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Abstract

Clustering is a machine learning discipline that analysis data sets to find centers that rep-
resent a set of similar data points. During the calculation of these cluster centers, the
cluster algorithm must use the data to find similarities and patterns. When personal data
is used, it poses a potential risk to the privacy of those who participate in the data set.
Attackers might be able to identify individual data points and thus also personal data of
individuals.
Differential privacy can be applied to clustering algorithms to protect the privacy of par-
ticipants in a data set.
We implement such a differentially private clustering algorithm proposed by Balcan et al.
[Hon17a] in Python. This algorithm works in theory, but in practice some adjustments
need to be made to achieve a reasonable runtime and produce proper results. Mistakes
also happen quickly during implementation, which is why we also need to correct some
mistakes in the Matlab implementation of Balcan et al. [Hon17b]. We compare our Python
implementation with the corrected Matlab implementation and show that we obtain sim-
ilar results.
Various adjustments can be made to the algorithm that affect the results differently. We
show that some modifications to the algorithm improve the clustering results and that
many other modifications worsen the clustering results and cause more runtime. At last,
we compare our improved algorithm with others and discover that it can compete with
other differentially private algorithms but is still worse than a non-private algorithm.
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Zusammenfassung

Clustering ist eine Disziplin des maschinellen Lernens, die Datensätze analysiert, um
Zentren zu finden, die eine Gruppe ähnlicher Datenpunkte zusammenfassen. Bei der
Berechnung dieser Clusterzentren muss der Clusteralgorithmus die Daten nutzen, um
Ähnlichkeiten und Muster zu finden. Wenn personenbezogene Daten verwendet werden,
stellt dies ein potenzielles Risiko für die Privatsphäre derjenigen dar, die in dem Daten-
satz enthalten sind. Angreifer könnten in der Lage sein, einzelne Datenpunkte und damit
auch persönliche Daten von Personen zu identifizieren.
Differentielle Privatsphäre kann auf Clustering-Algorithmen angewandt werden, um die
Privatsphäre der Teilnehmer in einem Datensatz zu schützen.
Wir implementieren einen solchen differenziellen privaten Clustering-Algorithmus, der
von Balcan et al. [Hon17a] vorgeschlagen wurde, in Python. Dieser Algorithmus funk-
tioniert lediglich in der Theorie, in der Praxis hingegen müssen einige Anpassungen
vorgenommen werden, um eine vernünftige Laufzeit zu erreichen und nützliche Ergeb-
nisse zu erzielen. Auch während der Implementierung passieren schnell Fehler, weshalb
wir auch einige Fehler in der Matlab-Implementierung von Balcan et al. [Hon17b] kor-
rigieren müssen. Wir vergleichen unsere Python-Implementierung mit der korrigierten
Matlab-Implementierung und zeigen, dass wir sehr ähnliche Ergebnisse erzielen.
An dem Algorithmus können noch verschiedenste Anpassungen vorgenommen werden,
die sich alle unterschiedlich auf die Ergebnisse auswirken. Wir zeigen, dass einige Mod-
ifikationen am Algorithmus die Clustering Ergebnisse verbessern und das viele andere
Modifikationen die Clustering Ergebnisse verschlechtern und mehr Laufzeit verursachen.
Zum Schluss vergleichen wir unseren verbesserten Algorithmus mit anderen Clustering-
Algorithmen und stellen fest, dass unser verbesserter Algorithmus im Vergleich zu an-
deren differenziellen privaten Algorithmen ähnliche Ergebnisse erzielt, aber immer noch
schlechter ist als ein nicht-privater Clustering Algorithmus.
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1 Introduction

Machine learning enables systems to learn patterns in training data sets and then classify
new data or create general rules from the training data. One discipline of unsupervised
machine learning is clustering, which attempts to group similar data points into clusters
and computes a center for each cluster. One way to formalize the problem of clustering
is to find k cluster centers in a data set D of n data points and minimize the sum of the
distances of each data point to its closest cluster center. This problem is already NP-hard
and we also focus on big data sets in high-dimensional Euclidean spaces, which makes
it even more complicated. There is already a popular clustering algorithm called the k-
means algorithm or Lloyd’s algorithm that provides useful results for many scenarios and
data sets.
However, when processing data sets containing sensitive and personal data during clus-
tering, the result could reveal sensitive information about individual data points. Thus,
the privacy of participants in a data set used for clustering algorithms could be violated.
To protect the privacy of participants in the data set, differential privacy [Dwo06] could
be applied. Differential privacy offers a strong privacy guarantee for statistical databases
and can also be applied in other applications such as clustering algorithms.
The goal is to compute cluster centers in sensitive data sets while maintaining the pri-
vacy of the participants in the data sets. There are already some solutions for this [Nie16,
Kap09] but they do not work well in the context of big data in high-dimensional sce-
narios [Hon17a]. Therefore, Balcan et al. [Hon17a] proposed an algorithm that provides
a solution for differentially private clustering in high-dimensional Euclidean spaces. To
solve the high-dimensional problem, the algorithm first reduces the dimension of all data
points in the data set and continues working with the low-dimensional data set. Then,
low-dimensional spaces containing many data points are recursively partitioned and the
centers of these spaces are stored. Afterward, a technique of local swapping is used to
greedily replace bad centers with good centers and extract just k centers. At last, a recov-
ery from the low-dimensional centers to the high-dimensional centers is performed.
The approach of Balcan et al. is promising but, like many other theoretical algorithms on
this topic, has many problems in practice such as too long runtime, too much memory us-
age, and too poor results. Furthermore, the existing Matlab implementation [Hon17b] of
the Balcan et al. algorithm contains many bugs that, for example, violate the privacy guar-
antees. This work discusses the problems of the algorithm of Balcan et al., fixes the bugs
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1 Introduction

in their Matlab implementation, and improve the problems. Therefore, we implemented
the algorithm in Python [Edl23] and had to make a few modifications to achieve appro-
priate runtime and appropriate results. But the results were still relatively poor. Thus, we
further studied the effects of various adjustments to the algorithm on the quality of the
results and the runtime.

1.1 Contribution

Our contribution can be summarized as follows:

• Implementation of a differentially private clustering algorithm, based on Balcan et
al. [Hon17a], in Python.

• Correction of bugs in the existing Matlab implementation [Hon17b] of Balcan et al.

• Examination of the effects of various adjustments to the algorithm on the quality of
the results and the runtime.

• Test of the algorithm with the MNIST data set [Haf98] and synthetic data sets and
comparison with other clustering algorithms.

1.2 Related Work

Clustering is a classic problem in the field of machine learning and there are already some
algorithms that provide good results [Vas07]. The most common clustering algorithm is
the standard k-means clustering algorithm, also called Lloyd’s algorithm, which is pop-
ular because it is simple and fast. However, clustering in high-dimensional Euclidean
spaces in a differentially private manner is another matter.
There also exist some algorithms but many of them are either not efficient or work only if
the data set fulfills certain assumptions. One of the first attempts of differentially private
clustering was proposed by Blum et al. [Kob21], who introduced the SulQ Framework.
This framework satisfies differential privacy and can be applied to the Lloyd’s algorithm.
The problem is that this algorithm offers no guarantees for the quality of the results. Other
algorithms have the problem of making strong assumptions about the input data [Smi07,
Sin15]. Nock et al. [Nie16] proposed a private version of the k-means++ algorithm (k-
variates++) but the algorithm can only run when the number of clusters searched for (k) is
small. The time and space complexity of the griding algorithm of Su et al. [Jin10] depends
on the dimension of the data set. Gupta et al. [Tal16] proposed an efficient algorithm but
it does not work in Euclidean spaces. The algorithm of Feldman et al. [Kap09] makes no
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1.2 Related Work

assumption about the input data set but there is no computationally efficient algorithm
for the high-dimensional space. Our algorithm is based on the algorithm of Balcan et al.
[Hon17a], which provides good guarantees for the quality of the results and works on big
high-dimensional data sets. Chaturvedi et al. [Eri21] also proposed a differentially private
k-means algorithm that outperforms the algorithm of Balcan et al. [Hon17b].
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2 Problem Statement

Clustering sensitive data carries the risk that sensitive information of participants in the
data set could be revealed. For example, when clustering medical data, a person’s health
status could be exposed. An attacker accomplishes this through linkage attacks, back-
ground knowledge, and other attacks. Then he could use this sensitive information to
extort a person, for instance. Therefore, the output of such an algorithm should not re-
veal any individual data. The task is to find clusters while preserving the privacy of the
participants in the data set.

To protect against all attacks, regardless of what knowledge an attacker has, differential
privacy can be applied. Differential privacy is a privacy guarantee for statistical databases.
The basic idea is that every time data is processed, some sort of mechanism must be ap-
plied that randomizes the outcome. This could be done, for example, by adding noise
or by randomly selecting from a set of candidates. So much noise must be added by the
mechanism that an attacker cannot comprehend whether the outcome was affected by a
particular data point or by the added noise. These mechanisms can also be applied to
clustering algorithms.

Nevertheless, the differentially private implementation of a clustering algorithm is only
one goal. Another goal is to achieve useful results with appropriate runtime and memory
usage while preserving privacy. Even if no privacy-preserving mechanism is applied,
clustering is already an NP-hard problem, and everything gets even more complicated
when the input data is big and high-dimensional. We still want to learn patterns and
similarities in the data set and then be able to classify new data correctly. So, we also want
to get the best clustering result possible. One way to formalize the clustering problem is
to find a set of k cluster centers z1, ..., zk ∈ Rd in a data set D = {x1, ..., xn} ∈ Rd of n
data points and minimize the sum of the distances of each data point to its closest cluster
center, called clustering loss. To measure the quality of the results, the inertia can be used,
which is also called k-means objective and is defined as:

n∑
i=1

min
j

||xi − zj ||2.

There are already many theoretical approaches to differentially private clustering algo-
rithms that show promising performance, but have many problems in practice. In prac-
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2 Problem Statement

tice, the theoretical algorithms are so elaborate to compute that they do not produce a
result in a reasonable runtime under realistic conditions. Furthermore, these algorithms
have theoretically good performance guarantees, but do not achieve sufficient perfor-
mance under realistic conditions. Bugs in the implementation of these algorithms lead
to faulty results and violate theoretical privacy guarantees, suggesting wrong safety.
Therefore, in this work, we will practically evaluate these problems using the differentially
private clustering algorithm of Balcan et al. [Hon17a] as an example. This algorithm pro-
vides good performance guarantees and Balcan et al. already implemented the algorithm
in Matlab [Hon17b]. More specifically, we evaluate the following questions:

• Does the algorithm run in a reasonable runtime and have a reasonable memory us-
age?

• Does the algorithm perform well compared to other algorithms?

• Are there bugs in their Matlab implementation that, for example, violate the privacy
guarantees?

• If there are bugs, how can they be fixed?

• How can we improve the performance of the algorithm while preserving differential
privacy and maintain runtime and memory usage reasonable?

• How well does the improved algorithm perform compared to other algorithms?
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3 Preliminaries

In this chapter, we introduce the most important topics for this work. First, we give a brief
introduction to high-dimensional data. Then, we give a general overview of clustering
and present an important algorithm from this area. At last, a definition of differential
privacy is given, and we look into relevant theorems.

3.1 High-Dimensional Data

High-dimensional data refers to data where the number of dimensions exceeds or nearly
exceeds the number of data points. If the number of dimensions even exceeds the num-
ber of data points, we will never be able to describe the relationships between the data
points because there are not enough of them. These data sets are common in the field of
health care, for example. However, in our work, we will also refer to high-dimensional
data when the number of dimensions is simply high. Working and computing with high-
dimensional data is difficult and algorithms that use it often require a lot of runtime and
memory.
One way to solve this problem is to reduce the dimensions using the Johnson-Lindenstrauss
transformation. In summary, the Johnson-Lindenstrauss-Lemma states that a set of n

points in a Euclidean space of dimension d can be reduced to a Euclidean space of smaller
dimension p, while the pairwise distances between the points changing by only a small
factor. Therefore, with the Johnson-Lindenstrauss transformation, the distances between
the points are essentially preserved. This can be done by multiplying the (d, n) data
matrix X by a (p, d) random projection matrix G that draws each element in G from the
Gaussian distribution N(0, 1). For the Johnson-Lindenstrauss-Lemma to still hold, p is
bounded by a value 0 < α < 1 and the number of points n. The dimension d can be
reduced to p = α−2 · log n, while the distance change between any data points is at most
1 ± α. Thus, when α ≈ 1, the minimum dimension p ≈ log n and the maximum distance
change of approximately 1± 1 is reached.

3.2 Clustering

Machine learning enables systems to learn patterns and regularities in training data and
then classify new data or create general rules from the training data. One part of machine
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3 Preliminaries

learning is unsupervised learning, which learns with unlabeled data. So, in the training
data set, one does not need to know how a certain data point is classified, it is assigned to
a certain classifier during computation. One of the most common unsupervised learning
techniques is clustering. In general, the task of clustering is to group sets of similar objects
into clusters. We only focus on the centroid model in the Euclidean space, where each
cluster is represented by a single mean point.

We consider the following problem. The training data set consists of n data points with
dimension d in the Euclidean space. Clustering algorithms try to find points, also called
cluster centers, in the space of the data set where many data points are located. These
cluster centers would then be a representation of all other data points located in that area.
After executing a clustering algorithm and finding some cluster centers as a representa-
tion of the clusters, new data points can be automatically compared to the cluster centers.
Based on the shortest Euclidean distance between the new data point and all cluster cen-
ters, the new data point can be classified as the same as the cluster center with the shortest
distance. The goal of the clustering algorithms is to reduce the overall summarized Eu-
clidean distances between the data points in the training data and their closest cluster
centers.

One way to formalize this problem is to find a set of k cluster centers z1, ..., zk ∈ Rd in a
data set D = {x1, ..., xn} ∈ Rd of n data points and minimize the sum of the distances of
each data point to its closest cluster center, called clustering loss. To measure the quality
of the results, the inertia can be used, which is also called k-means objective and is defined
as:

n∑
i=1

min
j

||xi − zj ||2

Lloyd’s algorithm

The most common clustering algorithm is the standard k-means algorithm, also called
Lloyd’s algorithm, because it is quite simple and fast. First, this algorithm initializes a
set of cluster centers by randomly selecting data points in the data set. Then, it calculates
all Euclidean distances between all data points and all cluster centers and assigns each
data point to the closest cluster center. After that, for each cluster center, the assigned
data points are summed and then divided by the number of data points assigned to that
cluster to calculate the average values and thereby receive the new cluster centers. That is
repeated in several iterations until a certain threshold is reached. The goal is to compute
a better set of clustering centers at each iteration that minimizes the inertia. In this way,
a local optimum can be found, although it is not guaranteed that this is the best possible
clustering.
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3.3 Differential Privacy

The Lloyd algorithm can be easily attached to other algorithms that already calculated a
set of cluster centers and further improve this set of cluster centers.
Since the results of the Lloyd’s algorithm strongly depend on the random initialization of
the cluster centers at the beginning, the k-means++ algorithm was proposed to improve
this problem. The k-means++ algorithm specifies a procedure for initializing cluster cen-
ters and then proceeds with the standard k-means algorithm. This procedure first ran-
domly selects a data point as a cluster center. After that, all subsequent cluster centers
are selected from the remaining data points with a probability proportional to the squared
distances from the data points to the closest cluster center. As a result, the initialized
cluster centers are already well distributed across the data points, making it easier to pro-
cess them into better cluster centers. With the initialization of k-means++, the k-means
algorithm has better performance guarantees.

3.3 Differential Privacy

Differential privacy can be described as a promise to anyone who participates in a data set
used for a study or analysis that no sensitive information of an individual can be leaked.
Therefore, the presence of any data point in the data set must be hidden.
Formally, we consider the following scenario that can be seen as a cryptographic game.
An adversary has access to two neighbouring data sets D and D′. Neighbouring data sets
means that they only differ in one element x: D′ = D ∪ {x}. Then the adversary queries
both data sets to a challenger, who inputs the data sets in some mechanism M and returns
the output to the adversary. A mechanism M is formally a function that maps a data set
D to a random variable. Based on the output of the mechanism, the adversary should not
be able to reliably tell which of the outputs belongs to which of the inputs.
Two parameters ϵ and δ need to be defined for the privacy guarantees of the mechanism
M . ϵ defines the maximum difference between the output distributions of M on D and
D′. δ describes the probability of events that are not covered by ϵ.

Definition 3.1 (Differential Privacy). A randomized mechanism M : D → R preserves
(ϵ, δ)-differentially privacy if for all neighbouring data sets D1, D2 ∈ D and for all S ⊆ R:

Pr[M(D1) ∈ S] ≤ exp(ϵ) · Pr[M(D2) ∈ S] + δ

If δ = 0, M is defined as ϵ-differentially private.

Sensitivity

Before we define how differentially private mechanisms work, we need to define the sen-
sitivity of data sets. Sensitivity is the value that indicates how much a single data point
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3 Preliminaries

can affect the output of a mechanism in the worst case. Therefore, it defines how much
uncertainty must be added to the response of a mechanism to hide the participation of a
single data point. It is used to specify the minimum amount of noise that a mechanism
has to add to the output to perturb its output and thus preserve privacy. The idea be-
hind this is that when using a mechanism, it is not possible to reliably tell from the output
whether a certain data point is included in the data set, as the effect of a data point could
be completely added by noise [Aar14].

Definition 3.2 (Sensitivity). The sensitivity ∆ of a function f : A → B is:

∆f = maxx,y∈A;||x−y||1=1 ||f(x)− f(y)||1

Laplace Mechanism

The Laplace mechanism is an additive noise mechanism and uses the previously described
sensitivity of a data set to achieve differential privacy. It can be used whenever an algo-
rithm calculates a numerical value based on a data set to perturb the actual value with a
random variable. As the name already implies, the amount of noise to be added is drawn
from the Laplace distribution. The random variable drawn from the Laplace distribution
Lap(x, b) has the following probability density function:

f(x) =
1

2b
· exp(−|x|

b
).

We simply write Lap(b) to denote the Laplace distribution with scale b. So, the mechanism
calculates the actual value of a function f and then adds Laplace noise Lap(b). The scale b

depends on the sensitivity ∆ of the function f and the privacy parameter ϵ.

Definition 3.3 (Laplace Mechanism). Given a function f and the privacy parameter ϵ, the
Laplace mechanism MLaplace(x, f(·), ϵ) is defined as:

MLaplace(x, f(·), ϵ) = f(x) + Lap(∆f
ϵ )

In summary, the Laplace mechanism adds noise to the output of a function, making it
impossible to reliably tell whether a data point was included in the function’s input data
set [Aar14].

Exponential Mechanism

To privately select an element r from a candidate set R, the exponential mechanism can be
used [Aar14]. Therefore, we can accurately return a given value while preserving differ-
ential privacy. To do this, we need to define a scoring functions u that outputs a score for
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3.3 Differential Privacy

each element in the candidate set, indicating how likely it is that that exact element will be
selected. So basically, privacy is preserved by sometimes returning elements that do not
have the best score and therefore are not the best option.

Definition 3.4 (Exponential Mechanism). Given a data set D, a scoring function u, a can-
didate set R and the privacy parameter ϵ, the exponential mechanism ME(D,u,R) selects
and outputs an element r ∈ R with probability proportional to exp( ϵ·u(D,r)

2·∆u ).

Other Theorems

• Definition 3.5 (Sequential Composition). Let M1, ...,Mn be differentially private
mechanisms whose privacy guarantees are ϵ1, ..., ϵn. When executed sequentially,
the overall mechanism is (

∑n
i=1 ϵi)-differentially private.

• Definition 3.6 (Parallel Composition). Let M1, ...,Mn be differentially private mech-
anisms whose privacy guarantees are ϵ1, ..., ϵn. If the mechanisms are computed se-
quentially but on disjoint data sets, then the overall mechanism would be (maxi ϵi)-
differentially private.

• Differential privacy is immune against post-processing.
It is impossible to create a function that uses the output of a differentially private
mechanism and make it less differentially private.
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4 Approach

This chapter focuses on the differentially private clustering algorithm proposed by Balcan
et al. [Hon17a]. In the first section, we show how the algorithm works and how we
implemented it in Python [Edl23]. The second section then examines some adjustments
that had to be made to the algorithm to achieve acceptable runtime, memory usage and
results. The third section looks at the mistakes in the Matlab implementation of Balcan et
al. [Hon17b] and how we corrected them. We then compare the two implementations in
the last section of this chapter to evaluate the performance of both implementations.

4.1 Differentially Private Clustering Algorithm for High-Dimensional Data

4.1.1 Basic Concepts

Before we explain the basic idea of the algorithm, we introduce some basic concepts, that
are introduced and used by Balcan et al.

Clustering Loss

There are different loss functions when applying clustering, and Balcan et al. define the
clustering loss as follows. When computing a set of cluster centers z1, ..., zk ∈ Rd to a data
set containing data points x1, ..., xn ∈ Rd, the clustering loss is defined as the sum of the
distances of each data point to its closest cluster center:

n∑
i=1

min
j

||xi − zj ||

Cubes

Balcan et al. define cubes to subdivide the Euclidean space into sub-spaces. These cubes
can be partitioned. By a partition of a cube we mean that it is partitioned into equally sized
sub-cubes that completely cover the space of the original cube, and that the side lengths
of these sub-cubes are as long as half the side lengths of the original cube. Therefore, in
each partition of a cube, a grid of equally sized sub-cubes is created that covers the space
of the cube. These sub-cubes can be further partitioned into smaller cubes that are an
increasingly fine-grained partitioning of the space.
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4 Approach

Swap

A swap is in the work of Balcan et al. defined as a swap between an element in a currently
used set and an element of another set that does contain all elements that are currently
not used. All possible swaps contain all possible combinations of switching one element
of the currently used set with one of the other set. Thus, the size of both sets remains the
same before and after a swap, only one element changes in each set.

4.1.2 Basic Idea

The basic idea of the algorithm can be summarized as follows.

First, the data is projected to a lower dimension to minimize the problems that high-
dimensional data brings.

Now a cube is created that covers the Euclidean space of the low-dimensional data. If the
number of data points contained in the cube exceeds a pre-defined threshold, the center
of that cube is added to the so-called candidate set and the cube is partitioned along all
dimensions into equally sized sub-cubes. This is repeated with the sub-cubes until no
more cubes are partitioned or the maximum number of iterations is reached. In this way,
the algorithm iteratively calculates centers of cubes that better and better represent the
spaces where data points are located and therefore where potential clusters are located.

Then, the algorithm selects a set of centers from the candidate set as cluster centers and
calculates the clustering loss for each possible swap with the other points in the candidate
set. The probabilities for each swap are calculated based on these clustering losses and
swaps are selected based on these probabilities. Thereby, swaps that reduce the clustering
loss are more likely to be selected. After swapping several cluster centers, a subset of
swaps is selected based on the clustering losses resulting from these swaps, thus obtaining
the low-dimensional cluster centers.

After that, a recovery of the low-dimensional cluster centers into the high-dimensional
cluster centers is performed and 3 iterations of the Llyod’s algorithm are run with these
high-dimensional centers.

All of this is done several times to compute different sets of cluster centers, and one of
these sets is selected based on its clustering loss.

4.1.3 Implementation

For the implementation [Edl23] we used Python 3.11 along with the NumPy library
[HMvdW+20]. The algorithm is split into 6 sub-algorithms for clarity.
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4.1 Differentially Private Clustering Algorithm for High-Dimensional Data

Basic Construct

Algorithm 1 is the basic construct of the algorithm and brings together all other parts of
the algorithm. It calls the other algorithms and provides a general overview.
To use the algorithm, the data input must be a matrix containing one data point in each
column. Therefore, the number of rows of the matrix is equal to the number of dimensions
d and the number of columns is equal to the number of data points n. Furthermore, the
number of clusters to be found in the data k, the privacy budget ϵ, the failure probability
δ and the range of the data r must be entered. The range of the data is defined as the
l_2 radius of a single dimension, that is, the Euclidean distance between the minimum
possible point in the data set and the maximal possible point in the data set in a single
dimension.
A private set of cluster centers Z is computed in each of the T iterations. First, the
data is transformed into a lower dimension using the Johnson-Lindenstrauss transfor-
mation. Finding clusters in this low-dimensional data is likely to lead to clusters in the
high-dimensional data as well, since the distances between data points remain nearly
the same. Each data point in the high-dimensional space is related to a data point in
the low-dimensional space with the same index. Then, the candidate algorithm 2 pri-
vately computes a set of potential cluster centers in the low-dimensional space. After
that, the localswap algorithm 4 privately selects k cluster centers in the low-dimensional
space. Afterwards, the recover algorithm 5 privately extracts the high-dimensional clus-
ter centers based on the low-dimensional cluster centers. Thereafter, three iterations of
the private k-means algorithm 6 are computed, which attempts to improve the high-
dimensional cluster centers. Last, a set of cluster centers Z is selected using the exponen-
tial mechanism.
Here we have already implemented some changes compared to the algorithm proposed
in the paper of Balcan et al. [Hon17a]. These changes are mainly based on the Matlab
implementation [Hon17b]. Three iterations of the private k-means algorithm after the
recover algorithm are added. Since the private k-means algorithm also requires a
part of the privacy budget, the distribution of the privacy budget had to be adjusted.
Moreover, the paper does not explain how to retrieve the range of the data r. For this
reason, the range of the data must be specified as a parameter to the algorithm.
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Algorithm 1: Private Clustering

1 input (d, n) data matrix: X , number of clusters: k, privacy parameter: ϵ, failure
probability: δ, range of data: r

2 output Cluster centers: Z
3 low_dim = 8 · log n
4 T = 2 · log 1

δ

5 Cluster_Centers_Sets = []
6 for t in range(T ) do
7 data_low_dim = JL-Transform(X , low_dim) · 1√

d

8 candidates = candidate(data_low_dim, k, ϵ
T · 8

18 , δ, r)
9 centers_low_dim = localswap(candidates, data_low_dim, k, ϵ

T · 1
18 , δ, r ·

√
d)

10 centers_high_dim = recover(centers_low_dim, data_low_dim, X , k, ϵ
T · 1

9 , r)
11 iter = 3

12 for i in range(iter) do
13 centers_high_dim = priv_kmean(centers_high_dim, X , k, ϵ

iter·T · 1
3 , r)

14 Cluster_Centers_Sets.append((centers_high_dim))

15 Choose a set of cluster centers Z from Cluster_Centers_Sets with probability in
proportion to exp(− ϵ·clustering_loss(Cluster_Centers_Sets(t))

72·T ·(r·
√
d)2

)

16 return Z

Computation of a Set of Potential Cluster Centers

The candidate algorithm 2 can be seen as a structure that calls the private_partition
algorithm 3. It saves the different candidates computed by the private_partition al-
gorithm. Besides that, the initial cube for the private_partition algorithm is created
and a random shift vector is added to the cube boundaries to receive different starting
cubes and therefore better coverage of the space of the input data set. This potentially
results in more and different candidates. However, this function returns a set of possible
cluster centers in the low-dimensional space.
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Algorithm 2: candidate

1 input (p, n) low-dimensional data matrix: Y , number of clusters: k, privacy
parameter: ϵ, failure probability: δ, range of data: r

2 output Candidates: Cand

3 Cand = []
4 T = 27 · k · log n

δ

5 for t in range(T ) do
6 cube_initial = Cube()
7 for i in range(p) do
8 random = random_uniform(−r, r)
9 random_bounds = [−r + random, r + random]

10 cube_initial.add_dimension(random_bounds)

11 C = private_partition(Y , ϵ
T , δ

T , cube_initial)
12 Cand.append(C)

13 return Cand

The private_partition algorithm 3 computes the candidates for the candidate al-
gorithm 2. These candidates are centers of cubes in the low-dimensional space Rp. The
idea is that the initial cube created in the candidate algorithm contains the most of the
data points and thus all clusters in the data set can be found by partitioning the initial
cube into smaller cubes. This initial cube is added to the active cubes and the first depth
of the while loop begins. A cube is called active for a while when the center of that cube
will be added to the candidates C and will be further partitioned, which has not yet hap-
pened. Then, the centers of the active cubes are added to the candidates C. After that,
the active cubes are partitioned evenly in each dimension, creating for each active cube 2p

new Cubes. All currently active cubes are removed from the active cubes and the newly
created cubes are added to the active cubes with a certain probability. If there are more
data points in a cube than a threshold γ, that cube is more likely to be added to the active
cubes. This is repeated at each depth until no new partitioned cube is added to the active
cubes or the depth is greater than log n. Without these termination conditions, the algo-
rithm would not be efficient. In that way, it is likely to find clusters, because the space of
the cube containing many data points becomes more accurate at each depth.
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Algorithm 3: private_partition

1 input (p, n) low-dimensional data matrix: Y , privacy parameter: ϵ, failure
probability: δ, cube_initial

2 output Cube Centers: C
3 depth = 0

4 ϵ′ = ϵ
2·logn

5 γ = 20
ϵ′ · log

n
δ

6 C = []
7 active_cubes = [cube_initial]
8 while depth ≤ log n and active_cubes̸= ∅ do
9 depth = depth+ 1

10 Cubes_Next_Depth = []
11 for cube in active_cubes do
12 C.append(cube.center)
13 active_cubes.remove(cube)
14 new_Cubes = cube.partition()
15 for q in new_Cubes do
16 num_data_points = q.getNumberOfDatapointsInCube()
17 if num_data_points ≤ γ then
18 prob = 1

2 · exp(−ϵ′ · (γ − num_data_points))
19 else
20 prob = 1− 1

2 · exp(ϵ′ · (γ − num_data_points))

21 Append q with probability prob to Cubes_Next_Depth.

22 active_cubes = Cubes_Next_Depth

23 return C

Selection of k Cluster Centers

The candidate algorithm 2 returns a set of potential cluster centers, which are probably
more than k. Therefore, the localswap algorithm 4 reduces this set of cluster centers
to only k cluster clusters and attempts to swap centers that do not reduce the clustering
loss for centers that do. Accordingly, k centers are first randomly selected from the can-
didates. Then, each iteration t uses the exponential mechanism to privately select a swap
that reduces the clustering loss. To do this, a probability is computed for each possible
swap between a candidate not in the current cluster centers and a candidate in the current
cluster centers, based on the loss after and before the swap. Because of these probabilities,
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it is more likely to do a swap that reduces the clustering loss. The cluster centers after a
swap are saved in a list and used as current cluster centers in the next iteration. Thus, in
each iteration t, a set of cluster centers is computed and stored. Again, the exponential
mechanism is used to select one of these cluster center sets. The probabilities here are
based on the clustering loss, making it more likely to select a set of cluster centers with
low clustering loss. In summary, this algorithm attempts to select k cluster centers from
the candidate set that have a low clustering loss for the low-dimensional data.

Algorithm 4: localswap

1 input candidates, (p, n) low dimensional data matrix: Y , number of clusters: k,
privacy parameter: ϵ, failure probability: δ, range of data: r

2 output Cluster Centers (low dimensional)
3 Centers_Init = uniformly choose k centers from candidates

4 list_Centers = [(Centers_Init)]
5 T = 100 · k · log n

δ

6 for t in range(1, T + 1) do
7 current_Centers = list_Centers[t− 1]
8 loss_before_swap = compute_loss(Y , current_Centers)
9 for x in current_Centers do

10 for y in (candidates \ current_Centers) do
11 loss_after_swap = compute_loss(Y , current_Centers ∪ x \ y)
12 prob = exp(−ϵ · loss_after_swap−loss_before_swap

2·r2·(T+1)
)

13 Save probability prob for each swap.

14 Choose swap (x, y) with computed probabilities
15 list_Centers.append((current_Centers ∪ x \ y))

16 Choose t ∈ {1, 2, ..., T} with probability in proportion to
exp(− ϵ·compute_loss(list_Centers(t))

2·r2·(T+1)
)

17 return list_Centers(t)

Recovery of High-Dimensional Cluster Centers

These low-dimensional cluster centers now have to be transformed to high-dimensional
cluster centers in the recover algorithm 5. Therefore, for each cluster center, a list of data
points indexes assigned to that cluster center in the low-dimensional data must be created.
A data point is assigned to a cluster center if the distance between the data point and this
cluster center is the smallest compared to the distances between this data point and the
other cluster centers. These indexes are used to obtain the high-dimensional data and
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to form the cluster centers in the high-dimensional data space. For each existing cluster
center, all high-dimensional data points assigned to that cluster center are summed and
divided by the number of data points. To make this differentially private, Laplace noise is
added to the number of data points for noise calculation and the average cluster center in
each dimension.

Algorithm 5: recover

1 input low dimensional cluster centers: centers_low_dim, (p, n) low-dimensional
data matrix: Y , (d, n) high-dimensional data matrix: X , number of clusters: k,
privacy parameter: ϵ, range of data: r

2 output high-dimensional Cluster Centers: centers_high_dim
3 centers_high_dim = []
4 for index_of_cluster in range(k) do
5 indexes_data_points_assigned_current_cluster = indexes of low-dimensional

data points (Y ) that have the closest distance to current cluster center:
centers_low_dim[index_of_cluster]

6 numberDP = len(indexes_data_points_assigned_current_cluster)
7 numberDP_noised = numberDP + Laplace(2ϵ )
8 if numberDP_noised < 1 then
9 numberDP_noised = 1

10 sum_data_points =
sum_up_data_points(indexes_data_points_assigned_current_cluster, X)

11 noise_center = []
12 for dim in range(d) do
13 noise_center.append_dimension(Laplace( 2·r

ϵ·numberDP_noised ))

14 center_noised = 1
numberDP · sum_data_points+ noise_center

15 centers_high_dim.append( center_noised )

16 return centers_high_dim

Differentially Private k-means Algorithm

To further improve cluster centers, the private k-means algorithm 6 is used, which
works the same way as the private Lloyd algorithm. The algorithm is also very similar to
the recover algorithm 5. For each cluster, all data points that have the closest distance to
that cluster are summed. Then this sum is divided by the number of data points assigned
to that cluster, which is the new cluster center. To make this differentially private, Laplace
noise is added to the number of data points for noise calculation and the average cluster
center in each dimension.
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Algorithm 6: private kmeans

1 input cluster centers: centers_old, (d, n) data matrix: X , number of clusters: k,
privacy parameter: ϵ, range of data: r

2 output Cluster Centers: centers_new
3 centers_new = []
4 for index_of_cluster in range(k) do
5 indexes_data_points_assigned_current_cluster = indexes of data points (X)

that have the closest distance to current cluster center:
centers_old[index_of_cluster]

6 numberDP = len(indexes_data_points_assigned_current_cluster)
7 numberDP_noised = numberDP + Laplace(2ϵ )
8 if numberDP_noised < 1 then
9 numberDP_noised = 1

10 sum_data_points=
sum_up_data_points(indexes_data_points_assigned_current_cluster, X)

11 noise_center = []
12 for dim in range(d) do
13 noise_center.append_dimension(Laplace( 2·r

ϵ·numberDP_noised ))

14 center_noised = 1
numberDP · sum_data_points+ noise_center

15 centers_new.append( center_noised )

16 return centers_new

4.2 Improve Runtime and Clustering Results

After implementing and running the algorithm in Python, we noticed that the algorithm
could not be executed efficiently even on small data sets with small dimensions and did
not produce good clustering results. Therefore, we looked at the Matlab implementa-
tion [Hon17b], found many adjustments compared to the paper algorithm of Balcan et al.
[Hon17a] and adapted our implementation. This section focuses on how our algorithm
needs to be modified to achieve efficient runtime, memory usage and better clustering
results. To achieve this goal, many different parameters are changed. We discuss the dif-
ferent problems, apply the changes in the Matlab implementation to our algorithm, and
discuss the effect of these changes. Afterwards, our implementation is almost exactly like
the Matlab implementation [Hon17b] to get a good comparison between these two imple-
mentations later.
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Further Reduction of Dimension

One problem is that the dimension of the low-dimensional data is still too high, which re-
sults in too long runtime and too much memory usage. In the Private Clustering al-
gorithm 1, the random projection from the high-dimensional data to the low-dimensional
data occurs in line 7. To better retain the distances between the n data points and still
satisfy the Johnson-Lindenstrauss Lemma, the dimension for the low-dimensional data
low_dim is set to 8 · log n in line 3.

However, this still leads to a much too high dimension, which results in too long run-
time and too high memory usage. All algorithms candidate, private_partition,

localswap and recover must compute something in each dimension, so each dimen-
sion extends the runtime. Furthermore, and this is by far the bigger problem, a large
amount of data must be saved at higher dimensions. In the private_partition algo-
rithm 3, each active cube at each depth is partitioned into 2low_dim new cubes, and each
newly partitioned cube can potentially be partitioned again into 2low_dim new cubes, which
can happen up to log(n) times.

Following this, a small dimension is required to achieve efficient runtime and memory us-
age. Therefore, Balcan et al. chose a much smaller dimension for reduction in their Matlab
implementation [Hon17b]: log(n)

2 . This is even so small that the Johnson-Lindenstrauss
Lemma no longer holds, since the dimension to be reduced to must be bigger than log(n).
Now the distances between data points are larger as they were in the high-dimensional
data, and the cluster centers computed in the low-dimensional data are not as accurate for
the high-dimensional data. In summary, the results will be worse for the high-dimensional
data, but it is necessary to provide usability.

Without this reduction, our computing setup was not able to execute the private_

partition algorithm with a data set that contained only 20 data points. This results
in 28·log 20≈24 ≈ 16 million new cubes, for each active cube at each depth. With the new
reduction, even data sets with 100000 data points are reduced to only log(100000)

2 ≈ 5 di-
mensions and there are just 25 = 32 new cubes for each active cube at each depth of the
private_partition algorithm.

To apply this change in our algorithm, the Private Clustering algorithm 1 must be
modified in line 3. The new line 3 looks like this: low_dim = logn

2 .

Reduction of Iterations T

The Private Clustering 1, candidate 2, and localswap 4 algorithms all use for
loops that run for iteration parameter T . These algorithms theoretically work with the
iterations T specified by the algorithm in the paper of Balcan et al. [Hon17a], but they
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are so high that this leads to runtime problems in practice. Therefore, all of them must be
reduced.

In the paper algorithm Private Clustering of Balcan et al. [Hon17a] and in our cur-
rent Private Clustering algorithm 1 the number of iterations T is set to 2 · log 1

δ . The
problem is that even 1 iteration of the algorithm already takes some time. Each time T is
increased by one, the runtime increases by exactly the time it takes to compute one cluster
center set. Since each t ∈ T computes a whole new cluster center set, the algorithm could
also work with only 1 iteration. To shorten the runtime, the Matlab implementation pro-
posed to reduce the iterations T to just 1. This change can be applied to our algorithm by
setting T to 1 in line 4 in Private Clustering.

In the paper algorithm candidate of Balcan et al. [Hon17a] and in our current candidate
algorithm 2, the number of iterations T is set to 27·k·log n

δ . Since the private_partition
algorithm 3, which partitions each cube into sub-cubes etc., takes some time, each of the
T computations also takes some time. But there is another problem: computing more can-
didates is a problem for the runtime of the localswap algorithm 4. The more candidates
there are, the more swaps the localswap algorithm must calculate. Thus, increasing the
number of T in candidate increases the runtime in two respects. The Matlab implemen-
tation proposed reducing the iterations T to 3. To apply this change to our algorithm, T
has to be set to 3 in line 5 in candidate.

In the paper algorithm localswap of Balcan et al. [Hon17a] and in our current localswap
algorithm 4, the number of iterations T are set to 100 · k · log n

δ . One swap could be done
very quickly. The runtime depends heavily on the number of candidates entered into the
algorithm and the number of clusters searched for k, because the number of swaps is cal-
culated as follows: k ·(|candidates|−k). In the Matlab implementation, it was proposed to
reduce the iterations T to the number of clusters searched for k. These iterations are also
capped by 20. To apply this change, the code in Listing 4.1 could be added to localswap
for line 5.

Listing 4.1: Change for the localswap algorithm in line 5

1 T = k

2 if T > 20:

3 T = 20

The Figure 4.1 illustrates how fast the runtime increases when increasing the T parameters
in candidate and localswap. As a data set, we used the MNIST data set [Haf98] with
70000 data points and 784 dimensions. Then we executed the Private Clustering

algorithm 1 with the following parameters: data = MNIST, k = 10, ϵ = 1.0, δ = 0.1.
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Figure 4.1: Effect of increasing iterations T in the candidate and localswap algorithms
on the runtime of the Private Clustering algorithm 1. Algorithm imple-
mented in Python as proposed in Section 4.1 and all other adjustments from
Section 4.2 applied. Further configurations: data = MNIST data set, k = 10,
ϵ = 1.0, δ = 0.1, r = 255

Already at T = 30, the runtime is over 48 minutes. As the previous discussion and the
Figure 4.1 suggest, the runtime increases rapidly. The values of T before the reduction of T
in this scenario are 27·10·log(700000.1 ) ≈ 3633 for candidate and 100·10·log(700000.1 ) ≈ 13458

for localswap. With the previous calculation of iterations T , the runtime would thus be
much too high. As a result, it is necessary to reduce the number of iteration T in these
algorithms.

Another side effect of these reductions is that each iteration of the algorithms receives
a larger portion of the privacy budget ϵ, since it must be divided among each iteration.
Therefore, better results are obtained at each iteration when T is lower.

Reduction of γ

The γ value in the private_partition algorithm 3 is a bound on whether a new cube
is added to the active cubes, and thus whether the cube center of that new cube is added
to the candidates. This is decided by whether the number of data points that lay in this
cube is greater than the γ value. More detailed, the probabilities of adding a new cube to
the active cubes depends on the number of data points that lay in that cube. If there are
more than γ, the probability is high, if not, the probability is low.

The problem is that for realistic data sets (such as the MNIST data set), this γ value is
so large that no new cube is added to the active cubes and, as a result, the candidate set
has poor performance, because no cube centers are added as possible candidates. If these
candidates already perform poorly, the other algorithms cannot improve the clustering
centers later to achieve a good clustering result. So, it is not a runtime or memory problem,
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but a problem that leads to poor results.
In the paper algorithm private_partition of Balcan et al. [Hon17a] and in our current
algorithm private_partition 3, the γ value is calculated by 20

ϵ′ · log( n
delta). This value

is reduced to 2
ϵ′ · log(

n
delta) in the Matlab implementation, which is a reduction by a factor

of ten.
If the γ value is not reduced, as in our current algorithm private_partition 3, it
has a value of 40540 (all other changes from Section 4.2 applied, further configurations:
Private Clustering(data = MNIST, k = 10, ϵ = 1.0, δ = 0.1, r = 255)) at the MNIST
data set. So there had to lay more than 40540 data points in a cube to add this cube to
the active cubes, while the data set has only 70000 data points. Furthermore, there are
10 different clusters in the data set and each cluster has the same number of data points,
resulting in 70000

10 = 7000 data points per cluster. Therefore, with a bound of γ = 40540, it
is not possible to obtain a candidate set that represent cluster centers sufficiently, because
no cubes are added to the active cubes, resulting in no partitioning of cubes and no new
cube centers added to the candidate set.
With the new calculation of γ, as proposed in the Matlab implementation, only 4054 data
points need to be present in a cube to add the cube to the active cubes, which is a realistic
assumption. Therefore, the cubes are partitioned more often, and the centers of these
cubes are better representations of the clusters.
To apply this change to our algorithm, the private_partition algorithm 3 must be
changed in line 5. The new line 5 looks like this: γ = 2

ϵ′ · log
n
δ .

4.3 Bugs and Corrections in the Matlab Implementation of Balcan et al.

During our first comparison between our Python implementation [Edl23] and the Matlab
implementation [Hon17b], we encountered not only the adjustments in the Matlab im-
plementation described previously in Section 4.2, but also encountered some bugs in the
Matlab implementation. So, all results in the paper by Balcan et al. [Hon17a] from the
Matlab implementation [Hon17b] are not based on faultless implementation. This section
shows and explains the mistakes in the Matlab code, and afterwards a solution for them
is proposed.

Too Much Privacy Budget Used in clustering.m

The privacy budget is specified by the ϵ parameter, which must be an input parameter
to the algorithm. This parameter must be divided among all algorithms that perform
differentially private computations on the data. When summing up all fractions of the
ϵ parameters assigned to the sub-algorithms, the sum must be at most equal to the in-
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putted ϵ, which is usually 1, because of the sequential composition theorem. However,
the original Matlab implementation used the following privacy budget distribution in
clustering.m:

• candidate: 2
3 · ϵ ([Hon17b], clustering.m, line 31)

• localsearch (equals localswap): 1
12 · ϵ ([Hon17b], clustering.m, line 33)

• recover: 1
6 · ϵ ([Hon17b], clustering.m, line 51)

• Lloyd / private k-means: 1
2 · ϵ ([Hon17b], clustering.m, line 73)

• "cluster selection": 1
12 · ϵ ([Hon17b], clustering.m, line 84)

The fractions of ϵ summed up to 1.5 · ϵ, which is not equal to the amount of 1 · ϵ entered
into the algorithm, and thus is too much, which is not fair. Therefore, given an input ϵ,
this algorithm is no longer ϵ-differentially private, but (1.5 · ϵ)-differentially private.
Based on this unfair distribution, we created a fair privacy budget distribution that leads
to a ϵ-differentially private algorithm and maintains the ratios of the unfair distribution.
Therefore, we calculated the fair distribution by dividing each fraction by 1.5, which leads
to a sum of all fractions that equals 1 · ϵ. The following privacy budget distribution can be
used:

• candidate: 4
9 · ϵ

• localsearch / localswap: 1
18 · ϵ

• recover: 1
9 · ϵ

• Lloyd / private k-means: 1
3 · ϵ

• "cluster selection": 1
18 · ϵ

We used this correct and fair privacy budget distribution for the Matlab implementa-
tion for all subsequent comparisons. We also used this distribution for our Private
Clustering algorithm 1.

Too Much Privacy Budget Used in candidate.m

A similar mistake was made in the algorithm used to calculate the candidates. In
candidate.m, instead of 1 · ϵ, 1.5 · ϵ was again used as the privacy budget. In line
6, the partition.m algorithm is called and the privacy budget passed to the algorithm
is ϵ divided by the iteration parameter T , which is set to 2. So even before the for loop
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starts in line 8, 1
2 · ϵ of the privacy budget is already used. During each of the T = 2 loop

iterations, the partition.m algorithm is called again, and the privacy budget passed
to this algorithm is 1

2 · ϵ. Following this, 1
2 · ϵ privacy budget is used three times. The

summation yields 1.5 · ϵ privacy budget, which is again 1
2 · ϵ too much.

This problem can be solved by simply adding 1 to the denominator T in line 6 and 12.
After that, the privacy budget is correctly distributed by one third to each of the three
function calls of the partition.m algorithm.

Incorrect Division After JL-Transform

In clustering.m in line 25, the low-dimensional data are divided by the square root of
p. p here is the dimension to which the high-dimensional data is reduced, i.e., the dimen-
sion of the low-dimensional data. Originally, the low-dimensional data should be divided
by the square root of the high-dimensional data dimension d. This mistake becomes a
problem when calculating the shift for the data in candidate.m, since the shift in each
dimension can be minimum −side_length/2 and maximum side_length/2. In the Mat-
lab implementation, the data is shifted in the candidate algorithm instead of the cube,
which has the same effect. The side_length is determined by at least 2 times the infinity
norm of the high-dimensional data space. Thus, if the low-dimensional data is divided
just by the square root of p, the maximum possible value in the low-dimensional data
will be higher than when divided by the square root of d, and therefore the possible off-
sets for the shifts are too small for the low-dimensional data because the low-dimensional
data may contain higher values. This could lead to poorer results because the data is not
shifted much in each iteration T in candidate.m and thus the data is more similar and
each partition run is more likely to find the same clusters in each run.

This bug can be solved by simply dividing the low-dimensional data by the square root
of d instead of the square root of p in line 25 of clustering.m.

Bug in partition.m

In the partition.m algorithm is a classic software bug. In line 13, the global variable
side_length is divided by 2 at each iteration of the while loop. This does not only affect
partition.m, because this is a global variable. Also, the offset for the shift of the data
depends on side_length in candidate.m. So, after each function call of partition.m
in candidate.m the variable side_length becomes smaller and the bounds for the shift
of the data also become smaller. This could lead to poorer results because the data in each
iteration T in candidate.m is not shifted as much and thus the data is more similar and
it is more likely that each partition run will find the same clusters.
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A solution would be to create a variable local_side_length that is assigned the value of
side_length at the beginning of partition.m. Then this local_side_length can be divided
in every loop iteration of partition.m and be further used there.

Wrong Noise Calculation in recover.m

The recover.m file in the Matlab implementation is part of our recover and private

k-means algorithm. It simply calculates the average data point of a set of data points that
are assigned to a cluster and then adds noise to that average data point.
The following bug was discovered by Chaturvedi et al. [Eri21]. The problem is that the
Matlab implementation in recover.m in line 8 incorrectly calculates the noise for the
average data point. They incorrectly used the actual number of data points to calculate
the noise for the average data point, while the noisy number of data points must be used.
A solution would be to insert a new line between lines 7 and 8 where n is noised as pro-
posed in line 7 of our recover algorithm 5. In Matlab, this line would look like this:
n = n+ random(′exp′, 2/ϵ). ∗ (2 ∗ random(′bino′, 1, 0.5)− 1);

4.4 Comparison of Clustering Results

In this section, we examine whether our Python implementation [Edl23] produces similar
clustering results as the Matlab implementation of Balcan et al. [Hon17b]. After mak-
ing the proposed algorithm of Balcan et al. [Hon17a] efficiently runnable in Section 4.2,
adding the private k-means algorithm in Section 4.1, and fixing the bugs in the Mat-
lab implementation in Section 4.3, we can now compare our implementation to theirs. We
expect almost the same results since the implementations are set nearly the same. Never-
theless, there are some differences that could affect the clustering results. One difference
that should make the Matlab implementation a little better is that the failure probabil-
ity δ is ignored. Another difference is that the Matlab implementation does not shift the
cubes in the candidate.m algorithm. They shift the data instead of the cube, which has
the same effect and should not affect the results. Last, what should make our Python
algorithm better is that we chose a smaller range and therefore add less noise, when com-
puting noise for each dimension. In our implementation, we set the range to the l_2 radius
of only one dimension of the data space, while the Matlab implementation sets it to the l_2
radius of the data space. Our idea was to adjust the range as needed, for example, when
noise is calculated for an entire data point and the l_2 radius of the data space is needed.
Since differentially private determination of the range of a data set is still a open question
in computer science, both approaches are not differentially private in this respect.
However, as already said before, bugs are quickly made and we also have a bug in our
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Python implementation [Edl23] that affects the calculation of private selections when us-
ing the exponential mechanisms. The range used in the exponential mechanisms is incor-
rect since we set the range to the l_2 radius of only one dimension of the data space. In this
scenario, it must be the l_2 radius of the data space, because we need to consider the effect
of one data point on the clustering loss. Our bug leads to using too small a range and too
low a sensitivity, which in turn leads to too high a probability of selecting the best can-
didate in the set. Thus, each time we use the exponential mechanism in the localswap
algorithm 4 and the Private Clustering algorithm 1, the probabilities calculated for
private selection are wrong and too good. However, this bug does not effect the perfor-
mance of the algorithm in our practical setting, since all objects in the candidate set have
the same probability, as we will show in Section 5.3. If the range were even larger, the
probabilities for each object in the candidate set would be even more evenly distributed,
but as we said, it cannot be more even in our practical setting. In summary, this bug has
no effect on the performance of the algorithm in our practical settings.

4.4.1 Experimental Setup

We will execute both implementations with different input parameters to examine how
well the implementations work with different parameters and what their effects are.
For the Matlab implementation, all corrections from Section 4.3 are applied, and for our
Python implementation, all adjustments from Section 4.2 are applied. The criterion for
how well the implementations work is always how the computed cluster centers perform
on the inertia. We always executed 5 independent runs of the algorithms and calculated
the average. Both implementations also require different input parameters. Our Python
implementation requires as input: data X , number of clusters searched for k, privacy
parameter ϵ, failure probability δ and the range of the data r. The Matlab implementation
requires as input: data x_data, number of data points n, number of dimensions d, number
of clusters searched for k, privacy parameter ϵ and the failure probability δ. Further-
more, the global variables range of the data range and the side_length must be specified.
side_length is specified as 2 times the infinity norm of the data space and the range is
specified as the l_2 radius of the data space.

Data Sets

• MNIST Data Set [Haf98]
The MNIST data set is a database of images of the numbers from 0 to 9, which is
often used to compare different machine learning algorithms. Each data point is a
number encoded as a 28× 28 pixel grayscale image. To use this data set in the algo-
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rithms, these data points must be converted to data points with only one dimension,
resulting in data points with 28 ·28 = 784 dimensions. The data set consists of 60.000
data points as the training set and 10.000 data points as the test set. We combined
both data sets, and therefore when we refer to the MNIST data set, we are referring
to the combined set of 70.000 data points and 784 dimensions.

For the Matlab and Python implementation, we also need to specify the range of the
data set. In this case, the minimum value is 0 (complete white) and the maximum
value is 255 (maximum black). Following this, the range of the data per dimension
for our Python implementation is 255. In the Matlab implementation, the range is
the l_2 radius of the data set, which is 255 ·

√
784. Also, the side_length must be

specified, which is at least 2 times the infinity norm of the data space. Therefore, it
is 2 · 255 = 510.

• Synthetic Data Sets
When we refer to synthetic data sets, these data sets are made with the make_blobs
function from the scikit-learn software library [PVG+11], which generates clusters
of normally distributed data points. The number of data points, the number of di-
mensions, and the number of cluster centers created vary for each used data set.
What is the same each time is the center box of (0, 100) and the standard deviation
of 1.0. Following this, the data points have values between 0 and 100 plus or minus
3 with high probability, since 3 has already less than 0.1% probability with the stan-
dard deviation of 1.0. To account for other, even more unlikely events, we consider
data points between 0 and 100 plus or minus 5. Therefore, the range for our Python
implementation is | − 5 − 105| = 110 and the range for the Matlab implementation
is 110 ·

√
100. The side_length for the Matlab implementation is 2 · 110 = 220.
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4.4.2 Results

The following figures show the averages and the standard deviations computed over 5

runs.

Privacy Utility Tradeoff
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Figure 4.2: Comparison of the Matlab [Hon17b] and Python [Edl23] implementations
in terms of the effect of the privacy budget ϵ on the inertia for the com-
bined MNIST data set. Configurations for Python: data = MNIST data set,
k = 10, ϵ = Epsilon, δ = 0.1, r = 255. Configurations for Matlab: data =
MNIST data set, n = 70000, d = 784, k = 10, ϵ = Epsilon, delta = 0.1, range =
255 ·

√
784, side_length = 510.
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Effect of Number of Cluster searched for k

• MNIST data set
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Figure 4.3: Comparison of the Matlab [Hon17b] and Python [Edl23] implementations in
terms of the effect of the number of clusters searched for k on the inertia for
the combined MNIST data set. Configurations for Python: data = MNIST data
set, k = Number of Clusters, ϵ = 1.0, δ = 0.1, r = 255. Configurations for
Matlab: data = MNIST data set, n = 70000, d = 784, k = Number of Clusters,
ϵ = 1.0, delta = 0.1, range = 255 ·

√
784, side_length = 510.
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• Synthetic data set
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Figure 4.4: Comparison of the Matlab [Hon17b] and Python [Edl23] implementations in
terms of the effect of the number of clusters searched for k on the inertia for
a synthetic data set. The synthetic data set contains 100000 data points with
100 dimensions each. Furthermore, 64 clusters are created in the data set.
Configurations for Python: data=Synthetic data set, k = Number of Clusters,
ϵ = 1.0, δ = 0.1, r = 110. Configurations for Matlab: data=Synthetic data set,
n = 100000, d = 100, k = Number of Clusters, e = 1.0, delta = 0.1, range =
110 ·

√
100, side_length = 220.
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Effect of Dimension
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Figure 4.5: Comparison of the Matlab [Hon17b] and Python [Edl23] implementations in
terms of the effect of dimensions in the synthetic data sets on the inertia. There-
fore, 3 different data sets are created, all containing 100000 data points and 32
clusters. One data set has 5 dimensions, one 50 and one 500. Configurations
for Python: data = Synthetic data set, k = 32, ϵ = 0.5, δ = 0.1, r = 110. Con-
figurations for Matlab: data = Synthetic data set, n = 100000, d = Number of
Dimension, k = 32, ϵ = 0.5, delta = 0.1, range = 110 ·

√
100, side_length = 220.
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Effect of Number of Intrinsic Clusters
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Figure 4.6: Comparison of the Matlab [Hon17b] and Python [Edl23] implementations in
terms of the effect of intrinsic clusters in the data set on inertia. For each "Num-
ber of Clusters", a synthetic data set is created with that number of clusters. The
algorithms are executed with that data sets and k is set to the number of clus-
ters contained in the currently used data set. Configurations for Python: data =
Synthetic data set, k = Number of Clusters, ϵ = 1.0, δ = 0.1, r = 110. Configu-
rations for Matlab: data = Synthetic data set, n = 100000, d = 100, k = Number
of Clusters, ϵ = 1.0, delta = 0.1, range = 110 ·

√
100, side_length = 220.
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The privacy utility tradeoff Figure 4.2 checks whether the algorithm behaves as expected.
As the privacy budget parameter ϵ increases, the clustering results should also improve
(inertia decreases), because the amount of noise that is added in the mechanisms de-
creases. As the Figure 4.2 shows, for both implementations, the inertia decreases as the
ϵ increases. Furthermore, our implementation in Python consistently achieves about 10
percent better results than the Matlab implementation.
Figures 4.3 and 4.4 examine the effect of a higher number of cluster centers searched for
k. As expected, the more cluster center are searched for, the more cluster centers are
found in average and thus the inertia decreases. When using the MNIST data set, both
implementations produce almost the same results until the number of clusters searched
for is set to 16. Thereafter, our implementation achieves significantly better results. On
the other hand, if the synthetic data set is used, both implementations produce almost the
same results until the number of clusters searched for is set to 32, after which the Matlab
implementation achieves significantly better results.
Figure 4.5 shows the effect of increasing dimensions in synthetic data sets. As the num-
ber of dimensions increases, the inertia also increases, since each dimension introduces a
distance between the cluster centers and the data points. Both implementations produce
virtually the same results.
Figure 4.6 shows the effect of intrinsic clusters in synthetic data sets. As the number of in-
trinsic clusters increases, the inertia also increases because more clusters need to be found
to achieve good clustering results, which is more difficult. Our Python implementation
always performs slightly worse than the Matlab implementation.

As the results in the figures show, both implementations lead to similar results. Our
Python implementation performs better on the MNIST data set, while the Matlab imple-
mentation performs better on synthetic data sets. Why the performances of the algorithms
behave this way, we cannot explain. In summary, we can deduce that our implementation
works the same as the Matlab implementation.
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In this chapter, we try to further improve the algorithm in terms of its performance mea-
sured by the inertia. We examine which algorithm parts have which effect on the clus-
tering results and perform a hyperparameter search for the privacy budget distribution.
We change many parameters, change and add other algorithms, and analyze the effect of
these changes. We also identify practical flaws in the current implementation and seek
to solve them. At last, we compare our improved version of the algorithm with other
algorithms.

5.1 Effect of Additional Private k-means Iterations

When computing cluster centers without differential privacy, the additional input of al-
ready computed cluster centers into the k-means algorithm is always an improvement or
at least not a degradation. However, when computing cluster centers in a differentially
private way, it is not that simple, because the private k-means algorithm requires a
part of the privacy budget. Therefore, it is a tradeoff between investing the privacy bud-
get in the other parts of the algorithm or adding the private k-means algorithm, which
also requires a portion of the privacy budget.
Originally, the algorithm proposed by Balcan et al. [Hon17a] did not append the private
k-means algorithm 6 at the end. Yet, their Matlab implementation [Hon17b] appended
3 additional k-means iterations after applying their algorithm, and they did not correctly
adjust the privacy budget as discussed in Section 4.3. Furthermore, they neither motivate
its addition nor evaluate its impact. Therefore, we analyzed the effect of the addition and
discussed whether it is worth investing a portion of the privacy budget in this addition.
We examine here on different data sets how 3 iterations of the private k-means al-
gorithm, as proposed in the Matlab implementation, affect the inertia. The question that
arises is: Is it an improvement to input already computed cluster centers into the private
k-means algorithm, considering the additional privacy budget that has to be spend?
In order to fairly compare the algorithms with and without the additional private k-means
part, both algorithms should use the same privacy budget ϵ. Therefore, we partitioned
the privacy budget of the k-means algorithm (13 ) among all other sub-algorithms in the
algorithm without the additional k-means steps. The algorithm without the additional
k-means steps has the following privacy budget distribution:
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Figure 5.1: Comparison of Python implementation [Edl23] with and without the addi-
tional private k-means algorithm in terms of the effect of ϵ on the iner-
tia for the combined MNIST data set. Configurations: data=MNIST data set,
k = 10, ϵ = Epsilon, δ = 0.1, r = 255.

• candidate: 8
18 · ϵ+ 8

33 · ϵ = 68
99 · ϵ

• localswap: 1
18 · ϵ+ 1

33 · ϵ = 17
198 · ϵ

• recover: 2
18 · ϵ+ 2

33 · ϵ = 17
99 · ϵ

• "cluster selection": 1
18 · ϵ

We always executed 5 independent runs of the algorithms and calculated the average.

Privacy Utility Tradeoff

For the comparison in Figure 5.1 we used the combined MNIST data set and analysed the
privacy utility tradeoff again.
The implementation with the private k-means part achieved about 10% better results. This
is likely due to the characteristics of the MNIST data set: the data and clusters are widely
distributed in the data space. Therefore, even if a cluster center is found before executing
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the private k-means algorithm, the k-means step results in a better assignment of data
points to cluster centers. So, in each run, the data points assigned to a cluster change,
resulting in new, better cluster centers and the inertia decreases. For the MNIST data set,
the use of the k-means algorithm is an improvement.

Effect of Number of Intrinsic Clusters

For this comparison in Figure 5.2, we used synthetic data sets, created by the make_blobs
function from the scikit-learn software library [PVG+11]. The number of data points is set
to 100000, the number of dimensions to 100, the bounding box to (0, 100) and the standard
deviation to 1. 4 different synthetic data sets are created, one with 8 clusters, one with 16,
one with 32, and one with 64 clusters. We then calculated the cluster centers, where the
number of clusters searched for k is exactly equal to the number of clusters created in the
data set.
The algorithm with the additional private k-means part performs worse, which can be
explained by the characteristics of the synthetic data sets. The synthetic data sets are cre-
ated with clusters that are highly concentrated in small spaces. So, once the algorithm has
found the clusters, before private k-means is executed, the clusters are represented
fairly well by the cluster centers. Another calculation with the private k-means steps
is not an improvement for the cluster centers because nothing change in the way the data
points are assigned to which cluster center and only noise is added to the cluster centers.
Therefore, it is more beneficial to invest the privacy budget of the private k-means part in
the other sub-algorithms.

Since the algorithm performs much better on the more "realistic" MNIST data set, we
leave the algorithm as suggested by the Matlab implementation of Balcan et al.

5.2 Hyperparameter Optimization of the Privacy Budget Distribution

We could further improve the algorithm by changing the privacy budget distribution and
spending the privacy budget on the sub-algorithms that need it most to achieve the best
clustering results. The algorithms candidate 2, localswap 4, recover 5, private
k-means 6 and the "cluster selection" in the Private Clustering algorithm 1 use the
privacy budget ϵ, since all of them work with the data and need to add noise to make
the computations ϵ-differentially private. Therefore, all parts of the algorithm require a
share of the ϵ. The sum of all parts of the split ϵ summed must not exceed 1 · ϵ because
of the sequential composition theorem. Then one would use more privacy budget than
theoretically proven, and the algorithm would not be ϵ-differentially private. The current
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Figure 5.2: Comparison of Python implementation [Edl23] with and without the addi-
tional private k-means algorithm in terms of the effect of intrinsic clus-
ters in the data set on inertia. For each "Number of Clusters", a synthetic
data set is created with that number of clusters. The algorithms are executed
with that data sets and k is set to the number of clusters contained in the data
set used. Configurations: data = Synthetic data set, k = Number of Clusters,
ϵ = 1.0, δ = 0.1, r = 110.
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privacy budget distribution is as follows:

• candidate: 4
9 · ϵ

• localswap: 1
18 · ϵ

• recover: 1
9 · ϵ

• private k-means: 1
3 · ϵ

• "cluster selection": 1
18 · ϵ

We focus on the MNIST data set for the hyperparameter optimization. The current privacy
budget distribution achieves an average inertia of approximately 1.97 · 1011 in 5 indepen-
dent runs on the MNIST data set and the following configurations: data=MNIST data set,
k = 10, ϵ = 1.0, δ = 0.1, r = 255.
So the question is whether there is another privacy budget distribution that could achieve
better results on average. Therefore, we performed a hyperparameter optimization with
the following parameters: ϵ_candidate, ϵ_localswap, ϵ_recover, ϵ_kmean, ϵ_cluster_selection.
For each combination of hyperparameter values, we performed 5 independent runs, and
the average results of each combination can be found in Table 8 in the Appendix.
We do not use a hyperparameter optimization framework for this, as this is a special use
case here. The parameters are interdependent, since in each run the sum of all parame-
ters should be exactly 1. In general, it would be more work to adjust our algorithm to a
framework than to perform the hyperparameter optimization as described in this section.
Our general approach in this section can be described as follows: We evaluate which sub-
algorithm requires the largest part of the privacy budget to achieve the best clustering
results, set the privacy budget value for that sub-algorithm fix, and repeatedly evaluate
for the remaining sub-algorithms which sub-algorithm requires the next largest part, and
set the values fix there until all privacy budget values for the sub-algorithms are set. In
doing so, we set the privacy budget values for the sub-algorithms that require the most
budget one after another, resulting in a privacy budget distribution that should yield the
best clustering results on average.

At first, we examined whether there is an sub-algorithm that requires at least a bigger
part of the privacy budget to achieve good clustering results. This ignores correlations
between the sub-algorithms, but is necessary to get an idea which sub-algorithm requires
much of the budget and therefore reducing the number of possible combinations. There-
fore, we set the privacy budget high (0.9) for one of the sub-algorithms while the others
are low (0.025), which leads to the following distributions and results in Table 5.1. The
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Privacy Budget Distribution inertia
(ϵ_candidate, ϵ_localswap, ϵ_recover, ϵ_kmean, ϵ_cluster_selection)

(0.025, 0.025, 0.025, 0.025, 0.9) 219589656245
(0.025, 0.025, 0.025, 0.9, 0.025) 231924610624
(0.025, 0.025, 0.9, 0.025, 0.025) 219796720934
(0.025, 0.9, 0.025, 0.025, 0.025) 225743678524
(0.9, 0.025, 0.025, 0.025, 0.025) 201976751799

Table 5.1: Results of inertia for different privacy budget distributions. Algorithm was ex-
ecuted with the following configurations: data = MNIST data set, k = 10, ϵ =
1.0, δ = 0.1, r = 255.

results of Table 5.1 suggest that small shares of the privacy budget in the candidate

algorithm 2 lead to poor performance. Therefore, the candidate algorithm should use
the largest share of the overall budget.
To further evaluate this thesis, we tried some distributions for low values of the privacy
budget in the candidate algorithm, leading to the distributions and results in Table 5.2.

Privacy Budget Distribution inertia
(ϵ_candidate, ϵ_localswap, ϵ_recover, ϵ_kmean, ϵ_cluster_selection)

(0.2, 0.15, 0.2, 0.4, 0.05) 198577924821
(0.2, 0.2, 0.15, 0.4, 0.05) 204451801163
(0.2, 0.2, 0.4, 0.15, 0.05) 203827994802
(0.3, 0.15, 0.2, 0.3, 0.05) 197695862459
(0.3, 0.2, 0.15, 0.3, 0.05) 199555466986
(0.3, 0.2, 0.3, 0.15, 0.05) 202081990049

Table 5.2: Results of inertia for different privacy budget distributions. Algorithm was ex-
ecuted with the following configurations: data = MNIST data set, k = 10, ϵ =
1.0, δ = 0.1, r = 255.

Since the current privacy budget, with ϵ_candidate = 4
9 > 0.3, used produce better results

than when ϵ_candidate = 0.2 or ϵ_candidate = 0.3, we assume that at least a bigger part
of the budget has to be invested in the candidate algorithm. For this reason, and also
to keep the number of further distributions to be tried small, we do not further examine
small ϵ values for the candidate algorithm. We set the following values for each part of
the algorithm, compute all possible combinations that sum to 1, and execute the algorithm
with these combinations of the privacy budget distributions.

• ϵ_candidate = [0.4, 0.5, 0.6, 0.7, 0.8]

• ϵ_localswap = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]

• ϵ_recover = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]
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• ϵ_kmean = [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4]

• ϵ_cluster_selection = [0.05]

This results in 72 possible combinations that we tried and the results are included in Table
8 in the Appendix.
We also added some combinations when ϵ_candidate is set to 0.7 and 0.8. We set
ϵ_cluster_selection = 0.05 because in the current implementation we only compute
one cluster that can be selected. We first examine the average inertia when ϵ_candidate
is set to a fixed value, resulting in the following average values in Table 5.3. Table 5.3

ϵ_candidate average inertia
0.4 196181022615
0.5 195103649193
0.6 195434041992
0.7 193355074600
0.8 201386600601

Table 5.3: Results of average inertia at different values of ϵ_candidate. Algorithm was ex-
ecuted with the following configurations: data = MNIST data set, k = 10, ϵ =
1.0, δ = 0.1, r = 255.

indicates that the candidate algorithm requires a large share of the privacy budget to
achieve sufficient results until an upper limit is reached. Thus, the sweetspot for the
privacy budget share for the candidate algorithm is ϵ_candidate = 0.7 and we fix this
value for the next computations. When the ϵ share in other sub-algorithms is fixed at one
value, the averages of these combinations do not show a noticeable pattern. The results
for this can be found in the Appendix in Tables 9, 10, 11.

Now that we know where the largest part of the privacy budget should be spent, we
further examine which sub-algorithm should receive the second largest part. Therefore,
we added more combinations of privacy budget distributions where ϵ_candidate = 0.7.
In Table 5.4 are the averages of different privacy budget values for ϵ_kmean, when
ϵ_candidate is set to 0.7. As Table 5.4 suggests, investing a larger part of the budget
in ϵ_kmean improves probably the results. So investing 0.2 in ϵ_kmean is probably the
best solution.

The rest of the privacy budget is shared between localswap and recover. There-
fore, we again added some privacy budget distributions where ϵ_candidate = 0.7 and
ϵ_kmean = 0.2. The results indicate that it is better to invest a larger part of the pri-
vacy budget in recover than in localswap. Therefore, we chose ϵ_recover = 0.04 and
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ϵ_kmean average inertia
0.025 197221349152
0.05 193711469626

0.0833 193523276360
0.1 191700195227

0.15 195511547391
0.2 190705907823

0.225 199292091853

Table 5.4: Results of average inertia at different values of ϵ_kmean when ϵ_candidate is
set to 0.7. Algorithm was executed with the following configurations: data =
MNIST data set, k = 10, ϵ = 1.0, δ = 0.1, r = 255

ϵ_localswap = 0.01. Our improved privacy budget distribution for the MNIST data set is:

• candidate: 0.7 · ϵ

• localswap: 0.01 · ϵ

• recover: 0.04 · ϵ

• private k-means: 0.2 · ϵ

• "cluster selection": 0.05 · ϵ

We executed 5 independent runs with this privacy budget distribution and the MNIST
data set and obtained 1, 92 · 1011 as the inertia, which is an improvement on the previous
inertia of 1, 97 · 1011.

This leads to the following conclusions. We identified that the candidate algorithm
requires a large part of the privacy budget to compute a good set of possible cluster cen-
ters. If this set contains too few centers or too bad centers, no algorithm can significantly
improve the cluster centers afterward. The swaps of cluster centers in localswap do not
have an effect on the inertia and do not need much of the privacy budget. The recovery of
the low-dimensional data to the high-dimensional data requires at least a small part of the
privacy budget. The private k-means algorithm requires the second highest part of
the privacy budget. If it is too low, too much noise will be added to the centers, resulting
in inaccurate centers. Cluster selection is currently not important.

In fact, the distribution after the hyperparameter optimization is very similar to the
distribution implemented by Balcan et al. in the Matlab implementation [Hon17b].
The candidate.m algorithm got by far the most budget, then the private Lloyd
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algorithm, the recover.m algorithm, the localsearch.m algorithm and the cluster
selection.

5.3 Effect of Higher Iterations

We already showed in Section 4.2 that the number of iterations T in each sub-algorithm
in the proposed algorithm of Balcan et al. [Hon17a] is too high, resulting in an inefficient
runtime. So far, we have used the number of iterations T of the Matlab implementation
[Hon17b]. In this section, we analyze whether we can find a different number of iterations
T in each sub-algorithm that will improve the results and still have an acceptable runtime.
Therefore, we need to examine the number of iterations T for the Private Clustering

algorithm 1, the candidate algorithm 2, the localswap algorithm 4 and the private
k-means algorithm 6. During that, we also noticed that the swaps in the localswap

algorithm are completely random in practice. For the following comparisons, we used the
MNIST data set and made 5 independent runs for each result and calculated the respective
average.

Effect of T in candidate

Since the runtime of the localswap algorithm 4 and the Private Clustering algo-
rithm 1 highly depends on the output and runtime of the candidate algorithm 2, we
start by examining the iterations T in the candidate algorithm. Currently, T is set to 3 in
the candidate algorithm. So we measured the runtime and inertia while increasing the
number of iterations T in the candidate algorithm 2, and the results can be seen in Fig-
ure 5.3. As expected, the runtime increases with higher T in the candidate algorithm.
In fact, the runtime increases in a staircase fashion. This means that the runtime increases
for some T , then decreases just a little bit for a increasing T , and then increases again. This
behaviour can be observed because the setting T in the candidate algorithm also affects
the γ value in the private_partition algorithm 3. The γ value is basically a thresh-
old for whether to add a new cube to the active cubes and thus a new cube center to the
candidates. More precisely, γ is compared to the number of data points that lay in a cur-
rently considered cube. If there are more data points than γ in the current cube, the cube is
added to the active cubes. γ is affected by several parameters: the number of data points
n, ϵ and δ. Since in line 11 of the candidate algorithm 2 the ϵ used for γ is divided by
the number of iterations T , T affects γ. In short, the behavior can be described such that
when T increases, γ also increases. For this reason, in the private_partition algo-
rithm, fewer new cubes are added to the active cubes as T increases, resulting in a shorter
runtime for each iteration T . Each time the runtime in Figure 5.3 gets a little shorter as
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Figure 5.3: Effect of higher iterations T in the candidate algorithm on the inertia and
runtime. Configurations: data=MNIST data set, ϵ = 1.0, k = 10, δ = 0.1, r =
255. For each T five independent runs were made and the respective average
of inertia and runtime was calculated.

T is increased, a threshold is reached for the number of data points in the spaces of the
partitioned cubes, resulting in fewer and fewer new cubes being added. However, by in-
creasing T , more candidate sets are computed, which leads to a longer runtime in general.
This "staircase" behaviour for the runtime continues as T increases until the threshold γ

is so high that no new cubes are added to the active cubes in the private_partition
algorithm. Then the runtime will increase steadily as T increases, since at each iteration of
the private_partition algorithm the initial cube is not partitioned and only the center
of that initial cube is returned as a candidate set.
In addition, we discovered a counterintuitive impact on the inertia when T is increased.
The inertia actually worsens as the number of iterations T is increased, which is also re-
lated to the affect of T on γ. So, as T increases, leading to an increase in γ, less new cubes
are added during partition. Therefore, the candidate set contains less centers of cubes and
also worse centers, because the cubes that cover the cluster spaces more accurately are less
likely to be added to the active cubes. Thus, increasing T results in worse candidate sets
issued by each private_partition call.
Since the runtime and the inertia increases as T increases, the best solution is to choose
a small T . The best option in Figure 5.3 is T = 2. Since we previously used T = 3 and
to avoid the worst case that the initial cubes are so poorly chosen that there are not many
data points in the initial cube, we stay with T = 3.

Effect of T in localswap and Effect of ϵ in localswap

Next, we examine the influence of T on the localswap algorithm 4. The runtime in-
creases steadily with each iteration T , since in each iteration T all possible swaps are
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5.3 Effect of Higher Iterations

considered and one is selected. The effect of increasing T on the inertia is shown in Table
5.5. The results in Table 5.5 show that the number of swaps has no noticable effect on the

T in localswap average inertia
2 192913063310
4 194210141024
10 193384099925
20 194526067700

Table 5.5: Effect of increasing iterations T in the localswap algorithm 4 on the inertia.
Configurations: data = MNIST data set, k = 10, ϵ = 1.0, δ = 0.1, r = 255.

outcome of the algorithm. The explanation for this behavior is that the probabilities for the
different swaps are almost always the same, resulting in swaps that are completely ran-
dom. More specifically, the calculation of the inputs to the exponential function in line 12

in localswap 4 is always similar, resulting in similar outputs of the exponential function
regardless of which swap is considered. Therefore, it does not matter how many swaps
are performed, the result is the same as for the first k randomly selected cluster centers.
The probabilities for the swaps would differ more if the difference in the clustering loss
increased or if a larger part of the privacy budget was spent in the localswap algorithm.

We now examine how much privacy budget ϵ had to be spent on the localswap al-
gorithm to achieve probabilities that actually affect the swap selection. Therefore, we
chose realistic values for the clustering loss that we observed in the calculations with the
MNIST data set. The clustering loss often had values between 4000000 and 5000000. For
the experiment, we chose 4500000 as the clustering loss before the swap and two dif-
ferent clustering losses after the swap, such that one swap increases the clustering loss
and the other swap decreases the clustering loss. For the "bad" swap with the increas-
ing clustering loss, we chose 5000000 as the clustering loss, and for the "good" swap
with the decreasing clustering loss, we chose 4000000 as the clustering loss. The cal-
culation for the probabilities ("prob") is done in line 12 in the localswap algorithm 4:
exp(−ϵ · loss_after_swap−loss_before_swap

2·(T+1)r2
). The actual probabilities are these values in pro-

portion to each other. So we compute the probabilities for only 2 swaps and these swaps
have a noteworthy effect on the clustering results. Furthermore, we leave the number of
iterations as T = k = 10 as this also affects the probabilities and r is set to 255. As Table
5.6 shows, the probabilities for both swaps are the same when ϵ in localswap is set to
0.01, as in the current privacy budget distribution. Even if we would spend the entire
privacy budget ϵ = 1.0 into the localswap algorithm, the probabilities for the swaps
would still be the same for all possible swaps, given that the chosen clustering loss values
are far apart. As Table 5.6 shows, the probability ratios become distinctive when ϵ is set
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ϵ for probability calculations "good" swap "bad" swap probability ratio
in localswap ≈ "prob" ≈ "prob" ≈ (good - bad)

0.01 1.0035 0.99651 50% - 50%
0.1 1.03557 0.9656 52% - 48%
1.0 1.4184 0.705 66% - 34%
2.0 2.012 0.497 80% - 20%

Table 5.6: Effect of increasing ϵ on the probabilities for the swaps in the localswap algo-
rithm 4.

to 2.0. Then, the "good" swap actually had a higher probability than the "bad" swap, and
the "good" swap is selected more often, which leads to better clustering results. If we set
ϵ = 2.0, the overall privacy budget would become too high for privacy considerations,
since the algorithm should be ϵ = 1.0-differentially private.

During this examination, we also found that the probability calculation for the cluster
center set selection in line 16 in the localswap algorithm 4 is also not effective. Again,
the problem is that the probabilities are too similar, resulting in a completely random
selection. We also examined how much of the privacy budget ϵ had to be spent in the
localswap algorithm to achieve effective probabilities for the cluster center set selection.
Therefore, from our values observed during the execution of the algorithm, we chose one
"good" cluster center set with a clustering loss of 4000000 and one "bad" cluster center set
with a clustering loss of 5000000. Then we changed the ϵ in the localswap algorithm
and calculated the probabilities when only these two are available for selection. The
calculation for the probabilities ("prob") is done in line 16 in the localswap algorithm
4: exp(− ϵ·clustering_loss

2·(T+1)·r2 ). As the Table 5.7 shows, the same problem applies here as in the

ϵ for probability calculations "good" cluster center set "bad" cluster center set probability ratio
in localswap ≈ "prob" ≈ "prob" ≈ (good - bad)

0.01 0.9724 0.9657 50% - 50%
0.1 0.756 0.705 52% - 48%
1.0 0.061 0.03 67% - 33%
2.0 0.003 0.00092 76% - 24%

Table 5.7: Effect of increasing ϵ on the probabilities for the cluster selection in the
localswap algorithm 4.

probability calculations of the swaps in the previous subsection. Even if we spent the
entire privacy budget ϵ in localswap ϵ = 1.0, the probabilities for the swaps would still
be quite likely, given that the chosen clustering loss values are far apart.

In summary, the localswap algorithm has no effect on the clustering results and acts
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like a random selection of cluster centers in the candidates set for reasonable privacy
parameters. To achieve better runtime while producing the same results, we could just
randomly select k cluster centers from the candidates set. Maybe the swaps work better
on other data sets, and since we present another improvement in Section 5.4, we simply
set T = k for now.

Note here that due to our bug in calculating the probabilities for the private selections
described in Section 4.4, all probability calculations are wrong and too good. Therefore, it
would require an even higher privacy budget ϵ invested in the algorithm to achieve dis-
tinct probability ratios. Also without the bug, the localswap algorithm would behave
like a random selection of cluster centers in our practical setting.

Effect of Number of Iterations iter in Private k-means

Now we examine the iterations iter of the private k-means algorithm 6 in line 12− 14

in the Private Clustering algorithm 1. We increase the number of iterations iter,
run the Private Clustering algorithm and calculate the respective average inertia.
Table 5.8 shows that it makes no sense to change the current number of iter = 3 for the

iter for private k-means average inertia
1 199505463120
2 193758149394
3 192212684233
4 194465532039
5 193562194777
6 193931967432
8 194630942625
10 193358536310
20 205197742291

Table 5.8: Effect of increasing iterations iter of the private k-means algorithm 6 in the
Private Clustering algorithm 1 on the inertia. Algorithm was executed
with the following configurations: data = MNIST data set, k = 10, ϵ = 1.0, δ =
0.1, r = 255.

k-means algorithm. The current configuration of iter = 3 appears to be a sweet spot for
the MNIST data set. If it is smaller than 3, the results are worse because the effect of the
k-means algorithm, which improves the cluster by calculating the mean values of the data
points assigned to a cluster as new cluster centers, is not working yet. The results also get
worse if the number of iterations increases too much, since the noise that might be added
increases as the number of iterations iter increases due to the sequential composition the-
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orem. Therefore, as before, we chose 3 as the number of iterations iter for the private
k-means algorithm.

Effect of T in Private Clustering

Next, we examine the effect of an increasing number of iterations T in the Private

Clustering algorithm 1. Table 5.9 shows that as the number of iterations T increases,

T in Private Clustering average inertia
1 192205648573
2 193893420435
3 203428190298
4 213852064420
5 209648299764

Table 5.9: Effect of increasing iterations T in the Private Clustering algorithm 1 on
the inertia. Algorithm was executed with the following configurations: data =
MNIST data set, k = 10, ϵ = 1.0, δ = 0.1, r = 255.

the inertia also increases. This is because the privacy budget ϵ is divided equally among
each iteration T due to the sequential composition theorem, resulting in more noise that
might be added in one iteration. Therefore, every computation of a set of cluster centers
achieves worse results than if only one set of cluster centers is calculated. We also stay
with the current configuration of T = 1.

5.4 Further Improvements

In this section, we tested some adjustments to the Private Clustering algorithm 1 to
further improve the clustering results on the MNIST data set.

Expansion of The Candidates Set

We already discussed in Section 4.2 the effect of γ on the private_partition algorithm
3. It is a bound in the algorithm that decides whether a new cube is added to the active
cubes and thus the center of the new cube to the candidates set. If the number of data
points in a new cube is greater than the γ bound, then the cube is added to the candidates
set. Therefore, reducing this bound leads to more and more accurate candidates as the
space of the cubes becomes more accurate to the clusters. We already reduced γ in Section
4.2 from γ = 20

ϵ′ · log(nδ ) to γ = 2
ϵ′ · log(

n
delta). To maintain ϵ-differential privacy, we can

further reduce it to γ = 1
ϵ′ · log(

n
δ ). We extract from the differential privacy proofs of

Balcan et al. [Hon17a] (Theorem 2) that just the calculation of ϵ′ = ϵ
2·logn is relevant to
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maintain differential privacy. The privacy budget ϵ is divided by 2 because modifications
to a single data point affect the number of data points contained in a cube of at most two
active cubes. It is also divided by log n to distribute the privacy budget to each iteration of
the while loop in the private_partition algorithm 3. Therefore, if we use γ = 1

ϵ′ , this
yields the bound to preserve differential privacy. Multiplying γ by 20 and log(nδ ) serves to
make the private_partition algorithm computationally efficient, so that the bound is
not so low that too many cubes are added to the active cubes.
We changed in the private_partition algorithm 3 line 4 to γ = 1

ϵ′ · log(
n

delta). Then
we executed the Private Clustering algorithm 1 algorithm with the following con-
figurations: data = MNIST data set, k = 10, ϵ = 1.0, δ = 0.1, r = 255. And obtained on
the average of 5 independent runs the inertia: 1.9 · 1011. Before this reduction of γ, we
obtained results around 1.92 · 1011 on average. Therefore, this is an improvement and it
only caused a little more runtime.

Improve Probabilities for Private Selections

We already discussed in Section 5.3 that the probabilities for the private selections of
swaps and cluster center sets in the localswap algorithm 4 are always the same for the
MNIST data set and thereby offer no benefit on the performance of the clustering results.
Since we also must invest a share of the privacy budget in the localswap algorithm,
which thus cannot be invested in other sub-algorithms, the performance of the clustering
results becomes even worse as more noise is added in the other sub-algorithms. In this
subsection, we improve the probabilities for the private selections.
Currently, all private selections are performed using the exponential mechanism. The
problem is that the mechanism is not good at selecting a candidate in a candidate set when
there are only small changes in the scoring function. Thus, relatively small changes in the
scoring functions do not affect the final probabilities as much. But in our case, considering
these small changes would actually improve the cluster centers.
Therefore, we investigated whether there is already a solution to this problem. We found
a differentially private mechanism called Permute-and-Flip [Dan20], which is an alter-
native to the exponential mechanism. The Permute-and-Flip algorithm 7 randomly
selects one of the candidates and calculates a probability for this candidate based on the
exponential mechanism. Then a coin is tossed to decide if that candidate should be re-
turned. The probability of heads is the calculated probability for that candidate, and if the
coin toss results in heads, that candidate is returned.
This encourages the mechanism to return candidates with a higher probability even more
in a differentially private manner. McKenna and Sheldon [Dan20] have shown that the
results of this mechanism are at least as good as those of the exponential mechanism.
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Algorithm 7: Permute-and-Flip

1 input ϵ, sensitivity = ∆, utility scores = U , candidates = R
2 output candidate: r
3 for r in RandomPermutation(R) do
4 p = exp( ϵ·U(r)

2·∆ )
5 if Bernoulli(p) then
6 return r

The Permute-and-Flip mechanism is already implemented in the differential privacy li-
brary in Python [Lev19], which makes its integration into our algorithms less complicated.
The algorithm requires as input the privacy budget ϵ, the sensitivity of the scoring func-
tion and the utility values of each candidate.
We first integrate the Permute-and-Flip mechanism into the swap selection in lines
12 − 14 of the localswap algorithm 4. We can modify the localswap algorithm by
replacing line 12 and 13 with a list that saves the loss difference for each swap. Afterwards
we can replace line 14 with the Permute-and-Flip algorithm, which selects a swap. As
input it receives the privacy budget ϵ

2·T+1 , sensitivity = 2·range_data2 and as utility values
the list with the calculated loss differences. Then the mechanism outputs a swap. Listing
5.1 contains the new code for lines 12− 14.

Listing 5.1: Modification for the localswap algorithm in lines 12-14

1 Save loss_after_swap− loss_before_swap in list util

2 Choose swap (x, y) with Permute-and-Flip(ϵ = ϵ
2·(T+1)

, sensitivity = 2 · r2, utility = util)

For the cluster center selection in the localswap algorithm in line 16, we proceeded ac-
cordingly. There we also created a list containing the clustering loss for each cluster center
set, which is the utility list input for the Permute-and-Flip algorithm. Again, we set ϵ

2·T+1

as the privacy budget and as the sensitivity choose 2 · range_data2. Now we replace the
exponential mechanism with the Permute-and-Flip mechanism in the localswap algo-
rithm 4.

Listing 5.2: Modification for the localswap algorithm in line 16

1 Select a set of cluster centers list_Centers(t) from list_Centers using

2 Permute-and-Flip(ϵ = ϵ
2·(T+1)

, sensitivity = 2 · r2,
3 utility =clustering losses of each list_Centers(t))

We also further examined the effect of the Permute-and-Flip mechanism on the proba-
bilities for the swap selection and the cluster selection, as we did with the exponential
mechanism in Section 5.3. To calculate the probabilities for the swap selection, we again
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choose the same observed clustering loss values for the "good" swap, which reduces the
clustering loss, and a "bad" swap, which increases the clustering loss. We observe a dif-
ference, but the difference is so small that it does not affect the inertia. With the current
privacy budget in localswap of ϵ = 0.01 and a "bad" swap that increases clustering loss
by 500.000 and a "good" swap that decreases clustering loss by 500.000, both swap still
have the same probability. If we were to invest ϵ = 1.0 and run the experiment, the prob-
ability of the "good" swap would be 58% and the probability of the "bad" swap would be
42%. Compared to the old probabilities of 52% for the "good" swap and 48% for the "bad"
swap, this is an improvement.
Also, the probabilities for selecting the cluster center sets were not significantly different
from the probabilities when using the exponential mechanism. We leave it implemented
because it provides at least a small improvement and cannot worsen the results, but it still
does not improve the overall clustering results.
We also replaced the exponential mechanism in the Private Clustering algorithm
1 in line 15 with the Permute-and-Flip mechanism. Since we only compute one cluster
center set, this has no affect.
In summary, the Permute-and-Flip mechanism works better than the exponential mech-
anism in theory, but in our specific example, it has no effect on the results because the
improvement is not sufficient.

Note here that we applied in our Python implementation [Edl23] the same bug to the
Permute-and-Flip algorithm as to the exponential mechanism described in Section 4.4.
Therefore, all probability calculations are wrong and too good in this subsection, and
it would require an even higher privacy budget ϵ invested in the algorithm to achieve
distinct probability ratios. Also without the bug, the Permute-and-Flip algorithm would
not be an improvement in our practical setting.

Improvement of The Candidates Set

Since we did not find a solution to select the better cluster centers in the candidate set in
the localswap algorithm 4, we try to improve the candidate set in the private_partition
algorithm 3. The candidate set essentially contains the centers of the cubes that are parti-
tioned. Our general idea is that cube centers from deeper depths are better representations
of clusters than cube centers from higher depths because the cubes from deeper depths
better cover the space where many data points are located. If there are more data points
in an area, and therefore potentially a cluster, the algorithm partitions the cubes in that
area more often, and each time this happens, the center of the cube becomes a better rep-
resentation of that cluster. We select the centers of the cubes starting from the last depth
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to the first depth until we receive at least k candidates. Since the private_partition
algorithm is differentially private and our candidate reduction is data independent, dif-
ferential privacy is preserved.
To implement this, we modified the private_partition algorithm 3 in line 22.

Listing 5.3: Modification for the private partition algorithm in line 22

1 Assign C as the last cube centers that are added to C until the depth,

2 where the number of cube centers reaches k. Including the cube centers from

3 this depth.

This results in an inertia of 1.88 · 1011, with the configurations: data=MNIST data set,
k = 10, ϵ = 1.0, δ = 0.1, r = 255, which is an improvement on the previous inertia of
1.9 · 1011.
However, this reduction does not necessarily represent an improvement. If the private_
partition algorithm finds a cluster at a relatively large depth and stops the partition-
ing of the cube there, and continuous partitioning other cubes at deeper depths, then that
cluster cannot be found by the algorithm. Therefore, well-distributed data sets work bet-
ter with this modification. Since it works in our case, we leave the implementation as
described.

5.5 Comparison to Other Algorithms

After improving our implementation of the Balcan et al. [Hon17a] algorithm, we are now
ready to compare our improved algorithm with other algorithms. Our algorithm [Edl23]
contains the following modifications:

• Improved privacy budget distribution

• Reduction of γ in the private_partition algorithm 3

• Replacing the exponential mechanisms with the Permute-and-Flip mechanism

• Reduction of the candidate set in the private_partition algorithm 3

The algorithm with all modifications can be found in the Appendix under Pseudocode.
We based our choice of algorithms for comparison on which algorithms Balcan et al.
[Hon17a] used in their comparison. Therefore, we compared our improved algorithm
to a non private k-means++ algorithm from the sklearn.cluster Python library [PVG+11],
another differentially private k-means algorithm [Hol22] and the Matlab implementation
[Hon17b] of the algorithm of Balcan et al. [Hon17a]. The other differentially private k-
means algorithm [Hol22] essentially implements the SulQ k-means algorithm [Kob21] and
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also includes parts of the k-means++ algorithm. An implementation for this is included
in the differential privacy library for Python [Lev19].
The following data sets were used for comparison: the combined MNIST data set [Haf98]
with 70.000 data points and 784 dimensions, and synthetic data sets, created using the
make_blobs algorithm from the sklearn.datasets library [PVG+11]. The synthetic data sets
are always created with 100000 data points, a bounding box of (0, 100), a standard devia-
tion of 1 and, unless otherwise specified, a dimensions of 100.
Further information about the comparisons is in the captions of the following figures.

Note that our Python implementation [Edl23] contains the same bug in the Permute-
and-Flip algorithm as in the exponential mechanism, as described in Section 4.4. As
described in Section 5.3 and Section 5.4, this bug does not affect the performance of the
algorithm.
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Figure 5.4: Comparison of the Matlab Implementation [Hon17b], our Python Implemen-
tation [Edl23], the k-means clustering with differential privacy algorithm
[Hol22], and the non-private k-means++ algorithm [PVG+11] in terms of the
effect of ϵ on inertia for the combined MNIST data set. Configurations for
Python: data=MNIST data set, k = 10, ϵ = Epsilon, δ = 0.1, r = 255. Con-
figurations for Matlab: data=MNIST data set, n = 70000, d = 784, k = 10, ϵ =
Epsilon, delta = 0.1, range = 255 ·

√
784, side_length = 510. Configura-

tions for the k-means clustering with differential privacy: X = MNIST data
set, n_clusters = 10, bounds = (0, 255), ϵ = Epsilon. Configurations for
the non private k-means++ algorithm: data = MNIST data set, n_clusters =
10, n_init = 1. For each Epsilon five independent runs were made and the re-
spective average of inertia was calculated.
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Effect of Number of Cluster searched for k

• MNIST data set
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Figure 5.5: Comparison of the Matlab Implementation [Hon17b], our Python Implemen-
tation [Edl23], the k-means clustering with differential privacy algorithm
[Hol22], and the non-private k-means++ algorithm [PVG+11] in terms of the
effect of the Number of Clusters searched for on inertia for the combined
MNIST data set. Configurations for Python: data=MNIST data set, k =
Number of Clusters, ϵ = 1.0, δ = 0.1, r = 255. Configurations for Mat-
lab: data=MNIST data set, n = 70000, d = 784, k = Number of Clusters,
ϵ = 1.0, delta = 0.1, range = 255 ·

√
784, side_length = 510. Configurations for

k-means clustering with differential privacy: X = MNIST data set, n_clusters =
Number of Clusters , bounds = (0, 255), ϵ = 1.0. Configurations for non pri-
vate k-means++ algorithm: data = MNIST data set, n_clusters =Number of
Clusters, n_init = 1. For each Number of Cluster five independent runs were
made and the respective average of inertia was calculated.
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• Synthetic data set
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Figure 5.6: Comparison of the Matlab Implementation [Hon17b], our Python Implemen-
tation [Edl23], the k-means clustering with differential privacy algorithm
[Hol22], and the non-private k-means++ algorithm [PVG+11] in terms of the
effect of the Number of Clusters searched for on inertia for a synthetic data set.
The synthetic data set is created with 64 clusters. Configurations for Python:
data=Synthetic data set, k = Number of Clusters, ϵ = 1.0, δ = 0.1, r = 110.
Configurations for Matlab: data=Synthetic data set, n = 100000, d = 100, k =
Number of Clusters, ϵ = 1.0, delta = 0.1, range = 110 ·

√
100, side_length =

220. Configurations for k-means clustering with differential privacy: X = Syn-
thetic data set, n_clusters = Number of Clusters , bounds = (−5, 105), ϵ = 1.0.
Configurations for non private k-means++ algorithm: data = Synthetic data
set, n_clusters = Number of Clusters, n_init = 1. For each Number of Clus-
ters five independent runs were made and the respective average of inertia was
calculated.
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Effect of Dimension
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Figure 5.7: Comparison of the Matlab Implementation [Hon17b], our Python Implemen-
tation [Edl23], the k-means clustering with differential privacy algorithm
[Hol22], and the non-private k-means++ algorithm [PVG+11] in terms of the
effect of dimensions in the synthetic data set on inertia. For each Dimension,
a synthetic data set is created with that number of dimensions and 32 clus-
ters. Configurations for Python: data=synthetic data set with dimension
Dimension, k = 32, ϵ = 0.5, δ = 0.1, r = 110. Configurations for Mat-
lab: data=synthetic data set with dimension Dimension, n = 100000, d =
Dimension, k = 32, ϵ = 0.5, delta = 0.1, range = 110 ·

√
100, side_length = 220.

Configurations for k-means clustering with differential privacy: X = synthetic
data set with dimension Dimension, n_clusters = 32, bounds = (−5, 105), ϵ =
1.0. Configurations for non private k-means++ algorithm: data = synthetic data
set with dimension Dimension, n_clusters = 32, n_init = 1. For each synthetic
data set with dimension Dimension, five independent runs were made and the
respective average of inertia was calculated.
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Effect of Number of Intrinsic Clusters
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Figure 5.8: Comparison of the Matlab Implementation [Hon17b], our Python Implemen-
tation [Edl23], the k-means clustering with differential privacy algorithm
[Hol22], and the non-private k-means++ algorithm [PVG+11] in terms of the
effect of intrinsic clusters on inertia. For each Number of Clusters, a synthetic
data set is created with that number of clusters. Afterwards, the algorithms
are executed with these data sets, and k is set to the number of clusters in
the current data set. Configurations for Python: data = synthetic data set,
k = Number of Clusters,ϵ = 1.0, δ = 0.1, r = 110. Configurations for Mat-
lab: data = synthetic data set, n = 100000, d = 100, k =Number of Clus-
ters, ϵ = 1.0, delta = 0.1, range = 110 ·

√
100, side_length = 220. Config-

urations for k-means clustering with differential privacy: X = synthetic data
set, n_clusters = Number of Clusters, bounds = (−5, 105), ϵ = 1.0. Con-
figurations for non private k-means++ algorithm: data = synthetic data set,
n_clusters =Number of Clusters, n_init = 1. For each data set five indepen-
dent runs were made and the respective average of inertia was calculated.
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The non-private K-Means++ algorithm [Vas07] always outperforms all other algorithms,
especially on synthetic data sets. Also as the number of intrinsic clusters increases, the
non-private algorithm performs significantly better, suggesting that the other algorithms
are not as good at finding many clusters. Furthermore, on the MNIST data set, our Python
algorithm is not much worse than the non-private algorithm and outperforms the other
two differentially private algorithms. On synthetic data sets, our algorithm and the differ-
entially private k-means algorithm perform quite similar, although our algorithm handles
high-dimensional data better. Moreover, our algorithm always outperforms the Matlab
implementation, indicating that our modifications are indeed an improvement.

In summary, we were able to improve the performance of the algorithm. We left the pri-
vate k-means part in the algorithm since it improves the performance of the algorithm, and
we improved the algorithm by finding a better performing privacy budget distribution.
The iteration parameters are already set for all algorithms to achieve the best performance,
so we leave all iteration parameters as they were. We further improved the performance
by adding more cube centers by reducing the γ value in private_partition, and by
improving the candidate set by selecting less but more accurate cube centers. Replacing
the exponential mechanism with the Permute-and-Flip mechanism is an improvement in
theory, but has no impact on the performance in practice.
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6 Conclusion

In this work, we implemented a differentially private clustering algorithm that also works
in high-dimensional Euclidean spaces in Python, based on the algorithm of Balcan et al.
[Hon17a]. The algorithm works well in theory, but in practice many problems occur, so
that the algorithm cannot be executed efficiently because the runtime is too high and the
memory usage is too high. We lowered some parameters of the algorithm to achieve at
least acceptable results, runtime and memory usage.

Furthermore, the implementation of differentially private clustering algorithms is hard
and often leads to bugs. We located several bugs in the Matlab implementation of Balcan
et al. [Hon17b] and corrected them in their implementation. We also made one bug in our
implementation of the localswap algorithm, but it does not affect the performance of the
algorithms. After applying our corrections to the Matlab implementation, we compared
our Python implementation [Edl23] to the Matlab implementation and showed that they
produce similar results on different data sets, indicating that they both work the same.

Our goal was then to further improve the clustering results by examining different modifi-
cations of the algorithm while preserving differential privacy and acceptable runtime and
memory usage. We showed that investing a part of the privacy budget in the additional
private k-means algorithm after the recover algorithm improves the results when using
the MNIST data set, but this does not hold for synthetic data sets. We examined the effect
of different iterations T of the loops in the sub-algorithms and found that increasing or
decreasing them does not improve the results. In fact, it causes more runtime and wors-
ens the results when iterations are increased, since the privacy budget must be divided
to each iteration. We found that the current implementation of the localswap algorithm
does not affect the results when using the MNIST data set because the probabilities for se-
lecting swaps and cluster center sets are too similar, resulting in random selections. Even
if a large privacy budget is invested in localswap, resulting in an overall privacy bud-
get that is too high due to privacy considerations, the algorithm would still behave like
a random selection. To improve the localswap algorithm, we replaced the exponential
mechanisms with the Permute-and-Flip mechanism [Dan20] in all private selections to
achieve better probabilities for the private selections, which is an improvement in theory
but did not affect the result in practice. The probabilities are still all the same, and thus the
algorithm still behaves like a random selection, even if a larger privacy budget is invested,
resulting in an overall privacy budget that is too high due to privacy considerations.
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6 Conclusion

In addition, we performed a hyperparameter optimization of the privacy budget distri-
bution to examine in which sub-algorithm how much of the privacy budget should be
invested to achieve the best results when using the MNIST data set. This leads to a pri-
vacy budget distribution that improves the algorithm, and we found that the privacy
budget distribution used by Balcan et al. is similar to the one we found to be best on
average. Subsequently, we improve the algorithm by making two additional modifica-
tions that preserve differential privacy. We reduced the bound that determines whether
a new cube center is included in the candidate set and a new cube is partitioned in the
private_partition algorithm to obtain more and more accurate cube centers as pos-
sible cluster centers. In the private_partition algorithm, we reduced the candidate
set only by the cube centers computed at greater depths to obtain only cube centers in the
candidate set that are a more accurate representation of the clusters.
At last, we compared our improved Python implementation [Edl23] to a non-private k-
means++ algorithm [Vas07], the Matlab implementation [Hon17b], and a differentially
private k-means algorithm [Eri21]. Our algorithm always outperforms the Matlab im-
plementation, indicating that the modifications are indeed an improvement. Using the
MNIST data set, our algorithm performs better than the differentially private k-means al-
gorithm, but on synthetic data sets, the differentially private k-means algorithm performs
equally. The non-private k-means++ algorithm performs always better, leading to the
conclusion that our improved algorithm still does not provide the best possible clustering
results and could be further improved.

6.1 Future Work

Since our algorithm [Edl23] still does not perform as well as the non-private algorithm
[Vas07], our algorithm could be further improved. In particular, private selections in the
localswap algorithm could be further improved, as it still behaves like a random selec-
tion.
Furthermore, the runtime is still very high compared to the other algorithms used in the
comparisons. Especially, the localswap algorithm has a long runtime because many
different swaps need to be calculated. One solution would be to reduce the number of
swaps to be calculated, e.g., by selecting a subset of the candidate set used for the possible
swaps.
Another problem is that the range of the data space must be specified in the algorithm’s
input, which is often much too large to cover the worst case, resulting in too much noise
being added. Finding privately the range of the data space is still an open problem in
computer science.
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A Pseudocode

All Modifications Applied

Algorithm 8: Private Clustering

1 input data: X (d× n-Matrix), number of clusters: k, privacy parameter: ϵ, failure
probability: δ, range of data: r

2 output Cluster centers: Z
3 low_dim = logn

2

4 T = 1

5 Cluster_Centers = []
6 for t in range(T ) do
7 data_low_dim = JL-Transform(X , low_dim) · 1√

d

8 candidates = candidate(data_low_dim, k, ϵ
T · 0.7, δ, r)

9 centers_low_dim = localswap(candidates, data_low_dim, k, ϵ
T · 0.01, δ, r ·

√
d)

10 centers_high_dim = recover(centers_low_dim, data_low_dim, X , k, ϵ
T · 0.04, r)

11 iter = 3

12 for i in range(iter) do
13 centers_high_dim = priv_kmean(centers_high_dim, X , k, ϵ

iter·T · 0.2, r)

14 Cluster_Centers.append( (centers_high_dim) )

15 Choose a set of cluster centers Z from Cluster_Centers with the Permute and Flip
mechanism (epsilon = ϵ

T · 0.05, sensitivity = 2 · (r ·
√
d)2, utility =clustering

losses from each Cluster_Centers(t))
16 return Z
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A Pseudocode

Algorithm 9: Candidate

1 input low dimensional data: Y (p× n-Matrix), number of clusters: k, privacy
parameter: ϵ, failure probability: δ, range of data: r

2 output Candidate Set: Cand

3 Cand = []
4 T = 3

5 for t in range(T ) do
6 cube_initial = Cube()
7 for i in range(p) do
8 random = random_uniform(−r, r)
9 random_bounds = [−r + random, r + random]

10 cube_initial.add_dimension(random_bounds)

11 C = private_partition(Y , k, ϵ
T , δ

T , cube_initial)
12 Cand.append(C)

13 return Cand
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Algorithm 10: Private Partition

1 input low dimensional data: Y (p× n-Matrix), number of clusters: k, privacy
parameter: ϵ, failure probability: δ, cube_initial

2 output Cube Centers: C
3 depth = 0

4 ϵ′ = ϵ
2·logn

5 γ = 1
ϵ′ · log

n
δ

6 C = []
7 active_cubes = [cube_initial]
8 while depth ≤ log n and active_cubes ̸= ∅ do
9 depth = depth+ 1

10 Cubes_Next_Depth = []
11 for cube in active_cubes do
12 C.append(cube.center)
13 active_cubes.remove(cube)
14 new_Cubes = cube.partition()
15 for q in new_Cubes do
16 num_data_points = q.getNumberOfDatapointsInCube()
17 if num_data_points ≤ γ then
18 prob = 1

2 · exp(−ϵ′ · (γ − num_data_points))
19 else
20 prob = 1− 1

2 · exp(ϵ′ · (γ − num_data_points))

21 Append q with probability prob to Cubes_Next_Depth

22 active_cubes = Cubes_Next_Depth

23 Assign C ′ as the last cube centers appended to C until the depth where the number
of cube centers in C ′ reaches k, including the cube centers from that depth.

24 return C ′
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A Pseudocode

Algorithm 11: Localswap

1 input candidates, low dimensional data: Y (p× n-Matrix), number of clusters: k,
privacy parameter: ϵ, failure probability: δ, range of data: r

2 output Cluster Centers (low dimensional): centers_low_dim
3 Centers_Init = uniformly choose k centers from candidates

4 list_Centers = [ (Centers_Init) ]
5 T = k

6 if T > 20 then
7 T = 20

8 for t in range(1, T + 1) do
9 current_Centers = list_Centers[t− 1]

10 loss_before_swap = compute_loss(Y , current_Centers)
11 for x in current_Centers do
12 for y in candidates \ current_Centers do
13 loss_after_swap = compute_loss(Y , current_Centers ∪ x \ y)
14 Save loss_after_swap− loss_before_swap in list util

15 Select swap (x, y) with the Permute and Flip mechanism
(epsilon = ϵ

2·(T+1) , sensitivity = 2 · r2, utility = util)

16 list_Centers.append((current_Centers ∪ x \ y))

17 Select a set of cluster centers list_Centers(t) from list_Centers using the
Permute-and-Flip mechanism
(epsilon = ϵ

2·(T+1) , sensitivity = 2 · r2, utility =clustering losses of each
list_Centers(t))

18 return list_Centers(t)
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Algorithm 12: Recover

1 input low dimensional cluster centers: centers_low_dim, low dimensional data: Y
(p× n-Matrix), data: X (d× n-Matrix), number of clusters: k, privacy parameter: ϵ,
range of data: r

2 output Cluster Centers (high dimensional): centers_high_dim
3 centers_high_dim = []
4 for index_of_cluster in range(k) do
5 indexes_data_points_assigned_current_cluster = indexes of low dimensional

data points (Y ) that have the closest distance to current cluster center:
centers_low_dim[index_of_cluster]

6 numberDP = len(indexes_data_points_assigned_current_cluster)
7 numberDP_noised = numberDP + Laplace(2ϵ )
8 if numberDP_plus_noise < 1 then
9 numberDP_plus_noise = 1

10 sum_data_points =
sum_up_data_points(indexes_data_points_assigned_current_cluster, X)

11 noise_center = []
12 for dim in range(d) do
13 noise_center.append_dimension(Laplace( 2·r

ϵ·numberDP_noised ))

14 center_noised = 1
numberDP · sum_data_points+ noise_center

15 centers_high_dim.append( center_noised )

16 return centers_high_dim
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A Pseudocode

Algorithm 13: Private_kMeans

1 input current cluster centers: cur_centers, data: X (d× n-Matrix), number of
clusters: k, privacy parameter: ϵ, range of data: r

2 output Cluster Centers: centers
3 centers = []
4 for index_of_cluster in range(k) do
5 indexes_data_points_assigned_current_cluster = indexes of data points (X)

that have the closest distance to current cluster center:
cur_centers[index_of_cluster]

6 numberDP = len(indexes_data_points_assigned_current_cluster)
7 numberDP_noised = numberDP + Laplace(2ϵ )
8 if numberDP_plus_noise < 1 then
9 numberDP_plus_noise = 1

10 sum_data_points =
sum_up_data_points(indexes_data_points_assigned_current_cluster, X)

11 noise_center = []
12 for dim in range(d) do
13 noise_center.append_dimension(Laplace( 2·r

ϵ·numberDP_noised ))

14 center_noised = 1
numberDP · sum_data_points+ noise_center

15 centers.append( center_noised )

16 return centers
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B Figure Values

1 Values for Figures in Chapter 4

Privacy Utility Tradeoff

ϵ Python Matlab
0.1 231568487650 248963173926
0.3 224978598581 263901498535
0.5 203270076643 221330835951
0.7 199940004255 212261355766
0.9 197388929880 209660015117
1.0 197031999345 206306096831

Table 1: Average inertia values for algorithms in Figure 4.2.

Effect of k, MNIST

k Python Matlab
2 229908752308 226267729190
4 214539179527 223453774582
8 202237972133 204418293874
16 185050998029 209836134612
32 177315813153 199528782432
64 174151779470 202593541793

Table 2: Average inertia values for algorithms in Figure 4.3.
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B Figure Values

Effect of k, Synthetic

k Python Matlab
2 8058815037 8005867623
4 7987195488 7816157600
8 7540396005 7388525276

16 7179246320 6974402996
32 6706233552 6104716131
64 6372741268 5419700408

Table 3: Average inertia values for algorithms in Figure 4.4.

Effect of Dimension

Dimension Python Matlab
5 120987757 133377059
50 3169665090 3323998453
500 30528423526 30413081091

Table 4: Average inertia values for algorithms in Figure 4.5.

Effect of Number of Intrinsic Cluster

k Python Matlab
8 4410860023 3133818767

16 3774715341 3524399818
32 6182634341 5173658114
64 6352288372 5537152860

Table 5: Average inertia values for algorithms in Figure 4.6.
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2 Values for Figures in Chapter 5

2 Values for Figures in Chapter 5

2.1 Effect of Private k-means

ϵ With Additional Private k-means Without Additional Private k-means
0.1 231568487650 234630257696
0.3 224978598581 219171509207
0.5 203270076643 218632552820
0.7 199940004255 217826886291
0.9 197388929880 213504087247
1.0 197031999345 214528653150

Table 6: Average inertia values for algorithms in Figure 5.1.

k With Additional Private k-means Without Additional Private k-means
8 4410860023 3133818767
16 3774715341 3524399818
32 6182634341 5173658114
64 6352288372 5537152860

Table 7: Average inertia values for algorithms in Figure 5.2.

2.2 Hyperparameter Optimization

Table 8: Results of inertia with different privacy budget distributions. Algorithm was ex-
ecuted with the following configurations: data = MNIST data set, k = 10, ϵ =
1.0, δ = 0.1, r = 255.

Privacy Budget Distribution
(ϵ_candidates, ϵ_localswap, ϵ_recover, ϵ_kmean, ϵ_cluster_selection) Average Inertia of 5 runs

(0.025, 0.025, 0.025, 0.025, 0.9) 221494825919
(0.025, 0.025, 0.025, 0.9, 0.025) 220180054084
(0.025, 0.025, 0.9, 0.025, 0.025) 218939876144
(0.025, 0.9, 0.025, 0.025, 0.025) 218892144833

(0.2, 0.15, 0.2, 0.4, 0.05) 198577924821
(0.2, 0.2, 0.15, 0.4, 0.05) 204451801163
(0.2, 0.2, 0.4, 0.15, 0.05) 203827994802
(0.3, 0.15, 0.2, 0.3, 0.05) 197695862459
(0.3, 0.2, 0.15, 0.3, 0.05) 199555466986

77



B Figure Values

(0.3, 0.2, 0.3, 0.15, 0.05) 202081990049
(0.4, 0.05, 0.1, 0.4, 0.05) 192778858843
(0.4, 0.05, 0.2, 0.3, 0.05) 195507959437

(0.4, 0.05, 0.25, 0.25, 0.05) 197435790690
(0.4, 0.05, 0.3, 0.2, 0.05) 195476219047
(0.4, 0.1, 0.05, 0.4, 0.05) 196073127166
(0.4, 0.1, 0.15, 0.3, 0.05) 199105227513
(0.4, 0.1, 0.2, 0.25, 0.05) 195780243586
(0.4, 0.1, 0.25, 0.2, 0.05) 194496966305
(0.4, 0.1, 0.3, 0.15, 0.05) 192680271849
(0.4, 0.15, 0.1, 0.3, 0.05) 197960104372

(0.4, 0.15, 0.15, 0.25, 0.05) 196024926608
(0.4, 0.15, 0.2, 0.2, 0.05) 197070767785

(0.4, 0.15, 0.25, 0.15, 0.05) 195506254901
(0.4, 0.15, 0.3, 0.1, 0.05) 196347787269
(0.4, 0.2, 0.1, 0.25, 0.05) 193410386123
(0.4, 0.2, 0.2, 0.15, 0.05) 199519716881
(0.4, 0.2, 0.25, 0.1, 0.05) 202515490660

(0.4, 0.25, 0.05, 0.25, 0.05) 195131010971
(0.4, 0.25, 0.1, 0.2, 0.05) 199558500194

(0.4, 0.25, 0.15, 0.15, 0.05) 196989171636
(0.4, 0.25, 0.2, 0.1, 0.05) 192554380834

(0.4, 0.25, 0.25, 0.05, 0.05) 193520722744
(0.4, 0.3, 0.05, 0.2, 0.05) 195125712712
(0.4, 0.3, 0.1, 0.15, 0.05) 195142570710
(0.4, 0.3, 0.15, 0.1, 0.05) 199051580127
(0.4, 0.3, 0.2, 0.05, 0.05) 195942839034
(0.5, 0.05, 0.1, 0.3, 0.05) 194229544430

(0.5, 0.05, 0.15, 0.25, 0.05) 194664810057
(0.5, 0.05, 0.2, 0.2, 0.05) 200190069185

(0.5, 0.05, 0.25, 0.15, 0.05) 193778596896
(0.5, 0.05, 0.3, 0.1, 0.05) 194482174341
(0.5, 0.1, 0.05, 0.3, 0.05) 199226219614
(0.5, 0.1, 0.1, 0.25, 0.05) 194760160715
(0.5, 0.1, 0.15, 0.2, 0.05) 195309784892
(0.5, 0.1, 0.2, 0.15, 0.05) 190613488357
(0.5, 0.1, 0.25, 0.1, 0.05) 196201690286
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2 Values for Figures in Chapter 5

(0.5, 0.1, 0.3, 0.05, 0.05) 195599377809
(0.5, 0.15, 0.05, 0.25, 0.05) 197248207181
(0.5, 0.15, 0.1, 0.2, 0.05) 198357074260

(0.5, 0.15, 0.15, 0.15, 0.05) 192937371324
(0.5, 0.15, 0.2, 0.1, 0.05) 192137147519

(0.5, 0.15, 0.25, 0.05, 0.05) 194566789080
(0.5, 0.2, 0.05, 0.2, 0.05) 195711617466
(0.5, 0.2, 0.1, 0.15, 0.05) 194527524917
(0.5, 0.2, 0.15, 0.1, 0.05) 188960778185
(0.5, 0.2, 0.2, 0.05, 0.05) 196203915233

(0.5, 0.25, 0.05, 0.15, 0.05) 193639623674
(0.5, 0.25, 0.1, 0.1, 0.05) 194290531157

(0.5, 0.25, 0.15, 0.05, 0.05) 197530146762
(0.5, 0.3, 0.05, 0.1, 0.05) 193877199512
(0.5, 0.3, 0.1, 0.05, 0.05) 198547386974

(0.6, 0.05, 0.05, 0.25, 0.05) 194403421552
(0.6, 0.05, 0.1, 0.2, 0.05) 194355629782

(0.6, 0.05, 0.15, 0.15, 0.05) 199668653074
(0.6, 0.05, 0.2, 0.1, 0.05) 194439266492

(0.6, 0.05, 0.25, 0.05, 0.05) 196683014791
(0.6, 0.1, 0.05, 0.2, 0.05) 198158544133
(0.6, 0.1, 0.1, 0.15, 0.05) 190543168689
(0.6, 0.1, 0.15, 0.1, 0.05) 198349857974
(0.6, 0.1, 0.2, 0.05, 0.05) 192554078431

(0.6, 0.15, 0.05, 0.15, 0.05) 194644031977
(0.6, 0.15, 0.1, 0.1, 0.05) 200882189021

(0.6, 0.15, 0.15, 0.05, 0.05) 192180669492
(0.6, 0.2, 0.05, 0.1, 0.05) 195692992955
(0.6, 0.2, 0.1, 0.05, 0.05) 192583968130

(0.6, 0.25, 0.05, 0.05, 0.05) 196371143393
(0.7, 0.001, 0.049, 0.2, 0.05) 193613595055

(0.7, 0.01, 0.04, 0.2, 0.05) 194427446065
(0.7, 0.0125, 0.225, 0.0125, 0.05) 214171498090
(0.7, 0.0125, 0.0125, 0.225, 0.05) 199292091853

(0.7, 0.0125, 0.0375, 0.2, 0.05) 192488584530
(0.7, 0.02, 0.03, 0.2, 0.05) 194093797940

(0.7, 0.025, 0.2, 0.025, 0.05) 193994026113
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B Figure Values

(0.7, 0.025, 0.025, 0.2, 0.05) 190705907823
(0.7, 0.03, 0.02, 0.2, 0.05) 194498949759

(0.7, 0.0375, 0.0125, 0.2, 0.05) 201354280733
(0.7, 0.04, 0.01, 0.2, 0.05) 199900661121

(0.7, 0.049, 0.001, 0.2, 0.05) 211427964741
(0.7, 0.05, 0.05, 0.15, 0.05) 193043727579

(0.7, 0.05, 0.1, 0.1, 0.05) 191529358150
(0.7, 0.05, 0.15, 0.05, 0.05) 192881274591

(0.7, 1
12 ,

1
12 ,

1
12 , 0.05) 193523276360

(0.7, 0.1, 0.05, 0.1, 0.05) 193416906765
(0.7, 0.1, 0.1, 0.05, 0.05) 190454291557

(0.7, 0.15, 0.05, 0.05, 0.05) 200020493097
(0.7, 0.2, 0.025, 0.025, 0.05) 200448672192

(0.7, 0.225, 0.0125, 0.0125, 0.05) 215728287925
(0.8, 0.0125, 0.125, 0.0125, 0.05) 219478007478
(0.8, 0.0125, 0.0125, 0.125, 0.05) 198409087955

(0.8, 0.025, 0.1, 0.025, 0.05) 194081481067
(0.8, 0.025, 0.025, 0.1, 0.05) 195853488658
(0.8, 0.1, 0.025, 0.025, 0.05) 201672918696

(0.8, 0.125, 0.0125, 0.0125, 0.05) 207799282728
(0.9, 0.025, 0.025, 0.025, 0.025) 191873433481

ϵ_localswap average inertia
0.05 195032256996
0.1 195277573574

0.15 196134558134
0.2 195458487838

0.25 195509470151
0.3 196281214844

Table 9: Results of average inertia at different values of ϵ_localswap. Algorithm was ex-
ecuted with the following configurations: data = MNIST data set, k = 10, ϵ =
1.0, δ = 0.1, r = 255.
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2 Values for Figures in Chapter 5

ϵ_recover average inertia
0.05 195736498734
0.1 194888484949
0.15 195665711710
0.2 195209489397
0.25 196078368483
0.3 194917166063

Table 10: Results of average inertia at different values of ϵ_recover. Algorithm was exe-
cuted with the following configurations: data = MNIST data set, k = 10, ϵ =
1.0, δ = 0.1, r = 255.

ϵ_kmeans average inertia
0.05 195042674074
0.1 195328401170
0.15 194516726604
0.2 196710080523
0.25 195428773053
0.3 197205811073
0.4 194425993004

Table 11: Results of average inertia at different values of ϵ_kmeans. Algorithm was ex-
ecuted with the following configurations: data = MNIST data set, k = 10, ϵ =
1.0, δ = 0.1, r = 255.
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B Figure Values

2.3 Effect Higher T in Candidate

Effect Higher T
T average runtime in minutes average inertia
1 5.11 192208459625
2 6.86 191244311011
3 9.05 193384099925
4 11.84 192645002489
5 9.48 199962775079
6 9.73 209381147269
7 13.82 203654871763
8 14.95 198118186953
9 16.5 201056109812
10 19.04 201516542621
11 15.78 201834249369
12 18.59 200724551641
13 19.59 201488407549

Table 12: Average inertia and average runtime values for the algorithm in Figure 5.3.

2.4 Comparison To Other Algorithms

Privacy Utility Tradeoff

ϵ Python Matlab K-Means Clustering with DP Non Private K-Means++
0.1 221037065061 248963173926 317215779099 178463293723
0.3 203925721070 263901498535 250231903382 178463293723
0.5 199048050348 221330835951 239169249654 178463293723
0.7 191706524737 212261355766 234709443271 178463293723
0.9 187457411535 209660015117 232589281559 178463293723
1.0 188063471126 206306096831 233192953324 178463293723

Table 13: Average inertia values for algorithms in Figure 5.4.
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2 Values for Figures in Chapter 5

Effect of k, MNIST

k Python Matlab K-Means Clustering with DP Non Private K-Means++
2 226099236236 226267729190 235210868892 224609799117
4 207895447679 223453774582 235221879849 205281882588
8 192771949453 204418293874 231765723939 184584690624

16 185561768924 209836134612 231530780146 166055532292
32 172620576451 199528782432 232016313229 149388540718
64 162929878236 202593541793 228517503111 135406472376

Table 14: Average inertia values for algorithms in Figure 5.5.

Effect of k, Synthetic

k Python Matlab K-Means Clustering with DP Non Private K-Means++
2 8006593279 8005867623 8008008879 7970197410
4 7755163296 7816157600 7701395825 7569614479
8 7269464091 7388525276 7161761324 6915096690

16 6813257933 6974402996 6363514041 5629634742
32 5683927702 6104716131 5261762330 3467080527
64 4558354663 5419700408 4326059414 9988959

Table 15: Average inertia values for algorithms in Figure 5.6.

Effect of Dimension

Dimension Python Matlab K-Means Clustering with DP Non Private K-Means++
5 62619249 133377059 33242334 499224
50 2075071639 3323998453 1854134759 4994987
500 20433064121 30413081091 42481044641 49963357

Table 16: Average inertia values for algorithms in Figure 5.7.
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B Figure Values

Effect of Number of Intrinsic Cluster

k Python Matlab K-Means Clustering with DP Non Private K-Means++
8 2279480211 3133818767 3296334163 9994533
16 3127961609 3524399818 3361823173 9993763
32 3137007212 5173658114 2916590268 9992256
64 4484112697 5537152860 4136291870 9988959

Table 17: Average inertia values for algorithms in Figure 5.8.
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