
Retrofitting Remote Control-Flow Attestation for ARM TrustZone

Erweiterung von ARM TrustZone um Kontrollfluss Attestierung

Bachelorarbeit

verfasst am
Institut für IT-Sicherheit

im Rahmen des Studiengangs
IT-Sicherheit
der Universität zu Lübeck

vorgelegt von
Finn Burmester

ausgegeben und betreut von
Prof. Dr.-Ing. Eisenbarth

mit Unterstützung von
Jonas Sander, M. Sc.
Thore Tiemann, M. Sc.

Lübeck, den 2. Dezember 2022

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich diese Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen undHilfsmittel benutzt habe.

Finn Burmester

– ii –

Abstract

This thesis presents a hardware-assisted control-flow attestation scheme for
TrustZone based on the existing debugging capabilities of the processor.
Our approach requires no custom hardware design and just reuses compo-
nents that are already present on most ARM-based SoCs. For monitoring the
control-flowof applications inTrustZone anddetectingunauthorized control-
flow changes we use Coresight tracing. We successfully implemented a pro-
totype that extends OP-TEE, a TrustZone-based trusted execution environ-
ment, with capabilities for control-flow attestation. The prototype consists of
modules for generating the control-flow graph as a reference for valid control-
flows, a measurement-engine based on Coresight and a verifier. Our evalua-
tion shows that the runtime-overhead generally is reasonable for typical ap-
plications but could be improved with different debugging hardware.

– iii –

Zusammenfassung

In dieser Arbeit wird ein hardwaregestütztes Kontrollfluss-
Attestierungsverfahren für TrustZone vorgestellt, das auf den vorhandenen
Debugging-Fähigkeiten des Prozessors basiert. Unser Ansatz erfordert
kein spezielles Hardwaredesign und verwendet lediglich Komponenten,
die bereits auf den meisten ARM-basierten SoCs vorhanden sind. Für die
Überwachung des Kontrollflusses von Anwendungen in TrustZone und die
Erkennung von nicht autorisierten Kontrollflussänderungen verwenden wir
Coresight Tracing. Wir haben einen Prototyp implementiert, der OP-TEE,
ein TrustZone-basiertes Trusted Execution Environment, um Fähigkeiten
zur Kontrollfluss-Attestierung erweitert. Der Prototyp besteht aus Modulen
zur Erzeugung des Kontrollflussgraphen als Referenz für gültige Kontroll-
flüsse, einer auf Coresight basierenden Mess-Engine und einem Verifizierer.
Unsere Evaluierung zeigt, dass der Laufzeit-Overhead im Allgemeinen für
typische Anwendungen vertretbar ist, abermit anderer Debugging-Hardware
verbessert werden könnte.

– iv –

Contents

1 Introduction 1
1.1 Contributions 1
1.2 Organization 2

2 Preliminaries 3
2.1 RelatedWork 3
2.2 Trusted Execution Environment 5
2.3 Coresight 10
2.4 Runtime Attacks 11

3 Approach 13
3.1 General Considerations 13
3.2 Threat Model 13
3.3 Attestation Process 14
3.4 How to Obtain the Measurements? 14
3.5 Verifier 16
3.6 Protecting the Attestation Report 17

4 Implementation 19
4.1 Selecting the Hardware 19
4.2 Software for Coresight Tracing 20
4.3 First Traces 20
4.4 Tracing OP-TEE 22
4.5 How toMake the System Secure 24

5 Evaluation 27
5.1 Demonstration 28
5.2 Performance 29
5.3 Security Guarantees 36
5.4 Comparison to Other Approaches 37

6 Conclusion 39
6.1 Summary 39
6.2 Discussion 39

– v –

6.3 FutureWork 40

Bibliography 41

Acronyms 46

– vi –

1
Introduction

The rise of cloud computing comes with many benefits, like access to (nearly) unlimited
computing resources and cost optimization. But it also introduces new challenges. The
operator of the cloud environment has complete control over the resources that they pro-
vide to their customers. So how can one make sure, that he does not exploit this power?
How can it be assured, that the workload in the cloud is executed as intended? Similar
problems exist in edge computing: For example, how can an electricity provider ensure
that a firmware update to a deployed smart meter was executed correctly, without inter-
ference by a customer, who might be tempted to tamper with the device, to reduce his
electricity bill? One solution to this is the isolation of security-critical software compo-
nents. Trusted Exectution Environments (TEEs) like Intel SGX and ARM TrustZone provide
just this and are available on many modern devices. By moving software into a TEE, it
can not be tampered with anymore by the cloud operator. Additionally, we have static
attestation, which allows a device to prove to a remote verifier, that the correct software
was loaded in the TEE. But the software in the TEE still has interfaces to the untrusted
environment it runs in and may take input parameters from outside. This leaves attack
vectors open for runtime attacks, that exploit memory vulnerabilities in a program to
manipulate the control flow and achieve arbitrary code execution. Even if the program
is assumed to have no software vulnerabilities, it could still be manipulated by advanced
side-channel attacks. To solve this, control-flow attestation has been proposed. It al-
lows a device to prove to a remote verifier, that a programwas executed as intended. De-
spite the existence of various control-flow attestation methods for different platforms,
they have not yet been adopted by commercial applications due to the significant run-
time overhead they incur. Therefore we want to explore the possible benefits of using
hardware support to accelerate the attestation and the program tracing in particular, in
terms of security and performance. We focus on the attestation of Trusted Applications
(TAs) running on ARM TrustZone.

1.1 Contributions

For this thesis,we researched on the usage of hardware support for enablingControl-Flow
Attestation (CFA). In particular, we focused on the ARM platform, which has long been

– 1 –

1 Introduction

used mainly for mobile and low-performance devices but lately has gained traction in
the cloud environment. We developed a CFA approach for security-critical applications
running in TrustZone, so-called TAs. For measuring the control flow of a TA we use the
hardware-based debugging framework Coresight [24]. We implemented a prototype on
a low-end ARM board to show the feasibility of our approach and evaluated the perfor-
mance and security of our system. As the software framework running in the TrustZone
we use OP-TEE, an open-source TEE [32]. Our prototype consists of components for a
full end-to-end CFA workflow:

– TheReferenceMeasurement Generator creates referencemeasurements, represent-
ing a valid control flow for a program.

– TheMeasurementEngine is integrated intoOP-TEEand is responsible for tracing the
execution of a target application using Coresight.

– TheVerifier compares the execution traces with the reference measurement and en-
sures the integrity of a program run.

We also discuss possible optimizations and starting points for future work. Other ap-
proaches like C-FLAT [1] often rely on binary instrumentation which is purely software-
based or require custom hardware designs like LiteHAX [17]. There already are CFA so-
lutions that use Coresight, e.g. LAHEL [6], but to the best of our knowledge, we are the
first to investigate the applicability of Coresight-based tracing to protect the integrity of
the execution of TAs in TrustZone.

1.2 Organization

Wehavealreadygivenabrief introduction toCFAand its relevanceanddescribedourown
contributions. In chapter 2 we will discuss related works and introduce some important
terms and concepts inmore detail, to provide a solid foundation for the rest of this thesis.
After that, wewill explain our approach in chapter 3 and our concrete implementation in
chapter 4. An analysis of the performance and the security guarantees of our solutionwill
be provided in chapter 5. In chapter 6 we will summarize and discuss the results of our
work, as well as possible starting points for future work.

– 2 –

2
Preliminaries

This chapter is used to introduce some terminologies, concepts and technologies that are
used throughout this thesis. We also discuss relatedworks, to give an overviewof general
approaches for CFA.

2.1 Related Work

There are already various works in the field of CFA [18][45][17][28][2] in general and also
for ARM in particular [1][6][11]. In this chapter, we want to give a brief overview of the
state of research and describe some different approaches. We will not only address ap-
proaches for CFA but also for Control Flow Integrity (CFI), as these two share many simi-
larities. Themain difference between them is the time of verification and the placement
of the verifier in the system architecture. In CFI, the correct execution of a program is
continuously verified and the verifier is located on the same device as the target. Con-
trary to this, in CFA the verifier is a remote party, that receives a proof about the correct
execution of a target program.
C-Flat by Abera et al. is the original work, that proposed CFA [1]. As a reference for the
valid control flow of an application, the applications Control-Flow Graph (CFG) is used. A
CFGisadirectedgraph, thathasbasicblocksasnodesandcontrol-flowtransfersbetween
these basic blocks as edges. A basic block is a sequence of code, that only has branches at
the entry and exit. C-Flat uses software instrumentation to record the execution path of
the target application. Thismeans, that the software binary is modified in a way, that for
each control-flow relevant instruction, e.g. a branch, the software jumps to a privileged
piece of code, that saves the program counter and the branch target and then returns to
the application. Themeasurement is a cryptographic hash, that is successively calculated
over the CFG-nodes that were executed. The verifier can then verify the control flow by
comparing the hash measurement with the valid reference value in its database. Special
attention is needed for the handling of loops: when simply accumulating the whole exe-
cution path into one hash, this would lead to an exponentially growing amount of legal
measurements, because every possible amount of loop iterations generates a new mea-
surement. This is why loops are treated as subprograms and their execution path and
iteration count are handled separately.

– 3 –

2 Preliminaries

After C-Flat, there were many other publications in the field of CFA, which use different
methods for attestation, to optimize the performance. One approach is to use hardware-
based measurements of the control flow. A downside is, that systems based on this ap-
proach are very closely tied to the specific hardware platform and processor architecture
and therefore lack flexibility in contrast to pure software solutions. On the other hand,
this approach can massively increase the performance of the attestation, because it su-
persedes the very costly software instrumentation, which makes it worthwhile. LO-FAT
[18], Atrium [45] and LiteHAX [17] use a custom System on a chip (SoC) design based on
the RISC-V architecture and directly interface with the processor’s pipeline, to intercept
executed instructions. The prototype for LO-FAT is implemented on an FPGA and fea-
tures a loop encoder for detecting loops, a hash engine for efficient hash calculation and
dedicated memory for the execution traces. Atrium [45] is designed very similarly, but
also attests the executed instructions themselves, not only the control flow. These ap-
proaches all have in common, that they need custom hardware designs. LAHEL [6] is
designed for ARM and takes another approach, by using the existing Coresight tracing
features. It is implemented as a custom IP core and therefore still requires a custom SoC
design, but in contrast to LO-FAT, modifications to the CPU are not needed because of
interfacing with Coresight. This makes the implementation easier and avoids possible
problems with ARMs license agreement, which may prohibit modifications to the CPU
cores. This approach is similar to [11], which builds on a SoC with an integrated FPGA.
The programmable logic of the FPGA is used to build a custom hardware extension, that
interfaces with Coresight. In [23] measurements are also obtained by using Coresight,
butwithout the requirement for customhardware designs. Very similar to our approach,
on-device trace capturing is used. The main difference is, that this is a CFI monitoring
system, whereas our solution provides CFA. Another aspect that differentiates our ap-
proach from the other Coresight-based approaches is, that our attestation target is run-
ning in a TEE, similar to themodel of GuaranTEE [28],which attests applications in Intel
SGX. We will examine LiteHAX and DIAT more closely, to provide an example of how a
control-flow attestation system can be implemented.
LiteHAX [17] is a hardware-assisted runtime attestation scheme that also includesmem-
ory access operations for the attestation. In a one-time offline phase, the verifier gener-
ates the CFG by static and dynamic analysis. These are both forms of program analysis,
where indynamic analysis the code is executedor emulated,which is not the case in static
analysis. The prototype implementation uses the angr framework [38] for this, which is
also used by our implementation. The attestation on the prover side runs continuously
and keeps track of control flow events andmemory accesses. The information is obtained
by a custom hardwaremodule, that intercepts the CPU pipeline. The control-flow events
are then encoded in a bitstream, while the data accesses are combined into a hash mea-
surement. In specified time intervals or after reaching a certain length, intermediate
attestation reports are sent to the verifier. The verifier keeps track of the previous execu-
tion state and continueswith the attestation from there. To verify the execution path, the
verifier uses context-sensitive control-flow analysis and checks if it matches the CFG. In
context-sensitive analysis, the calling context is also considered,which gives better secu-
rity guarantees. For the data-flow analysis, symbolic execution is used.
DIAT [2] is designed to secure the collaboration between autonomous drones and there-

– 4 –

2 Preliminaries

fore aims to improve the attestation and verification overhead. One core idea is, that the
attested software is divided into small modules, of which only the ones that are needed
to serve a request are attested. This is called data-flow attestation and is implemented
by the data flow monitor. Another important new concept is the usage of multisets and
multiset-hashes, to represent the execution flow of the target. A multiset is a set, where
elements can be included multiple times. The interesting thing about multiset-hash-
functions is, that they canbe incrementally calculatedby addingnewelements. Theorder
in which elements are added does not matter and the same hash value is generated. In-
stead of storing and sending the whole sequence of control-flow events, each CFG edge
is represented only once, together with its multiplicity, so recurring edges do not ap-
pearmultiple times. This has the advantage, that storing the execution flow requires less
memory and the hash canbe calculated in parallel to the execution. Theverification of the
hash is also easier, compared to conventional hashes that are calculated in a nested way.
The verifier only needs the CFG of the software. He can then compare the executed edges
with the valid CFG edges, information about the number of loop iterations and possibly
a verification policy. A disadvantage is, that attacks that only modify the order of CFG
edges cannot be detected.

2.2 Trusted Execution Environment

A TEE is an isolated execution environment that is based on a separation kernel. The sepa-
ration kernel can be a combination of hardware and software and enforces a partitioning
of a computingplatform into aRichExectutionEnvironment (REE) and aTEE.This provides
isolated execution,meaning theOS in the REE cannot tamperwith applications running
in the TEE, called TAs. The TEE often offers protection of the integrity and confidential-
ity of the runtime states of TAs and secure storage. It allows the execution of multiple
TAs, that are isolated against each other as well as against the TEE itself. The software
running in a TEE is not static and can be securely updated. Communication between the
secure environment and the normal environment is only possible through defined inter-
faces that are provided by the TEE. An important feature of a TEE is remote attestation,
whichmeans it can prove its trustworthiness to a third party, by using some sort ofmea-
surement and a root of trust [34].

Remote Attestation

The parties involved in attestation are the verifier, the attester and the target. The attester
wants to convince the verifier of the correctness of certain properties of the target. In
our case, this usually means that the intended software binary is running on a certain
hardware platform and has not been tamperedwith. As evidence for its claim, it passes a
measurement of the target to the verifier. Themeasurement is an observation of the soft-
ware state. Anattestationprotocol is alsoneeded to ensure theauthenticity and freshness
of the measurement [13]. Usually, a challenge-response scheme is used. It is important
that the measurement tool has access to the state of the target, while the measurement

– 5 –

2 Preliminaries

tool’s state is inaccessible to the target, so a corrupt target cannot tamper with the mea-
surement [13]. Typically, remote attestation works like this:

1. A remote party (verifier) wants to initiate a secure communicationwith a TA (target).
It sends a challenge to the client application of the TA.

2. The application passes the challenge to its corresponding TA.
3. The TA requests an attestation report from the attestation enclave (attester). The at-
testation enclave uses an existing measurement or generates a new one, that it con-
catenates with the provided challenge. Both are signed with a key that is only acces-
sible from the TEE (attestation key), to prove that the software is running correctly
on the intended hardware platform.

4. The TA passes the attestation report back to the client app,which then sends it to the
verifier.

5. The verifier verifies the attestation report by checking the signature and the mea-
surement. It then decides if it trusts the TA.

What is included in the measurement, how the measurement tool is implemented and
when themeasurement takesplacedependson the typeof remote attestation. A common
example for the use of attestation on enclave platforms is the provisioning of an enclave
with secrets: the attestation is initiated to prove to the verifier, that it indeed is commu-
nicating with the claimed enclave, that is running on genuine TEE-enabled hardware, in
an isolated environment [42]. The enclave can then be provisionedwith a communication
key to establish a secure tunnel, so confidential data can be sent to the enclave [4]. The
defaultway of remote attestation is binary attestation. This is a formof static attestation,
where themeasurement typically consists of a signed hash of the loaded software binary.
There are several ways how and when the measurement can be generated:

– By hashing the binary file when the enclave is loaded, we get the guarantee that the
correct binary was loaded and the enclave was initialized to a valid state.

– By hashing the corresponding memory pages (also mutable pages) after loading the
enclave, we get the guarantee that the correct binary was loaded and the enclave was
initialized to a valid state.

– By hashing the read-only memory pages each time a measurement is requested, we
get the guarantee, that the correct binary was loaded and that the loaded code was
not manipulated until the time of measurement.

Becauseof the formofmeasurement, theguaranteesweget fromthat arenot ideal. What
wecanensure is, that the enclave code is correct and is indeed running in the intendeden-
vironment. But this static formof attestation can not detect runtime attacks and thereby
does not guarantee the integrity of the execution of the target.

ARM TrustZone

TrustZone is a security feature, that comes with ARM processors and can be used as the
hardware base for a TEE platform. Since ARM processors are very common, especially
in mobile and embedded devices, security solutions on these devices are often based on

– 6 –

2 Preliminaries

App App App App

Rich OS Rich OS

Hypervisor

Firmware / Secure Monitor

Trusted Applications

Trusted OS

Secure partition manager

EL0

EL1

EL2

EL3

Non-secure
SCR_EL3.NS==1

Secure
SCR_EL3.NS==0

Figure 2.1: ExceptionLevels in secure andnormalworld (sinceARMv8.4-A); adapted from
[25].

TrustZone. Examples of this are Samsung Knox [35] or the Android Keystore [5]. Trust-
Zone provides a framework for implementing secure system architectures by enforcing
isolation at the hardware level. The whole system is partitioned into two domains, the
normal world and the secure world. Each physical CPU core provides two virtual cores,
one for the secureworld and one for the normal world. The design also includes themain
system bus and the peripherals that are attached to it. System components belong to one
of the two worlds, represented by the NS-bit that they have set. NS=1 is the non-secure
state, NS=0 the secure state. Non-secure components can only access resources in the
normal world. Secure components are able to access resources from both the secure and
the normal world. The virtual CPU cores share the physical core in a time-sliced fashion.
Depending on the currently active virtual core, the NS-bit is set and determines which
system resources it can access. In ARM CPUs, the different levels of privileges that soft-
ware is run in are called Exception Levels. A higher Exception Level means higher privi-
leges. A visualization of this concept can be seen in Figure 2.1. Typically, there are three
Exception Levels (EL0-EL2) in the normal world. The secure world has Exception Lev-
els EL0 and EL1, but no EL2 (since ARMv8.4-A it has EL2). On the highest privilege level
EL3 in the secureworld runs the SecureMonitor. It offers context-switching between the
two worlds and makes communication between the two worlds possible via Secure Moni-
tor Call (SMC) instructions. TheMemorymanagement unit (MMU) is also TrustZone-aware
and provides two virtual MMUs. Each world has its own set of translation tables and in
general, each physical memory location belongs either to the secure world, the normal
world, or is shared between both worlds.
The kind of software environment that is run in the secure world is up to the developer.
While it is possible to run only simple software libraries in the secure world, to provide
services for normal world applications, it is also possible to run a full OS in the secure
world. This has the advantage, that multiple TAs can run concurrently while being iso-
lated by the MMU.
TrustZone itself is not a TEE.The security guarantees it achieves depend on the security

– 7 –

2 Preliminaries

hardware on the SoC and on the software that is deployed in the secureworld [10]. Unless
TrustZone is considered in the design of the whole SoC, the system may not be secure.
For example,Direct memory access (DMA) attacks are possible if the device lacks a System
MMUor Address Space Controller [39]. By default, TrustZone does not enable Secure Re-
mote Execution,whichmeans the outsourcing of applications to a remote platformwith
guarantees, that the application is executing as expected [41]. Still, it could be possible to
build such a scheme with additional software and hardware. By combining Secure Boot
with a per-device-unique secret, that is sealed in dedicated cryptographic hardware. The
remote attestation could then be implemented in the secure signed software.

How Does TrustZone Compare to Other System Security Architectures?

IntelSoftwareGuardExtensions (SGX) is aCPUextension that allows the secure and iso-
lated execution of enclaves on Intel processors. Enclaves are isolated against themainOS
as well as against each other. This is both implemented on the hardware and microcode
level. SGX supportsmemory encryption and thereby protects the enclavememory pages.
It also supports remote attestation of enclaves. For this purpose, SGX CPUs are provi-
sioned with unique device root keys at manufacture time, which establish a trust rela-
tionship of each SGX platform with the manufacturer (Intel). CPUs with TrustZone are
not provisionedwith device root keys, like SGX and do not support remote attestation by
default. Furthermore, it is possible to run an entire operating system in TrustZone,while
only individual applications are run in SGX.
AMDSEV-SNP is a technology by AMD that allows the isolated execution of virtual ma-
chines, which are protected from the hypervisor and also from each other. In contrast to
TrustZone, which is part of the CPU design, SEV-SNP uses the AMD security processor,
which is an ARM core on the main CPU die to provide its security services. It is based
onmemory encryption, protects the CPU register states and also ensures the integrity of
the main memory. Remote attestation is also a feature of SEV-SNP CPUs. [3].
Unlike SGX and SEV-SNP, TrustZone does not supportmemory encryption. Instead, the
on-chipmemory of the SoC is often used for security-critical data, because it is harder to
access by hardware attacks (e.g. cold boot). Another conceptual difference is that Trust-
Zone considers peripherals, which is not the case for SGX and SEV-SNP.
RISC-V itself specifies no security architecture like TrustZone. Still, there are software-
defined TEE solutions likeMultiZone [29] or Keystone [26] that are based on the physical
memory protection unit.
ConfidentialComputeArchitecture (CCA) is the new security architecture since ARMv9-
A, which was announced in 2021. It features the Realm Management Extension, which
introduces a new kind of isolation environment called a realm, that also supports mem-
ory encryption. Realms can protect complete virtual machines and containers and also
havenative support for attestation. Tobebackward-compatible, realmsworkalongTrust-
Zone [7].

– 8 –

2 Preliminaries

Rich OS

OP-TEE

Trustzone-enabled platform

U
se

r

U
se

r

Pr
iv

ile
ge

d

Pr
iv

ile
ge

d

Native Applications

Global Platform
TEE Client API

TEE
Supplicant

Storage

TEE Driver

Wrapper APIs
(optional)

TEE core

HAL

TEE functions / libs
(crypto..)

HW resources
crypto, timers, watchdog, fuses

DRM
Trusted

Application

Payment
Trusted

Application

Corporate
Trusted

Application

Global Platform
TEE Internal API

Secure
Monitor

Figure 2.2: Overview of the OP-TEE architecture; adapted from [36].

OP-TEE

OP-TEE [32] is an open-source TEE that is designed for ARMTrustZone and supposed to
be run side-by-sidewith a non-secure LinuxKernel. It is compatiblewith theGlobalPlat-
form TEEClient API Specification,which specifies the communication between TAs and
client applications on TrustZone-like platforms [20]. Because the code is open-source 1
and the project is still actively maintained, it is often used for research on TrustZone.
The switching of worlds is done using SMC instructions. When a switch from normal
world to secure world is requested, a SMC instruction is executed,which causes the pro-
cessor to enter monitor mode, where the Secure Monitor handles world switching. The
Secure Monitor can also be reached from an IRQ or FIQ exception, which are the differ-
ent typesof interrupts onARM.As theSecureMonitor,OP-TEEusesTrustedFirmware-A,
which is a reference implementation by ARM [44]. The OP-TEE OS is the OS that runs in
the secure world. The Linux kernel driver for OP-TEEmanages the allocation of memory
that is shared between the non-secure and secure world and is also responsible for pass-
ingSMCparameters fromtheuser-mode client to theTA.Anoverviewof the components
of OP-TEE can be found in Figure 2.2. The following API services are available to TAs:

– Trusted Storage API for Data and Keys
– Cryptographic Operations API
– Time API
– Arithmetical API

Code for cryptographic operations runs in kernel mode inside the TEE core. The Crypto
API can be extended with other cryptographic services and modified to make use of the

1GitHub Repository for OP-TEE OS: https://github.com/OP-TEE/optee_os

– 9 –

https://github.com/OP-TEE/optee_os

2 Preliminaries

cryptographic features of the specific hardware. OP-TEE offers secure storage,meaning
that the confidentiality and integrity of the data are guaranteed. The data can either be
stored in the file system of the REE or on a Replay ProtectedMemory Block (RPMB) if the
hardware supports it. TAs can be either stored signed and encrypted on the REE file sys-
tem or they can be linked to the TEE core blob,which allows them to load earlier. TAs run
in user mode and have to be single-threaded. OP-TEE also has virtualization support,
so that one OP-TEE instance can run TAs frommultiple virtual machines (in the REE) in
an isolated way. Secure Boot can be used with the authentication framework in Trusted
Firmware-A [32]. A feature thatwas recently introduced toOP-TEE is remote attestation.
It is implemented by a Pseudo Trusted Application (PTA), which is a concept for adding new
functionality to the trusted OS.The PTA offers an interface that can be used by any TA to
request a measurement of itself.
OP-TEE is not a real OS, but more of a software library which is why it relies on the OS
in the REE for scheduling. TAs offer services to their client applications and are only
executed for a specific service request. The interface between the TAs and the client ap-
plications consists of commands that can be invoked by the client applications.

2.3 Coresight

Coresight is the architecture for hardware-assisted debugging on ARM systems. It pro-
videsmeans for invasiveandnon-invasivedebugging. While invasivedebugging includes
techniques such as single-stepping through programs, for this work we are more inter-
ested in non-invasive debugging, which only allows observation of code execution and
has low performance impact [30].
The basic components of a tracing system can be categorized as sources, links and sinks.
Themost important types of sources are the Embedded TraceMacrocell (ETM) and Program
TraceMacrocell (PTM).PTMsare found inolder systemsbeforeARMv8andprovideonly in-
struction tracing. ETMs provide instruction tracing as well as data tracing, although the
availability of data tracing depends on the implementation. Instruction traces include
information that is needed for the reconstruction of the execution path of a program,
like jump targets or if a branch was taken or not. Data traces include information about
data accesses of the processor. A funnel is a link component. It collects traces frommul-
tiple sources and combines them into a single trace stream. There are alsomultiple types
of trace sinks. A Trace Memory Controller (TMC) is a device, that captures trace data into
memory. Thedifferent configurations areEmbeddedTraceBuffer (ETB),EmbeddedTrace Fifo
(ETF) and Embedded Trace Router (ETR). The ETB and ETF both have an SRAM attached,
that can have a maximum capacity of 64KB.The ETR can store the trace in systemmem-
ory, allowing longer tracing. The Trace Port Interface Unit (TPIU) routes the trace data out
of the chip, so it can be accessed by an external debugger. All tracing components can be
configured by software on the target itself, by writing tomemory-mapped configuration
registers, or froman external debugger. An example of a basic tracing system can be seen
in Figure 2.3. The system has two processors, each with multiple cores. Each core has an
ETM and the ETMs are merged by a cascade of funnels, that end up in an ETF as a trace
sink.

– 10 –

2 Preliminaries

Trace Format

A trace stream contains trace information in a compressed binary format. It can include
trace frames from multiple trace sources, that are identified by unique IDs. The frames
contain packets, that encode different event types. Themost important packet types are:

– P-headers: These encode a sequence of atoms. An E atom represents an instruction
with a fulfilled condition code test and aN atom is an instruction that failed its con-
dition codes test. A P-Header has a size of one byte and can encode up to 15 E atoms
(with a counter) and oneN atom.

– Branch Packets: These are emitted when an indirect branch instruction is executed.
It contains the branch target address in a compressed format. Only the address bytes
that are different from the last branch packet are explicitly stated. Because of this,
the branch packets are often only one byte large, instead of the maximum 8 bytes.
Branch packets are also used for indicating exceptions [19].

Together with some other information like synchronization packets, this is enough to
reliably reconstruct the execution of a program.

2.4 Runtime Attacks

There are several types of attacks that may be used by an attacker to gain control over
a target program and manipulate its control flow for malicious intents. Directly inject-
ingmalicious code into an application is not possible anymore onmodern systems, since
there arememory protection features like data execution prevention,which prevent code
execution from the heap or stack. Instead, attackers resort to other techniques, that do
not need code injection. A prominent class of attacks are code-reuse attacks. These allow
an attacker to reach arbitrary code execution by repurposing existing code. With Return-
oriented programming (ROP) an attacker exploits a memory vulnerability like a buffer-
overflow in a program, to overwrite code-pointers on the stack and divert the control-
flow to a sequence of so-called gadgets, which form a newmalicious program [37]. These
gadgets are short instruction sequences, thatmay be located anywhere in the application
code. They need to end with a return instruction, so they can be chained together by the
attacker. A similar type of attack is Jump oriented Programming. This does not require
return instructions, but insteadworkswith indirect branches [12]. These attackswork on
many processor architectures, including ARM.
Non-control data attacks corrupt program variables to cause unexpected program-flows
that can for example lead to privilege escalation. A target could be a variable that controls
the entry to a privileged program section.
Data-oriented programming [21] is similar to ROP as it also re-uses existing code and
chains instruction sequences together to perform arbitrary computations. However, in
contrast to ROP it does not change the control flow. Instead, variables are manipulated
so that instructions perform unintended operations that can for example lead to infor-
mation leakages.

– 11 –

2 Preliminaries

Cortex-A57 cluster Cortex-A53 cluster

Core 0
ETM

Core 0
ETM

Core 1
ETM

Core 1
ETM

Core 2
ETM

Core 3
ETM

Input 0 Input 1
Funnel 0 Funnel 1

Input 0 Input 1 Input 2 Input 3

Input 0 Input 1
Funnel 2

ETF 0

Figure 2.3: Basic Tracing Setup; adapted from [31].

– 12 –

3
Approach

3.1 General Considerations

When it comes to control-flow attestation there are some basic questions, that define the
approach:

– How do we generate the reference measurements for defining valid program runs?
– Do we need to keep a database of (a representation of) all valid program runs?
– Do we need additional (custom) hardware for the attestation?
– How is the measurement engine implemented?
– How is the measurement engine isolated from the target?
– Howmuch information do we include in the attestation report?
– How do we balance the load? More complexity for the appraiser or the attester?

These are all important questions, and no matter which approach you choose for each
aspect of the attestation system, there will always be some kind of tradeoff. In the next
section, we will first define the threat model, that motivates our approach. Then we will
give ahigh-level overviewofourCFAapproach. After that,wehavea closer lookat general
considerations for the different stages of CFA.

3.2 Threat Model

Wewant to protect TAs in OP-TEE against a malicious attacker.
The separation provided by OP-TEE and TrustZone is assumed secure. Also, we assume
that the prover uses secure boot and only boots OP-TEE with our attestation extension.
We assume that the prover and verifier share a symmetric key for authentication there-
fore, the attestation reports are integrity protected and authenticated. We consider only
the secure world as trusted, the REE with Linux is considered untrusted. We assume an
attacker that has complete control over the REE and may try to launch runtime attacks
using the public interfaces of OP-TEE. For example, he could pass malicious parameters
to a TA for a code reuse attack.

– 13 –

3 Approach

ProverVerifier

2

CFG-generation-tool

Verifier

3

4

1

Figure 3.1: Offline pre-processing phase.

3.3 Attestation Process

Our approach works like this: First, we have an offline pre-processing phase, see Figure
3.1. The owner builds a TA that he wants to be attested 1 and deploys it to OP-TEE 2 .
He configures the proverwith theUUIDof thenewTA that is to be attested. Thenhe feeds
the TA binary to the CFG-generation-tool to create the CFG 3 . The CFG is exported and
stored 4 . When everything is set up, the verifier generates a challenge c to ensure the
freshness of the attestation report and transmits it to a client application on the prover
device. The client application acts as a proxy and invokes the TA 1 , see Figure 3.2. When
OP-TEE detects that the UUID of the invoked TA is selected to be attested, it passes the
control to the prover, which starts the tracing 2 . The TA executes the requested com-
mand, and when it returns, the prover stops the attestation and collects the trace t 3 .
After the execution, the client application passes the challenge to the prover and requests
the attestation report, see Figure 3.3. Theprover calculates theMessageAuthenticationCode
(MAC) of the trace and returns the attestation report r ∶= (t,MAC(t, c)) 4 . The client
application can thenpass r to the verifier. The verification phase can be seen in Figure 3.3.
The verifier receives r and first checks the integrity and authenticity of r by validating the
MAC and ensuring that the correct challenge c was used. When it’s valid, he loads the
trace t. The pre-computed CFG is then used, to verify the control flowmeasurement. If t
does not comply with the CFG, the verifier will report this.

3.4 How to Obtain the Measurements?

Themain approaches for collecting information about the control flow of a program are
the following.

Instrumentation
Thesoftware binary ismodified, so that each timean instruction that canmodify the con-
trol flow is reached, the program jumps to a piece of code, called a trampoline function.
This code collects information like the jump target or if a branch was taken or not and

– 14 –

3 Approach

REE OP-TEE

Target TA

Client App Prover

2

3

1

Start Tracing

Stop Tracing

Request Trace

Invoke
Command

Return

4

Figure 3.2: Online phase.

adds it to the current measurement. This approach has the disadvantage, that it induces
a high overhead on the target because it is solely implemented in software. In normal
programs, control-flowmodifying instructions like branches and returns occurquite fre-
quently, and each time the additional code of the trampoline function has to be executed.
The advantage is, that it can theoretically be used on any hardware, right away.

Hardware-based
Another common approach is to use custom hardware designs. The information about
the control flow can for example be obtained by directly interfacing with the instruction
pipeline of the processor. The resulting data can then be processed by custom hardware

Load Attestation report

Verify MAC

Verify Trace

Verifier

Figure 3.3: Verifying phase.

– 15 –

3 Approach

modules. While reaching better performance, this approach has the disadvantage, that
custom hardware is needed to use the attestation.

Having seen these approaches and their disadvantages, the idea was to try an approach
that would potentially combine the advantages of both, but without the disadvantages.
Modern processors often comewith hardware-based debugging and tracing capabilities:
Using the tracing we could reliably get information about the program flow, but without
inducing additional load on the attestation target. If we could use the tracing without
using additional hardware like a debugging device, we would even have a solution that
works right away, on any hardware! As the focus of this workwas supposed to be on ARM
platforms, Coresight was the way to go.

3.5 Verifier

In this section, we focus on our approach to verifying attestation reports.

Concept

To be able to verify an attestation report,we need some kind of reference, that shows how
a valid execution of the target programwould look like, to compare it to the captured exe-
cution trace. We chose to use theCFGof the programas a reference for the verification. A
CFGisadirectedgraph, thathasbasicblocksasnodesandcontrol-flowtransfersbetween
these basic blocks as edges. A basic block is a sequence of code, that only has branches
at the entry and exit. The big advantage over other approaches is, that we don’t have to
generate and keep a huge database of every possible execution path, so the memory re-
quirements for the verifier are reduced. Another advantage is the flexibilitywegainwhen
it comes to the time at which the verification takes place. While hash-based approaches
can only verify the trace after the complete program execution, our approach allows us
to also verify partial execution traces. So instead of verifying the whole program run af-
ter the execution, it would be possible to monitor the program either in real-time or in
regular intervals, for improved security. Though this is reserved for future work and not
implemented yet, our approach would allow implementing this more easily. A disad-
vantage is that the size of the trace we generate and need to store on the attester device
grows proportionally to the execution time of the TA, which can become a problem for
a resource-constrained attester. Another disadvantage of the CFG approach is the com-
plexity of preciseCFGrecovery. Also,dependingon the application and the recovery tech-
nique, some control-flow paths may be not recovered, leading to false positives (falsely
detected control-flow violations). Our goal is to reduce the complexity of verification as
much as possible by offloading the main effort to the offline pre-processing phase and
the CFG-recovery. The verifier should then simply compare the stored reference with the
measurement.

– 16 –

3 Approach

Requirements for the Control-Flow Graph (CFG)

There are twomain properties, that define a CFG recovery technique:
Soundness: Each edge in the graph represents a legal control-flow transfer. This is very
important to ensure, that only legal program runs pass the verifier. An example for a
sound CFG would be an empty graph, though this is obviously not what we want.
Completeness: All legal control flows are represented in the graph. A less complete CFG
leads to a higher false positive rate for our verifier. A trivial example for a complete CFG
would be a complete directed graph [38].
For CFA both properties are equally important because neither a verifier that constantly
reports false control-flow violations nor a verifier that overlooks a runtime attack can be
trusted.
We also want our CFG to be context-sensitive. This means, that the calling context is
considered in the analysis. If a certain function is called at multiple call sites, it should
be represented with multiple nodes in the graph, so that the return edges are correct.
If there was only one node in the graph for this function, then it would have multiple
outgoing edges, thereby allowing unintended control flows. By using a context-sensitive
CFG, we have stricter control-flow enforcement.

Verification

The implementation of our verifier is very simple. Wewrote the verifier in C,which gives
us the flexibility to transform our CFA approach to a CFI approach, by moving it into
OP-TEE. The verifier works like this: First, a reference CFG and attestation report are
loaded. The verifier checks if the MAC for the trace is correct and proceeds if it is valid.
Using the control-flow information from the attestation report, we navigate through the
CFG. The CFG gives us constraints and enforces that only a valid control flow leads to a
valid verification result. As the trace contains the information if a conditional branchwas
taken or not,we knowwhich edgewe need to take in the CFG to follow the trace. For each
indirect branch, there is a branch packet in the trace, that contains the target address of
that branch. We compare this address with the expected target address from the CFG.
Because we know where we are in the CFG, we can verify that both source and target of
the branch are correct. If the trace address and the expected address do not match, we
report a control-flow violation. We also report a control-flow violation, when we find
unexpected trace. This could for example be a branch packet, for which there is no edge
in the CFG.

3.6 Protecting the Attestation Report

Our attestation protocol uses MAC-based challenge-response authentication. An attes-
tation report consists of a trace and an HMAC-SHA256 that is calculated over the trace
and the challenge. TheMAC ensures the integrity of the trace and also authenticates the
attester. The verifier and the attester share a secret symmetric key, that only they can ac-
cess. Therefore, only these parties are able to create valid MACs, so no one can tamper
with the attestation reports. The reason we use a MAC and not a digital signature is that

– 17 –

3 Approach

it is more efficient to calculate and provides all the security properties that we need: in-
tegrity and authentication. As our hardware platform is a low-end embedded systemwe
need to bemindful of our resources. TheMAC does not provide non-repudiation, but for
our use case, this is not needed.

– 18 –

4
Implementation

After explaining our approach in the last chapter, we would like to go into more detail
about the implementation in this chapter. This could be particularly useful for future
work.

4.1 Selecting the Hardware

Inpractice,Coresight tracing turnedout tobea little bitmore complicated thanexpected.
There are twomain factors that determine if you can use Coresight on a certain hardware
platform:

– Coresight components on the SoC
– documentation of these components and the correspondingmemory addresses

Another factor thatwe needed to consider,was the compatibilitywith TrustZone andOP-
TEE, as this is where the TAs that we want to attest run. Due to the nature of the ARM
ecosystem,not everyARMSoChas all the components that are needed for on-device trac-
ing. ARMdesigns IP cores, which are building blocks for SoC designs, and licenses these
to SoC manufacturers. All the Coresight components are also IP cores, and it’s up to the
manufacturer, which he wants to license and include in his SoC design. This leads to a
very diverse landscape of boards, that provide debugging and tracing capabilities to vary-
ing degrees.
We tried several boards, ofwhich only one didwork for our use-case. We tested theRasp-
berry Pi 3B, as this is a well-known single-board computer, that is also very cheap and
is supported by OP-TEE. Its Broadcom BCM2837 SoC features a ARM Cortex A53 CPU,
which supports Coresight. According to the official documentation for the CPU, it con-
tains an ETM and a CTI [14]. Unfortunately there is no documentation about the debug-
ging capabilities of the Broadcom SoC to be found. Online research and usage of the
Coresight hardware discovery tools provided by the Coresight Access Library (CSAL) [15]
did also yield no results. As there was no way to discover or configure the Coresight trac-
ing components, it must be assumed that they are not implemented on the SoC, so we
did not consider this board.
We also tried using the Tinkerboard 2S. It has a Rockchip RK3399 SoC, that is supported

– 19 –

4 Implementation

by OP-TEE and is supposed to support Coresight. The documentation for the SoC states,
that it features a ”Full Coresight debug solution”, so this lookedquite promising. After ex-
perimenting a bit with Coresight Access Library (CSAL), it turned out that the board could
be used for Coresight tracing, but onlywith an external debugger,what is in conflict with
our goal of not using additional hardware. The reason for this was, that the SoC does not
have a Coresight sink device, which is needed for on-device tracing, what we wanted to
use.
The board that we chose was the STM32MP157DK-1,which is a development board by ST-
Microelectronics. Although it is a bit dated and does not have very powerful hardware, it
is supported by OP-TEE, has all the necessary components for Coresight and is very well
documented. It features anETMfor each core, anETF for trace storage and aCrossTrigger
Interface (CTI) for advanced trace controlling.

4.2 Software for Coresight Tracing

For on-device tracing there are not thatmany options in terms of software for controlling
the tracing. In Linux there are perf and the sysfs-interface. Both are only available on
Linux, because they rely on some kernel functionality, so these were not an option, as we
wanted to have themeasurement engine in the secure world,where only OPTEE-OS, but
no Linux runs. This left us with CSAL, which is developed by ARM and can run on both
Linux and bare-metal [15].
The library offers some abstractions and functionality for Coresight and makes it easier
to configure the tracing system. To get started with tracing, a custom configuration file,
that describes the available tracing hardware and how it is interconnected, was needed
by the library. Thiswas relatively easy to create, because the documentation for the board
[40] contained all the physical addresses for thememory-mapped configuration registers
and also detailed schematics, showing the connection between the tracing components.
Before we could trace anything, we also needed to configure the debug authentication
interface. This is controlled by the Boot and security and OTP control (BSEC) and can
only be set from the secure processor state. On our device there are several options that
control the behaviour of the debug system, concerning the TrustZone state. For enabling
on-device trace-capturing, we need to set dbgen to enable debug and trace features in
general, niden to enable trace and performance monitoring, spniden to enable trace and
performance monitoring in secure mode and dbgswenable to enable software access to
debug components. The security implications of these settings are discussed in section
4.5.

4.3 First Traces

We conducted the first tracing tests in Linux, to determine its applicability for attesta-
tion. For tracing a specific program, trace filters have to be configured in the ETM.These
specify conditions on which the ETM starts or stops tracing. First, it can be specified if
you want to trace in secure mode, non-secure mode or both. It is also possible to trace

– 20 –

4 Implementation

Figure 4.1: Trace packet output

user-mode or kernel-mode only or both. Then there are two general options. First, it
is possible to program the ETM to only trace instructions for a specific context id. As
OP-TEE has no concept of context ids, and we eventually wanted to trace TAs in OP-TEE,
insteadwe opted for tracing based on the address range. As the address filter works with
virtual addresses, the load address of the binary and the offsets of the program regions
that are to be traced needed to be determined to configure the tracing. This can be done
using objdump. Tomake sure that no other programs or security features interfere with
our tracing,we disabledAddress Space LayoutRandomization (ASLR) and scheduled the tar-
get programon a core that we excluded fromLinux scheduling. The raw trace that is read
from the ETF is in a compressed format and can be decoded in multiple ways. The first
way is to only unpack the raw trace packets. This leads to an output like in Figure 4.1,
where you can see the atom packets and the branch addresses. This can be done by Open
CSD [33], and only the trace file is needed. Another option is to fully decode the trace, so
that you get a sequence of the executed instructions. This can also be done using Open
CSD or the commercial debugging tool ARM DS-5 [8]. An example output that we pro-
duced can be seen in Figure 4.2. You can see the instruction addresses and the actual
instructions that were executed. For this stage of decoding, the binary of the traced pro-
gramneeds tobeprovided to thedebugging tool. We found that thepacketdecodeoutput
like in Figure 4.1 is the best fit for our use-case, as it provides all information we need for
CFA, omits one stage of decoding and does not require the binary of the traced program.
Using the atom packets and the indirect branch addresses (highlighted with an arrow in
Figure 4.1) we can reliably recover the control-flow.

Overcoming Coresight Configuration Challenges

Implementing Coresight-based tracing is not trivial. If the synchronization sequence
at the beginning of a trace is missing, trace packets get lost which leads to an incom-
plete trace that is unusable for later verification. The synchronization sequence consists

– 21 –

4 Implementation

Figure 4.2: Decoded trace in ARMDS-5

of ASYNC and ISYNC packets. On the ST-Board, we encountered an issue that lead to
missing ASYNC packets. As troubleshooting approaches proposed by ARM did not solve
the issue, we developed a workaround that allows us to get complete traces.

4.4 Tracing OP-TEE

Another problem that we needed to tackle was how to integrate CSAL intoOP-TEE.CSAL
is also designed for bare-metal and does not have many OS dependencies, which made
this simpler. Still, we needed to integrate it into the OP-TEE build-system and do some
fine-tuning, especially concerning the access to the memory-mapped registers.

We added a routine to OP-TEE that runs at startup. It adds the register-addresses
for the Coresight components to OP-TEEs virtual address space and registers the tracing
hardwarewithCSAL.Themain tracing functionality is built into the attestationPTA.This
is responsible for controlling the tracing. Wemodified the code of the OP-TEE kernel, so
each time a TA command is invoked, OP-TEE checks if the UUID of the TA is registered
for attestation. If this is the case, the attestation PTA is called to start tracing. TheETM is
configured to only trace secure world code in user mode. This suffices, as we configured
OP-TEE to only run one TA at a time. In the discussion,wewill talk about the support for
parallel execution of TAs. When the TA returns, the attestation PTA is called another time
to stop the tracing and to retrieve the trace from the ETF buffer and load it into secure
memory. The client application that invoked the TA can then request the attestation re-
port from the attestation PTA. For our prototype, we disabled ASLR in OP-TEE, because
this simplifies the attestation. However, by including information about thememory lay-
out in the attestation report, we could also support ASLR.

Tracing Longer Programs

As theETFbufferonourboardhasonly8kB,additionalworkwasneeded to traceprogram
runs that produce longer traces. For this,weneeded to configure theCoresightCTI, so an
interrupt is triggered when the buffer overflows. We also needed to register an interrupt

– 22 –

4 Implementation

handler in OP-TEE, that reads the trace to secure memory and resets the ETF buffer. As
wehave restrictedOP-TEE toone core, it is ensured thatno trace is lost, because the target
application can not run while the interrupt is handled.

CFG Generation with Angr

For recovering the CFG we chose the Angr framework [38]. It is also used by other CFA
approaches, like LiteHax [17]. Angr is a powerful library for binary analysis, that canwork
with many different architectures, including ARM.This is achieved by lifting the binary
code to an intermediate representation, called VEX. A big challenge in CFG recovery are
indirect branches. These are branches, where the target is loaded from a register or from
memory. In contrast to direct branches, where the target address is encoded in the in-
struction, the control-flow transfers for these branches cannot easily be resolvedby static
analysis. Angr offers two options for the CFG-generation.
CFGFast uses static analysis but can also resolve some basic indirect branches like those
resulting fromswitch statements and function returns. Basically, the analysis starts from
the entry point and builds the graph from there, by adding new edges and nodes for
branch targets at the end of a basic block. Due to its static nature, some transitions
may not be found by this analysis, because they can only be resolved at runtime. It also
lacks context-sensitivity. CFGEmulated uses a different approach to recover the CFG. It
combines several techniques, to refine the recovered graph step by step, namely forced
execution, backwards slicing and symbolic execution. Forced execution ensures, that for
conditional branches always both possible paths are followed. Symbolic execution is used
together with a constraint solver, to recover indirect jumps in a dynamic way. Backward
slicing is a technique that is used to add context to the analysis. If an unresolved indirect
jump is in a function, that is called frommultiple call sites in the program, the node for
the function will be split into multiple nodes and symbolic execution will be leveraged,
recovering the target for each node separately. As long as there are unresolved indirect
jumps, Angr will try to apply one of the techniques, until there is no change in the re-
sulting CFG anymore. A drawback of CFGEmulated is, that it is significantly slower than
CFGFast [38].
We chose to use the CFGEmulated option because we are interested in the best possible
completeness and soundness. The time needed for the generation is not a real problem,
because the CFG only needs to be computed once, in an offline pre-processing phase.
The context-sensitivity in Angr can be configured by a parameter, specifying the num-
ber of callers to keep on the call stack for a basic block (BB). We want to have a high value
because this results in amore soundgraph. An example showing the effect of the context-
sensitivity is given in Figure 4.3 for the code in Listing 4.3. With the staticCFGgeneration
or a context-sensitivity level of 0, there is no context for the call to the basic block that
represents the bar() function. Bothmain and foowill be valid exits, nomatter if the basic
blockwas entered coming frommain() or foo(). Ifweuse ahigher context-sensitivity level
like 1, the calling context will also be considered in the analysis, so if the BB is entered,
coming from main, the only exit goes to main. This is why a basic block may be repre-
sented by multiple nodes in the graph. The drawback is, that a higher value also results
in a larger CFG size. We found that a context-sensitivity higher than 15 does not change

– 23 –

4 Implementation

void bar(){}

void foo()
{

bar();
}

void main()
{

bar();
foo();

}

main

main+0xx

foo

bar

foo+0xx

main+0xx

bar

main

main+0xx

foo

bar

foo+0xx

main+0xx

(1) With context-sensitivity 0 (2) With context-sensitivity 1

Figure 4.3: Comparison of different context-sensitivity levels for CFG analysis in Angr.

the resulting CFG anymore for the programs in our evaluation.

Export

To modularize the CFG-recovery and the verifier, we needed a way to export the CFG.
For this, we use the built-in GEXF-export in Angr, though we had to enrich the export
with additional information for duplicate nodes (due to context-sensitivity) and for con-
ditional branches. GEXF is an XML format for storing complex graph structures, which
is exactly what we want. By using XML, we ensure that the stored graph can be easily
processed by our verifier, as there are many XML parsing libraries available.

4.5 How to Make the System Secure

Creating a secure attestation systemwith TrustZone and Coresight is not trivial. Efforts
for creating a secure system can be split into two tasks. First, we describe general con-
siderations for securing OP-TEE [16][32][40]. After this, we also talk about securing the
tracing system. For our prototype,wemade no efforts to secureOP-TEE, butwe still con-
sider it very important and thus want to discuss this process.

Securing OP-TEE

There are various hardware requirements for a secure OP-TEE configuration:

Random Number Generator A random number generator is needed as a secure source
for cryptographic key material. The STM32MP157 has a hardware random number gen-
erator. It is possible to assign it to the secure world only.

– 24 –

4 Implementation

Hardware-uniqueKeyFor secure operation aHardwareuniquekey (HUK) is required. This
is a key that is unique for each individual board and should only be accessible from the
secure world. It is needed to give the device a unique identity and to derive other cryp-
tographic keys from, like for secure storage. The STM32MP157 does not directly come
with such aHUK but has the required hardware to implement it. One-Time-Programmable
Memory (OTP) can be used to store a key, that can only be read by the secure world.

DDRFirewall For extending the TrustZone security state to the DDRmemory, our board
has aTrustzoneaddress space controller (TZC).Thisdevicefilters accesses to theRAMandcan
create up to 9 separate regions, that can be either assigned to the secure or normalworld.

Device Bus Access Policies To protect other devices on the bus, the STM32MP157 has an
Extended Trustzone protection controller (ETZPC). This can be used to assign peripherals to
the secure or the non-secure world. It is also used to partition ROM and SRAM into se-
cure and non-secure regions.

Secure Boot To ensure that the device is in a trusted state and can only boot our OP-TEE
instance in the secure world, secure boot needs to be configured. A private/public key
pair needs to be created. A hash of the public key is then provisioned to the device and
stored in OTP.The private key is used to sign the firmware images, that should be loaded
on the device. The boot chain can be seen in Figure 4.4. The processor starts in secure
mode. First, the ROM code loads the first stage boot-loader (FSBL) and authenticates it.
The FSBL then authenticates and loads the next stage. In the secure world, this is OP-
TEE.Then the normal world is initialized by first loadingU-Boot,which in turn loads the
Linux OS.

Securing the Tracing System

It is very important that the target application for the tracing has no access to the tracing
components. The non-secure world should also have no access. Otherwise, it would be
very easy to tamperwith the attestation, bypausing the tracingor inserting fakedata into
the trace buffer. TAs in OP-TEE have by design no direct access to physical memory and
are restricted to their own virtual address space. Instead, the tracing is only controlled by
our CFA PTA, which runs in kernel mode in the secure world. So our target can not ma-
nipulate the Coresight tracing and we are left with securing the tracing hardware from
the Non-secure world. Depending on the hardware platform this can be either very easy
or not possible at all. The component for securing peripherals on our board, the ETZPC,
does not offer the possibility, to restrict access to the tracing components. Therefore it
can not be used to build a secure attestation system using Coresight. However, in gen-
eral, it is possible to secure access toCoresightdevices, just likewith anyotherperipheral.
For example on the Juno ARM Development Platform SoC, which is a reference design,
the NIC-400 (a network interconnect, that connects peripherals to the main system bus)
can be used to configure security attributes for almost all memory-mapped peripherals,

– 25 –

4 Implementation

Figure 4.4: STM32MP157 boot chain; taken from [9].

including the Coresight components [22].
Another aspect of security is external access to the board via the debug port. By setting
thedeviceenbit in theBSEC register to 0,we candisable external access to the debug sub-
system. However, the debug port is also connected to the AXI system interconnect and
can thereby access all other resources, including memory. Because we need to set dbgen
and spiden to 1, as described in section 4.2, the external debugger connected to the debug
port can initiate bothnon-secure and even secure transfers, and thereby compromise our
whole system.

– 26 –

5
Evaluation

In this chapter, we evaluate our CFA approach and our proof-of-concept implementa-
tion. First, we will demonstrate our prototype with a simple example, to show how it
works. Thenwewill discuss some performance and overheadmetrics, and finally,wewill
examine what kind of security guarantees we can get from using our approach and how
our solution compares to others in terms of functionality. All tests in this chapter were
done by using the setup in Figure 5.1. All tasks that can be associated with the role of the
verifier (steps 1 and 4 in the figure), were run on an external Linux VM with an i7-6700K
CPU and 12GB ofmemory. The target and the proverwere located in anOP-TEE instance
on the STM32MP157A-DK1 board (steps 2 and 3 in the figure).

Verifier Target + Prover
Generate CFG

Verify control�ow

Execute TA

Record control�ow

Generate
attestation report

STM32MP157A-DK1
+ OP-TEE

Ubuntu VM

1 2

3

4 2

Figure 5.1: Our setup for testing the prototype

– 27 –

5 Evaluation

Listing 5.2: TA code for the demonstration

int val = 0;

void foo() {
val = val + 1;

}

void bar() {
foo();
val = val + 5;

}

int test() {
val = val + 3;
return 1;

}

static TEE_Result test_0(uint32_t param_types,
TEE_Param params[4])

{
int x[2]={};
for (int i=0; i<2; i++) {

x[i] = i+1;
foo();

}
bar();
test();
return TEE_SUCCESS;

}

5.1 Demonstration

To show how our prototype works, we walk through the whole process of tracing and
verifying. We create a small TA and the associated Client App and add it to OP-TEE. Our
example code (see Listing 5.2) is very straightforward. Wehave a short loop andalso some
(nested) function calls. The actual TA code contains some additional boilerplate code that
we omit for clarity. For our example, we only trace our actual code of interest, which is
shown inListing 5.2,not thewholeTAaddress space. Thismakes thedemonstrationmore
clear. We set the tracing range accordingly and configure the filter conditions, so that
only user-mode code, running in the secure world is traced. We also set the UUID of the
TA in OP-TEE, so that only this specific TA is attested. Using, the TA binary, we build the
CFG with our CFG-recovery tool. The output of the CFG-generation tool is a GEXF file,
that contains our graph and can later be loaded by the verifier. After building OP-TEE,
we can start the testing. We execute our client app, which in turn invokes our TA. The
tracing starts automatically and stops when the TA returns. After the execution, we can

– 28 –

5 Evaluation

Listing 5.3: Excerpt of the verifier output for the demonstration program

....

....
We wait for a jump now
set new expected jump target to 40014f
Idx:34; BRANCH_ADDRESS : Branch address.; Addr=0x4001014F ~[0x4F];
Indirect Jump is ok
....
....

No controlflow violations found

retrieve the attestation report, by calling the attestation PTA.We get a trace file and a file
containing theMAC for the trace. We copy the files over to the device hosting our verifier.
Thenwe run the verifier on the trace andCFG.We get a detailed output of the verification
process and at the end amessage, that tells us if therewere any control-flow-violations or
other errors during the verification. In Listing 5.1 you can see an excerpt from the verifier
output. The verifier expects an indirect branch to a certain address. The branch address
found in the trace matches this address and the verification can continue. Because the
control flow was correct in our example run, the verifier states that no violations were
found at the end.

5.2 Performance

Whilemost otherCFAapproaches either have the target running on a Linux environment
or on a microcontroller, our approach is aimed at attesting TAs in OP-TEE.Thus, the ap-
plications and environments for each are quite different. This is why we concentrate on
the timing overhead for the different parts of our attestation system and the network
overhead (trace size), instead of a direct comparison with other approaches. To analyze
the overhead,wewill follow themodeling in [23]. We identified the following tasks in our
attestation system, that contribute to the overall attestation overhead:

– Tcfg - Generation of the CFG (offline)
– Tinit - Initialization of the Tracing System (online)
– Ttc - Trace Collection Interrupt Routine (online)
– Tleave - Trace Collection of the rest of the trace after the execution and cleanup (online)
– Trt - get the attestation report (Trace+MAC) (online)
– Tver - Verification of the attestation report (online)

The time for the execution of the attested application itself is denoted by Tu. Wewill focus
on Tinit, Ttc and Tleave, as these directly interfer with the execution time of Tu.Tcfg, Trt and

– 29 –

5 Evaluation

Tver are considered later.

Tracing Overhead

For longer program runs,most of the timing overhead can be attributed to Ttc. While init
and leave are only invoked once for each program run, tcmay be invoked for an arbitrary
number of times. The accumulated execution time of tc can be expressed as c ⋅ Ttc where
c is the number of times that tc is invoked. c directly correlates with the size of the trace
that results from the execution of u. The more trace is generated by the ETM the faster
the ETF buffer overflows and the more often tc needs to run to drain the buffer.

Performance Measurements

Wemeasured the performance of our systemwith several different types of applications.
First, we used some synthetic assembly sequences to precisely evaluate the effect of cer-
tain instruction sequences on the trace size and tracing overhead. Then we tested some
example TAs provided by OP-TEE, which we slightly modified for our testing. These ap-
plications are simple and mainly rely on the OP-TEE standard libraries. We also chose a
more complex workload, in the form of a deep neural network, that is partly running in
OP-TEE.

Experiment 1: Synthetic Performance Measurements

By analyzing the specification of the ETM signal protocol we found the instruction se-
quences that produce the largest trace sizes and thereby the worst overhead. We verified
our assumptions by embedding assembly code in a test TA andmeasuring trace size and
execution time overhead. The best case, in terms of trace size, is a long sequence of nor-
mal instructions or conditional instructions that pass their condition, as these are en-
coded in the most efficient way. For such a sequence, up to 16 executed instructions are
represented in a one-byte packet by a counter value.

mov r0, r0
mov r0, r0
...

The instruction sequence above results in the following trace. Each line represents one
packet and the amount of Es represents the number of instructions that are encoded in
one packet.

Idx:170; ID:10; P_HDR : Atom P-header.; EEEEEEEEEEEEEE
Idx:171; ID:10; P_HDR : Atom P-header.; EEEEEEEEEEEEEE
Idx:172; ID:10; P_HDR : Atom P-header.; EEEEEEEEEEEEEE

Very bad for the trace size aremultiple successive N atoms or alternating E andN atoms.
This leads to a trace where in the worst case one instruction is represented in a separate
one-byte packet. We used the following code to test this.

mov r0, #1
cmp r0, #2

– 30 –

5 Evaluation

it eq
addeq r1, r1, #1
it eq
addeq r1, r1, #1
...

Because the condition for the addeq instruction always fails, we have alternating E andN
atoms, which leads to low compression.

Idx:144; ID:10; P_HDR : Atom P-header.; NE
Idx:145; ID:10; P_HDR : Atom P-header.; NE
Idx:146; ID:10; P_HDR : Atom P-header.; NE
Idx:147; ID:10; P_HDR : Atom P-header.; N
Idx:148; ID:10; P_HDR : Atom P-header.; E

– 31 –

5 Evaluation

Sequential Instructions

Conditional Instructions

Indirect Branches

372.321

444.897

54.341

328.409

327.307

18.477
with tracing

without tracing

Figure 5.4: Execution time for different instruction sequences. Time in ms.

Indirect branch packets may also have a large size, as they include the address of the
branch target. Because of address compression, they are often only one byte large. We
used the following code to test the overhead for many successive indirect branches. The
code shows a loop that iterates 50 times and uses an indirect branch in each iteration.

mov r1, #1
label_0: cmp r1, 50
beq label2
add r1, r1, #1
bl label_1
b label_0
...
...
mov r0, r0
mov r0, r0
label_1: bx lr
label_2: mov r0, r0

In the resulting trace, we can see that each branch results in a separate package, where
only the last 8 bit of the address are encoded.

Idx:183; ID:10; BRANCH_ADDRESS : Branch address.; Addr=0x400101D6 ~[0x56];
Idx:184; ID:10; P_HDR : Atom P-header.; EEN
Idx:185; ID:10; P_HDR : Atom P-header.; EEE
Idx:186; ID:10; BRANCH_ADDRESS : Branch address.; Addr=0x400101D6 ~[0x56];

To compare the overhead of these different cases, we created different TAs with 500,000
instructions for each of the assembly sequences.

In Figure 5.4 we can see that the sequential instructions have the smallest overhead of
only 13.37%. The conditional instructions lead to an overhead of 35.92% and the indirect

– 32 –

5 Evaluation

Figure 5.5: Effect of the distance between branch addresses on the trace size

21 25 29 213 217 221
0

10

20

30

40

50

60

Distance between target addresses in byte

Tr
ac
e
si
ze
in
by
te

branches to the largest overhead of 194.10%. For a case where the target addresses of in-
direct branches are very different, the overhead can become larger. To show this effect,
we traced a small assembly program, see Listing 5.6 , where we inserted a sequence of
NOP instructions in the middle, that we scaled up. It can be clearly seen, that indirect
branches to addresses which are further apart lead to larger traces, see Figure 5.5. For
the attestation this causes larger overhead, as the trace needs to be savedmore often The
trace size and execution time are not deterministic. Preemption of TAs and exceptions
may lead to slightly different results for each invocation because the exceptions are rep-
resented in the trace.

In another experiment, we traced a simple loop with a function call (see Listing 5.2)
and scaled up the loop iterations to see the effect on the tracing overhead. In Figure 5.7
you can see how the overheadbecomes less until it stabilizes at around four. Theoverhead
is given as a multiple of the original execution time. The same plot, but with a higher
resolution and a focus on the first 100,000 iterations can be seen in Figure 5.8.

int k = 0;

void test() {
k++;

}

void my_test_fun(int n) {
for (int i=0;i<n;i++) {
test();

}
}

– 33 –

5 Evaluation

Listing 5.6: Assembly Code for showing the effects of longer distance between return
branch addresses on the trace size

main: bl foo
b end

[[NOP BLOCK]]

foo: push {lr}
bl bar
pop {lr}
bx lr

bar: bx lr
end:

Experiment 2: OP-TEE Example TAs

For testing the overhead of the attestation in a realistic setting, we first tested typical
use cases for OP-TEE. As OP-TEE is often used for cryptography-related tasks, we chose
examples from this area. For each example wemeasured:

– the execution time with attestation: Tatt = Tu + Tinit + c ⋅ Ttc + Tleave
– the execution time without attestation: Tu
– the timing overheadO = (Tatt/Tu) ⋅ 100− 100

The first application we tested is a modified version of an example TA, that comes with
OP-TEE. It generates a 256-bit RSA key-pair and signs the string ”test”. Here we could
only measure a small overhead of 4.67%. Another application we tested creates a secure
object and stores it in the secure storage ofOP-TEE.Theoverhead for the tracing is 9.88%.
The low overhead also results from the usage of API functions in the TAs which are exe-
cuted in kernel mode and not traced by us. An overview of our results can be seen in
Table 5.9.

Experiment 3: Neural Network

Another application we used for benchmarking is DarkneTZ [27]. This is an application
based on the Darknet Deep Neural Network framework which runs several layers of the
network in OP-TEE to achieve certain security guarantees. This is a challenging task, as
it is quite a heavy workload for our low-end hardware. For testing, we used the inference
for image classification. In our configuration, seven of the 11 layers are running in an
OP-TEE TA.Wemeasured an overall overhead of 1.57% for the tracing, see Table 5.10.

Other Attestation Overhead

Wealso examined the timeTrt for retrieving the trace and calculating theMAC.For a trace
with a size of 22,000 byte, wemeasured 15ms execution time. This could probably be im-
proved by using the cryptographic accelerator on our board, but we did not use this yet

– 34 –

5 Evaluation

0 0.5 1 1.5 2 2.5 3 3.5 4

⋅105

4

6

8

10

12

Loop Iterations

O
ve
rh
ea
d

Figure 5.7: Tracing Overhead for a simple loop with a function call. The loop iterations
are scaled up from 0 to 400,000. For the code, see Listing 5.2.

becauseOP-TEE has no driver support for this hardware component. For the verification
Tver we measured a time of 3.37 ms. As the verifier runs on a separate device with po-
tentially more capable hardware, this measurement is not really representative. For Tcfg
we could measure up to 30 minutes for the example TAs with a context-sensitivity of 15.
Because the CFG-recovery is only executed once, this can be neglected.

How to Lower the Overhead

We showed that the performance overhead is reasonable for the real applications that we
tested. In general, however, it can become larger, depending on the code of the traced
application. There are several possibilities for lowering the performance overhead. One
potential enhancement could be the use of DMA.This could improve the time needed for
saving the tracingbuffer tomemorybecause theCPUwouldnot be involved anymore. We
tried this approach, but unfortunately, DMA access to the ETF buffer is not possible on
our board. Another, even more promising improvement would require different tracing
components. By usin+g an ETR, the traces could be directly written to memory. This
would reduce the attestation overhead significantly. As we currently have no access to a
board with this hardware, we leave this to future work (see Section 6.3).

About the Trace Size

The trace size for a program cannot be calculated in advance, as it depends on the input
and can also be influenced by external events like exceptions, that appear in the trace. As
we currently do not use anymeans of trace compression, the traces can become very big,

– 35 –

5 Evaluation

0 0.2 0.4 0.6 0.8 1

⋅105

6

8

10

12

14

Loop Iterations

O
ve
rh
ea
d

Figure 5.8: High resolution plot for the code in Listing 5.2 with the focus on the first
100,000 loop iterations.

Table 5.9: Attestation overhead for some example TAs provided by OP-TEE

Original (s) Traced (s) Overhead Trace Size (kB)
Crypto 1.437 1.504 4.67% 2.313
Secure Storage 0.37 0.406 9.88% 10.438

which can be a problem for boards with a small memory, like ours. This might also be
problematic if they are sent over the network. A possible solution could be to use pre-
processing of the trace on the prover side, but this would require trace decoding and im-
pose additional overhead on the prover. Solving this remains open for future work.

5.3 Security Guarantees

In the following section,wewill describe the security guarantees, that our CFA approach
can give.
Due to the use of Coresight, we can obtain precise measurements of the control flow

Table 5.10: Attestation overhead for DarkneTZ

Original (s) Traced (s) Overhead Trace Size (kB)
Overall 1474.722 1497.946 1.57% 26691.921

– 36 –

5 Evaluation

of a TA in the form of indirect branch targets and information about taken conditional
branches. We use that information, to determine the source and target of each indirect
branch. Together with the context-sensitive CFG that we recovered, we can reliably de-
tect violations of control-flow integrity.
One type of attack that can be detected are ROP attacks, which we introduced in 2.3.
Control-flow transitions to unexpected CFG-nodes or to addresses within CFG-nodes
can be easily detected as they do not conform to the legal control-flow of the program.
Due to the context-sensitive CFG, we also enforce that the call- and return-addresses
match.
The same applies for Jump oriented Programming. This kind of attack manipulates in-
direct jumps and also results in an illegal control-flow measurement. Non-control data
attacks can in principle be detected with our approach. If an unintended (privileged but
legal) control-flow path was taken or if a loop was executed an unexpected amount of
times, this is visible in the attestation report. However, our current implementation of
the verifier cannot detect such attacks. Because we only attest the control flow, data-
oriented programming attacks cannot be detected as these work by solely manipulating
data, without exhibiting illegitimate control flows.
Attacks that replace the target application code are ruled out because OP-TEE checks the
integrity of TA binaries before loading them. To ensure the integrity of OP-TEE itself, we
assume that secure boot is used. The integrity and authenticity of the attestation report
are also protected, by using a MAC.

CFG Recovery

Because the CFG-analysis is usually used for binary analysis and not for control-flow ver-
ification, it does not fully suit our needs. One big issue is the missing information about
the number of loop iterations. The CFG simply allows infinite iterations, so some kinds
of attacks that manipulate the loop variable to iterate an unexpected amount of times,
can currently not be detected. The addition of loop information could be considered for
the next iteration of the prototype.

5.4 Comparison to Other Approaches

To conclude with the evaluation, we compared some aspects of our attestation solution
with other approaches. The results can be seen in Table 5.11. Some approaches do not
describe their verification approach in detail, so we could not evaluate every aspect of
every approach.

– 37 –

5 Evaluation

Table 5.11: Functional comparison of our solution to other approaches

CFA
/ CFI

Protection of Indirect Branches

Protection of Control-Flow
Order

Context Sensitivity

Data Accesses Attested
Transparency

Custom
Hardware DesignNeeded

Target Protected by TEE
Hardware-assisted

Architecture

Our Solution CFA ARM
C-Flat [1] CFA ARM
LOAFAT [18] CFA — RISC-V
ATRIUM [45] CFA — RISC-V
LiteHAX [17] CFA RISC-V
LAHEL [6] CFA ARM
Coresight CFI [23] CFI ARM
DIAT [2] CFA ARM
GuaranTEE [28] CFA Intel x86
ScaRR [43] CFA Intel x86
ReCFA [46] CFA Intel x86

 = provides property; empty = does not provide property; — = unknown

– 38 –

6
Conclusion

In the following sections, we will discuss some aspects of our approach and summarize
our work. We conclude with possible starting points for future work.

6.1 Summary

In thiswork,we showed thatCoresight tracing canbeused tobuild aCFA-systemonARM
platforms, without the need for additional hardware. We successfully implemented a
prototype that extendsOP-TEE, a TrustZone-based TEE,with CFA-capabilities. The pro-
totype consists of modules for generating the CFG as a reference for valid control flows,
ameasurement engine based on Coresight and a verifier. We evaluated the performance
of our approach and found that the runtime overhead generally is reasonable. The size of
the attestation report could be a problem in some cases, as this can become pretty large.
However, with the programs we tested in our experiments, the size was still reasonable.
We also showed the security guarantees we get from our solution. Because we use the
order, the source and the target for indirect jumps in our verification,most relevant run-
time attacks like ROP can be reliably detected.

6.2 Discussion

A great advantage of our approach over other approaches for CFA is, that there is no need
for additional hardware or customSoCdesigns. Instead,we repurpose the existingCore-
sight tracing system for ouruse case. Thismakes our solution easy to implement on exist-
ing boards. However, by repurposing Coresight for attestation,we inherit a certain over-
head in terms of trace size, that could be avoided by building a custom tracing solution.
Another thingwenoticed is that it can behard to useCoresight tracing in a secureway. As
it is originally intended to be used for debugging purposes, some SoCs lack fine-granular
security configurations for Coresight and TrustZone. However, generally it is possible to
create a secure system with a suitable SoC. In our implementation, we currently do not
support the parallel execution of TAs. In principle, however, this would be possible by
distinguishing the different applications by context IDs that are recorded in the trace. In

– 39 –

6 Conclusion

addition, the execution of all OP-TEE TAs would have to be actively interrupted when the
ETF buffer is read out in order to save the trace. While in some theoretical worst-cases
the overhead can become very big,we found that for actual TAs the overhead of our attes-
tation approach is still reasonable. Because TAs are usually not very complex applications
the trace size is often not that big. While we have shown that attestation is possible with
our hardware, we think that it is generally preferable to use other hardware like an ETR
to allowmore efficient tracing.

6.3 Future Work

Due to the limited scope of a bachelor thesis, there is still much room for improvement
regarding our attestation solution. For simplification, we decided to disable ASLR in
OP-TEE. As it is obviously better to have this security feature turned on, the next iter-
ation of our prototype should be able to cope with ASLR. Another simplification that we
introduced, was restricting our system to one core only. While this made it easier, to
implement the interrupt routine for saving the trace, it would be nice when our system
could also handle multiple cores. It could also be interesting to experiment with other
Coresight hardware, like the ETR.This could potentially reduce the attestation-induced
runtime overhead massively, as the traces could be directly stored in memory, thereby
also omitting the need for interrupts. Depending on the ETM-version, Coresight is also
able to trace memory accesses. The usage of this additional data could potentially allow
formore fine-grained attestation and enable the detection of so-called non-control-data
attacks. However, this would result in much bigger traces and also require significant
changes to our verifier. In our current implementation, we do not enforce the number
of loop iterations. As this allows some types of runtime attacks, where loop counter vari-
ables aremanipulated,we are interested in adding these capabilities to the verifier. How-
ever, this would only work for loops with a static number of iterations, not for loops with
data dependencies. A potential simple solution could also be loop-unrolling in the com-
piler, as this would not require any changes on the side of the verifier.

– 40 –

Bibliography

[1] Abera, T., Asokan, N., Davi, L., Ekberg, J., Nyman, T., Paverd, A., Sadeghi, A., and
Tsudik, G. C-FLAT: Control-Flow Attestation for Embedded Systems Software. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Se-
curity, Vienna, Austria, October 24-28, 2016. Ed. by E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi. ACM, 2016, pp. 743–754. doi: 10 .1145/
2976749.2978358 (cit. on pp. 2, 3, 38).

[2] Abera, T., Bahmani, R., Brasser, F., Ibrahim, A., Sadeghi, A., and Schunter, M.
DIAT: Data Integrity Attestation for Resilient Collaboration of Autonomous Sys-
tems. In: 26th Annual Network andDistributed System Security Symposium,NDSS 2019,
San Diego, California, USA, February 24-27, 2019. The Internet Society, 2019. url:
https ://www.ndss - symposium.org/ndss -paper/diat -data - integrity -
attestation- for - resilient -collaboration-of -autonomous- systems/ (cit. on
pp. 3, 4, 38).

[3] AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and More.
In:White Paper, January, 2020 (cit. on p. 8).

[4] Anati, I., Gueron, S., Johnson, S., and Scarlata, V. Innovative technology for CPU
basedattestationandsealing. In:Proceedingsof the2nd internationalworkshoponhard-
ware and architectural support for security and privacy. Vol. 13. 7. ACM New York, NY,
USA. 2013 (cit. on p. 6).

[5] Android Keystore. https : / / source . android . com / docs / security / features /
keystore. Accessed: 2022-11-03 (cit. on p. 7).

[6] Arias, O., Sullivan,D., Shan,H., and Jin, Y. LAHEL: Lightweight AttestationHard-
ening Embedded Devices using Macrocells. In: 2020 IEEE International Symposium
on Hardware Oriented Security and Trust, HOST 2020, San Jose, CA, USA, December 7-11,
2020. IEEE, 2020, pp. 305–315. doi: 10.1109/HOST45689.2020.9300257 (cit.
on pp. 2–4, 38).

[7] Arm Confidential Compute Architecture. https://www.arm.com/architecture/
security-features/arm-confidential-compute-architecture. Accessed: 2022-
04-24 (cit. on p. 8).

[8] Arm DS-5 Debugger User Guide. https://developer.arm.com/documentation/
100953/0529. Accessed: 2022-11-25 (cit. on p. 21).

[9] Boot chain overview - STM32MP157. https : / / wiki . st . com / stm32mpu / wiki /
Boot_chain_overview. Accessed: 2022-10-16 (cit. on p. 26).

[10] Building a Secure System using TrustZone Technology. https : / / community . arm .
com/cfs-file/__key/telligent-evolution-components-attachments/01-
2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_

– 41 –

https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1145/2976749.2978358
https://www.ndss-symposium.org/ndss-paper/diat-data-integrity-attestation-for-resilient-collaboration-of-autonomous-systems/
https://www.ndss-symposium.org/ndss-paper/diat-data-integrity-attestation-for-resilient-collaboration-of-autonomous-systems/
https://source.android.com/docs/security/features/keystore
https://source.android.com/docs/security/features/keystore
https://doi.org/10.1109/HOST45689.2020.9300257
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/documentation/100953/0529
https://developer.arm.com/documentation/100953/0529
https://wiki.st.com/stm32mpu/wiki/Boot_chain_overview
https://wiki.st.com/stm32mpu/wiki/Boot_chain_overview
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf

Bibliography

trustzone _ 5F00 _ security _ 5F00 _ whitepaper . pdf. Accessed: 2022-11-25.
2009 (cit. on p. 8).

[11] Certes, J. andMorgan, B. Remote Attestation of Bare-Metal Microprocessor Soft-
ware: A Formally Verified SecurityMonitor. In:Database and Expert Systems Applica-
tions -DEXA2021Workshops -BIOKDD, IWCFS,MLKgraphs, AI-CARES,ProTime,AISys
2021, Virtual Event, September 27-30, 2021, Proceedings. Ed. by G. Kotsis, A. M. Tjoa,
I. Khalil, B. Moser, A. Mashkoor, J. Sametinger, A. Fensel, J. M. Gil, L. Fischer, G.
Czech, et al. Vol. 1479. Communications in Computer and Information Science.
Springer, 2021, pp. 42–51. doi: 10.1007/978-3-030-87101-7_5 (cit. on pp. 3, 4).

[12] Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A., Shacham, H., andWinandy,
M. Return-oriented programming without returns. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA,
October4-8, 2010.Ed. byE.Al-Shaer,A.D.Keromytis,andV.Shmatikov.ACM,2010,
pp. 559–572. doi: 10.1145/1866307.1866370 (cit. on p. 11).

[13] Coker, G., Guttman, J. D., Loscocco, P. A., Herzog, A. L., Millen, J. K., O’Hanlon,
B., Ramsdell, J. D., Segall, A., Sheehy, J., and Sniffen, B. T. Principles of remote
attestation. In: Int. J. Inf. Sec. 10(2):63–81, 2011. doi: 10.1007/s10207-011-0124-7
(cit. on pp. 5, 6).

[14] Cortex A53 documentation. https : / / developer . arm . com / documentation /
ddi0500/e/introduction/compliance/debug-architecture. Accessed: 2022-
10-06 (cit. on p. 19).

[15] CSAL. https://github.com/ARM-software/CSAL. Accessed: 2022-10-06 (cit.
on pp. 19, 20).

[16] Czerwinski, R. Using OP-TEE to Authenticate IoT Devices. https : / / www .
pengutronix.de/de/blog/2021-02-09-optee-product.html. Accessed: 2022-
10-16 (cit. on p. 24).

[17] Dessouky, G., Abera, T., Ibrahim, A., and Sadeghi, A. LiteHAX: lightweight
hardware-assisted attestation of program execution. In: Proceedings of the Interna-
tional Conference onComputer-AidedDesign, ICCAD2018, SanDiego, CA,USA,November
05-08, 2018. Ed. by I. Bahar. ACM, 2018, p. 106. doi: 10.1145/3240765.3240821
(cit. on pp. 2–4, 23, 38).

[18] Dessouky,G.,Zeitouni, S.,Nyman, T.,Paverd, A.,Davi, L.,Koeberl, P.,Asokan,N.,
andSadeghi, A. LO-FAT: Low-OverheadControl FlowATtestation inHardware. In:
Proceedings of the 54th AnnualDesignAutomationConference, DAC2017, Austin, TX,USA,
June 18-22, 2017. ACM, 2017, 24:1–24:6. doi: 10.1145/3061639.3062276 (cit. on
pp. 3, 4, 38).

[19] Embedded Trace Macrocell Architecture Specification ETMv1.0 to ETMv3.5. https : / /
developer.arm.com/documentation/ihi0014/q/?lang=en. Accessed: 2022-
04-24 (cit. on p. 11).

[20] GlobalPlatforms TEE Client API Specification Version 1.0. https://globalplatform.
org/wp-content/uploads/2010/07/TEE_Client_API_Specification-
V1.0.pdf. Accessed: 2022-04-19 (cit. on p. 9).

[21] Hu,H.,Shinde, S.,Adrian, S.,Chua, Z. L.,Saxena, P., andLiang, Z. Data-Oriented
Programming: On the Expressiveness of Non-control Data Attacks. In: IEEE Sym-
posiumonSecurity andPrivacy, SP 2016, San Jose, CA,USA,May22-26, 2016. IEEECom-

– 42 –

https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2057-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://doi.org/10.1007/978-3-030-87101-7_5
https://doi.org/10.1145/1866307.1866370
https://doi.org/10.1007/s10207-011-0124-7
https://developer.arm.com/documentation/ddi0500/e/introduction/compliance/debug-architecture
https://developer.arm.com/documentation/ddi0500/e/introduction/compliance/debug-architecture
https://github.com/ARM-software/CSAL
https://www.pengutronix.de/de/blog/2021-02-09-optee-product.html
https://www.pengutronix.de/de/blog/2021-02-09-optee-product.html
https://doi.org/10.1145/3240765.3240821
https://doi.org/10.1145/3061639.3062276
https://developer.arm.com/documentation/ihi0014/q/?lang=en
https://developer.arm.com/documentation/ihi0014/q/?lang=en
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf
https://globalplatform.org/wp-content/uploads/2010/07/TEE_Client_API_Specification-V1.0.pdf

Bibliography

puter Society, 2016, pp. 969–986. doi: 10.1109/SP.2016.62. url: https://doi.
org/10.1109/SP.2016.62 (cit. on p. 11).

[22] Juno ARM Development Platform SoC Technical Reference Manual. https://www.st.
com/resource/en/reference_manual/rm0436-stm32mp157-advanced-
armbased-32bit-mpus-stmicroelectronics.pdf. Accessed: 2022-10-16 (cit. on
p. 26).

[23] Kuzhiyelil, D., Zieris, P., Kadar, M., Tverdyshev, S., and Fohler, G. Towards Trans-
parent Control-Flow Integrity in Safety-Critical Systems. In: Information Security -
23rd International Conference, ISC 2020, Bali, Indonesia, December 16-18, 2020, Proceed-
ings. Ed. by W. Susilo, R. H. Deng, F. Guo, Y. Li, and R. Intan. Vol. 12472. Lecture
Notes in Computer Science. Springer, 2020, pp. 290–311. doi: 10.1007/978-3-
030-62974-8_17 (cit. on pp. 4, 29, 38).

[24] Learn the architecture - Introducing CoreSight debug and trace. https : / / developer .
arm.com/documentation/102520/0100. Accessed: 2022-11-23 (cit. on p. 2).

[25] Learn the architecture: TrustZone for AArch64. https : / / developer . arm . com /
documentation/102418/0101/TrustZone-in-the-processor. Accessed: 2022-
04-19 (cit. on p. 7).

[26] Lee, D., Kohlbrenner, D., Shinde, S., Asanovic, K., and Song, D. Keystone: an open
framework for architecting trusted execution environments. In: EuroSys ’20: Fif-
teenth EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020. Ed. by A. Bilas,
K. Magoutis, E. P. Markatos, D. Kostic, and M. I. Seltzer. ACM, 2020, 38:1–38:16.
doi: 10.1145/3342195.3387532 (cit. on p. 8).

[27] Mo, F., Shamsabadi, A. S., Katevas, K., Demetriou, S., Leontiadis, I., Cavallaro,
A., and Haddadi, H. DarkneTZ: towards model privacy at the edge using trusted
execution environments. In:MobiSys ’20: The 18th Annual International Conference on
Mobile Systems,Applications, andServices, Toronto,Ontario,Canada, June 15-19, 2020.Ed.
byE.deLara, I.Mohomed, J.Nieh,andE.M.Belding.ACM,2020,pp. 161–174.doi:
10.1145/3386901.3388946 (cit. on p. 34).

[28] Morbitzer, M., Kopf, B., and Zieris, P. GuaranTEE: Introducing Control-Flow At-
testation for Trusted Execution Environments. In: CoRR abs/2202.07380, 2022.
arXiv: 2202.07380. url: https://arxiv.org/abs/2202.07380 (cit. on pp. 3,
4, 38).

[29] MultiZone. https://hex-five.com/. Accessed: 2022-11-07 (cit. on p. 8).
[30] Ning, Z., Wang, C., Chen, Y., Zhang, F., and Cao, J. Revisiting ARM Debugging

Features: Nailgun and Its Defense. In: IEEE Transactions on Dependable and Secure
Computing:1–1, 2021. doi: 10.1109/TDSC.2021.3139840 (cit. on p. 10).

[31] Ning, Z. and Zhang, F. Ninja: Towards Transparent Tracing and Debugging on
ARM. In: 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017. Ed. by E. Kirda and T. Ristenpart. USENIX Associ-
ation, 2017, pp. 33–49. url: https : / / www . usenix . org / conference /
usenixsecurity17/technical-sessions/presentation/ning (cit. on p. 12).

[32] OP-TEE Documentation. https://optee.readthedocs.io/en/3.16.0/. Accessed:
2022-03-15 (cit. on pp. 2, 9, 10, 24).

[33] Open Coresight Trace Decode Library. https://github.com/Linaro/OpenCSD.
Accessed: 2022-10-26 (cit. on p. 21).

– 43 –

https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/SP.2016.62
https://www.st.com/resource/en/reference_manual/rm0436-stm32mp157-advanced-armbased-32bit-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0436-stm32mp157-advanced-armbased-32bit-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0436-stm32mp157-advanced-armbased-32bit-mpus-stmicroelectronics.pdf
https://doi.org/10.1007/978-3-030-62974-8_17
https://doi.org/10.1007/978-3-030-62974-8_17
https://developer.arm.com/documentation/102520/0100
https://developer.arm.com/documentation/102520/0100
https://developer.arm.com/documentation/102418/0101/TrustZone-in-the-processor
https://developer.arm.com/documentation/102418/0101/TrustZone-in-the-processor
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3386901.3388946
https://arxiv.org/abs/2202.07380
https://arxiv.org/abs/2202.07380
https://hex-five.com/
https://doi.org/10.1109/TDSC.2021.3139840
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ning
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ning
https://optee.readthedocs.io/en/3.16.0/
https://github.com/Linaro/OpenCSD

Bibliography

[34] Sabt, M., Achemlal, M., and Bouabdallah, A. Trusted Execution Environment:
What It is,andWhat It isNot. In: 2015 IEEETrustCom/BigDataSE/ISPA,Helsinki, Fin-
land, August 20-22, 2015, Volume 1. IEEE, 2015, pp. 57–64. doi: 10.1109/Trustcom.
2015.357 (cit. on p. 5).

[35] Samsung Knox Security Solution Whitepaper. https : / / images . samsung .
com / is / content / samsung / p5 / global / business / mobile /
SamsungKnoxSecuritySolution.pdf. Accessed: 2022-11-03 (cit. on p. 7).

[36] Securing Edge IoT devices with OP-TEE. https://www.iwavesystems.com/news/
securing-edge-iot-devices-with-op-tee/. Accessed: 2022-05-03 (cit. on p. 9).

[37] Shacham,H. Thegeometry of innocent flesh on the bone: return-into-libcwithout
function calls (on the x86). In: Proceedings of the 2007ACMConference onComputer and
Communications Security, CCS 2007, Alexandria, Virginia, USA,October 28-31, 2007. Ed.
by P. Ning, S. D. C. di Vimercati, and P. F. Syverson. ACM, 2007, pp. 552–561. doi:
10.1145/1315245.1315313 (cit. on p. 11).

[38] Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Kruegel, C., et al. SOK: (State of) The Art of War:
Offensive Techniques in Binary Analysis. In: 2016 IEEE Symposium on Security and
Privacy (SP). 2016, pp. 138–157. doi: 10.1109/SP.2016.17 (cit. on pp. 4, 17, 23).

[39] Stajnrod, R., Yehuda, R. B., and Zaidenberg, N. J. Attacking TrustZone on devices
lacking memory protection. In: J. Comput. Virol. Hacking Tech. 18(3):259–269, 2022.
doi: 10.1007/s11416-021-00413-y (cit. on p. 8).

[40] STM32MP157 Documentation. https://www.st.com/resource/en/reference_
manual / rm0436 - stm32mp157 - advanced - armbased - 32bit - mpus -
stmicroelectronics.pdf. Accessed: 2022-10-06 (cit. on pp. 20, 24).

[41] Subramanyan, P., Sinha, R., Lebedev, I. A.,Devadas, S., and Seshia, S. A. A Formal
Foundation forSecureRemoteExecutionofEnclaves. In:Proceedings of the2017ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017. Ed. by B. Thuraisingham, D. Evans, T. Malkin,
and D. Xu. ACM, 2017, pp. 2435–2450. doi: 10.1145/3133956.3134098 (cit. on
p. 8).

[42] Swami, Y. SGX Remote Attestation is not Sufficient. In: IACR Cryptol. ePrint
Arch.:736, 2017. url: http://eprint.iacr.org/2017/736 (cit. on p. 6).

[43] Toffalini, F., Losiouk, E., Biondo, A., Zhou, J., and Conti, M. ScaRR: Scalable Run-
time Remote Attestation for Complex Systems. In: 22nd International Symposium
on Research in Attacks, Intrusions and Defenses, RAID 2019, Chaoyang District, Beijing,
China, September 23-25, 2019. USENIX Association, 2019, pp. 121–134. url: https:
//www.usenix .org/conference/raid2019/presentation/toffalini (cit. on
p. 38).

[44] Trusted Firmware-A. https://www.trustedfirmware.org/projects/tf-a/. Ac-
cessed: 2022-11-03 (cit. on p. 9).

[45] Zeitouni, S., Dessouky, G., Arias, O., Sullivan, D., Ibrahim, A., Jin, Y., and
Sadeghi,A. ATRIUM:Runtimeattestation resilientundermemoryattacks. In:2017
IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2017, Irvine, CA,
USA, November 13-16, 2017. Ed. by S. Parameswaran. IEEE, 2017, pp. 384–391. doi:
10.1109/ICCAD.2017.8203803 (cit. on pp. 3, 4, 38).

– 44 –

https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://images.samsung.com/is/content/samsung/p5/global/business/mobile/SamsungKnoxSecuritySolution.pdf
https://images.samsung.com/is/content/samsung/p5/global/business/mobile/SamsungKnoxSecuritySolution.pdf
https://images.samsung.com/is/content/samsung/p5/global/business/mobile/SamsungKnoxSecuritySolution.pdf
https://www.iwavesystems.com/news/securing-edge-iot-devices-with-op-tee/
https://www.iwavesystems.com/news/securing-edge-iot-devices-with-op-tee/
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1007/s11416-021-00413-y
https://www.st.com/resource/en/reference_manual/rm0436-stm32mp157-advanced-armbased-32bit-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0436-stm32mp157-advanced-armbased-32bit-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0436-stm32mp157-advanced-armbased-32bit-mpus-stmicroelectronics.pdf
https://doi.org/10.1145/3133956.3134098
http://eprint.iacr.org/2017/736
https://www.usenix.org/conference/raid2019/presentation/toffalini
https://www.usenix.org/conference/raid2019/presentation/toffalini
https://www.trustedfirmware.org/projects/tf-a/
https://doi.org/10.1109/ICCAD.2017.8203803

Bibliography

[46] Zhang, Y., Liu, X., Sun, C., Zeng, D., Tan, G., Kan, X., andMa, S. ReCFA: Resilient
Control-Flow Attestation. In: ACSAC ’21: Annual Computer Security Applications Con-
ference, Virtual Event, USA, December 6 - 10, 2021. ACM, 2021, pp. 311–322. doi: 10 .
1145/3485832.3485900 (cit. on p. 38).

– 45 –

https://doi.org/10.1145/3485832.3485900
https://doi.org/10.1145/3485832.3485900

Acronyms

ASLR Address Space Layout Randomization

BB basic block

CCA Confidential Compute Architecture
CFA Control-Flow Attestation
CFG Control-FlowGraph
CFI Control Flow Integrity
CSAL Coresight Access Library
CTI Cross Trigger Interface

DMA Direct memory access

ETB Embedded Trace Buffer
ETF Embedded Trace Fifo
ETM Embedded TraceMacrocell
ETR Embedded Trace Router
ETZPC Extended Trustzone protection controller

HUK Hardware unique key

MAC Message Authentication Code
MMU Memorymanagement unit

OTP One-Time-ProgrammableMemory

PTA Pseudo Trusted Application
PTM Program TraceMacrocell

REE Rich Exectution Environment
ROP Return-oriented programming

SMC SecureMonitor Call
SoC System on a chip

TA Trusted Application
TEE Trusted Exectution Environment
TMC TraceMemory Controller
TPIU Trace Port Interface Unit
TZC Trustzone address space controller

– 46 –

	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Preliminaries
	2.1 Related Work
	2.2 Trusted Execution Environment
	2.3 Coresight
	2.4 Runtime Attacks

	3 Approach
	3.1 General Considerations
	3.2 Threat Model
	3.3 Attestation Process
	3.4 How to Obtain the Measurements?
	3.5 Verifier
	3.6 Protecting the Attestation Report

	4 Implementation
	4.1 Selecting the Hardware
	4.2 Software for Coresight Tracing
	4.3 First Traces
	4.4 Tracing OP-TEE
	4.5 How to Make the System Secure

	5 Evaluation
	5.1 Demonstration
	5.2 Performance
	5.3 Security Guarantees
	5.4 Comparison to Other Approaches

	6 Conclusion
	6.1 Summary
	6.2 Discussion
	6.3 Future Work

	Bibliography
	Acronyms

