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Zusammenfassung

Im Jahr 2022 wurde ein JavaScript Trace Erzeugungs Plugin für MicroWalk
veröffentlicht. MicroWalk ist ein Programm, um Code auf mikroarchitekturel-
le Seitenkanallecks zu überprüfen. Das veröffentlichte Plugin war durch die
dynamische Instrumentierungsbibliothek Jalangi2, welche es als Basis verwen-
dete, limitiert. Nach einer Beurteilung der notwendigen Änderungen, um Ja-
langi2 zu modernisieren, wurde die Entscheidung getroffen ein neues Plugin
für JavaScript fürMicroWalk als Ziel dieserArbeit zu implementieren. Statt dy-
namischer Instrumentierung setzt das neue Plugin auf die direkte Manipulati-
on von abstrakten Syntaxbäumen, umdie Erzeugung eines Traceswährendder
Laufzeit des JavaScript Programm zu ermöglichen. Dieser Ansatz ermöglicht
es, die Instrumentierung für das Tracen zu minimieren sodass, der erzeugte
Overhead reduziert wird.

Abstract

In 2022 a JavaScript trace generation plugin for the MicroWalk tool was in-
troduced. MicroWalk is a framework for analyzing microarchitectural side-
channel leakage in code. This plugin was limited by the dynamic instrumen-
tation framework it used as a basis — Jalangi2. Following an assessment of
the changes required to modernize Jalangi2, the decision was instead made to
implement a novel MicroWalk plugin for JavaScript as the aim of this thesis.
Rather than relying on dynamic instrumentation, the new plugin manipulates
the AST of a given JavaScript program directly to enable trace generation dur-
ing execution. This approach allows the instrumentation for trace generation
to be minimal, which in turn reduces the overhead induced.
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1
Introduction

Side-channel attacks have long been a staple in the world of cybersecurity. These attacks
are especially dangerous since the attack vector is, by design, outside the scope of the
program. Basically, by monitoring information that is affected by the program execution
deductions can be made. An analogy aside from technology would be the “Washington
Pizza Index” as described in the Washington Post by Schafer [25]. Pizza delivery ser-
vices noticed a correlation between the volume of pizza orders to the White House and
Capitol Hill and political crises. Without knowing what was being discussed, delivery
companies could still deduce major political discussions were taking place by monitor-
ing the increase in demand. Back to the context of technological side-channels: attackers
can leverage information such as the execution time or cache accesses (this would be akin
to the increase in pizza deliveries of the previous example) to derive secrets. Since side-
channels can be so incredibly varied andmust always be considered during development
these attacks pose a particular threat.

With rising popularity of web services the malicious interest in such services has
also gained traction. The internet connects people all over the world, yet not all of these
people have the best of intentions. Attackers utilizing websites to execute side-channel
attacks forgo the classically required physical access to the victim system. Clearly this
immediately increases the range of an attack by inordinate proportions.

One of the most popular client- and server-side programming languages for web de-
velopment is JavaScript as illustrated by the somewhat tongue-in-cheek statement by Jeff
Atwood “Any application that can be written in JavaScript, will eventually be written in
JavaScript.” Due to its ubiquitous nature the language is also of particular interest for
IT security considerations. The ongoing challenge is to connect these two interests: i.e.
writing secure code, for example in the context of web development, by those unfamiliar
with IT security concepts in a simple and comprehensive way.

The MicroWalk framework [27] has been developed for this purpose and uses dy-
namic analysis to highlight potential microarchitectural side-channel leakage in a pro-
gram. This is accomplished by assessing execution traces generated by executing custom
test cases written by the user. The prerequisite for an execution to generate a trace is that
the chosen codemust be instrumented. This is whereMicroWalk’s plugins come into play:
plugins take care of instrumenting code of a certain language in a way that upon execu-
tion of this code, a trace is generated, which can then be preprocessed to bring it in line
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1 Introduction

with the specific format required for further analysis by MicroWalk.
A MicroWalk plugin for instrumenting JavaScript was first introduced by Wichel-

mann et al. in 2022 — albeit with severe limitations. Due to constraints imposed by
the choice of the underlying instrumentation library, the plugin cannot handle modern
JavaScript language features. Additionally, the instrumentation substantially impacts ex-
ecution time which makes it undesirable for developers looking to integrate MicroWalk
analysis into their development workflow.

1.1 Contributions of this thesis

Given the constraints of the current MicroWalk plugin the aim of this thesis is to adjust
the plugin to the needs of modern JavaScript. More specifically, the task is to evaluate
and improve the underlying framework of the existing plugin, Jalangi2 [12].

Following the analysis of Jalangi2, a new plugin has been developed using packages
from the Babel library [2]. This plugin is fully compatible with modern JavaScript. Over
the course of the development a different approach was developed to modify the abstract
syntax tree of a given code using Babel. The benefit of direct manipulation of the source
code via the abstract syntax tree has the advantage that it results in minimal changes
to the source. Additionally, MicroWalk plugins for any similar programming language
can be written using the same novel approach under the condition that a framework for
parsing source code into an abstract syntax tree exists.

1.2 Related Work

Specialized tools for assessing whether potential microarchitectural side-channel leakage
is present in code exist, but they largely target binary executables or LLVM intermediate
representation (IR) [14], which is used as a language independent representation of code
by the LLVM compiler toolchain. A study conducted by Jančár et al. in 2022 among de-
velopers of cryptographic libraries showed that ctgrind [18] is the most widely used tool
for this purpose. The ctgrind tool is an extension of Valgrind, an “instrumentation frame-
work for building dynamic analysis tools” [26].

In contrast, not many frameworks for instrumentation of JavaScript exist and no spe-
cialized tools for securing against microarchitectural side-channel leakage in JavaScript
code exist. Since JavaScript source code is only compiled during execution (a process
known as just-in-time compilation), no binary is available for use with dynamic analysis
tools. Furthermore, standard JavaScript engines are unable to generate LLVM IR, making
tools that target it inaccessible for JavaScript developers.

Jalangi2 [12] is a framework for JavaScript that fully transforms a given source code
to allow arbitrary dynamic instrumentation. Unfortunately Jalangi2 is no longer in ac-
tive development and does not support modern JavaScript language features. A more
detailed description of Jalangi2 is provided in Section 2.4.

Aran [4] is another framework for generic dynamic instrumentation. Again the entire
source code is transformed to allow arbitrary analysis. Both of these frameworks are
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1 Introduction

designed as general purpose tools and as such there is a substantial performance loss
from transforming the entire given code. Additionally, since the tools aremainly designed
to enable dynamic analysis on JavaScript code in general, further work is subsequently
required to then assess potential microarchitectural side-channel leakage of the code.

As outlined above in Section 1.1 on the preceding page the MicroWalk plugin de-
veloped by Wichelmann et al. fills the gap of missing tools for securing JavaScript code
against microarchitectural side-channel leakage. The plugin generates compatible traces
for MicroWalk, by instrumenting the given JavaScript source code using Jalangi2 to emit
information required for the MicroWalk trace format. This work forms the basis for the
work done for this thesis.

1.3 Structure of the thesis

The thesis is divided into five chapters. The second chapter explores the various concepts
required to understand the new plugin that was developed for this thesis. Specifically,
a basic understanding of microarchitectural side-channel attacks, instrumentation, the
Jalangi2 and Babel libraries, abstract syntax trees and the JavaScript language are pro-
vided in this chapter. Additionally, the MicroWalk framework is explained in detail, as it
forms the basis for the developed plugin.

The next two chapters detail the results and contributions of this thesis to ease de-
velopment of secure JavaScript cryptographic libraries. First chapter three begins with
the approach and analysis of the existing MicroWalk JavaScript plugin, using Jalangi2.
Surmising the results of the analysis of the existing plugin, chapter three continues with
the evaluation of the babel framework for the new plugin and the advantages of using
Babel over Jalangi2.

In chapter four the implementation and the overarching concept of the plugin are
illustrated with an in-depth explanation of the abstract syntax tree modifications and the
trace format generated by the newplugin. Readers solely interested in the innerworkings
of the plugin may wish to skip directly to this chapter.

Finally, the last chapter concludes and summarizes the thesis work.
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2
Background

Side-channel attacks are a field of major interest in IT security. Their primary target is not
an underlying cryptographic protocol of a program but rather the (side-) effects caused by
an executing program. For example, the first side-channel attacks described in research
were the timing attacks on cryptographic systems using modular exponentiation [17].
This work showed that by observing the timing of operations, secrets can be extracted.
The cryptographic protocols attacked were mathematically sound, yet the information
exposed by the side-channel was sufficient to break secrecy.

Among the different side-channels, those that target microarchitecture show a high
prevalence and relevance in current research. For example, the Spectre [15] attack intro-
duced an entirely new class of microarchitectural side-channel attacks that continues to
be relevant to this day [3]. Therefore, the first section is dedicated to defining microar-
chitectural side-channel attacks and setting the scope, which is of particular interest for
this thesis. Afterwards, the MicroWalk framework is introduced in-depth as a tool for
preventing microarchitectural side-channel leakage during development. Then, a short
foray into dynamic and static instrumentation is undertaken, highlighting the differences
between the two approaches and when each technique is used. Instrumentation is used
extensively by MicroWalk in order to gather information about a program during execu-
tion. The focus then shifts towards syntactic analysis with an emphasis on abstract syntax
trees for JavaScript. As we will see later when the new MicroWalk plugin is explained in
greater depth, operating on these trees directly allows for finer control of the changes to
the source. Finally, the last section provides a brief introduction to JavaScript — which is
used for the MicroWalk plugin— and showcases some intricacies of the language, which
are needed for a greater understanding of the plugin and the challenges encountered
during development.

2.1 Side-channel Attacks

As the name suggests side-channel attacks target information exposed by secondary infor-
mation channels. This can be physical information such as the power consumption [16],
electromagnetic radiation [10] or the previously mentioned timing [17] of a device, but
it can also be information available on the microarchitectural level [22]. Here an attacker
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2 Background

takes advantage of resources sharedwith a victim, e.g. caches or a branch prediction unit,
to extract information without consent. Monitoring the access time of a cache request
allows an attacker to determine, whether a victim process accessed the same resource
previously or not.

The foundation for this type of attack was laid by work of Osvik, Shamir, and Tromer
[22] introducing the Prime+Probe techniquewith a later variation being the Flush+Reload
technique [29]. A Prime+Probe attack can determine whether a cache set was used by a
victim during a certain timeframe. First, a contiguous byte array is allocated filling the
entire cache with the attacker’s data. After a short delay, e.g. to wait for an encryption,
the array is accessed again and the access time is measured. If a cache miss occurs, then
the access time will consequently be higher and an attacker can deduce that the corre-
sponding cache set was accessed by the victim, since the cache was previously filled with
the attacker’s data.

A Flush+Reload attack has an even higher spatial resolution of a singular cache line.
In contrast to Prime+Probe, the monitored cache line is flushed from the cache. Again,
after a short delay the cache line is accessed, and the access time is measured. If the
victim accessed the cache line since it was flushed, then a cache hit will occur and the
access time will be much faster than would be the case for a cache miss.

Alternatively an attacker may also track the control-flow of a program, which can re-
sult in information leaks in case of secret-dependent execution. Inmodern cloud-computing
environments this vector is particularly perilous, as demonstrated by cross-VMprime+probe
attacks by Liu et al. [19]. This work shows that malicious virtual machines (VMs) can
leverage shared last-level caches to extract data from co-located VMs.

As mentioned briefly in the introduction, microarchitectural side-channel attacks us-
ing JavaScript are feasible and forgo the requirement of physical access or co-location of
hardware. Oren et al. [21] detailed attacks using Prime+Probe that run entirely in the
browser of the victim and simply require the victim to visit a malicious website. More re-
cently, Ridder et al. [24] introduced amicroarchitectural side-channel attack in JavaScript,
which can compromise the Firefox browser. These attacks show that JavaScript sandbox-
ing is not sufficient in preventing cache attacks.

Writing constant-time code is the generally accepted technique to avoid such side-
channel leaks as each execution of the program results in the same memory accesses,
identical control flow and identical timing behavior. To verify constant-time properties of
code, its behavior must be compared in response to different inputs. A true constant-time
code must have no discrepancies in memory accesses and a linear control flow regard-
less of input. This is in contrast to secret-dependent execution, where execution behavior
changes depending on secrets. As an example of secret-dependent code, consider the sim-
ple if-statement detailed in Listing 2.1 on the next page. By monitoring the control flow
during execution, the result of the test can be inferred. Since the result of the test is syn-
onymous to one bit of information of the secret, the secret itself can be inferred.

To make Listing 2.1 on the following page secret-independent, essentially both cases
are fused into a single expression which contains both results, but only stores the appli-
cable one. This is shown in Listing 2.2 on the next page.
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Listing 2.1: A simple secret-dependent if-statement in JavaScript with secret being either
1 or 0

if(secret == 1) {
x = x * 10;

} else { // secret == 0
x = x + 10;

}
// ...

Listing 2.2: A secret-independent transformation of Listing 2.1 in JavaScript with secret
being either 1 or 0

x = (x * 10) * (secret) + (x + 10) * (1-secret);

When secret is 1, then the expression evaluates to the following:

𝑥 = (𝑥 ⋅ 10) ⋅ 𝑠𝑒𝑐𝑟𝑒𝑡 + (𝑥 + 10) ⋅ (1 − 𝑠𝑒𝑐𝑟𝑒𝑡)
𝑥 = (𝑥 ⋅ 10) ⋅ 1 + (𝑥 + 10) ⋅ (1 − 1)
𝑥 = (𝑥 ⋅ 10) + (𝑥 + 10) ⋅ 0
𝑥 = 𝑥 ⋅ 10

In contrast, when secret is 0, then the expression evaluates as follows:

𝑥 = (𝑥 ⋅ 10) ⋅ (𝑠𝑒𝑐𝑟𝑒𝑡) + (𝑥 + 10) ⋅ (1 − 𝑠𝑒𝑐𝑟𝑒𝑡)
𝑥 = (𝑥 ⋅ 10) ⋅ 0 + (𝑥 + 10) ⋅ (1 − 0)
𝑥 = (𝑥 + 10) ⋅ 1
𝑥 = 𝑥 + 10

Clearly, this results in x having the same value as when the two cases are split into an
if-else-statement, yet with the code in Listing 2.2, there is no branching and both mathe-
matical operations are always executed.

2.2 MicroWalk

Finding potential microarchitectural side-channel leakage in code is not a trivial task.
Consequently, many tools have been developed to help developers find such leakage in
their code. One of these tools, MicroWalk [27], is a framework for analyzing and finally
classifying microarchitectural side-channel leakage in a given code.

Essentially, execution traces resulting from executing the program with various se-
cret inputs are compared. If the traces differ, then these differences are a direct result
from executing the program with different secret inputs. Consequently, the program has
microarchitectural side-channel leakage.
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2 Background

The entire procedure can be seen as a pipeline consisting of discrete stages for test
case generation, creation of execution traces and finally the analysis itself as visualized in Fig-
ure 2.3. Each stage is extensible by plugins — a quality that is leveraged for the work of
this thesis. While the initial publication of 2018 focussed on binary analysis, later work by
Wichelmann et al. in 2022 showcasedMicroWalk’s extensibility by introducing JavaScript
analysis [28].

Test case
generation

Trace
generation

Trace
preprocessing

Analysis Visualization

Figure 2.3: MicroWalk pipeline for analyzing and classifying microarchitectural side-
channel leakage.

MicroWalk can generate test cases of variable length using cryptographically secure
pseudorandom number generators. Alternatively, previously generated inputs can be
specified. These test cases are used to observe, how the given program behaves with
various inputs.

To capture the program state during execution, execution traces must be generated.
These traces detail memory accesses and the control flow. Since MicroWalk originally
focussed on binaries, memory allocation and stack pointer modifications are also of im-
portance. However, given that JavaScript abstracts these details, they are not further con-
sidered in the context of this thesis. The main task of the thesis was to create a plugin,
which extends the trace generation stage by instrumenting JavaScript code such that trace
information can be emitted. To guarantee a uniform trace format, the raw execution traces
must subsequently be preprocessed.

The uniform trace format is a prerequisite for the leakage analysis algorithm used by
MicroWalk. Traces are merged into a call tree to keep track of trace divergences. Branches
from nodes symbolize divergences in traces. The nodes of the tree are one of three types:
branches i.e. function calls, returns from calls or jumps, memory allocations and memory
accesses i.e. reading or writing an object. Each node contains the common trace entries
for all traces that visit this node and a list of split nodes, which detail the divergences
starting from this node. Since JavaScript lacks fine-grained control of memory allocation,
such as malloc calls in C, which explicitly allocate memory, memory allocation nodes are
not considered further.

After analyzing the microarchitectural leakage its significance is determined by the
final analysis itself. Leakage can be quantified by MicroWalk using three different mea-
sures. These are: mutual information, conditional guessing entropy and minimal condi-
tional guessing entropy.

Mutual information can be utilized to quantify the dependence of two variables upon
each other. Basically, this measurement quantifies, how much information can be ex-
tracted regarding a pair of variables by observing only one of the two. In the context of
microarchitectural side-channel leakage, a lowmutual information score is desirable, be-
cause information gained by observing a different variable is indicative of side-channel
leakage. A low score minimizes the risk that the observation of execution (for example
by observing access patterns) will leak undesired information.
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Conditional guessing entropy of two variables quantifies, how many guesses are ex-
pected in order to determine the value of one, when knowing the value of the other vari-
able. Consequently, the minimal conditional guessing entropy is the lower bound of this
number of expected guesses.

2.3 Dynamic and Static Instrumentation

The term “instrumenting” existing code, classically an existing binary, refers to an ap-
proach that entails inserting new code, which alters the behavior of a program. Such
modifications either enable observation, e.g. by emitting information regarding the exe-
cution, or introduce new behavior, as is the case with modern compiler’s stack protection
mechanisms. An example of instrumentation as a stack protection mechanism is gcc’s
fstack-protector flag, which adds guard code to check for buffer overflows.

Dynamic instrumentation hooks into a program at runtime and inserts new instruc-
tions into the instruction stream directly. At this point, a plethora of information is avail-
able, such as memory used by the executing code and the system state that the execution
induces. An example for a dynamic instrumentation tool for x86 binaries is Pin [23],
which allows users to write program analyses specific to certain patterns. The advantage
of dynamic instrumentation is the wealth of information available. The flip side is the po-
tential negative impact that instrumentation can have on the performance of the program
by injecting new instructions during runtime.

In contrast, static instrumentation operates solely on the static source code, without
execution. This can be the actual source code before compilation, the decompiled code
or decompiled machine instructions. The instrumentation is added directly to the source
code, making it a persistent component of the program prior to compilation. Thus, static
instrumentation is generally more complex, since it requires greater precautions to avoid
breaking existing program logic or altering existing references. However, the advantage
of static instrumentation is that the entire code can be taken into account, especially when
the original source code is available. Additionally, no changes are made during runtime.

Since JavaScript is a just-in-time (JIT) compiled language, no binary is available for
instrumentation but in contrast the source code is readily available, albeit potentially in
minified form. This means that static instrumentation is more feasible since no decompi-
lation is required.

2.4 Jalangi2

In its own words, Jalangi2 is “a framework for writing dynamic analyses for JavaScript”
[12]. As a generic framework it is not explicitly specialized in instrumenting JavaScript to
verify constant-time properties, but instead to write arbitrary dynamic “analyses”. Code
instrumented by Jalangi2 is first statically instrumented when it is loaded, replacing the
entire source with an instrumented version of the code, which has been transformed to
wrap each action in a corresponding wrapper function. For example, an assignment ex-
pression x=1 would be wrapped as Write("x",Literal(1)). These wrappers are then used
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by the callbacks that the Jalangi2 runtime exposes to allow users to write their analyses.
Basically, before and after each action, the corresponding callback is first called, execut-
ing provided user code if applicable, and then the action itself is performed. Jalangi2
performs this wrapper transformation for everything regardless of whether a callback that
uses a certain wrapper is utilized by the user analysis or not.

Additionally, all expressions are assigned IDs, which are used in conjunction with a
source map to look up the corresponding expression in the original source code. This
means that the “x” in the previous example would instead be encoded as an id that cor-
responds to the exact location of the “x” in the original source. The instrumented version
exclusively uses these internal IDs to reference expressions.

Listing 2.4: A minimal assignment expression in JavaScript.

1 var x;
2 x = 1;

Table 2.5: Jalangi2 internal IDs of Listing 2.6 matched to source objects in List-
ing 2.4. Source locations have the format [start line, start column, end line,
end column].

Id Source Location Source object

9, 17 [2, 5, 2, 6] x
25 [2, 1, 2, 7] x = 1;
33, 41, 49, 57 [1, 1, 2, 7] var x;x = 1;

Listing 2.4 first shows the minimal JavaScript code for a valid variable assignment.
Then, Listing 2.6 on the next page shows the instrumented version of the same assign-
ment. The IDs defined in lines 2-4 correspond to expressions in the source as detailed
previously and illustrated in Table 2.5. All function calls that are called as members of
the J$ Object are wrappers. For example J$.W() in line 15 of Listing 2.6 on the next page
wraps a write operation, while J$.N() in the same line wraps the literal “1”.

An analysis in the context of Jalangi2 is a JavaScript file that implements some or
all of the available callbacks. As previously mentioned, these callbacks are then called
before (or in some cases after)wrapped code is executed. The aforementioned example of
J$.W()would execute thewrite() callback before executing awrite operation. Thus, users
can utilize the callbacks to further instrument code. Both, the repeated instrumentation
at loadtime and the extensive transformation result in a slowdown of 3-100 times the
original, according to Jalangi2 developers.

Regarding ongoing support, Jalangi2 supports Node.js version 12 and additionally
uses Python 2.7. Node.js v12 reached end-of-life status in April 2022 and Python v2.7
has been marked end-of-life since January 2020. Jalangi2 officially supports ECMAScript
version 5.1 which was released 2011 [5] and superseded by version 6 released 2015 [6].
The last version update of Jalangi2 was on July 2, 2020. Thus, the tool is no longer being
actively developed.
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Listing 2.6: The minimal assignment expression from Listing 2.4 as instrumented by
Jalangi2.

1 J$.iIDs = {
2 "9":[2,5,2,6],"17":[2,5,2,6],
3 "25":[2,1,2,7],
4 "33":[1,1,2,7],"41":[1,1,2,7],"49":[1,1,2,7],"57":[1,1,2,7],
5 "nBranches":0,
6 "originalCodeFileName":"id.js",
7 "instrumentedCodeFileName":"id_jalangi_.js"
8 };
9 jalangiLabel0:
10 while (true) {
11 try {
12 J$.Se(33, 'id_jalangi_.js', 'id.js');
13 J$.N(41, 'x', x, 0);
14 var x;
15 J$.X1(25, x = J$.W(17, 'x', J$.T(9, 1, 22, false), x, 2));
16 } catch (J$e) {
17 J$.Ex(49, J$e);
18 } finally {
19 if (J$.Sr(57)) {
20 J$.L();
21 continue jalangiLabel0;
22 } else {
23 J$.L();
24 break jalangiLabel0;
25 }
26 }
27 }
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2.5 Babel

Given these constraints of Jalangi2 as a foundation for the MicroWalk plugin, different
supporting tools for the development of the new MicroWalk plugin were considered.
As outlined above, Babel [2] is well-suited for this purpose. Babel is not primarily a
framework intended for custom instrumentation of JavaScript code. Rather, it is a “tran-
spiler” or “source-to-source” compiler capable of transforming arbitrary JavaScript code
into compatible legacy code according to a previous ECMAScript Language specification.
For example code written usingmodern language features, such as the nullish coalescing
operator (??) introduced in ES2020, can be transpiled by Babel into ES5 code as demon-
strated by the listings in Figure 2.7.

// in
function greet(input) {

return input ?? "Hello world";
}

// out
function greet(input) {

return input != null ? input : "Hello world";
}

Figure 2.7: Code snippets from the Babel GitHub [2] showcasing a transformation of
modern (ES2020) JavaScript using the nullish coalescing operator (??) to code compatible
with prior (<ES2020) specifications.

For the transformation, the source code is parsed into an abstract syntax tree (AST)
and thenmodifications are made to the nodes of the tree. Babel consists of multiple pack-
ages that are used in conjunction for the source-to-source compilation. The core packages
are described in Table 2.8.

Table 2.8: The packages that make up the core of the Babel library.

Package Name Description

@babel/core Babel source-to-source compiler itself that transforms code compliant
with one specification to another

@babel/parser parser that parses source code and creates a corresponding abstract syn-
tax tree object

@babel/traverse library for traversing and manipulating the AST object
@babel/generator library for generating source code from an AST object

For the newMicroWalk plugin, the parser, traverse and generator packages are used
without the core package. The parser library parses a given JavaScript or TypeScript source
code and creates a corresponding AST object that can bemanipulated using further babel
libraries. The tree object represents the complete syntactic structure of the given program
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by breaking each statement, expression or other syntactic structure down into terminals.
Abstract syntax trees are explained in more detail in Section 2.6.

The traverse library in particular focuses on utilities for traversing the tree andmanip-
ulating nodes, for example by replacing, removing or modifying them. The main entry
point for tree traversal is the traverse(ast,visitors) method that takes an AST object and
visitors for AST nodes. Visitors are (function) objects that define code that should be
executed when a node of the corresponding type is encountered. This means that for
each node of the tree, the node type is matched against the types accepted by each visitor
passed to the traverse call and, in case of a match, the node is visited, causing the visitor
code to be executed. The pattern matching done for visitors allows the new MicroWalk
plugin to perform very specific transformations to the AST.

The final core Babel package that is used, is the generator package. This package is
responsible for generating JavaScript source code from a given AST object.

2.6 Abstract Syntax Trees

Asmentioned in the previous section, abstract syntax trees are used to represent the syn-
tactic structure of a program. They symbolize the derivation of statements and expres-
sions down to terminalwords according to a JavaScriptAST specification. The derivations
are represented by nodes of the tree with each node encompassing all of its children. For
example, the root node represents the entire program, since every node is a child of the
root node. Terminals arewords that can no longer be broken down further. Consequently,
in the tree they are leaf nodes. In the context of this thesis, the Babel AST specification
is used to define trees, as the MicroWalk plugin developed for this thesis uses the Babel
library to parse and instrument JavaScript source files.

According to the Babel specification, the root node for an AST is a program node,
which contains all the statements of the program as its children. Statements can in turn
consist of expressions or further statements. Figure 2.9 on the next page shows an exam-
ple of how source code is represented by a Babel AST.

2.7 JavaScript

In terms of computer science, JavaScript is an ancient programming language. First de-
scribed in 1995, it has gone through many shifts of direction and iterations, especially
since its transition from a solely client-side scripting language, to a client and server-side
language with the advent ofNode.js. Standardization began in 1997, when it was submit-
ted to Ecma International which has overseen the specification of ECMAScript (ES) since
[7]. JavaScript is formally a language that conforms to the ECMAScript standard. Both
terms (JavaScript and ECMAScript) are used interchangeably in this thesis.

When the language was first specified in 1995, it was intended to only be used for
scripting within web browsers. The introduction of Node.js, a runtime environment for
JavaScript outside a browser in 2009, expanded the reach of JavaScript substantially. The
language could nowbeused for server-side programming, since itwas no longer bound to
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Abstract Syntax Tree

Program

VariableDeclaration

VariableDeclarator let

Identifier NumericLiteral

x 1

Code

let x = 1;

Figure 2.9: Abstract syntax tree and code of a variable declaration. Filled blocks are nodes
of the tree and outlined blocks are properties of the node object that are included for
clarification.

executionwithin a browser. Consequently, the capabilities of the language also increased.
The biggest change in the specification was with publication of ECMAScript 6 (ES6) [6],
seeing additions such as class declarations, a module system, iterators, different variable
declarators (let, const) and arrow function expressions.

Like any programming language, JavaScript has its quirks and novelties. While hu-
morousmisunderstandings such as the ones often caused by the complexities of JavaScript
type coercion are of little relevance for the new MicroWalk plugin, certain language fea-
tures are referenced extensively during the explanation of the inner workings of the plu-
gin in Chapter 4 on page 19. Such features are detailed in the following paragraphs.

Object Property Access

In JavaScript almost everything is an object, including functions. Objects have properties
which can be accessed in one of two ways: either using the dot notation (i.e. o.property)
or with the bracket notation (i.e. object[expression]). The bracket notation is special in
that a property can be accessed by passing any expression that evaluates to a valid property
name of the object. This means that to ascertain which property is being accessed, the
expression must first be evaluated. For both notations either a member expression [11]
or a call expression that returns an object form the basis. Since a member expression is
either an object, reference to an object or a member expression with a property access,
these expressions can also be chained when another object is returned by prior access.
Listing 2.10 on the next page shows an example for such a chain.
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Listing 2.10: An example of a member expression chain.

// 'o' is an object
const o = {

// 'a' is a property of 'o' and an object
a: {

// 'x' is a property of 'a'
x: 5

}
};

o.a.x; // 5

Destructuring Assignment

Object properties can also be accessed indirectly when assigning variables with a process
called destructuring assignment. This means that values from objects and arrays can be un-
packed and assigned to variableswithout the need for intermediate variables. Listing 2.11
show examples of destructuring assignment.

Listing 2.11: An example of destructuring assignment in JavaScript.

// 'o' is an object
const o = {

a: 1,
b: 2

};

let { a, b: c } = o;
// a = 1, c = 2

// 'arr' is an array
const arr = [1, 2, 3];
let [x, y] = arr;
// x = 1, y = 2;
// 3rd element is ignored

The properties of an object can be assigned to variables that share a name with the
property or the property key can be specified, and its value assigned to a variable with
a different name. For arrays, the elements are unpacked in ascending order, from the
first to last element. Not all values have to be used during destructuring and superfluous
values can be stored as an array in a rest element.
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JavaScript Modules

Several custom solutions for JavaScript have been established that offer desired func-
tionality as the official language standard could not always keep pace with the demand
of growing applications. The module system is one of them. Since the 6th edition of
ECMAScript (ES6) importing of modules has been standardized, by using either static
import declarations or dynamic import() calls. Prior to ES6, CommonJS modules were
the de facto standard, since they were supported by the package management system of
Node.js: npm. To this day CommonJS and ES6 modules are published side-by-side on the
npm registry, reflecting the fact that the transition from one system to the other has not
been realized by all developers.

Given that modern JavaScript code continues to run with CommonJS modules, both
types ofmodule imports have to be supportedwhen instrumenting JavaScript code. When
usingNode.js there is no native support for easily changing both types of module imports.

To ensure that the instrumented version of a module is executed, so-called hooks are
utilized for the module loading process. In the case of ES6 modules this is done by regis-
tering a hook for the corresponding load function. For CommonJS modules the require()
call, which is used to load external modules, must be hooked. However, Node.js does
not natively support hooking this call hence, to hook into ”require”, the pirates library is
used.
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3
Preliminary Assessment: A Tale of Two

Frameworks

The goal of the thesis was to improve the existing JavaScript MicroWalk plugin [28] as a
prerequisite formodern JavaScript support. This chapter details the state of Jalangi2 [12],
the underlying framework that is used by the preexisting plugin, the changes required
to adapt it to modern JavaScript and the considerable challenges associated with such a
major refactoring. In the next step, the usage of the Babel library [2] and its advantages
in comparison to Jalangi2 are detailed.

3.1 Jalangi2

The 2022 JavaScript MicroWalk plugin uses Jalangi2 as a dynamic instrumentation frame-
work to generate execution traces for further analysis by MicroWalk. Jalangi2 enables
dynamic instrumentation by wrapping every expression in calls specific to the type of
expression or statement. These wrappers later call the functions that are exposed by the
“analysis” callback template, letting users execute custom code for specific hooks. To
allow arbitrary instrumentation, the entire given source code is transformed. First, the
source is parsed using the acorn library [1], which generates a corresponding abstract
syntax tree (AST) according to the ESTree Spec [9]. The AST then undergoes a series of
transformations.

AST traversal and modification are part of Jalangi2 itself. Similarly to tree traversal in
the babel/traverse library, the visitor design pattern is used to “visit” each node of the AST.
Starting from the root node, each child is visited in the order of the properties of the node
object as given by a for...in iteration of the node properties. Upon entering and upon
exiting a node, visitors are executed to transform the node. Only node types up to the
ESTree Spec for ES5 are considered by Jalangi2 for traversing and manipulating the AST,
since Jalangi2 only supports ES5. Consequently, to modernize the framework, the visitors
must be adapted and expanded to consider all new language features and changes to the
ESTree Spec since ES5.

After the transformations of theAST are completed, JavaScript code is generated from
the new AST using the esotope library [20]. Esotope is a fork of the Escodegen [8] library
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for generating JavaScript from ESTree ASTs. The latest release of esotopewas in December
2014. Thus, it was last updated prior to the publication of the ES6 standard, which was
released June 2015 and has had no further support for almost ten years. Importantly, the
base library Escodegenwas last updated in December 2020, so that it is no longer in active
development and will continue to lack features of newer ECMAScript specifications. As
a consequence, to modernize the code generation, a different library that supports the
current ECMAScript standard is evidently necessary. Furthermore, it needs to be in active
development to ensure continuous support.

The first step in adding support for modern JavaScript to Jalangi2 is expanding the
supported node types for AST traversal to also consider new nodes added by ES6. The
AST generated by the acorn library already contains these new nodes, they simply aren’t
being considered by Jalangi2 during instrumentation. Additionally, as detailed above, it
is necessary to use a new library for code generation from ASTs: Babel. Babel is a project
which encompasses libraries for parsing JavaScript into anAST, traversing andmodifying
ASTs and once again generating code from these ASTs.

Since Babel is an active project with ongoing support, its libraries for AST traver-
sal and modification work with modern JavaScript. Hence, the AST traversal could be
handled entirely be the babel/traverse library. Yet, while babel/parse is capable of pars-
ing JavaScript source code into ESTree Spec compliant ASTs (the AST spec Jalangi2 sup-
ports), the babel/traverse and babel/generate libraries require ASTs according to the Babel
AST spec. Consequently, the entire code pertaining to ASTs, such as the visitors that per-
form the instrumentation of the source, has to be refactored to consider the Babel AST
spec.

Given the constraints and challenges outlined above, it becomes clear that the mod-
ernization of Jalangi2 is not a trivial task. The entire instrumentation code, i.e. 2558 lines
of code spread over three files, has to be refactored first to use the Babel packages. Sub-
sequently, new instrumentation code would be required to support all new language fea-
tures since ES5.

An alternative to a complete refactoring of Jalangi2 is using Babel to directly instru-
ment given source code for trace generation. By cutting out the intermediary dynamic
instrumentation framework — Jalangi2 — it is possible to reduce the modifications to a
minimum.

3.2 Babel

The Babel project originated from the need to transpile ES6 to ES5 JavaScript code in
2015. Since then, it has grown substantially with 1070 contributors listed on the project
GitHub page [2]. Constant activity and an active community have resulted in regular and
ongoing releases. The latest update is Babel 7.23.6 released on December 11, 2023. Babel
is also supported by companies such as Airbnb, AMP Project and Salesforce. In summary,
Babel is a well-rounded project with ongoing support, which makes it an ideal candidate
for the foundation of the new MicroWalk plugin.

As briefly mentioned in the previous chapter, the babel/traverse library is at the heart
of the new MicroWalk plugin. It enables traversal and manipulation of an AST object
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created by parsing source code with the babel/parser library. Tree traversal means that
starting from the root node of the program, each node is first entered and afterwards each
child node is entered before being exited when moving to a sibling node or returning to
the parent. In short, the tree is traversed using a depth-first search. An example AST and
corresponding tree traversal are illustrated in Figure 3.1.

Abstract Syntax Tree

Program

VariableDeclaration

VariableDeclarator

Identifier NumericLiteral

Tree Traversal

enter Program
enter VariableDeclaration

enter VariableDeclarator
enter Identifier
exit Identifier
enter NumericLiteral
exit NumericLiteral

exit VariableDeclarator
exit VariableDeclaration

exit Program

Figure 3.1: Abstract syntax tree and visualized tree traversal of the tree of a variable dec-
laration. Blue blocks are nodes of the tree.

Whenever a node is entered or exited, visitors for that specific node type and action
(either enter or exit) are called. A visitor object can contain methods, which execute upon
entering and exiting nodes of a specific type. These methods are passed a path object,
which encompasses the path to the current node from the root (program) node. The
parent of the current node, which the path is associated with, can be accessed either via
the path.parent key (for the parent node) or the path.parentPath key (for the parent
path). In summary, akin to a linked list, each path holds a reference to its parent path,
allowing backtracking all the way to the program node. Thus, the AST can be inspected
or modified using the path object. The babel/traverse library also entails multiple meth-
ods on paths explicitly for this purpose such as path.insertBefore(), path.insertAfter(),
path.replaceWith() and path.remove(), which provide safe ways of manipulating the
AST.

In contrast, Jalangi2 uses its own AST traversal utilities, which would need to be con-
sidered, whenever AST traversal ismodified. As a result, there is a higher risk of breaking
functionality and a higher complexity in total.

By using Babel, the newMicroWalk plugin utilizes static instrumentation techniques
instead of dynamic instrumentation aswas the casewhenusing Jalangi2. Without Jalangi2
as an intermediary between the original source and the instrumentation for trace genera-
tion, the entire initial code can be taken into account. Themajor advantage is taht the new
MicroWalk plugin focuses solely on instrumenting code for MicroWalk trace generation
with pinpoint precision, unlike Jalangi2 which enables generic universal further instru-
mentation. In particular, only information pertaining to possible side channel leakage is
necessary.
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Due to themultiple constraints imposed by Jalangi2, the decisionwasmade tomove away
from a dynamic instrumentation framework and instead favor static instrumentation. In
particular, an approach was developed that targets the abstract syntax tree (AST) repre-
sentation of a JavaScript source code. The advantage of this approach is that AST repre-
sentations exist for most programming languages, since compilers usually parse source
code into an AST during compilation, whereas suitable dynamic instrumentation frame-
works don’t necessarily exist for all languages. Thus, the same steps and concepts of
the AST modifications, which allow tracing of potential microarchitectural side-channel
leakage in JavaScript, can be used for other programming languages to easily develop
MicroWalk plugins.

While the rest of this chapter will focus entirely on JavaScript specific AST modifica-
tions, similar syntactic structures can be found in other programming languages. There-
fore, similar methods could be used to develop tracing plugins for such languages.

For trace generation, the original JavaScript source code is parsed using the babel/-
parser library, which generates an AST object representing the program. Next, the AST
object undergoes a series of transformations with the help of the babel/traverse library. As
previously explained in Section 2.5 on page 11, the traversal library traverses the tree in
depth-first order, executing visitor code whenever a matching node is encountered. In to-
tal, the entire program AST is traversed three times. Twice during the preliminary setup
and once to add the trace generation modifications. Eventually, the modified AST object
is finally used to generate JavaScript code again using the babel/generate library.

The new plugin consists of 2120 lines of code in JavaScript and 46 snippets (usually
only consisting of a handful of lines) for testing.

4.1 Preliminary Transformations

The raw original source code given to the plugin is not necessarily suited for all transfor-
mations required to trace the necessary information. Thus, certain “setup” modifications
are needed to enable tracing. Oftentimes, tracing requires new statements to be injected
before or after expressions. Since statements cannot be added into expressions, certain
syntactic structures must therefore be modified to ensure tracing is feasible.
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In the following, each section details the modifications necessary, to enable tracing of
a certain statement or expression and why the transformation is required.

Member Expression (Optional) Chains

As detailed in Section 2.7 on page 13, property accessors in JavaScript can be chained
into member expression chains. Since trace information is injected around each prop-
erty access, these chains must be split during preparation. Listing 4.1 shows a “regular”
chain of property accessors and Listing 4.2 shows, how the same chain is split during the
preparation stage.

Listing 4.1: Regular chain of member expressions in JavaScript.

const obj = {
innerObj1: {

innerObj2: {
x: 1

}}};
obj.innerObj1.innerObj2.x;

Listing 4.2: Split chain of member expressions of Listing 4.1 after preparation.

1 {
2 let $$tmp0 = obj;
3 let $$tmp1 = $$tmp0.innerObj1;
4 let $$tmp2 = $$tmp1.innerObj2;
5 let $$tmp3 = $$tmp2.x;
6 $$chain = $$tmp3;
7 }
8 $$chain;

In a first step, each object is assigned its own temporary variable. Then, the result
of the last property access is assigned to the chain variable which replaces the member
expression chain. The temporary variables used to split the chain are scoped to a new
block to avoid conflicts with any preexisting variable names.

Call Expressions

Just like member expressions, calls can also be chained as long as the preceding call re-
turned a function object. Similarly to member expression chains, call chains must also be
split, since each call is traced individually. Again, a new block is inserted immediately
prior to the call, which prepares the arguments of the call. This is required, since each
argument may necessitate individual tracing, which isn’t possible if it is already in a call
expression. Anonymous functions such as the one returned in the example in Listing 4.3
on page 22 are called directly since the this value is undefined.
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Due to the problem that call arguments could require individual tracing, every call
is prepared in such a way that all argument values are first individually pushed into a
temporary argument queue, and then removed for the call according to the first-in-first-
out principle. If the function object is the result of a property access, then the call is
executed via the call method of the function object (see line 17 and line 22 in Listing 4.4
on the next page ). This allows the explicit assignment of the this keyword to match the
original object used to call the function.

Switch Statements

Switch-case statements are transformed into equivalent if chains to ensure that branches
can be properly traced. An example of such a transformation is illustrated in Listing 4.6
on page 23, which is a transformation of the switch statement in Listing 4.5 on page 23.
Each case creates a new if statement with the same condition as the case. Empty cases, i.e.
when multiple cases share a consequent block, are merged into one condition by using
boolean ORs. The default case is mapped to an if statement whose condition is true, if
all other conditions are false. A peculiarity of switch statements, is that once a case has
been matched, all following cases regardless of the condition are executed until a break
statement is encountered. Hence, a “fall through” variable is added as an override to all
conditions to mimic this behavior. Finally, to emulate the break statement behavior, the
if statement chain is placed in a labeled block, which can be broken out of with a break
statement.

For Statements

All types of for statements undergo changes, since the loop variable must be traced sepa-
rately. Specifically, the initialization of the variable must be traced once at the start of the
loop and the update of the variablemust be traced at the beginning of every loop iteration.
To enable tracing, the initialization is moved immediately prior to the for statement.

Regular for statements consist of three components: initialization, condition and af-
terthought. Each of these three components is an expression [7]. Thus, regular for state-
ments are transformed into equivalent while loops with the initialization prepended and
the afterthought added to the loop body as the last statement and before any continue
statements.

Since constvariable declarationsmust be initialized upon declaration, these are changed
to let declarations, which allow the initialization after declaration. Only for...of and
for...in statements that declare a new variable, either explicitly or implicitly, have their
initialization moved outside the loop as detailed above.

Listing 4.7 on page 24 and Listing 4.8 on page 24 show the transformation of for (lines
1-7 in 4.8), for...of and for...in (lines 8-13 in 4.8) statements. Since the transformation
of for...of statements is identical to that of for...in statements, only for...of is shown for
brevity.
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Listing 4.3: Regular chains of call expressions in JavaScript.

const f = (x) => {
console.log(x);
return (y) => {

console.log(y);
return;

}};
const o = {

a: f
};
o.a(1)(2);

const arr = [["inner"]]
arr.pop().pop();

Listing 4.4: Split chains of call expressions of Listing 4.3 after preparation showcasing
both anonymous calls and calls resulting from a property access.

1 //o.a(1)(2)
2 {
3 {
4 $$args.push(1);
5 }
6 $$call = o.a($$this, $$args.shift());
7 {
8 $$args.push(2);
9 }
10 $$call = $$call($$args.shift());
11 }
12 $$call;
13
14 // arr.pop().pop()
15 {
16 let $$tmp0 = o;
17 let $$tmp1 = $$tmp0.pop;
18 let $$tmp2 = $$tmp1.call($$tmp0);
19 let $$tmp3 = $$tmp2.pop;
20 $$chain = $$tmp3;
21 $$this = $$tmp2;
22 }
23 $$chain.call($$this);
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Listing 4.5: switch statement with a break statement, fall through and a default case.

1 switch(n) {
2 case 0:
3 console.log(n);
4 break;
5 case 1:
6 case 2:
7 console.log(`combined ${n}`);
8 default:
9 console.log(`default ${n}`);
10 }

Listing 4.6: Resulting if statement chain from transforming the switch statement in List-
ing 4.5. Only the transformation from switch to if is shown for simplicity.

1 $$switchlabel0: {
2 $$switchfallthrough = false;
3 // case 0:
4 if (n === 0 || $$switchfallthrough) {
5 $$switchfallthrough = true;
6 console.log(n);
7 break $$switchlabel0;
8 }
9 // case 1:
10 // case 2:
11 if (n === 1 || n === 2 || $$switchfallthrough) {
12 $$switchfallthrough = true;
13 console.log(`combined ${n}`);
14 }
15 // default:
16 if (!(n === 0 || n === 1 || n === 2) || $$switchfallthrough) {
17 console.log(`default ${n}`);
18 }
19 }
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Listing 4.7: Example for and for...of statements in JavaScript.

1 for (let i=0; i< 10; i++) {
2 console.log(i);
3 }
4 for (let e of [1,2,3]) {
5 e;
6 }

Listing 4.8: Resulting while and for statements from transforming statements in List-
ing 4.7. Only the for modifications are shown for brevity.

1 {
2 let i = 0;
3 while (i < 10) {
4 console.log(i);
5 i++;
6 }
7 }
8 {
9 let e;
10 for (e of [1, 2, 3]) {
11 e;
12 }
13 }
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Do While Statements

As we will later see when discussing the transformations performed for trace genera-
tion, branch tracing of conditional statements is injected as the first statement of the body
of each conditional branch. Since do...while statements execute once prior to evaluation
of the test, this would result in an erroneous branch emission. The first iteration of the
do...while body is always executed. To solve this problem, do...while statements are trans-
formed into while statements, with the loop body prepended once. Thus, the body is
executed once without evaluation of the test and a branch trace message is only output,
when the condition is evaluated and a branch takes place. Listing 4.9 shows a simple
do...while loop, while Listing 4.10 shows the corresponding transformation into a while
loop with prepended body.

Listing 4.9: Simple do...while statement in JavaScript.

let x = 0;
do {

x++;
} while (x < 1)

Listing 4.10: Resulting while statement from transforming the do...while statement in
Listing 4.9. Only the transformation to a while loop is shown for brevity.

let x = 0;
{

x++;
while (x < 1) {

x++;
}

}

Ternary Expressions

The ternary operator in JavaScript is essentially a condensed if statement. It takes a condi-
tion and returns one of two values, depending onwhether the condition evaluates to true
or false. These ternary or conditional expressions are also a form of conditional branch-
ing. Thus, to enable tracing, such expressions are transformed into if statements.

It is necessary to transform ternary expressions into if statements, since the injected
tracing code can consist of multiple statements and statements can’t be children of expres-
sions. An example of this transformation is shown in Listing 4.12 on the following page.
Again, if a ternary expression is used to declare a const variable, it is changed into a let
variable, since const variable declarations require initialization upon declaration.
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Listing 4.11: Simple ternary expression used in an assignment in JavaScript.

const x = true ? 0 : 1;

Listing 4.12: Resulting if statement from transforming the ternary expression in List-
ing 4.11. Only the transformation to an if statement is shown for brevity.

let x;
if (true) {
x = 0;

} else {
x = 1;

}

Computed Properties

When accessing properties of objects using bracket notation, as explained in Section 2.7 on
page 13, any expressionmay be used to specify a named property. To enable tracing of the
access expression components without side effects from repeated evaluation, the expres-
sion is unpacked into its own statement and assigned to a variable prior to the property
access. The expression used for the access is then replaced by the variable. Listing 4.14
shows an example of the transformation. The variable x in the Listing is incremented
postfix as a side effect to the array access. If the access expression x++ were evaluated
twice, i.e. once for tracing and once for the access, x would have an incorrect value.

Listing4.13: Example of a computedproperty access. The variable x is evaluated to access
element 0 of the array.

const array = [1, 2, 3], x = 0;

let y = array[x++];

Listing 4.14: Computed property access from Listing 4.13 after setup instrumentation.

const array = [1, 2, 3], x = 0;

$$computed.push(x++);
let y = array[$$computed.pop()];

Ensuring Block Bodies

In JavaScript, a block refers to multiple statements enclosed by braces. Certain statements
and declarations allow but don’t necessarily require braces to enclose their body. For ex-
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ample, if and for statements as well as function declarations don’t require their body to
be enclosed by braces, when the body only consists of a single statement.

Listing 4.15: Example if statements in JavaScript with only one statement in its body,
meaning the braces are not syntactically required. Both if statements are semantically
equivalent.

// no block body
if (true)

x = 1;

// block body
if (true) {

x = 1;
}

Since instrumentation for trace generation can possibly add to the body, it is ensured
during setup that all of these statements and expressions have a block body. Listing 4.15
shows an example if statement with and without a block body.

Summary

The setup stage consists of two distinct tree traversals, since the splitting of member ex-
pression chainsmust be completed prior to furthermodifications ofmember expressions,
such as call expression chain splitting and computed property unwrapping. Following
the setup, the source code is now ready to be instrumented for trace generation.

4.2 Instrumentation for Trace Generation

To classify and quantify potential microarchitectural side-channel leakage, three areas
are of particular importance: memory allocations, memory accesses and branches. Since
JavaScript abstracts memory management, memory allocations can’t be analyzed when
only the JavaScript source code is given. This leaves memory accesses and branches. For
trace generation, the original source code is modified in such a way that any action per-
taining to either memory accesses or branches results in a trace message being output.

First, as a mandatory preface, the common boilerplate code is injected at the start.
This boilerplate code declares various variables that are used for tracing, such as the
$$chain variable seen in Listing 4.2 on page 20. Additionally, a function for handling
unique IDs of objects and the object in charge of handling the formatting of the logging
is declared. Unique IDs for each object are needed to understand which object is being
accessed and whether this exact object has been accessed before. This is done by defining
an “uid” property on each object the first time the getUid function is called for an object
and otherwise returning the value of its “uid” property. The key of the property is set
using Symbol.for('uid') to alleviate the risk of a conflicting property existing already.
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After the common code, tracing code is selectively addedwith specific visitors for the
node types that are relevant for either memory accesses or branches.

Memory Accesses

Whenever an object is read or written, a memory access is required. For microarchitec-
tural side-channel leakage, only objects but not primitives are considered threats, since
primitives (i.e. numeric literals, boolean literals, etc.) are guaranteed to be constant-time.
Table 4.16 shows an overview of all nodes that are targeted by the visitor responsible for
logging read operations and a description of the condition required for the read, while
Table 4.17 on the next page shows of an overview for write operations.

Table 4.16: AST nodes targeted for logging memory reads.

Node
Condition for Read

AssignmentExpression,
AssignmentPattern

Assignments that first perform an arithmetic (*=, /=, %=, +=, -=,
**=), bitwise (<<=, >>=, >>>=, &=, |=, ^=) or logical operation
(&&=, ||=, ??=) and then assign the result, perform a read on the
pattern on the left-hand side. The simple assignment operator
(=) does not trigger a read operation of the left-hand side.

VariableDeclarator, (As-
signment)

Destructuring assignment reads the values of the object on the
right-hand side.

MemberExpression, Op-
tionalMemberExpression

When a property of an object is accessed the object is read.

CallExpression, Optional-
CallExpression

When a function is called the function object is read.

ThisExpression When the this keyword is used the value of this is read.

Identifier Potentially any occurrence of an identifier results in a read of the
referenced object. Identifiers in call and catch clause parameters,
identifiers used for declarations and identifiers used for labels do
not result in read operations.

Note that not all nodes that can be linked to read or write operations are explicitly
targeted, since multiple nodes cover the same read or write, yet logging is only required
once. Additionally, due to general transformations described in Section 4.1 on page 19,
not all nodes (e.g. for statements) exist after the preliminary setup.

Memory accesses are traced with a combination of the ID of the object that is being
accessed alongwith its potential offset and the location of the access in the original source.
With this information, it is possible to determine exactlywhich objects are accessedwhen.

To trace read operations, logging code is injected immediately prior to the statement
that results in a reading memory access. Write operations are logged directly after the
triggering statement, since for example in the case of a variable declaration, the object
can’t be accessed prior to declaration.
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Table 4.17: AST nodes targeted for logging memory writes.

Node
Condition for Read

AssignmentExpression,
AssignmentPattern

Assignments write to the object on the left-hand side.

VariableDeclarator When a variable is declared with an initial value, a write opera-
tion is triggered.

UpdateExpression Post- and prefix increment and decrement operators write to the
referenced object.

ForOfStatement, ForIn-
Statement

Each loop iteration of the for...of/for...in results in a write opera-
tion for the loop variable.

Branches

The second major area of interest — branches — is more complex than memory accesses.
Generally, to track the control flow, the source and destination of each jump is required.
For conditional branches, this means that each block body following a test is expanded
by a trace statement that outputs the location information for the corresponding jump.
This instrumentation is illustrated in Listing 4.18.

Listing 4.18: Example if statement in JavaScript with a consequence and alternate block.
Tracing code is added at the commented lines.

if (b) {
// trace consequence branch
x = 1;

} else {
// trace alternate branch
x = 0;

}

Since each call is essentially also a branch in the execution path, these must be traced
as well. Consequently, function definitions, i.e. function declarations and function ex-
pressions, are instrumented in such a way that the first statement in the function body
outputs the location of the function for tracing. This location is the destination of the
branch that a corresponding call results in. Additionally, since the return statement is
also a jump, each function body is guaranteed to end with a return statement to allow
tracing.

Finally, the calls themselves are traced by adding code immediately prior to the call,
to log the jump to the function, and immediately after, to log the jump back to the context.
Listing 4.20 on the following page shows, how a simple function definition and a call are
instrumented. Generators are a somewhat special case, since each yield expression serves
not only as the return to the previous context when the generator is stopped but also as
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Listing 4.19: Example function definition and call in JavaScript. The function is defined
using function expression syntax.

const f = function (x) {
x++;

}

f(1);

Listing 4.20: Example function definition and call fromListing 4.19 after instrumentation.
Tracing code is injected into the commented lines.

const f = function (x) {
// trace function location
x++;
// trace return
return; // new (empty) return statement

}

// trace call
f(1);
// trace implicit return from call

the starting point of a new context when the generator is resumed. Therefore, tracing
code is injected before a yield expression for the return and after the yield, to log the
location of the resumption, akin to the first statement in an instrumented function body.

The last type of branch happens when a continue or break statement is encountered.
In JavaScript switch cases, loops and labeled blocks may be broken out of using the break
statement. When such a statement is encountered, execution either continues directly af-
ter the innermost loop or after the specified labeled block. Similarly, a continue statement
may be used to jump to the next iteration of a loop.

In summary, both statements result in branches in the control flow. To trace these
branches, logging code is injected immediately prior to the continue or break statement.
The destination of the jump is found in one of two ways: when a label is given, the parent
nodes of the statement are searched, until the matching label is found; otherwise, the
parent nodes are searched for the nearest loop.

The node types that are targeted for branch tracing are detailed in Table 4.21 on the
next page.

Summary

Taken together, the primary instrumentation transforms the JavaScript source code in
such away that information regarding the control flow and allmemory accesses of objects
are logged during execution. The modifications to the code are kept to a minimum to
reduce overhead resulting from the instrumentation.
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Table 4.21: AST nodes targeted for logging branches.

Node Explanation

IfStatement, WhileState-
ment, ForInStatement,
ForOfStatement, ForState-
ment

After the test of the statement is evaluated, a (loop) block is either
branched into or not.

ContinueStatement,
BreakStatement

When a break or continue statement is encountered, execution
jumps out of the current block.

FunctionDeclaration,
FunctionExpression, Ar-
rowFunctionExpression,
ObjectMethod, Class-
Method

Function definitions are instrumented to emit location informa-
tion and guarantee a return statement.

CallExpression Every call is a guaranteed branch to the function definition.

ReturnStatement, Yield-
Expression

Both return statements and yield expressions result in a jump
back to the previous context.

After instrumentation, each action that is relevant for potential microarchitectural
side-channel leakage — i.e. memory accesses and branches — now generates a trace
message. The exact format of these messages will be explained in the next section.

4.3 Trace Format

A trace encompasses all trace messages generated by an execution. This trace should be
complete, as in all information that is required to assess whether the code has potential
microarchitectural side-channel leakage should be contained, and it should be concise, to
ensure that the resulting trace files are small.

Each trace message has two main components: a shorthand — usually a letter —
denoting the action, which is being traced, and supplemental information specific to that
action. Table 4.22 on the following page shows an overview of all shorthands used by the
plugin and their descriptions.

Generally, most trace lines contain at least one location string, which always has the
same format as visualized in Figure 4.23 on the next page.

Thus, the location string (1,1,0,6;main.js) would describe the location of the variable
declaration let x in Listing 4.24 on the following page, whereas (3,5,0,1;main.js) would
describe the entire function definition of foo(y).

Store and Load Messages

The most varied trace lines are those of memory stores and loads. While the difference
between a store and load is only denoted by a differing letter at the start of the line, the
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Table 4.22: Letters used to denote words in the trace format
Shorthand Action Description

l load memory read
s store memory write
c call function call
r return (1) return from inside a called function
R return (2) implicit return immediately following a call
yR yield (resume) resumption of a generator
j jump jump (e.g. to or from a label)
f function location location information of the function being executed

starting line ; ending line ; starting column ; ending column ; filename

one-indexed zero-indexed

Figure 4.23: Visualization of the format location strings have. Lines are one-indexed and
columns are zero-indexed.

Listing 4.24: Minimal example for a location description.

1 let x;
2
3 function foo(y) {
4 return y;
5 }
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information regardingwhich object was accessed can take on three different appearances.
This is due to the fact that an object may be accessed directly or a property of the object can
be accessed. As described in 2.7 on page 13, JavaScript allows property access by means
of two notations: dot notation and bracket notation.

Property accesses are distinguished by a ”+” following the unique ID of the accessed
object. If dot notation is being described, then the corresponding identifier of the property
is appended to the object ID with a plus sign (see line 3 of Listing 4.25). Should the
property be accessed using bracket notation, then the computed value in brackets is again,
appended with a plus sign (see line 4 of Listing 4.25).

Since bracket notation allows property access by evaluating the expression enclosed
in brackets, the computed value representing the property’s name is of interest, instead
of the expression prior to evaluation. For example, when accessing an array — which
is simply a special type of object — one could use array[0], array[0∗5] or array[0−0] to
access the same element, since 0, 0∗5 and 0−0 all evaluate to 0. Evidently, the computed
value is easily comparable, unlike the different expressions prior to evaluation.

Listing 4.25: Example trace messages for various memory stores and loads.

1 s;5;53,53,6,11;index.js // store uid 5
2 l;5;56,56,7,12;index.js // load uid 5
3 l;1+log;26,26,0,6;index.js // load property 'log' of uid 1
4 l;5+[1];59,59,21,29;index.js // load property '1' of uid 5

Following the unique ID, is the location string of the access in the original source
code. In summary, a memory access message has the format as illustrated in Figure 4.26.

letter ; uid of accessed object ; location

s or l

+ property if applicable

Figure 4.26: Visualization of the format each memory access trace message has.

Call Messages

As detailed in Section 4.2 on page 29, calls result in jumps. To properly trace the con-
trol flow and allow a reconstruction of the call tree, multiple types of trace messages are
generated during execution. The main message type is for calls. These messages out-
put location information regarding the call and its name as defined by the function name
property. Specifically, the source location of the call in the original source and the desti-
nation location — if possible — are output. Since functions can be imported or defined
within objects or classes, it is not always feasible to determine the location of the function
that is being called. In this case, the function name, as inferred by the name property, is
output.
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The next type of message exists to supply location information, when the function
being called is defined within the same file, yet perhaps as a nested structure, so no des-
tination location could be supplied by the call trace message. Function location messages
start with an f for function and log the location of the function definition that is being
executed.

Finally, returning from a function generates up to twomessages: when a return state-
ment is executed and the implicit return directly after execution returns to the context of
the caller. The explicit return message is denoted by a lowercase r for return and outputs
the location of the return statement in the original source. Yield expressions also result
in explicit return messages when yielding from a generator. The implicit return directly
after the call is marked by an uppercase R also for return and outputs the location of the
call expression that was returned from directly prior. When a generator is resumed by
a generator.next() call, a yield resumption message is logged, which starts with a yR
for yield resumption and outputs the location of the yield expression immediately prior to
mark the destination of the jump from one context to another.

The four different types of trace messages for calls and corresponding information
are visualized in Figure 4.27.

c ; location of call in source ; location of destination ; function name

as inferred by the name
property at runtime

Call Messages

f ; location of function definition in source

Function Location Messages

letter ; location of return statement or preceding call

r or R

Return Messages

yR ; location of preceding yield expression

Yield Resumption Messages

Figure 4.27: Visualization of the format of different call trace messages.

Conditional Branch and Jump Messages

The final two types of messages are structured very similarly. They describe the source
and destination locations of a branch. Conditional branches, such as the ones result-
ing from an if statement, start with a b for branch and log the location of the test, which
resulted in the branch (source) and the location of the block that is executed as a result
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(destination). Jumps following abreak or continue statement cause a jump tracemessage,
which begins with a j for jump and logs the location of the break or continue statement
in the original source and the location of the next statement after the block being broken
out of (in case of a break) or the location of the loop or labeled statement (in case of a
continue) that will be executed. Both trace message formats are visualized in Figure 4.28.

b ; location of test in source ; location of branch body block

source destination

Conditional Branch Messages

j ; location of jump statement in source ; location of next statement

source destination

Jump Messages

Figure 4.28: Visualization of the format of conditional branch and jump trace messages.

4.4 Implementation Challenges

As is to be expected of any implementation, certain challenges were encountered while
creating the newMicroWalk plugin. Some minor issues and their solutions were already
previously described, such as transforming const into let under certain circumstances.
Yet, other problems have not been detailed thus far.

First, the preliminary modifications required to allow trace generation posed partic-
ular challenges during the implementation of the plugin. Splitting member expression
chains was one such challenge. Since it is vital to know, which parent object the property
that is being accessed belongs to, it was necessary, to split chains where the object part of
the member expression was another member expression. When the split variables were
then used in calls, it became apparent that the this value was incorrect. Thus, the call
method of the function object is used to explicitly pass the correct this value. The test
snippets starting with member-expression all showcase howmember expression chains
are split whereas the test snippets this.js and yield.js show the correct this value
being used.

Secondly, when splitting chains and generally injecting new nodes into the AST there
is always the danger of creating infinite cycles during traversal. The methods supplied
by babel/traverse to manipulate paths, i.e. inserting or replacing nodes, add each new
node to the traversal queue. Thus, if a visitor inserts a new node that then again matches
against a visitor that adds a new node, the traversal queue will clearly grow indefinitely.
To avoid this behavior, while still being able to use the babel/traverse methods, whenever
new nodes should not be queued for traversal, these nodes are simply removed from the
queue after the corresponding path manipulation.

The final major challenge during the implementation was destructuring assignment.
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As explained in Section 2.7 on page 13, destructuring assignment unwraps objects during
assignment. This means that for an assignment or variable declaration, the properties ref-
erenced on the left-hand side are in relation to the object(s) on the right-hand side. For
destructuring assignment without nesting, the properties are correctly resolved against
the object on the right-hand side. A limitation of the new plugin is that it only considers
the outermost level of a destructuring assignment. In other words, the properties are not
completely resolved when a nested object is unwrapped with destructuring assignment.
Consequently, the trace is incomplete, since nested properties are not correctly resolved.

Next Steps

The plugin for trace generation is complete, yet as previously shown in Figure 2.3 on
page 7, a preprocessor is required to prepare traces for analysis by MicroWalk. The pre-
vious preprocessor used by the plugin relying on Jalangi2 is not compatible with the
traces generated by the new plugin. This is due to the fact, that the static instrumenta-
tion of the AST provides more — especially more specific — information than Jalangi2’s
dynamic instrumentation. Thus, the existing preprocessor must be adapted accordingly.
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5
Conclusion and Outlook

5.1 Summary

In this thesis we analyzed the current state of Jalangi2 as the basis for the existing Mi-
croWalk JavaScript plugin and provide a new approach for developing MicroWalk plug-
ins for trace generation using AST manipulation. This new approach is used for a novel
MicroWalk JavaScript plugin based on Babel.

Since Jalangi2 is built using libraries that are no longer in active development, the de-
cision was made to implement a new plugin for JavaScript trace generation with a focus
on static instrumentation using AST manipulation. Focussing on static JavaScript instru-
mentation with ASTs meant assessing which nodes are relevant for microarchitectural
side-channel leakage analysis. More specifically, nodes which are elements of actions
that are susceptible to microarchitectural side-channel leakage; namely memory accesses
and branches. This analysis and the exact details of how these actions are traced by the
new plugin were explained at length in Chapter 4 on page 19.

During the implementation, more and more syntactic structures that required modi-
fications to enable tracingwere identified. This led to certain preliminary transformations
of the source code becoming necessary. The trace generation itself, in summary, ensures
that each statement or expression resulting in either a memory access or a branch gener-
ates a trace message with information required for further analysis by MicroWalk.

5.2 Outlook

In correspondence with the MicroWalk pipeline, the next step towards using the plugin
with MicroWalk, is writing a preprocessor which transforms the generated traces into
a format that MicroWalk understands. As mentioned at the end of Chapter 4, this pre-
processor is left for future work. Once a preprocessor has been implemented, it will be
possible to analyze modern cryptographic JavaScript libraries which use language fea-
tures of ES6 and upwards.

Furthermore, the technique described in Chapter 4 on page 19 can be used to create
further trace generation plugins for other languages, such as Python.
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A
Appendix

A.1 Babel AST Node Types

As defined by the Babel AST specification document and babel/types. See also the speci-
fication document1 and the API of babel/types2.

General

– Identifier
– PrivateName
– Programs

Literals

– RegExpLiteral
– NullLiteral
– StringLiteral
– BooleanLiteral
– NumericLiteral
– BigIntLiteral
– DecimalLiteral

Functions

Covers function declarations and (arrow) function expressions. See https://babeljs.io/
docs/babel-types#function for further details.

Statements

– ExpressionStatement
– BlockStatement

1https://github.com/babel/babel/blob/main/packages/babel-parser/ast/spec.md
2https://babeljs.io/docs/babel-types#api
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– EmptyStatement
– DebuggerStatement
– WithStatement
– Control flow

– ReturnStatement
– LabeledStatement
– BreakStatement
– ContinueStatement

– Choice

– IfStatement
– SwitchStatement
– SwitchCase

– Exceptions

– ThrowStatement
– TryStatement
– CatchClause

– Loops

– WhileStatement
– DoWhileStatement
– ForStatement
– ForInStatement
– ForOfStatement

Declarations

– FunctionDeclaration
– VariableDeclaration

– VariableDeclarator

Misc

– Decorator
– Directive
– DirectiveLiteral
– InterpreterDirective

Expressions

– Super
– Import
– ThisExpression
– ArrowFunctionExpression
– YieldExpression
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– AwaitExpression
– ArrayExpression
– ObjectExpression

– ObjectMember
– ObjectProperty
– ObjectMethod

– RecordExpression
– TupleExpression
– FunctionExpression
– Unary operations

– UnaryExpression
– UnaryOperator
– UpdateExpression
– UpdateOperator

– Binary operations

– BinaryExpression
– BinaryOperator
– AssignmentExpression
– AssignmentOperator
– LogicalExpression
– LogicalOperator
– SpreadElement
– ArgumentPlaceholder
– MemberExpression
– OptionalMemberExpression

– BindExpression
– ConditionalExpression
– CallExpression
– OptionalCallExpression
– NewExpression
– SequenceExpression
– ParenthesizedExpression
– DoExpression
– ModuleExpression

Template Literals

– TemplateLiteral
– TaggedTemplateExpression
– TemplateElement

Patterns

– ObjectPattern
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– ArrayPattern
– RestElement
– AssignmentPattern

Classes

– ClassBody
– ClassMethod
– ClassPrivateMethod
– ClassProperty
– ClassPrivateProperty
– StaticBlock
– ClassDeclaration
– ClassExpression
– MetaProperty

Modules

– ModuleSpecifier
– Imports

– ImportDeclaration
– ImportSpecifier
– ImportDefaultSpecifier
– ImportNamespaceSpecifier
– ImportAttribute

– Exports

– ExportDeclaration
– ExportNamedDeclaration
– ExportSpecifier
– ExportNamespaceSpecifier
– ExportDefaultDeclaration
– ExportAllDeclaration
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