
Algorithm Substitution Attacks on Matrix

Algorithm Substitution Attacks auf Matrix

Bachelorarbeit

im Rahmen des Studiengangs
IT-Sicherheit
der Universität zu Lübeck

vorgelegt von
Chris-Benedikt Venn

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

mit Unterstützung von
Thore Tiemann, M. Sc.
Dr. Sebastian Berndt

Lübeck, den 12. September 2021

Abstract

The subversion of cryptographic applications, known as Algorithm Substitution Attacks,
are a dangerous threat. The study has begun with symmetric encryption schemes, later ad-
vanced to asymmetric encryption schemes as well as signature schemes. With [BWP+20]
Berndt, Wichelmann, Pott, Traving and Eisenbarth extended the study to protocols like
TLS, WireGuard and Signal. Government agencies already showed high interest in the
customizable and self hostable Matrix network and thus the study for Matrix on this topic
is inevitable. We analyzed Megolm, the main communication protocol, on possible Al-
gorithm Substitution Attacks. We used our own local development environment of Ele-
ment Web (Matrix own client) to conduct the study and build two different subversions.
Because Matrix does not sufficiently bind identities to identity keys, we managed to im-
personate another user in a room without changing the cryptographic primitives at all.
Additionally, we advanced the impersonation to any room the victim was participating
in. Furthermore, we also eavesdropped on a conversation happening in another room
by leaking the necessary keys. We concluded that Matrix does a way better job than Sig-
nal in preventing undetectable and universal compromise of message confidentiality. In
contrast to Signal, it was not possible to register a malicious device without the victims’
knowledge and read future messages indefinitely.

iii

Zusammenfassung

Die Relevanz und Wichtigkeit von Algorithm Subsitution Attacks wurde schon in ak-
tuellen Forschungsergebnissen gezeigt. Es gibt ein wachsendes Interesse von Regierun-
gen, die gerne verschlüsselten Nachrichtenverkehr überwachen wollen. Eine einfache
und sehr wirksame Möglichkeit besteht darin eine Backdoor in das Verschlüsselungssys-
tem einzubauen, da man so unproblematisch und im großen Stil verschlüsselten Daten-
verkehr mitlesen kann. Die Anfänge zu dem Thema wurden bei symmetrischen Ver-
schlüsselungsverfahren gemacht. Später wurde dies auch auf asymmetrische Verschlüs-
selungsverfahren und Signaturverfahren ausgeweitet. Mit [BWP+20] haben Berndt,
Wichelmann, Pott, Traving und Eisenbarth gezeigt, dass man das Thema auch auf ganze
Protokolle wie z.B. TLS, WireGuard und Signal erweitern kann. Regierungen haben
außerdem großes Interesse an dem sehr anpassbaren und selbst hostbaren Matrix Netzw-
erk gezeigt. Die Vorteile sind ganz klar. Es müssen keine teuren Lizenzen erworben wer-
den und man muss nicht die eigenen Daten auf den Servern der Lizenzanbieter hosten.
Genau deswegen ist die Analyse sehr wichtig, da man nicht möchte, dass Nachricht-
enverkehr von Regierungen in die Hände anderer, potenziell böswilliger Regierungen
gelangen. Für die Analyse haben wir uns hauptsächlich auf Megolm beschränkt, da das
das Hauptkommunikationsprotokoll von Matrix darstellt. Für die praktische Umsetzung
haben wir uns als Client auf Element Web beschränkt. Weil Matrix nicht wirklich die
Identitäten mit den Identitätsschlüsseln verbindet, war es uns möglich eine andere Per-
son in einem beliebigen Raum, in dem sie Mitglied ist, zu imitieren ohne etwas an den
kryptografischen Werten zu verändern. Außerdem haben wir mit unserer Subversion
die Keys für eine Kommunikation in einem anderen Raum geleakt mit denen wir dann
alle Nachrichten entschlüsseln konnten. Am Ende sind wir zu dem Ergebnis gekommen,
dass Matrix ein wesentlich besseren Job darin macht, zu verhindern, dass ein Angreifer
uneingeschränkt und unauffällig jeglichen Nachrichtenverkehr vom Opfer mitlesen kann.
Im Vergleich zu Signal war es uns nicht möglich ein böses Angreifer-Device im Namen
des Opfers zu registrieren um so uneingeschränkt Nachrichten mitlesen zu können.

v

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, 12. September 2021

vii

Acknowledgements

A huge thanks goes to Thore and Sebastian for their great help and continuous support
during our weekly meetings. And thank you, Professor Eisenbarth for the supervision
and the thrilling topic.

ix

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Our Contributions . 2

2 Preliminaries 3
2.1 What are Algorithm Substitution Attacks? . 3
2.2 Attacker Model . 3
2.3 Levels of Undetectability . 4
2.4 Notation . 6

2.4.1 Concatenation and String Splitting . 6
2.4.2 Exponents . 6
2.4.3 Types of Ciphertexts . 6

2.5 Ed25519 Signature Algorithm . 7
2.5.1 Key Generation . 7
2.5.2 Signing . 8
2.5.3 Verification . 9

2.6 Ratchet Definition . 9

3 High Level Description of Matrix 11
3.1 Architecture . 11
3.2 Keys . 12
3.3 How the communication works . 13

4 Protocols Used in Matrix 15
4.1 Olm . 15
4.2 Megolm . 15

4.2.1 Session setup . 15
4.2.2 Advancing the ratchet . 16
4.2.3 Sharing session data . 17
4.2.4 Message encryption . 18
4.2.5 Message format . 18
4.2.6 Limitations . 18

xi

Contents

5 Subverting Matrix 21
5.1 The development environment . 21
5.2 Background . 21
5.3 Megolm Ratchet Subversion . 22
5.4 Megolm Signature Subversion . 24

6 Attacking Matrix 31
6.1 Impersonation with signature keys . 31
6.2 Impersonation with the access token . 33
6.3 Eavesdropping on conversations in other rooms 39

7 Conclusion 43
7.1 Summary . 43
7.2 Discussion . 43
7.3 Countermeasures . 44
7.4 Future Work . 45

References 47

xii

1 Introduction

The Snowden revelations revealed that intelligence agencies are heavily invested in eaves-
dropping on its citizens and even foreigners [BBGea13, Gre14, PLS13]. Since most encryp-
tion protocols today are engineered in such a way that no third party can read what is
sent, a workaround is needed. Circumventing cryptosystems all together seems like an
easier and more reliable alternative than installing spyware on each device individually.
It requires way less time and a well engineered backdoor guarantees permanent access. A
backdoor in a cryptosystem can be thought of another person hiding a key to your house
in your garden without your knowledge. They have access to your house at any time and
can fully break your privacy without your consent. For a real backdoor in a cryptosys-
tem, you probably do not have to be away from home though in order to offer unnoticed
access. And there is still a risk involved that you or other people will find the key which
opens up the backdoor to everyone with the possession of the key. A backdoor can be
a reliable way to break privacy, but it always weakens the robustness of a cryptosystem.
Matrix, in particular, is very appealing because it is open source, decentralized and com-
pletely self-hostable. Government agencies already showed great interest in such a highly
customizable ecosystem [fre18, bun20]. Apart from that, users with a major desire for pri-
vacy are usually the audience for an open-source and decentralized system. Since traffic
of government agencies as well as privacy-oriented users should be handled with extra
care, the need for analysis on this topic is inevitable.

1.1 Related Work

Originally the topic of putting backdoors in cryptosystems was researched by Young and
Yung under the name kleptography [YY96, YY97]. Bellare, Paterson and Rogaway contin-
ued the study and introduced the term Algorithm Substitution Attacks [BPR14]. In contin-
uation to [BPR14], Bellare, Jaeger and Kane strengthened the result [BJK15]. They made
the proposed attacks stateless, resulting in a stronger undetectability. The idea of Bel-
lare, Paterson and Rogaway was also extended to signature schemes by Ateniese, Magri,
and Venturi [AMV15]. Berndt and Liśkiewicz interpreted Algorithm Substitution Attacks
as steganographic systems, which gave them the possibility to give upper bounds for the
number of embeddable bits in one message [BL17]. The study was also advanced to asym-
metric encryption schemes by [CHY20]. Last year, Berndt, Wichelmann, Pott, Traving

1

1 Introduction

and Eisenbarth pushed things further and applied the topic to entire protocols including
TLS, WireGuard and Signal [BWP+20]. Just recently, Tiemann, Berndt, Eisenbarth and
Liśkiewicz introduced a way to communicate via a steganographic channel in the ECDSA
algorithm of Bitcoin [TBEL21]. Matrix was previously audited by the NCC Group [BM16].
They analyzed the security of Olm and Megolm and highlighted the weak forward and
backward secrecy. Matrix later offered a fix against the weak backward secrecy by period-
ically resetting the symmetric key used for message encryption. There is also a bachelor
thesis by Hendriks which analyzed the key management in Matrix [Hen20].

1.2 Our Contributions

We continue the study from Berndt, Wichelmann, Pott, Traving and Eisenbarth in
[BWP+20] by analyzing Matrix. A general overview of Matrix and its protocols is given in
the beginning. We subverted Matrix in two different ways by using the IV-replacement at-
tacks from [BPR14]. First, we replaced the randomly initialized room key (later referred to
as ratchet value) with a ciphertext reaching a low bandwidth with a high undetectability.
And secondly, using the first subversion, we build another one by replacing a determin-
istic value inside the EdDSA signing algorithm of Megolm resulting in a much higher
bandwidth but a lower undetectability. In order to measure the undetectability level,
we used the work from [RTYZ16] and introduced different watchdogs. Our subversions
enabled impersonation of another person as well as eavesdropping on a communica-
tion happening in another room. The impersonation attack reveals that Matrix does not
sufficiently bind identity keys to identities since the impersonation was possible without
needing any cryptographic keys. This implies that an attacker only needs one information
(later introduced as the access token) in order to impersonate someone. Despite that, Ma-
trix shows a higher resistance against Algorithm Substitution Attacks than Signal does.
In our study, it was not possible to permanently break future message confidentiality.

2

2 Preliminaries

In this chapter we introduce what Algorithm Substitution Attacks are, the attacker model,
the levels of undetectability, the notation used, the Ed25519 signature algorithm and what
a ratchet in cryptography means.

2.1 What are Algorithm Substitution Attacks?

Introduced by [BPR14], when we speak of Algorithm Substitution Attacks (ASAs), we refer
to the substitution of an algorithm for a different, malicious one. We will apply this def-
inition to symmetric encryption schemes and signature schemes. The substitution, also
called subversion, has to behave in a very similar way the original one did. Encryption
and decryption (or signing and verification) should work perfectly fine, just like before.
The only difference being that the subversion now has some kind of backdoor which an
attacker can use to leak secrets in the form of plaintexts, private keys/signing keys, etc.
In order to measure the undetectability, we will give a definition and introduce different
levels in the next chapter. An attacker also aims for reliability, meaning that with enough
output of the subverted algorithm, the attacker is able to extract secrets.

2.2 Attacker Model

Now that we explained what Algorithm Substitution Attacks are, let us be more specific
and model our scenario. We will mostly focus on signature schemes and want to give a
formal definition. We have an attacker denoted as Awho has the goal to compromise pri-
vacy of a victim V . They have their own distinct attacker key K̃ and with that A embeds
potential secrets of V only retrievable by them. Let Π = (K,S,Vf) be a signature scheme
with a key generation function K(σ) = (pk, sk), which generates the key pair (pk, sk) us-
ing the seed σ. Moreover, let S(M, sk) = S be the signing function, which signs a given
message M using the private key sk and outputs a signature S. Last but not least, let
Vf(M,S, pk) be the verify function, receiving the message M , a signature S and the pub-
lic key pk. The function now outputs either 1 or 0 depending on whether the signature
is valid or not. Signatures produced by S are always valid meaning that Vf will evalu-
ate to 1. A subversion of Π would be a tuple Π̃ = (K, S̃,Vf, E). In addition to K and
Vf, we now also have the extract function E and replaced the original signing function

3

2 Preliminaries

S

M

sk

Vf

pk

S {0, 1}

M

Figure 2.1: Normal behavior of the signing function S

S̃

M

M̃

sk

Vf
S̃

K̃ E M̃

pk

M

{0, 1}

Figure 2.2: Behavior of the subverted signing function S̃

with a subverted one S̃. The subverted signing function S̃ now looks like the following
S̃(M, sk, K̃, M̃) = S̃. Extended by the attacker key K̃, as well as the secret message M̃ ,
the subverted signing function will embed the secret message M̃ or parts of M̃ using the
attacker key K̃ resulting in the subverted signature S̃. Depending on the signature algo-
rithm and the embedding technique chosen, this usually varies. With the extract function
E applied to the subverted signature S̃ (or multiple signatures, where o ∈ N marks the
number of signatures), the attacker A should be able to extract the secret message M̃ us-
ing their attacker key K̃ by calculating E(S̃1, S̃2, ..., S̃o, K̃) = M̃ . A picture illustrating the
different behaviors of S and S̃ can be found in Figure 2.1 and Figure 2.2.

2.3 Levels of Undetectability

Inspired by [RTYZ16], we are looking for a way to formalize the undetectability of our
subversions. We introduce a verifier called "watchdog", who either accepts or declines
the implementation of the victim V . They accept, if they lose the following security game
between a watchdog and the challenger (acting as the bad guy). An illustration is given
in Figure 2.3.

1. The challenger picks a random b ∈R {0, 1}.

2. The watchdog can ask the implementation queries in the form of (Mp, skp) where
p ∈ N marks the index of that pair. They are limited by what the implementation
has to offer and in the case of Matrix cannot choose two identical pairs of (Mp, skp).

4

2.3 Levels of Undetectability

Figure 2.3: The protocol between the watchdog and the challenger

The answer of the query now depends on the secret bit b. If b = 1 the challenger
returns S ← S(Mp, skp), otherwise the challenger returns S̃ ← S̃(Mp, skp, K̃, M̃).

3. The watchdog now has to decide whether they think the implementation is valid or
not. They choose a b′ ∈ {0, 1} and whenever b′ = b, they win the security game.

We consider the subversion Π̃ to be undetectable for that particular watchdog if the prob-
ability for the watchdog to win is negligible small. Moreover, we differentiate between
three watchdogs:

• The offline watchdog being the weakest one in the list. They can only do black-box
like testing with the implementation of V . Receiving only an input and output, they
have to decide whether the implementation of V is valid or not.

• An advanced version of that, we call an online watchdog. They extend the func-
tionality of the offline watchdog to the point where they can monitor the complete
communication between V and the attacker A, and they therefore are also aware of
all public keys of V . They also are aware of all room keys (later referred to as ratchet
values Ri) inside every room of V .

5

2 Preliminaries

• Concluding our list, the most powerful watchdog being the omniscient watchdog.
In addition to possibilities of the online watchdog, the omniscient watchdog also
knows all private keys of V .

The watchdogs do not know the attacker key K̃, and they also cannot verify if a random
number is the actual number the implementation produced, but they do analyze the dis-
tribution of it.

2.4 Notation

In the following we will talk about the notation used to prevent confusion when reading
later chapters.

2.4.1 Concatenation and String Splitting

Whenever ‖ is used it either refers to string splitting or string concatenation depending on
the context. We differentiate between the following cases:

1. ‖ is on the left of an equals sign e.g. a ‖ b = f(...).
In that case, ‖ refers to string splitting meaning that the function f returns a value
that is split somewhere in between resulting in a and b.

2. ‖ is on the right of an equals sign or without any equals sign e.g. S = a ‖ b or a ‖ b.
Here it is used for string concatenation meaning that S is defined as the concatena-
tion of a and b.

2.4.2 Exponents

Whenever a variable is used in an exponent e.g. RVi or skVEd it represents the owner of that
value. So RVi denotes the value Ri of the victim V and skVEd the value skEd of the victim V .

2.4.3 Types of Ciphertexts

In the attacker model, we talked about embedding secrets into signatures using the at-
tacker key K̃. We normally do this by using AES in a specific mode of operation. We
encrypt the secret message M̃ with an ĨV , resulting in a ciphertext C̃. Since we have to
transmit the ĨV as well, we differentiate between two types of ciphertexts. Whenever C̃ ′

is used it explicitly stands for only the ciphertext. The value C̃ denotes the concatenation
of both, i.e. C̃ = ĨV ‖ C̃ ′ or C̃ = C̃ ′ ‖ ĨV .

6

2.5 Ed25519 Signature Algorithm

Table 2.1: Parameters of Ed25519
Parameter Value
H(x) SHA-512(x)
B Basepoint in Ed25519 i.e.

(0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a,
0x6658)

L Order of Curve25519 i.e.
0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed

2.5 Ed25519 Signature Algorithm

Ed25519 is a special instantiation of the Edwards-Curve Digital Signature Algorithm (Ed-
DSA) on Curve25519 [BDL+12]. Its goal is to offer higher security in contrast to its more
common counterpart ECDSA. The specification is based on the RFC 8032 standard which
can be found under [edg17]. Table 2.1 defines special parameters of Ed25519 which will
be used later on. Let (pk, sk) be the Ed25519 key pair that we want to generate. Both keys
are 32 bytes long. The public key pk is used to verify a given signature on a given plaintext
while the private key sk is generating such valid signatures. A hex value may be given in
decoded form denoted with a "D" (e.g. pkD, RD). In that case this value is an elliptic curve
point P in the form of coordinates P = (x, y). For further details on how the decoding
works, see [edd17].

2.5.1 Key Generation

Algorithm 1: K(σ)

1 sk = σ // σ contains the 32 byte random data
2 h = H(sk)[:32]
3 s = clear_first_bit(h)
4 s = clear_last_three_bits(s)
5 s = set_second_bit(s)
6 pkD = s ·B
7 pk = encode(pkD)
8

9 return (pk, sk)

Generating our Ed25519 key pair (pk, sk) (see Algorithm 1):

1. Initialize the signing key sk with 32 bytes of cryptographically secure random data.

7

2 Preliminaries

Algorithm 2: S(M, sk)

1 h = H(sk)[:32]
2 prefix = H(sk)[32:]
3 s = clear_first_bit(h)
4 s = clear_last_three_bits(s)
5 s = set_second_bit(s)
6 pkD = s ·B
7 pk = encode(pkD)
8

9 r = H(prefix ‖M)
10 RD = (r mod L) ·B
11 R = encode(RD)
12 k = H(R ‖ pk ‖M) mod L
13 S′ = (r + k · s) mod L
14

15 S = R ‖ S′
16 return S

2. Calculate H(sk) and interpret the first 32 bytes of the digest as little-endian num-
ber h.

3. Perform the following operations on h:

• Clear the first bit

• Clear the last three bits

• Set the second bit

The result is the secret scalar s.

4. Multiply s with the basepoint to receive the public key in decoded form pkD = sB.

5. In the final step, encode pkD = (x, y) by copying the last bit of x to the first bit of y.
The result is the 32 byte public key pk in little-endian format.

2.5.2 Signing

Signing a message M with the private key sk (see Algorithm 2):

1. Calculate H(sk) and split the digest in the middle resulting in two 32 byte values.
With the first half, calculate s and pk as described in the previous Section. The second
half is called prefix .

8

2.6 Ratchet Definition

Algorithm 3: Vf(M,S, pk)

1 pkD = decode(pk)
2 R ‖ S′ = S
3 RD = decode(R)
4 k = H(R ‖ pk ‖M) mod L
5

6 return (S′ ·B) == (RD + k · pkD)

2. Continue by calculatingH(prefix ‖M). Interpret the 64 byte digest as a little-endian
number r.

3. Calculate RD = (r mod L) · B. Encode RD = (x, y) with the method from 5 of the
previous Section, resulting in a 32 byte value R.

4. Compute k = H(R ‖ pk ‖M) mod L and interpret k as a little-endian number.

5. In the second last step calculate S′ = (r + k · s) mod L.

6. Form the 64 byte signature S with the concatenation of R and the little-endian en-
coding of S′.

2.5.3 Verification

Verifying S with the public key pk on a given message M (see Algorithm 3):

1. Decode pk back into pkD.

2. Interpret R ‖ S′ = S.

3. Decode R back into a point RD and interpret S′ as a little-endian number.

4. Compute H(R ‖ pk ‖M) mod L and interpret the result as a little-endian number k.

5. Verify the equation S′ ·B = RD + k · pkD.

2.6 Ratchet Definition

In mechanics, a ratchet is a device that allows rotation only in one direction while blocking
the other one. An illustration can be found in Figure 2.4. In cryptography, we make use of
this concept by rotating cryptographic keys instead of a mechanical device [BSJ+17]. The
idea stays the same. Once a key is rotated to the successor, it is not possible to go back
to the old one. This advancement usually can be done indefinitely with the help of cryp-
tographic hash functions. This concept results in an important security property called

9

2 Preliminaries

Figure 2.4: A mechanical ratchet [Sch11]

"forward secrecy". If a key is compromised at one point in time, the attacker A cannot
compute any predecessor keys and therefore will not be able to decrypt old messages.

10

3 High Level Description of Matrix

Matrix is an open source, decentralized, real-time communication network [mat14b]. It is
maintained by the non-profit organization "The Matrix.org Foundation" based in the UK
and has been around since September 2014. Matrix offers simple HTTP APIs for shar-
ing communication data between users as well as SDKs to give developers the option to
implement things themselves. It also claims to provide "state-of-the-art end-to-end en-
cryption" via the cryptographic ratchets of Olm and Megolm. This chapter covers some
basic terms of Matrix as well as give some perspective on how the communication struc-
ture works.

3.1 Architecture

Let us begin with some terms which are key in order to understand the infrastructure of
Matrix. Matrix defines them in its specification [mat].

Homeservers A homeserver is needed for the communication flow between two or more
users. Fortunately, a user does not need their own homeservers since Matrix and
others provide them with one. Every homeserver stores the communication history
and account data for all of their clients and synchronizes the communication his-
tory with other homeservers involved in the communication (communication flow
illustrated in Figure 3.1). A user may host their own homeserver if they desire.

Users Each user account in Matrix is identified by a unique user_id paired with
the homeserver on which the account was made on. The user account looks like
@testuser:matrix.org where testuser is the user_id and matrix.org the
homeserver used.

Clients A client is needed for a user to communicate with the homeservers and therefore
with other users. Since Matrix is open source everyone can develop their own client.
There is an overview of available clients on the Matrix website [cli] for various dif-
ferent platforms. In addition to that, the company behind Matrix also develops their
own client called Element (formerly Riot). We recommend to use Element since it is
the most advanced client in terms of features and security.

Devices In Matrix, there is a special meaning for the term "device". A user may have
several devices like a desktop client, a mobile client, browser clients etc. They are

11

3 High Level Description of Matrix

primarily used for key management in the end-to-end encryption process since ev-
ery device has their unique set of keys. Upon successful login on a new device, the
device registers itself as a "new device" which should be verified by other devices
from the user. Otherwise, it is marked as an unverified device and is deemed to
be untrusted. The longevity of devices is dependent on the type. A browser client,
which tends to be more volatile, registers as a new device upon every new login
whereas for a mobile client, it might be acceptable to reuse the device after session
timeout. A device is identified by a device_id which is unique for every device
within a user account.

Events Everything exchanged via Matrix is realized as an event and normally each client
action correlates with one event. In Matrix, events are realized as extensible JSON
objects. Events can be sending messages, inviting people to a room, updating the
room name etc.

Rooms Rooms are used between two or more people to exchange messages. Matrix de-
scribes it as "a conceptual place where users can send and receive events" [roo].
Rooms have different properties like room name, room topic, members etc. and are
identified by a unique room_id.

3.2 Keys

For direct message encryption Matrix uses a symmetric key exchanged via a secure chan-
nel (Matrix uses Olm for that purpose, check Section 4.1). Besides that, four more different
key pairs are involved for the end-to-end encryption process [key]. For us only two of
those four will be relevant which will be explained in the following.

Ed25519 Megolm signing key pair In Matrix, conversations are encrypted via Megolm
(see Section 4) and whenever a new Megolm session is created, a new Ed25519 key
pair (pkEd, skEd) is generated. They are used to sign outgoing messages within that
session. The public key is shared between other room members and the private key
never leaves the device.

Curve25519 identity key pair The Curve25519 identity key pair, denoted as (pkCu, skCu)

is mainly used to establish an Olm session and also acts as an identifier for that Olm
session. Olm is needed to securely exchange the symmetric session keys used in
Megolm. Again, the public key is published to the network whereas the private key
never leaves the device.

12

3.3 How the communication works

Figure 3.1: General communication flow between two clients through two different home-
servers

3.3 How the communication works

If Alice and Bob want to communicate with each other they first have to create a room and
invite the other person. In Matrix terms, Alice’s client sends a room creation event via an
HTTP POST request to her homeserver. The homeserver acknowledges the event of Alice
and returns the unique room_id and the room is created. Next she sends another event
indicating the invitation of Bob. Again, Alice’s homeserver acknowledges the event and
sends it over to Bob’s homeserver. His homeserver verifies the event and Bob can now
send a GET request to it, receiving the invite. If Bob decides to accept, the process repeats.
The general communication flow is illustrated in Figure 3.1.

13

4 Protocols Used in Matrix

The messaging protocol used in Matrix is divided into two sub protocols called Olm and
Megolm. Originally, Olm was intended for one-to-one conversations and Megolm for
group conversations. In practice Matrix uses Megolm even for one-to-one conversations
because other people may be added to a room at any time and by that Olm would be
incompatible. This chapter is mostly inspired by [meg19].

4.1 Olm

Olm [olm19] is Matrix own implementation of the double cryptographic ratchet used in
the Signal Protocol [sig16]. It provides a secure end-to-end encrypted channel between
two parties. In Matrix, it is only used to securely exchange the ratchet value Ri for the
Megolm protocol. Due to the fact that Signal has already been analyzed on possible Al-
gorithm Substitution Attacks (see [BWP+20]) and Olm does not bring any fundamental
changes to the table, our focus will be Megolm.

4.2 Megolm

Megolm [meg19] is the main communication protocol used in Matrix for private and
group chats. It consists of a single ratchet (as explained in Section 2.6) which advances
after every message, and it requires a secure peer-to-peer channel (such as Olm) to ex-
change its ratchet value Ri. In this chapter we will take a detailed look on how Megolm
works, what security properties it provides and what is missing.

4.2.1 Session setup

Suppose Alice, Bob, and Charlie want to communicate in a secure group chat realized as
a room in Matrix. In the first step, an Olm session is created between each of the members
which in this case results in three sessions. Based on that, each member of the room now
creates their own Megolm session Ω = {i, (pkEd, skEd), Ri}, where ΩP refers to the public
part of the Megolm session without the private key skEd. Each Ω consists of:

• a four byte counter i

• an Ed25519 signing key pair (pkEd, skEd),

15

4 Protocols Used in Matrix

A

B C

ΩA
P

ΩA
PΩB

P

ΩB
P

ΩC
P

ΩC
P

Figure 4.1: Session exchange between room members

• a ratchet value Ri, which consists of four 32 byte values, Ri,j for j ∈ {0, 1, 2, 3}

The counter i is initialized to 0. A new Ed25519 signing key pair (pkEd, skEd) is generated,
and the ratchet Ri is initialized with 128 bytes of cryptographically-secure random data.
A Megolm session ΩP is identified by a unique session_id which changes upon every
reinitialization. Let ΩA

P , ΩB
P , and ΩC

P be their individual public Megolm session. Alice now
sends ΩA

P to Bob and Charlie. Bob sends ΩB
P to Alice and Charlie and Charlie sends ΩC

P

to Alice and Bob (illustrated in Figure 4.1). They all do this via their encrypted one-to-
one Olm sessions. Every member of the room now stores the other parties public Megolm
session ΩP . If Bob sends his first message to the room in the form of an event (as illustrated
in Figure 3.1), Alice and Charlie will access ΩB

P and useRB
0 to decrypt it. After decryption,

Alice and Charlie will increase the counter i for Bobs ΩP by one and advance his ratchet
value from RB

0 to RB
1 . Bob will advance his own ratchet as well and use the new value

RB
1 to encrypt his next message. Therefore, only the initial ratchet R0 is transmitted to

the other room members. This scheme continues until Bob’s ratchet resets (e.g. after 100
messages, after one week, someone leaves the room) and will be initialized with 128 bytes
at random again. The same goes for the ratchets of Alice and Charlie.

4.2.2 Advancing the ratchet

After every message of a user, their ratchet has to be advanced in order to generate the
next message encryption keys. The advancement works as follows:

16

4.2 Megolm

Ri,0 =

H0

(
R224(n−1),0

)
if ∃ n : i = 224n

Ri−1,0 otherwise

Ri,1 =

H1

(
R224(n−1),0

)
if ∃ n : i = 224n

H1

(
R216(m−1),1

)
if ∃m : i = 216m

Ri−1,1 otherwise

Ri,2 =

H2

(
R224(n−1),0

)
if ∃ n : i = 224n

H2

(
R216(m−1),1

)
if ∃m : i = 216m

H2

(
R28(p−1),2

)
if ∃ p : i = 28p

Ri−1,2 otherwise

Ri,3 =

H3

(
R224(n−1),0

)
if ∃ n : i = 224n

H3

(
R216(m−1),1

)
if ∃m : i = 216m

H3

(
R28(p−1),2

)
if ∃ p : i = 28p

H3 (Ri−1,3) otherwise

And the hash functions being defined as:

H0(A) = HMAC(A, "\x00")

H1(A) = HMAC(A, "\x01")

H2(A) = HMAC(A, "\x02")

H3(A) = HMAC(A, "\x03")

The operator HMAC(A,KH) represents HMAC-SHA256 of A using KH as the key, a hash
based Message Authentication Code (MAC) using SHA256 [hma97]. The ratchet was orig-
inally designed to be advanced indefinitely but after a security audit of the NCC Group
[BM16] concluding the lack of backward secrecy, it is now only advanced 100 times or at
most used one week before getting reset again. Therefore, only the last 32 bytes Ri,3 of the
ratchet value Ri are ever advanced during those 100 messages. In the later chapters, we
will only focus on the whole 128 byte ratchet value Ri and not differentiate between each
Ri,j .

4.2.3 Sharing session data

We just discussed how Ri is advanced, and we now take a look at how it is transferred
between two room members via their Olm session. To share the public Megolm session
ΩP whenever Ω is initialized, Megolm uses a specific session-sharing format illustrated in

17

4 Protocols Used in Matrix

V

0 1

i

5

Ri

133

pkEd

165

S

229

Figure 4.2: Session-sharing format in Megolm

Figure 4.2. The byte V denotes the version number which is currently 0x02, followed by
the four byte counter value i in big-endian encoding, continuing with the ratchet value
Ri, the Ed25519 public key pkEd of the sender and ending with an Ed25519 signature S
(described in Section 2.5) signing every byte preceding.

4.2.4 Message encryption

The ratchet valueRi of every Ω is the basis for encryption. Although it is not used directly
for encryption, the critical values used for the encryption are derived from it. Moreover,
Megolm uses AES-256 in CBC mode with PKCS#7 padding together with HMAC-SHA-
256 (truncated to 8 bytes). The ratchet value Ri is used to derive the 32 byte AES key, the
32 byte HMAC key and the 16 byte AES IV. The index i corresponds to the same i of the
ratchet value.

AES_KEY i ‖ HMAC _KEY i ‖ AES_IV i = HKDF (0, Ri, "MEGOLM_KEYS", 80)

The operator HKDF (salt , IKM , info, z) describes the HMAC-based extract-and-expand
key derivation function [hkd10] using SHA-256 as the hash function with a salt value of
salt , input key material of IKM , context string info, and output material length of z bytes.

4.2.5 Message format

After the encryption process Ci = AES-CBCAES_IVi
AES_KEYi

(Mi), messages have to be format-
ted properly in order to transmit them. The Megolm documentation defines the following
message format illustrated in Figure 4.3. Starting with another version byte at 0x03 fol-
lowed by the variable length payload based on [var20] which consists of the two important
values i and the ciphertext Ci. A MAC, also based on HMAC-SHA256, is appended to en-
sure integrity for the version byte and payload. The ending marks an Ed25519 Signature
S (described in Section 2.5) signing all preceding bytes including the MAC.

4.2.6 Limitations

With Megolm and Olm Matrix provides the three most important security properties con-
fidentiality, integrity and authenticity [BM16]. The confidentiality is guaranteed through

18

4.2 Megolm

V

0 1

Payload

N

MAC

N + 8

S

N + 72

Figure 4.3: Message format for transmission in Megolm

the encryption, while the integrity and authenticity are provided by the MAC and signa-
ture appended to every message (as seen in Figure 4.3). But Megolm in particular also has
some pretty substantial limitations we will discuss in the following.

Missing Backward Secrecy

One of its big weaknesses is the lack of backward secrecy. Backward secrecy describes the
property that if current private keys are compromised, an attackerA is not able to decrypt
any future messages. In Megolm, the ratchet value Ri is used to derive the message keys
and wheneverA gets hold of it, they can compute corresponding message keys and future
values ofRi and therefore is able to decrypt future messages. As mentioned earlier, Matrix
tries to minimize the damage by periodically reinitializing Ri and therefore A will not be
able to decrypt messages like this indefinitely.

Partial Forward Secrecy

Another big weakness is the partial forward secrecy. Forward secrecy describes the oppo-
site of backward secrecy. Whenever current private keys are compromised, an attacker A
is not able to decrypt past messages. Although the ratchet in Megolm is not reversible, the
clients keep a copy of the first ratchet value R0 in case another person is added to a room
and wants to read conversation history. So whenever R0 is compromised, A can decrypt
past messages. Matrix also tries to mitigate this issue by emphasizing application creators
to give the user the option to discard historical conversations and not keep a copy of R0

or to drop entire sessions.

Replay Attacks

A received message can be successfully decrypted several times and therefore A can re-
send an old message and the recipient will treat it as a fresh one. It is the application’s
responsibility to keep track of the counter value i and flag messages sent by the same i it
has already seen before. During our testing at the time of writing most clients that offered
end-to-end encryption successfully identified message replays and notified the user that
something was wrong. However, Element Android did not. It was possible to send all

19

4 Protocols Used in Matrix

messages with the same i and the decryption was successful every time. Some research
shows that the protection was disabled on purpose for Android and iOS to circumvent a
problem with the app on iOS devices. We only verified that the protection was disabled
on Android and most likely is still disabled on iOS as well. We were not the first to notice
[git20] and opened another GitHub issue but did not receive any feedback.

20

5 Subverting Matrix

Now after discussing everything we need in order to understand possible attacks, we can
begin with our main part. This chapter focuses on creating channels to make use of in
the next chapter. Additionally, we will talk about the development environment used as
well as some background to why we chose which attack vectors. We will be subverting
Megolm in two different ways. The first subversion involves the Megolm ratchet Ri while
the second subversion concentrates on the Ed25519 signatures S in Megolm. In Chapter 6
we will analyze possible attacks with those channels.

5.1 The development environment

For all our testing we set up a local development environment of Element Web using
[dev20]. It contains the Element Web client, the matrix-js-sdk and matrix-react-sdk. We
had to download and link the libolm library [lib16] to our local development environment
in order to manipulate the cryptographic implementation of Megolm. For our attacks
we only manipulated code inside libolm and the matrix-js-sdk. Client-wise, we mainly
focussed on the Element Client since it is the official client and probably what most users
will end up using. Third party clients were only involved to analyze different behavior
between them. Later, we also used python-olm [pyt15] together with the Matrix Client-
Server API [mat14a] to manually encrypt and send customized message events.

5.2 Background

In the last chapters, we discussed how Matrix and the protocol behind it works. We now
want to take a look on possible Algorithm Substitution Attacks later referred to as ASAs.
From [BWP+20] we know that if a protocol provides forward secrecy, it is vulnerable to
ASAs. Since Megolm provides partial forward secrecy, we should be able to find some-
thing. Based on that, we can analyze two different possibilities for an Algorithm Substitu-
tion Attack given in [BPR14]. The paper mentions IV-replacement attacks, where the basic
idea is replacing a random nonce a server needs, with the encryption of a secret (e.g. a
session key) using the attacker key K̃. Here, we are limited by the length of the random
nonce the server needs. The second attack mentioned, is called a biased-ciphertext attack.
The short version here is to compute a ciphertext C using a random nonce but only use

21

5 Subverting Matrix

Algorithm 4: S̃1(M,R0, K̃, M̃)

1 M̃ = 0x00 ∗ 112 // Write zero byte 112 times

2 ĨV = rand(16) // Generating 16 bytes random data

3 K̃ = rand(32)

4 C̃ = AES-CBCĨV
K̃

(M̃) // Encrypting secret message of length 112

5

6 R0 = C̃ // Replace original R0

7

8 return R0

a C that embeds one bit of a previously chosen secret M̃ using the attacker key K̃. If it
does not, we just generate a new nonce and try again. With every C received, the attacker
A can decrypt the secret, bit by bit. This type of leakage is rather slow and needs more
ciphertexts the longer M̃ gets. Now if we take a look a Matrix and in particular Megolm,
we can quickly come to the conclusion that a biased-ciphertext attack is not feasible here,
because we are missing any kind of continuous randomness in the encryption scheme. In
Megolm, only the first ratchet value R0 is chosen at random. After that, all subsequent
ratchet values Ri and their respective AES_KEY i and AES_IV i are calculated determin-
istically. Therefore, we are only being able to leak 1 bit every 100 messages which is not
very efficient. For an IV-replacement attack to work, the attacker A and the victim V have
to be in the same room, because the initial ratchet value R0 is encrypted and transmitted
via an Olm session and only room participants will receive a copy of it. The next section
evolves around this idea, and we will create our first subversion.

5.3 Megolm Ratchet Subversion

Beginning with our first subversion, we want to manipulate part of the Megolm algorithm
to leak some kind of secret M̃ of the victim V to an attacker A, both being members of the
same room. Due to the fact that a biased-ciphertext attack [BPR14] is not feasible here as
described in Section 5.2, we try to make use of the IV-replacement attacks also described
in the same paper [BPR14]. The goal for the subversion is to be undetectable and yet
secure in the sense that only A is able to retrieve the leaked secrets. We first highlight
the theoretical description of the subversion, following a look on the implementation and
finally summarizing the results.

22

5.3 Megolm Ratchet Subversion

Algorithm 5: E1(RV0 , K̃)

1 ĨV ‖ C̃ ′ = RV0

2 M̃ = AES-CBCĨV
K̃

(C̃ ′) // Decrypting secret message

3

4 return M̃

V

0 1

i

5

C̃ = ĨV ‖ C̃ ′

133

pkEd

165

S

229

Figure 5.1: Subverted session-sharing format (changes in red)

Our first subversion

Since AES_KEY i,HMAC _KEY i and AES_IV i from Section 4.2.4 are all deterministically
derived from our ratchet value Ri we cannot alter them if we want to maintain function-
ality. But looking at the ratchet value Ri is promising. Even though it is deterministically
expanded after every message by every user, it is initialized randomly with 128 bytes.
Based on the work of IV-replacement attacks described in [BPR14] we can make use of
that and replace the initial ratchet value R0 with a ciphertext C̃ using the unique attacker
key K̃. For the encryption we choose an algorithm that produces ciphertexts indistin-
guishable from random data to maintain a high level of undetectability. A good candidate
for this is AES-CBC since it meets our requirement according to [Rog11] and to our con-
venience, it is already present in libolm. To ensure the indistinguishability from random
data the attacker chosen ĨV for AES-CBC has to be randomly chosen for every encryption
process of our message M̃ . For now, M̃ will be test message to ensure everything works.
The encryption looks like this C̃ = ĨV ‖ C̃ ′ = AES-CBCĨV

K̃
(M̃). In the next section, we

will use this channel to leak a private key. For our ĨV , we choose 16 bytes secure ran-
dom data. After encryption, we substitute the ratchet value by R0 = C̃ = ĨV ‖ C̃ ′. In a
slight abuse of notation, we will also use the symbols from Section 2.2 for the pseudocode
given in Algorithm 4 and Algorithm 5 marking our subversion and extraction function.
In contrast to the normal message format in Figure 4.3, the manipulated session setup is
illustrated in Figure 5.1.

Implementation

To transfer our approach into actual code, we went into libolm, where Megolm resides
and only had to change one function. Inside olm/src/outbound_group_session.c,

23

5 Subverting Matrix

we inspect the function olm_init_outbound_group_session which initializes the
ratchet Ri upon creating an outbound group session. The function receives session

which is the session object, random which is the random data, and random_length

containing the length of random. The parameter random is always 160 bytes long and
consists of R0 ‖ sk. The first 128 bytes of random containing the cryptographically-secure
random data required for the initialization of the Megolm ratchet and is therefore copied
into the session object representing R0. The remaining 32 bytes are the secret key sk de-
scribed in Section 2.5 acting as the initializer for the Ed25519 key pair used for signing
in message transmission described in Section 4.2.1. To perform the attack, the attacker A
has an attacker key K̃ which has to be a 32 byte random byte sequence in order to match
the security requirements of AES-CBC. Next we define ĨV to be the 16 bytes of secure
random data and choose our input M̃ to be a test message of size 112 bytes since we have
to leave room for ĨV . Now we encrypt M̃ by calling _olm_crypto_aes_encrypt_cbc
with our just defined values and replace the first 128 bytes of random with C̃ = ĨV ‖ C̃ ′.
Instead of the original random data, C̃ is now copied as R0 into the session object.

Conclusion

We successfully substitutedRV0 with a ciphertext C̃. The attackerA and the victim V are in
the same room and whenever V initializes their Ω, the victim V will send RV0 = C̃ = ĨV ‖
C̃ ′ to A. Upon receiving R0 the attacker A can now decrypt C̃ ′ using ĨV and their unique
attacker key K̃ back into the secret message M̃ . In [BPR14], Theorem 1 argues the un-
detectability for a symmetric encryption scheme using an IV-replacement attack, but the
Theorem covers a weaker case, where encryption function used for the IV replacement is
not an ind$-secure function. For our case, we have an ind$-secure function, namely AES-
CBC and we replace R0 with C̃ = AES-CBCĨV

K̃
(M̃) using a unique ĨV every time. Now,

the normal R0 is random data and C̃, the output of our ind$-secure function is also ran-
dom data (or rather indistinguishable from random data), we can conclude that Theorem
1 from [BPR14] still holds (if the watchdog does not know K̃), and the replacement of R0

has to be undetectable up to the omniscient watchdog.

5.4 Megolm Signature Subversion

After our first subversion from the previous chapter we managed to leak 112 bytes every
100 messages. Our goal for this chapter is to improve the channel bandwidth and thus
further expand the subversion. Since R0 is the only random part involved in the raw en-
cryption process of Megolm we have to look elsewhere to make improvements. Because
we want to expand, we are looking for something sent frequently. Inspecting the message

24

5.4 Megolm Signature Subversion

format, we see each message is appended a MAC and a signature S. The MAC does not
sound promising because it does not involve randomness but signatures usually do. The
signature algorithm used for signing messages is EdDSA more specific Ed25519. Unfortu-
nately, EdDSA does not involve randomness in contrast to its more common counterpart
ECDSA. The value r (seen in Section 2.5) that is multiplied by the basepoint B is de-
terministically derived from a hash function in contrast to ECDSA where it is randomly
chosen. Even though r will be the same value for the same Ed25519 signing key pair
(pkEd, skEd) and same plaintext M , this case does not occur in Megolm. Megolm uses a
message format, where the index i is part of the variable length payload as seen in Section
4.2.5. Because i is incremented after every message, the plaintext M is going to be differ-
ent and the produced signature S will always be unique. Due to this fact, we can safely
assume that only someone who can actually calculate r is able to verify if it was calculated
according to specification or not. And in order to be able to calculate r, the private key
skEd is needed. As seen in the next section, secret scalar s is needed in order to calculate
r and s can only be calculated with the private key skEd. An omniscient watchdog is in
possession of all private keys, so by taking a lower level undetectability into account, we
can make another subversion possible described in the following.

Expanding the channel

The objective is to replace r with some ciphertext C̃ as we did in Section 5.3, but the
finished signature S does not involve r, so how do we extract it? As explained in Section
2.5 the value S′ is calculated by S′ = (r + k · s) mod L. Rewriting that to r is fairly simple
r = (S′ − k · s) mod L. The value S′ are the last 32 bytes of our finished signature S, and
we can calculate k = H(R ‖ pk ‖ M) because R, pk, and M are all public values. The last
remaining parameter we need is s, but s can only be calculated via the private key skEd.
Fortunately, we already have a successful subversion from before, where we can just leak
the private key skEd and be able to calculate s and thus recover r. We have one more thing
to consider though. In the signature process RD is calculated via RD = (r mod L) · B.
During this calculation r is reduced, and therefore we have to make sure that does not
occur. Otherwise, the recovery of r will be pointless as long as it is not a decryptable
ciphertext C̃ anymore. During reduction, the length of r went from 64 bytes to 32 bytes.
Due to this huge reduction, it is not affordable to brute force multiples of L. To circumvent
this we have to make sure that r < L since a calculation with a smaller number than the
modulus L does not change the input. Due to the control over the ciphertext C̃ ′ and ĨV

we choose a format where r = C̃ = C̃ ′ ‖ ĨV . The value r is interpreted as a little-endian
number and by having control over ĨV , we can freely determine the most significant bytes
of r. The most significant byte of our modulus L (in Table 2.1) is 0x10. Therefore, the most

25

5 Subverting Matrix

Algorithm 6: S̃2(M, skVEd, K̃, M̃)

1 h = skVEd[:32] // In Matrix H(sk) == skVEd

2 prefix = skVEd[32:]
3 s = clear_first_bit(h)
4 s = clear_last_three_bits(s)
5 s = set_second_bit(s)
6 pkD = s ·B
7 pk = encode(pkD)
8

9 M̃ = 0x00 ∗ 16 // Write zero byte 16 times

10 ĨV = rand(15) ‖ rand(0x00, 0x0F) // Last byte only between 0x00 and
0x0F

11 K̃ = rand(32)

12 C̃ = AES-CBCĨV
K̃

(M̃) // Encrypting secret message of length 16

13 r = C̃ // Replace original r
14

15 RD = (r mod L) ·B // r mod L does nothing because r < L
16 R = encode(RD)
17 k = H(R ‖ pk ‖M) mod L
18 S′ = (r + k · s) mod L
19

20 S̃ = R ‖ S′
21

22 return S̃

significant byte has to be smaller than 0x10 to ensure that no reduction is happening. By
choosing the first 15 bytes of ĨV completely at random we have to make sure that the
most significant byte is only chosen between 0x00 and 0x0F. Following this constraint our
ciphertext C̃ is always recoverable. One could ask themselves if that does not change the
distribution of RD because we calculate r · B to get RD and for that reason be detectable.
And in fact we are changing the distribution but let us do a simple calculation.

L = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed

c = 0x14def9dea2f79cd65812631a5cf5d3ed + 1

P (”Number with ≤ 0x0F”) = 1− c

L
≥ 1− 2125

2252
= 1− 2−127

As we can see, the probability for the correct implementation to choose a number with a
most significant byte of 0x0F or smaller is basically 1. The amount of numbers we cut off

26

5.4 Megolm Signature Subversion

Algorithm 7: E2(S̃, K̃, skVEd)

1 R = S̃[:32]
2 RD = decode(R)

3 S′ = S̃[32:]
4

5 h = skVEd[:32] // In Matrix H(sk) == skEd

6 prefix = skVEd[32::]
7 s = clear_first_bit(h)
8 s = clear_last_three_bits(s)
9 s = set_second_bit(s)

10 pkD = s ·B
11 pk = encode(pkD)
12

13 k = H(R ‖ pk ‖M) mod L
14 r = (S′ − k · s) mod L // Recover r
15

16 C̃ ′ ‖ ĨV = r

17 M̃ = AES-CBCĨV
K̃

(C̃ ′) // Decrypting secret message

18

19 return M̃

is microscopic in contrast to the total number of L−1 possibilities. Since r is 32 bytes long,
we will be able to leak 16 bytes of secrets M̃ every message V sends. A pseudocode for
the subversion and extraction algorithm is also given in Algorithm 6 and Algorithm 7.

Implementation

For the implementation, we went back into libolm again. The signing process is realized
in olm/lib/ed25519/sign.c. To start our subversion, we first make a copy of the
ed25519_sign function because we only want it to be called during the encryption pro-
cess. Next we define the 32 byte attacker key K̃ and the 16 byte M̃ . As discussed, for ĨV
we choose the first 15 bytes completely at random and the last byte only between 0x00 and
0x0F. We perform the encryption and replace r with C̃ = C̃ ′ ‖ ĨV . For the final step we go
inside olm/src/outbound_group_session.c into the _encrypt function and make
sure the subverted signing function S̃ is called.

Eliminating the IV

The replacement of r still contains 16 bytes of ĨV and in this section we want to diminish
it as much as possible to improve the channel bandwidth. To achieve this we have to

27

5 Subverting Matrix

Algorithm 8: S̃3(M,RVi , sk
V
Ed, K̃, M̃)

1 h = skVEd[:32] // In Matrix H(sk) == skVEd

2 prefix = skVEd[32:]
3 s = clear_first_bit(h)
4 s = clear_last_three_bits(s)
5 s = set_second_bit(s)
6 pkD = s ·B
7 pk = encode(pkD)
8

9 M̃ = 0x00 ∗ 31 // Write zero byte 31 times

10 ĨV = H(RVi ‖ K̃)[:16] // Ensuring ĨV is fresh and secret

11 K̃ = rand(32)

12 C̃ = AES-CTRĨV
K̃

(M̃) // Encrypting secret message of length 31

13 r = C̃ ′ ‖ rand(0x00, 0x0F) // Now r contains 31 ciphertext bytes
14

15 RD = (r mod L) ·B // r mod L does nothing because r < L
16 R = encode(RD)
17 k = H(R ‖ pk ‖M) mod L
18 S′ = (r + k · s) mod L
19

20 S̃ = R ‖ S′
21

22 return S̃

replace ĨV with something V and A already know and therefore does not need to be
transmitted. The best candidate for this is the ratchet value RVi because it is updated
after every message and is known to both parties. Remember our goal is that r = C̃ ′,
but we have to keep in mind that r < L is met otherwise the reduction inside RD =

(r mod L) · B will destroy C̃ ′. The easiest and most reliable way to circumvent this is to
use the same method from before but this time we have to sacrifice the last byte of C̃ ′

instead of ĨV . The last byte should only be a random number between 0x00 and 0x0F.
Now the remaining 31 bytes of the r replacement can even be all 0xFF and r < L still
holds and therefore C̃ ′ is always recoverable. Since AES-CBC is a block cipher it can only
encrypt blocks of 16 bytes, meaning that it would pad our 31 byte C̃ ′ to 32 bytes. For our
approach to work, we have to change the encryption mode to something like AES-CTR
[DH79] because 31 bytes of M̃ will result in 31 bytes of C̃ ′. The same paper [Rog11] that
provided the ind$-security property for AES-CBC also covered the counter mode of AES
concluding that AES-CTR also meets the ind$-security property when using a random
nonce. Under the notion of the random oracle model [KL14], we assume that output of a

28

5.4 Megolm Signature Subversion

Algorithm 9: E3(S̃, RVi , K̃, skVEd)

1 R = S̃[:32]
2 RD = decode(R)

3 S′ = S̃[32:]
4

5 h = skVEd[:32] // In Matrix H(sk) == skVEd

6 prefix = skVEd[32::]
7 s = clear_first_bit(h)
8 s = clear_last_three_bits(s)
9 s = set_second_bit(s)

10 pkD = s ·B
11 pk = encode(pkD)
12

13 k = H(R ‖ pk ‖M) mod L
14 r = (S′ − k · s) mod L // Recover r
15

16 C̃ ′ = r[:31] // Now r is 31 bytes ciphertext only

17 ĨV = H(RVi ‖ K̃)[:16] // can be calculated the same way

18 M̃ = AES-CBCĨV
K̃

(C̃ ′) // Decrypting secret message

19

20 return M̃

hash function is indistinguishable from random data if the input is unknown. The basis
for our ĨV is the ratchet value RVi paired with K̃. Calculating H(RVi ‖ K̃) ensures that the
input of H is unknown, because none of the watchdogs know K̃. Since RVi advances after
every message, we ensure a fresh and random ĨV for each leak to fulfill the ind$-security
property. The CTR mode of AES is not implemented in libolm, so we had to implement
it ourselves. Switching over to the implementation and going back into ed25519_sign,
we increased our M̃ to 31 bytes and chose the 32nd byte randomly between 0x00 and
0x0F to fit our constraint. Finally instead of AES-CBC we called our implementation of
AES-CTR and replaced r with C̃ ′ ‖ rand(0x00, 0x0F). For the ind$-security, we can make
the same argument as we did in Section 4 considering the Theorem 1 from [BPR14]. In
conclusion, we increased our channel bandwidth from 16 bytes every message to 31 bytes
every message. A pseudocode for the subversion and extraction algorithm is once again
given in Algorithm 8 and Algorithm 9.

29

5 Subverting Matrix

Conclusion

Our goal was to further expand the channel bandwidth of our subversion. From Section
5.3 we were able to leak 112 bytes whenever an Ω is initialized (i.e. i mod 100 = 0). In
addition to that, we now made it possible to leak 31 bytes every message by substitut-
ing r with another ciphertext C̃ ′ and choosing the 32nd byte with rand(0x00, 0x0F) to
preserve r < L. In order for r to be retrievable we had to leak skVEd via the Megolm
ratchet subversion from Section 5.3. Unfortunately this type of subversion is less discreet
because we are replacing the deterministic value r. Therefore, an omniscient watchdog
will now be alarmed by our subversion because with their knowledge of all private keys,
they can verify that our replacement of r is not what it is originally supposed to be by
the Ed25519 specification in [edg17]. The undetectability level now decreases down to the
online watchdog with the following three arguments. The most important one being that
the online watchdog cannot directly compute r without the private key skEd. In addition
to that, they are not able to encrypt the same plaintext M twice, because as we explained
earlier, the implementation prevents it due to the message index i. They also cannot ver-
ify that we changed the distribution because the probability of reaching a value we cut off
P (”Number with ≤ 0x0F”), is microscopic, as we calculated earlier. A similar argument
was used in Lemma 1 from [TBEL21].

30

6 Attacking Matrix

We have established two working channels, which we can use to leak secrets from V toA.
In this chapter we want to make use of those channels and see what we can do with them.
In the first attack, we try to impersonate another user in a given room of people using the
Megolm ratchet subversion. The second attack involves the attacker A eavesdropping on
a communication between two distinct parties using the Ed25519 signature subversion.

6.1 Impersonation with signature keys

In the last two chapters we first subverted the Megolm Ratchet with the replacement of
RV0 and with that subversion we leaked the private Ed25519 signature key skVEd to make
another subversion possible which improves upon the channel bandwidth. Until now, we
did not really utilize them except for the Megolm signature subversion. In this chapter we
want to change that and use skVEd to impersonate the victim V in a given room. Our goal
is to send room messages from A in the name of V . For our testing we set up a room with
the attacker A, the victim V and a legitimate third party denoted as T . From the client of
T we can evaluate if A sent a message displayed as V .

Starting off

For our first attempt, let us (in the role of A) try sending a message encrypted with Ri

of V denoted as RVi and signed by the private Ed25519 key of V denoted as skVEd. With
the Megolm Ratchet Subversion from before, we first leak skVEd via RV0 . After the setup
of ΩA,ΩV ,ΩT and all three parties exchanging their public Megolm sessions ΩAP ,Ω

V
P ,Ω

T
P

including RA0 , R
V
0 , R

T
0 the attacker A is now in possession of RV0 and skVEd. The initial

ratchet value RV0 is enough because the attacker A can compute all successors of RV0
themselves. We rewrote the client of A to encrypt and sign their first message with RV0
and skVEd. Switching to the client of the third party T reveals a Bad Signature error.
Analyzing the console output we can quickly find the reasoning behind it. Because the
Curve25519 public key pkCu and the session_id are still those from A, party T asso-
ciates the message withA and therefore takes their public key pkAEd to verify the signature
S which obviously results in a verification error. We now have to swap to the Curve25519
public key pkVCu and session_id of victim V . Via the GUI we can use the view source
function on a given room message from V to retrieve them. Instead of making changes

31

6 Attacking Matrix

1 PUT /_matrix/client/r0/rooms/!DdTtQuElCLOpMmAmMU%3Amatrix.org/send/
2 m.room.encrypted/m1629982623109.31 HTTP/2
3 Host: matrix-client.matrix.org
4 Content-Length: 447
5 Sec-Ch-Ua: " Not A;Brand";v="99", "Chromium";v="90"
6 Accept: application/json
7 Authorization: Bearer syt_YmxhYmxheGR4ZA_yAqzSkffIXCtoxFLXxCJ_4O6NKM
8 Sec-Ch-Ua-Mobile: ?0
9 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)

10 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36
11 Content-Type: application/json
12 Origin: http://127.0.0.1:8080
13 Sec-Fetch-Site: cross-site
14 Sec-Fetch-Mode: cors
15 Sec-Fetch-Dest: empty
16 Accept-Encoding: gzip, deflate
17 Accept-Language: en-US,en;q=0.9
18 Connection: close
19

20

21

22 {
23 "algorithm": "m.megolm.v1.aes-sha2",
24 "sender_key": "OPKhMwL76FmTsco88rOTuoja0OsfKQfOWsoC7MnoOms",
25 "ciphertext": "AwgAEnC3mDjvGBitnPWlkfrnxyGJr7JA8NNN3p4tQM9IWsNSh2ing++d7
26 gE+Y9A1Pb0HYM3e6thEonj8DsKzejXqudHoHNlgrGJkSyWyCB1si3qA174NGQxjhf5Ps
27 CrzY8tku25FfInik6BBGI0EYlAPmmBTOjNnXogokGE3/Os1mgxi+XMvfX9lCutXKlarI
28 4eWn03UyEOOuT/j5XDgVzb9kw8EvYIC1ZdRwaVWFglVFs6UTJ24laRGRPMM",
29 "session_id": "CWG1TXV+Zs+XqlaYJCMOW/5Cc7pTMcqXSUd+n613xNM",
30 "device_id": "NTLNZCKSKP"
31 }

Figure 6.1: PUT request of a message event captured in Burp

to the client of A every time we test something, we switched to python-olm [pyt15] us-
ing the Client-Server API to manually send message events to improve our workflow
and be less error-prone. In Figure 6.1 you see an example message event. From the sec-
ond line we can see an m.room.encrypted event [mro18] being sent to a room with
room_id="!GTOVdzziBcpXDhxwaT:matrix.org". The mostly base64-encoded JSON
data from line 23 to 30 reveals the usage of Megolm, the Curve25519 sender key pkCu we
mentioned before, the ciphertext Ci in the format of Section 4.2.5, the session_id and
device_id. Remember V already sent a message and from that, we got session_idV

and sender_keyV . With python, we recreated the request as well as manually encrypted
a test message using python-olm with RV1 and skVEd. In addition to that, we now also
used session_idV and sender_keyV . We should also swap to device_idV for un-
detectability even though it is not necessary function-wise because otherwise they would
be identical for a legitimate message from A and an impersonation attempt in the name

32

6.2 Impersonation with the access token

of V . An observant user may detect the equality of them in an impersonation attempt
by using the view source function in the GUI. The result is surprising, third party T can
successfully decrypt and display the message of A. However, the GUI still shows the
name of A. More research reveals that internally T believes it is a message of V because
T uses RV1 for decryption as well as pkVEd for signature verification. Whenever V now
wants to send a message, T flags it as a possible replay attack because V is sending a
message with the same index i that A already used. As we explained in Section 4.2.6 the
application is responsible for flagging replay attacks. In our case, we used Element Web,
which implements such a replay check. After V sent enough unreadable messages with
old message indices i, party T can successfully decrypt and display legitimate messages
of V again because V caught up with the message indices A already depleted and is now
sending messages with fresh i again (unreadable because we only see a replay warning).
An illustration can be found in Figure 6.2.

Conclusion

The third party T used ΩVP to decrypt and verify a message from A but the client of T did
not display it as such. This seemed to be the closest we can get for now and even after
swapping to sender_idV and device_idV there was no difference in the result. The
problem seems to lie with the homeservers because they still know the message originates
from A. Looking back at the Matrix specification there must be another parameter that is
needed for authentication which turns out to be something called the access token, which
we will cover in the next section.

6.2 Impersonation with the access token

In the last chapter we tried to impersonate V but were not successful because it seems like
swapping to RVi , sk

V
Ed,session_id

V and sender_keyV is not enough. After a success-
ful login by a user, the corresponding homeserver issues an access token t to authenticate
that user. It is similar to a cookie which is transferred inside the authorization header of
an HTTP request (see Figure 6.1). The Matrix specification does not mandate any special
format for t. Homeservers are free to choose their own format, but they should make
sure only one t correlates to a device_id [mat17]. As long as the device is "alive", the
access token t does not change. Upon logout a device usually "dies" (i.e. the device gets
discarded) and whenever a new device registers, usually at login, a new t is generated for
that device. If we can leak t we should definitely be able to impersonate V because it is
basically the same as being in possession of their account. Unfortunately t belongs to high
level part of Matrix namely the matrix-js-sdk. Since it is generated and processed in the

33

6 Attacking Matrix

Figure 6.2: Behavior of different parties when trying to impersonate V

application layer only, we have to forward it to the libolm library in order to leak it via the
subversion. Let tV be the access token of V .

Leaking the access token

Now that we do not want to manipulate the specification of the libolm library, because
our goal is to make as little changes as possible, we cannot change their function foot-
prints, and we have to find a way to forward tV into the library without an extra func-
tion parameter. To achieve this, we can utilize the array parsing the random data for
RV0 because it is passed via the application layer. Moreover, we do not really need the
original RV0 because it is replaced with C̃ during the subversion anyway. After we for-
warded tV to the libolm library via the random data for RV0 , we can use Section 5.3 to

34

6.2 Impersonation with the access token

Figure 6.3: Normal behavior of libolm

Figure 6.4: Transferring tV from JavaScript to C

leak it together with skVEd looking like this RV0 = C̃ = AES-CBCĨV
K̃

(skVEd ‖ tV ‖ pad)

where |pad | = 112 − len(skVEd) − len(tV). An illustration can be found in Figure 6.3
and Figure 6.4. We replace the original random data with len(tV) ‖ tV ‖ rest, where
rest = rand(160 − len(tV) − 1), and after we forwarded it to the initialization of the out-
bound group session in libolm, we encrypt and leak it via RV0 .

Implementation

We start by locating tV in matrix-js-sdk/src/base-apis.js, where we define a
global variable and copy tV to that variable. Next we switch into crypto/OlmDevice.js
where we can find the createOutboundGroupSession function. Inside, a session is
created, and we add another parameter to transfer tV . The function being called now
resides in libolm, so we switch to olm/js/olm_outbound_group_session.js where
we can find the create function, which now receives tV . Moreover, a function named
random_stack is called which allocates storage on the stack as well as writes the ran-

35

6 Attacking Matrix

Figure 6.5: Different method calls for passing tV from JavaScript to C

dom bytes to that address. We now pass that function our token tV and switch to the file
olm_post.js where it is defined. Following the trail we land in filled_stack which
now receives our token tV . It turns out that tV has a variable length, so in order for C to
know how many bytes it has to copy, we had to transfer len(tV) as well. After the location
on the stack is filled with random data, we convert tV to an uint8 array. The first byte
denoting len(tV) following by tV , we copy the whole byte array to the location on the
stack. An illustration for the passing of tV and all files involved can be found in Figure 6.5
Now the C part of libolm receives len(tV), tV and the remaining random data, and we can
continue to process tV there. For that we once again go in the initialization function of the
outbound group session inside olm/src/outbound_group_session.c, and we now
copy tV from the parameter random into an array. The function also holds our subversion
from Section 5.3, so we just redefine our input to be M̃ = skVEd ‖ t. Now because in Section
5.3 we defined ĨV to be the first 16 bytes of our random data we have to make an adjust-
ment here because the first 16 bytes are always part of tV and therefore only rarely change.
Unfortunately, we cannot use the last 16 bytes of our random data because we replaced
almost all random data with skVEd ‖ t. The remaining number of bytes is not enough for
ĨV . To keep fulfilling our ind$-security property, we generate fresh randomness before
every encryption. Since we are using the Megolm ratchet subversion, we automatically
write the ĨV to our ciphertext C̃ and do not need to take care of anything else.

36

6.2 Impersonation with the access token

Our original scenario

After successfully leaking the access token tV to A, we can now get back to our original
scenario with the attacker A, the victim V and a third party T being in a room where A
wants to impersonate V . Without changing anything except the access token, T now dis-
plays a message ofA in the name of V . After some investigation we see a similar behavior
like in Section 6.1. This time, T displays the message in the name of V but internally still
processing it as a message from A because we kept session_idA and sender_keyA.
This also results in a neat side effect being that future messages from V will not get flagged
as replay attacks because T still advancesRAi . The observed behavior seemed to be consis-
tent with the different clients we tested (Element Web [ewe16], Element Android [ean16],
Element Desktop [ede16], Nheko Desktop [nhe17], Mirage Desktop [mir19], SchildiChat
Android [sch18]). If we do the same thing again but now swapping to session_idV

and sender_keyV (seen in Figure 6.1) we get the same result but this time T completely
believes that the message ofA came from V and thus future messages of V will be flagged
as replay attacks by T .

Preventing replay attacks

As stated before, if the attacker A sends messages in the name of the victim V using
pkVCu,session_id

V , RVi , (pk
V
Ed, sk

V
Ed) and tV third party T advances the ratchet RVi and

therefore V will send messages with old message indices already used by A. To prevent
this, we can further manipulate the implementation of V by comparing pkEd of the out-
bound group session of V with every inbound group session of V . Whenever they match
and the message index of the inbound group session iin is higher than our local ratchet
index of our outbound group session iout, we need to advance RVi before encrypting the
next outgoing message. By doing this, V now always uses fresh message indices after an
impersonation attempt from A and T will not flag legitimate messages of V anymore. An
illustration can be found in Figure 6.6.

Pushing things further

After impersonating V in the same room with A, we tried to advance our attack sce-
nario to any room. Together with tV and minimal changes, it was also possible to send
messages in rooms of V where A was not part of. On the implementation side of A, in
matrix-js-sdk/src/client.js, we swapped to user_idV . This step was necessary
in order to make the web interface usable and bug free. We head over to our local instance
of Element Web and login as A. Now we use a browser add-on to permanently replace
tA with tV inside the HTTP authorization header. In the web interface of Element, one

37

6 Attacking Matrix

Figure 6.6: Illustration of syncing between in and outbound group sessions

last step is necessary. We head to Settings � Help & About and click the "Clear cache
and reload" button. Now A has the same web interface V has and A now fully controls
the account of V using the same device authorized by tV . We are basically mirroring the
real device tV belongs to without adding a new device and can now write messages in
every room of V . In addition to that, we (in the role of A) can read all metadata e.g. all
rooms from V , who sent a message at what time, the room participants etc. Since Matrix
is only using API calls, you could also do all of this manually using tV . The other parties
will treat us as a normal device from V with a different sender_key and device_id.
When A sends a message, the recipient receives the Olm session of A authorized by the
homeserver via tV and will accept it without question. In the current state, this seems
to be undetectable to any other user, because A sends their own Olm session and the re-
ceiver believes the homeserver that the Olm session of A came from a legit device of V .
The homeserver maintains a device list for each of its users and only devices on that list
will be eligible to receive any Olm sessions and therefore keys from other people or other
devices of V . For our scenario, we can neither read any inbound nor outbound messages
of V . Before an outbound message is sent, the corresponding encrypted key has to be
transmitted via an Olm session and since the homeserver believes A and V are using the
same device according to tV , the victim V would need to send the key to themselves to
make it retrievable by A, which obviously does not happen. An exception may be if V
uses 2 different devices andA steals tV from one of the devices while V messages from the

38

6.3 Eavesdropping on conversations in other rooms

other device. Then of course, we are able to retrieve the encrypted keys of V , as long as
V uses the other device for messaging. For inbound traffic, we can retrieve the encrypted
keys of V from the homeserver using tV since tV represents a valid device. We cannot de-
crypt any of the decrypted keys inside the Olm sessions though, because we are missing
private key material of V . We will refer to this in Section 7.4.

Conclusion

This time we were successful in impersonating V , and we even made it possible to im-
personate V in any room they are in. For this to work, we had to get access to the user
account of V in the form of tV . We also tried to only change the sender id to sender_idV ,
but the displayed sender is only controlled by tV . It looks like there is still a level of
trust on the homeserver because regarding the sender of a message, it does not matter if
V signed a message as long as tV is used. The users or homeservers do not verify if the
Curve25519 sender key pkCu actually belongs to the acclaimed sender. If the homeserver
tells the client the message came from V , then it came from V . Since everyone can host a
homeserver themselves, this might pose a potential security risk.

6.3 Eavesdropping on conversations in other rooms

In this section we want to go into another direction. Let us say, we have two distinct
rooms. The members of room 1 denoted as roomV,T are the victim V and a third party T .
They maintain a private conversation with end-to-end encryption. Room 2 denoted as
roomV,A consists of V and the attacker A also end-to-end encrypted. Our goal now is to
eavesdrop on the conversation between V and T happening in roomV,T using the direct
channel to the attacker A in roomV,A.

How we do it

Remember from Section 5.4, we are able to leak 31 bytes every message V sends to A
in roomV,A. That will be our main leaking channel. Now let us talk about what we are
going to leak. Leaking plaintexts is not very efficient because they can be really long
and therefore many 31 byte message chunks between V and A are needed. Leaking the
derived AES_KEY i and AES_IV i is also not very meaningful. Even though they are
only 48 bytes in length together, they can only decrypt one message because the ratchet
value Ri is advanced after every message. Once again the ratchet value Ri sounds the
most promising. Leaking the first ratchet value R0 ensures that A will be able to decrypt
the following 100 messages because A can compute any successors themselves. Because

39

6 Attacking Matrix

Algorithm 10: Outbound Session with leak array size of 4 keys

1 if message_to_attacker then
2 if array[index] == empty then // Skip current entry if empty
3 index = (index + 1) mod 4
4 counter = 0

5 S̃(M, skEd, K̃, array[index], counter)
6 counter++
7 if counter == 5 then // if we leaked 5 chunks, remove the key
8 counter = 0
9 array.remove[index]

10 index++

11 if index ≥ 4 then // Reset, if we hit end of array
12 index = 0

13 else
14 if !in_array(R0) then
15 array.add(R0)

16 S(M, sk)

Algorithm 11: Inbound Session

1 if !in_array(R0) then // If inbound key not in array, add it
2 array.add(R0)

we want to eavesdrop in roomV,T , we only have to leak the ratchet values RV0 , R
T
0 from

roomV,T . Our attack scenario will be the following. Whenever V messages A in roomV,A,
victim V leaks a 31 byte chunk of either RV0 or RT0 from roomV,T . An illustration can be
found in Figure 6.7. Every ratchet value R0 is 128 bytes long, so we need 5 chunks to fully
leak one ratchet value. Therefore, we need 10 messages to leak both of them.
Now after we discussed how A will get the ratchet values, let us talk about how they can
retrieve the encrypted messages between T and V in roomV,T . In order to get them, the
attacker A can use the access token tV that we leaked in Section 6.2. Via a /sync API Call
using the Client-Server API [mat14a], the attacker A uses tV to retrieve all the encrypted
messages sent in roomV,T and with RV0 , R

T
0 from roomV,T , the attacker A can successfully

decrypt them. A pseudocode for the behavior of the inbound and outbound session is
given in Algorithm 10 and Algorithm 11.

40

6.3 Eavesdropping on conversations in other rooms

Figure 6.7: Leaking keys from another room to A

Implementation

Going over to the implementation, the biggest issue we had to fight, was linking a mes-
sage to A. Since the receiver of a message event is always a room, we had no way of
distinguishing between V and T . Fortunately, the initial ratchet value R0 is sent to each
person directly via their Olm session and by that we could do the differentiation. We
start in olm/src/olm.cpp inside olm_encrypt where we can scan every plaintext be-
fore encryption to check whether it is going to A. The transmission of a ratchet value
a. k. a. session_key is called an m.room_key event. An example can be found in Figure
6.8. The base64-encoded ratchet valueR0 can be found inside the session_key entry. We
also see user_idA under the recipient entry. With that information we can make a copy
of the ratchet value RV0 going to A. Now, in olm/src/outbound_group_session.c

we can compare ratchet values every time a message is encrypted. If the ratchet value
RV0 is used, we now know that we are communicating with A. Additionally, we have to
advance the copy we made. Otherwise, all subsequent comparisons will fail because RV0
was advanced to RV1 . Now that, we know when we sent something to A, we can start
leaking the ratchet values of roomV,T . For our test scenario, we made an array of 4 possi-
ble entries. Every time we are messaging in roomV,T , we add the initial ratchet values for
that person to the array. Whenever we send a message to A in roomV,A, we sequentially
leak 31 bytes per message of the first ratchet value in the array. As soon as the first entry
is fully transmitted (V sent 5 messages to A), the ratchet value gets removed from the ar-
ray and the next entry is going to be leaked. When the current array entry is empty, it is
skipped and whenever it hits the end, it just restarts with entry 0. To prevent adding mul-

41

6 Attacking Matrix

1 {
2 "sender": "@victim:matrix.org",
3 "sender_device": "ZGXAUVPQJO",
4 "keys": {
5 "ed25519": "M++tCeX/D5f0c5yZDODaQEJ+XfcF7o5M3Rgal7+HJGI"
6 },
7 "recipient": "@attacker:matrix.org",
8 "recipient_keys": {
9 "ed25519": "T+QDHAQfQEVKQnia1osF3B3FQBxenYwGnYg7CT1T0Xg"

10 },
11 "type": "m.room_key",
12 "content": {
13 "algorithm": "m.megolm.v1.aes-sha2",
14 "room_id": "!GTOVdzziBcpXDhxwaT:matrix.org",
15 "session_id": "HRA/xryLwyAt3j6ihJkv5t5cSOEXQdf/zFZsWYoFyVI",
16 "session_key": "AgAAAAAiZ//5ruoLCDTYwXWT6VjblzlmrxPHppgLzDu7RF7Lo2
17 Sy1p54NU+vPQwTuk+kmTJDDD0j4MddXm1xL4bg6w+k2lN/9drEC+xHippE1L0m
18 9Md0TOr6/zrDqCk9ATdW0zMvqCUf+hLHZPHjW6Ue8keGhn5ZOBYs2Nglry7b5z
19 vIVB0QP8a8i8MgLd4+ooSZL+beXEjhF0HX/8xWbFmKBclS6J4AkCLk3tdwkNam
20 3VW4hgBFNetPZe1+dFKRAL0zaz20D2wKz2NCnVgtTwj1oT2V0Tx5pd6iej2Ree
21 R8Ep2WAA",
22 "chain_index": 0,
23 "org.matrix.msc3061.shared_history": true
24 }
25 }

Figure 6.8: Transmission of a ratchet value R0 as an m.room_key event

tiple versions of the same ratchet value (R0, R1, R2, . . .) we only add ratchet values with
an i = 0, because the initial ratchet value R0 is enough for decrypting all subsequent mes-
sages. For the actual leaking process we call our subverted signing function S̃ described
in Section 5.4. After the leak, A can now rebuild the ratchet values from the chunks and
via the /sync API they can use tV to retrieve all the messages sent in roomV,T . In the end
A can decrypt all of them via python-olm [pyt15].

Conclusion

We successfully leaked the two ratchet values of roomV,T through roomV,A to the attacker
A. We are limited by the size of the array and the amount of messages sent from V to A.
Five messages from V to A are needed for every ratchet value we want to leak. If V rarely
messages A and has a lot of chat rooms, the array might be filled at some point without
room for new ratchet values and therefore losing access to messages encrypted by these
ratchet values.

42

7 Conclusion

This chapter marks our conclusion to the subject. We will give a short summary as well
as discuss the things we discovered. We will give an evaluation of the result as well as
discuss countermeasures for the identity binding problem related to the impersonation.
In the last section, we show some ideas on how the attacks discovered can be advanced.

7.1 Summary

In the first step we subverted the Megolm Ratchet. With that, we gained a channel with
a bandwidth of 112 bytes every 100 message. Even though the bandwidth was not that
high we managed to withstand the analysis of an omniscient watchdog giving us the
highest possible undetectability level on our list. We used that channel to leak the private
signature key of the victim skVEd. With that key we could make it possible to subvert
the Ed25519 signature scheme and appended subverted signatures S̃ to every message.
Even though we did not reach the highest undetectability level, we made a fair trade off,
which brought us down to the online watchdog. With the disposal of the transmission of
ĨV , this signature subversion gave us a much higher bandwidth of 31 bytes with every
message. Utilizing those two subversions, we made two attacks possible. We managed to
impersonate V in every room they are part of and sent messages in their name and also
eavesdropped on the communication happening between V and T inside another room
we were not part of by leaking the ratchet values RVi , R

T
i used for the encryption.

7.2 Discussion

In an end-to-end encrypted service there should not be trust on any third parties in be-
tween. The Matrix website does not reveal whether the homeservers are trusted entities
or not but there is a strong guess that they are not because in end-to-end encryption par-
ticularly the Signal protocol, the servers are considered untrustworthy. Whenever a user
receives a new Olm session, the user does not verify the sender of this session. They ac-
cept the session no matter what and solely rely on what the homeserver told them about
the sender. Due to this fact, solely the homeserver dictates the sender of a message. The
following assumption was not tested and is subject to future work but in theory if two
or more homeservers are used, a homeserver cannot choose a sender outside its database

43

7 Conclusion

because it did not issue the access token t. However, a homeserver can choose any of its
own users as the sender as long as they are part of the room. The other homeservers will
acknowledge the event and forward it to the receiver. Despite that, Matrix showed a high
defense against Algorithm Substitution Attacks. Due to its design it was impossible to
read old messages without specifically leaking the necessary keys Ri during communica-
tion. For that kind of security a major trade off has been made in the usability department.
Before logging out, you always have to export all values for Ri for every room you are in,
otherwise they will be wiped and messages cannot be decrypted anymore. For that, Ma-
trix offers an encrypted key backup on the homeserver to retrieve them later on. The
only way to retrieve them without exporting, is via a key request to a currently active
session (e.g. your smartphone) that still has the requested Ri values. From an attacker’s
perspective that means V has to explicitly accept a key request in order for A to get the
keys. Most likely, this will not succeed and if so, it will be really suspicious. Imagine you
will get a popup from another browser session requesting values of Ri that you do not
know of. Eavesdropping on future communication was not possible either. In contrast
to Signal, which offers no backward secrecy, because once an attacker A registered a ma-
licious device, they are able to read all future messages [WBPE21], Matrix is an entirely
different story. Even after leaking t, which basically gives you access to the account, you
cannot read any future messages. The only thing you can learn is some metadata e.g. the
different rooms V is in, the members of the room, timestamps of messages etc. As we
discussed in Section 6.2 the access token tV marks exactly one device and when using the
same tV on 2 different physical devices, the victim V would have to send their own keys
to their own current device in order forA to be retrievable. The only potentially message-
confidentiality-breaking informationA can retrieve are the encrypted keys inside the Olm
session from any person messaging V . Apart from that, in order for A to retrieve all keys
and fully break message confidentiality, they would have to register a new device result-
ing in their own t. The only way to register a legitimate device and read future messages
is by doing a login via username and password. This will immediately notify V , and the
attacker A will appear on their list of active devices. In addition to that, every message
sent by Awill be flagged as "sent by an unverified device" until V manually verifies it. As
one can probably imagine, this will be more than alarming. Overall, Matrix does not offer
a way to undetectably and universally compromise confidentiality of messages.

7.3 Countermeasures

We want to suggest a countermeasure for the impersonation problem we discovered. Re-
member, solely the access token tV was enough for A to impersonate V in any room they

44

7.4 Future Work

are in. A receiver of an Olm session does not verify if that session actually came from the
acclaimed sender. The receiver solely trusts on what the homeserver told them the sender
would be. Every user maintains an updated list of public keys on their homeserver includ-
ing their public Curve25519 identity key pkCu. Now either the homeserver or the receiver
could verify if the pkCu inside the Olm session belongs to any devices of V . If not, then
this message obviously not came from V and has to be handled accordingly.

7.4 Future Work

We want to give some ideas on how to advance the things we discovered. In Section 6.2
we came to the conclusion that we are missing key material in order to decrypt the Olm
session of a third party. This key material involves the private Curve25519 identity key
skCu as well as one of the private one-time keys mentioned in [key]. It should be no chal-
lenge to leak them as well and decrypt that Olm session resulting in the compromise of
Ri, which would break confidentiality. The Olm session is probably reinitialized on a reg-
ular basis and therefore a new one-time key is needed every time, which limits the use
case of this leak. An attacker A has to maintain regular conversation with V in order to
keep receiving them. If they manage to do that, they can still only compromise messages
from a third party to V , which brings us to our next attack vector. The homeservers are
definitely somewhat trusted entities. Since they maintain the device list for each of their
users, it may be possible forA to host a homeserver themselves and add their own device
to the device list of every user. If they can do this undetectably, a total compromise of
confidentiality may be possible. Being on the device list effectively means, that the ma-
licious device receives ratchet values Ri from all parties and therefore is able to decrypt
messages. Furthermore, we have seen that t is enough to impersonate another user and
the homeserver is the sole administrator of these tokens. If A compromises the home-
server, where them and V are registered on, they may be able to manipulate the sender of
a message without any additional knowledge. With the leak of t, it may also be possible
to register a malicious device without compromising a homeserver resulting in the same
effect as before. Even though Matrix prevents multiple devices being registered on the
same t, this restriction may or may not be circumvented.

45

References

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient
signature schemes. In CCS, pages 364–375. ACM, 2015.

[BBGea13] James Ball, Julian Borger, Glenn Greenwald, and et al. Revealed: how US and
UK spy agencies defeat internet privacy and security, 2013.

[BDL+12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. J. Cryptogr. Eng., 2(2):77–89, 2012.

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the
state: Strongly undetectable algorithm-substitution attacks. In CCS, pages
1431–1440. ACM, 2015.

[BL17] Sebastian Berndt and Maciej Liśkiewicz. Algorithm substitution attacks from
a steganographic perspective. In CCS, pages 1649–1660. ACM, 2017.

[BM16] Alex Balducci and Jake Meredith. Olm Cryptographic Review. Technical re-
port, NCC Group, 2016. URL: https://www.nccgroup.com/globalass
ets/our-research/us/public-reports/2016/november/ncc_gro

up_olm_cryptogrpahic_review_2016_11_01.pdf.

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of sym-
metric encryption against mass surveillance. In CRYPTO (1), volume 8616 of
Lecture Notes in Computer Science, pages 1–19. Springer, 2014.

[BSJ+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors
Stepanovs. Ratcheted encryption and key exchange: The security of messag-
ing. In CRYPTO (3), volume 10403 of Lecture Notes in Computer Science, pages
619–650. Springer, 2017.

[bun20] Bundeswehr will komplett auf Matrix-Chat wechseln, 2020. Accessed 2021-04-
22. URL: https://www.golem.de/news/messenger-bundeswehr-wil
l-komplett-auf-matrix-chat-wechseln-2005-148407.html.

[BWP+20] Sebastian Berndt, Jan Wichelmann, Claudius Pott, Tim-Henrik Traving, and
Thomas Eisenbarth. ASAP: algorithm substitution attacks on cryptographic

47

https://www.nccgroup.com/globalassets/our-research/us/public-reports/2016/november/ncc_group_olm_cryptogrpahic_review_2016_11_01.pdf
https://www.nccgroup.com/globalassets/our-research/us/public-reports/2016/november/ncc_group_olm_cryptogrpahic_review_2016_11_01.pdf
https://www.nccgroup.com/globalassets/our-research/us/public-reports/2016/november/ncc_group_olm_cryptogrpahic_review_2016_11_01.pdf
https://www.golem.de/news/messenger-bundeswehr-will-komplett-auf-matrix-chat-wechseln-2005-148407.html
https://www.golem.de/news/messenger-bundeswehr-will-komplett-auf-matrix-chat-wechseln-2005-148407.html

References

protocols. IACR Cryptol. ePrint Arch., 2020:1452, 2020. URL: https://epri
nt.iacr.org/2020/1452.

[CHY20] Rongmao Chen, Xinyi Huang, and Moti Yung. Subvert KEM to break DEM:
practical algorithm-substitution attacks on public-key encryption. In ASI-
ACRYPT (2), volume 12492 of Lecture Notes in Computer Science, pages 98–128.
Springer, 2020.

[cli] Matrix Different Clients Overview. Accessed 2021-06-14. URL: https://ma
trix.org/clients/.

[dev20] Element Web GitHub Development Environment, 2020. Accessed 2021-05-04.
URL: https://github.com/vector-im/element-web#setting-up-
a-dev-environment.

[DH79] Whitfield Diffie and Martin Hellman. Privacy and Authentication: An Intro-
duction to Cryptography. In Proceedings of the IEEE, volume 67, pages 397–427,
1979.

[ean16] Element Android GitHub, 2016. Accessed 2021-05-04. URL: https://gith
ub.com/vector-im/element-android.

[edd17] Edwards-Curve Digital Signature Algorithm (EdDSA) RFC 8032 Chapter 5.2.3,
2017. Accessed 2021-06-05. URL: https://datatracker.ietf.org/doc
/html/rfc8032#section-5.2.3.

[ede16] Element Desktop GitHub, 2016. Accessed 2021-05-04. URL: https://gith
ub.com/vector-im/element-desktop.

[edg17] Edwards-Curve Digital Signature Algorithm (EdDSA) RFC 8032, 2017. Ac-
cessed 2021-06-05. URL: https://datatracker.ietf.org/doc/html/
rfc8032.

[ewe16] Element Web GitHub, 2016. Accessed 2021-05-04. URL: https://github.c
om/vector-im/element-web.

[fre18] French government Matrix, 2018. Accessed 2021-04-22. URL: https://matr
ix.org/blog/2018/04/26/matrix-and-riot-confirmed-as-the-

basis-for-frances-secure-instant-messenger-app.

[git20] GitHub Issue Missing Replay Protection, 2020. Accessed 2021-08-10. URL:
https://github.com/vector-im/element-android/issues/1990.

48

https://eprint.iacr.org/2020/1452
https://eprint.iacr.org/2020/1452
https://matrix.org/clients/
https://matrix.org/clients/
https://github.com/vector-im/element-web#setting-up-a-dev-environment
https://github.com/vector-im/element-web#setting-up-a-dev-environment
https://github.com/vector-im/element-android
https://github.com/vector-im/element-android
https://datatracker.ietf.org/doc/html/rfc8032#section-5.2.3
https://datatracker.ietf.org/doc/html/rfc8032#section-5.2.3
https://github.com/vector-im/element-desktop
https://github.com/vector-im/element-desktop
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032
https://github.com/vector-im/element-web
https://github.com/vector-im/element-web
https://matrix.org/blog/2018/04/26/matrix-and-riot-confirmed-as-the-basis-for-frances-secure-instant-messenger-app
https://matrix.org/blog/2018/04/26/matrix-and-riot-confirmed-as-the-basis-for-frances-secure-instant-messenger-app
https://matrix.org/blog/2018/04/26/matrix-and-riot-confirmed-as-the-basis-for-frances-secure-instant-messenger-app
https://github.com/vector-im/element-android/issues/1990

References

[Gre14] Glenn Greenwald. No place to hide: Edward Snowden, the NSA, and the US
surveillance state, 2014.

[Hen20] Floris Hendriks. Analysis of key management in Matrix, 2020. URL: https:
//www.cs.ru.nl/bachelors-theses/2020/Floris_Hendriks___4

749294___Analysis_of_key_management_in_Matrix.pdf.

[hkd10] HMAC-based Extract-and-Expand Key Derivation Function (HKDF), 2010.
Accessed 2021-08-13. URL: https://datatracker.ietf.org/doc/h
tml/rfc5869.

[hma97] HMAC: Keyed-Hashing for Message Authentication, 1997. Accessed 2021-08-
14. URL: https://datatracker.ietf.org/doc/html/rfc2104.

[key] End-to-End Encryption Implementation Guide. Accessed on 2021-07-12. URL:
https://matrix.org/docs/guides/end-to-end-encryption-imp

lementation-guide.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014.

[lib16] Libolm Library (Matrix GitLab), 2016. Accessed 2021-05-08. URL: https:
//gitlab.matrix.org/matrix-org/olm/-/tree/master.

[mat] Matrix Specification. Accessed 2021-08-14. URL: https://matrix.org/d
ocs/spec/.

[mat14a] Matrix Client-Server API, 2014. Accessed on 2021-07-12. URL: https://ma
trix.org/docs/api/client-server/.

[mat14b] Matrix Website, 2014. Accessed on 2021-08-14. URL: https://matrix.org
/.

[mat17] Client-Server API — Relationship between access tokens and devices, 2017.
Accessed 2021-08-13. URL: https://matrix.org/docs/spec/client_s
erver/latest#relationship-between-access-tokens-and-devi

ces.

[meg19] Megolm Protocol (Matrix GitLab), 2019. Accessed 2021-04-22. URL: https:
//gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/me

golm.md.

49

https://www.cs.ru.nl/bachelors-theses/2020/Floris_Hendriks___4749294___Analysis_of_key_management_in_Matrix.pdf
https://www.cs.ru.nl/bachelors-theses/2020/Floris_Hendriks___4749294___Analysis_of_key_management_in_Matrix.pdf
https://www.cs.ru.nl/bachelors-theses/2020/Floris_Hendriks___4749294___Analysis_of_key_management_in_Matrix.pdf
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc2104
https://matrix.org/docs/guides/end-to-end-encryption-implementation-guide
https://matrix.org/docs/guides/end-to-end-encryption-implementation-guide
https://gitlab.matrix.org/matrix-org/olm/-/tree/master
https://gitlab.matrix.org/matrix-org/olm/-/tree/master
https://matrix.org/docs/spec/
https://matrix.org/docs/spec/
https://matrix.org/docs/api/client-server/
https://matrix.org/docs/api/client-server/
https://matrix.org/
https://matrix.org/
https://matrix.org/docs/spec/client_server/latest#relationship-between-access-tokens-and-devices
https://matrix.org/docs/spec/client_server/latest#relationship-between-access-tokens-and-devices
https://matrix.org/docs/spec/client_server/latest#relationship-between-access-tokens-and-devices
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/megolm.md
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/megolm.md
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/megolm.md

References

[mir19] Mirage Desktop Client GitHub, 2019. Accessed 2021-05-04. URL: https:
//github.com/mirukana/mirage.

[mro18] Matrix Client-Server API m.room.encrypted event, 2018. Accessed on 2021-07-
12. URL: https://matrix.org/docs/spec/client_server/latest
#m-room-encrypted.

[nhe17] Nheko Desktop Client GitHub, 2017. Accessed 2021-05-04. URL: https:
//github.com/Nheko-Reborn/nheko.

[olm19] Olm Protocol (Matrix GitLab), 2019. Accessed 2021-04-22. URL: https://gi
tlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md.

[PLS13] Nicole Perlroth, Jeff Larson, and Scott Shane. NSA able to foil basic safeguards
of privacy on web, 2013.

[pyt15] Python-Olm: Python bindings for Olm, 2015. Accessed on 2021-07-12. URL:
https://gitlab.matrix.org/matrix-org/olm/-/tree/master/p

ython.

[Rog11] Phillip Rogaway. Evaluation of Some Blockcipher Modes of Operation. Uni-
versity of California, Davis, 2011.

[roo] Room Definition. Accessed 2021-08-01. URL: https://matrix.org/doc
s/spec/#id15.

[RTYZ16] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptogra-
phy: Clipping the power of kleptographic attacks. In ASIACRYPT (2), volume
10032 of Lecture Notes in Computer Science, pages 34–64, 2016.

[Sch11] Dr. Schorsch. A mechanical ratchet, 2011. URL: https://creativecommon
s.org/licenses/by-sa/3.0/.

[sch18] SchildiChat Android GitHub, 2018. Accessed 2021-05-04. URL: https://gi
thub.com/SchildiChat/SchildiChat-android.

[sig16] Signal Documentation, 2016. Accessed on 2021-04-22. URL: https://sign
al.org/docs/specifications/doubleratchet/.

[TBEL21] Thore Tiemann, Sebastian Berndt, Thomas Eisenbarth, and Maciej Liśkiewicz.
"Act natural!": Having a private chat on a public blockchain. 2021. URL:
https://eprint.iacr.org/2021/1073.

50

https://github.com/mirukana/mirage
https://github.com/mirukana/mirage
https://matrix.org/docs/spec/client_server/latest#m-room-encrypted
https://matrix.org/docs/spec/client_server/latest#m-room-encrypted
https://github.com/Nheko-Reborn/nheko
https://github.com/Nheko-Reborn/nheko
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/blob/master/docs/olm.md
https://gitlab.matrix.org/matrix-org/olm/-/tree/master/python
https://gitlab.matrix.org/matrix-org/olm/-/tree/master/python
https://matrix.org/docs/spec/#id15
https://matrix.org/docs/spec/#id15
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://github.com/SchildiChat/SchildiChat-android
https://github.com/SchildiChat/SchildiChat-android
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://eprint.iacr.org/2021/1073

References

[var20] Protocol Buffers encoding, 2020. Accessed on 2021-07-12. URL: https://de
velopers.google.com/protocol-buffers/docs/encoding.

[WBPE21] Jan Wichelmann, Sebastian Berndt, Claudius Pott, and Thomas Eisenbarth.
Help, my signal has bad device! - breaking the signal messenger’s post-
compromise security through a malicious device. In DIMVA, volume 12756
of Lecture Notes in Computer Science, pages 88–105. Springer, 2021.

[YY96] Adam L. Young and Moti Yung. The dark side of "black-box" cryptography,
or: Should we trust capstone? In CRYPTO, volume 1109 of Lecture Notes in
Computer Science, pages 89–103. Springer, 1996.

[YY97] Adam L. Young and Moti Yung. Kleptography: Using cryptography against
cryptography. In EUROCRYPT, volume 1233 of Lecture Notes in Computer Sci-
ence, pages 62–74. Springer, 1997.

51

https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding

	Introduction
	Related Work
	Our Contributions

	Preliminaries
	What are Algorithm Substitution Attacks?
	Attacker Model
	Levels of Undetectability
	Notation
	Concatenation and String Splitting
	Exponents
	Types of Ciphertexts

	Ed25519 Signature Algorithm
	Key Generation
	Signing
	Verification

	Ratchet Definition

	High Level Description of Matrix
	Architecture
	Keys
	How the communication works

	Protocols Used in Matrix
	Olm
	Megolm
	Session setup
	Advancing the ratchet
	Sharing session data
	Message encryption
	Message format
	Limitations

	Subverting Matrix
	The development environment
	Background
	Megolm Ratchet Subversion
	Megolm Signature Subversion

	Attacking Matrix
	Impersonation with signature keys
	Impersonation with the access token
	Eavesdropping on conversations in other rooms

	Conclusion
	Summary
	Discussion
	Countermeasures
	Future Work

	References

