
Algorithms for RSA key recovery

Algorithmen zur RSA Schlüsselwiederherstellung

Bachelorarbeit

im Rahmen des Studiengangs
IT-Sicherheit
der Universität zu Lübeck

vorgelegt von
Christopher Krebs

ausgegeben und betreut von
Prof. Dr.-Ing. Thomas Eisenbarth

mit Unterstützung von
Dr. rer. nat. Sebastian Berndt

Lübeck, den 19. April 2021

Abstract

This paper deals with the RSA key recovery algorithm published by Nadia Heninger and
Hovav Shacham in 2009. This algorithm is able to completely reconstruct the private key
using special partial information about the private key. This information could for exam-
ple be obtained using a cold boot attack. We consider the value q−1p whose information is
not used in the algorithm and analyze how this information could be used to improve the
algorithm.

Diese Arbeit beschäftigt sich mit dem RSA Key Recovery Algorithmus, den Nadia
Heninger und Hovav Shacham 2009 veröffentlicht haben. Besagter Algorithmus ist in
der Lage mithilfe von speziellen partiellen Informationen über den privaten Schlüssel,
die beispielsweise über einen Cold Boot Angriff erlangt werden können, diesen Schlüs-
sel vollständig zu rekonstruieren. Wir betrachten den Wert q−1p , dessen Informationen
im Algorithmus nicht genutzt werden und analysieren wie diese Informationen genutzt
werden könnten um den Algorithmus zu verbessern.

iii

Acknowledgements

I take this opportunity to express gratitude to Sebastian Berndt for his constant supervi-
sion, help, support and feedback.
I would also like to thank my proof readers Nico Kleefeldt and Theodor Rolfs for their
time and effort.

iv

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, 19. April 2021

v

Contents

1 Introduction 1
1.1 Goals . 1

1.2 Procedure . 1

2 RSA Cryptosystem 3
2.1 Key Generation . 3

2.2 RSA Encryption . 3

2.3 RSA Decryption . 4

2.4 The RSA Problem . 5

2.4.1 RSA Not Harder Than Factoring . 5

2.4.2 Difficulty Of The RSA Problem . 5

3 Key Recovery Algorithm 6
3.1 Premises of a Key Recovery . 6

3.2 Cold Boot Attack . 6

3.3 Private Key Recovery . 7

3.4 Prospects . 9

4 Incorporating q−1p 10
4.1 Structure Of q−1p With Regard To p And q . 10

4.2 Chinese Remainder Theorem . 11

4.2.1 RSA Decryption . 11

4.2.2 Garner’s Algorithm . 12

4.3 Bitwise Modular Inverse . 13

4.3.1 Dependencies . 14

4.3.2 Gained Information . 15

4.3.3 Discussion And Open Problems . 15

4.4 Decrypting Modified Ciphertext . 16

4.4.1 C+1 . 16

4.4.2 2C . 17

4.4.3 Conclusion . 17

vi

Contents

5 Factorizing N From k′ 19
5.1 Coppersmith Method . 19

5.1.1 Purpose . 19
5.1.2 Fundamentals . 19
5.1.3 Forming The Polynomial f(x) . 22
5.1.4 Finding The Polynomial h(x) . 23
5.1.5 Finding The Integer Root . 24

5.2 Examplary Application . 24
5.3 Summary . 26

6 Conclusions 28
6.1 Summary . 28
6.2 Discussion and open problems . 29

References 30

Sage Code: Coppersmith Method 31

vii

1 Introduction

In this thesis, we consider the key recovery algorithm for RSA private keys developed by
Nadia Heninger and Hovav Shacham. The key is stored in redundant form, so that there
are six values in the decryptor’s memory, each of which is sufficient to completely recover
the private key. In our particular case, we assume that information is available about
these six values that reliably tells us the state of some bits. The algorithm can recover
the complete key from bitwise known partial information about the redundantly stored
private key. The algorithm uses only the first five of these six stored values. Thus, one
sixth of the information obtained about the key is not used. In developing the algorithm,
only five out of six available sources of information were used. Here, we consider this
sixth value, investigate ways to include this value in the recovery of the private key, and
show how it is possible to obtain information about the private key when this sixth value
is available.

1.1 Goals

The goal of our considerations is to integrate the sixth value q−1p into the key recovery
algorithm and to make the partial information obtained through it usable. We hope that
this will lead to an improvement of the algorithm. On the one hand, this improvement
could be an increased efficiency and thus a faster execution of the algorithm, on the other
hand, it is possible to reduce the limitations of the algorithm by extending the information
used. Overall, the goal is to use the obtained partial information more effectively.

1.2 Procedure

We start by reviewing the basics. To do this, we first look at the underlying encryption
method RSA. We are primarily interested in the structure of the procedure. Particularly
relevant for us are the parts of the key generation that must not be public. Then we look at
how encryption and decryption with RSA works and why it works. Finally, we consider
how difficult it is to solve the RSA problem. Next, we look at the key recovery algorithm.
The main goal is to understand how and why the algorithm works. The algorithm will
be put in perspective as to its capabilities and prerequisites as well as its possible uses. In
principle, the algorithm is based on the fact that the information obtained about the re-

1

1 Introduction

dundantly stored values of the private key is compared bit by bit in a system of equations,
so that the values can be calculated relatively efficiently and reliably bit by bit starting
from the least significant bit. After we are more familiar with the algorithm, we look at
q−1p , which is the sixth value stored for decryption that is currently not included in the
algorithm. For this purpose, we look at the computation of the value and how it is used
in RSA for decryption. After that, we think about ways to find dependencies between
q−1p and the other values of the private key to be able to use information about q−1p . Fi-
nally, we show how it is possible through the Coppersmith’ method to compute from the
value k′, which gives the number of arithmetic overflows in the modular ring p such that
q · q−1p − 1 = k′ · p, and the public key the prime p and hence the entire key.

2

2 RSA Cryptosystem

RSA is an asymmetric cryptographic system developed in 1977 [RSA78], which uses inte-
ger factorization. It is the first and most widely used algorithm of this type and is valid
for both encryption and digital signing. The security of this algorithm lies in a problem
closely related to integer factorization. The messages sent are encoded into numbers, and
the operation is based on the known product of two large random prime numbers. As in
any public key system, each user has two encryption keys: one public and one private.
Once someone wants to send a message they need to look up the receiver’s public key,
encrypt their message with that key, and once the encrypted message reaches the receiver,
the receiver decrypts it using their private key. The message can be sent through a public
channel, since only the holder of the private key can decrypt it within feasible time.

2.1 Key Generation

The keys are generated by choosing large integers p, q ∈ PRIME. We then calculateN = p·q
and ϕ(N) = (p − 1) · (q − 1). Since 2015, the US National Institute of Standards and
Technology recommends the minimum size for N to be 2048 bits. Hence, the magnitude
of p, q can be assessed as 10600. Next, a public exponent e ∈ Z∗ϕ(N) is chosen so that e and
ϕ(N) are co-prime. The official recommendation for e is the prime number 65337. For this
e we find the inverse in the cyclic field Z∗ϕ(N) so that

d = e−1 mod ϕ(N) .

To calculate d in polynomial time the extended euclidean algorithm can be used. The
numbers d, e,N make up the keys to this encryption method. The public key is given in
the format (N, e), while the private key is stored as (N, d). It is important for the private
key to only be known to the entity, who is intended to be able to decrypt the messages. The
public key needs to be known by anyone sending messages to the holder of the private
key and should hence be stored in a public directory.

2.2 RSA Encryption

After generating the keys in this way, we can publish the public key (N, e). If this is
used to encrypt a message, only someone who knows the corresponding private key can

3

2 RSA Cryptosystem

reverse the computation in polynomial time, since this is the simple direction of a trap
door function. Inverting the encryption function is assumed to be a hard problem, but can
be made easy through the use of the private key [Sma16, page 168]. A message M can be
encrypted into a ciphertext C using

C =M e mod N .

2.3 RSA Decryption

By default, decryption works in a similar way as encryption. Since d and e are modular
inverses of each other inZ∗ϕ(N), their multiplication with one another results in the neutral
element of the field. Decryption works by applying

M = Cd mod N .

When we look at this in detail the values can be denoted as

M = Cd mod N = (M e)d mod N =M ed mod N .

The Fermat–Euler theorem [Raj] states that if M and N are coprime, then

Mϕ(N) = 1 mod N .

Hence,

ϕ(N) = (p− 1) · (q − 1)

and thus

e · d = 1 mod ϕ(N).

It follows that there is a k so that e · d = k · ϕ(N). We can conclude

M ed =M (ed−1)+1 =M ·M ed−1 =M ·Mkϕ(N) =M · 1k =M mod N .

This shows why d and e can be picked from Z∗ϕ(N) and still be used to de- and encrypt
information in modulo N [Sma16, pages 172–173].

4

2.4 The RSA Problem

2.4 The RSA Problem

The RSA problem describes finding the private key of an RSA encryption system know-
ing only the RSA encryption system and the public key in accordance with Kerckhoff’s
principle. To solve the problem an attacker needs to find a way to efficiently compute m
given

C =M e mod N.

Considering the fact that N and e are public, we can assume that the attacker will use a
chosen-plaintext attack since they can calculate the ciphertext to any message they want
using the public key and the known encryption method. They also know that N is the
product of two large prime numbers [Sma16, page 173].

2.4.1 RSA Not Harder Than Factoring

Assuming we can factor any N , we can compute p and q and thus ϕ(N) = (p− 1) · (q− 1)

and following that use the extended euclidean algorithm to calculate

d = e−1 mod ϕ(N).

After finding d we can decrypt M by calculating

Cd =M mod N

from the definition of RSA. Therefore the RSA problem is at most as hard as the factoriza-
tion problem [Sma16, page 172].

2.4.2 Difficulty Of The RSA Problem

Just as there is no evidence that integer factorization is hard to compute, there is no evi-
dence that the RSA problem is any less hard. As we just showed, the RSA problem can not
be harder than factorization, since we can solve it through factorization, but may well be
simpler. An indicator that the RSA problem might be simpler than integer factorization
is that the RSA problem only requires breaking one ciphertext, while integer factoriza-
tion obtains the private key and thus breaks all possible ciphertexts. The search for d is
equivalent in effort to the search for the prime factors of N , but knowing d is not a direct
requirement for solving the RSA problem.

5

3 Key Recovery Algorithm

The Key Recovery Algorithm can recover the private key of an RSA cryptosystem after
information about this key has been partially obtained. The key is stored redundantly in
the RAM of the decrypting device. By recovering some of the bits of the key, the remaining
bits can be calculated by the following algorithm using said redundancies.

3.1 Premises of a Key Recovery

In order for the key recovery algorithm to be used, partial information about the private
key must be available. This partial information can be obtained, for example, by a cold
boot attack on a machine to which there is physical access [HSH+09, page 49]. This in-
formation gives us knowledge about the total length of the individual bit strings as well
as some bits, which we can then regard as known. Each memory device has a ground
state. The bits we gain partial information about which are not in that ground state are
considered confirmed in that state. All known bits have the same state. All bits that are
not in this state must be assumed to be unknown, so both states can be considered correct.
For efficient recovery of the full key, there must be a known δ-fraction of the entire key
(p, q, d, dp, dq, q

−1
p). The density of known bits from the different values plays an essential

role here. Thus the algorithm can be used with

δ = 0.27 certainty over the bits of p, q, d, dp and dq

δ = 0.42 certainty over the bits of p, q, and d

δ = 0.57 certainty over the bits of p and q .

Therefore the algorithm can be useful in combination with a cold boot attack [HS08, pages
1–2].

3.2 Cold Boot Attack

A cold boot attack is a side-channel attack in which an attacker with physical access to
the target computer reads out the contents of the RAM after the system has been pow-
ered off. By cutting the power, software that may be running on the target device cannot
delete sensitive data from RAM. Afterwards, an image of the RAM is created by imaging

6

3.3 Private Key Recovery

tools[HSH+09, page 51]. It is based on the data remanence in common RAM modules, in
which the bit states do not dissipate rapidly, but rather slowly. Depending on the com-
puter, such remnants can be found after several seconds to minutes without power. The
quality of the extracted data depends on the time it took to be extracted after the system
has been powered off. Cooling the memory modules drastically extends the remanence
time. Using liquid nitrogen to cool the modules the decay can be decelerated to only
0.00004% after ten minutes[HSH+09, page 49]. The cryptographic keys to encrypted data
that were accessible at the moment of the system crash can then be extracted from the read
data. The colder the storage is, the slower the decay. Thus the temperature and the time
until the RAM module is powered up again affect the decay of the bits and thus the effec-
tiveness of the attack. The dissipation of the stored information is not arbitrary, but each
memory module has a ground state to which the bits return. Therefore, we can assume
that every bit that is not in the ground state is confirmed, while those bits that are in the
ground state must be considered unknown. This way we can partially recover the data
and consider all bits not in ground state as confirmed [HS09].

3.3 Private Key Recovery

To recover the key the redundancy in the stored values (p, q, d, dp, dq, q
−1
p) can be used.

The relevant formulas are

e · d = 1 mod ϕ(N)

e · dp = 1 mod ϕ(p)

e · dq = 1 mod ϕ(q)

q · q−1p = 1 mod p .

Those can be transformed into these

e · d = kϕ(N) + 1 (3.1)

e · dp = kpϕ(p) + 1 (3.2)

e · dq = kqϕ(q) + 1 (3.3)

q · q−1p = k′p+ 1 (3.4)

for some k, kp, kq, k′ ∈ Z. The variations of k show how many times the order of the group
has to be added to 1 until the original number before the modulo operation is reached.
To solve the equations above the values k, kp, kq, k′ need to be found. The fact that d ∈
Z∗ϕ(N) obviously ensures d < ϕ(N). It follows that k < e, since k ≥ e implies e · d <

7

3 Key Recovery Algorithm

kϕ(N) + 1 which is contradictive to e · d = kϕ(N) + 1. As e = 65537 in almost all RSA
implementations, it is possible to try all candidates for k.
For each possible choice for k̂, through the function

d̃(k̂) = b k̂(N + 1) + 1

e
c

d can be approximated if k̂ equals k. This process enables us to determine k and the more
significant half of the bits of d̃. Once k is known kp, kq can be calculated through the
congruences of the equations above.
Knowing kp and kq we can run the following algorithm to find p, q. Let p[i] denote the ith
bit of p starting from the least significant bit. Let τ(x) denote the exponent of the largest
power of 2 that divides x. Since p, q are prime, they are uneven so p[0] = q[0] = 1. It
follows that 2|p− 1, so 21+τ(kp)|kp(p− 1). Considering that ϕ(p) = p− 1 we can reduce 3.3
mod 21+τ(kp) to

edp ≡ 1(mod 21+τ(kp)) .

Knowing e we can immediately correct the 1 + τ(kp) least significant bits of dp. Conge-
nially we can proceed with 3.2 and 3.4 to correct the 2+ τ(k) and 1+ τ(kq) bits of d and dq.
Furthermore, all the bits < i are confirmed for p, which means that inaccuracies in more
significant bits lead to changes in dp[i+τ(kp)] and not in p. The same goes for q[i] affecting
dq[i+ τ(kq)]. Either one causes changes in d[i+ τ(k)].
After recovering the least significant bits for each of our five variables, we can try to re-
cover the remaining bits. For each bit index i, we consider a slice of bits:

p[i] q[i] d[i+ τ(k)] dp[i+ τ(kp)] dq[i+ τ(kq)] .

To find the correct solution for slice i, all combinations that agree with that solution at all
but the ith position needs to be computed. That way all possible combinations up to bit
slice i will be enumerated. As already explained the only possible solution for slice i = 0

is already known, so we can start the algorithm. The solution for N will be found by the
time i = bN2 c has been reached.
Using the partial information, which has been gained through an attack, we can fill in
(p′, q′, d′, d′p, d

′
q) for each slice i− 1 to find all possible slices i. For that we repeatedly find

8

3.4 Prospects

solving combinations for the equation system

p[i] + q[i] ≡ c1 mod 2

d[i+ τ(k)] + p[i] + q[i] ≡ c2 mod 2

dp[i+ τ(kp)] + p[i] ≡ c3 mod 2

dq[i+ τ(kq)] + q[i] ≡ c4 mod 2 .

Having five variables in an equation system with four equations leaves us up to two so-
lutions for the respective ith bits of the variables. If we get two solutions for the ith bit,
we need to calculate both possibilities for the i+1th bit. Using the information we gained
about the private key, we can prune potential solutions that fulfill the equation system but
contradict the gained information. Eventually a wrong branch is not going to have a valid
allocation for the next bits and can be fully discarded as false [HS08].

3.4 Prospects

If we consider the system of equations over the private key values, we see that q−1p is not
included in these systems. Therefore, q−1p is not considered for the preconditions given
with the δ-fraction. To improve the algorithm, we wanted to find a way to consider the
bits that can be obtained over q−1p in the algorithm as well. Our first goal was to un-
derstand q−1p so that we could extend the key recovery algorithm in such a way that the
information obtained with q−1p is no longer discarded. In the algorithm used by Heninger
and Shacham, no bit of information from q−1p is currently used to recover the private key.
The hope was to find a way to include q−1p in the system of equations so that the infor-
mation could be used directly in finding the result. This would have made the method
faster, more efficient, and probably still usable even with a smaller number of known bits.
The expected way for using this additional information was to use them to find k′. By
finding k′ we would have been able to recover the private key. While trying to find a way
to accomplish this we found that given e and N , finding k′ with q · q−p 1 = k′ · p + 1 is at
least as hard as integer factorization.

9

4 Incorporating q−1p

In this chapter, we consider q−1p and its uses. The main goal is to understand how the
value is calculated and what it is used for. We look at the dependencies to the other values
in the private key. Then we work out how q−1p is used in the decryption and why it is used
for it. Afterwards, we contemplate the possibilities q−1p offers to get information about
other parts of the private key.

4.1 Structure Of q−1p With Regard To p And q

The private key is stored in the form (p, q, d, dp, dq, q
−1
p) to decrypt the ciphertexts. The

value we focus on in this work is

q−1p = q−1 mod p .

Hence,

q−1p · q = 1 mod p .

From this we can deduce that

q · q−1p = k′p+ 1

with k′ being an unknown variable describing how many times the mod p needs to over-
flow until q−1p · q = 1 is fulfilled. Since q−1p is calculated from other values with which it
is being stored we can assume that the information is stored redundantly. This redundant
way of storage is necessary for decrypting ciphertexts more efficiently. In the decryption
algorithm, q−1p is used along with two other values in the Chinese Remainder Theorem
to calculate the plain text from the ciphertext. Currently, it is not known, how k′ can be
reconstructed. Hence, the equation q · q−1p = k′p + 1 can not be used. Our goal in this
section is to understand the use of q−1p and its dependencies in the equation system of
the key recovery algorithm. We investigate the behavior of the individual bits of number
pairs a, a−1 ∈ Z∗n. We want to find peculiarities and possible dependencies of the bits with
each other.

10

4.2 Chinese Remainder Theorem

4.2 Chinese Remainder Theorem

The Chinese Remainder Theorem finds the linear congruency x for given pairwise co-
prime vi mod mi. Formally we are looking for an x with

x ≡ vi mod mi for i = 1, . . . , n .

4.2.1 RSA Decryption

In textbook RSA the decryption is done by exponentiating the encrypted message with
the private part of the key d in the cyclic group of Z∗ϕ(N), i. e.

M = Cd mod N .

There is a more efficient way of decrypting, which is used in almost all practical applica-
tions of RSA due to being faster, more efficient, and hence cheaper. The RSA private key
is stored in the format (p, q, d, dp, dq, q−1p) with the following properties:

p, q are prime.

N = p · q

1 < e < ϕ(N)

GCD(e, ϕ(N)) = 1

d = e−1 mod ϕ(N)

dp = d mod (p− 1)

dq = d mod (q − 1)

q−1p = q−1 mod p

The public key is composed of (N, e), therefore those values are common knowledge.
Using these properties of the different values stored as the private key the common way
of decryption is to calculate

(c mod p)dp mod p (4.1)

(c mod q)dq mod q (4.2)

and use the Chinese Remainder Theorem on these two results and q−1p . This calculation
is about four times faster than the naive calculation using exponentiation with a large
number[HS08, page 3–6].

11

4 Incorporating q−1p

4.2.2 Garner’s Algorithm

Using Garner’s Algorithm, the Chinese Remainder Theorem can be simplified and solved
faster. It is an efficient method to determine the linear congruency x, 0 ≤ x < M of given
modular residues v(x) = (v1, v2, . . . , vt). From the Chinese Remainder Theorem follows
that residues of x are pairwise co-prime moduli m1,m2, . . . ,mt, with M =

∏t
i=1mi. We

compute the linear congruency so that x ≡ vi mod mi for i = 1, . . . , t.

Algorithm 1: Garner’s Algorithm

1 for i from 2 to t do
2 Ci = 1
3 for j from 1 to i− 1 do
4 u = m−1j mod mi

5 Ci = u · Ci mod mi

6 u = v1
7 x = u
8 for i from 2 to t do
9 u = (vi − x)Ci mod mi

10 x = x+ u ·
∏i−1
j=1mj

11 return x

This algorithm is an efficient form of the Chinese Remainder Theorem. It can be used as
an alternative to the latter [MvOV01, page 612].

The Chinese Remainder Theorem formula for RSA decryption can be generalized using
Algorithm 1. By inserting our given variables into the algorithm we can establish

c2 = m−11 mod m2

c3 = m−11 ·m
−1
2 mod m3

c4 = m−11 ·m
−1
2 ·m

−1
3 mod m4

Ci =
i−1∏
u=1

m−1j mod mi

for the first loop. After that we set

u = v1

x = u.

12

4.3 Bitwise Modular Inverse

Finally the last loop results in

u = (v2 − v1)C2 mod m2

x = v1 + ((v2 − v1)C2 mod m2) ·m1.

In the RSA context these equations are more commonly represented as

h = q−1(m1 −m2)(modp)

m = m2 + hq(modp · q)

with

m1 = cdp mod p

m2 = cdq mod q.

It is important to notice, that the variable names have changed. Before the moduli were
namedmi, but those labels were replaced by p and q andM withN , whilemi now replaces
the vi representation of the integer values of the Chinese Remainder Theorem. Using these
equations RSA can be decrypted without using a large exponent but using two smaller
exponents instead. For the large exponent, we can set ϕ((p − 1) · (q − 1)) as the upper
bound. For the small exponents, the upper bound is p or q respectively. Thus the bit length
of the large exponent is approximately twice as large as that of the small exponents. This
results in the increased efficiency of the decryption.

4.3 Bitwise Modular Inverse

The multiplicative inverse of a modulo b exists if and only if a and b are co-prime, that
is, if GCD(a, b) = 1. If the multiplicative inverse of a number a mod b exists, then one
can define the operation of dividing any other number by a mod b, by multiplying that
number by the inverse a−1. If b is a prime number, then all numbers except zero are
invertible, which makes the ring of integers modulo b a field. The values stored in the
private key are (p, q, d, dp, dq, q

−1
p). Knowing the public key and any of these six values,

all other values can be computed. Except for q−1p , the dependencies between the values
are described by Nadia Heninger and Hovav Shacham[HS08]. The value q−1p is different
from the other values in that it is modularly inverted. So if we get information about q−1p
we must be able to verify the value bit by bit or use its bits as verification for the other
partially known values in order to draw conclusions about the other elements of the stored
private key.

13

4 Incorporating q−1p

4.3.1 Dependencies

Since the information about the private key is available bitwise, we try to find a way to
find bitwise dependencies of a number and its inverse in their cyclic group. To implement
this, for some Z∗n we consider all elements of the group with their respective inverse and
try to find statistical salience suggesting possible dependencies. We do this exemplarily
for Z∗11.

Table 4.1: Inverses in Z∗11
a a2 a−1 a−12 Hamming Distance Length Difference
1 1 1 1 0 0
2 10 6 110 1 1
3 11 4 100 3 1
4 100 3 11 3 1
5 101 9 1001 2 1
6 110 2 10 1 1
7 111 8 1000 4 1
8 1000 7 111 4 1
9 1001 5 101 2 1

10 1010 10 1010 0 0

From 4.1 we can see that there is no obvious regularity for any a and a−1. Just looking at
the least significant bits of the non self inverse values the distribution is seemingly ran-
dom. The average Hamming distance is 2 and the average difference in length is 0.8. The
Hamming distance is a measure of the difference of strings. It is defined as the number of
bits that differ between the two compared strings. As there are two combinations of allo-
cations for each bit that are identical and two differing allocations the expected outcome
for a random distribution is 1

2 . Therefore the expected Hamming distance is half the bit
length of n. With the Hamming distance being close to the random distribution, we can
call it unobtrusive and negligible for further consideration. The average length difference
between a and a−1 describes the difference of the positions of the leading 1 bit of each
string. We will now compare the values of those results for different Z∗n.

Table 4.2: Distributions for different Z∗n
Z∗11 Z∗17 Z∗56081 Z∗65537 Z∗86609

Bitlength 4 5 16 17 17
Average Hamming Distance 2 1.875 7.966 8 8.331
Average Length Difference 0.8 0.5 1.427 1.331 1.493
Same LSB Distribution 0.556 0.375 0.501 0.494 0.494

The selection of primes tested for 4.2 was arbitrary. The first two have been chosen due

14

4.3 Bitwise Modular Inverse

to their small size. The Z∗65537 was chosen due to its use as e and it possibly being a spe-
cial case because 65537 = 216 + 1. The other two numbers were chosen randomly to see
if the oddity found regarding the similar lengths of numbers and their modular inverse
were solely present in Z∗65537 or also in other numbers of greater lengths. The average
Hamming distance shows the average over all Hamming distances of any a ∈ n and
a−1 mod n. The average length difference shows the average over the number of bits af-
ter and including the leading 1 in any a ∈ n and a−1 mod n. The same LSB distribution
shows the distribution of a ∈ n and a−1 mod nwith the same least significant bit. From 4.2
it can be observed that the average Hamming distance and the occurence of the same least
significant bits are correlated with the expected random distribution with very little devi-
ation. At the same time, the average length difference between a number and its modular
inverse is deviating significantly from the expected random distribution. Even with larger
modular groups, it can be observed that a number and its inverse exceptionally often have
the same magnitude. In the case of Z∗56081, the bit length is identical for more than 1/4 of
the numbers and differs by only one digit for another 1/3. Thus, it might be possible to
draw conclusions about the magnitude of q by the most significant bit of q−1p . However, if
we think more carefully about the length distributions of the numbers in the groups, this
striking distribution can be explained. Since we consider only n ∈ PRIME, all numbers
0 < a ≤ n ∈ Z∗n. This obviously applies to a−1 mod n, since it must also be an element of
the group. Thus, half of all considered bit strings have the same length. Another quarter
of all considered bit strings differs in length by one. This continues in such a way. This
explains the striking frequency of numbers that are as long as their inverse.

4.3.2 Gained Information

Assuming we had the complete q−1p in the best-case scenario, we could use the probability
distributions to predict the first bit of q. However, the information gain is minimal, since
we can only predict how likely it is that the most significant bit is in a given position. In
practice, however, this knowledge is irrelevant, since to guarantee a certain key length for
p and q, the leading bit at the required position is set to 1. So any information that might
be gained from these dependencies is already known.

4.3.3 Discussion And Open Problems

The goal of these considerations was to find a possibility to draw possible conclusions
about p or q by partial bitwise knowledge q−1p . On the whole, the distribution of the bits
of numbers and their modular inverses seems to be very random. We have looked more
closely at the first and last bits and, in general, at the Hamming distance. Here mostly

15

4 Incorporating q−1p

the expected values were reached. Only the most significant bit or the length of the bit
string deviated from these. However, these are the only abnormalities that would suggest
any form of dependencies. The information gain on this way is even under optimal cir-
cumstances very small and at the same time redundant. A bitwise confirmation of q−1p by
including the value in the key recovery algorithm via finding k′, therefore, does not seem
feasible.

4.4 Decrypting Modified Ciphertext

We use the method enabled by Algorithm 1 to decrypt the ciphertext instead of textbook
exponentiation, which uses dp, dp, and q−1p . By substituting our known values and cipher-
text C in

m1 = Cdp mod p

m2 = Cdq mod q

h = (q−1p ∗ (m1 −m2)) mod p

m = m2 + h ∗ q

it gets decrypted into the message M . These formulas are derived from Algorithm 1.
Our goal is to consider the behavior of the decrypted message M̃ when, given arbitrarily
chosen pairs (M,C), we modify the ciphertext. An attacker on RSA has the ciphertext
available for any plaintext he chooses since he can generate it himself with the public
key. The private key is unknown to him, so we assume that the attacker cannot make any
changes within the decryption. Thus, the attacker is only able to choose (M,C) arbitrarily.
Hence, we do not change C during the decryption process but only before it. To observe
the behavior of the decryption with modified ciphertexts, we choose a key pair arbitrarily,
so we can try to attack the private key. This gives us the advantage over a chosen-plaintext
attack to be able to also have any C̃ decrypted.

4.4.1 C+1

We consider the change in plaintext with C̃ = C + 1. We randomly choose

p = 359 q = 223 e = 17

and generate from it

d = 74801 dp = 337 dq = 209 q−1p = 293 .

16

4.4 Decrypting Modified Ciphertext

This results in N = p · q as public key (80057, 17) and as private key (80057, 74801). In the
redundant representation used, the private key is stored as (359, 223, 74801, 337, 209, 293).
Randomly choosing (M = 9247, C = 31088) we get C̃ = 31089 and M̃ = 64986. Com-
paring M and M̃ , we notice that both numbers are very different. They are far from each
other and there is no visible similarity. Even neglecting the modulo, Cd and C̃d are very
different. The number C̃d is one decimal place longer. The numbers do not divide each
other by an integer. Likewise, they do not divide an integer by values of the key. Next, we
put elements of the key as a message, encode them, and look at the change in M̃ compared
to M .

Table 4.3: Modified C with M as parts of the key
M M̃ C C̃

p 359 9335 23694 23695
q 223 27207 61325 61326
d 74801 54111 46979 46980
e 17 63508 64284 64285
dp 337 51023 59498 59499
dq 209 38318 36285 36286
q−1p 293 27699 70852 70853

Looking at the results in table 4.3, we see that there are no similarities between the re-
spective decrypted M and M̃ . Since we can not find any useful results already for a small
number space, it makes no sense to consider further values in this range.

4.4.2 2C

With the same keys and the same M we now consider C̃ = 2C mod N . Thus, in modular
space, for M = 9247 we obtain the modified value M̃ = 22045. Neglecting the modulo,
we observe that

Cd = C̃d/2d .

However, this dependence is easy to understand because of the way exponentiation works
and the nature of C̃. Aside from this, there is no information to be gained from using
C̃ = 2C.

4.4.3 Conclusion

Changing the ciphertext is a common attack. Success here might have benefited us more
in solving the RSA problem than in improving the key recovery algorithm. There is no

17

4 Incorporating q−1p

significant result to discuss. We only found that even minimal changes to the ciphertext
cause the decryption to produces a heavily modified message that reveals no information
about the original message. This is obvious since changes to the base at a power as high
as d can cause the results to reach different magnitudes.

18

5 Factorizing N From k′

One way to solve the RSA problem is to find the private key (N, d). Since N is known,
the problem is to find d. This value is the modular inverse of the known public exponent
e in Z∗ϕ(N). So to calculate it we need the factorization of N so that we can find ϕ(N).
Factorization of integers is believed to be a computationally complex problem. It is cur-
rently unknown whether an efficient non-quantum algorithm for factoring integers exists.
However, it is also not proven that there is no solution to this problem in polynomial time.

5.1 Coppersmith Method

The Coppersmith Method is a theorem that efficiently finds all roots of normalized poly-
nomials of a certain modulo. This method is effective if the public exponent is small
enough, or when information on the private key is available.

5.1.1 Purpose

Theorem 5.1 (Coppersmith). Let f ∈ Z[x] be a monic polynomial of degree d andN an integer.
If there is some root x0 of f modulo N such that |x0| ≤ X = N1/d−ε then one can find x0 in time
a polynomial in logN and 1/ε, for fixed values of d [Sma16, page 281].

The algorithm’s purpose is to find an x fulfilling a monic polynomial of the form

f(x) = f0 + f1x+ · · ·+ fd−1x
d−1 + xd

over integers of degree d, while knowing there is an integer root x0 mod N .

5.1.2 Fundamentals

The following is inspired [Sma16, pages 279-281]. For this purpose, we assume that there
exists an x0 mod N for which it holds that |x0| < N1/d. With the help of the method, it is
possible to find an x0 efficiently. The basic idea is to find a polynomial h(x) ∈ Z[x] that
has the same root in modulo N as the polynomial f(x). This h(x) should be small in the

19

5 Factorizing N From k′

sense that the norm of its coefficients

‖h‖22 =
deg(h)∑
i=0

h2i (5.1)

is small. By finding an h(x) fulfilling this we can simplify the problem of finding a root
in the modular field N to finding a root over the integers. Let h(x) ∈ Z[x] denote a
polynomial of degree ≤ n and let X and N be positive integers.

Lemma 5.2. Suppose

‖h(xX)‖2 < N/
√
n (5.2)

then if |x0| < X satisfies

h(x0) = 0 mod N (5.3)

then h(x0) = 0 over the integers and not just modulo N.

Thus we have simplified the hard problem of finding a root in the modular field N to
finding the root for the polynomial, for which there is an efficient solution. The Manhattan
norm is also referred to as the 1 norm. The distance derived from this norm is called the
Manhattan distance or the 1-norm distance. The 1-norm is simply the sum of the absolute
values of the vector. We note it as

‖z‖1 =
m∑
i=1

|zi| .

The Euclidean norm or 2-norm is the root of the sum of the squares of all values of the
vector. We note it as

‖z‖2 =

√√√√ m∑
i=1

z2i .

Proof (for lemma 5.2). From 5.2 and the condition |x0| < X with 5.3 we can deduce that

h(x0)
5.1
=

m∑
i=1

(hix
i
0) ≤

m∑
i=1

|hixi0|
x0<x
<

m∑
i=1

|hixi|
5.1
= ‖h(xX)‖1 .

20

5.1 Coppersmith Method

Using the Cauchy-Schwarz inequality we can show that

‖h(z)‖1 =
m∑
i=1

(|zi| · 1) ≤
m∑
i=1

z2i

m∑
i=1

12 =
√
n · ‖z‖2 .

Hence,

‖h(xX)‖1 ≤
√
n · ‖h(xX)‖2 ≤

√
n ·N/

√
n = N . �

This shows that if h(x0) is a root in the space of natural numbers and x0 < N , then f(x0)
is also a root in the group Z∗N . Returning to the polynomial f(x) of degree d we notice

f(x0) = 0 mod N (5.4)

also implies

f(x0)
k = 0 mod N . (5.5)

For some given values m,u, v with 0 ≤ u < d and 0 ≤ v ≤ m

gu,v(x) = Nm−vxuf(x)v (5.6)

so

gu,v(x0) = 0 mod Nm .

With a chosen m we try to find au,v ∈ Z so that

h(x) =
∑
u≥0

m∑
v=0

au,vgu,v(x)

fulfills the condition 5.1. So we try to find integer values for au,v so that the resulting
polynomial h satisfies

‖h(x)‖2 ≤ Nm/
√
d(m+ 1)

with

h(xX) =
∑
u≥0

m∑
v=0

au,vgu,v(xX) .

21

5 Factorizing N From k′

By doing this we remove the complexity of finding a root in modulo while maintaining
equity in the least polynomials.

5.1.3 Forming The Polynomial f(x)

To utilize Coppersmith Method for us, we first need to rearrange the equations related to
k′ into a monic polynomial that the algorithm can be applied to. We know that

q−1p · q = k′ · p+ 1

applies for some k′. If we multiply this by p we get

q−1p ·N = k′ · p2 + p .

Therefore, we look at

f(x) = k′ · x2 + x (5.7)

while knowing

f(p) = 0 mod N .

On this equation, the Coppersmiths method can be applied to reveal p and through that
also q. With k′ we constitute the number of overflows over the upper bound in Z∗p happen
until q−1p · q reach the neutral element of the field. Next, we form the monic polynomial

f(x) = x2 + ax+ b

by reshaping 5.7 by dividing it by k′ mod N and hence assigning b = 0 and a = (k′−1 mod

N). From this, we can define the function f(x) for our specific case with

f(x) = x2 + k′−1 · x+ 0 .

Now, the Coppersmith Method is capable of finding a h with the same small roots over
the integers as f has over the modular field.

22

5.1 Coppersmith Method

5.1.4 Finding The Polynomial h(x)

To apply Coppersmith Method in the univariate case, we can choose

m = d 1

d · ε
e

and ε = 1
2 − logN (p) [May10, page 12].

In this case, we chose m = 2 for 5.6 and compute

g0,0(xX) = N2

g1,0(xX) = XN2x

g0,1(xX) = bN + aXNx+NX2x2

g1,1(xX) = bNXx+ aNX2x2 +NX3x3

g0,2(xX) = b2 + 2baXx+ (a2 + 2b)X2x2 + 2aX3x3 +X4x4

g1,2(xX) = b2Xx+ 2baX2x2 + (a2 + 2b)X3x3 + 2aX4x4 +X5x5 .

We are looking for a linear combination of the polynomials above so that the resulting
polynomial has small coefficients as in 5.1. For that, we look for small vectors in the lattice
generated by the columns of the following matrix A. Each column represents one of the
polynomials above and each row represents a power of x. So the resulting matrix is

A =



N2 0 bN 0 b2 0

0 XN2 aXN bNX 2abX Xb2

0 0 NX2 aNX2 (a2 + 2b)X2 2abX2

0 0 0 NX3 2aX3 (a2 + 2b)X3

0 0 0 0 X4 2aX4

0 0 0 0 0 X5


.

This matrix’ determinant det(A) is N6X15 [Sma16, page 293]. By applying the Lenstra-
Lenstra-Lovasz algorithm [LLL82] on this matrix we obtain the basis of lattice B with its
first vector b1 satisfying

‖b1‖ ≤ 26/4det(A)1/6 = 23/2NX5/2 .

Setting b1 = Au⇔ u = A−1b1 with u = (u1, u2, . . . , u6)
t we form the polynomial

h(x) = u1g0,0(x) + u2g1,0(x) + · · ·+ u6g1,2(x)

23

5 Factorizing N From k′

so,

‖h(xX)‖ ≤ 23/2NX5/2 .

To be able to ensure that we search for a root and not a modular root we require that

23/2NX5/2 < N2/
√
6 .

By following this we determine an integer root of h(x), which at the same time is the small
root x0 of f(x) modulo N under the premise that

|x0| ≤ X =
N2/5

481/5
. (5.8)

With these particular parameters the algorithm will work if x0 ≤ N0.39. To solve a more
arbitrary version of this problem a bigger m needs to be chosen when creating the gu,v
functions and matrix A [Sma16, pages 279–282].

5.1.5 Finding The Integer Root

There are multiple algorithms for finding the roots of a polynomial. The number or roots
is limited by the degree of the polynomial. For example the Durand-Kerner method can
be used to find all real roots of h [Kho18].

5.2 Examplary Application

We now demonstrate this procedure using an example. The goal is to show that the Cop-
persmith Method finds a solution. First, we generate random values for this purpose. To
keep the numbers manageable, we use a 32-bit integer prime number for p instead of large
prime numbers that would be suitable for RSA. The integer q is a prime number at least
150000 times larger than p. We add this specification for p and q to require less precision in
finding the polynomial h and for ease of presentation. As stated above chosing m = 2 will
find a result for x0 ≤ N0.39, so we need to chose our values according to this condition.
The parameters used in the example are

p = 1044502237 q = 156675335550007

N = 163647738464707936865659 e = 65537

d = 110346173971500412395161 dp = 634396013

dq = 81623601655307 q−1p = 447643816 .

24

5.2 Examplary Application

Suppose that k′ = 67146572400003 is known. Similarly, the public key (N, e) is known.
Since we are trying to find a polynomial f(x) = x2 + ax+ b for the next step, we can now
see the correct shape. We assume that

f(x) = k′ · x2 + x | : k′ mod N

f(x0)=0
=⇒ f(x) = x2 + a · x

with

a · k′ = 1 mod N

a = k′−1 mod N

a = 67146572400003−1 mod 163647738464707936865659

a = 32858047726877786792068 .

From 5.8 we can compute that |x0| ≤ X = N2/5

481/5
≈ 889847850. Furthermore, b = 0. After

we know all these variables, we can determine the elements inA. On this matrixAwe can
apply the Lenstra-Lenstra-Lovasz algorithm to obtain B. The vector

b1 =



0

−69424560154587741525526418643342570462132150
−603782620033804291277196277366134027005310000
602115581673886118263572458529883435432500000

−686710974159821714771374916251562701312500000
557928796471357661203816097571867674062500000


is thus the first column of B. Knowing this and A we can solve

u = A−1b1

for vector u. Finally we compute

u =



u1

u2

u3

u4

u5

u6


=



0

43525824690588301691402109944460355007786345

−216778027551515425174347933678851790149301012
19792231360190267028828

−65716095453756668828346
1)


.

25

5 Factorizing N From k′

We create polynomials

g0,0(x) = N2

g1,0(x) = N2x

g0,1(x) = bN + aNx+Nx2

g1,1(x) = bNx+ aNx2 +Nx3

g0,2(x) = b2 + 2bax+ (a2 + 2b)x2 + 2ax3 + x4

g1,2(x) = b2x+ 2bax2 + (a2 + 2b)x3 + 2ax4 + x5 .

Finally, we calculate the polynomial

h(x) = g0,0(x) · u1 + g1,0(x) · u2 + g0,1(x) · u3 + g1,1(x) · u4 + g0,2(x) · u5 + g1,2(x) · u6 .

It is easy to find integer roots for polynomials. For h(x0) = 0 we find x0 = 1044502237

with

f(x0) = 0 mod N

f(1044502237) = 0 mod 163647738464707936865659 .

This root for f(x0) in modulo N is the p we are looking for. From this we can calculate
q = N

p . To use this to compute the private key, we first compute

ϕ(N) = (p− 1) · (q − 1) .

We can extract d from the known e by

d = e−1 mod ϕ(N)

using the extended Euclidean algorithm. By doing so, we not only solved the RSA prob-
lem at hand, but also found the private exponent of the key, breaking the factorization for
this system.

5.3 Summary

In this chapter, we demonstrate that it is possible to find the integer factorization of N
if k′ can be obtained somehow. We show this by assuming that k′ is known. By simply
rearranging the known equations, we are able to put the values into a form that we can
calculate using Coppersmiths method. This means that we represent our searched p in a

26

5.3 Summary

certain way in a polynomial, so that by finding a root for this polynomial we can determine
p. However, since we are in a cyclic group, we must first solve the problem of finding a
root in this group, which in itself is not an easy problem. However, through Coppersmith
we are able to create another polynomial h according to certain criteria, for which we only
need to find a root in the space of integers. Solving this is easy. Because of the choice of h
in relation to f , it holds afterwards that one of the integer roots of h is also a root of f and
smaller N . Even if several values satisfy this criterion, their number is finite and small, so
that the correct value can be found quickly. This root is the p that was used to create the
keys. Once p is known, the computation of the other elements of the key is trivial.We have
demonstrated this first in general, later for a specific example.

27

6 Conclusions

6.1 Summary

The original goal of this work was to improve the key recovery algorithm developed by
Heninger and Shacham. The reasoning behind this was that for the recovery from the par-
tially recovered values (p, q, d, dp, dq, q−1p), they only used the partial information about the
first five values. Information about q−1p is also collected during the recovery of the partial
information, but is not brought into the algorithm. We have thus seen an opportunity here
to improve the algorithm in also using that information.

To create a broad basis for understanding, we first look at the underlying procedures that
are relevant for this. These are the RSA encryption method on the one hand and the actual
key recovery algorithm on the other.

For RSA, we look at key generation, how encryption and decryption work, and why this
works. We then briefly look at the effort required to solve the RSA problem.

The key recovery algorithm is the heart of the work and is shown accordingly in detail.
Basically, the algorithm works by the fact that p, q, d, dp and dq are also bitwise dependent
on each other, so that starting with the least significant bit assignments for the five values
can be found by a system of equations. Thus, the values can be calculated bit by bit.
Because of the bitwise partial information about these values, wrong assignments can be
pruned efficiently.

Afterwards we think about q−1p . We want to see how it is calculated, what it is used for in
the decryption and why it is in memory at all. Furthermore we look at possibilities to find
dependencies to the other values of the algorithm. Since the key recovery algorithm uses
a system of equations that computes the values bit by bit, the first idea is to determine if
this can work for q−1p . However, the problem is that this value is modularly inverted. By
analyzing some modular groups, we find that no statement about the bit locations of the
inverse to a number can be made based on the bits of that number, which is much better
than guessing. Trying to modify the ciphertext before decryption and find possible pairs
of message un ciphertext where something striking happens, we have no success.

During the considerations the equation

q−1p · q = k′ · p+ 1

28

6.2 Discussion and open problems

caught our eye. This can be transformed by multiplying by p so that

q−1p ·N = k′ · p2 + p

is obtained. The right-hand side of the equation can be transformed into a polynomial
such that p can be recovered by Coppersmith method. We describe this procedure and
also present it with an example.

6.2 Discussion and open problems

After several attempts to find a way to gain information about k′, we have come to the
conclusion that we cannot solve this task within the scope of this bachelor thesis. The
dependencies of q−1p with the other values of the private key are not usable by the modular
inversion with the information available to us. Because we know only for certain bits from
the values whether they are correct, we cannot use the value of q−1p to include it like the
other values in a bitwise acting system of equations. Therefore, we did not find a way to
calculate k′. However, we did manage to show that it is possible to compute the private
key if we succeed in finding k′. Once all of k′ is known the Coppersmith method can be
used to find p and through that the whole key. Since it is possible to solve the integer
factorization for N in linear time using k′ and thus also solve arbitrary RSA problems, we
can assume that finding k′ is at least as hard as the integer factorization.
Hence, the main problem remains. The bits of q−1p obtained by an attack are not used in
the algorithm. If we know the values q−1p or k′, we can fully recover the key from them.
However, it is not enough to have partial information, because through it we are not able
to infer the unknown parts of the bit string.

29

References

[HS08] Nadia Heninger and Hovav Shacham. Reconstructing RSA private keys from
random key bits. IACR Cryptol. ePrint Arch., 2008:510, 2008.

[HS09] Nadia Heninger and Hovav Shacham. Reconstructing RSA private keys from
random key bits. In Shai Halevi, editor, Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Sci-
ence, pages 1–17. Springer, 2009.

[HSH+09] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and
Edward W. Felten. Lest we remember: cold-boot attacks on encryption keys.
Commun. ACM, 52(5):91–98, 2009.

[Kho18] Dmitry I. Khomovsky. Generalizations of the durand-kerner method. CoRR,
abs/1806.06280, 2018.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials with ra-
tional coefficients. MATH. ANN, 261:515–534, 1982.

[May10] Alexander May. Using lll-reduction for solving RSA and factorization prob-
lems. In Phong Q. Nguyen and Brigitte Vallée, editors, The LLL Algorithm -
Survey and Applications, Information Security and Cryptography, pages 315–
348. Springer, 2010.

[MvOV01] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 2001.

[Raj] Wissam Raji. Theorems of Fermat, Euler, and Wilson.
https://math.libretexts.org/@go/page/8835.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[Sma16] Nigel P. Smart. Cryptography Made Simple. Information Security and Cryptog-
raphy. Springer, 2016.

30

Sage Code: Coppersmith Method

Listing 1: Coppersmith

1 #Variable/ Key Generation

2 p=random_prime(2^32, lbound=2^16)

3 q=next_prime(150000*p)

4 N=p*q

5 e=65537

6 d=inverse_mod(e, (p-1)*(q-1))

7 dp=d%(p-1)

8 dq=d%(q-1)

9 qi=inverse_mod(q, p)

10 X=round(N^(2/5)/48^(1/5))

11 kqi=(qi*q-1)/p

12 a=(1/kqi)%N #inverse_mod(kqi, N)

13 b=0

14

15 #Coppersmith

16 A = Matrix([[N^2,0,b*N,0,b^2,0],

17 [0,X*N^2,a*X*N,b*X*N,2*a*b*X,X*b^2],

18 [0,0,N*X^2,a*N*X^2,(a^2+2*b)*X^2,2*a*b*X^2],

19 [0,0,0,N*X^3,2*a*X^3,(a^2+2*b)*X^3],

20 [0,0,0,0,X^4,2*a*X^4],

21 [0,0,0,0,0,X^5]])

22 #We need to transpose A before using LLL because Sage handles basic vectors

23 #differently than our method does

24 B=A.transpose().LLL().transpose() # Transpose matrix twice to restore original form

25 b1=B.column(0)

26 #"b1 in B will satisfy ||b_1||\leq 2^(3/2)*NX^(5/2)"

27

28 #Prepare variables for h(x)

29 u=A.inverse()*b1

30 g1(x)=N^2

31 g2(x)=N^2*x

32 g3(x)=b*N + N*x^2 + a*N*x

33 g4(x)=b*N*x + N*x^3 + a*N*x^2

34 g5(x)=b^2 + 2*a*b*x + x^4 + 2*a*x^3 + (a^2+2*b)*x^2

35 g6(x)=b^2*x + 2*a*b*x^2 + x^5 + 2*a*x^4 + (a^2+2*b)*x^3

36

37 #Create h(x)

31

Sage Code: Coppersmith Method

38 h1(x) = u[0]*g1(x)

39 h2(x) = u[1]*g2(x)

40 h3(x) = u[2]*g3(x)

41 h4(x) = u[3]*g4(x)

42 h5(x) = u[4]*g5(x)

43 h6(x) = u[5]*g6(x)

44

45 h=h1+h2+h3+h4+h5+h6

46

47 #find integer roots of h

48 print(h.roots(ring=ZZ))

49 }

32

	Introduction
	Goals
	Procedure

	RSA Cryptosystem
	Key Generation
	RSA Encryption
	RSA Decryption
	The RSA Problem
	RSA Not Harder Than Factoring
	Difficulty Of The RSA Problem

	Key Recovery Algorithm
	Premises of a Key Recovery
	Cold Boot Attack
	Private Key Recovery
	Prospects

	Incorporating qp-1
	Structure Of qp-1 With Regard To p And q
	Chinese Remainder Theorem
	RSA Decryption
	Garner's Algorithm

	Bitwise Modular Inverse
	Dependencies
	Gained Information
	Discussion And Open Problems

	Decrypting Modified Ciphertext
	C+1
	2C
	Conclusion

	Factorizing N From k'
	Coppersmith Method
	Purpose
	Fundamentals
	Forming The Polynomial f(x)
	Finding The Polynomial h(x)
	Finding The Integer Root

	Examplary Application
	Summary

	Conclusions
	Summary
	Discussion and open problems

	References
	Sage Code: Coppersmith Method

