execute
the code with an out-of-bound
index

Spectre Attack Keep feeding in-bound index

20

Spectre Attack Keep feeding in-bound index

21

Flush arrayLen

Spectre Attack Keep feeding in-bound index

22

Flush arrayLen

Flush array2

Spectre Attack Keep feeding in-bound index

Feed an out-of-bound index

23

Flush arrayLen

Flush array2

Spectre Attack Keep feeding in-bound index

Feed an out-of-bound index

24

According to branch history, I
predict index is in-bound

Flush arrayLen

Flush array2

Spectre Attack Keep feeding in-bound index

Feed an out-of-bound index

25

According to branch history, I
predict index is in-bound

Read array[index] and access array2

Flush arrayLen

Flush array2

Spectre Attack Keep feeding in-bound index

Feed an out-of-bound index

26

According to branch history, I
predict index is in-bound

Read array[index] and access array2

It’s a misprediction. Not a big deal.
I rollback all executions.

Flush arrayLen

Flush array2

Spectre Attack Keep feeding in-bound index

Feed an out-of-bound index

27

Flush arrayLen

According to branch history, I
predict index is in-bound

Read array[index] and access array2

It’s a misprediction. Not a big deal.
I rollback all executions.

The cache status
has been changed

Flush array2

Spectre Attack Keep feeding in-bound index

Feed an out-of-bound index

28

Flush arrayLen

According to branch history, I
predict index is in-bound

Read array[index] and access array2

It’s a misprediction. Not a big deal.
I rollback all executions.

The cache status
has been changed

Flush array2

You leak architecture changes
• Cache status
• Execution port contention
• Power consumptions
• ……

Speculative Load Hardening (SLH)

29

Implemented in LLVM

Speculative Load Hardening (SLH)

30

Implemented in LLVM

Speculative Load Hardening (SLH)

Implemented in LLVM

Track speculative state

Poison loaded value / address

31

Speculative Load Hardening (SLH)

Track speculative state

Poison loaded value / address

32

Speculative Load Hardening (SLH)

33

Track speculative state

Poison loaded value / address

Speculative Load Hardening (SLH)

34

Track speculative state

Poison loaded value / address

Speculative Load Hardening (SLH)

35

Track speculative state

Poison loaded value / address

Conditional update cannot be speculated

Speculative Load Hardening (SLH)

36

Track speculative state

Poison loaded value / address

Conditional update cannot be speculated

Speculative Load Hardening (SLH)

37

Track speculative state

Poison loaded value / address

Conditional update cannot be speculated

Poison the value with -1 to avoid race
condition between flushing the pipeline
and loading memory

Limitation of SLH

• SLH hardens memory reading

38

Limitation of SLH

• SLH only hardens memory reading

39

Limitation of SLH

• SLH only hardens memory reading

• Leaks could from
• Control flow transfer
• Speculative store
• Limited execution resources

• Execution Ports
• Reservation Station
• ……

40

Limitation of SLH

• SLH only hardens memory reading

• Leaks could from
• Control flow transfer
• Speculative store
• Limited execution resources

• Execution Ports
• Reservation Station
• ……

41

Attacker Model

42

• We have interest in crypto code

Attacker Model

43

• We have interest in crypto code
• Crypto code in constant-time

• No secret-relevant memory access
• No control flow transfer based on secret
• No variant-time executions

Attacker Model

44

• We have interest in crypto code
• Crypto code in constant-time

• No secret-relevant memory access
• No control flow transfer based on secret
• No variant-time executions

• However, constant-time computing is not efficient

Attacker Model

45

• We have interest in crypto code
• Crypto code in constant time

• No secret-relevant memory access
• No control flow transfer based on secret
• No variant-time executions

• However, constant-time computing is not efficient
• Only use constant-time computing on secret value

Attacker Model

46

• We have interest in crypto code
• Crypto code in constant time

• No secret-relevant memory access
• No control flow transfer based on secret
• No variant-time executions

• However, constant-time computing is not efficient
• Only use constant-time computing on secret value

Leak via control flow transfer

47

Leak via control flow transfer

48

Leak via control flow transfer

49

Flush the outer branch
• Brings > 150 cycles speculation window

Leak via control flow transfer

50

Flush the outer branch
• Brings > 150 cycles speculation window

The inner branch is resolved much faster

Leak via control flow transfer

51

Flush the outer branch
• Brings > 150 cycles speculation window

The inner branch is resolved much faster

Instructions are sent to various execution ports
I measure which port is being used.

Port Contention

52

Core 0

Logical core 1 Logical core 2

Synchronize

Port Contention

53

Core 0

Logical core 1 Logical core 2

Synchronize

Secret-relevant
operations

Port Contention

54

Core 0

Logical core 1 Logical core 2

Synchronize

Secret-relevant
operations

RDTSCP

RDTSCP

crc32
crc32
crc32
……

Port Contention

55

Core 0

Logical core 1 Logical core 2

Synchronize

Secret-relevant
operations

RDTSCP

RDTSCP

crc32
crc32
crc32
……

Port Contention

56

Fix SLH

57

Fix SLH

58

Compiled by SLH

Fix SLH

59

Compiled by USLH

Fix SLH

60

Compiled by USLH

Mitigation Result

61

Variant-time Instructions

62

Variant-time Instructions

• DIV Instruction

63

Variant-time Instructions

• DIV Instruction

• REPEAT instruction (REP MOV RAX, RBX)
• The number of iteration depends on ECX

64

Variant-time Instructions

• DIV Instruction

• REPEAT instruction (REP MOV RAX, RBX)
• The number of iteration depends on ECX

• Floating point instructions

65

Variant-time Instructions

• DIV Instruction

• REPEAT instruction (REP MOV RAX, RBX)
• The number of iteration depends on ECX

• Floating point instructions

66

Attacking variant-time instructions

67

Attacking variant-time instructions

68

Attacking variant-time instructions

69

On i7-10710U:
Executing a pair of SQRTSD and MULSD:

• 65536: 5 cycles
• 2.34e-308: 7 cycles

Attacking variant-time instructions

70

On i7-10710U:
Executing a pair of SQRTSD and MULSD:

• 65536: 5 cycles
• 2.34e-308: 7 cycles

Do constant-time
computing

Variant-time Instructions

71

Okay, constant-time computing is
slow. I use non-constant-time
computing for public data

Variant-time Instructions

72

Okay, constant-time computing is
slow. I use non-constant-time
computing for public data

Variant-time Instructions

73

The code can be speculatively executed.
Measure the execution time.

Okay, constant-time computing is
slow. I use non-constant-time
computing for public data

Variant-time Instructions

74

The code can be speculatively executed.
Measure the execution time.

I wait until the
branch is
resolved

Okay, constant-time computing is
slow. I use non-constant-time
computing for public data

Variant-time Instructions

75

The code can be speculatively executed.
Measure the execution time.

I wait until the
branch is
resolved

Constant-time under speculative execution.
No spectre attacks!

Okay, constant-time computing is
slow. I use non-constant-time
computing for public data

Variant-time Instructions

76

The code can be speculatively executed.
Measure the execution time.

I wait until the
branch is
resolved

Constant-time under speculative execution.
No spectre attacks!

I doubt it.

Okay, constant-time computing is
slow. I use non-constant-time
computing for public data

Review pipeline stages

77

Front-end Back-end

How is an instruction handled by the processer

78

Fetch Decode

Front-end Back-end

How is an instruction handled by the processer

Review pipeline stages

79

Fetch Decode

Front-end Back-end

Execute Write-back

How is an instruction handled by the processer

Review pipeline stages

Execution Engine

80

Reorder Buffer (ROB)

FIFO

81

Reorder Buffer (ROB)

FIFO

Micro-op
In-order

Execution Engine

82

Reorder Buffer (ROB)

FIFO

Micro-op
In-order

Reservation Station (RS)

In-order

Execution Engine

83

Reorder Buffer (ROB)

FIFO

Micro-op
In-order

Reservation Station (RS)

In-order

Port 0 Port 1 Port 2 …

out-of-order execution

Execution Engine

84

Reorder Buffer (ROB)

Micro-op

FIFO

Reservation Station (RS)

Port 0 Port 1 Port 2 …

out-of-order execution

Update ROB
In-order

In-order

Execution Engine

85

Reorder Buffer (ROB)

Micro-op

FIFO

Reservation Station (RS)

Port 0 Port 1 Port 2 …

out-of-order execution

Update ROB

Commit

In-order

In-order

Execution Engine

86

Reorder Buffer (ROB)

Micro-op

FIFO

Reservation Station (RS)

Port 0 Port 1 Port 2 …

out-of-order execution

Update ROB

Commit

In-order

In-order

ROB and RS has
limited Resource

Execution Engine

Variant-time execution under speculation

87

ROB

Port 0 Port 1 Port 2

Reservation Station (RS)
Resolve Branch

88

ROB

Port 0 Port 1 Port 2

Reservation Station (RS)

Resolve Branch

Variant-time execution under speculation

89

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

Variant-time execution under speculation

90

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

It can’t be executed.
The condition is

flushed

Variant-time execution under speculation

91

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

It takes 150
cycles to
resolve it

It can’t be executed.
The condition is

flushed

Variant-time execution under speculation

92

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2Resolve Branch

SQRT
MULSD

Variant-time execution under speculation

93

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Variable-time
execution

Variant-time execution under speculation

94

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Variable time
execution

What if we have
more variable-time
instructions?

Variant-time execution under speculation

Spectre Attack on variant-time executions

95

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Variable time
execution

What if we have
more variable
time instructions?

96

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Independent
instructions

Spectre Attack on variant-time executions

97

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Independent
instructions

Spectre Attack on variant-time executions

Instructions in
ROB is always
fixed

98

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Independent
instructions

sqrtsd mulsd

RS will be filled
up

Spectre Attack on variant-time executions

Instructions in
ROB is always
fixed

99

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Independent
instructions

sqrtsd mulsd

RS will be filled
up

Instructions in
ROB is always
fixed

Independent
instruction may
be blocked

Spectre Attack on variant-time executions

100

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Independent
instructions

sqrtsd mulsd

RS will be filled
up

Instructions in
ROB is always
fixed

Independent
instruction may
be blocked

Spectre Attack on variant-time executions

101

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Independent
instructions

sqrtsd mulsd

the load may not
happen, if RS is not
freed before the
resolve of branch

Spectre Attack on variant-time executions

Limitation of resources

102

Limitation of resources

103

Fixing SLH

104

Fixing SLH

105

Compiled by SLH

Fixing SLH

106

Compiled by USLH

Fixing SLH

107

ROB
Reservation Station (RS)

Port 0 Port 1 Port 2

Resolve Branch

SQRTSD
MULSD

sqrtsd mulsd

Independent
instructions

sqrtsd mulsd

Floating point instructions
can only be executed after
the resolve of branch
condition

Performance

108

2,2 2,18
1,89

1,67

2,52 2,46
2,7

2,42

4
3,84

4,36 4,31

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

int_rate int_speed fp_rate fp_speed

Benchmark with SPEC2017

No Mitigation SLH USLH No Speculation

Ti
m

e
Co

st
 N

or
m

al
is

at
io

n

Summary

• SLH is good, but it is not perfect

• Variable-time executions also leak secret in speculative execution

• Accessing a secret-independent memory may also leak information

• USLH costs more, but it is still better than disabling speculative
execution

109

