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Abstract

Artificial Intelligence (AI) is used in many areas of our lives. They are designed to process
data and find solutions to given problems. This requires data and algorithms to train a
reliable system. Due to the increasingly widespread use of such artificial models, there is
a large number of public data sets that can be used for training. However, there is also
data we do not necessarily want everyone to know. So we have to protect them.
To realise that, the principle of Differential Privacy (DP) can be used to ensure security
guarantees for certain algorithms. To accommodate these requirements in the field of
AI, training-mechanisms can be used that meet Differential Privacy. Differential Private
Stochastic Gradient Decent (DP-SGD) is such an algorithm. In this thesis, we want to
investigate to what extent fine-tuning of pre-trained models affects the performance of
DP-SGD. The motivation behind it is the combination of knowledge. The question arises
whether training with different datasets improve the whole system.
In order to be able to investigate this question better, we present a two-step approach.
First, we pre-train a model on different data sets. We then use this model to train a linear
layer in a differential private manner, measuring the accuracy on an unknown data set. In
order to achieve efficient pre-training, we use the contrastive learning approach SimCLR.
The great advantage of such approaches is that they do not require labels. This enables us
to apply it to numerous data sets.
We will show that differently trained models give similar results for the same task. This
is independent of how far or with which data set they were trained. Furthermore, we will
discuss and evaluate possible reasons for this.
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Künstliche Intelligenzen (KI) kommen in vielen Bereichen unseres Lebens zum Einsatz.
Diese sind so konzipiert Daten zu verarbeiten und Lösungen für gegebene Probleme zu
ermitteln. Dazu sind Daten und Algorithmen notwendig, um ein zuverlässiges System
trainieren zu können. Durch die zunehmende Verbreichtung solcher künstlicher Modelle
gibt es eine Vielzahl öffentlicher Datensätze, die für das Training verwendet werden kön-
nen. Es gibt aber auch Daten, die nicht zwangsläufig allen bekannt sein sollen. Diese
müssen also geschützt werden.
Um dies zu realisieren kann das Prinzip der Differential Privacy (DP) verwendet werden,
um Sicherheitsgarantien für Algorithmen zu gewährleisten. Um diesen Anforderungen
im Bereich der KI gerecht zu werden, können Trainingsmechanismen eingesetzt werden,
welche Differential Privacy erfüllen. Differential Private Stochastic Gradient Decent (DP-
SGD) ist ein solcher Algorithmus. In dieser Arbeit wollen wir untersuchen, inwiefern
die Spezifikation vortrainierter Modelle die Leistung von DP-SGD beeinflusst. Die Mo-
tivation dafür steckt in der Kombination von Wissen. Dabei stellt sich die Frage, ob das
Training mit unterschiedlichen Datensätzen das Gesamtsystem verbessert.
Um dieser Frage besser nachgehen zu können, stellen wir einen zweistufigen Ansatz
vor. Zuerst trainieren wir ein Modell auf verschiedenen Datensätzen vor. Anschließend
verwenden wir dieses Modell, um eine lineare Schicht differential private zu trainieren.
Dabei messen wir die Genauigkeit auf einem unbekannten Datensatz. Um ein effizientes
Vortrainieren zu erreichen, verwenden wir den contrastive learning Ansatz SimCLR. Der
große Vorteil solcher Ansätze ist, dass sie keine Label benötigen. Dadurch können wir
diese auf zahlreiche Datensätze anwenden.
Wir werden zeigen, dass unterschiedlich trainierte Modelle für die gleiche Aufgabe ähn-
liche Ergebnisse liefern. Dies ist unabhängig davon, wie weit oder mit welchem Datensatz
diese trainiert wurden. Darüber hinaus werden wir mögliche Gründe dafür diskutieren
und auswerten.
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1 Introduction

The demand and scope of Artificial Intelligence (AI) is constantly increasing. In many
areas, such as autonomous driving, medicine or image processing in general, working
without the support of such mechanisms is no longer conceivable today. As a large and
important part of AI, machine learning serves as a way to train reliable and efficient mod-
els that can independently develop solutions to problems.
For this reason, work has been going on for many years to develop learning methods that
make it possible to create such models. Different types of training are used for this, for
example self-supervised techniques. The advantage here is that any labelled data is not
needed, since self-supervised mechanisms generate artificial labels by creating positive
and negative pairs in each batch. Therefore, such techniques are useful in many areas
to train accurate models. One method that is widely used is the contrastive learning ap-
proach SimCLR [CKNH20] which can be used to train models for image processing. The
idea is that you create positive pairs by image transformation. Since the altered images
are both based on the same picture, it can be ensured that they are the same and therefore
form a positive pair. This approach is the recent state-of-the-art contrastive learning ap-
proach.
Therefore, it makes sense to use SimCLR to train a reliable and accurate model that can
be used for image processing. Fulfilling this task well is a very essential part of working
with artificial intelligence and has a very wide range of applications. However, it may
also be the case that we want to classify data that contains sensitive content that is worthy
of protection. In this case, we need to use mechanisms that allow us to train models in
such a way that the data is protected and there is no way to extract it. The basis for this is
the principle of Differential Privacy (DP) [DR14], which enables us to determine security
guarantees for algorithms. DP approaches can thus be used to protect the data.
In order to be able to apply this idea in the machine learning area, a method is necessary
that allows us to protect the data within the model and to avoid publication of it, even
after the training has ended. For these, optimizers that introduce mechanisms to ensure
Differential Private training can be used. Differential Private Stochastic Gradient Decent
(DP-SGD) [ACG+16] is such an optimizer and contains gradient clipping and noising to
restrict the impact of single gradients to the model. As a result, the influence of individual
data points is less strong and the privacy of the data can be better protected.
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1 Introduction

In this work, we will present and implement a pipeline for image classification. For this,
we will introduce a two-step approach. First, we will use SimCLR to train a system that
can ensure a high accuracy on a provided task for a sensitive data set. We want to inves-
tigate, how further SimCLR training affects the accuracy of the model when we apply it
to an unknown dataset. Since the used data can include sensitive data, we need to protect
them. For this, we will introduce a Differential Private fine-tuning which uses the pre-
trained model and train it for the given task. By doing this, we want to ensure that we can
create an accurate and reliable model by training on public data, which can be fine-tuned
to receive good results for any unknown task.
In order to give a rough overview of the concepts and methods on which we build, we
want to introduce contrastive learning and SimCLR in chapter 2, present the model ar-
chitecture used and explain the concept of DP and the functionality of DP-SGD. In part
3 there will be a short presentation of the code respectively the libraries we are going to
build on. After that, there will be a discussion about the problem that is considered in
this work and some challenges that could appear during the work. Later on, we want to
introduce the pipeline and discuss the code changes, so that the used approaches meet
our requirements. This is followed by the presentation of the datasets we want to use and
some experiments, followed by their evaluation in chapter 6 and 7. In the end, we want to
summarize our findings and show up some open problems, that can be solved in future
work.
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2 Preliminaries

In this chapter, we will introduce some basic information about machine learning tech-
niques and the idea of differential privacy, which is needed to better understand the fol-
lowing experiments and this work in general.

2.1 Machine Learning

The need for reliable machine learning models and the development of these increases
year after year. In areas like medicine, autonomous driving and other fields of our life, we
can not imagine to work without such models. The idea of machine learning is to train
a model with the target of finding solutions to problems independently. This is done by
recognizing patterns in given data. For this, examples and algorithms are necessary, so
that the system is able to extract properties of the data, in order to generalize them and to
be able to use them later in problem-solving or analysing unknown data.
As a part of the large subject area of Artificial Intelligence, there are many ways to train
such models, for example supervised, unsupervised and semi-supervised training tech-
niques. On the one hand, in the supervised case, pairs of in- and output data are pro-
vided, and the model has to learn relationships in order to later be able to establish asso-
ciations with unknown data. On the other hand, in the unsupervised scenario, the model
only receives input data, which contain categories and contexts. In this case, the net-
work creates classifiers independently, according to which it divides the input patterns.
Semi-supervised training describes a mixture between the supervised and unsupervised
technique. In this case, the output is only known for part of the input data.

2.2 Contrastive Learning

Contrastive Learning describes a self-supervised machine learning technique which is
used to learn general features of given data. For this, the model has to figure out which
data points are similar and which are different, to extract high level features. Therefore,
self-supervised mechanisms generate artificial labels by creating positive and negative
pairs in each batch.
This type of training is very powerful, because no labelled data is required. Such learning
techniques are useful in many areas of application, because you do not need specialists
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2 Preliminaries

and experts to analyse and label the training data given to the model. This saves time,
money and other resources.
In this work, we will focus on the recent state-of-the-art contrastive learning approach,
SimCLR [CKNH20]. This method is used for visual representation tasks, like image clas-
sification. For this, each picture gets transformed by two augmentation combinations, like
recolouring, resizing and more. During the transformation, it can be ensured that these
pictures are similar and can be used to train the model, since both have the same image
as a basis. Such pairs are also called positive pairs. As a base for such models, a ResNet
architecture can be used. This will be discussed later in section 2.3. In the ResNet itself, a
vector represents an image. So at the end the model should create similar representations
for related images. Those pictures should be represented by a close vector. Thus we want
to maximize the similarity of those two representations of the same image by minimizing
the contrastive loss function. Trying to minimize this function means that each positive
pair should stay nearby and the negative pairs should be far away. This part of the train-
ing is called pretraining.
After pretraining, the model learned high level features of the images. If we want to per-
form a specific classification task, we now can fine-tune the model with supervised data
and improve the accuracy of the model for this specific task.

2.3 ResNet Architecture

To provide a base for our model, we need a specific architecture on which we can perform
our training steps efficiently for high dimensional data, in this case images. The problem
with deep neural networks is that more layers do not automatically lead to better results.
On the contrary, the Learning decreases with increasing depth and it is possible, that this
training effect can be reversed and the model is getting worse. The reason for this is
the disappearance of the gradients, which are normally used to calculate the adjusted
parameters in the training step. If these gradients are lost, there can be a negative impact
on the model itself. One effect that could appear, is that the data is memorized and the
model unlearns how to generalize.
To avoid this difficulty, Residual Networks [HZRS15] can be used. The idea is, that we do
not want the layers to learn the final function to the issue our model should solve. Instead
of this, the authors use a residual network at the end of the layers to learn the residual
function. So the idea is, that each layer learns new and different features and lead them
to the residual network. Hence, the approach is that the accuracy of the whole model
can be increased, when the model is able to learn a difference between in- and output. If
this difference can be minimized, it is possible to find an optimal solution. To obviate the
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2.4 Differential Privacy

disappearance of the gradients, shortcut connections are provided. These ensure that the
gradients do not pass weight layers, if the input- and output dimension of the layers are
equal, so the model can not extract new information. In this case, the gradients are not
changed, so they can not disappear. This leads to good training results.
In case of using this model architecture, it is possible to vary the number of layers that
are used. In this work, we will focus on the ResNet 50 architecture. So we use a neural
network with 50 layers. This type of Residual Network achieves good results in image
processing.

2.4 Differential Privacy

Data is an important commodity of our time and protecting this is one of the central
tasks in various areas. In the Netflix Price Competition from 2006, we have seen how
an anonymised dataset was given and how it was possible to reconstruct personal infor-
mation by adding public data to the original. That showed how simple mechanisms can
not ensure the privacy of unique data points. But in some areas, for example in the medi-
cal field, it must be guaranteed, that we can provide the anonymity of single points in our
dataset. However, there is a trade-off between the anonymity and the use of the data after
anonymization.
To meet this requirement, Differential Privacy (DP) [DR14] can be used. The approach
of DP is to guarantee, that the privacy of the data can be ensured to a certain extent. In
the scenario of machine learning the model should only learns things about the general
dataset, but after training it is not possible to reproduce the impact of a single data point
to the whole system. So, the goal is to maximize the accuracy of our model by minimizing
the probability to identify the impact of a single data point.
In this work, we will focus on the (ϵ,δ)-Differential Privacy. To explain the insurances and
the idea itself, we need to define two subsets of a given database. We introduce mech-
anisms to measure the size of the dataset and make statements, about the data points
themselves. For this, we can use the set minus of datasets with the aim of putting two
data sets in relation to each other. For that, we want to use datasets as an amount of data
points consisting as a tuple of index and the data itself.

Definition 2.1. (Set minus of Datasets). Let D be a dataset with n entries and let each
entry x have the form (i, φ), whereby i ∈ N and φ ∈ input-space. Let d1 and d2 be two
subsets of D. The set minus of d1 and d2 is denoted as d1 \ d2 and is defined to be:

d1 \ d2 = d3, ∀x ∈ d3 : x ∈ d1 ∧ x /∈ d2
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2 Preliminaries

Notice that the set minus between two datasets d1 and d2 with d1\d2 only contains the data
points, that are part of d1, but not of d2. This concept will be very helpful to describe the
relation between two datasets, which is needed by the definition of differential privacy.
At last, we need the definition of the cardinality of datasets to determine the size of these.

Definition 2.2. (Cardinality of Datasets). Let D be a dataset with n entries. The cardinal-
ity of D is denoted as |D| and is defined to be:

|D| = n

As you can see, the cardinality returns the number of entries for a given dataset. Further-
more, for two given datasets d1 and d2, |d1 \ d2| specifies the exact number of data points
that are part of d1 but not part of d2.
Now that we have introduced these two concepts, we can begin to discuss DP and the
properties of differential private mechanisms. As we have seen before, the goal of dif-
ferential privacy is to prevent attackers from being able to distinguish whether a specific
data point is contained in a given dataset or not. So it tries to minimize the impact of each
data point to the learning process itself. To take a closer look at this goal, let us start with
the formal definition of differential privacy:

Definition 2.3. ((ϵ,δ)-Differential Privacy). Let M be a randomized algorithm. We say
that a pair of datasets d1 and d2 is neighbouring if they differ in at most one element, i.e.,
|d2 \d1| ≤ 1 and |d1 \d2| ≤ 1. The algorithm M is (ϵ, δ)-DP if for all neighbouring datasets
d1, d2, all R ⊆ Range(M), the following holds:

Pr[M(d1) ∈ R] ≤ eϵ ∗ Pr[M(d2) ∈ R] + δ

This formula describes, that a mechanism that provides (ϵ,δ)-Differential Privacy has to
ensure, that an observed value M(x) is no more or less likely to occur when the dataset is
d1 than when the dataset is d2. This must hold for each pair of neighbouring datasets d1

and, d2 in D. In this case, ϵ describes the maximum distance between a query on dataset d1
and the same query on dataset d2. This means, that for a given mechanism M, the output
distribution should be nearly the same whether M is run on d1 or d2. Since d1 and d2 are
not identical the same, this can lead to a change in the distribution. If M ensures (ϵ,δ)-
DP, this change should be very small, since only one data point differs d1 and d2. This
difference in the distribution can be represented by eϵ. δ is a parameter which contains
the probability of information, that are accidentally leaked. We want to minimize the
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2.5 Differential Private Stochastic Gradient Decent

leakage of data, because they are sensitive and therefore worth protecting, so we want to
choose δ very small. This makes our algorithm M indistinguishable from an algorithm
that randomly selects data points from the given dataset. So at least we want a δ < 1

|D| to
get better privacy results than such an algorithm.

2.5 Differential Private Stochastic Gradient Decent

Stochastic Gradient Decent (SGD) is a method to discover the optimal configuration for
a machine learning algorithm. For this, it makes small adjustments of the network with
the goal to decrease the error and increase the accuracy of the model. To realize the ad-
justments, Stochastic Gradient Decent tries to find the global minimum of the error by
approximating the gradient for batches, which are randomly selected. The random selec-
tion can be achieved by shuffling the dataset and pick up the batch out of the result.
As an improvement of the normal SGD implementation, Abadi, Chu, et al. introduce Dif-
ferential Private Stochastic Gradient Decent, called DP-SGD [ACG+16]. The motivation to
introduce DP to this mechanism is, as discussed in 2.4, to avoid the leakage of train data
after the training process. The need for such a privacy preserving optimizer is shown in
the work of Ian Goodfellow [Goo15], where he shows how to reconstruct images that were
used during the training of a model without any privacy mechanisms like DP. In addition
to SGD, DP-SGD provide mechanisms to limit the privacy loss per gradient update. The
first approach is to clip the gradients to an upper bound for the l2 norm. This bound will
be called C in the following. After that we can add noise, called σ, in a second step, to the
gradient update with a given noise multiplier. By editing C and σ, we can have an impact
on the (ϵ,δ)-Differential Privacy guarantee our model provides.
To get a general overview about the results of the algorithm, we shortly want to describe
the previously shown steps to ensure the privacy of the data, by editing the gradients. At
first there is the Norm of clipping. In this step, the gradient vector g is replaced by the
normalized vector g̃. For this, the l2 Norm is used, which is defined as:

Definition 2.4. (l2 Norm of a vector). Let x⃗ be a vector of dimension n. The l2 Norm of x⃗
is denoted as ||x⃗||2 and is defined to be:

||x⃗||2 =
√
(x1)2 + (x2)2 + ...+ (xn)2

It is also known as the Euclidean Norm.

This definition can be used to calculate the normalized vector g̃. This can be realized as
follows:

g̃ = g⃗
max{1,||g⃗||2/C}

7



2 Preliminaries

Notice, that if ||g||2 < C then g̃ equals g, while for ||g||2 > C g̃ is scaled down to be of
norm C. This reduces the impact of a given gradient.
For adding noise, the authors used the Gaussian Noise algorithm with a standard devia-
tion given as:

σ =

√
2∗log( 1.25

δ
)

ϵ

By using this standard deviation to calculate the noise, the algorithm provides the (ϵ,δ)-
Differential Privacy for each step.
As you can see, at the end of the algorithm, we receive normalized vectors with the added
noise. This will help us to reduce the impact of each training step and realize the concept
of DP. So this algorithm can be used to carry out the training of machine learning models
in a privacy preserving manner.

2.6 Related Work

In this chapter, we will present various works, which focus on different approaches to
solve problems using differential privacy respectively contrastive learning. For this, we
will shortly present the used method and the followed goals of each work and discuss
shortly how our work differs from these approaches.
The authors Li, Yan et al. present in their work about Differential Private Contrastive
Learning (DPCL) [LYW+22] a privacy risk analysis of contrastive learning. For this, they
implement a mechanism for correlating gradients during the contrastive learning to de-
crease the sensitivity of each gradient. To evaluate this mechanism, a SimCLR training is
used. They show, that their improvement decreases the sensitivity of each gradient and
lead to a higher accuracy than the common DP-SGD. While this work mainly focuses on
safety analysis and improvement of this, we want to focus on the pure improvement of
DP-SGD through further pretraining.
An enhancement of the SimCLR pretraining mechanism is presented by Li, Guo et al.
in their publication about Robust age estimation model using group-aware contrastive
learning [LGW+21]. In this work, the authors want to extract characteristics from given
face images, especially the age of the people. For this, they present a modified version
of creating positive and negative pairs. Contrasted with the standard approach where an
image is taken and transformed, this approach follows the idea that images of people with
the same age should be positive pairs and people with a different age should be negative
pairs. So they do not perform two transformations of one picture, they select two pic-
tures from the same class. Later on, this model will be used to solve the regression task
to predict the age based on a given dataset. This approach thus pursues the improvement
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of the SimCLR pretraining in order to be able to achieve better results in the regression
step, while we want to achieve improvements not through better but more frequent pre-
training. In contrast to regression, here we consider a classification problem and want to
regard the DP learning approach.
As an improvement for models trained by contrastive learning to stealth them against
backdoor attacks, Huan, Li et al. present a mechanism to decouple the training process
[HLW+22]. For this, they train a model by the SimCLR approach and freeze the model
after finishing. After that they train a fully connected layer in a first step supervised
with all data and in a second step semi supervised by removing untrusted label. This
approach is compared with DP-SGD and ShrinkPad to evaluate the improvement by de-
fending against such Backdoor attacks. We follow a similar approach by training a Sim-
CLR model, freeze the layers and then train one more layer supervised. But we do not try
to enhance the privacy mechanism. We only focus on increasing the model accuracy by
adding more knowledge to the base model.
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3 Background

As discussed in chapter 2.2, SimCLR is a widely used technique to train machine learning
models. In the following, we will present an overview about the code and libraries, we
build on. Modifying the code to meet our requirements is shown in chapter 5.

3.1 SimCLR

Based on the work of Chen, Kornblith, et al. [CKNH20] the Google research team provide
an environment to pretrain, fine-tune and evaluate models based on a ResNet architecture
for SimCLR [FSC20]. The solution is written in python and uses Tensorflow as a basis for
calculating and the training itself. The code is split up in three main parts.
At first, there is the run.py, the main function of this implementation. Here, the authors
provide functionalities for the training and evaluation. In addition, there is a mechanism
for saving and loading checkpoints, that can be used to restore a previous state in case of
an error or to build on existing checkpoints. In this part of the program, the authors im-
plement all necessary steps to perform the training, such as gradient and loss calculation,
themselves. At last they initialize everything we need to perform the training, like the
dataset or the model, by calling other functions.
One of these functionalities is provided by the data.py. In this part of the application,
the dataset is initialized, and the images will be preprocessed. For preprocessing, the
data_util.py is presented. This function takes a picture and returns it in a specific form, so
after that the picture has the right size and is clipped to values between zero and one. In
the training case the picture transformation will be performed by using recolouring, flip-
ping and more. The labels will be one-hot encode, which means that they are transformed
from an integer to an array. Its size then equals the number of classes. The class will be
represented as a one at the right index, so in a two class problem zero will be encoded
as [1,0] and one as [0,1]. After preprocessing all pictures, the batched dataset will be re-
turned.
In another step, the model has to be build and the optimizer must be specified. For this,
the authors present the model.py. They use a ResNet model as basis and build on the
projection head, which is needed for pretraining, respectively the supervised head, which
is necessary for the fine-tuning and the evaluation. The ResNet architecture is provided
by the resnet.py, which requires the depth we want to use. Relu is used as the activation
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function. In addition to the optimizers Stochastic Gradient Decent and Adam, the authors
also show the Lars optimizer [YGG17] which can be used for speeding up the training by
using larger batches. The objective.py and metrics.py are used for loss calculation and the
metrics update.
Since the work is originally implemented for Tensorflow version one and later upgraded
to Tensorflow two, we will focus on the later release.

3.2 Tensorflow DP-SGD

Privacy safe learning is an increasingly widespread topic. As we want to use DP-SGD as
an optimizer in our implementation, we can refer to the implementation by Tensorflow.
They provide a special library called Tensorflow Privacy [ACP19], implementing different
private preserving mechanisms, also DP-SGD.
The DPKerasSGDoptimiser need different parameters we have discussed in 2.5, like the
L2 norm clip, the noise multiplier or the learning rate. After this, we can use DP-SGD as
an optimizer for our SIMCLR training implementation and perform a DP training.
Because at the end of the training we also want to know what security guarantees our
system can ensure, we also can use the function compute_dp_sgd_privacy, implemented
by Tensorflow Privacy. This will tell us, which ϵ we can reach for a given δ.

3.3 T-distributed Stochastic Neighbour Embedding

T-distributed Stochastic Neighbour Embedding (TSNE) is a tool which we want to use for
visualization. It helps us to represent high-dimensional data in low-dimensional spaces.
For this, TSNE follows a two-step algorithm. At first, each pair of points in the high di-
mensional space gets a probability, which is high when the points are similar and low
when they are different. After that, a similar probability distribution over the points is
mapped in the low dimensional space. Meanwhile, the algorithm tries to minimize the
Kullback-Leibler divergence, between the probabilities in relation to the position of the
points in low-dimensional space. The Kullback-Leibler divergence is a metric to calcu-
late the equality of two discrete probability distributions defined on the same probability
space X. The result of this is that similar points are represented nearby, while different
points are far away from each other.
For our applications, we want to use the implementation provided by sklearn 1. Since the
cost function of TSNE is not convex, different initializations lead to different representa-
tions.

1TSNE provided by sklearn: https://scikit-learn.org/stable/modules/generated/
sklearn.manifold.TSNE.html
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4 Problem Statement and Challenges

After introducing the main concepts and definitions, we need to better understand this
work, we now want to present the problem we want to face, describe shortly the approach
which we want to use to solve it and discuss some challenges that could occur during the
work.

4.1 Problem Statement

Machine Learning is a very topical issue. As we have seen in 2.3, deeper networks do
not necessarily lead to better results. Even continuous training does not always lead
to an improvement in a standard learning process, and we reach the point where the
training progress stagnates or even declines. This issue mainly relates to conventional,
mostly supervised-based methods. In the case of the contrastive learning approach, we
can achieve through multiple trainings that many more different positive and negative
examples are created, and this could increase the accuracy of our model. So we need to
understand the impact of further training to the model itself. In other words, does further
pretraining help to increase the accuracy of our solution?
That is the main problem we want to investigate in the following chapters and the work in
general. The approach that we want to consider here uses the combination of knowledge
by using different datasets to improve our model. This strategy is beneficial when we
have many small datasets, on which we want to train one large, cohesive model. But even
detached from this approach, the combination of knowledge can help to develop complex
models that can handle difficult tasks well.
In many areas, it may be necessary to protect the privacy of the data and prevent any leaks.
For this, the idea of Differential Privacy is necessary to harden our solution against pri-
vacy leaking problems and provide a secure and reliable system. As we have seen before,
one of the most important resources of our digital age is data, and we do not necessarily
want everyone to know them. Especially in the field of medicine or research in general,
people and institutions have a great interest in keeping results secret. In contrast, there is
also data that is accessible to everyone, such as images of public figures, the general en-
vironment and much more. This creates a division into private and public datasets, some
secret, and worthy of protection, others publicly accessible to everyone.
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4.2 Approach Overview

In order to achieve this goal, we want to present a pipeline that enables us to create a
reliable and robust solution based on a wide variety of models. For this, there will be
a two-step experiment, consisting of a contrastive learning pretraining and a supervised
fine-tuning part.
The first part should serve to create a reliable model, which can achieve good results for
a given data set. This can be done based on different approaches, on an existing model or
from scratch. Therefore, we want to use this basic model and train with the contrastive
learning approach SimCLR and a public data set. The goal of this step is to create a model,
which can also deliver good results for unknown data.
The second part is intended to use the already pretrained model and to fine-tune it for
an unknown task on an unknown data set. We want to make sure that we carry out this
training differential private in order to protect the sensitivity of the data and thus also
ensure its use in security-relevant areas. At the end, we can measure the accuracy for the
new task to evaluate the quality of the model itself.
The goal of this work is to develop, implement and evaluate this pipeline. For this, we
want to use different datasets and base models to get a high variance in our results. The
details of the pipeline and the implementation we are going to use is presented in chapter
5. The overarching goal is to examine how the fine-tuning of pre-trained models affects
the performance of DP-SGD.

4.3 Challenges

In the last part of this chapter, we will discuss some problems and challenges, that may
arise during work on the pipeline just presented.
As we have seen, our work will be based on the code provided by the Google research
team and refers to the work of Chen, Kornblith, et al. [CKNH20]. Since then, the code has
been grown and updated to Tensorflow version two. So we have to understand, how the
authors realize the calculations and how we can access the functionalities we need. This
could be quite difficult, since the code is only very rudimentary commented. So we have
to invest a lot of time to clearly understand the implementation.
This is necessary, because we want to implement DP-SGD as an optimizer and perform
the training, respectively the evaluation, on custom datasets. Since the authors implement
the training steps and gradient calculation themselves, there is a conflict with the DP-SGD
implementation by Tensorflow. This is because it is necessary to carry out the gradient
calculation itself to ensure that the computation is done correctly and in a completely dif-
ferential, private manner. In the implementation, these calculations are performed with-
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out a focus on DP. So we have to find an efficient way to implement mechanisms to the
training, that allows us to use DP-SGD.
Additionally, we want to use custom datasets while the code is specialized for Tensorflow
datasets. These includes building information, like image count, size and more. However,
since this library only provides very few face datasets, we have to load in data by our
own. For this, we have to change some calculations, find a way to include and preprocess
the images, and it has to be ensured, that everything is read in correctly.
Next to the challenges that can be attributed to the use of the code, there are also problems
that can generally arise in the machine learning context.
At first, there could be an issue with the dataset we use for training. If we just show our
model a specific type of images, like black hair people, it could be difficult for our model
to generalize, if it receives a picture of a blond or brown hair person. So we have to ensure,
that we provide a high diversity in our data, to ensure a good training of our model. A
SimCLR specific difficulty in this context could be the transformations we use to build the
positive pairs. So it could be possible, that a colour transformation is not beneficial, if we
want to train a model to analyse the hair colour. Therefore a big challenge could be to find
a good diversity in our dataset and compare different characteristics.
There could also be the problem of over-fitting. So it is possible, that our model forgets
how to generalize and merely memorizes what the correct answer is for a specific dataset.
This can cause the progress of previous checkpoints to be lost and the entire system to
deteriorate. This could be an issue, as we want to carry on the pretraining for existing
models to increase the accuracy by a higher diversity of input data.
We also want to take a look at the number of iterations we want to use for pretraining
and fine-tuning. Based on the code we want to use and which is presented in section 3.1,
the standard number of iterations for pretraining should be 1000. Because this is a high
amount of resources and time we need to invest, we have to take a look, about how dif-
ferent models perform after various times.
At last, we will focus on the parameters for DP-SGD. As we have already seen, the choice
of these plays a major role in the security guarantees that our model can end up achieving.
However, there is a connection between the influence of our parameters on the accuracy
of the model. If we choose our parameters too strong, the influence of each data point
becomes very small. This can lead to good values in the safety guarantees, but at the same
time can severely affect the performance of our model, since the model does not learn
hard enough. On the contrary, if we select the parameters too low, which would weaken
the influence of the protective mechanisms, which may allow us to achieve better results,
but also not ensure sufficient security of our data points. So it is very important that we
achieve a good and accurate choice of these parameters.
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5 Approach

In this part of the work, we want to introduce the approaches and methods we use to reach
the previously discussed goal. After that, the implementation details will be presented to
show our code changes. The experiments and the discussion of these will be continued in
chapter 6 and 7.

5.1 Method

Before we get into detail about the data pipeline we want to use, remember that the goal
is to train a model which can guarantee reliable results on sensitive data. At the same
time, this model is intended to protect the sensitivity of this data. For this, we had shortly
introduced a two-step experiment which can be used to train such a model and perform
a differential-private fine-tuning after that, to improve the results for a given, sensitive
dataset. In this section, we want to fully present this mechanism and discuss all details
about the data we provide and how we build up our final solution. You can get a rough
overview of the system in Figure 5.1. Generally, the idea is that we split up the approach
into two halves.
On the one hand, there will be the pretraining which uses public data. In this part we
want to achieve a model, based on the ResNet50 architecture, which can perform a given
task reliable. On the other hand, we want to perform a privacy-preserving fine-tuning on
this given model to ensure also good results for another task on an unknown and sensitive
dataset. For this, we just want to train one linear layer privacy preserving. The results we
get from this are based on the quality of the underlying model.

5.1.1 Pretraining

As we have seen, pretraining means the training of the whole network and usually refers
to the first training of a model on a given dataset and task. The goal is, that we can later
on use the weights of this solution to train other models. The hope is, that this will then
have a head start over a new, untrained model because it can fall back on what has already
been learned. We want to use the contrastive learning approach, SimCLR to realize such a
learning mechanism. As we have seen in section 2.2, contrastive learning approaches do
not need specified labels for training, since they create artificial labels by creating positive
and negative pairs. This will be very helpful, since our custom datasets do not provide a
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Figure 5.1: Overview of the two-step approach we want to use, consisting of pretraining
and fine-tuning. Green represents the elements containing public data and do
not need to be protected. All red parts have come into contact with sensitive
data. The linear layer is trained supervised based on the embeddings of the
pretrained model and the original labels.

uniform format for the labels. Thus we can use one of our datasets, we present in section
6.2, to perform such a training on our models. We just got the limitation, that we do not
want to use one dataset in both steps of our approach. Notice, that the presented data is
collected from the internet and thus publicly accessible for everyone, including potential
attackers. So we do not need any mechanisms to protect the data at this point. After the
pretraining has been carried out, the dataset can be used to validate the quality of the
model for a given task based on this data, or it can get directly discarded. The technical
way to use a custom dataset will be presented in 5.2. Until now, we just assume, that we
find a way to correctly load a custom dataset. As we have discussed before, we want to use
such datasets because we want a high variance in the training data. Additionally, we can
modify them more easily than, for example, Tensorflow datasets by adding or omitting
images.
In summary, we can say that we currently have a public data set that does not contain
any information that is worthy of protection. We now want to use this dataset to train our
model. For this, we can use two different attempts, we can train from scratch or on an
already existing system.
From scratch means, that we can not fall back on existing weights. So we have to train
from the beginning. A problem that normally occurs with this approach is, that we have to
find good features which can be learned well and without prior knowledge. With SimCLR
we do not have this issue directly, since the labels are created artificially, as we have seen
before. But the creation of such pairs could be very difficult, so we have to ensure that
we use a large batch size to generate as many negative pairs as possible. This approach
should help us to evaluate the impact, if the model just had learned details about human
faces.
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In contrast to this, we want to use already pretrained models. For this, we can train mod-
els on Cifar10, Imagenet or similar datasets which provide images of animals, things of
everyday life and much more, but not especially humans. We want to take a look about
how all these different representations help our model to learn specified features of the
human face. One thing that could happen is, that the training mechanism overwrites all
the existing weights if they are useless. This is because we want to adjust the whole model
and the training process weights the things that lead to a large improvement in the system.
In our approach, we will use Cifar10, since there are only subsets of Imagenet available
but not the complete dataset.
We want to use the SimCLR implementation [FSC20] by the Google research team to per-
form the pretraining. At the end of the training we are able to build the saved model with
the given weights or just use the checkpoints to load the weights into a fresh model. After
that, we want to perform the fine-tuning and our evaluation for an unknown dataset and
task.

5.1.2 Fine-tuning

In the second step of our pipeline, we want to perform a fine-tuning on the given, pre-
trained model. It is possible to adapt the complete model. In our case, we freeze all layers
we receive and add one linear layer on top. This will be trained supervised with the em-
beddings of the pretrained model and the original labels provided by the dataset itself.
We do this because we want to use as much knowledge as possible from our pre-training.
Accordingly, we do not want the fine-tuning process to change the weights of the under-
lying model, since this means changing the pre-training.
We want to deal with sensitive data given to the model and implement an algorithm, like
DP-SGD, to secure our system and avoid the leakage of data afterwards. So in this part of
the approach, we want to focus on the training with such data. For this, it is very impor-
tant that we use the sensitive dataset only during the privacy-preserving fine-tuning, since
we do not have any mechanism to protect them before this step. In this work, we will use
CelebA mainly for fine-tuning. In this case, we just assume that this data is sensitive, al-
though the data is publicly accessible and therefore not actually worthy of protection. The
motivation behind this is that we want to investigate whether, for any model, DP-SGD can
achieve good results in the finetuning case. This can then be generalized to any, possibly
sensitive data sets. During this part of the approach, we want to measure the training and
validation accuracy with given metrics for evaluation. So at the end of the finetuning we
can determine the quality of our model and the training itself.
The goal was to train a model which can achieve good accuracy results on a sensitive
dataset and evaluate the performance of DP-SGD on the given model. At the same time
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our requirement for (ϵ,δ)-Differential Privacy has to be satisfied. Since DP-SGD is very
delicate to the given parameters, it could be difficult to choose them in such a way that we
fulfill the desired properties. For this we have to adjust the given training mechanisms as
we have seen in section 4.3. This changes will be discussed in the next section.

5.2 Implementation Details

In section 4.3, we discussed two challenges where we need to adjust the code. On the one
hand we have to deal with the implementation of DP-SGD, on the other hand there is the
import of custom datasets. In this part of the work, we will show how we implemented
the solution in the code, so that it meets our requirements.

5.2.1 DP-SGD

As we have seen, we want to use Differential Private Stochastic Gradient Decent as an op-
timizer. So far, SGD, Adam, and the Lars optimizer have been implemented as standard in
addition to this, but we want to ensure the sensitivity of the data during the fine-tuning of
the model. For this, we need an optimizer that can perform differential private preserving
training, like DP-SGD.
Since we had to realize that fine-tuning is still implemented in the Tensorflow two im-
plementation of the training mechanism, but another way is presented in GitHub to fine-
tune models, we can only partially use the previous code. Therefore, we use the provided
google colab2 to fine-tune models. In this part of the code many functionalities equal the
original code, like the image preprocessing. But there are some changes on the model ar-
chitecture, since this code is not designed to train the whole model further. In this case we
can not load checkpoints to carry out the further training but have to provide ready-made
models. However, we can avoid this by initializing the models according to the usual
structure and then loading the given checkpoints. This allows us to efficiently load larger
models and run a variety of experiments at different points in the training.
After that, we now have to find an efficient way to introduce DP-SGD as an optimizer.
For this, we will use the Tensorflow privacy implementation, as presented in section 3.2.
DP-SGD wants to calculate the Gradients by itself. So if we want to use this optimizer for
fine-tuning our model, we can not fall back on the code provided by the Google research
team. This is the case because they carry out all the calculations themselves, including
those for the gradients, and adapt the model themselves. Since DP-SGD does not allow
that, we have to find another way to do the fine-tuning. Because the fine-tuning corre-

2Finetuning for the Tensorflow two implementation of SimCLR: https://github.com/
google-research/simclr/blob/master/colabs/finetuning.ipynb
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sponds to the supervised training of one layer. For this, we can use the fit function which
is defined on Tensorflow models. This function can be used to train a model on a dataset
for a specified number of epochs and for a given loss function. Since fit use the call method
of the model itself, we can not use the normal model structure provided by the implemen-
tation because fit does not know how to handle this. We want to use the embeddings of the
pretrained model to train our linear head. So the approach is, that we define our model as
a system consisting of a linear layer and fit it with the dataset including the embedding of
the pretrained model and the label. For this, we have to load our image dataset normally
and perform the image preprocessing. After that we perform a new transformation where
we replace the image by the output of the model for the given picture. At this point, we
are able to train our linear layer based on the embeddings of the pretrained model. For
the training step itself, we will use the Categorical Cross entropy and the Categorical Ac-
curacy for this since they are common for datasets with one_hot encoded label.
Now we can start to fine-tune our model by using the fit function. This needs the dataset
itself and the epochs we want to perform the training on. This function returns the train-
ing history, which we can use for visualization. But if we want to compare the training and
the evaluation accuracy, we need to provide a train and validation dataset. Because there
is no implementation in the current application, we require a solution made by our self.
What we want to realize is a function, which builds and preprocess the dataset, splits up
and returns both parts. Since we now use the different implementation of the fine-tuning
mechanism, we no longer depend on the function that returns us a distributed dataset that
we can not easily split. So we can just follow the approach by the take and skip function
defined on Tensorflow datasets. This allows us to define how many entries we want to
take respectively skip from a given dataset. So if we take 80% of our data and skip the
same size, then we successfully performed an 80/20 split, which is a common size for
splitting the data. In order to avoid a possible imbalance in the split and to avoid poten-
tially bad splits, we shuffle the dataset before that. If the program is run several times, this
leads to different divisions and thus eliminates the problem.
We want to evaluate which security guarantees our model fulfils. For this, we can use the
functionalities provided by Tensorflow Privacy. Which gives us the ϵ value that our model
can fulfil for a given number of training examples, the batch size, the noise multiplier and
a δ chosen by us.
So at the end of this part, we are able to use DP-SGD as an optimizer for differential pri-
vate training. Additionally, we are able to calculate the security guarantees our training
can ensure.
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5.2.2 Custom Datasets

After that, we have to discuss the implementation for custom datasets. As we have seen,
we can not just fall back on Tensorflow datasets (tfds). So we need to find an efficient
way to read in custom data. For this, we have to start collecting the different sets from
the internet and take a look which format we can receive. All of them are available as
a collection of images, so we just have to find a way to read in images as a Tensorflow
dataset. For this, the function image_dataset_from_directory, provided by Tensorflow,
can be used. This allows us to define a directory of images, and the function will read in
the data as a dataset. Additionally, we can give an array of labels, if we can not provide a
structure or a label list in the directory itself to automatically generate them.
Since our custom dataset can not provide a tfds builder, we have to remove this part out
of the code. One problem that arises from this is that the original implementation does a
lot of calculations based on the builder, like the number of train examples or the number
of classes. Since we load the data out of a directory, we can do the most of the calculations
above the number of elements in the directory, but there is no efficient way to count the
number of classes. One possible way is to compute the labels and take the length of the
set of these.
Another Problem occurs during the loading of the picture with the associated label. As
we do not have a structure, that can be used to automatically generate the labels, we have
to find an own way to read in the labels. In the case of the CACD dataset, the labels are
part of the image title. If we now want to list them with the operating system function
listdir, provided by python. We had to realize that the titles are not read in alphabetic
order. Consequently we have to sort them before building our dataset.
The labels will be one-hot encoded. So we have to ensure, that all our labels correspond
to a value from zero to the number of classes. In the case of the CACD dataset, where we
got the age as a number between 14 and 62, we have to subtract 14 from each class. This is
necessary because if we do not do this, the 14 is not the first class encoded and the higher
ages are not completely represented in the encoded labels. In the case of a character string
as a label, we also have to translate this into a number representation so that it can be
displayed adequately. If we want to decode them, for example for visualization, we just
have to take the index of the one in the array, as there is no function to reverse the encoded
data. This can be realized by the NumPy function ’where’, which returns an array with
the corresponding indices. Since there is always only one label per image, the result array
has sized one.
After implementing this mechanism, we have to ensure, that everything was loaded and
processed correctly. As you can see in figure 5.2, all images are read in correctly and in
the same size. In this case, we use the hair colour of the people as a label to demonstrate
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Figure 5.2: Images of the CelebA dataset loaded custom as a tf dataset.
Zero equals blond, two equals black and four equals brown hair.

the correct assignment. For this, we transform the different hair colours into a number
representation, so they can be transformed in the one-hot coding later on.

At the end of this section we will be able to train differential private using DP-SGD. Fur-
thermore, we can load data sets whose contents we have as images in a directory. This
allows us to use a variety of datasets to conduct our training and study the impact on
DP-SGD.
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In this work, we will focus on a two-step experiment. In a first step we want to train a
model, based on the ResNet-50 architecture, and later on we will fine-tune this model for
a specific task. We want to investigate, how different pre-trained models will perform.
The goal is to pre-train a system that can ensure a high accuracy on a provided task for
an unknown data set after DP fine-tuning. In this chapter, we will present the datasets
we used and the experiments we performed. Based on this we will present the results we
received. An interpretation of these is shown in chapter 7.

6.1 Technical Overview

For the experiments, we will work with the NVIDIA DGX A100 3. This allows us to
perform the training on larger batch sizes than on usual graphic cards.
A general overview of the usual training parameters are shown in table 6.1. Notice that we
will use the Lars optimizer for evaluating our model. This will be presented in section 6.3.
Since there are more specific parameters we need for DP-SGD in general, we will discuss
them in the specific section. All parameters for SimCLR training equal, unless otherwise
stated, the information provided by the Google research team. 4.

Property pre-training DP-SGD fine-tuning Lars fine-tuning

Batch Size 512, 1024 512 512

Learning Rate 1 0.25 0.1

Image Size 32x32, 224x224 32x32, 224x224 32x32, 224x224

ResNet depth 50 (50)* (50)*

Epochs 1000 100 100

Table 6.1: Overview about the training parameters we want to use in our experiments.
Specific parameters will be discussed in the sections. The Lars fine-tuning will
be used for evaluation. *The ResNet depth in the fine-tuning case describes the
depth of the ResNet of the underlying model.

3Technical Information about the DGX A100: https://www.nvidia.com/en-us/data-center/
dgx-a100/

4Parameters for pre-training: https://github.com/google-research/simclr/tree/master/tf2#pretraining
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6.2 Experimental Setup

To train a model and perform an evaluation later on, we will shortly present the four
datasets we want to use. Since the goal is to train a model that is as generalized as possible,
we want to have the greatest possible variance in the training data.

6.2.1 CelebFaces Attributes Dataset

The CelebFaces Attributes Dataset (CelebA) [LLWT15] is an extensive dataset with 202.599
face images from 10.177 identities. For each image, the authors provide 40 binary at-
tributes, like bags under eyes or smiling. We will use this data mainly for fine-tuning and
evaluation, caused by the high amount of features provided with the image data.

6.2.2 Cross-Age Celebrity Dataset

In the publication of Bor-Chun Chen, Chu-Song Chen and Winston Hsu about the Cross-
Age Reference Coding for Age-Invariant Face Recognition and Retrieval, the authors pro-
vide a system to encode the low level feature of a face image. To realize this, they present a
celebrity dataset, called Cross-Age Celebrity Dataset (CACD) [CCH14]. It contains 163.446
images of 2000 celebrities with an age between 14 and 62. It is also known as CACD2000.

6.2.3 IMDB-WIKI Dataset

As a mixture between the IMDb dataset and images from Wikipedia, IMDB-Wiki [RTG18]
contain 523,051 pictures in total. The authors chose the persons after the list of the most
popular 100,000 actors, listed by the IMDb website and collected pictures with the same
metadata, like date of birth, name or gender, from Wikipedia. The authors provide infor-
mation about the picture by assuming the images show the face of the actor himself. The
identity, the year of birth and the year the photo was taken are given.

6.2.4 Labeled Faces in the Wild Dataset

The Labeled Faces in the Wild dataset [HRBLM07] includes 13233 images from 5749 peo-
ple collected from the internet and provided for studying the challenge of unconstrained
face recognition. For this, the authors supply the identities of the people depicted in the
pictures.
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6.3 Experiments

In order to be able to ensure a versatile evaluation of our pipeline, we want to pre-train
different models on different data sets. We then want to use all models to carry out the
same tasks over CelebA. An overview of the models that we train and the combination of
the different datasets is shown in figure 6.1. Notice, that each path uses the data set only
once and the evaluation always takes place with an unknown data set (CelebA). Only in
the case of the CelebA model itself do we want to use the same dataset twice to evaluate
whether our model architecture is sufficient to achieve good results for CelebA using con-
trastive learning. Furthermore, lower models always build on their predecessors, i.e. load
their checkpoint and continue training with it. As we discussed earlier, this is because we
want to combine knowledge from models on different datasets to create a model that can
accurately solve difficult tasks.

Figure 6.1: Overview of the different models that we want to pre-train and then evaluate.
Subsequent models build on the last checkpoints of the predecessors. The first
level of models is trained by scratch and thus has no predecessor. Each model
is given its own id, making it easier for us to address them.
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Differential private training mechanisms try to reduce the impact of single data points to
the model. In the case of DP-SGD, this is realized by clipping the gradients and adding
noise to them. These modifications generally lead to DP learning methods achieving
poorer results than methods without any data protection. To avoid misunderstandings
and to get a measure of how further pre-training affects the quality of our model in gen-
eral, we want to consider two different approaches to evaluate our system. On the one
hand, we will perform the fine-tuning with DP-SGD to ensure secure training with sen-
sitive data. On the other hand, we will use Lars as the optimizer to get a feel for how
accurate our model can be in general. This step only serves to evaluate our results for
further pre-training and is not part of the final solution, since no privacy protection mech-
anisms are used. For fine-tuning we want to use the CelebA dataset. This is a publicly
available data set. For our purposes, we want to assume that the data is sensitive and
therefore worthy of protection. However, we can also use this data set to achieve a good
baseline by briefly ignoring the protective mechanisms.

6.4 Experimental Results

In this section, we want to present the results of our models that we introduced in figure
6.1. To do this, we want to split the evaluation into two parts, on the one hand the pure
accuracy of the models and on the other hand the DP guarantees that we can ensure.

6.4.1 Model Accuracy

To check how well our models perform for different tasks, we want to present three dif-
ferent features. For this, we want to let the model first decide whether the person on the
image is a man. The second task is for our model to decide whether the person has black
hair. Finally, it should be decided whether the person has arched eyebrows. Notice, that
the experiments are structured in such a way that they go from quite obvious features to
more and more detail. Since all properties of the images for CelebA are always binary
problems, we always challenge our model whether the property is satisfied or not. As
we discussed before, we always want to compare our DP results with Lars as well, i.e. a
mechanism that cannot ensure differential privacy. The goal is to determine how well our
model performs in general without reducing the impact of the training points.
In addition to the results, we want to indicate what accuracy a model would achieve that
simply always guesses the larger of the two classes. Such a model achieves the accuracy of
the percentage of this class in the data set. Furthermore, we show what a model with the
same architecture (ResNet50 + one linear layer) can learn supervised for the given task.
These approaches are mainly discussed in the interpretation during chapter 7.
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a) Results for the male decision problem.

b) Results for the black hair decision problem.
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c) Results for the arched eyebrows decision problem.

Figure 6.2: Accuracy results for the given models to decide whether a man is depicted or
not (a), to decide whether the person has black hair or not (b) and to decide
whether the person has arched eyebrows or not (c). Sup stands for the results
that we can achieve through supervised training. Maj for the accuracy we re-
ceive for a model, that just always guesses the larger of the two classes and
thus achieves the accuracy of the distribution of the largest class in the dataset.
Running over 100 epochs, for a δ = 10−9 with noise multiplier = 2.45, we get
ϵ = 0.982.
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The results of the evaluation are shown in figure 6.2.
As we can see, all models achieve only marginal improvements compared to a model that
decides based on the size of the respective classes in the data set. It can even happen
that our models deliver worse results. This suggests that the training of our models is
insufficient to reliably learn and discriminate the features of CelebA.
We can continue to observe that in most cases the accuracy of the Lars optimizer is better
than that of DP-SGD. This was generally to be expected, since DP-SGD uses methods
designed to minimize the impact of individual data points. One effect of this may be that
it reduces the impact of training. Accordingly, non-private mechanisms, such as Lars,
usually achieve better results.
Furthermore, notice that all models perform approximately the same for the given tasks.
We can also see that the results are independent of whether a model has already been pre-
trained or had to try to extract features from scratch. Additionally, it is also not relevant
whether a facial data set was used, since the cifar10 model also delivers similar results to
models trained with facial data.
It is also noticeable that the model trained for CelebA also delivers average results. This
may mean that our training is insufficient to reliably classify CelebA, or that our model
architecture may not be extensive enough.
In summary, it can be stated that our models cannot achieve reliable results for the tasks
set. There can be various reasons for this, which we will discuss and analyse in detail in
chapter 7.

6.4.2 Differential Privacy Guarantees

As we have already seen, in the DP-SGD case we can also calculate the safety guarantees
of our training. These are very important, as they give us a feeling of whether our train-
ing has been carried out differential private, or whether attacks on the data and thus a
potential disclosure of information are possible. Since we use the implementation of DP-
SGD provided by the Google research team, we can also use their analysis of the security
guarantees as described above. The precise calculation of the values is implemented us-
ing various functions, which we will not look at in more detail. These can be found in the
implementation itself 5.
In this part, we just want to look at the guarantees we can achieve for the CelebA dataset
because we use it for fine-tuning with DP-SGD. We know that CelebA has 202,599 entries,
and we want to use 80 percent of them for training, i.e. 162,079 data points. These are

5Calculation of ϵ based on the Google research implementation: https://github.com/
google/differential-privacy/blob/main/python/dp_accounting/rdp/rdp_privacy_
accountant.py
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Number of Epochs Number of Entries Noise Multiplier Batch size δ ϵ

10 162079 1.3 256 10−9 0.978

20 162079 1.4 256 10−9 0.981

50 162079 1.8 256 10−9 0.987

100 162079 2.45 256 10−9 0.982

Table 6.2: Overview about the differential private guarantees with various number of
epochs. These values are calculated for the CelebA dataset with 202,599 entries
where 80 percent is used for training, i.e. 162,079 data points.

therefore worth protecting and must be taken into account in the calculation. As we have
discussed in section 2.3, δ should be smaller than 1

|D| for a given dataset D. Therefore, we
want to choose δ = 10−9. ϵ, on the other hand, should be picked to be smaller than one. It
was shown that most attacks on DP training methods can only be successfully carried out
with an ϵ > 1 [RRL+18].
A calculation for the guarantees we can ensure and the parameters we have to use for this
is shown in table 6.2. Notice, that increasing the number of epochs means that we have to
add significantly more noise to the gradients. This is necessary because running the train-
ing multiple times over the same data points will result in them having more of an impact
on the overall model. This increases the risk that these can be identified. Accordingly, the
noise simply has to be chosen higher in order to reduce the overall influence.
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In this chapter, we finally want to interpret the results of our experiments shown in chap-
ter 6. For this, we want to focus on different aspects that could explain our results. After
that, we want to discuss the challenges, which we formulated at the beginning of this
work.

7.1 Interpretation

As we have seen in section 6.4, with the models we have trained we do not achieve the
accuracies that the distribution in the dataset exceeds. In this section, we want to discuss
why this could be and interpret our results. To do this, we want to examine our previous
models again and make additional modifications to our experiments in order to determine
possible reasons for the performance.

7.1.1 TSNE

First, we want to check if we achieved that we can recognize clear separations in our data
set as a result of contrastive learning. So let us observe whether the formation of positive
and negative pairs has led to the formation of meaningful clusters. To do this, we want
to display them using TSNE. We want to use the images from our dataset, iterate them
through the model, and then display the results. Notice, that the results we receive from
here are the input of our linear layer. Since these are high dimensional, TSNE has to do
the mapping into a low dimensional space, to display the results in two dimensions. To
better represent how the clusters look exactly, we want to colour each embedding with
the corresponding colour, which depends on the class. Therefore, each class gets a colour,
and we expect a good SimCLR model to have data of the same class closely spaced.
To illustrate this approach in more detail, the representation of the Cifar10 dataset on the
Cifar10 model we use is shown in figure 7.1a. As we can see, there is clear clustering,
disturbed only by a few outliers. The model is therefore able to pack images of the same
class together and distinguish them from other classes.
However, if we apply this procedure to the CelebA model we have trained, we get the
result shown in figure 7.1b. As you can see, the TSNE does not look sorted, which suggests
that our model does not allow a clear separation of the clusters. As a basis for this image,
we took the images from CelebA itself. Normally, it is to be expected that a model trained
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(a) TSNE Cifar10 (b) TSNE CelebA

Figure 7.1: Depiction of the embeddings of the images in the models trained for the spe-
cific dataset. The evaluation of the 500 epochs Cifar10 model is shown on the
left, the evaluation of the 1000 epochs CelebA model on the right. Both models
were trained with SimCLR.

on the CelebA data set should be able to clearly separate it. So we need to investigate
what causes these results to occur. What we can definitely state is that the pretraining that
we used is not sufficient.
Furthermore, we can conclude that if the CelebA model is not able to produce accurate
results on this data set, then the other models probably have little chance of success either.
So we certainly have to adapt the pretraining process.
Foremost, we want to try whether adjusting the image size has an impact on the quality
of the training. To do this, we increase it from 32x32 to 224x224. The motivation why we
wanted to use 32x32 images was that this makes the training process more time-efficient
because not such high-dimensional data is used. Furthermore, small images have the
advantage that you can load more of them at the same time, so the batch size per training
step can be increased significantly. As we have already discussed, it is important to have
large batch sizes so that as many positive respectively negative examples as possible can
be formed.
Unfortunately, due to the resources required to process 224x224 images, it is no longer
possible to guarantee batch sizes of 1024 or 512, so we have to fall back on 256 images per
batch. At the same time, this means that we need more training steps to train the same
number of epochs. To check whether this adjustment brings an improvement, we train
a model on CACD from scratch and an LFIW which is based on the CACD model. Due
to time constraints, it is not possible to train 1000 epochs CACD because the data set is
very large. Accordingly, we only pretrain 400 epochs and then use this checkpoint for
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(a) TSNE CACD 224x224 images (b) Training curve CACD 224x224 images

Figure 7.2: Depiction of the results for the modified model with image size 224x224. On
the left side the embeddings of the images are shown, while on the right sight
the accuracy of the model for the decision problem whether a man is displayed
or not, evaluated with DP-SGD.

1000 epochs LFIW. Apart from the adjusted image and batch size, we continue to use the
parameters that we presented in chapter 6.
The results of this approach are shown in figure 7.2. Here, we evaluate the new CACD
model from scratch on the CelebA dataset. The results of the LFIW will not be discussed
further here, as they are almost identical.
Notice, that we can receive accuracy results between 0.58 and 0.62. As we have seen in
section 6.4, the scratch CACD model, which was trained with 32x32 images, achieves an
accuracy of 0.56. So we can see that adjusting the size of the images also contributes to a
marginal improvement in the model. However, clear clusters still cannot be separated, as
shown in figure 7.2a. Therefore, simply adjusting the image size may not be enough, or
we may have to extend the pretraining of the model in order to be able to achieve even
better results.
The challenge of clear clustering can also have other causes. For example, it may be that
the standard transformations, such as rotating or recolouring, that are used during the
pretraining are not sufficient to train the model well for CelebA features. An adjustment
of these may therefore be necessary. This approach is not considered further here.

7.1.2 Training Curve

Since we want to investigate in this work to what extent the pretraining of models affects
the performance of DP-SGD, it makes sense to examine the training process of DP-SGD in
detail. For this, we want to look at the following training curve of the CACD model for
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Figure 7.3: Display of the DP-SGD training curve on the scratch CACD2000 model for
the decision problem whether a man is displayed or not. The evaluation was
performed on the model trained with 32x32 images.

32x32 images. This is shown in figure 7.3.
As you can see, there is no consistent training line here, but spikes in accuracy up and
down. While these are not huge, they can be an indication that our linear layer is trying to
learn features. Remember, that our model architecture was structured in such a way that
we take the pretrained model and want to train a linear layer on it using DP-SGD. Exactly
this layer now tries to extract characteristics and to achieve a separation in the dataset. The
deflections are a sign that such a separation is not possible and that the model is trying
to find other separations again. As a result, we do not achieve consistent improvement or
stagnation in our model, but such jumps.
This may be because due to the underlying, pretrained model not being able to achieve
an unambiguous separation, as we discussed in the previous section. So it is also difficult
for the linear head to perform a separation, since it has to build on the unsorted outputs
of the pretrained model. This means that the linear head cannot contribute to delivering
good results either, since it does not learn sufficiently on its own.
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7.1.3 Evaluation with IMDB dataset

Another possibility that could explain why we are getting these results is that our architec-
ture with a Resnet 50 and a linear layer on top is not sufficient to be able to learn CelebA
features reliable. Therefore, we want to evaluate whether our models can deliver good
results on a different data set.
For this, we want to use the IMDB dataset. Notice, that in addition to the identities of the
people their date of birth and the year the photo was taken is provided. So we can calcu-
late the age of the people in the photo and thus get the identities and the age as a label.
We want to use a modified form of the dataset here, since the original data is highly un-
balanced. Some classes are represented with less than a hundred photos, while the main
age classes contain several thousand images. Therefore, in our modified variant, we only
want to look at the classes with at least a thousand pictures and only take a thousand of
them per class. So the data set then includes people between the ages of eleven and sev-
enty, and thus 60,000 photos. In order to make the comparability to the CelebA dataset,
we want to continue to consider a two-class problem. So if we select all persons up to 40
in one class and all others up to 70 in another, we get 30,000 pictures per class.
The evaluation of our experiments is shown in figure 7.4. Notice, here we took the same
parameters for DP-SGD as for the CelebA data set, although that would not have been nec-
essary. However, we want to ensure that the comparability of both experiments remains
largely intact. Normally, due to the significantly larger number of data points in IMDB, a
smaller noise multiplier would be possible to achieve the same security guarantees.

We can state that except the Cifar10 model, all models achieve at least the accuracy of 0.5.
However, this is probably not due to the fact that the features were extracted well. Rather,
the reason could be that the distribution of the data to class zero or one is exactly half.
The results of our models can have various causes. On the one hand, our models may not
be able to separate this dataset well either. On the other hand, it is possible that we need
other training methods in order to be able to classify the age of people well. An approach
to this was presented in the section about related work, and adapts the pretraining so
that positive pairs are formed by people of the same age and not by image transformation
[LGW+21].

7.1.4 Implementation without DP-SGD

As we have seen, DP-SGD uses gradient clipping and noise to reduce the impact of in-
dividual data points, thereby protecting sensitive data. We had also discussed that this
can lead to the results in the accuracy of the model being reduced. Accordingly, we want
to examine here what influence DP-SGD has on the training of the linear layer and thus
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Figure 7.4: Accuracy results for the given models on the age decision problem for the
IMDB dataset.

on the quality of our pipeline. For this, we can use our models and carry out the same
experiments without paying attention to privacy preserving training.
As you may have noticed in Chapter 6, we use Lars as an optimizer for this. The results
of our evaluation are plotted simultaneously with the results of DP-SGD for all experi-
ments. Regarding figure 6.2 and figure 7.4, we can see that Lars performs only slightly
better or even worse than DP-SGD, but these also do not exceed the value of the distri-
bution. Therefore, the pretraining has to be improved in order to achieve good results for
the model in general.

7.1.5 Supervised Learning on Resnet50

Last but not least, we want to check in another way whether our architecture is able to
learn CelebA by leaving the contrastive learning approach and doing purely supervised
training. For this we build a model consisting of the Resnet50 architecture, which is pro-
vided by the Google research team, and pack a linear layer on top of it. Notice, that this
is the general structure of our pipeline, only now we do not use a pretrained model and
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only carry out supervised training. Since we just want to check how well our model ar-
chitecture is designed for CelebA, we want to take a non-DP approach to achieve the best
possible results. For this, we can fall back on the Lars optimizer.
The results of this approach are also shown in figure 6.2 and figure 7.4. We can see that
even the supervised results are not enough to get good results for the given tasks. This
suggests that our model architecture may not be sufficient to reliably learn features of
CelebA. This can either be because the one linear layer is not sufficient to extract unique
features based on the Resnet model. However, it is also possible that a Resnet with 50
layers is not deep enough.

7.2 Discussion of the challenges

In the last part of this chapter, we want to summarize the challenges that we discussed in
section 4.3. We want to take a quick look at what the expected difficulty was and what we
implemented to solve the individual tasks.
First, we discussed that we want to use DP-SGD as an optimizer. This was necessary
because in this work we want to investigate how the fine-tuning of pretrained models af-
fects the performance of DP-SGD. The challenge was that in Google’s implementation, all
calculations for adapting the model were implemented in the custom training step. This
applies in particular to the calculations of the gradients. But DP-SGD requires that these
are carried out by the functionalities provided by the optimizer in order to be able to en-
sure that the training is really carried out differential private. Accordingly, the training
had to be adjusted so that all adjustments to the model are performed using DP-SGD. Our
implementation is shown in section 5.2.1. We implemented the training in such a way that
we load our pretrained model as usual and preprocess the images in such a way that the
data set then consists of the image embedding and label. After that, we only had to define
a linear layer as a model and could then train it using the fit-function. This has enabled us
to use DP-SGD.
As a second challenge affecting the code, we had motivated why we want to use custom
datasets. The reason for this was that we wanted to use the combination of knowledge
to train reliable models. Furthermore, we explained that with such an implementation,
we can access numerous data sets that are easy to modify. With the introduction of such
data sets, the problem was that we could no longer access many of the code’s calculations,
since these were mostly realized using Tensorflow datasets. So we had to find an efficient
way to do this ourselves. We presented our implementation for this in section 5.2.2. The
most important changes were that we can load images from a directory. These are then
available to us as a Tensorflow dataset. However, since these are still not part of the Ten-
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sorflow dataset library, they do not have a builder and therefore no meta information such
as number of images or similar attributes. We have shown how these calculations can be
performed using the directory structure. This allows us to load custom datasets correctly,
which was necessary because it enabled us to carry out many experiments on the various
data sets. This would not have been possible with the standard data sets.
Away from the code, we showed the challenge that machine learning and the DP-SGD
approach can entail. One of them was the imbalance in the dataset. The problem here
was that, especially in supervised training, such an imbalance can mean that our model
can deliver good results for certain tasks, but can only solve other tasks poorly or not at
all. Especially in the case of our fine-tuning, it was important that we prevent such an
inequality. This challenge is also of great importance in the interpretation of our results,
where we use a supervised approach as a comparison to our SimCLR models. The solu-
tion is that we look at relatively balanced attributes in our experiments. In the case of our
fine-tuning, this is guaranteed by only using classes whose largest class is a maximum of
70 percent. In the example of supervised training in section 7.1.3, we even showed that
we modify the data set to correct an imbalance. This is mainly possible because IMDB
is a custom dataset. Such imbalances during pretraining are avoided from the outset by
training many models on a wide variety of data sets. This gives us a high variance in our
image data.
Another problem associated with using datasets can be overfitting. As we have already
discussed, the issue here is that if the same data set is used too often, it is possible that
the model will start to memorize it. This can result in the model no longer being able to
generalize. We had also shown that this is rather less likely in the contrastive learning
approach, since more frequent training leads to the formation of more positive and neg-
ative pairs. This can help improve the model. However, this concern can arise during
fine-tuning or our interpretation experiments. Since we have examined what results we
can achieve with CelebA on different models trained with CelebA, we have clear evidence
that no overfitting has taken place. This is because otherwise near perfect results would
have been achieved since the model already knows the answer to the questions. Never-
theless, it cannot be ruled out that after a certain number of training steps, our models
perform better than they are currently doing.
To investigate whether the number of training steps makes a significant difference, we
want to evaluate the results of our models at 500 and 1000 epochs of training. The Google
research team suggested 1000 epochs for training. But since this is associated with a lot
of time and resources, we wanted to reduce it. The results of this approach are shown in
figure 7.5.
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(a) Training accuracy after 500 Epochs (b) Training accuracy after 1000 Epochs

Figure 7.5: Depiction of the accuracy results for the models after 500 and 1000 training
epochs. Here, the problem of whether a man can be recognized in the pictures
or not was considered.

As one can see, there is no significant difference between the models after 500 and 1000
epochs. Notice, that some models achieve even better results when they have been trained
less. However, this can also be due to the fact that we have the spikes in accuracy, as we
showed in section 7.1.2. After an adjustment of the pretraining, it can be the case that the
number of iterations has a significant influence on the results of our models. In this case,
it would have to be examined at what point the training stagnates.
Last but not least, let us take another look at the parameter selection of DP-SGD. We dis-
cussed that the parameters have a high impact on the accuracy of DP-SGD, as they deter-
mine how high the impact of each data point is. Our reasoning was that overfitting causes
an unnecessary loss of information, while the sensitivity of the data cannot be guaranteed
if the choice is too low. Based on the work of Md Atiqur Rahman, Tanzila Rahman et al.
[RRL+18], we had seen that we should achieve an ϵ < 1 so that common attacks on DP
are no longer possible. Furthermore, we found that our algorithm should deliver better
results than one that randomly throws out any data point. So δ < 1

|D| should hold for a
given dataset D. Based on this, we made our choice of parameters. This was presented
in section 6.4.2. Since CelebA is the only dataset that we want to use by default for our
DP-SGD fine-tuning, our choice of delta is sufficient. From this, we can now calculate our
other parameters. We have shown that these are chosen exactly such that ϵ < 1 holds. In
summary, we can say that we have selected the parameters for DP-SGD in such a way that
they achieve the desired security goals. However, it is important to say that each data set
has its own size, so new parameters must be selected for each one in order to achieve the
best possible results.
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8 Conclusion

In the last part of this work, we will shortly summarize our results and findings from
chapter 6 and 7. To complete our elaboration, we will list up some open problems, which
can be investigated in the future.

8.1 Summary

In this work, we investigated the influence of fine-tuning of pre-trained models on the per-
formance of DP-SGD. We have given a brief overview of the contrastive learning method
SimCLR and the principle of differential privacy. We discussed the issue with deep neural
networks and presented Resnet as a solution. Furthermore, we presented a pipeline that
allows us to train models and then evaluate them using DP-SGD. To do this, we used a
two-step approach. Based on a Resnet50 architecture, we have trained a wide variety of
models using different data sets. These then served as the basis for our DP fine-tuning
and thus for the evaluation of the performance.
In our experiments, we then trained a linear layer based on these models using differential
privacy. To do this, we iterated the images through the model and used the resulting em-
beddings, including labels, to train the linear layer supervised using DP-SGD. We found
out that all models achieved similar results for the same tasks. Furthermore, the accuracy
never or only marginally exceeded that of a model that only always chooses the largest of
the available classes. After that, we presented the parameters that we used for DP-SGD.
In doing so, we showed that we were able to achieve the desired security goals.
Summarized, it can be said that our models were not able to reliably fulfill the given
tasks. In order to investigate what causes this could have, we used different approaches.
We discussed whether the size of the training images has an impact on the accuracy of
the model. We were able to determine that there is a marginal improvement, but we still
cannot achieve sufficient separation of the classes. Likewise, it was discussed that other
influences can also ensure that pre-training deteriorates. So the choice of transformations
could pose a problem.
Furthermore, we examined the training curve of DP-SGD and showed that this can be a
sign that the linear layer is trying to achieve separation in the dataset but is not able to do
so. Reasons for this could be that the properties of our chosen evaluation data set are too
difficult to be learned from our structure. However, it is also possible that the architecture
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itself is not sufficient to be able to extract features well.
In order to investigate this further, we carried out an evaluation using a different data set.
This also showed that reliable results could not be obtained. In addition, we examined
how well our architecture performs after supervised training. We found that this does not
increase the accuracy any further. We discussed that this can be an indication that our
architecture is not sufficient.
To check what results we could achieve without the influence of DP, we also used a non-
DP approach. For this, we evaluated our models in the fine-tuning step using Lars and
showed that we can usually achieve better results, but these are also not good.
Finally, we discussed some challenges which we had defined at the beginning of the work
and showed our solutions for it. In addition, we showed in each area how we adjusted
the code to meet our needs.

8.2 Future Work

In this section, we want to show various possibilities to improve our approach and reach
better results. For this, we fall back on our findings during the experiments.

8.2.1 Improvement Pre-Training

We have discussed that our results are mainly due to insufficient pre-training. Accord-
ingly, this would have to be adapted and improved. On the one hand, it may be necessary
for the training parameters to be better selected. On the other hand, other transformations
may also be necessary in order to be able to reliably extract features from facial data.

8.2.2 Improvements DP-Optimizer

DP-SGD is just an optimizer that can ensure DP at the same time. There are now im-
plementations that deliver better results. For example, DP-Adam. Based on the normal
Adam optimizer, this one can also guarantee differential privacy. Therefore, one could
investigate to what extent DP-Adam gives better results than DP-SGD.

8.2.3 Improvement Base Model

As we have seen, we used a Cifar10 model as the basis for some of our experiments.
The motivation behind this was that we wanted to investigate whether prior knowledge
of everyday things would give our models an advantage. Since Cifar10 only uses small
images and is actually a fairly small data set, it may be a good idea to use generalized
models for such an evaluation. An imagenet model could possibly deliver better results.
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