
PKI For Automotive Applications

PKI für Anwendungen in Fahrzeugen

Bachelorarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Florian Dahlmann

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

mit Unterstützung von
Sebastian Alexander Eckhardt

Die Arbeit ist im Rahmen einer Tätigkeit bei der Firma IAV GmbH entstanden.

Lübeck, den 27. September 2018

Abstract

We live in a world where technology is integrated in more and more parts of our envi-
ronment. This means that nearly everything that contains electronics has computational
power as well, which can be used to connect it to the internet. Therefore many devices are
or will be able to communicate and exchange data with each other. This also applies to
cars. As the technology in cars evolve, cars will be able to communicate with each other
and with computers all around the globe. This raises a problem: The communication has
to be secured against vicious attackers. We will therefore discuss in this thesis how this
communication can be secured and focus especially on the embedded environment of the
car with its performance restrictions. We will therefore discuss the challenges of the ap-
proach to build a Public-Key Infrastructure (PKI) and we will analyse the performance of
typical cryptographic operations on an embedded system. Furthermore we will use our
knowledge and build a practical implementation of a lightweight PKI, which could be
used for the communication with cars and which solves the challenges that occur with a
PKI.

iii

Abstract

We live in a world where technology is integrated in more and more parts of our envi-
ronment. This means that nearly everything that contains electronics has computational
power as well, which can be used to connect it to the internet. Therefore many devices are
or will be able to communicate and exchange data with each other. This also applies to
cars. As the technology in cars evolve, cars will be able to communicate with each other
and with computers all around the globe. This raises a problem: The communication has
to be secured against vicious attackers. We will therefore discuss in this thesis how this
communication can be secured and focus especially on the embedded environment of the
car with its performance restrictions. We will therefore discuss the challenges of the ap-
proach to build a Public-Key Infrastructure (PKI) and we will analyse the performance of
typical cryptographic operations on an embedded system. Furthermore we will use our
knowledge and build a practical implementation of a lightweight PKI, which could be
used for the communication with cars and which solves the challenges that occur with a
PKI.

v

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

Lübeck, 27. September 2018

vii

Contents

1 Introduction 1

2 Background 3
2.1 Car2car & car2x communication . 3
2.2 Cryptography . 4

2.2.1 Encryption . 5
2.2.2 Cryptographic hash function . 7
2.2.3 Elliptic curves . 8
2.2.4 Random number generators . 9

3 Related Work 11
3.1 Common literature . 11
3.2 PKI for smart metering . 12
3.3 Secure Vehicle Communication . 12

4 PKI Challenges 15
4.1 Revocation of certificates . 15

4.1.1 Certification revocation lists (CRLs) 15
4.1.2 OCSP . 16
4.1.3 Certification revocation trees (CRTs) 17
4.1.4 Novomodo . 18
4.1.5 Short lifetime . 18
4.1.6 Comparison . 19

4.2 Compromise of the private key . 22
4.2.1 Perspective car . 22
4.2.2 Perspective CA . 22

4.3 Distribution of certificates . 23

5 Benchmark 25
5.1 Building the libraries . 25
5.2 Generating data . 26
5.3 Scenarios . 26

5.3.1 ECC-Key generation . 27

ix

Contents

5.3.2 ECC certificate generation . 28
5.3.3 ECC certificate signing request generation 29
5.3.4 ECC CSR signature/certificate generation 31
5.3.5 Verify certificate . 32
5.3.6 Extract ECC public key from certificate 32
5.3.7 ECC signature of 1024 random bits . 33
5.3.8 Verify ECC signature of 1024 random bits 34
5.3.9 SHA2-256 hashing of 256 random bits 35

5.4 Conclusion . 36

6 Practical Implementation 39
6.1 Challenges . 39
6.2 Communication . 40
6.3 Architecture . 41
6.4 Conclusion . 41

7 Conclusion 43
7.1 Summary . 43
7.2 Discussion and open problems . 43

References 45

A Practical Implementation 47
A.1 Output . 47
A.2 automotive-client.c . 48
A.3 novmodo-server.c . 52
A.4 software-update-server.c . 55
A.5 certificate-manager.c . 59
A.6 certificate-validity-check.c . 61
A.7 connection-worker.c . 63
A.8 hasher.c . 71
A.9 sqlite-worker.c . 74
A.10 certgen_root.c . 78
A.11 certgen_automotive.c . 82
A.12 certgen_su_server.c . 87

x

1 Introduction

As cars become more connected, the focus on security grows. Researchers like Weimer-
skirch and comittees from the EU and US are focusing more on how to secure vehicle
communication. [Wei11] [Kar09] [74216]. The research focuses on three topics: authenti-
cation and privacy.
It becomes clear, that a Public-Key Infrastructure (PKI) as defined in RFC 5280 [CSF+08]
presents an additional obstacle for the computational and bandwidth restricted micro-
controller of a car. Certificate revocation lists could be avoided by providing multiple
certificates with a short lifetime for cars.
There is no data that shows how costly it is to generate new certificates often and if there
are ways to avoid this.
We will take a look at the research in a practical manner and will take a look which tasks
in a PKI are most CPU-intensive. We will also examine the influence on computational
time by using different libraries. Furthermore we will use a different way to avoid certifi-
cate revocation lists than many certificates with a short lifetime and implement this in a
practical example.

1

2 Background

2.1 Car2car & car2x communication

Nowadays people are used to getting new apps on the smartphone every day and there-
fore expect that software matures, which means, that new features are being added when
there is a high demand for them. As cars become more software driven nowadays and
therefore run more and more software, the same behaviour will be expected from cars.
Additionally there will arise mistakes in the process of software development, which will
let the software work in a different way than intended. To fix these bugs and make the
software better, the car has to receive software updates by communicating with the man-
ufacturer (car2manufacturer). In the past cars have not been connected to the internet and
therefore the only gateway to the manufacturer were motor vehicle workshops, but there
are new possibilities with cars that are connected to the internet. The car would not have
to be driven to a garage, where the owner would have to wait until the update is finished,
but it would be possible to send updates over the air (OTA). This could happen at night,
when the vehicle isn’t used by the owner and therefore it would not cost any time of the
owner. In this manner it is cheaper to deploy an update, because there is no middleman
(like the car shop) that needs to be paid. Therefore a manufacturer can react quickly to
software bugs and improve the software continuously.

On the other hand the new interfaces can be used to let cars become more connected. They
can begin to communicate with their environment to gain more information about their
surroundings and therefore increase the safety of the passengers. This begins with other
cars, to exchange data about the position, speed and more to detect traffic jams and other
dangers (car2car communication, c2c). This data can then be used to warn the driver in
advance and prevent traffic accidents. Also traffic lights, traffic signs, etc. can broadcast
their current status and therefore communicate with the cars. This information can then
be processed to optimize the driving speed to have less red lights and improve the traffic
flow overall (car2authority, c2a).

The problems that arise are that the car has to make sure that the data is from a trustworthy
source. For software updates this means that, independent from the source that sends the
update, it has to be proven that the software has been created by the manufacturer. For
the c2c or c2a communication it is important that no one is able to forge their identity and
irritate nearby cars, for example by sending wrong information about traffic signals.

3

2 Background

Figure 2.1: Car communication participants [ccc07]

2.2 Cryptography

When a car receives an update in a motor vehicle workshop, it has a private connection
and therefore it receives the update in a way that could be compared with whispering to
a person. We only have to assure that the content that is being whispered has really been
created by the manufacturer.
With the connected car, it communicates with the internet and therefore sends information
over channels that other parties can read or it sends the data wireless over the air. This
can be compared to shouting into a room and therefore it is important to get a proof of
the creator of the data and it should be secured that the other parties in the room cannot
understand what is being shouted. For this purpose cryptography is often applied.
Cryptography is the science of information and communication security. Common use-
cases are authentication, encryption, access control. There are three basic goals:

1. Confidentiality: A third party should not be able to gain any information from the
communication of two parties.

2. Integrity: The receiver of information should know that the data has not been mod-
ified.

3. Authentication: The author of information should be verified.

An important principle in cryptography is that the security of the information should only
rely on the secret that is used and not rely on the secrecy of a cryptographic algorithm
itself, therefore it should be secure, even if the algorithm is not a secret. This is called the
The Kerckhoffs Principle. [Vau06]

4

2.2 Cryptography

To illustrate different cases, we will look at Alice and Bob, which are two entities that
communicate with each other. Eve will try to attack the communication, which means
that she will try to undermine one of the goals.

2.2.1 Encryption

To keep the communication private (and fulfil Kerckhoffs Principle), it is usually neces-
sary to encrypt the message. We will distinguish between symmetric and asymmetric
encryption.
For symmetric encryption Alice and Bob need to share a common secret that only they
both know and use it to encrypt the communication. This is called symmetric encryption.
It works like a key to a safe in the real world: Alice can open the safe with the key and
put a message inside and Bob can open the safe with the key to receive the message. The
problem is that there could be Eve, who listens to their communication and therefore they
would have to exchange a secret in private before they are able to communicate securely
publicly. This is usually not possible via the internet, because there is usually no authen-
tication of the communication participants. Another problem arises when Alice wants to
communicate to more people than Bob. She has to store a secret for every person and so
does Bob and every other person. This means that if we have n people who are communi-
cating with each other, everyone has to store n− 1 secrets and therefore there would exist
n∗(n−1)

2 secrets, which is way to much for embedded devices with small storage space, like
a car, with millions of cars on the road.
The idea of asymmetric encryption has first been mentioned in 1976 Whitfield Diffie and
Martin E. Hellman, and it is based on the following idea: To encrypt a message it is not
necessary for Alice to use a secret, instead, she uses a public information that is specific
to Bob and therefore only he can decrypt the message (with a secret only he knows). To
realize this system, Bob has now a private key and a public key. He publishes the public
key and keeps the private key secret. It works like a postbox on the street: Everyone can
put a message inside (with the public key), but only the person with the private key can
retrieve the letters. [DH76]
It is clear now that public key cryptography can be used to encrypt information, but it can
do much more:

1. Key Exchange: The protocol can be used to exchange a key or even negotiate a key,
to use symmetric encryption (which is much faster than asymmetric encryption, see
table 2.1).

2. Non-repudiation & Integrity: By encrypting messages with the private key and de-

5

2 Background

crypting them with the public key, they can be protected against malicious modifi-
cations and the source of the message can be proven.

3. Identification: Alice can check if she really communicates with Bob by sending him
a challenge and checking the signature of the answer.

The remaining problem is the authentication of public keys. We can freely distribute pub-
lic keys, but we can not be sure, who the real owner of the key is. We can solve this using
certificates. They link a key to a identity. [PP10a]
The general idea is that Alice sends her public key (sK), an Identifier (ID) and a Signature
which has been applied to the sK and the ID (sig(sK, ID)). Bob can now verify the sK
and ID and therefore can be sure that it is Alice. The problem is now: How should the
signature be created? If Alice would create her own, Bob had to save a public key for
every other communication-partner in advance, so we have the problem that we wanted
to solve. Instead the signatures are provided by a trusted third party, which is called
Certificate Authority (CA). The CA verifies the IDs and then provides the tuple of sK, ID
and the signature. Bob only has to retrieve the public key of the CA via a safe channel,
but can verify the identity of every other participant. In practice there isn’t just one CA,
but for example one for the university and each institute would have their own. The
university-CA would then sign the certificates of the institute-CAs and therefore they can
create signatures and Alice and Bob only have to trust the university-CA. This is called
chain of trust.
The CAs with all the services they provide are called Public-Key Infrastructure (PKI). The
CA has to verify identities and issue, update and revoke Certificates.
Certificates do not only include the ID and the private key, they often have other infor-
mation embedded as well. The most common public standard for certificates is the X.509
standard, which specifies which information can be embedded in a certificate. We will
take a look at the most important fields of the X.509 certificate to show this at an example.
[CSF+08]

1. Certificate Algorithm: There are multiple algorithms that can generate a signature.
Here is specified which one has been used.

2. Issuer: There are multiple CAs that can generate trusted signatures. Here is specified
which one generated this one.

3. Period of Validity: Normally a certificate has a date of expiry to prevent unlimited
malicious use if the private key has been compromised.

4. Subject: This is the field for the ID.

6

2.2 Cryptography

5. Subject’s Public Key: The public key that should be bound to the ID will be specified
here.

6. Signature: The CA creates a signature over all the other fields of the certificate.

Therefore up to two signature algorithms can be involved: One for the signature and
another one for the public key. [PP10b]
Before the period of validity reaches its end, the subject has to create a new certificate and
prove it’s identity to the CA to receive a signature for the new one.

2.2.2 Cryptographic hash function

Sometimes it could be really useful to prove to someone else that you know something,
without revealing it. Therefore we have a secret that we want to reflect that on something,
but prevent that someone could guess the secret from the portray. For example if we
multiply a number with itself, the 25 can be calculated, but it is unclear if the original
number is five or minus five.
This can be done in a more complex manner with cryptographic hash functions (will be
called h). These functions portray data of any length to on data of a fixed length (the hash,
e.g. 32 bytes). A one way hash function has the following properties:

1. To calculate the hash, only the input and the algorithm is needed. No additional
information is needed to calculate the hash.

2. The hash has a fixed length of at least 2n bits (with security parameter n), which is
independent of the size of the input.

3. If we know X and the function h, the calculation of h(X) should be easy.

4. The calculation only goes one-way and it is therefore hard to an unknown X for a
known h(X).

When it is hard to find two values that hash to the same result, a hash function is called
collision resistant. This means furthermore that it is hard to find an X 6= Y with h(X) =

h(Y). [PGV93]
Another use of a cryptographic hash function is to provide information that can be used
to check whether a message has been modified. We assume that Alice and Bob have a
shared secret S. When they send a message M they append h(M ||S), where || means
concatenation. Because of the secret, the hash can only be calculated by Alice and Bob
and therefore they can calculate it when they receive a message and compare it with the
attached one. If they differ, the message has been modified. This procedure is called Key-
Hashing for message authentication (HMAC). [KBC97]

7

2 Background

2.2.3 Elliptic curves

In cryptography there are four main realizations of asymmetric cryptography: RSA1, DSA,
El Gamal and elliptic curves over finite fields. We will explain elliptic curves and the
advantages in comparison to RSA in the following section. For cryptography usually
elliptic curves in a special field are being used, therefore the curves in a Galois field with
p elements (p prime) can be defined with the equation

y2 = x3 + ax2 + b, where 4a3 + 27b2 6= 0.

The important property is that two points of a curve can be added and will result in an-
other point at the curve (see figure 2.2). The points and the addition form an abelian
group. In addition there is the multiplication of a point with a positive integer k, which
results in the sum of k copies of the point.

Figure 2.2: Addition of two points on an elliptic curve [KAS08]

In the cryptography Alice and Bob agree on a curve and a fixed point (F) on the curve.
They then choose each a secret integer (Ak and Bk) which they multiply with the curve
point and publish the result as their public keys (AP , BP). To encrypt the communication
with each other they can simply multiply their private key with the others public key and
therefore generate a shared secret that can be used with symmetric encryption. This is
called Elliptic-Curve Diffie–Hellman (ECDH).

Bk ·AP = Bk · (Ak · F) = Ak · (Bk · F) = Ak ·BP

1RSA is a public-key cryptosystem, which is based on a problem that easy to solve if the factorization of a
number is known, but appears to be hard if not. [KL07]

8

2.2 Cryptography

Time to break RSA key-size ECC key-size
(in MIPS-years) (in bits) (in bits)
104 512 106

108 768 132

1011 1024 160

1020 2048 210

1078 21000 600

Table 2.1: Comparison of strength of RSA and ECC [KAS08]

To calculate the private key, an attacker would have to solve the Elliptic Curve Discrete
Logarithm problem (ECDLP). There is no mathematical nor theoretical evidence that the
ECDLP is intractable, however the problem has been studied over many years and there
are lower bounds for the problem in specific groups. [HMV04]
Without solving the ECDLP, an attacker would have to guess, which would take about 2

n
2

operations. Because of the exponential increase, the keys and signatures do not have to be
that large and can especially be smaller than RSA pendants with the same security. Also
the point addition is computational expensive and therefore it is quite unlikely that there
will be a general sub-exponential attack. There are sub-exponential attacks for special
types of curves, but they can be avoided and there are no known attacks to recommended
curves by NIST, Curve25519 by Bernstein and the Brainpool curves. Therefore ECC needs
less computational power and space in comparison with RSA for the same security (see
table 2.1). [KAS08]

2.2.4 Random number generators

A computer is a deterministic system and therefore always generates the same output for
the same input. In this manner it is quite challenging to generate random data that is
being needed by cryptography.
The common way to generate pseudo random numbers, is to start with a "seed" and per-
form mathematical operations on it to provide a stream of values that appear to be ran-
dom. Therefore the randomness is directly dependent of the seed, which means that it is
crucial to begin with a seed that can not be predicted and is as random as possible. Reli-
able sources are thermal noise, radioactive decay or a fast spinning oscillator, but not all
computers have access to that data. Reliable sources can also be a spinning disk, noise
from an unplugged audio device or a camera with lens-cap on. [rCS94]

9

3 Related Work

3.1 Common literature

The challenges of C2X Security and Privacy are often separated into several distinct parts
by the literature. For example Weimerskirch et al describes the areas of communication
security, privacy, certificate management and revocation, performance and physical secu-
rity.
For communication security he refers to the US Standard IEEE 1609.2, which describes a
basic security protocol which is based on certificates and elliptic curves.
In the privacy area, he distinguishes between two main concerns: Privacy against third
party entities and privacy against authorities. Firstly he thinks that it is important to
guarantee anonymity and prevent that a certificate can be linked to the license plate or a
VIN2, as well as long-term unlink-ability of two messages of the car to prevent tracking.
To implement this, certificates have to be anonymised and a car needs to change the cer-
tificate quite often. In practical terms he suggests that a car should have multiple (e.g. 30)
certificates with a short time to live and it would switch between them over time.[Wei17]
Privacy against authorities is more complex: More privacy means less control over the
network. Therefore he recommends to implement privacy on an institutional level, which
means that e.g. two authorities would have to collaborate to gain certain information.
For the certificate management he sees CAs as necessary, which creates the certificates
and the certificates should be renewed by communication with road-side-units, which are
placed next to street and distribute certificates for a CA. The handling of revoked certifi-
cates can be done in two ways: Either there has to be a public list of revoked certificates
or the CA has a private list and therefore simply does not renew revoked certificates. The
hierarchy could be separated by the location (EU, USA, ...) and sub-CAs for car manufac-
turers. Another crucial point is the deployment of the certificates in the first place. The
manufacturers would have to flash them on the devices, but have to make sure that the
parties involved cannot forge certificates or use valid certificates for their own purpose.
Performance-wise will a microcontroller in the car not be able to read and verify 1,000 or
more messages per second. To solve this problem the car has to either select only messages
that are relevant to it and dump all other ones to reduce the amount of verifications or the
car needs security hardware that is able to verify huge amounts of messages. [Wei11]

2vehicle identification number, a unique number to identify a specific car

11

3 Related Work

3.2 PKI for smart metering

The BSI in Germany published guidelines for a PKI for smart metering in 2017. It is
focused on IOT (Internet of things) applications that run in houses through a gateway.
Therefore the document defines standards and recommendations on the communication
between the gateway and electronic counters, devices in the home area network and the
wide area network with authorised participants. It is important to integrate a bidirectional
authentication and to create an encrypted and integrity protected channel.

Therefore the application is quite similar: Multiple manufacturers create devices that in-
clude small microcontrollers/CPUs, but need protected communication.

The main idea is to use certificates with a PKI to achieve the authentication. In this manner
there has to be a root-CA and multiple sub-CAs which then provide certificates for the
devices of the consumer. The approach is a usual Public-Key Infrastructure, with one
important catch: The management of the certificates (e.g. update, revocation, etc.) does
not do the gateway or the devices themselves, but an administrator which controls the
gateway. Another difference to the car world, is that that devices do not communicate
with the internet directly, they communicate always through the smart gateway. [fSidI17]

3.3 Secure Vehicle Communication

The European commission funded in 2009 a project which is called SEVECOM,3 which
should do research on the security of vehicle to vehicle communication. They therefore
divided the different aspects of the security in multiple modules, where each has its own
purpose.

The security manager is responsible for the initial configuration of all security modules
and also for the communication between them.

The identification and trust management module has to manage identities and credentials
and therefore is responsible for keeping them up-to-date. The main idea was to manage
multiple anonymous identities (pseudonyms, short-term public keys) and one identity
which was there to receive new anonymous identities. Therefore when the main identity
has been revoked, the vehicle will not be able to receive new anonymous identities and
therefore can not authenticate itself any more, because the time to live for one pseudonym
is short. This means that other vehicles do not need lists with revoked identities (more
about revocation in section 4.1).

The privacy management module is responsible for privacy-enabled communication. It
leverages the pseudonyms and allows vehicles to have a definite level of privacy while al-

3Secure Vehicle Communication

12

3.3 Secure Vehicle Communication

lowing to identify them as valid vehicles. It improves the privacy significantly by switch-
ing the pseudonyms often and therefore preventing tracking by eavesdroppers.
The secure communication module is responsible for the communication and doing it in
a secure way. It communicates with nearly all other modules and it takes care of the
complete communication process. It is divided into the secure beaconing component, the
secure flooding component and the secure routing component. Beaconing is the process
of broadcasting data in regular time intervals to all nodes that are nearby. This data could
contain information about the location, speed or heading of the vehicle. Flooding is quite
similar, but it is used to send information that then is being forwarded by other entities
as well. Therefore it will continue to be forwarded until a specific time or in a specific
area. The routing component has to ensure that the communication that is being received
is from a valid vehicle, has not been modified and has not been rerouted in the network.
The in-car security module ensures that the communication between the wireless com-
munication system and the in-car networks is protected. It therefore controls the access to
vehicle data and ensures the correct provision. It has a firewall to control the access and a
intrusion detection system which can create new firewall rules and monitors the traffic.
The crypto support module implements the security functions which are being needed by
the other modules. It is a crypto component with an API, which provides the functions
and a HSM component4 with its HSM API, which provides random data and saves data
like the keys in a secure manner. [Kar09]

4Hardware security module that provides fast and secure cryptography operations

13

4 PKI Challenges

There are a few points to consider when creating a public key infrastructure, which we
will discuss in the following sections.

4.1 Revocation of certificates

When the CA (e.g. the car manufacturer) notices that it created a certificate with false in-
formation or a private key has been leaked, the certificate has to be declared as invalid.
The obstacle is, that the certificate isn’t in the hands of the creator, it is being used by
someone and therefore it can not be changed. As a solution the CA can publish informa-
tion about revoked certificates and everyone who checks the validity of a certificate has
to check whether the certificate has been revoked. As this introduces new attack surfaces,
the revocation remains a main challenge for PKIs. We will discuss possible options in the
next paragraphs and compare them at the end.

4.1.1 Certification revocation lists (CRLs)

Figure 4.1: X.509 certificate usage model [Gut]

An obvious solution is to let the CA create a list with all revoked certificates (certificate

15

4 PKI Challenges

revocation list, CRL) and publish it online to make it available to all communication par-
ticipants. When a certificate is being revoked by the CA, it will be added to the CRL. To
check the validity of a signature, the validator has to take a look in the CRLs of the CAs in
the chain, to prove, that no certificate in the chain is on one of the blacklists.

This results in a few problems: If the data has to be up to date in real time, the validator has
to check the CRLs every time it checks a certificate, which creates additional bandwidth.
Otherwise the CRLs could be updated in a scheduled interval (e.g. everyday), but then
an attacker could use a certificate for up to one day (or another interval) after it has been
revoked. Also a attacker could block traffic to the CA and then the validator would have
no chance to check certificates for their validity.

And despite the bandwidth, the search in the list will always cost additional computation
time. [Gut]

4.1.2 OCSP

Figure 4.2: Certificate usage model with OCSP responder [Gut]

To prevent that the user has to fetch the CRL quite often and search through it, the OCSP5

approach has been developed. The main idea is to let the validation be made by a server,
the OCSP responder. Therefore the bandwidth and load with CRLs can be saved on the
hardware of the validator, but an additional internet connection is needed. It is also pos-
sible to let the client send the OCSP response with the certificate (OCSP stapling), but the
CA still has to answer a lot of OCSP requests. Which means that it has to search in the
CRL and then sign a response, which signature also has to be checked by the validator.

Another problem is that the OSCP can only answer with "not-revoked", "revoked" and
"unknown" where "not-revoked" doesn’t necessarily mean good and for the status un-

5Online Certificate Status Protocol

16

4.1 Revocation of certificates

known, the client still has to decide. It could mean, that the certificate has never been
issued or the CRL was not reachable or no CRL has been found,... and therefore the client
hasn’t gained any knowledge about the validity. [Gut]

4.1.3 Certification revocation trees (CRTs)

Figure 4.3: Certificate Revocation Tree [Koc98]

To solve the problems with CRLs and OCSP, Certificate Revocation Trees has been devel-
oped. The main idea is to have a data structure in which the OCSP Responder can search
fast and give a useful answer back. For fast search, a tree is a plausible idea.
To give an advantage to the tree, the leaves are not just the certificates that have been re-
voked, they are ranges of certificate numbers (every range represents exactly one revoked
certificate). A leaf (5,12) means that the certificate 5 has been revoked, but any certificate
less than 12 and more than 5 is good. Of course the reason and date of revocation is also
included (other information is possible). We then use the idea of Merkle-Hash-Trees for
the nodes. Therefore a node Ni,j of the tree is the hash of the nodes of the layer below
them. For example N2,1 is the hash of N1,2 and N1,3. The root will then be signed by the
CA.
Because of the structure of the tree, the participants of the communication don’t even need
to save the full tree. It could be distributed by servers that answer validation requests from
validators. The server just has to return a few nodes (circled in the graphic) and needs no
cryptographic operations. The validator then has to check the hashes and the signed root.
The client that tries to prove its identity can even provide the nodes itself and therefore
the validator doesn’t need an additional connection and the bandwidth-usage keeps low.
[Koc98]

17

4 PKI Challenges

4.1.4 Novomodo

With the Certificate Revocation Tress there is still a lot of overhead from a bandwidth
perspective, but we still have the goal to reduce it furthermore. One possible approach is
provided by Novomodo, where only one hash is needed to prove that a certificate is still
valid.

For Novomodo the CA generates for every certificate a random 160-bit value X0, which
is being kept secret. If we assume that we have a certificate that is valid for 365 days and
it should be revoked in max. 24h, then the CA uses a public one-way hash function on
X0 for 365 times. This hash Xn (where Xi = Hash(Xi−1)) is then being included in the
certificate.

To prove now that a certificate is still valid on day i, just the hash Xn−i is being needed.
Hashing it i times, it will be exactly the same as the hash in the certificate. The clue is, that
there is no possibility to get the hash Xn−1 when the only knowledge is Xn.2.2.2 Therefore
only the CA can calculate the hash values, by knowing the secret value X0. The CA will
then provide a directory server which distributes hashes for all certificates that have not
been revoked until the current day. The directory server doesn’t even has to be trusted,
because only the CA can calculate the values. Because of this, there could even be multiple
directory servers by untrusted entities or the client that wants to be authenticated can even
provide the Xn−i hash itself, to provide a proof of validity to the communication-partner.
The additional bandwidth is only 160-bits and for the CA hashing is usually cheaper than
signing. Especially the aspect that the communication with the directory-server does not
have to be authenticated saves bandwidth and computational power. [Gen03]

X0 start

Day 365

X1

Day 364

...X363

Day 2

X364

Day 1

Figure 4.4: Order of hashing compared to the day of usage

4.1.5 Short lifetime

To avoid revocation altogether it is possible to just use very soon expiration dates and
therefore give a certificate a really short lifetime. If every certificate is good for an hour,
an attacker would only have an hour to hack it and when something wrong happens,
a certificate would just be accepted for that hour. There are no additional CPU costs or
additional bandwidth in the verification process for the client needed, but the certificate
owner would have to generate new certificates quite often and let them being signed by a

18

4.1 Revocation of certificates

CA.
One disadvantage is the cost of producing the certificates. A CA usually generates a new
certificate for a car every year or even less and would then have to provide a renewed
certificate every hour, which will result in heavy load. Also the client would have to
generate many private keys, which is quite costly. This can be avoided when the client
uses the same private key and just requests a new certificate from the CA.
The main problem is that cars could stay for a long time in a multi-storey without an in-
ternet connection and therefore it would not be able to get a new certificate if it has no
internet connection for 6 months. Therefore a car would need to have multiple certificates
in advance, especially with different private keys (otherwise it would not make a differ-
ence to a certificate with a longer lifetime. This would mean that it would need much
more memory, because it needs to store multiple certificates (e.g. 365 certificates with a
lifetime of one day). [Gut]
[MR01]
This approach can also be combined with other approaches, by not only differentiating
between valid until revoked or expired. We would have three stages for a certificate:
guaranteed valid (for a short period of time), valid until revoked (for the rest of the time)
until it is expired. [Koc98]

4.1.6 Comparison

Over all it becomes clear that additional bandwidth or CPU usage can arise in different
moments, depending on the method. Therefore the choice of the revocation mechanism
has to be fitted to the purpose of the system, to minimize the additional costs. The deci-
sion can be based on a number of factors, e.g. the probability of a certificate being revoked,
the amount of existing certificates, the infrastructure of the CA, the amount of computa-
tional power that is available and the size of the window between revocation and the time
when no one accepts the certificate any more. Especially the last point can make quite a
huge difference: In an example the certificate could be valid for 365 days, therefore if it
shall be revoked within a day, with Novomodo up to 365 hashes would have to be calcu-
lated. If it shall be revoked within a week, only up to 52 hashes are necessary and a lot of
computation can be saved.
To give a brief overview over the different methods, we created two tables that are in the
following pages. We used symbols like ⊕ (good), } (not so good), 	 (bad) to illustrate
the different areas of interest. The second table gives are more detailed look with short
explanations.
Security-wise all the methods can be configured in a way that they suit the needs. There-
fore the size of the window for an attack can be influenced by the configuration.

19

4 PKI Challenges

concept
validator
effort
general

validator
effortat
verification

bandw
idth

(general)
bandw

idth
atvalidation

m
em

ory
for

validator
effort
for

C
A

Internet
connection
atvalidation

C
R

L
}

	
	

⊕
a

	
}

N
o

b

C
R

T
⊕

}
⊕

}
⊕

}
Yes

c

O
C

SP
⊕

}
⊕

	
⊕

	
Yes

N
ovom

odo
⊕

}
⊕

}
⊕

⊕
Yes

d

Shortlifetim
e

}
e

⊕
	

⊕
}

	
N

o

Table
4.1:Briefrevocation

m
ethod

overview

⊕
good,}

notso
good,	

bad
aN

othing
needs

to
be

fetched,ifthe
C

R
L

is
already

in
the

m
em

ory
bIfthe

C
R

L
has

already
been

dow
nloaded

atanother
tim

e
and

is
being

held
up

to
date

cThe
clientthatw

ants
to

be
authenticated

can
send

the
C

R
T

values,therefore
a

connection
to

another
server

is
notalw

ays
necessary

dThe
clientthatw

ants
to

be
authenticated

can
send

the
hash

value,therefore
a

connection
to

another
server

is
notalw

ays
necessary

eItcould
be

m
ore

ifthe
clientgenerates

a
new

keypair
for

every
new

certificate

20

4.1 Revocation of certificates
co

nc
ep

t
va

lid
at

or
ef

-
fo

rt
ge

ne
ra

l

va
lid

at
or

ef
-

fo
rt

at
va

li-
da

ti
on

ba
nd

w
id

th
(g

en
er

al
)

ba
nd

w
id

th
at

va
lid

at
io

n
m

em
or

y
fo

r
va

lid
at

or
ef

fo
rt

fo
r

C
A

in
te

rn
et

co
nn

ec
ti

on
at

va
lid

at
io

n

C
R

L
K

ee
p

C
R

Ls
up

to
da

te
Se

ar
ch

in
C

R
L

K
ee

p
C

R
Ls

up
to

da
te

N
ot

hi
ng

,
if

C
R

L
in

th
e

m
em

or
y

Th
e

C
R

Ls
Th

e
C

A
ha

s
to

pr
ov

id
e

a
C

R
L

N
o,

if
C

R
L

in
th

e
m

em
or

y

C
R

T
N

ot
hi

ng
ne

ed
s

to
be

pr
ec

om
-

pu
te

d

Th
e

ha
sh

es
fo

r
th

e
C

R
T

an
d

th
e

ro
ot

si
gn

at
ur

e

N
ot

hi
ng

ha
s

to
be

fe
tc

he
d

re
gu

la
rl

y

H
as

he
s,

lo
ga

ri
th

m
ic

to
am

ou
nt

of
re

vo
ke

d
ce

rt
ifi

ca
te

s

N
ot

hi
ng

ne
ed

s
to

be
st

or
ed

ad
di

ti
on

al
ly

Pr
ov

id
e

th
e

ha
sh

es

Ye
s,

if
th

e
cl

ie
nt

do
es

n’
ti

t

O
C

SP
N

ot
hi

ng
ne

ed
s

to
be

pr
ec

om
-

pu
te

d

Si
gn

at
ur

e
of

th
e

O
C

SP
re

-
sp

on
se

N
ot

hi
ng

ha
s

to
be

fe
tc

he
d

re
gu

la
rl

y

C
er

ti
fic

at
e

to
O

C
SP

se
rv

er
an

d
th

e
re

-
sp

on
se

N
ot

hi
ng

ne
ed

s
to

be
st

or
ed

ad
di

ti
on

al
ly

Th
e

C
A

ha
s

to
ha

nd
le

th
e

re
qu

es
ts

Ye
s

N
ov

om
od

o
N

ot
hi

ng
ne

ed
s

to
be

pr
ec

om
-

pu
te

d

O
nl

y
ha

sh
es

N
ot

hi
ng

ha
s

to
be

fe
tc

he
d

re
gu

la
rl

y
16

0-
bi

ts
N

ot
hi

ng
ne

ed
s

to
be

st
or

ed
ad

di
ti

on
al

ly

Th
e

C
A

ju
st

ha
s

to
ca

lc
u-

la
te

ha
sh

es

Ye
s,

if
th

e
cl

ie
nt

do
es

n’
t

se
nd

it

Sh
or

tl
if

et
im

e
N

ew
ce

rt
ifi

-
ca

te
s

ha
ve

to
be

re
qu

es
te

d
qu

it
e

of
te

n
a

N
ot

hi
ng

ne
ed

s
to

be
ca

lc
ul

at
ed

ad
di

ti
on

al
ly

Th
e

ne
w

ce
r-

ti
fic

at
es

ha
ve

to
be

se
nd

to
th

e
C

A

N
ot

hi
ng

ne
ed

s
to

be
fe

tc
he

d

M
ul

ti
pl

e
ce

r-
ti

fic
at

es
ha

ve
to

be
st

or
ed

Th
e

C
A

ha
s

to
si

gn
ne

w
ce

rt
ifi

ca
te

s
qu

it
e

of
te

n

N
o

Ta
bl

e
4.

2:
R

ev
oc

at
io

n
m

et
ho

d
ov

er
vi

ew

a O
r

ev
en

ne
w

ke
yp

ai
rs

w
ou

ld
ha

ve
to

be
cr

ea
te

d

21

4 PKI Challenges

4.2 Compromise of the private key

When an attacker is able to retrieve the private key of a valid certificate, the foundation of
the security of asymmetric encryption breaks down. The attacker is then able to create a
signature for any message, which usually means that there is no possibility to distinguish
between the attacker and the legitimate owner of the private key. Of course the certificate
for this private key has to be revoked then, which will be topic in the section revocation.
We will describe the consequences in the following sections.

4.2.1 Perspective car

The attacker can now behave like a car and the manufacturer cannot separate between the
two. Therefore it will be quite challenging for the car to renew the certificate, because both
of them could request a new one and the manufacturer cannot decide which one should
receive a new certificate. A second certificate (e.g. an expired one or better a second valid
certificate as a fail safe method) could be helpful in that case. The attacker would have to
hack two certificates to produce this dilemma, which is significantly more unlikely.

Another possibility would be that the car receives the information that it has to go to a
work shop. At that place is a secure connection to the manufacturer and the car could ob-
tain a new certificate, but this could become expensive, if many cars have to go to service.

4.2.2 Perspective CA

Another side is the loss of a trusted CA. This means that an attacker gains control over the
private key of a CA and is therefore able to sign certificates that would be trusted by other
cars. We have to divide between two different cases:

If the time of the attack is clear and the reaction is quick, this isn’t a huge problem: All
cars that had valid certificates before that time will get a new one from a different CA and
all requests with certificates that were created after the attack are most likely the attacker.

In the case that the time of the attack isn’t clear, all cars that have a certificate of the hacked
CA need to receive new certificates, because it is not possible to distinguish between a
certificate that has been signed legitimately or by the attacker. In this case all affected cars
would probably have to go to a work shop.

Of course this isn’t binary, which means that the time could be known roughly, so there
would be a specific time zone in which the ownership of the certificates would be unclear
and therefore only a few cars would need a secure channel.

22

4.3 Distribution of certificates

4.3 Distribution of certificates

In the most common use of certificates, the encryption of the web (websites), certificates
are issued after the party that needs one has proved its identity. This can be a simple
check, like adding a special code by the choosing of the CA to the website and therefore
proving ownership or even more checks e.g. the address. The CA can then be sure that
the party that wants the certificate really owns the website and it will sign the certificate
signing request. This method is being used for the initial setup and also in advance before
a certificate expires.
In the automotive world, a car cannot prove that it is a car and therefore the certificates
have to get to the car in a different manner. The initial setup is quite simple: When the
computer is being produced, the manufacturer can add an valid certificate to it, but the
certificate cannot be renewed in that way, because no one wants to exchange parts every
few years from their car. Therefore the car itself has to communicate with the manufac-
turer and request a new certificate. It can prove the identity with the old certificate and
the CA can then sign the new one.
In case that the certificate has been revoked in the meantime, it can of course not be used
as prove of identity and therefore the certificate would have to be renewed by a work
shop, which has a secure connection to the manufacturer and is trusted.

23

5 Benchmark

Manufacturers try to minimize the costs for the car production to maximize their profit
and therefore only what is needed will be added. This means that cars do not have as
much computational power as a desktop computer, because the computers have to be as
small as possible and should be energy efficient. Therefore it is important to take a look
on the performance of the cryptographic functions that will be needed for a PKI with cars.
To do this we compared two different libraries in C, which provide the cryptographic
functions we need. C is the common language that is being used for car-software, because
it is on a low abstraction level and doesn’t need a huge operating system or a runtime that
costs resources. We chose the most common library openssl and a library for embedded
systems wolfssl. To simulate the embedded environment, we used a Raspberry Pi 2B
which runs on a 900MHz quad-core ARM Cortex-A7 CPU.

5.1 Building the libraries

The Raspberry Pi runs with a Raspbian OS, which is based on Debian and therefore on
Linux and UNIX.
To be able to use the openssl library, we just had to install the libssl-dev package, it comes
with all the functions we need and was already pre-installed. We wanted to use it as a
reference for wolfssl and didn’t try to modify it.

1 apt-get install libssl-dev

wolfssl on the other hand could be compiled to fit the system perfectly and had to be
configured to include all functions that we need.6

1 ./configure --enable-fasthugemath --enable-keygen --enable-certgen

2 --enable-certreq --enable-harden --enable-hkdf --enable-eccencrypt

3 --enable-testcert --enable-sp

4 make check

5 sudo make install

enable-fasthugemath: Enables the use of faster math operations.
enable-keygen: Allows us to generate new keys and not only use existing ones.
enable-certgen: Allows us to generate new certificates.

6using the GNU toolchain with GNU make

25

5 Benchmark

enable-certreq: Allows us to generate certificate signing requests.

enable-harden: Prevents timing attacks.

enable-hkdf: Allows us to use hash functions.

enable-eccencrypt: Allows us to use elliptic curve cryptography.

enable-testcert: Allows us to decode existing certificates.

enable-sp: Uses single precision math, which makes the calculation faster on the Rasp-
berry Pi.

5.2 Generating data

As we have the libraries now available, we need to collect the data. To get accurate data,
we will run every scenario that we want to benchmark for 1000 times and calculate the
best, worst and average time. We do this to balance inaccuracy of the measurement and
prevent that a single measuring could lead to a incorrect result.

We cannot use the system clock to get accurate time, because it communicates with a
timeserver and can therefore make little time-jumps and ruin the data. Instead there are
two possible options: Tick counting and monotonic clock. The C program itself always
knows the amount of ticks7 that have passed by since the start of it and therefore we could
use this data to calculate the difference between the start and the end of each test and then
divide it by the amount of ticks that pass by per second. The other possibility is to use the
monotonic clock with clock_gettime. This has nanosecond precision and does not do any
time-jumps. Therefore we decided to use the second possibility.

We can then calculate the difference in nanoseconds and seconds and therefore get the
amount of microseconds that have passed by.

1 struct timespec startTime, endTime;

2 clock_gettime(CLOCK_MONOTONIC, &startTime);

3 //Calculations here

4 clock_gettime(CLOCK_MONOTONIC, &endTime);

5 long time = (endTime.tv_nsec-startTime.tv_nsec)/1000

6 + (endTime.tv_sec-startTime.tv_sec)*1000000; //micsec

5.3 Scenarios

We then used the APIs to benchmark multiple scenarios.

7processor clock cycles

26

5.3 Scenarios

5.3.1 ECC-Key generation

When a car renews its certificate, it should create a new keypair, because if an attacker is
trying to guess the key, the attacker would have to begin again.

wolfssl: wolfssl has the data structure ecc_key, which saves the private and public key
and the init function allocates memory for it. Additionally we need a RNG (random num-
ber generator), which is being needed for the generation of a new key. This has also be
initialized to allocate memory and to get some pseudorandom data. We can then generate
a key of 32 byte length.

1 ecc_key key;

2 RNG rng;

3

4 wc_InitRng(&rng);

5 wc_ecc_init(&key);

6

7 wc_ecc_make_key(&rng, 32, &key);

openssl: In openssl the private EC_KEY and public key EV P_PKEY are separate data
structures and we don’t need a RNG explicitly. Wolfssl give more responsibility to the
developer by expecting a RNG, but openssl integrated the random number generation in
the software to lighten the load of the developers. We then use the secp256r1 curve, which
has 256 bits (32 bytes) and is the implementation of NIST P-256. It is a common curve that
is recommended by the US department NIST and therefore suggest itself as a reference.

1 EVP_PKEY * pkey;

2 pkey = EVP_PKEY_new();

3 EC_KEY *key;

4

5 key = EC_KEY_new_by_curve_name(NID_secp256r1);

6

7 EVP_PKEY_assign_EC_KEY(pkey, key);

27

5 Benchmark

best average worst
0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

2,253 2,315 2,713

7,256 7,623

14,275

ti
m

e
in

m
ic

se
c

wolfssl openssl

Wolfssl can generate three keypairs in the time that openssl needs to generate one and the
worst case for openssl needs 97% more time than the best case, but it doesn’t affect the
average case much. Therefore the worst case happens rarely.

5.3.2 ECC certificate generation

We are benchmarking the certificate generation with SHA256 as Hash and ECDSA as sig-
nature algorithm. This means that the library calculates the hash of the certificate and
encrypts it with ECDSA with the private key of the signature.

wolfssl: To prepare the benchmark we loaded a certificate into derBuf to use this as a CA
certificate. We then create a new certificate, add some data and sign it. As a signature
algorithm we use CTC_SHA256wECDSA.

Before the certificate can be created, the issuer buffer has to be set to make clear which
entity issued the certificate.

At the end we have an unsigned certificate.

1 Cert newCert;

2 wc_InitCert(&newCert);

3

4 strncpy(newCert.subject.commonName, "A car manufacturer", CTC_NAME_SIZE);

5 //[...] more X.509 information

6 newCert.isCA = 0;

7 newCert.sigType = CTC_SHA256wECDSA;

8

9 wc_SetIssuerBuffer(&newCert, derBuf, derBufSz);

10 wc_MakeCert(&newCert, certBuf, FOURK_SZ, NULL, &newKey, &rng);

openssl: We loaded a CA certificate in caCert before the benchmark starts and then create
a new certificate with some data which is then being signed.

28

5.3 Scenarios

We don’t need to fill the complete CA certificate into it, the function just need the name to
set the issuer correctly.

1 X509_NAME* name = NULL;

2 X509* x509;

3 x509 = X509_new();

4

5 name = X509_REQ_get_subject_name(x509_req);

6

7 ASN1_INTEGER_set(X509_get_serialNumber(x509), 1);

8 X509_gmtime_adj(X509_get_notBefore(x509), 0);

9 X509_gmtime_adj(X509_get_notAfter(x509), 31536000L);

10 X509_set_pubkey(x509, newpKey);

11

12 X509_NAME_add_entry_by_txt(name, "CN", MBSTRING_ASC,

13 (unsigned char *)"A car manufacturer", -1, -1, 0);

14 //[...] more X.509 information

15

16 X509_set_issuer_name(x509, X509_get_subject_name(caCert));

best average worst
0

150
300
450
600
750
900

1,050
1,200

127 132

488
634 647

1,177

ti
m

e
in

m
ic

se
c

wolfssl openssl

Wolfssl needs only a fifth of the time to generate a signed certificate compared to wolfssl.
Certificates are rarely generated this way in a practical manner (without a certificate sign-
ing request), but this benchmark shows that wolfssl can be fast in signing, which other
benchmarks will underline.

5.3.3 ECC certificate signing request generation

When a car needs a new certificate, it would create a certificate signing request, which is
like a certificate, but missing the signature of the CA. It does contain a signature from the
car, to protect the integrity of the data. This will then be send to the CA and the CA will
send a signed certificate back.

29

5 Benchmark

wolfssl: This one is quite similar to the certificate generation, but instead of creating a
certificate, we just create a certificate signing request and therefore don’t need to set the
issuer.

1 Cert newCert;

2 wc_InitCert(&newCert);

3

4 strncpy(newCert.subject.commonName, "A car manufacturer", CTC_NAME_SIZE);

5 //[...] more X.509 information

6

7 ret = wc_MakeCertReq(&newCert, certBuf, FOURK_SZ, NULL, &newKey);

openssl: We have to use a different data structure for the certificate signing request, but
this can be used quite similar to the one in the certificate generation.

1 X509_REQ* x509 = NULL;

2 X509_NAME* name = NULL;

3

4 x509 = X509_REQ_new();

5 ret = X509_REQ_set_version(x509, 1);

6 if (ret != 1){

7 goto fail;

8 }

9

10 name = X509_REQ_get_subject_name(x509_req);

11

12 ASN1_INTEGER_set(X509_get_serialNumber(x509), 1);

13 X509_gmtime_adj(X509_get_notBefore(x509), 0);

14 X509_gmtime_adj(X509_get_notAfter(x509), 31536000L);

15 X509_set_pubkey(x509, newpKey);

16

17 X509_NAME_add_entry_by_txt(name, "CN", MBSTRING_ASC,

18 (unsigned char *)"A car manufacturer", -1, -1, 0);

19 //[...] more X.509 information

20

21 ret = X509_REQ_set_pubkey(x509, newpKey);

30

5.3 Scenarios

best average worst
0
50

100
150
200
250
300
350
400
450
500
550
600

17 18 42

428 438

555

ti
m

e
in

m
ic

se
c

wolfssl openssl

The size of the difference between wolfssl and openssl is surprising here. Openssl needs
on average more than 25 times more time than wolfssl (420 micsec difference).

5.3.4 ECC CSR signature/certificate generation

This will be used by the CA when it receives a certificate signing request, which the CA
has to check (integrity) and sign it, to create a certificate.
wolfssl: newCert is a CSR which is then being signed by the CA.

1 newCert.sigType = CTC_SHA256wECDSA;

2 wc_SignCert(newCert.bodySz, newCert.sigType, certBuf, FOURK_SZ, NULL, &caKey, &rng);

openssl: x509 is a X509REQ which is then being signed.

1 X509_REQ_sign(x509, caKey, EVP_sha256());

best average worst
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

2,932 2,960

3,759

1,265 1,289
1,579

ti
m

e
in

m
ic

se
c

wolfssl openssl

This balances the difference between wolfssl and openssl in the CSR generation. Wolfssl
needs 1671 micsec more than openssl and therefore the overall process of CSR generation
and signing would be faster with openssl.

31

5 Benchmark

5.3.5 Verify certificate

When a communication participant receives a certificate, the validity and the chain to the
root certificate has to be verified.
wolfssl: cm is a WOLFSSL_CERT_MANAGER which has the CA certificate already
loaded. We then just have to call it and it will verify the certificate and all the certificates
in the chain.

1 wolfSSL_CertManagerVerifyBuffer(cm, certBuf, certBufSz, SSL_FILETYPE_ASN1);

openssl: ctx is a X509_STORE_CTX which has the CA and root already loaded as
trusted stack. We then just have to call it and it will verify the certificate and all the
certificates in the chain.

1 X509_verify_cert(ctx);

best average worst
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

·104

10,608 10,652
11,262

2,542 2,581
3,179

ti
m

e
in

m
ic

se
c

wolfssl openssl

Openssl can verify nearly four certificates in the time that wolfssl needs to verify one,
which could be useful for a car, because it will receive a lot of data and will need to verify
certificates quickly.

5.3.6 Extract ECC public key from certificate

When we receive a certificate we usually want the public key to encrypt data and send it.
To minimize the amount of data that is being sent, we can extract the public key from the
certificate instead of sending it additionally.
wolfssl: The usual way would be to add the openssl-compatibility layer to wolfssl and
then use the API to decode the certificate. We did not want to add this and therefore used
the testcert environment to decode the certificate.

1 DecodedCert dcert;

2 InitDecodedCert(&dcert, derBuf, derBufSz, HEAP_HINT);

32

5.3 Scenarios

3

4 ParseCert(&dcert, CERT_TYPE, NO_VERIFY, 0);

5

6 ecc_key pubKey;

7 wc_ecc_init(&pubKey);

8

9 wc_EccPublicKeyDecode(dcert.publicKey, &idx, &pubKey, dcert.pubKeySize);

openssl: The certificate that should be used is in the derBuf, we then create the certificate
and read the public key from it.

1 EVP_PKEY *pkey = NULL;

2 BIO *certbio = NULL;

3 X509 *cert = NULL;

4

5 certbio = BIO_new_mem_buf((void*)derBuf, 4096);

6

7 cert = PEM_read_bio_X509(certbio, NULL, 0, NULL);

8

9 pkey = X509_get_pubkey(cert);

best average worst
0

150
300
450
600
750
900

1,050
1,200

38 38
134

859 879

1,186

ti
m

e
in

m
ic

se
c

wolfssl openssl

As we can see, wolfssl is faster in extracting the public key than openssl. When openssl
is chosen as a library, it should be considered to send the public key additionally to the
certificate, as a trade-off of bandwidth vs. computational power.

5.3.7 ECC signature of 1024 random bits

Information does not always have to be encrypted. Data that is being broadcasted to
many other cars doesn’t need to be hidden, but there has to exist a proof of the sender and
protection of the integrity. Therefore the car has to generate a signature for the data that it
sends.

33

5 Benchmark

wolfssl: We now have a ecc_key newKey and random 1024 bits in data. We then create a
signature for this data.
The function is a general function and therefore need arguments like the hash type and
signature type.

1 unsigned int sigLen = wc_SignatureGetSize(WC_SIGNATURE_TYPE_ECC, &newKey,

2 sizeof(newKey));

3 byte* sigBuf = malloc(sigLen);

4

5 wc_SignatureGenerate(WC_HASH_TYPE_SHA256, WC_SIGNATURE_TYPE_ECC, data, len,

6 sigBuf, &sigLen, &newKey, sizeof(newKey), &rng);

openssl: newpKey contains our key and we then sign our data of 1024 random bits.
For the different signature types there are different functions and therefore this code is
way smaller than the code with wolfssl.

1 ECDSA_SIG* signature = NULL;

2 signature = ECDSA_do_sign(data, len, newpKey);

best average worst
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

·104

2,924 2,935 3,163

8,067 8,247 8,496

ti
m

e
in

m
ic

se
c

wolfssl openssl

Wolfssl doesn’t even need half the time of openssl, but we can see that it takes a long time
to generate a signature anyway.

5.3.8 Verify ECC signature of 1024 random bits

Cars will receive a lot of data from the cars around it. This data will have a signature, to
offer evidence that it has been sent by a legitimate car (or traffic light, etc.). The receiver
needs to verify the signature, to trust the data.
wolfssl: We generated a signature in advance and we will now check if the signature is
correct.

1 wc_SignatureVerify(WC_HASH_TYPE_SHA256, WC_SIGNATURE_TYPE_ECC, data, len,

34

5.3 Scenarios

2 sigBuf, sigLen, &newKey, sizeof(newKey));

openssl: We generated a signature in advance and we will now check if the signature is
correct.

1 ECDSA_do_verify(data, len, signature, newpKey)

best average worst
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

1.2

·104

10,455 10,499 11,053

8,905 9,157 9,409

ti
m

e
in

m
ic

se
c

wolfssl openssl

The verification process takes even more time than the generating process, but this time
wolfssl and openssl need about the same time.

5.3.9 SHA2-256 hashing of 256 random bits

Hashing plays a central role for Novomodo, this means that the car has to hash quite often,
to check the validity of a certificate.
wolfssl: We generate 256 Bits using the RNG and save it in data. We then initialize the
sha256 and feed it with data with the update method. Final creates the hash and resets the
sha object.

1 wc_Sha256 sha;

2

3 wc_InitSha256(&sha);

4 wc_Sha256Update(&sha, data, len);

5

6 byte hash[WC_SHA256_DIGEST_SIZE];

7 wc_Sha256Final(&sha, hash);

openssl: We see the similarities with wolfssl here very well, the functions are nearly the
same.

1 byte hash[SHA256_DIGEST_LENGTH];

2 SHA256_CTX sha;

3

35

5 Benchmark

4 SHA256_Init(&sha);

5 SHA256_Update(&sha, data, len);

6 SHA256_Final(&sha, hash);

best average worst
0

5

10

15

20

25

30

35

40

3 3

38

3 3

25

ti
m

e
in

m
ic

se
c

wolfssl openssl

Hashing is one of the fastest tasks in the benchmark and wolfssl and openssl both need
three micsec on average. There is a huge deviation to the worstcase, but it happens infre-
quently and best and average case are the same.

5.4 Conclusion

Overall we can see that the data for wolfssl and openssl usually is quite congruent: The
average case is quite near to the bestcase (1, 638% and 2, 252% deviation on average). But
the worst case takes up to 252% more time than the average case (SHA2-256 hashing of
256 random bits with wolfssl).
For Novomodo it is quite interesting to see that we can calculate 1000 hashes in the same
time that is needed for one signature and even 3000 hashes for one verification of a signa-
ture.
An interesting benchmark was the time that is needed to generate a CSR and sign it after-
wards. We could see that the CSR generation is much faster with wolfssl, but the signing
took so long that openssl was faster overall. In practical terms the CA server has more
power than the car and it would be more important to keep the load of the car low. This
means that wolfssl would probably be chosen nevertheless.
By comparing benchmarks of signing operations and verification operations, we can see
strengths of the liberaries: Wolfssl is always faster in signing, while openssl is faster in
verification and tasks that include verification, like the signing of a CSR.
In conclusion both APIs are quite similar in their function signature and it is easy to see
which functions of wolfssl have been inspired by openssl (e.g. hashing). Performance-
wise they can be quite different, which means that wolfssl can be up to 23 times faster than

36

5.4 Conclusion

openssl (average case for ECC certificate signing request generation), but openssl can be
up to 3 times faster (average case for verification of a certificate). Therefore it is important
to evaluate which tasks will be executed the most in the practical use and decide which
library suits the needs in functionality and performance best. If this is unclear in the
beginning, wolfssl would be a good choice, it is faster than openssl in 5 cases and only
slower in 3 cases. They have about the same speed in hashing.

37

6 Practical Implementation

As we have taken a look at the challenges and became familiar with the libraries, we will
now build an implementation that could be used in practice and realizes the Novomodo
concept in a practical manner. For this we will use wolfssl, because it provides a better
performance foot print for this use-case and we can compile it for different platforms and
adapt it to our needs.
We will create a protocol to let two cars communicate with each other and create a Novo-
modo server, which will provide the current hash. To give an example of the communi-
cation, we will use the protocol to let a car communicate with a software update server,
which will reply whether the current version is up to date or not.

6.1 Challenges

First we need to address the challenges that exists with PKI. This means for us that we
have to be able to revoke certificates, but the car should not have to compute a lot. We
will use Novomodo to prove the validity of the car’s certificate and a CRL8 to prove the
validity of the CA certificates. Each car manufacturer will have it’s own CA and therefore
there won’t exist that many CA certificates and a CRL suits our needs. The car will have
to check it occasionally, but a revocation of CA certificates is really unlikely and therefore
won’t create much effort for the car. We do not focus on the CRL and therefore excluded
it from our implementation.
Additionally the CA has to save the secret Novomodo values. We will use a sqlite database
in this case, as it will simplify the implementation and our focus is by the client and not
the server application. Of course a car manufacturer would choose the database more
deliberately to account for scalability and performance. Because the database doesn’t di-
rectly support binary values which are not UTF or ASCII, we used a binary-blob entry for
the hash, the random secret and the expiry date (see lines 23-28 in code listing A.9), but
we converted the serial number to a hexadecimal string to use it as a database-key.
Lastly we have to integrate the Novomodo hash in a X.509 certificate. Wolfssl doesn’t
allow to add fields and therefore we will use the e-mail-field for the hash9, because cars
don’t have an e-mail and therefore we won’t need it (see line 116 in code listing A.11).

8Certificate Revocation List
9As this is just a demonstrator. In a final product wolfssl can be adapted to change the e-mail-field into the

Novomodo-hash-field.

39

6 Practical Implementation

6.2 Communication

The next step is to think about how to secure the communication. Our focus is on au-
thentication, integrity and prevention of replay attacks. Therefore the participants have to
prove their identities by using a certificate and we will have to verify it and the provided
Novomodo hash. We also have to add information to every message which can be used to
detect modifications of the message (signature). We will also use additional information
(a salt) to prevent a replay attack, which means that an attacker can not inject packets from
a captured older communication into a new one. Lastly we will allow the participants to
encrypt their messages and therefore prevent that someone else reads them.

To authenticate themselves the participants will exchange their certificates and the hashes
in the beginning. We can extract the public key out of the certificate and we will use it
later. We then have to check the validity of the certificate (see lines 42-54 in code listing
A.6) and then validate the hash (see lines 60-71 in code listing A.6).

The challenging part was the extraction of the begin date of the certificate and use it to
calculate the hash. There is no public wolfssl API to extract the date, so a few internal
methods of wolfssl had to be modified (see lines 108-151 in code listing A.8). The next
problem was now, that that only the begin date with an internal offset could be extracted.
The begin date can than be calculated by adding an offset of 2 and the expiration date
can be extracted by adding an offset of 19. In the end we used the public API to gain
information about the date and used this with the offset to extract it as a struct tm (see
lines 71-73 in code listing A.8).

Now we have checked the certificates and have the public key of the other participant and
therefore need to exchange salts. We used the wolfssl API for that and did the exchange
via plain message (see lines 131-156 in code listing A.7). A man in the middle attacker
could submit a ”bad” salt, but the sender of the salt would notice that a wrong salt has
been used in the reply.

From now on we are able to encrypt the message with the wolfssl API. We just have to
make sure that it has the correct padding (length has to be a multiple of 16, see lines 297-
310 in code listing A.7). Because the encryption with just the public key is quite expensive,
we are using our private key and the public key of the other participant to create a shared
secret (see section 2.2.3). This will then be used for symmetric AES-128-CBC encryption.

To secure the message from modifications, we then apply HMAC-SHA256 with the shared
secret on the message, concatenated with the salt. Therefore an attacker will not be able to
to create the HMAC (because of the secret) and it will be different for every new commu-
nication (because of the salt). This means that we can prevent replay attacks and we will
notice when the data has been modified.

40

6.3 Architecture

We will then send the message with the HMAC (see lines 143-144 in code listing A.2). The
recipient then just has to check the HMAC and decrypt the message (see lines 160-161 in
code listing A.2). [Ous13]

6.3 Architecture

In our example we will need three certificates: One for the root, which acts as a CA, one
for the car and another one for the software update server. Therefore we created scripts,
that create these certificates, sign them and add the hash to the database (see lines 84-124,
186-211 code listing A.11). We separated repetitive tasks like hashing, extracting the date,
writing to database into different files and created a function for each task.
We also created three other runnable files. Firstly the Novomodo server which runs end-
lessly and listens for new requests for the hash. Additionally the software update server
which listens for incoming connections endlessly as well. The third one is the automotive
client, which can communicate with either the Novomodo server or the software update
server (see A.1 for an example of the console output).

6.4 Conclusion

In the end the API of wolfssl reached its limit in multiple points, but we were able to
overcome these drawbacks and extract or put in the information that we needed anyway.
The most difficult part was the juggling with pointer (or pointers of pointers) and to use
the offset for the methods in the correct way. It can happen quickly that a mistake arises
by using pointers, which can then lead to a security problem in the software. These are
both topics that someone, who would develop the code further, needs to have in mind. It
would also be useful to expand the wolfssl API to allow the addition of more fields to a
certificate and to create methods that do not need an offset.

41

7 Conclusion

7.1 Summary

In this thesis we have taken a look at already existing standards for the car2car and
car2authority world, as well as standards in similar environments. We then compared
them briefly and highlighted the main ideas. We also stated the reasons why other envi-
ronments are quite similar and showed the differences.

Furthermore we have taken a look at different challenges that someone who builds a PKI
has to be aware of. We had a look at the revocation of certificates in detail and compared
several ways which solve the problem. In this manner we noted that for cars the most
efficient ways are certificates with a short lifespan or Novomodo.

After that we created a benchmark to compare the crypto libraries wolfssl and openssl in
an embedded environment. We therefore used a Raspberry Pi and performed operations
that will be needed in the context of a PKI. Therefore we had 9 comparisons, including the
hashing for Novomodo. We learned that hashing is faster to a factor of 1000-3000 com-
pared to signing or verifying a signature. This emphasized the advantage of Novomodo
compared to certificate revocation lists furthermore.

To proof that Novomodo can work in practice, we implemented a small infrastructure
with two communication participants and one Novomodo server. We experienced that
it can be quite challenging to adapt a library to special needs and therefore uncommon
solutions can be needed.

All in all it became clear that there is not the one perfect solution to implement a Public-
Key Infrastructure, rather decisions depend highly on the application and the most com-
mon operations that will be used. Therefore in the car background it is important to choose
the best fitting library to optimize performance and to avoid certificate revocation lists to
be able to communicate with many other participants.

7.2 Discussion and open problems

To continue the development of the practical implementation, the architecture could be
expanded. This means, that one or multiple CAs could be integrated in the hierarchy and
a server that distributes updated certificates could be created.

43

7 Conclusion

The servers could also be expanded to support multithreading and therefore to serve
multiple cars at once. This could then be used to benchmark the communication and to
examine how many requests per second can be answered.

A problem that we have not looked into is the privacy. To prevent that an attacker can
track cars and therefore knows if a car is at home or somewhere else and which route it
is currently driving, it will be important to anonymise the certificates. This is a challenge
that could be looked into furthermore.

44

References

[74216] Ieee standard for wireless access in vehicular environments–security services
for applications and management messages. IEEE Std 1609.2-2016 (Revision of
IEEE Std 1609.2-2013), pages 1–240, March 2016.

[ccc07] car 2 car consortium. Car 2 car communication consortium manifesto. Technical
report, 08 2007.

[CSF+08] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Inter-
net x.509 public key infrastructure certificate and certificate revocation list (crl)
profile. RFC 5280, RFC Editor, May 2008. https://tools.ietf.org/html/
rfc5280.

[DH76] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. on
Info. Theory, IT-22:644–654, 11 1976.

[fSidI17] Bundesamt fuer Sicherheit in der Informationstechnik. Technische richtlinie.
Smart Metering PKI - Public Key Infrastructure fuer Smart Meter Gateways, 08 2017.

[Gen03] Craig Gentry. Certificate-based encryption and the certificate revocation prob-
lem. In Eli Biham, editor, Advances in Cryptology — EUROCRYPT 2003, pages
272–293, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[Gut] Peter Gutmann. Pki: It’s not dead, just resting.

[HMV04] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic Curve
Cryptography (Springer Professional Computing). Springer, 2004.

[Kar09] Frank Kargl. Secure vehicle communication baseline security specification.
Technical report, European Commission, 04 2009.

[KAS08] Vivek Kapoor, Vivek Sonny Abraham, and Ramesh Singh. Elliptic curve cryp-
tography. Ubiquity, 2008(May):7:1–7:8, May 2008.

[KBC97] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. Hmac: Keyed-hashing for
message authentication. RFC 2104, RFC Editor, February 1997. https:

//tools.ietf.org/html/rfc2104.

45

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104

References

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chap-
man & Hall/Crc Cryptography and Network Security Series). Chapman & Hal-
l/CRC, 2007.

[Koc98] Paul C. Kocher. On certificate revocation and validation. In Rafael Hirchfeld,
editor, Financial Cryptography, pages 172–177, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

[MR01] Patrick McDaniel and Aviel Rubin. A response to “can we eliminate certificate
revocation lists?”. In Yair Frankel, editor, Financial Cryptography, pages 245–258,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[Ous13] Todd A Ouska. wolfssl btle secure message exchange. Technical report, wolfSSL
Inc., 01 2013.

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. Information authentication:
Hash functions and digital signatures. In Bart Preneel, René Govaerts, and Joos
Vandewalle, editors, Computer Security and Industrial Cryptography, pages 87–
131, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[PP10a] Christof Paar and Jan Pelzl. Introduction to Public-Key Cryptography, pages 149–
171. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[PP10b] Christof Paar and Jan Pelzl. Key Establishment, pages 331–357. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[rCS94] D. Eastlake 3rd, S. Crocker, and J. Schiller. Randomness recommendations for
security. RFC 1750, RFC Editor, December 1994. https://tools.ietf.org/
html/rfc1750.

[Vau06] Serge Vaudenay. A Classical Introduction to Cryptography - Applications for Com-
munications Security. Springer Science & Business Media, Berlin Heidelberg,
2006.

[Wei11] Andre Weimerskirch. V2x security & privacy: The current state and its future.
Proceedings 18th ITS World Congress, 10 2011.

[Wei17] Andre Weimerskirch. V2x security and privacy. In SANS - Automotive Cyberse-
curity, 05 2017.

46

https://tools.ietf.org/html/rfc1750
https://tools.ietf.org/html/rfc1750

A Practical Implementation

A.1 Output

We startet the novomodo-server first, then the software update server and lastly the auto-
motive client. We are only printing the first 16 bytes of the hash.
Novomodo-Server:

1 Server starting

2 Waiting for connection...

3 Receiving a connection...

4 Sending hash: 271987F1541CF48A423343F7CE5D75444A4EACFF8BC071CA06E9F55C795FCA08

5

6 Waiting for connection...

7 Receiving a connection...

8 Sending hash: FD619BCCEDA6442CD0945D48D87472717FE1DF2B40ABD0400CDD2A3ACD6577A0

9

10 Waiting for connection...

Software-Update-Server

1 Current hash: 271987F1541CF48A423343F7CE5D75444A4EACFF8BC071CA06E9F55C795FCA08

2 Waiting for connection...

3 Receiving a connection...

4 Client certificate successfully verified!

5 Exchanging salts...

6 Version is up to date: 1

7

8 Waiting for connection...

Automotive-Client

1 Current hash: FD619BCCEDA6442CD0945D48D87472717FE1DF2B40ABD0400CDD2A3ACD6577A0

2 0: Check for software update

3 1: Get current Novomodo hash

4 Please choose a number: 0

5

6 Check for software update

7 0: Send current version

8 1: Send older version

9 Please choose a number: 0

10

47

A Practical Implementation

11 Creating a connection...

12 Server certificate successfully verified!

13 Exchanging salts...

14 Version ok

15

16 0: Check for software update

17 1: Get current Novomodo hash

18 Please choose a number:

A.2 automotive-client.c

1 #include <stdio.h>

2 #include <wolfssl/options.h>

3 #include <wolfssl/wolfcrypt/settings.h>

4 #include <wolfssl/wolfcrypt/ecc.h>

5 #include <wolfssl/ssl.h>

6 #include <wolfssl/wolfcrypt/signature.h>

7 #include <wolfssl/wolfcrypt/asn_public.h>

8 #include <wolfssl/wolfcrypt/asn.h>

9 #include <wolfssl/wolfcrypt/error-crypt.h>

10 #include <wolfssl/wolfcrypt/sha512.h>

11

12 #include "connection-worker.h"

13 #include "hasher.h"

14 #include "certificate-manager.h"

15

16 #define HEAP_HINT NULL

17 #define KEY_SZ 2048

18 #define FOURK_SZ 4096

19

20 int speakToSoftwareUpdateServer(byte* derBuf, char version);

21

22 byte* hash;

23

24 /*
25 Can fetch Novomodo hash and check for software update

26 */

27 int main(int argc, char const *argv[]) {

28 hash = NULL;

29

30 byte* derBuf = NULL;

31 int derBufSz = loadAutomotiveCert(&derBuf);

32

33 byte* rootBuf = NULL;

48

A.2 automotive-client.c

34 int rootBufSz = loadRootCert(&rootBuf);

35

36 hash = malloc(32);

37 fetchCurrentHash(0, "127.0.0.1", &hash, derBuf, derBufSz, rootBuf, rootBufSz);

38

39 while (1) {

40 char choice, temp;

41

42 printf(" 0: Check for software update\n");

43 printf(" 1: Get current Novomodo hash\n");

44 printf(" Please choose a number: ");

45

46 scanf("%c%c", &choice, &temp);

47

48 printf("\n");

49

50 if (choice == ’0’) {

51 char version;

52

53 printf("Check for software update\n");

54 printf("0: Send current version\n");

55 printf("1: Send older version\n");

56 printf("Please choose a number: ");

57 scanf("%c%c", &version, &temp);

58 printf("\n");

59

60 if (version == ’0’) {

61 speakToSoftwareUpdateServer(derBuf, ’1’);

62 } else if (version == ’1’) {

63 speakToSoftwareUpdateServer(derBuf, ’0’);

64 } else {

65 printf("Invalid! \n");

66 }

67 } else if (choice == ’1’) {

68 printf("Get current Novomodo hash\n");

69 fetchCurrentHash(0, "127.0.0.1", &hash, derBuf, derBufSz,

70 rootBuf, rootBufSz);

71 } else {

72 printf("Invalid! \n");

73 }

74

75 printf("\n");

76 }

77

78 if (hash != NULL) free(hash);

79 if (derBuf != NULL) free(derBuf);

49

A Practical Implementation

80 if (rootBuf != NULL) free(rootBuf);

81 return 0;

82 }

83

84 /*
85 Establishes a secure connection with the SoftWareUpdateServer and checks

86 wether software is up to date

87 */

88 int speakToSoftwareUpdateServer(byte* derBuf, char version) {

89 int ret;

90 WC_RNG rng;

91 ecEncCtx* cliCtx = NULL;

92 const byte* mySalt;

93 byte peerSalt[EXCHANGE_SALT_SZ];

94 //byte peerSalt[EXCHANGE_SALT_SZ];

95 byte plain[16];

96 byte buffer[sizeof(plain) + 32]; //Adding digest size

97 word32 bufferSz = sizeof(buffer);;

98 word32 plainSz;

99 ecc_key myKey, peerKey;

100 int sock = 0;

101 byte* rootBuf = NULL;

102 byte* peerBuf = malloc(FOURK_SZ);

103

104 wolfSSL_Init();

105

106 /* make my session key */

107 ret = wc_ecc_init(&myKey);

108 ret |= wc_ecc_init(&peerKey);

109 if (ret != 0) {

110 printf("wc_ecc_init failed!\n");

111 goto cleanup;

112 }

113

114 ret = wc_InitRng(&rng);

115 if (ret != 0) {

116 printf("wc_InitRng failed! %d\n", ret);

117 goto cleanup;

118 }

119

120 //Load root certificate

121 int rootBufSz = loadRootCert(&rootBuf);

122

123 //Load my key

124 loadAutomotiveKey(&myKey);

125

50

A.2 automotive-client.c

126 printf("Creating a connection...\n");

127

128 //Establish connection

129 ret = openConnectionAsClient(&sock, "127.0.0.1", rng, rootBuf, rootBufSz,

130 derBuf, peerBuf, &peerKey, hash, &cliCtx);

131 if(ret != 1) goto cleanup;

132

133 //Exchange salts

134 ret = clientSideSaltExchange(&mySalt, peerSalt, sock, cliCtx);

135 if (ret != 1) goto cleanup;

136

137 /* get message to send */

138 plainSz = sizeof(plain);

139 strcpy((char*)plain, &version); //current version is 1

140 plainSz = strlen((char*)plain);

141 msg_pad(plain, &plainSz);

142

143 /* Encrypt message */

144 ret = wc_ecc_encrypt(&myKey, &peerKey, plain, sizeof(plain), buffer,

145 &bufferSz, cliCtx);

146 if (ret != 0) {

147 printf("wc_ecc_encrypt failed %d!\n", ret);

148 goto cleanup;

149 }

150

151 /* Send message */

152 send(sock, buffer, bufferSz, 0);

153

154 /* Get message */

155 bufferSz = sizeof(buffer);

156 ret = read(sock, buffer, bufferSz);

157

158 /* Decrypt message */

159 bufferSz = ret;

160 plainSz = sizeof(plain);

161 ret = wc_ecc_decrypt(&myKey, &peerKey, buffer, bufferSz,

162 plain, &plainSz, cliCtx);

163 if (ret != 0) {

164 printf("wc_ecc_decrypt failed %d!\n", ret);

165 goto cleanup;

166 }

167

168 if(plain[0] == ’1’) {

169 printf("Version ok\n");

170 } else {

171 printf("Update neccessary\n");

51

A Practical Implementation

172 }

173

174 /* reset context (reset my salt) */

175 ret = wc_ecc_ctx_reset(cliCtx, &rng);

176 if (ret != 0) {

177 printf("wc_ecc_ctx_reset failed %d\n", ret);

178 goto cleanup;

179 }

180

181 cleanup:

182 if (peerBuf != NULL) free(peerBuf);

183 if (peerBuf != NULL) free(rootBuf);

184

185 wc_ecc_free(&myKey);

186 wc_ecc_free(&peerKey);

187 wc_FreeRng(&rng);

188

189 wolfSSL_Cleanup();

190 return ret;

191 }

A.3 novmodo-server.c

1 #include <stdio.h>

2 #include <sqlite3.h>

3

4 #include <wolfssl/options.h>

5 #include <wolfssl/wolfcrypt/settings.h>

6 #include <wolfssl/wolfcrypt/ecc.h>

7 #include <wolfssl/ssl.h>

8 #include <wolfssl/wolfcrypt/signature.h>

9 #include <wolfssl/wolfcrypt/asn_public.h>

10 #include <wolfssl/wolfcrypt/asn.h>

11 #include <wolfssl/wolfcrypt/error-crypt.h>

12 #include <wolfssl/wolfcrypt/sha512.h>

13

14 #include "connection-worker.h"

15 #include "sqlite-worker.h"

16 #include "hasher.h"

17

18 #define HEAP_HINT NULL

19 #define KEY_SZ 2048

20 #define FOURK_SZ 4096

21 #define PORT 8080

52

A.3 novmodo-server.c

22

23 /*
24 Answers requests for the current novomodo hash of a certificate

25 */

26 int main(int argc, char const *argv[]) {

27 printf("Server starting\n");

28 int server_fd, new_socket, ret;

29 WC_RNG rng;

30 struct sockaddr_in address;

31 int opt = 1;

32 int addrlen = sizeof(address);

33 byte* peerBuf = malloc(FOURK_SZ);

34 byte* hash = malloc(32);

35

36 wolfSSL_Init();

37

38 ret = wc_InitRng(&rng);

39 if (ret != 0) {

40 printf("wc_InitRng failed! %d\n", ret);

41 return -1;

42 }

43

44 if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0)

45 {

46 perror("socket failed");

47 exit(EXIT_FAILURE);

48 }

49

50 // Forcefully attaching socket to the port 8080

51 if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR /*| SO_REUSEPORT*/,

52 &opt, sizeof(opt)))

53 {

54 perror("setsockopt");

55 exit(EXIT_FAILURE);

56 }

57 address.sin_family = AF_INET;

58 address.sin_addr.s_addr = INADDR_ANY;

59 address.sin_port = htons(PORT);

60

61 // Forcefully attaching socket to the port 8080

62 if (bind(server_fd, (struct sockaddr *)&address, sizeof(address))<0) {

63 perror("bind failed");

64 exit(EXIT_FAILURE);

65 }

66 if (listen(server_fd, 3) < 0) {

67 perror("listen");

53

A Practical Implementation

68 exit(EXIT_FAILURE);

69 }

70

71 while (1) {

72 printf("Waiting for connection...\n");

73

74 if ((new_socket = accept(server_fd, (struct sockaddr *)&address,

75 (socklen_t*)&addrlen))<0) {

76 perror("accept");

77 exit(EXIT_FAILURE);

78 }

79

80 printf("Receiving a connection...\n");

81

82 //Receive certificate

83 ret = read(new_socket, peerBuf, FOURK_SZ);

84

85 //Create structure for certificate

86 DecodedCert dcert;

87 InitDecodedCert(&dcert, peerBuf, FOURK_SZ, HEAP_HINT);

88

89 //Decode Certificate from the previously set buffer

90 ret = ParseCert(&dcert, CERT_TYPE, NO_VERIFY, 0);

91 if (ret != 0) return 0;

92

93 sqlite3 *db;

94 openDatabase(&db);

95 ret = getCurrentHash(db, &dcert, &hash);

96 closeDatabase(db);

97

98 printf("Sending hash: ");

99 printByteAsHexa(hash);

100

101 /* Send hash */

102 send(new_socket, hash, 32, 0);

103

104 printf("\n");

105

106 FreeDecodedCert(&dcert);

107 }

108

109 return 0;

110 }

54

A.4 software-update-server.c

A.4 software-update-server.c

1 // Server side C/C++ program to demonstrate Socket programming

2 #include <stdio.h>

3 #include <sqlite3.h>

4

5 #include <wolfssl/options.h>

6 #include <wolfssl/wolfcrypt/settings.h>

7 #include <wolfssl/wolfcrypt/ecc.h>

8 #include <wolfssl/ssl.h>

9 #include <wolfssl/wolfcrypt/signature.h>

10 #include <wolfssl/wolfcrypt/asn_public.h>

11 #include <wolfssl/wolfcrypt/asn.h>

12 #include <wolfssl/wolfcrypt/error-crypt.h>

13 #include <wolfssl/wolfcrypt/sha512.h>

14

15 #include <unistd.h>

16 #include <sys/socket.h>

17 #include <stdlib.h>

18 #include <netinet/in.h>

19 #include <string.h>

20

21 #include "connection-worker.h"

22 #include "certificate-manager.h"

23

24 #define HEAP_HINT NULL

25 #define FOURK_SZ 4096

26 #define PORT 8081

27

28 /*
29 Answers the request if the version is still up to date

30 */

31 int main(int argc, char const *argv[]) {

32 int server_fd, new_socket, ret;

33 WC_RNG rng;

34 ecEncCtx* srvCtx = NULL;

35 const byte* mySalt;

36 byte peerSalt[EXCHANGE_SALT_SZ];

37 word32 bufferSz;

38 word32 plainSz;

39 ecc_key myKey, peerKey;

40 struct sockaddr_in address;

41 int opt = 1;

42 int addrlen = sizeof(address);

43 byte* derBuf = malloc(FOURK_SZ);

44 byte* peerBuf = malloc(FOURK_SZ);

55

A Practical Implementation

45 byte* hash = malloc(32);

46

47 wolfSSL_Init();

48

49 /* make my session key */

50 ret = wc_ecc_init(&myKey);

51 ret |= wc_ecc_init(&peerKey);

52 if (ret != 0) {

53 printf("wc_ecc_init failed!\n");

54 return -1;

55 }

56

57 ret = wc_InitRng(&rng);

58 if (ret != 0) {

59 printf("wc_InitRng failed! %d\n", ret);

60 return -1;

61 }

62

63 //Load root certificate

64 byte* rootBuf;

65 int rootBufSz = loadRootCert(&rootBuf);

66

67 //Load my key

68 loadSoftwareUpdateKey(&myKey);

69

70 //Load my certificate

71 int derBufSz = loadSoftwareUpdateCert(&derBuf);

72

73 //Get Novomodo Hash

74 fetchCurrentHash(0, "127.0.0.1", &hash, derBuf, derBufSz, rootBuf, rootBufSz);

75

76 if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0)

77 {

78 perror("socket failed");

79 exit(EXIT_FAILURE);

80 }

81

82 // Forcefully attaching socket to the port 8081

83 if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR /*| SO_REUSEPORT*/,

84 &opt, sizeof(opt)))

85 {

86 perror("setsockopt");

87 exit(EXIT_FAILURE);

88 }

89 address.sin_family = AF_INET;

90 address.sin_addr.s_addr = INADDR_ANY;

56

A.4 software-update-server.c

91 address.sin_port = htons(PORT);

92

93 // Forcefully attaching socket to the port 8081

94 if (bind(server_fd, (struct sockaddr *)&address, sizeof(address))<0) {

95 perror("bind failed");

96 exit(EXIT_FAILURE);

97 }

98 if (listen(server_fd, 3) < 0) {

99 perror("listen");

100 exit(EXIT_FAILURE);

101 }

102

103 while (1) {

104 printf("Waiting for connection...\n");

105

106 if ((new_socket = accept(server_fd, (struct sockaddr *)&address,

107 (socklen_t*)&addrlen))<0) {

108 perror("accept");

109 exit(EXIT_FAILURE);

110 }

111

112 printf("Receiving a connection...\n");

113

114 srvCtx = wc_ecc_ctx_new(REQ_RESP_SERVER, &rng);

115 if (srvCtx == NULL) {

116 printf("wc_ecc_ctx_new failed!\n");

117 return -1;

118 }

119

120 ret = acceptConnectionAsServer(new_socket, rootBuf, rootBufSz,

121 derBuf, peerBuf, &peerKey, hash);

122 if (ret != 1) return -1;

123

124 ret = serverSideSaltExchange(&mySalt, peerSalt, new_socket, srvCtx);

125 if (ret != 1) return -1;

126

127 /* Get message */

128 byte* buffer = malloc(FOURK_SZ);

129 bufferSz = read(new_socket, buffer, FOURK_SZ);

130

131 /* Decrypt message */

132 byte plain[bufferSz];

133 plainSz = sizeof(plain);

134

135 ret = wc_ecc_decrypt(&myKey, &peerKey, buffer, bufferSz, plain,

136 &plainSz, srvCtx);

57

A Practical Implementation

137 if (ret != 0) {

138 printf("wc_ecc_decrypt failed %d!\n", ret);

139 return -1;

140 }

141

142 if (plain[0] == ’1’) {

143 //Version is 1 = ok

144 printf("Version is up to date: %c\n", plain[0]);

145 strcpy((char*)plain, "1");

146 } else {

147 //Version is not ok

148 printf("Version is not up to date: %c\n", plain[0]);

149 strcpy((char*)plain, "0");

150 }

151

152 plainSz = strlen((char*)plain);

153 msg_pad(plain, &plainSz);

154

155 /* Encrypt message */

156 ret = wc_ecc_encrypt(&myKey, &peerKey, plain, plainSz, buffer,

157 &bufferSz, srvCtx);

158 if (ret != 0) {

159 printf("wc_ecc_encrypt failed %d!\n", ret);

160 return -1;

161 }

162

163 /* Send message */

164 send(new_socket, buffer, bufferSz, 0);

165

166 /* reset context (reset my salt) */

167 ret = wc_ecc_ctx_reset(srvCtx, &rng);

168 if (ret != 0) {

169 printf("wc_ecc_ctx_reset failed %d\n", ret);

170 return -1;

171 }

172

173 if (buffer != NULL) free(buffer);

174

175 printf("\n");

176 }

177

178 return 0;

179 }

58

A.5 certificate-manager.c

A.5 certificate-manager.c

1 #include <stdio.h>

2 #include <wolfssl/options.h>

3 #include <wolfssl/wolfcrypt/settings.h>

4 #include <wolfssl/wolfcrypt/ecc.h>

5 #include <wolfssl/ssl.h>

6 #include <wolfssl/wolfcrypt/signature.h>

7 #include <wolfssl/wolfcrypt/asn_public.h>

8 #include <wolfssl/wolfcrypt/asn.h>

9 #include <wolfssl/wolfcrypt/error-crypt.h>

10 #include <wolfssl/wolfcrypt/sha512.h>

11

12 #define HEAP_HINT NULL

13 #define FOURK_SZ 4096

14

15 /*
16 Loads a certificate (.der)

17 */

18 int loadCert(byte** derBuf, char certToUse[]) {

19 FILE* file;

20 *derBuf = (byte*) XMALLOC(FOURK_SZ, HEAP_HINT,

21 DYNAMIC_TYPE_TMP_BUFFER);

22 if (*derBuf == NULL) return -1;

23

24 XMEMSET(*derBuf, 0, FOURK_SZ);

25

26 file = fopen(certToUse, "rb");

27 if (!file) {

28 printf("failed to find file: %s\n", certToUse);

29 return -1;

30 }

31

32 int size = fread(*derBuf, 1, FOURK_SZ, file);

33

34 fclose(file);

35 return size;

36 }

37

38 /*
39 Loads root certificate

40 */

41 int loadRootCert(byte** rootBuf) {

42 return loadCert(rootBuf, "./certs/root-cert.der");

43 }

44

59

A Practical Implementation

45 /*
46 Loads car certificate

47 */

48 int loadAutomotiveCert(byte** derBuf) {

49 return loadCert(derBuf, "./certs/automotive-cert.der");

50 }

51

52 /*
53 Loads software update server certificate

54 */

55 int loadSoftwareUpdateCert(byte** derBuf) {

56 return loadCert(derBuf, "./certs/su-cert.der");

57 }

58

59 /*
60 Loads a ecc_key

61 */

62 int loadKey(ecc_key* myKey, char keyFile[]) {

63 int ret = 1;

64 word32 idx = 0;

65 FILE* file;

66 byte* keyBuf = (byte*) XMALLOC(FOURK_SZ, HEAP_HINT,

67 DYNAMIC_TYPE_TMP_BUFFER);

68 if (keyBuf == NULL) return -1;

69

70 file = fopen(keyFile, "rb");

71 if (!file) {

72 printf("failed to open file: %s\n", keyFile);

73 return -1;

74 }

75

76 int keyBufSz = fread(keyBuf, 1, FOURK_SZ, file);

77 if (keyBufSz <= 0) {

78 printf("Failed to read caKey from file\n");

79 return ret;

80 }

81

82 fclose(file);

83

84 ret = wc_EccPrivateKeyDecode(keyBuf, &idx, myKey, (word32)keyBufSz);

85 if (ret != 0) {

86 printf("wc_EccPrivateKeyDecode failed %i\n", ret);

87 return ret;

88 }

89

90 ret = 1;

60

A.6 certificate-validity-check.c

91

92 return ret;

93 }

94

95 /*
96 Loads root key

97 */

98 int loadRootKey(ecc_key* myKey) {

99 return loadKey(myKey, "./certs/root-key.der");

100 }

101

102 /*
103 Loads car key

104 */

105 int loadAutomotiveKey(ecc_key* myKey) {

106 return loadKey(myKey, "./certs/automotive-key.der");

107 }

108

109 /*
110 Loads software update server key

111 */

112 int loadSoftwareUpdateKey(ecc_key* myKey) {

113 return loadKey(myKey, "./certs/su-key.der");

114 }

A.6 certificate-validity-check.c

1 #include <stdio.h>

2 #include <wolfssl/options.h>

3 #include <wolfssl/wolfcrypt/settings.h>

4 #include <wolfssl/wolfcrypt/ecc.h>

5 #include <wolfssl/ssl.h>

6 #include <wolfssl/wolfcrypt/signature.h>

7 #include <wolfssl/wolfcrypt/asn_public.h>

8 #include <wolfssl/wolfcrypt/asn.h>

9 #include <wolfssl/wolfcrypt/error-crypt.h>

10 #include <wolfssl/wolfcrypt/sha512.h>

11

12 #include "hasher.h"

13

14 #define HEAP_HINT NULL

15 #define FOURK_SZ 4096

16

17 /*

61

A Practical Implementation

18 Checks certificate for validity and checks the novomodo hash

19 */

20 int checkCertificate(byte* certBuf, int certBufSz, byte* rootBuf,

21 int rootBufSz, byte* hash) {

22 int ret = 0;

23 ecc_key pubKey;

24 byte* hashToCompare = NULL;

25 WOLFSSL_CERT_MANAGER* cm = NULL;

26

27 DecodedCert cert;

28 InitDecodedCert(&cert, certBuf, certBufSz, HEAP_HINT);

29

30 ret = ParseCert(&cert, CERT_TYPE, NO_VERIFY, 0) + 1;

31 if (ret != 1) goto clearReturn;

32

33 wc_ecc_init(&pubKey);

34

35 word32 idx = 0;

36

37 ret = wc_EccPublicKeyDecode(cert.publicKey, &idx, &pubKey,

38 cert.pubKeySize) + 1;

39 if (ret != 1) goto clearReturn;

40

41 //Verify certificate chain

42 cm = wolfSSL_CertManagerNew();

43 ret = 0;

44 if (cm == NULL) goto clearReturn;

45

46 ret = wolfSSL_CertManagerLoadCABuffer(cm, rootBuf, rootBufSz,

47 SSL_FILETYPE_ASN1);

48 if (ret != SSL_SUCCESS) {

49 printf("Errorcode 1 %i\n", ret);

50 goto clearReturn;

51 }

52

53 ret = wolfSSL_CertManagerVerifyBuffer(cm, certBuf, certBufSz,

54 SSL_FILETYPE_ASN1);

55 if (ret != SSL_SUCCESS) {

56 printf("Errorcode 2 %i\n", ret);

57 goto clearReturn;

58 }

59

60 byte* finalHash = (byte*) cert.subjectEmail;

61

62 //How many times have to be added on the hash

63 int times = calculateVerifyTimes(cert);

62

A.7 connection-worker.c

64

65 hashToCompare = malloc(32);

66

67 memcpy(hashToCompare, hash, 32);

68

69 hashFunc(hash, hashToCompare, times);

70

71 ret = memcmp(hashToCompare, finalHash, 32);

72 if (ret != 0) {

73 printf("Oh no...\n");

74 goto clearReturn;

75 }

76 ret = 1;

77

78 clearReturn:

79 FreeDecodedCert(&cert);

80 wc_ecc_free(&pubKey);

81 wolfSSL_CertManagerFree(cm);

82 if (hashToCompare != NULL) free(hashToCompare);

83 return ret;

84 }

A.7 connection-worker.c

1 // C/C++ program to demonstrate Socket programming

2 #include <unistd.h>

3 #include <stdio.h>

4 #include <sys/socket.h>

5 #include <stdlib.h>

6 #include <netinet/in.h>

7 #include <string.h>

8 #include <math.h>

9

10 #include <wolfssl/options.h>

11 #include <wolfssl/wolfcrypt/settings.h>

12 #include <wolfssl/wolfcrypt/ecc.h>

13 #include <wolfssl/ssl.h>

14 #include <wolfssl/wolfcrypt/signature.h>

15 #include <wolfssl/wolfcrypt/asn_public.h>

16 #include <wolfssl/wolfcrypt/asn.h>

17 #include <wolfssl/wolfcrypt/error-crypt.h>

18 #include <wolfssl/wolfcrypt/sha512.h>

19

20 #include "certificate-validity-check.h"

63

A Practical Implementation

21 #include "hasher.h"

22

23 #define HEAP_HINT NULL

24 #define FOURK_SZ 4096

25 #define BLOCK_SIZE 16

26 #define PORTNOVOMODO 8080

27 #define PORTSU 8081

28

29 /*
30 Creates a secure connection to Server with Port 8081

31 int sock - Socket

32 char* address - Adress, e.g. "127.0.0.1"

33 WC_RNG rng - has to be initialised

34 byte* derBuf - own certificate

35 byte* peerBuf - peer certificate

36 will be the peer key afterwards

37 ecEncCtx* cliCtx - can be null, will be initialized

38 */

39 int openConnectionAsClient(int* sock, char* address, WC_RNG rng,

40 byte* rootBuf, int rootBufSz, byte* derBuf,

41 byte* peerBuf, ecc_key* peerKey, byte* hash,

42 ecEncCtx** cliCtx) {

43 int ret;

44 struct sockaddr_in serv_addr;

45 byte* peerHash = malloc(32);

46

47 if ((*sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)

48 {

49 printf("\n Socket creation error \n");

50 ret = -1;

51 goto cleanup;

52 }

53

54 memset(&serv_addr, ’0’, sizeof(serv_addr));

55

56 serv_addr.sin_family = AF_INET;

57 serv_addr.sin_port = htons(PORTSU);

58

59 // Convert IPv4 and IPv6 addresses from text to binary form

60 if(inet_pton(AF_INET, address, &serv_addr.sin_addr)<=0)

61 {

62 printf("\nInvalid address/ Address not supported \n");

63 ret = -1;

64 goto cleanup;

65 }

66

64

A.7 connection-worker.c

67 if (connect(*sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0)

68 {

69 printf("\nConnection Failed \n");

70 ret = -1;

71 goto cleanup;

72 }

73

74 *cliCtx = wc_ecc_ctx_new(REQ_RESP_CLIENT, &rng);

75 if (*cliCtx == NULL) {

76 printf("wc_ecc_ctx_new failed!\n");

77 ret = -1;

78 goto cleanup;

79 }

80

81 /* exchange public keys */

82 /* send my public key */

83 send(*sock, derBuf, FOURK_SZ, 0);

84

85 //SEND NOVOMODO

86 send(*sock, hash, 32, 0);

87

88 /* Get peer key */

89 //Read certificate

90 int peerBufSz = read(*sock, peerBuf, FOURK_SZ);

91 //Read Novomodo Hash

92 ret = read(*sock, peerHash, 32);

93

94 //Create structure for certificate

95 word32 idx = 0;

96 DecodedCert dcert;

97 InitDecodedCert(&dcert, peerBuf, FOURK_SZ, HEAP_HINT);

98

99 //Decode Certificate from the previously set buffer

100 ret = ParseCert(&dcert, CERT_TYPE, NO_VERIFY, 0);

101 if (ret != 0) {

102 printf("ParseCert failed %i\n", ret);

103 goto cleanup;

104 }

105

106 //Decode the Public Key from certificate

107 ret = wc_EccPublicKeyDecode(dcert.publicKey, &idx, peerKey, dcert.pubKeySize);

108 if (ret != 0) {

109 printf("EccPublicKeyDecode failed %i\n", ret);

110 goto cleanup;

111 }

112

65

A Practical Implementation

113 ret = checkCertificate(peerBuf, peerBufSz, rootBuf, rootBufSz, peerHash);

114 if (ret != 1) {

115 printf("Server certificate verification failed %i\n", ret);

116 goto cleanup;

117 }

118

119 printf("Server certificate successfully verified!\n");

120

121 ret = 1;

122 cleanup:

123 if (peerHash != NULL) free(peerHash);

124 FreeDecodedCert(&dcert);

125 return ret;

126 }

127

128 /*
129 Exchanges salts with a server to secure connection

130 */

131 int clientSideSaltExchange(const byte** mySalt, byte* peerSalt, int sock,

132 ecEncCtx* cliCtx) {

133 printf("Exchanging salts...\n");

134

135 int ret;

136 /* get my salt */

137 *mySalt = wc_ecc_ctx_get_own_salt(cliCtx);

138 if (*mySalt == NULL) {

139 printf("wc_ecc_ctx_get_own_salt failed!\n");

140 return -1;

141 }

142

143 /* Send my salt */

144 send(sock, *mySalt, EXCHANGE_SALT_SZ, 0);

145

146 /* Get peer salt */

147 read(sock, peerSalt, EXCHANGE_SALT_SZ);

148

149 ret = wc_ecc_ctx_set_peer_salt(cliCtx, peerSalt);

150 if (ret != 0) {

151 printf("wc_ecc_ctx_set_peer_salt failed %d\n", ret);

152 return 0;

153 }

154

155 return 1;

156 }

157

158 /*

66

A.7 connection-worker.c

159 Establishes a secure connection with a client

160 */

161 int acceptConnectionAsServer(int new_socket, byte* rootBuf, int rootBufSz,

162 byte* derBuf, byte* peerBuf, ecc_key* peerKey,

163 byte* hash) {

164 int ret;

165 byte* peerHash = malloc(32);

166

167 /* exchange public keys */

168 /* Get peer certificate & key */

169 //Read certificate

170 int peerBufSz = read(new_socket, peerBuf, FOURK_SZ);

171

172 //Read Novomodo Hash

173 ret = read(new_socket, peerHash, 32);

174

175 //Create structure for certificate

176 word32 idx = 0;

177 DecodedCert dcert;

178 InitDecodedCert(&dcert, peerBuf, FOURK_SZ, HEAP_HINT);

179

180 //Decode Certificate from the previously set buffer

181 ret = ParseCert(&dcert, CERT_TYPE, NO_VERIFY, 0);

182 if (ret != 0) {

183 printf("ParseCert failed %i\n", ret);

184 goto cleanup;

185 }

186

187 //Decode the Public Key from certificate

188 ret = wc_EccPublicKeyDecode(dcert.publicKey, &idx, peerKey, dcert.pubKeySize);

189 if (ret != 0) {

190 printf("EccPublicKeyDecode failed %i\n", ret);

191 goto cleanup;

192 }

193

194 ret = checkCertificate(peerBuf, peerBufSz, rootBuf, rootBufSz, peerHash);

195 if (ret != 1) {

196 printf("Client certificate verification failed %i\n", ret);

197 goto cleanup;

198 }

199

200 printf("Client certificate successfully verified!\n");

201

202 /* send my public key & certificate */

203 send(new_socket, derBuf, FOURK_SZ, 0);

204

67

A Practical Implementation

205 //send novomodo

206 send(new_socket, hash, 32, 0);

207

208 ret = 1;

209 cleanup:

210 if (peerHash != NULL) free(peerHash);

211 FreeDecodedCert(&dcert);

212 return ret;

213 }

214

215 /*
216 Exchanges salts with a client to secure connection

217 */

218 int serverSideSaltExchange(const byte** mySalt, byte* peerSalt,

219 int new_socket, ecEncCtx* srvCtx) {

220 printf("Exchanging salts...\n");

221

222 int ret;

223 *mySalt = wc_ecc_ctx_get_own_salt(srvCtx);

224 if (*mySalt == NULL) {

225 printf("wc_ecc_ctx_get_own_salt failed!\n");

226 return -1;

227 }

228

229 /* Get peer salt */

230 ret = read(new_socket, peerSalt, EXCHANGE_SALT_SZ);

231

232 /* Send my salt */

233 /* You must send mySalt before set_peer_salt, because buffer changes */

234 send(new_socket, *mySalt, EXCHANGE_SALT_SZ, 0);

235

236 ret = wc_ecc_ctx_set_peer_salt(srvCtx, peerSalt);

237 if (ret != 0) {

238 printf("wc_ecc_ctx_set_peer_salt failed %d\n", ret);

239 return 0;

240 }

241

242 return 1;

243 }

244

245 /*
246 Creates connection with Novomodoserver as Client to Port 8080

247 to receive current Hash

248 */

249 int fetchCurrentHash(int sock, char* address, byte** hash, byte* derBuf,

250 int derBufSz, byte* rootBuf, int rootBufSz) {

68

A.7 connection-worker.c

251 struct sockaddr_in serv_addr;

252

253 if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)

254 {

255 printf("\n Socket creation error \n");

256 return -1;

257 }

258

259 memset(&serv_addr, ’0’, sizeof(serv_addr));

260

261 serv_addr.sin_family = AF_INET;

262 serv_addr.sin_port = htons(PORTNOVOMODO);

263

264 // Convert IPv4 and IPv6 addresses from text to binary form

265 if(inet_pton(AF_INET, address, &serv_addr.sin_addr)<=0)

266 {

267 printf("\nInvalid address/ Address not supported \n");

268 return -1;

269 }

270

271 if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0)

272 {

273 printf("\nConnection Failed \n");

274 return -1;

275 }

276

277 //send certificate

278 send(sock, derBuf, FOURK_SZ, 0);

279

280 //receive hash

281 read(sock, *hash, 32);

282

283 printf("Current hash: ");

284 printByteAsHexa(*hash);

285

286 if (checkCertificate(derBuf, derBufSz, rootBuf, rootBufSz, *hash) != 1) {

287 printf("Hash or certificate invalid!\n");

288 return -1;

289 }

290

291 return 0;

292 }

293

294 /*
295 Padds a message to make the length as a multiple of

296 the block size (16)

69

A Practical Implementation

297 */

298 void msg_pad(byte* buf, word32* len) {

299 word32 newLen = *len;

300 word32 odd = (newLen % BLOCK_SIZE);

301

302 if (odd != 0) {

303 word32 addLen = (BLOCK_SIZE - odd);

304 newLen += addLen;

305

306 memset(&buf[*len], 0, addLen);

307 }

308

309 *len = newLen;

310 return;

311 }

312

313 /*
314 Writes a number to byte array

315 */

316 byte* toArray(int number) {

317 int n = log10(number) + 1;

318 int i;

319 byte* numberArray = calloc(n, sizeof(char));

320

321 for (i = 0; i < n; ++i, number /= 10) {

322 numberArray[i] = number % 10;

323 }

324

325 return numberArray;

326 }

327

328 /*
329 Reverts a byte array to a number

330 handles padding as well

331 */

332 int revertToInt(byte* array) {

333 int arraySz = sizeof(array);

334 int number = 0;

335 int padding = 1;

336

337 for (int i = arraySz - 1; i >= 0; i--) {

338 int toAdd = array[i];

339

340 if (padding) {

341 if (!toAdd) continue;

342 padding = 0;

70

A.8 hasher.c

343 }

344

345 for (int j = i; j > 0; j--) {

346 toAdd *= 10;

347 }

348

349 number += toAdd;

350 }

351

352 return number;

353 }

A.8 hasher.c

1 #include <stdio.h>

2 #include <wolfssl/options.h>

3 #include <wolfssl/wolfcrypt/settings.h>

4 #include <wolfssl/wolfcrypt/ecc.h>

5 #include <wolfssl/ssl.h>

6 #include <wolfssl/wolfcrypt/signature.h>

7 #include <wolfssl/wolfcrypt/asn_public.h>

8 #include <wolfssl/wolfcrypt/asn.h>

9 #include <wolfssl/wolfcrypt/error-crypt.h>

10 #include <wolfssl/wolfcrypt/sha512.h>

11

12 #define HEAP_HINT NULL

13 #define FOURK_SZ 4096

14

15 /*
16 Prints first 32 hexadecimal numbers of a byte buffer

17 */

18 void printByteAsHexa(byte* buf) {

19 for (int i = 0; i < 32; i++)

20 {

21 printf("%02X", buf[i]);

22 }

23 printf("\n");

24 }

25

26 /*
27 Hashes data for times times

28 data has to have the length WC_SHA256_DIGEST_SIZE (32)

29 */

30 int hashFunc(byte* data, byte* hash, int times) {

71

A Practical Implementation

31 int ret = 0;

32

33 memcpy(hash, data, 32);

34

35 for (int i = 0; i < times; i++) {

36 //Create new sha2-256

37 wc_Sha256 sha;

38

39 //Init sha2-256

40 ret = wc_InitSha256(&sha);

41 if (ret != 0) goto cleanup;

42

43 //Begin hashing

44 ret = wc_Sha256Update(&sha, hash, WC_SHA256_DIGEST_SIZE);

45 if (ret != 0) goto cleanup;

46

47 //Get hash

48 ret = wc_Sha256Final(&sha, hash);

49 if (ret != 0) goto cleanup;

50

51 cleanup:

52 wc_Sha256Free(&sha);

53 if (ret != 0) return ret;

54 }

55

56 return ret;

57 }

58

59

60 /*
61 Calculates for the CA how many times the random has to be hashed

62 */

63 int calculateHashTimes(DecodedCert* cert) {

64 //Calculate the weeks the certificate has to be used in the future

65 int length;

66 const byte *datePtr = NULL;

67 byte format;

68

69 wc_GetDateInfo(cert->source, cert->maxIdx, &datePtr, &format, &length);

70

71 struct tm before;

72 int idx = 19;

73 ExtractDate(cert->beforeDate, format, &before, &idx);

74

75 int days = (int) difftime(mktime(&before), time(NULL)) / 60 / 60 / 24;

76

72

A.8 hasher.c

77 days += 1;

78

79 //How many times have to be added on the hash

80 return (days + 6) / 7;

81 }

82

83 /*
84 Calculates for communication participants how many times

85 have to be added on a hash

86 */

87 int calculateVerifyTimes(DecodedCert cert) {

88 //Calculate the weeks the certificate has alreade been used

89 int length;

90 const byte *datePtr = NULL;

91 byte format;

92

93 wc_GetDateInfo(cert.source, cert.maxIdx, &datePtr, &format, &length);

94

95 struct tm after;

96 int idx = 2;

97 ExtractDate(cert.afterDate, format, &after, &idx);

98

99 int days = difftime(time(NULL), mktime(&after)) / 60 / 60 / 24;

100

101 //How many times have to be added on the hash

102 return days / 7;

103 }

104

105 /*
106 Helper function that converts a ascii character to the representing number

107 */

108 word32 btoi(byte b) {

109 return (word32)(b - 0x30);

110 }

111

112 /*
113 Helper funtion to extract the date

114 */

115 void GetTime(int* value, const byte* date, int* idx) {

116 int i = *idx;

117

118 *value += btoi(date[i++]) * 10;

119 *value += btoi(date[i++]);

120

121 *idx = i;

122 }

73

A Practical Implementation

123

124 /*
125 Extracts the date of a decoded certificate

126 idx needs to be chosen correctly

127 */

128 int ExtractDate(const unsigned char* date, unsigned char format,

129 struct tm* certTime, int* idx) {

130 XMEMSET(certTime, 0, sizeof(struct tm));

131

132 if (format == ASN_UTC_TIME) {

133 if (btoi(date[0]) >= 5)

134 certTime->tm_year = 1900;

135 else

136 certTime->tm_year = 2000;

137 } else { /* format == GENERALIZED_TIME */

138 certTime->tm_year += btoi(date[*idx]) * 1000; *idx = *idx + 1;

139 certTime->tm_year += btoi(date[*idx]) * 100; *idx = *idx + 1;

140 }

141

142 /* adjust tm_year, tm_mon */

143 GetTime((int*)&certTime->tm_year, date, idx); certTime->tm_year -= 1900;

144 GetTime((int*)&certTime->tm_mon, date, idx); certTime->tm_mon -= 1;

145 GetTime((int*)&certTime->tm_mday, date, idx);

146 GetTime((int*)&certTime->tm_hour, date, idx);

147 GetTime((int*)&certTime->tm_min, date, idx);

148 GetTime((int*)&certTime->tm_sec, date, idx);

149

150 return 1;

151 }

152

153 /*
154 Generates a new Novomodo value including the secret

155 */

156 void generateNovomodo(WC_RNG* rng, byte* hash, byte* data, int daysValid) {

157 //Generate 32 Byte random

158 wc_RNG_GenerateBlock(rng, data, 32);

159

160 //Hash it ceil(daysValid / 7) times

161 hashFunc(data, hash, (daysValid + 6) / 7);

162 }

A.9 sqlite-worker.c

1 #include <stdio.h>

74

A.9 sqlite-worker.c

2 #include <sqlite3.h>

3

4 #include <wolfssl/options.h>

5 #include <wolfssl/wolfcrypt/settings.h>

6 #include <wolfssl/wolfcrypt/ecc.h>

7 #include <wolfssl/ssl.h>

8 #include <wolfssl/wolfcrypt/signature.h>

9 #include <wolfssl/wolfcrypt/asn_public.h>

10 #include <wolfssl/wolfcrypt/asn.h>

11 #include <wolfssl/wolfcrypt/error-crypt.h>

12 #include <wolfssl/wolfcrypt/sha512.h>

13

14 #include "hasher.h"

15

16 /*
17 Creates the novomodo table

18 */

19 int createDatabase(sqlite3 *db) {

20 char *sql;

21

22 /* Create SQL statement */

23 sql = "CREATE TABLE IF NOT EXISTS Secrets(" \

24 "SERIAL TEXT PRIMARY KEY NOT NULL," \

25 "secretValue BLOB NOT NULL," \

26 "currentHash BLOB NOT NULL," \

27 "currentWeek INT NOT NULL," \

28 "validUntil BLOB NOT NULL);";

29

30 /* Execute SQL statement */

31 return sqlite3_exec(db, sql, NULL, 0, NULL);

32 }

33

34 /*
35 Opens the novomodo database

36 */

37 int openDatabase(sqlite3 **db) {

38 int ret = sqlite3_open("novomodo.db", db);

39 if (ret != SQLITE_OK) return ret;

40

41 return createDatabase(*db);

42 }

43

44 /*
45 closes the novmodo database

46 */

47 void closeDatabase(sqlite3 *db) {

75

A Practical Implementation

48 sqlite3_close(db);

49 }

50

51 /*
52 Adds a new decodedcertificate to the novomodo table

53 db - database

54 cert - decoded certificate

55 value - secret value

56 hash - current hash of the value

57 before - expiry date of certificate

58 */

59 int addSecretValue(sqlite3 *db, DecodedCert cert, byte* value, byte* hash,

60 struct tm before) {

61 int ret;

62 char time[11];

63

64 byte* serial = cert.serial;

65

66 strftime(time,11,"%Y-%m-%d", &before);

67

68 int hashTimes = calculateHashTimes(&cert);

69

70 sqlite3_stmt *stmt;

71 ret = sqlite3_prepare_v2(db, "INSERT INTO Secrets (SERIAL, secretValue, "

72 "currentHash, currentWeek, validUntil) VALUES "

73 "(?,?,?,?,?);", -1, &stmt, NULL);

74 if (ret != SQLITE_OK) return ret;

75

76 ret = sqlite3_bind_text(stmt, 1, (char*) serial, 16, SQLITE_TRANSIENT);

77 if (ret != SQLITE_OK) return ret;

78 ret = sqlite3_bind_blob(stmt, 2, value, 32, SQLITE_TRANSIENT);

79 if (ret != SQLITE_OK) return ret;

80 ret = sqlite3_bind_blob(stmt, 3, hash, 32, SQLITE_TRANSIENT);

81 if (ret != SQLITE_OK) return ret;

82 ret = sqlite3_bind_int(stmt, 4, hashTimes);

83 if (ret != SQLITE_OK) return ret;

84 ret = sqlite3_bind_blob(stmt, 5, time, 11, SQLITE_TRANSIENT);

85 if (ret != SQLITE_OK) return ret;

86

87 ret = sqlite3_step(stmt);

88

89 return sqlite3_finalize(stmt);

90 }

91

92 /*
93 Adds a new certificate to the novomodo table

76

A.9 sqlite-worker.c

94 db - database

95 cert - certificate

96 value - secret value

97 hash - current hash of the value

98 before - expiry date of certificate

99 */

100 int addSecretValueCert(sqlite3 *db, Cert cert, byte* value, byte* hash,

101 struct tm before) {

102 int ret;

103 char time[11];

104

105 byte* serial = cert.serial;

106

107 strftime(time,11,"%Y-%m-%d", &before);

108

109 int hashTimes = (cert.daysValid + 6) / 7;

110

111 sqlite3_stmt *stmt;

112 ret = sqlite3_prepare_v2(db, "INSERT INTO Secrets (SERIAL, secretValue, "

113 "currentHash, currentWeek, validUntil) VALUES "

114 "(?,?,?,?,?);", -1, &stmt, NULL);

115 if (ret != SQLITE_OK) return ret;

116

117 ret = sqlite3_bind_text(stmt, 1, (char*) serial, 16, SQLITE_TRANSIENT);

118 if (ret != SQLITE_OK) return ret;

119 ret = sqlite3_bind_blob(stmt, 2, value, 32, SQLITE_TRANSIENT);

120 if (ret != SQLITE_OK) return ret;

121 ret = sqlite3_bind_blob(stmt, 3, hash, 32, SQLITE_TRANSIENT);

122 if (ret != SQLITE_OK) return ret;

123 ret = sqlite3_bind_int(stmt, 4, hashTimes);

124 if (ret != SQLITE_OK) return ret;

125 ret = sqlite3_bind_blob(stmt, 5, time, 11, SQLITE_TRANSIENT);

126 if (ret != SQLITE_OK) return ret;

127

128 ret = sqlite3_step(stmt);

129

130 return sqlite3_finalize(stmt);

131 }

132

133 /*
134 Calculates the current hash or fetches it from database

135 */

136 int getCurrentHash(sqlite3 *db, DecodedCert* cert, byte** hash) {

137 int ret;

138 int times = calculateHashTimes(cert);

139 byte* serial = cert->serial;

77

A Practical Implementation

140

141 sqlite3_stmt *stmt;

142 ret = sqlite3_prepare_v2(db, "SELECT * FROM Secrets WHERE SERIAL = ?;",

143 -1, &stmt, NULL);

144 if (ret != SQLITE_OK) return ret;

145

146 ret = sqlite3_bind_text(stmt, 1, (char*) serial, 16, SQLITE_TRANSIENT);

147 if (ret != SQLITE_OK) return ret;

148

149 ret = sqlite3_step(stmt);

150

151 if (sqlite3_column_int(stmt, 3) == times) {

152 *hash = (byte*) sqlite3_column_text(stmt, 2);

153 } else {

154 hashFunc((byte*) sqlite3_column_blob(stmt, 1), *hash, times);

155 ret = sqlite3_finalize(stmt);

156 if (ret != SQLITE_OK) return ret;

157

158 sqlite3_stmt *stmt;

159 ret = sqlite3_prepare_v2(db,

160 "UPDATE Secrets SET currentHash = ?, "

161 "currentWeek = ? WHERE SERIAL = ?;", -1,

162 &stmt, NULL);

163 if (ret != SQLITE_OK) return ret;

164

165 ret = sqlite3_bind_blob(stmt, 1, *hash, 32, SQLITE_TRANSIENT);

166 if (ret != SQLITE_OK) return ret;

167 ret = sqlite3_bind_int(stmt, 2, times);

168 if (ret != SQLITE_OK) return ret;

169 ret = sqlite3_bind_text(stmt, 3, (char*) serial, 16,

170 SQLITE_TRANSIENT);

171 if (ret != SQLITE_OK) return ret;

172

173 ret = sqlite3_step(stmt);

174

175 ret = sqlite3_finalize(stmt);

176 if (ret != SQLITE_OK) return ret;

177 }

178

179 return 0;

180 }

A.10 certgen_root.c

78

A.10 certgen_root.c

1 /*
2 This script generates a self signed ecc certificate,

3 which could be used as root in a PKI enviroment.

4

5 Uses a 32 byte ecc key and writes the key and certificate

6 to files (root-key.der, root-cert.der).

7 */

8

9 #include <stdio.h>

10 #include <wolfssl/options.h>

11 #include <wolfssl/wolfcrypt/settings.h>

12 #include <wolfssl/wolfcrypt/ecc.h>

13 #include <wolfssl/wolfcrypt/asn_public.h>

14 #include <wolfssl/wolfcrypt/asn.h>

15 #include <wolfssl/wolfcrypt/error-crypt.h>

16

17 #define HEAP_HINT NULL

18 #define FOURK_SZ 4096

19

20 /*
21 Generates self-signed root certificate

22 */

23 int main(void) {

24

25 //Return values

26 int ret = 0;

27

28 //The certificate

29 Cert newCert;

30

31 //File and location to save certificate and key

32 FILE* file;

33 char newCertOutput[] = "./certs/root-cert.der";

34 char newKeyOutput[] = "./certs/root-key.der";

35

36 int derBufSz;

37

38 //Buffer for certificate and key

39 byte* derBuf = malloc(FOURK_SZ);

40 byte* pemBuf = malloc(FOURK_SZ);

41 byte* rootKeyBuf = malloc(FOURK_SZ);

42

43 /* Random number generator for MakeCert

44 and SignCert and the ecc key*/

45 WC_RNG rng;

46 ecc_key rootKey;

79

A Practical Implementation

47

48 /* Generate new ecc key */

49 printf("initializing the rng\n");

50 ret = wc_InitRng(&rng);

51 if (ret != 0) goto fail;

52

53 printf("Generating a new ecc key\n");

54 //Initialize key

55 ret = wc_ecc_init(&rootKey);

56 if (ret != 0) goto fail;

57

58 //Create Key

59 ret = wc_ecc_make_key(&rng, 32, &rootKey);

60 if (ret != 0) goto fail;

61

62 //Convert key to der to save it later

63 ret = wc_EccKeyToDer(&rootKey, rootKeyBuf, FOURK_SZ);

64 if (ret < 0) goto fail;

65

66 printf("Successfully created new ecc key\n\n");

67

68 /* Create a new certificate using header information from der cert */

69 printf("Setting new cert issuer to subject of signer\n");

70

71 //Initialize the certificate

72 wc_InitCert(&newCert);

73

74 //Add some X.509 information to the certificate

75 strncpy(newCert.subject.country, "DE", CTC_NAME_SIZE);

76 strncpy(newCert.subject.state, "NDS", CTC_NAME_SIZE);

77 strncpy(newCert.subject.locality, "Gifhorn", CTC_NAME_SIZE);

78 strncpy(newCert.subject.org, "IAV", CTC_NAME_SIZE);

79 strncpy(newCert.subject.unit, "TD-S1", CTC_NAME_SIZE);

80 strncpy(newCert.subject.commonName, "IAV root", CTC_NAME_SIZE);

81 strncpy(newCert.subject.email, "florian.dahlmann@iav.de", CTC_NAME_SIZE);

82 newCert.isCA = 1;

83 newCert.sigType = CTC_SHA256wECDSA;

84

85 //Create the certificate

86 ret = wc_MakeCert(&newCert, derBuf, FOURK_SZ, NULL, &rootKey, &rng);

87 if (ret < 0) goto fail;

88

89 printf("MakeCert returned %d\n", ret);

90

91 //Self sign it

92 ret = wc_SignCert(newCert.bodySz, newCert.sigType, derBuf, FOURK_SZ,

80

A.10 certgen_root.c

93 NULL, &rootKey, &rng);

94 if (ret < 0) goto fail;

95

96 derBufSz = ret;

97

98 printf("Successfully created new certificate\n");

99

100 /* write the new cert to file in der format */

101 printf("Writing newly generated certificate to file \"%s\"\n",

102 newCertOutput);

103 file = fopen(newCertOutput, "wb");

104 if (!file) {

105 printf("failed to open file: %s\n", newCertOutput);

106 goto fail;

107 }

108

109 ret = (int) fwrite(derBuf, 1, derBufSz, file);

110 fclose(file);

111 printf("Successfully output %d bytes\n", ret);

112

113 /* convert the der to a pem and write it to a file */

114 {

115 char pemOutput[] = "./certs/root-cert.pem";

116 int pemBufSz;

117

118 printf("Convert the der cert to pem formatted cert\n");

119

120 pemBuf = (byte*) XMALLOC(FOURK_SZ, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER);

121 if (pemBuf == NULL) goto fail;

122

123 XMEMSET(pemBuf, 0, FOURK_SZ);

124

125 pemBufSz = wc_DerToPem(derBuf, derBufSz, pemBuf, FOURK_SZ, CERT_TYPE);

126 ret = pemBufSz;

127 if (pemBufSz < 0) goto fail;

128

129 printf("Resulting pem buffer is %d bytes\n", pemBufSz);

130

131 file = fopen(pemOutput, "wb");

132 if (!file) {

133 printf("failed to open file: %s\n", pemOutput);

134 goto fail;

135 }

136 fwrite(pemBuf, 1, pemBufSz, file);

137 fclose(file);

138 printf("Successfully converted the der to pem. Result is in: %s\n\n",

81

A Practical Implementation

139 pemOutput);

140 }

141

142 /* write the new key to file in der format */

143 printf("Writing newly generated key to file \"%s\"\n", newKeyOutput);

144 file = fopen(newKeyOutput, "wb");

145 if (!file) {

146 printf("failed to open file: %s\n", newKeyOutput);

147 goto fail;

148 }

149

150 ret = (int) fwrite(rootKeyBuf, 1, FOURK_SZ, file);

151 fclose(file);

152 printf("Successfully output %d bytes\n", ret);

153

154 goto success;

155

156 fail:

157 printf("Failure code was %d\n", ret);

158 return -1;

159

160 success:

161 printf("Generation successful\n");

162 return 0;

163 }

A.11 certgen_automotive.c

1 /*
2 This script generates a self signed ecc certificate,

3 which could be used as root in a PKI enviroment.

4

5 Uses a 32 byte ecc key and writes the key and certificate

6 to files (root-key.der, root-cert.der).

7 */

8

9 #include <stdio.h>

10 #include <wolfssl/options.h>

11 #include <wolfssl/wolfcrypt/settings.h>

12 #include <wolfssl/wolfcrypt/ecc.h>

13 #include <wolfssl/wolfcrypt/asn_public.h>

14 #include <wolfssl/wolfcrypt/asn.h>

15 #include <wolfssl/wolfcrypt/error-crypt.h>

16

82

A.11 certgen_automotive.c

17 #define HEAP_HINT NULL

18 #define FOURK_SZ 4096

19

20 #include "certificate-manager.h"

21 #include "sqlite-worker.h"

22 #include "hasher.h"

23

24 /*
25 Generates certificate for car, signed by root

26 */

27 int main(void) {

28

29 //Return values

30 int ret = 0;

31

32 //The certificate

33 Cert newCert;

34

35 //File and location to save certificate and key

36 FILE* file;

37 char newCertOutput[] = "./certs/automotive-cert.der";

38 char newKeyOutput[] = "./certs/automotive-key.der";

39

40 int derBufSz;

41

42 //Buffer for certificate and key

43 byte* derBuf = malloc(FOURK_SZ);

44 byte* pemBuf = malloc(FOURK_SZ);

45 byte* keyBuf = malloc(FOURK_SZ);

46

47 byte* rootBuf = (byte*) XMALLOC(FOURK_SZ, HEAP_HINT,

48 DYNAMIC_TYPE_TMP_BUFFER);

49 ecc_key rootKey;

50

51 ret = wc_ecc_init(&rootKey);

52 if (ret != 0) goto fail;

53

54 int rootBufSz = loadRootCert(&rootBuf);

55 loadRootKey(&rootKey);

56

57 /* Random number generator for MakeCert

58 and SignCert and the ecc key*/

59 WC_RNG rng;

60 ecc_key key;

61

62 /* Generate new ecc key */

83

A Practical Implementation

63 printf("initializing the rng\n");

64 ret = wc_InitRng(&rng);

65 if (ret != 0) goto fail;

66

67 printf("Generating a new ecc key\n");

68 //Initialize key

69 ret = wc_ecc_init(&key);

70 if (ret != 0) goto fail;

71

72 //Create Key

73 ret = wc_ecc_make_key(&rng, 32, &key);

74 if (ret != 0) goto fail;

75

76 //Convert key to der to save it later

77 ret = wc_EccKeyToDer(&key, keyBuf, FOURK_SZ);

78 if (ret < 0) goto fail;

79

80 printf("Successfully created new ecc key\n");

81

82 /* Create a new certificate using header information from der cert */

83 //Initialize the certificate

84 wc_InitCert(&newCert);

85

86 printf("Generating secret and hash for Novomodo\n");

87

88 byte* hash = malloc(32);

89 byte* data = malloc(32);

90

91 generateNovomodo(&rng, hash, data, newCert.daysValid);

92

93 printf("Secret: ");

94 printByteAsHexa(data);

95

96 printf("Hash: ");

97 printByteAsHexa(hash);

98

99 printf("Setting new cert issuer to subject of signer\n");

100

101 //Add some X.509 information to the certificate

102 strncpy(newCert.subject.country, "DE", CTC_NAME_SIZE);

103 strncpy(newCert.subject.state, "NDS", CTC_NAME_SIZE);

104 strncpy(newCert.subject.locality, "Gifhorn", CTC_NAME_SIZE);

105 strncpy(newCert.subject.org, "IAV", CTC_NAME_SIZE);

106 strncpy(newCert.subject.unit, "TD-S1", CTC_NAME_SIZE);

107 strncpy(newCert.subject.commonName, "Car", CTC_NAME_SIZE);

108 strncpy(newCert.subject.email, (char *) hash, 32);

84

A.11 certgen_automotive.c

109 newCert.isCA = 0;

110 newCert.sigType = CTC_SHA256wECDSA;

111

112 //Set issuer (the root certificate)

113 ret = wc_SetIssuerBuffer(&newCert, rootBuf, rootBufSz);

114 if (ret != 0) goto fail;

115

116 //Create the certificate

117 ret = wc_MakeCert(&newCert, derBuf, FOURK_SZ, NULL, &key, &rng);

118 if (ret < 0) goto fail;

119

120 printf("MakeCert returned %d\n", ret);

121

122 //Self sign it

123 ret = wc_SignCert(newCert.bodySz, newCert.sigType, derBuf, FOURK_SZ, NULL,

124 &rootKey, &rng);

125 if (ret < 0) goto fail;

126

127 derBufSz = ret;

128

129 printf("Successfully created new certificate\n");

130

131 /* write the new cert to file in der format */

132 printf("Writing newly generated certificate to file \"%s\"\n",

133 newCertOutput);

134 file = fopen(newCertOutput, "wb");

135 if (!file) {

136 printf("failed to open file: %s\n", newCertOutput);

137 goto fail;

138 }

139

140 ret = (int) fwrite(derBuf, 1, derBufSz, file);

141 fclose(file);

142 printf("Successfully output %d bytes\n", ret);

143

144 /* convert the der to a pem and write it to a file */

145 {

146 char pemOutput[] = "./certs/automotive-cert.pem";

147 int pemBufSz;

148

149 printf("Convert the der cert to pem formatted cert\n");

150

151 pemBuf = (byte*) XMALLOC(FOURK_SZ, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER);

152 if (pemBuf == NULL) goto fail;

153

154 XMEMSET(pemBuf, 0, FOURK_SZ);

85

A Practical Implementation

155

156 pemBufSz = wc_DerToPem(derBuf, derBufSz, pemBuf, FOURK_SZ, CERT_TYPE);

157 ret = pemBufSz;

158 if (pemBufSz < 0) goto fail;

159

160 printf("Resulting pem buffer is %d bytes\n", pemBufSz);

161

162 file = fopen(pemOutput, "wb");

163 if (!file) {

164 printf("failed to open file: %s\n", pemOutput);

165 goto fail;

166 }

167 fwrite(pemBuf, 1, pemBufSz, file);

168 fclose(file);

169 printf("Successfully converted the der to pem. Result is in: %s\n\n",

170 pemOutput);

171 }

172

173 /* write the new key to file in der format */

174 printf("Writing newly generated key to file \"%s\"\n", newKeyOutput);

175 file = fopen(newKeyOutput, "wb");

176 if (!file) {

177 printf("failed to open file: %s\n", newKeyOutput);

178 goto fail;

179 }

180

181 ret = (int) fwrite(keyBuf, 1, FOURK_SZ, file);

182 fclose(file);

183 printf("Successfully output %d bytes\n", ret);

184

185 /* Add the hash to sqlite table */

186 DecodedCert dcert;

187 InitDecodedCert(&dcert, derBuf, derBufSz, HEAP_HINT);

188

189 ret = ParseCert(&dcert, CERT_TYPE, NO_VERIFY, 0);

190 if (ret != 0) goto fail;

191

192 int idx = 19;

193 int length;

194 const byte *datePtr = NULL;

195 byte format;

196

197 wc_GetDateInfo(dcert.source, dcert.maxIdx, &datePtr, &format, &length);

198

199 struct tm before;

200 ExtractDate(dcert.beforeDate, format, &before, &idx);

86

A.12 certgen_su_server.c

201

202 printf("Before Date: %s\n", asctime(&before));

203

204 printf("Serial: ");

205 printByteAsHexa(dcert.serial);

206

207 printf("Adding certificate to Novomodo table\n");

208 sqlite3 *db;

209 openDatabase(&db);

210 addSecretValueCert(db, newCert, data, hash, before);

211 closeDatabase(db);

212

213 goto success;

214

215 fail:

216 printf("Failure code was %d\n", ret);

217 return -1;

218

219 success:

220 printf("Generation successful\n");

221 return 0;

222 }

A.12 certgen_su_server.c

1 /*
2 This script generates a self signed ecc certificate,

3 which could be used as root in a PKI enviroment.

4

5 Uses a 32 byte ecc key and writes the key and certificate

6 to files (root-key.der, root-cert.der).

7 */

8

9 #include <stdio.h>

10 #include <wolfssl/options.h>

11 #include <wolfssl/wolfcrypt/settings.h>

12 #include <wolfssl/wolfcrypt/ecc.h>

13 #include <wolfssl/wolfcrypt/asn_public.h>

14 #include <wolfssl/wolfcrypt/asn.h>

15 #include <wolfssl/wolfcrypt/error-crypt.h>

16

17 #define HEAP_HINT NULL

18 #define FOURK_SZ 4096

19

87

A Practical Implementation

20 #include "certificate-manager.h"

21 #include "sqlite-worker.h"

22 #include "hasher.h"

23

24 /*
25 Generates certificate for software update server, signed by root

26 */

27 int main(void) {

28

29 //Return values

30 int ret = 0;

31

32 //The certificate

33 Cert newCert;

34

35 //File and location to save certificate and key

36 FILE* file;

37 char newCertOutput[] = "./certs/su-cert.der";

38 char newKeyOutput[] = "./certs/su-key.der";

39

40 int derBufSz;

41

42 //Buffer for certificate and key

43 byte* derBuf = malloc(FOURK_SZ);

44 byte* pemBuf = malloc(FOURK_SZ);

45 byte* keyBuf = malloc(FOURK_SZ);

46

47 byte* rootBuf = (byte*) XMALLOC(FOURK_SZ, HEAP_HINT,

48 DYNAMIC_TYPE_TMP_BUFFER);

49 ecc_key rootKey;

50

51 ret = wc_ecc_init(&rootKey);

52 if (ret != 0) goto fail;

53

54 int rootBufSz = loadRootCert(&rootBuf);

55 loadRootKey(&rootKey);

56

57 /* Random number generator for MakeCert

58 and SignCert and the ecc key*/

59 WC_RNG rng;

60 ecc_key key;

61

62 /* Generate new ecc key */

63 printf("initializing the rng\n");

64 ret = wc_InitRng(&rng);

65 if (ret != 0) goto fail;

88

A.12 certgen_su_server.c

66

67 printf("Generating a new ecc key\n");

68 //Initialize key

69 ret = wc_ecc_init(&key);

70 if (ret != 0) goto fail;

71

72 //Create Key

73 ret = wc_ecc_make_key(&rng, 32, &key);

74 if (ret != 0) goto fail;

75

76 //Convert key to der to save it later

77 ret = wc_EccKeyToDer(&key, keyBuf, FOURK_SZ);

78 if (ret < 0) goto fail;

79

80 printf("Successfully created new ecc key\n");

81

82 /* Create a new certificate using header information from der cert */

83 //Initialize the certificate

84 wc_InitCert(&newCert);

85

86 printf("Generating secret and hash for Novomodo\n");

87

88 byte* hash = malloc(32);

89 byte* data = malloc(32);

90

91 generateNovomodo(&rng, hash, data, newCert.daysValid);

92

93 printf("Secret: ");

94 printByteAsHexa(data);

95

96 printf("Hash: ");

97 printByteAsHexa(hash);

98

99 printf("Setting new cert issuer to subject of signer\n");

100

101 //Add some X.509 information to the certificate

102 strncpy(newCert.subject.country, "DE", CTC_NAME_SIZE);

103 strncpy(newCert.subject.state, "NDS", CTC_NAME_SIZE);

104 strncpy(newCert.subject.locality, "Gifhorn", CTC_NAME_SIZE);

105 strncpy(newCert.subject.org, "IAV", CTC_NAME_SIZE);

106 strncpy(newCert.subject.unit, "TD-S1", CTC_NAME_SIZE);

107 strncpy(newCert.subject.commonName, "Software Update Server", CTC_NAME_SIZE);

108 strncpy(newCert.subject.email, (char *) hash, 32);

109 newCert.isCA = 0;

110 newCert.sigType = CTC_SHA256wECDSA;

111

89

A Practical Implementation

112 //Set issuer (the root certificate)

113 ret = wc_SetIssuerBuffer(&newCert, rootBuf, rootBufSz);

114 if (ret != 0) goto fail;

115

116 //Create the certificate

117 ret = wc_MakeCert(&newCert, derBuf, FOURK_SZ, NULL, &key, &rng); //ecc certificate

118 if (ret < 0) goto fail;

119

120 printf("MakeCert returned %d\n", ret);

121

122 //Self sign it

123 ret = wc_SignCert(newCert.bodySz, newCert.sigType, derBuf, FOURK_SZ,

124 NULL, &rootKey, &rng);

125 if (ret < 0) goto fail;

126

127 derBufSz = ret;

128

129 printf("Successfully created new certificate\n");

130

131 /* write the new cert to file in der format */

132 printf("Writing newly generated certificate to file \"%s\"\n",

133 newCertOutput);

134 file = fopen(newCertOutput, "wb");

135 if (!file) {

136 printf("failed to open file: %s\n", newCertOutput);

137 goto fail;

138 }

139

140 ret = (int) fwrite(derBuf, 1, derBufSz, file);

141 fclose(file);

142 printf("Successfully output %d bytes\n", ret);

143

144 /* convert the der to a pem and write it to a file */

145 {

146 char pemOutput[] = "./certs/su-cert.pem";

147 int pemBufSz;

148

149 printf("Convert the der cert to pem formatted cert\n");

150

151 pemBuf = (byte*) XMALLOC(FOURK_SZ, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER);

152 if (pemBuf == NULL) goto fail;

153

154 XMEMSET(pemBuf, 0, FOURK_SZ);

155

156 pemBufSz = wc_DerToPem(derBuf, derBufSz, pemBuf, FOURK_SZ, CERT_TYPE);

157 ret = pemBufSz;

90

A.12 certgen_su_server.c

158 if (pemBufSz < 0) goto fail;

159

160 printf("Resulting pem buffer is %d bytes\n", pemBufSz);

161

162 file = fopen(pemOutput, "wb");

163 if (!file) {

164 printf("failed to open file: %s\n", pemOutput);

165 goto fail;

166 }

167 fwrite(pemBuf, 1, pemBufSz, file);

168 fclose(file);

169 printf("Successfully converted the der to pem. Result is in: %s\n\n",

170 pemOutput);

171 }

172

173 /* write the new key to file in der format */

174 printf("Writing newly generated key to file \"%s\"\n", newKeyOutput);

175 file = fopen(newKeyOutput, "wb");

176 if (!file) {

177 printf("failed to open file: %s\n", newKeyOutput);

178 goto fail;

179 }

180

181 ret = (int) fwrite(keyBuf, 1, FOURK_SZ, file);

182 fclose(file);

183 printf("Successfully output %d bytes\n", ret);

184

185 /* Add the hash to sqlite table */

186 DecodedCert dcert;

187 InitDecodedCert(&dcert, derBuf, derBufSz, HEAP_HINT);

188

189 ret = ParseCert(&dcert, CERT_TYPE, NO_VERIFY, 0);

190 if (ret != 0) goto fail;

191

192 int idx = 19;

193 int length;

194 const byte *datePtr = NULL;

195 byte format;

196

197 wc_GetDateInfo(dcert.source, dcert.maxIdx, &datePtr, &format, &length);

198

199 struct tm before;

200 ExtractDate(dcert.beforeDate, format, &before, &idx);

201

202 printf("Before Date: %s\n", asctime(&before));

203

91

A Practical Implementation

204 printf("Serial: ");

205

206 printByteAsHexa(dcert.serial);

207

208 printf("Adding certificate to Novomodo table\n");

209 sqlite3 *db;

210 openDatabase(&db);

211 addSecretValueCert(db, newCert, data, hash, before);

212 closeDatabase(db);

213

214 goto success;

215

216 fail:

217 printf("Failure code was %d\n", ret);

218 return -1;

219

220 success:

221 printf("Generation successful\n");

222 return 0;

223 }

92

	Introduction
	Background
	Car2car & car2x communication
	Cryptography
	Encryption
	Cryptographic hash function
	Elliptic curves
	Random number generators

	Related Work
	Common literature
	PKI for smart metering
	Secure Vehicle Communication

	PKI Challenges
	Revocation of certificates
	Certification revocation lists (CRLs)
	OCSP
	Certification revocation trees (CRTs)
	Novomodo
	Short lifetime
	Comparison

	Compromise of the private key
	Perspective car
	Perspective CA

	Distribution of certificates

	Benchmark
	Building the libraries
	Generating data
	Scenarios
	ECC-Key generation
	ECC certificate generation
	ECC certificate signing request generation
	ECC CSR signature/certificate generation
	Verify certificate
	Extract ECC public key from certificate
	ECC signature of 1024 random bits
	Verify ECC signature of 1024 random bits
	SHA2-256 hashing of 256 random bits

	Conclusion

	Practical Implementation
	Challenges
	Communication
	Architecture
	Conclusion

	Conclusion
	Summary
	Discussion and open problems

	References
	Practical Implementation
	Output
	automotive-client.c
	novmodo-server.c
	software-update-server.c
	certificate-manager.c
	certificate-validity-check.c
	connection-worker.c
	hasher.c
	sqlite-worker.c
	certgen_root.c
	certgen_automotive.c
	certgen_su_server.c

