UNIVERSITAT ZU LUBECK

Low-Resource Eclipse Attacks on Alternative Ethereum Clients

Leichtgewichtige Eclipse Angriffe auf Alternative Ethereum Clients

Bachelorarbeit

im Rahmen des Studiengangs
IT-Sicherheit
der Universitat zu Liibeck

vorgelegt von
Gordon Dahlke

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

Liibeck, den 9. Oktober 2019

Abstract

In this thesis, we explore the possibilities of eclipse attacks on Parity Ethereum, a popular
client for the Ethereum network. Eclipse attacks separate a network participant from the
rest of the network, making him vulnerable to further attacks. We achieve an eclipse by
overloading the victim with attacker connections, rendering it unable to fetch information
from other network participants. This results in us being the victim’s only source of infor-
mation. Next, we show that table poisoning attacks are possible on Parity Ethereum: We
insert our own adversarial network information into the network tables of victim clients
in an efficient and controlled manner. Besides providing detailed information about the
circumstances under which these attacks are successful, we also present uses for eclipse
attacks, taking into account the amount of cryptocurrency controlled by the adversary.

1ii

Kurzreferat

In dieser Arbeit analysieren wir Parity Ethereum, einen bekannten Ethereum Client, auf
Schwachstellen, die EclipseE]Angriffe ermoglichen. Eclipse Angriffe trennen einen Netz-
werkteilnehmer von dem Rest des Netzwerks und dienen so als Grundlage fiir weitere
Angriffe. Wir erreichen eine Eclipse durch Uberlastung des Opfer-Clients mit Verbindun-
gen, die von Angreifern ausgehen. So kann sich der angegriffene Client keine Informa-
tionen mehr von anderen Netzwerkteilnehmern einholen und die Angreifer sind seine
einzige Informationsquelle. Danach zeigen wir, dass sogenannte Table Poisoning An-
griffe auf Parity Ethereum Clients moglich sind: Wir fiigen unsere eigenen Verbindungs-
daten effizient und kontrolliert in die Netzwerktabelle der Opfer-Clients ein. Aufder de-
taillierten Informationen tiber die Umstidnde, die solche Angriffe ermoglichen, zeigen wir
auch, woftir Eclipse Angriffe in Abhdngigkeit von der Menge Kryptowdhrung, die der
Angreifer kontrolliert, genutzt werden kénnen.

!deutsch: Finsternis

Erklarung

Ich versichere an Eides statt, die vorliegende Arbeit selbststindig und nur unter Be-

nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Libeck, 9. Oktober 2019

Vii

Acknowledgements

We E] would like to thank Professor Eisenbarth, Ida Bruhns, Jan Wichelmann, Thore
Tiemann and Gorka Irazoqui for their great support during this project and for making
the security-related courses of our studies not only informative, but also very interesting.
We are also very grateful for our parents” support throughout our whole lives. Finally,
we would like to thank the Docker developers, the Ethereum founders and the Parity
Ethereum developers as well as Yuval Marcus, Ethan Heilman and Sharon Goldberg [26]
for making this thesis possible.

We included a list of useful software we appreciate in

2Please refer to the title page for information on who “we” are.

ix

Contents

1__Introduction 1
LI RelatedWorkl 2
[1.1.1 ~ General Peer-to-Peer (P2P) Networks| 2

MIZ2Z BICOIMl - - - v oot ot e e e e e 2

(.13 Ethereuml 3

(1.2 RoomforResearchl 3
(1.3 Eclipse Attack Setup| oo L. 4
1.4 PerformancewithDocked 5
(1.5 ProjectGoals|. 5

[2 Classical Uses of Eclipse Attacks| 7
2.1 DoubleSpending| o 00 L. 7
2.2 Transaction Malleability Attacks on Bitcoin| 7
2.3 Transaction Malleability Attacks on Ethereum| 8
[2.4 Transaction Drop Attacks on Ethereum| 8

|3 Usefulness of Eclipse Attacks for a Fundless Attacker| 9
BI1 ProofofWorkl 9
3.2 Can an Eclipse Attacker Print Money?| 10
3.2.1 Three Year Eclipse| 10

322 MiningPools| o oo 10

B23 PowerCostsl. 11

|4 Eclipse Attacks on Parity Ethereum| 15
.1 The Sunshine Setup: Package Leaflet{ 15
42 Good Weatherin Dockerland] 15
4.3 Mixed Weather in Parityland] 16
431 FreshStartl. 17

3.2 Averageloel 17

4.3.3 Taking BreaksisBad| 0. 17

434 Wrong Forecasts| 17

4.3.5 Differences to Go Ethereum and “Low-Resource Eclipse Attacks on |

[Ethereum’s Peer-to-Peer Network™ 18

xi

Contents

4.3.6 Serving the Victim| . . .

@.3.7 Taking Docker out of the Equation|

]

Table Poisoning|

...............

xii

6.1 Summary|.
[6.2 Discussion and Open Problems|

21
21
21
22
23
23
24
25

27
27
27

33

35

1 Introduction

In this thesis we will analyze the Parity Ethereum clientEIfor vulnerabilities allowing low-

resource eclipse attacks. Parity Ethereum is a client for the Ethereum network, which in

turn provides the Ethereum cryptocurrency. It claims to be “the fastest and most advanced

Ethereum client”, “built for mission-critical use” serving “miners, service providers, and

exchanges” [22]. Because of these claims and its popularity, it will be interesting to analyze

Parity Ethereum for critical security vulnerabilities regarding eclipse attacks. An eclipse

attack separates a network participant (the victim) from other network participants, mak-

ing the attacker the only peer of the victim, allowing the attacker to manipulate the way

the victim perceives the network and information stored and exchanged therein. Here is

an example of a practical misuse of eclipse attacks:

8.

. Merchant Alice is selling physical apples for Ether.

. Eve uses 50 own Ethereum clients to eclipse Alice by monopolizing all connections

of Alice’s Ethereum client. (Now Eve has control over Alice’s view of upcoming

transactions.)

. Eve sends Alice five Ether, while sending those exact same five Ether to herself again

(double-spending).

Eve broadcasts the first transaction to Alice, while broadcasting the second transac-
tion to the regular Ethereum network.

. The network accepts and validates Eve’s second transaction, while Alice only sees

Eve’s first transaction and hands five apples to Eve.

. Eve leaves with the five apples.

. If Alice later uneclipses herself and broadcasts Eve’s first transaction to the Ethereum

network, it will be rejected because Eve’s second transaction is already validated.

Now Eve has both the Ether and the apples, while Alice has no Ether and no apples.

Shttps://github.com/paritytech/parity-ethereum

https://github.com/paritytech/parity-ethereum

1 Introduction

1.1 Related Work

This thesis is inspired by the 2018 paper “Low-Resource Eclipse Attacks on Ethereum’s Peer-
to-Peer Network” by Marcus, Heilman and Goldberg [26]. In the paper, low-resource eclipse
attacks on the Geth (Golang Ethereum) clientﬁ (versions prior to 1.8) were analyzed. Three

eclipse attack vectors were identified:

1. Connection Monopolization: An attacker can quickly fill up all possible connections
of a restarting node with many node ids, using only two nodes himself.

2. Table Owning (or Table Poisoning): An adversary can use special node ids to make
a restarting victim connect to him on its own.

3. Time Manipulation: Manipulation of a victim’s local clock via attacks on the Net-
work Time Protocol (NTP) could make it eclipse itself.

These findings were then shared with the Geth developers, who incorporated some eclipse
attack countermeasures in Geth version 1.8. Some exploitable design decisions in the Geth
client remain unchanged. Groundwork for current eclipse attacks and more related papers
follow in the next subsections.

1.1.1 General Peer-to-Peer (P2P) Networks

Douceur presents “Sybil attacks” “in which a small number of entities counterfeit multiple
identities so as to compromise a disproportionate share” of a p2p system in his 2002 paper
[6]. The possible impact of Sybil or eclipse attacks on Kademlia[49]-based networks E]
is analyzed in 2007 by Steiner et al. [42] and 2009 by Kohnen et al. [25]. In their 2002
paper [41], Sit and Morris categorize various attacks on p2p distributed hash tables (DHTs)
including routing attacks and attacks causing partitioning. In 2006, Singh et al. stress the
importance of eclipse attack countermeasures, and propose an “efficient” countermeasure
using “anonymous auditing” [40]. Castro et al. describe partitioning attacks on structured
p2p networks in 2002 [4]. They show that custom node id selection or bulk random node
id acquisition make such attacks easier / possible. Urdaneta et al. publish a Survey of DHT
Security Techniques [45] against Sybil and eclipse attacks (2011).

1.1.2 Bitcoin

A strategy called selfish mining (keeping mined blocks secret at first to maximize profit
beyond the fair share) was found to be profitable in 2013 by Eyal and Sirer [17]. Gervais et al.

*https://github.com/ethereum/go-ethereum
5The Ethereum network is based on Kademlia.

https://github.com/ethereum/go-ethereum

1.2 Room for Research

show that a selfish mining adversary “which commands less than 34% of the computing
power in the network” could (under certain circumstances) “control the entire network”
using attacks on block delivery [20] (2015). In the same year Heilman et al. publish a
paper [23] on Bitcoin eclipse attacks and countermeasures. Nayak et al. describe further
attacks combining mining attacks with eclipse attacks in 2016 [28]. In [1] (2016), Apostolaki
et al. publish partitioning attacks on the Bitcoin network that are based on “hijacks” of the
internet routing protocol BGP [47].

1.1.3 Ethereum

In early 2018, Cisco Talos published a vulnerability [43] in Alethlﬂ (a C++ Ethereum client).
This vulnerability allowed malformed JSON requests to crash the client, possibly allowing
an eclipse attack upon restart. Eclipse attacks on Ethereum along with countermeasures
are described in the 2016 tech. report by Wiist and Gervais [50]. Double-spending attacks
utilizing mining attacks and eclipse attacks are published by Natoli and Gramoli in 2017
[27]. Gencer et al. analyze the “decentralization” of Bitcoin and Ethereum in [19] (2018).

1.2 Room for Research

One important question that is not covered by previous work is the following:
Are low-resource eclipse attacks on alternative[’| Ethereum clients possible?
To answer this question, we want to

* develop an easy-to-use / easy-to-deploy eclipse attack setup (see section[1.3),

¢ and explore the possibilities of low-resource eclipse attacks on current versions of
alternative Ethereum clients.

Besides Geth, there are other Ethereum clients, for example Parity Ethereum ﬂ and Aleth ﬂ
These may also have vulnerabilities that allow low-resource eclipse attacks. (For example,
one open GitHub issue for Parity Ethereum [21} open as of 6th Oct. 2019] references the
paper mentioned above.) Because Parity Ethereum is the only alternative client with a
non-negligible usage share (Go Ethereum 75.4% and Parity Ethereum 23.5% E[), analyzing
it for the connection monopolization vulnerability will be our first goal.

®https://github.com/ethereum/aleth

"unofficial / non-reference

®https://github.com/paritytech/parity—ethereum

9https ://github.com/ethereum/aleth

Oon 27th March 2019 [15] / for current client usage stats see https://etherscan.io/nodetracker

https://github.com/ethereum/aleth
https://github.com/paritytech/parity-ethereum
https://github.com/ethereum/aleth
https://etherscan.io/nodetracker

1 Introduction
1.3 Eclipse Attack Setup

To further familiarize ourselves and others with eclipse attacks, we developed the model
depicted on figure Without the eclipse attack (figure , the victim (III) would fill
up its connection slots (II) with connections to regular Ethereum nodes (I). But during an
eclipse attack (figure [I.2), the attacker fills all victim connection slots with connections
to attacker nodes (IV). If the victim is only connected to attacker nodes, the attacker can
manipulate the victim’s view of the blockchain (and transactions therein) to his liking.

IT - Connections

IIT - Victim

Figure 1.1: Standard Scenario

5 O O @)
-1V - Attacker Nodes

IT - Connections

IIT - Victim

Figure 1.2: Eclipse Attack Scenario

1.4 Performance with Docker

We will realize this model with the following Parity Ethereum Docker containers running
as light clients E on our local machine (see section for details regarding Docker):

* one victim node (III)
e n attacker nodes (IV)

After a vulnerability is found, the nodes will be separated to multiple machines to validate
the vulnerability with real network latency. Our usage of light clients rules out active
manipulations of the victim’s view of the blockchain, because light client attacker nodes
can only deny the victim access to information about the blockchain, while they can not
serve the victim relevant information (see section [4.1).

1.4 Performance with Docker

Docker || is a virtualization / containerization tool that allows simultaneous operation
of multiple instances of Ethereum clients on a single host, although these clients are de-
signed to operate one at a time. To test whether the scheme described above is realizable
with many nodes, we used Docker-Compose H to start 100 isolated E instances of Parity
Ethereum on our local machine with an 4-core i5 and 8 GB of RAM running Ubuntu 18.04.
The processor and RAM were not maxed out during idle operation of these 100 nodes.
This suggests that our testing scheme is indeed realizable with enough nodes to simulate
a realistic environment (even on a single machine).

1.5 Project Goals

1. Create a flexible, easy-to-use Docker setup (see section[I.3).

2. Attack a Parity Ethereum victim client utilizing the Docker setup in a realistic envi-
ronment (with victim and attacker clients on separate machines).

3. Test Parity Ethereum for other vulnerabilities like table poisoning.

13 faster synchronization mechanism [33]
Phttps://www.docker.com/
Bhttps://docs.docker.com/compose/

“Each client was configured to not communicate with any other client.

https://www.docker.com/
https://docs.docker.com/compose/

2 Classical Uses of Eclipse Attacks

This chapter spotlights attacks that are enhanced by a victim being eclipsed, although the
attacks can be carried out on a non-eclipsed victim with a smaller success probability.

2.1 Double Spending

A successful eclipse attack will allow the attacker to perform a double spending attack
of at least the amount of ether he actually controls. If the attacker controls 100 ether and
buys a car for 100 ether (double spending those to himself), the car salesman now thinks
that he received 100 ether, and the attacker has no ether left. To be able to spend his ether
again during the same eclipse attack, the attacker would have to convince the salesman
that the double spending transaction was accepted, while the original attacker—salesman
transaction was declined by the network. This would open up two possibilities: The
salesman could either realize that he was betrayed, ending or even reverting the attack,
or not realize this, and the attacker could repeat the aforementioned steps over and over,
accumulating more and more goods, independent of his ether credit.

2.2 Transaction Malleability Attacks on Bitcoin

These are the attacks associated with the Bitcoin exchange Mt. Gox [5]].

Signed Bitcoin transactions can be altered, creating equivalent transactions with different
hashes [5]. This makes the following attack possible (notice how the roles of the vendor
and client are switched): The attacker sells a car to the victim, which in turn publishes a
transaction transferring 100 ether from the victim to the attacker. The attacker publishes
a modified version of this transaction, resulting in a different transaction hash, and man-
ages to get the network to accept his modified version, rejecting the original transactionE}
The victim checks the hash of the original transaction and sees that it was rejected. This
opens up two possibilities: Either the victim simply rebroadcasts the original transac-
tion, preventing exploitation by the attacker, or the victim creates another, non-equivalent
transaction to pay the attacker and actually transfers different funds. The second pos-
sibility would result in the attacker being paid two times (or more times, if the attacker
successfully repeats the attack).

5This step is trivial if the victim is eclipsed and broadcasts all transactions through (only to) the attacker.

2 Classical Uses of Eclipse Attacks

2.3 Transaction Malleability Attacks on Ethereum

This section is shorter than the last one, because a fundamentally different transaction
design removes the possibility of such attacks on Ethereum [44]. But Ethereum users (just
like Bitcoin users) may be vulnerable to even simpler attacks described in the following

section.

2.4 Transaction Drop Attacks on Ethereum

They work as follows: The attacker sells goods to an eclipsed victim, which in turn pub-
lishes a transaction paying the attacker 100 ether. The attacker shares the transaction with
the main network, but convinces the victim that its transaction was dropped. Now, a nor-
mal victim would rebroadcast the first transaction, giving the attacker no advantage. But
if the attacker tricks the victim into publishing another, non-equivalent transaction, the
attacker can also “redeem” the second transaction with the main network, and get paid

two (or more) times.

3 Usefulness of Eclipse Attacks for a Fundless Attacker

This chapter discusses how an attacker without ether credit, and thus unable to perform
classical attacks out-of-the-box, may still profit from eclipse attacks. This is made possible
by an exploitation of the difficulty adjustment algorithm, which will be explained below.

Ethereum is still E] using a Proof of Work consensus algorithm, as opposed to a
Proof of Stake algorithm. In simple terms: Proof of Work uses a lot E] of computational
power to validate transactions and generate reward currency (proportional to compu-
tational power). In Proof of Stake, participants can vote with their money on what they
consider valid or invalid transactions, and thereby also generate rewards (proportional to
staked currency).

3.1 Proof of Work

The work of a so-called Ethereum miner consists of the following (simplified) steps:
1. Check whether some new transactions are valid or invalid.

2. Try to find a new block including those transactions. The chance of finding such a
block is m per try. With more computational power, a miner can execute more

tries per time unit.

3. Publish the block and claim the reward if no other miner was faster. Start over with
step 1 again.

The difficulty from step 2 is tweaked for each new block to achieve a desired average
block finding time. In June 2019, for example, the average block finding time was about
13.2 seconds [14]. If some miners stopped trying to find new blocks (less computational
power in the whole network, less total tries), this time would go up (less total tries, more
time needed to find a block with a given difficulty), but eventually settle down again
(because the difficulty would decline as well) @ Simplified and taken to the extreme:

18estimatedly until January 2020 [10]

17 According to Digiconomist, Bitcoin and Ethereum Proof of Work calculations combined consume more
electricity than countries like Chile, the Philippines or Austria. [11]

Go Ethereum’s implementation of this algorithm (note that the “difficulty bomb” was ig-
nored in our simplified explanation): https://github.com/ethereum/go-ethereum/blob/
4c90efdf57ce87edf0d855c8cecl10525875a6abl/consensus/ethash/consensus.go

https://github.com/ethereum/go-ethereum/blob/4c90efdf57ce87edf0d855c8cec10525875a6ab1/consensus/ethash/consensus.go
https://github.com/ethereum/go-ethereum/blob/4c90efdf57ce87edf0d855c8cec10525875a6ab1/consensus/ethash/consensus.go

3 Usefulness of Eclipse Attacks for a Fundless Attacker

If all except a single miner would stop their work, this single miner would eventually find
a new block every 13.2 seconds on average.

3.2 Can an Eclipse Attacker Print Money?

If an attacker with no ether credit manages to eclipse a victim, this may not be of much
use for him because even for double-spending, the attacker needs to have some ether to
double-spend. To test whether an attacker could exploit the difficulty adjustment from
the last section and efficiently mine blocks during an eclipse attack, we ran Python sim-
ulations based on Go Ethereum’s aforementioned implementation (uncle blocks H can be
ignored in this single-miner scenario). All simulations are based on real values collected
between June 11 and 13, 2019. Each scenario was simulated at least ten times and the me-
dian 20% (regarding total mined reward) of those simulations were selected. From these
selected simulations, we chose the one with the smallest sum of squared block time devia-
tion from each found block to the next one. These simulations assume that mined reward
ether can be spent instantly. While Ethereum does not have a maturity rule like bitcoin
[2], Ethereum clients may wait for n additional blocks on top of block z before they accept
spending the coinbase transaction of block x. A value of 10 for n is mentioned by Vitalik
Buterin [3].

3.2.1 Three Year Eclipse

The first simulation illustrates that an attack by a single person without ether credit will
most likely be impractical: Even if the attacker owns 10 AMD Radeon RX 570 graphics
cards (worth approx. USD 1340 [7] [16]), and manages to eclipse a victim for three whole
years, he may have only mined approx. USD 6100 during this time. The mining difficulty
and his rewards are plotted in figure

3.2.2 Mining Pools

Because solo mining m is greatly based on luck, miners often unite their computational
power to find blocks and split rewards on success E-l According to [24, 11th June 2019],
one such pool had a hash rate of 44.89 terahashes per second (hashes per second = tries
per second). If someone used this much computational power to mine blocks during an

“Uncle blocks are blocks that were not chosen to be part of the main chain (i.e. because a competing block
was published faster), but are instead acknowledged by future miners and thus partially rewarded [37].

?so0lo mining means mining alone / not as part of a pool

?INote that this does not make mining more lucrative with time going against infinity, but it rather makes
mining income more steady.

10

3.2 Can an Eclipse Attacker Print Money?

eclipse attack, he could print ether worth thousands to millions of USD. This is summa-
rized in table 3.1along with referenced figures.

3.2.3 Power Costs

While some countries have relatively low electricity costs compared to Germany, elec-
tricity costs have to be taken into account for eclipse mining calculations. Electricity
costs for the preceding scenarios are displayed in table 3.2 with the following assump-
tions for the power usage calculation: The mining pool consists of RX 570s only, using
150 watts each [35]. Additional power consumption from computers or cooling is ig-
nored. USD per kWh values are taken from https: //www.globalpetrolprices.com/
electricity_prices/ [8] June 2018]. For the Reward/Cost-Column, it is assumed that
all mined Ether can be exchanged for goods during the eclipse attack.

The Reward/Cost-Column in table 3.2|illustrates the great impact of electricity costs on
the economic benefit of eclipse attacks. While a three-year eclipse attack with 10 RX 570s
would result in a financial loss for the attacker in Germany and the UK, it would lead to
a financial gain in the USA, China and Egypt. A 24-hour eclipse attack using a mining
pool consisting of RX 570s would provide a small financial gain for an attacker located in
Germany, while an attacker located in Egypt would generate Ether worth more than 17
times the electricity cost.

Table 3.1: Block Rewards Generated During an Eclipse Attack (Pool Hash Power)

Eclipse Attack Duration Mining Reward Fig.

1 hour 45.000 USD

3 hours 150.000 USD
6 hours 370.000 USD
12 hours 980.000 USD
24 hours 2.600.000 USD

11

https://www.globalpetrolprices.com/electricity_prices/
https://www.globalpetrolprices.com/electricity_prices/

3 Usefulness of Eclipse Attacks for a Fundless Attacker

Difficulty

Difficulty

lel5
2.00
...... -
175
1.50 5000
a
3
1.25 4000 5
]
1.00 3
) 3000 £
3
0.75 =
2000
0.50
0.25 1000
0.00 0
0.0 0.2 0.4 0.6 0.8
Seconds le8
Figure 3.1: Three Years of Eclipse Solo
Mining with Ten Budget
Graphics Cards
lel5
| 160000
2.00
[140000
175
[120000
1.50
3
125 100000 =]
B
:
1.00 80000 3
3
075 60000 £
. =
0.50 40000
0.25 20000
0.00
0 2000 4000 6000 8000 10000
Seconds

I = = = N
o N o ~ =3
o o o o S

Difficulty

o
S
a

lel5
40000
g
30000 £l
°
s
=
93
4
20000 ©
33
=
=
10000
0
0 500 1000 1500 2000 2500 3000 3500
Seconds

Figure 3.2: One Hour of Eclipse Mining

with Pool Hash Power

1e15
2.00
I 350000
175
I 300000
150 _
I 250000 3
2
5125 S
] I 200000 &
£ 100 &
©
I 150000 &
0.75 £
0.50 I 100000
0.25 I 50000
0.00
0 2500 5000 7500 10000 12500 15000 17500 20000

Seconds

Figure 3.3: Three Hours of Eclipse Mining Figure 3.4: Six Hours of Eclipse Mining with
with Pool Hash Power

12

Pool Hash Power

3.2 Can an Eclipse Attacker Print Money?

lel5 lel5
1000000
2.00 2.00 2500000
1.75 1.75
800000
2
1.50 1.50 000000
a a
E B
1.25 600000 = 1.25 =
2 T z 1500000 B
3 g 3 g
£ 1.00 K] £ 1.00 g
o s}
400000 8 3
2 1000000 £
0.75 s 0.75 <
0.50 0.50
200000 500000
0.25 0.25
0.00 0 0.00
0 5000 10000 15000 20000 25000 30000 35000 40000 0 10000 20000 30000 40000 50000 60000 70000 80000
Seconds Seconds

Figure 3.5: Twelve Hours of Eclipse Mining Figure 3.6: Twenty-Four Hours of Eclipse
with Pool Hash Power Mining with Pool Hash Power

13

3 Usefulness of Eclipse Attacks for a Fundless Attacker

Table 3.2: Electricity Costs of Eclipse Mining in Different Countries:
USD 100 Mining Reward and USD 50 Electricity Cost =
Reward/Cost Ratio of 100/50 = 2

14

Country Mining Hardware Duration ~ Electricity Cost Reward / Cost
Germany 10x RX 570 3 Years 13 000 USD 0.47
Pool of RX 570s 1 Hour 100 000 USD 0.43
Pool of RX 570s 3 Hours 310 000 USD 0.48
Pool of RX 570s 6 Hours 630 000 USD 0.59
Pool of RX 570s 12 Hours 1 300 000 USD 0.78
Pool of RX 570s 24 Hours 2 500 000 USD 1.04
UK 10x RX 570 3 Years 8 300 USD 0.74
Pool of RX 570s 1 Hour 66 000 USD 0.68
Pool of RX 570s 3 Hours 200 000 USD 0.75
Pool of RX 570s 6 Hours 400 000 USD 0.93
Pool of RX 570s 12 Hours 800 000 USD 1.23
Pool of RX 570s 24 Hours 1 600 000 USD 1.63
USA 10x RX 570 3 Years 5100 USD 1.19
Pool of RX 570s 1 Hour 41 000 USD 1.09
Pool of RX 570s 3 Hours 120 000 USD 1.22
Pool of RX 570s 6 Hours 250 000 USD 1.50
Pool of RX 570s 12 Hours 490 000 USD 1.99
Pool of RX 570s 24 Hours 990 000 USD 2.64
China 10x RX 570 3 Years 3200 USD 1.93
Pool of RX 570s 1 Hour 25 000 USD 1.78
Pool of RX 570s 3 Hours 76 000 USD 1.98
Pool of RX 570s 6 Hours 150 000 USD 2.44
Pool of RX 570s 12 Hours 300 000 USD 3.23
Pool of RX 570s 24 Hours 610 000 USD 4.28
Egypt 10x RX 570 3 Years 790 USD 7.74
Pool of RX 570s 1 Hour 6 300 USD 7.12
Pool of RX 570s 3 Hours 19 000 USD 791
Pool of RX 570s 6 Hours 38 000 USD 9.75
Pool of RX 570s 12 Hours 76 000 USD 12.92
Pool of RX 570s 24 Hours 150 000 USD 17.13

4 Eclipse Attacks on Parity Ethereum

Here, we present eclipse / denial-of-synchronization attacks on Parity Ethereum. We list
relevant pull requests from Parity’s GitHub repository in

4.1 The Sunshine Setup: Package Leaflet

The two following sections and describe attacks which block a victim node from
accessing the Ethereum network. Apart from subsection they do not include an
active adversary serving the victim relevant information.

External nodes” knowledge of the victim’s IP address and node id were ignored in our
testing, although eclipse attacks may be harder to accomplish if external nodes have al-
ready exchanged information with the victim during the preceding test runs, even if the
victim client is resetted before each run.

Before subsection we used the parity_netPeers E JSON-RPC method, only
viewing the victim as eclipsed if it has not completed the handshake with any normal
node. This strict requirement was loosened starting from subsection where a more
fine-grained analysis allowed us to view the victim as eclipsed if it does not receive light
protocol request responses |7_31 even if it receives certain light protocol messages that contain
information about the blockchain state, for example message type 0 (status) containing
“the hash of the best [...] known block”. Thus, an eclipsed victim may still receive infor-
mation that could be used to check whether something is wrong during an eclipse attack.

4.2 Good Weather in Dockerland

We implemented the attack scenario from figure [1.2 as proposed in section The re-
sult is a Docker-Compose setup that is called Sunshine (sunshine probably helps against
eclipse attacks). The Attacker Nodes (IV) from the scenario figure are running on a desk-
top machine, and the victim is running on a notebook. These two computers are connected
wirelessly via a router, with no additional hardware in between. Fifty attacker nodes and
the standard victim peer range of twenty-five to fifty are used [29]. All nodes are Parity
Ethereum version 2.4.5, which is the latest stable release on 14th May 2019 [32], and are

22https ://wiki.parity.io/JSONRPC-parity-module.html?g=traceTransaction#
parity_netpeers
“https://wiki.parity.io/The-Parity-Light-Protocol- (PIP) #request-response

15

https://wiki.parity.io/JSONRPC-parity-module.html?q=traceTransaction#parity_netpeers
https://wiki.parity.io/JSONRPC-parity-module.html?q=traceTransaction#parity_netpeers
https://wiki.parity.io/The-Parity-Light-Protocol-(PIP)#request-response

4 Eclipse Attacks on Parity Ethereum

based on the Docker Hub image @ which is in turn based on Ubuntu 16.04.6 LTS (Xenial
Xerus) El The victim has port 30303 for peer-to-peer networking open for both TCP and
UDP, although the standard router configuration disables incoming access from the inter-
net to the victim host. The victim is also configured to be unaware of its public IP address,
which is the standard configuration, although awareness could be realized with a service
like Ipify m An attack counts as successful if the victim client is eclipsed on startup and
stays eclipsed for at least five minutes. On the other hand, an attack is unsuccessful if the
victim client establishes a connection (completes the handshake) with any normal node
during the first five minutes after startup. Five minutes were chosen because that would
probably be enough time to execute a real-world attack like the one mentioned in chapter
Additionally, one would expect a smart Ethereum client to detect that it is only con-
nected to useless nodes (providing no relevant information about the blockchain) during
a duration of five minutes, and force connections to other peers.

To ease the communication between the victim and attacker host, and also preserve statis-
tics after container restarts, we used the official Redis Docker image E} Redis @ is a key-
value store that is easy to set up and provides various convenience methods. Redis was
integrated into our Python code with redis—py

4.3 Mixed Weather in Parityland

Our testing led to different results depending on the victim synchronization state. The
results are summarized in table 4.1}and described in the following subsections.

Table 4.1: Success Probabilities of Eclipse Attacks in Different Scenarios

Last Victim Synchronization Probability of Successful Attack

Never / First Start 100 %
Last Sync < 7 days ago 0 %
Last Sync > 7 daysago 35 %

Mhttps://hub.docker.com/r/parity/parity/

®The latest Parity images on Docker Hub are still based on Ubuntu 16 on October 7, 2019.
Bhttps://www.ipify.org/

271’1ttps ://hub.docker.com/_/redis

®https://redis.io/

Pnttps://pypi.org/project/redis/

16

https://hub.docker.com/r/parity/parity/
https://www.ipify.org/
https://hub.docker.com/_/redis
https://redis.io/
https://pypi.org/project/redis/

4.3 Mixed Weather in Parityland

4.3.1 Fresh Start

A fresh victim client (just downloaded / first start) performed worst, and was eclipsed
every time (20/20). The fresh client knows no other network participants (except the
bootnodes) and accepts the incoming attacker connections. It does not connect to any
normal node (whose IP address and further info could be obtained from a bootnode), even
though the attacker nodes do not provide any valuable information about the blockchain
state.

4.3.2 Average Joe

A typical Parity client is probably synchronized, and therefore immune to our eclipse
attacks. We repeatedly tested with a fresh client that was synchronized and then restarted.
This led to an attack success rate of zero (0/20). Our next test consisted of an attack
on a victim client that was synchronized, turned off for half a week (3.5 days) and then
restarted. This also led to an eclipse rate of zero (0/20).

4.3.3 Taking Breaks is Bad

Clients that were synchronized but went offline for a week were prone to eclipse attacks
with a non-negligible success rate of 35% (7/20). This is possibly due to a mechanism
regarding Parity’s NodeTable: Information about nodes that have been contacted (suc-
cessfully or not) more than a week ago is discarded, and only nodes that have not been
contacted yet are kept [31].

4.3.4 Wrong Forecasts

The successful eclipse attack on a fresh client is not realistic, because the attacker needs
to know the victim’s enode public key during the victim’s first start, but this key is just
generated during the victim’s start. Thus, the attacker has no way of knowing it before-
hand. The Parity Wiki [34] lists two ways to obtain the enode public keys: By RPC or by
monitoring the victim’s console output. Both ways do not fit into the attack scenario. This
makes our attack on paused clients from the last subsection the only successful and realistic
attack. If the attacker knows the victim’s IP address and the victim has connected to the
Ethereum network at least once, the attacker may be able to look up the victim’s public
key with a node explorer, for example https://www.ethernodes.org/. Alternatively,
the attacker could run such a service himself, collecting as many public key / IP address
pairs as possible.

17

https://www.ethernodes.org/

4 Eclipse Attacks on Parity Ethereum

4.3.5 Differences to Go Ethereum and “Low-Resource Eclipse Attacks on
Ethereum’s Peer-to-Peer Network”

Go Ethereum is not vulnerable to a simple connection monopolization attack anymore,
because it forces outgoing connections [26]. The success of our attack proves that Parity
does not successfully force any outgoing connections, implying that Parity does not force
outgoing connections before allowing incoming ones. Parity’s behavior does not have
to originate from a design flaw, but could also arise from a general application overload
caused by the attacker clients, resulting in unspecified behavior.

According to [26] section II C], an attacker needs to maintain maxpeers connections to a
Go Ethereum victim in order to eclipse it. Our testing shows that a standard @IParity light
client victim only performs 29-33 handshakes @ with attacker nodes (50 in total) during
the five-minute testing period. This indicates that an eclipsed Parity light victim is not

connected to max_peers nodes in total.

4.3.6 Serving the Victim

Light clients do not fetch blockchain information from other light clients, only from full
clients [38]. To test whether our setup can be used to serve the victim actual information
about the blockchain state, we added three full attacker nodes and updated our setup
to Parity version 2.6.2 beta. These full nodes did not need to be up-to-date, because we
configured the victim client to start its synchronization at block zero instead of a hard-
coded higher block El This drastically reduces setup time as well as storage require-
ments. We started our eclipse attack just like before (only with light attacker nodes). Then
we launched the full attacker nodes and stopped some light nodes to allow connections
between the full nodes and the victim. This resulted in a proof of our attack concept: We
verified ﬁ that the victim did only get light protocol request responses ﬁfrom attacker nodes.
The victim was allowed to receive other messages as described in section

4.3.7 Taking Docker out of the Equation

To check whether our attacks are only possible on victim clients running as Docker con-
tainers, we proceeded our testing with the victim client running directly on the host OS

®min_peers = 25, max_peers = 50 [29]

*'These numbers are still valid if the victim is running without Docker. Three tests in the context of subsection
showed 33, 34 and 33 handshakes.

2With the -no-hardcoded-sync CLI flag. |https://wiki.parity.io/Configuring-Parity-
Ethereumf#fcli-options—-for-parity-ethereum-client

*With the t cpdump packet sniffer.

34Message Type 3 https://wiki.parity.io/The-Parity-Light-Protocol- (PIP) #request-
response

18

https://wiki.parity.io/Configuring-Parity-Ethereum#cli-options-for-parity-ethereum-client
https://wiki.parity.io/Configuring-Parity-Ethereum#cli-options-for-parity-ethereum-client
https://wiki.parity.io/The-Parity-Light-Protocol-(PIP)#request-response
https://wiki.parity.io/The-Parity-Light-Protocol-(PIP)#request-response

4.3 Mixed Weather in Parityland

(Ubuntu 19.04 Disco Dingo). First, we measured the time that passes before a non-attacked
victim client receives its first request response. To reduce the impact of previous tests on the
current one, we randomized the node id before each test. Our findings are displayed in
table ranging from 0 seconds to 2 minutes and 5 seconds, with a mean value of 41.8
seconds. These results confirm that repeated 5 minute eclipse periods are enough to prove
that something is wrong with a Parity Ethereum client. The next setup consisted of 50 light
attacker clients running as Docker containers on one host, and a light victim client running
without Docker on another host. We performed ten test runs, changing the victim node
id before each run. Every time, the victim client stayed eclipsed for the whole test dura-
tion of 5 minutes, proving that our attack is not only successful on victim clients running
as Docker containers, but also on victim clients running directly on the host OS. Lastly,
we ruled out general network overload (router or host) as a factor leading to the victim’s
eclipse: While the victim (running without Docker) was attacked by 50 light clients, we
started three light clients (running as Docker containers) on the victim host. These three
clients were fetching blockchain information from other network peers while the victim
was eclipsed, showing that the whole network stack was intact and responsive.

Table 4.2: Time Spent Before the First Request Response Is Received

Test#: 1 2 3 4 5 6 7 8 9 10 O
Time in Seconds: 61 0 21 16 17 52 125 25 91 10 41.8

19

5 Table Poisoning

The way Parity handles peer discovery ﬁ allows, at least theoretically, so-called table poi-
soning attacks: An adversary tries to insert his own (poisonous) nodes into the victim’s
node table. If he succeeds, the victim may later connect to the adversary by itself, easing
attacks like connection monopolization.

5.1 Setup

Parity Ethereum has the ability to print verbose logs for many sub-modules @ This al-
lowed us to write a log analyzer in Python, generating and printing a live view of Parity’s
internal state. We ported relevant code to Python and developed a manager that generates
attacker node ids on-the-fly and inserts them into a Redis queue, giving multiple attacker
clients access to them. We started with Parity Ethereum version 2. 6.2-beta, the latest
Docker Hub m release on 13th September 2019.

5.1.1 Details

A Parity node can be identified by several related attributes:

¢ Secret Key: This 256 bit / 32 byte key can be passed to the client using the
--node-key CLI option (hex formatted). If no key is passed to the client and
the client starts for the first time, a key will be randomly generated and saved to
network/key [l This saved key will be loaded when the client is restarted and no
other key is specified.

* Public Key / Node ID: This 512 bit key is calculated by multiplying the secret key
with the base point of the “Bitcoin” elliptic curve secp256k1 [39] (Python: [18]).

e ID Hash: The 256 bit Keccak hash of the public key (Python: [46]).

Bucket insertion is based on the distance () function which returns the base two loga-
rithm of the xor distance between the own id hash and the inserted node’s id hash. See
tables[5.T]and 5.2] for example distance values.

See [prendix C|for more details.
®nttps://wiki.parity.io/FAQ#how-can—i-make-parity-ethereum-write-logs
37https ://hub.docker.com/r/parity/parity/tags

%0n Linux, the network directory is located in ~/.local/share/io.parity.ethereum.

21

https://wiki.parity.io/FAQ#how-can-i-make-parity-ethereum-write-logs
https://hub.docker.com/r/parity/parity/tags

5 Table Poisoning

Table 5.1: distance () Examples Table 5.2: More distance () Examples
IDHash A IDHashB distance/() IDHash A IDHashB distance ()
0x0 0x0 None 0x0 Oxf...f 255
0x0 O 0 0x80...0 255
0x0 0x2 1
0x3 1 0x0 Ox7f...f 254
0x0 Ox4 2
0x7 2
0x0 0x8 3

5.2 Local Networking Done Wrong

To test our setup in a controlled environment (and to reduce avoidable network load on
regular Ethereum nodes), we instructed both the attackers and the victim to restrict out-
bound connections to local IPs [’} Our attack did not work in this environment: Although
the light client victim was importing blocks from full attacker nodes, not a single attacker

id was inserted into the victim’s table.

The following log snippets that appeared together repeatedly gave a hint:

Starting discovery, Starting round Some (0), Completing discovery

If the victim’s peer discovery process finishes instantly, not a single bucket is filled. Source
code instrumentation revealed: There are no nearest nodes at the beginning of the discovery
loop @ (because nearest_node_entries () @ returns zero nodes). Thus, the loop is
skipped and discovery is stoppedlﬂ But why is the discovery node table empty, although
the victim is fetching information from the local attacker nodes?

The log showed that the victim tried to ping each attacker at the default discovery port
30303. Because the attacker clients were running in Docker containers without published
ports on the attacker host, the victim’s pings did not reach anyone and expired.

39Using the ——allow-ips=private CLI option: https://wiki.parity.io/Configuring-Parity-
Ethereumficli-options—for-parity-ethereum-client
“https://github.com/paritytech/parity-ethereum/blob/6la7c30ed5a093c7c2a26a93
aebled5fda3cb017/util/network—-devp2p/src/discovery.rs#L328
*https://github.com/paritytech/parity-ethereum/blob/6la7c30ed5a093c7c2a26a93
aebled5fda3cb017/util/network—-devp2p/src/discovery.rs#L325
*https://github.com/paritytech/parity-ethereum/blob/6la7c30ed5a093c7c2a26a93
aebled5fda3cb017/util/network—devp2p/src/discovery.rs#L342

22

https://wiki.parity.io/Configuring-Parity-Ethereum#cli-options-for-parity-ethereum-client
https://wiki.parity.io/Configuring-Parity-Ethereum#cli-options-for-parity-ethereum-client
https://github.com/paritytech/parity-ethereum/blob/61a7c30ed5a093c7c2a26a93aeb1ed5fda3cb017/util/network-devp2p/src/discovery.rs#L328
https://github.com/paritytech/parity-ethereum/blob/61a7c30ed5a093c7c2a26a93aeb1ed5fda3cb017/util/network-devp2p/src/discovery.rs#L328
https://github.com/paritytech/parity-ethereum/blob/61a7c30ed5a093c7c2a26a93aeb1ed5fda3cb017/util/network-devp2p/src/discovery.rs#L325
https://github.com/paritytech/parity-ethereum/blob/61a7c30ed5a093c7c2a26a93aeb1ed5fda3cb017/util/network-devp2p/src/discovery.rs#L325
https://github.com/paritytech/parity-ethereum/blob/61a7c30ed5a093c7c2a26a93aeb1ed5fda3cb017/util/network-devp2p/src/discovery.rs#L342
https://github.com/paritytech/parity-ethereum/blob/61a7c30ed5a093c7c2a26a93aeb1ed5fda3cb017/util/network-devp2p/src/discovery.rs#L342

5.3 Local Networking Done Right-ish

5.3 Local Networking Done Right-ish

To address these issues, we assigned each attacker client a unique port on the attacker
host and instructed the clients to use their new port. This resulted in partial success: The
attacker client bound to port 30303 was successfully pinged by the victim, replied with a
pong and was added to the victim’s node table. But the ping requests to the other attackers
expired. Why?

The answer is summarized in this source code comment: “We can’t know remote listening
ports, so just assume defaults and hope for the best” [*°| For each attacker that was not bound
to port 30303, Parity still assumed port 30303 and directed its ping request there. This
resulted in the attacker on port 30303 getting all requests and answering all requests, but
only a single reply was deemed valid by the victim, and all other replies were labeled
unexpected because their node id did not match the expected node id.

Parity’s behavior is somewhat incomprehensible because Parity manages to fetch
blockchain information from the most exotic ports, but always directs its pings to port
30303. But this protects Parity from a simple table poisoning attack using an unmodified
Parity Ethereum client [** although an attack using a heavily modified Parity client or a
program imitating Parity’s peer-to-peer behavior seems viable.

The findings from this section were confirmed using a victim client with all outgoing
connections allowed, although seemingly random ping / pong drops that could lead to
the removal of an attacker node from the victim’s table were witnessed.

5.4 Modified Attacks

To test whether the aforementioned attack using a modified Parity client is possible, we
modified Parity version 2.6.3 beta according to table First of all, we instructed the
attacker to (slowly) cycle through a set of node ids, pinging the victim each time. The
victim then sent a ping message to the attacker. Because the attacker needed to answer
these messages with the right node id to get into the victim’s node table, we utilized two
different strategies: Answer the ping with the last node id (most likely the right one; con-
figurations A and B), or answer the ping with every node id (definitely including the right
one; configurations C and D). These two strategies led to the same results (a minimum
of six concurrent attacker table entries with ten attacker node ids and a minimum of zero

entries with thirty ids). To stay in the victim’s node table, we also needed to answer the

Bhttps://github.com/paritytech/parity-ethereum/blob/05£9606bf2fc9fb51a7dd303
3d9fc2ceb5fla2e9/util/network-devp2p/src/host.rs#L793

*Simply cycling through many node ids with a single attacker client will not suffice, because the old node
ids need to stay online to be able to accept a connection from the victim and to reply to victim messages.

23

https://github.com/paritytech/parity-ethereum/blob/05f9606bf2fc9fb51a7dd3033d9fc2ce55f1a2e9/util/network-devp2p/src/host.rs#L793
https://github.com/paritytech/parity-ethereum/blob/05f9606bf2fc9fb51a7dd3033d9fc2ce55f1a2e9/util/network-devp2p/src/host.rs#L793

5 Table Poisoning
victim’s FindNode requests with the right node id, so we chose to answer each FindNode

request once for every node id Iﬂ We made a last distinction between two sets of node
ids, one containing ten node ids, and the other containing thirty node ids.

Table 5.3: Parity Ethereum Source Code Modifications

Configuration: A B C D
Sends Attacker Pings with: Multiple Cycling Node IDs
Answers Victim Pings with: Last Node ID All Node IDs
Answers Victim FindNode Requests with: All Node IDs
Number of Attacker Node IDs: 10 30 10 30
Concurrent Attacker Table Entries (minimum): 6 0 6 0

Our testing indicates that this attack scheme (one attacker client with many node ids) is
not feasible, because generally each attacker node id needs to stay live@to stay inside the
victim’s node table. B and D, the configurations with a thirty node id set, show that simply
spamming answers is not the way to go, because both configurations dropped to zero
attacker node ids in the victim’s table during our testing. The “working” configurations
A and C dropped to six attacker node ids, which is also far from a satisfactory result.

5.5 Separate IPs

To resume our testing with one IP per attacker, we started a Docker-Compose setup with
victim and attackers on the same host. Docker assigned the victim and each attacker
container a unique local IP address. Each Parity client was instructed to connect to local
IP addresses only.

A test run with 150 attackers resulted in the victim inserting 64 of them into its node
table, before all those containers rendered our system (along with Docker’s network stack)
unusable. As a shutdown of all containers freed up system resources, the victim inserted
6 additional attacker ids into its table before exiting itself.

To test whether the inserted attacker node ids stay in the victim’s table, we repeated our
test. This time, we started only 50 attacker containers to ensure a (relatively) responsive
system. All 50 attackers were quickly inserted into the victim’s node table, and most of
them stayed there for the test duration of one hour. Only 5 removals and re-insertions did

We instructed the attacker to always return the current node id as the only known “neighbor”.
*The attacker cannot determine the right node id from a victim request, because requests like Ping and
FindNode do not include a recipient node id.

24

5.6 Persistent Poison

occur, with a minimum of 48 attacker nodes always staying in the table. We verified that
our attack works with a “normal” victim by lifting the victim’s restriction and allowing
outgoing connections to all peers. The result was better than before: All 50 attackers
stayed in the victim’s node table for one hour, without a single removal. But is there a
realistic use case for our attack, where every attacker needs a separate IP address?

Many IP addresses can be obtained by having many cheap devices, like the USD 10 Rasp-
berry Pi Zero W [36]. But even acquiring many cheap devices will quickly exceed the
financial bounds of a low-resource attack. There is another possibility to obtain many IP
addresses: By simulating many devices, for example using MAC spoofing. This could al-
low an adversary to bind many IP addresses to a single computer. Then he could pass
incoming victim packets to Docker containers running Parity, or modify Parity to map
target IPs to node ids.

5.6 Persistent Poison

We validated that our poisonous table entries persist between normal docker container
restarts using a two-phase test. Phase 1: We used 20 poisonous attacker clients to insert
their node ids into the victim’s table. We stopped the attacker and victim containers after
that was accomplished. Phase 2: We restarted the victim only and checked its network
log. It indicated that the victim sent pings to our attacker nodes. Because our attacker
nodes were offline during the second phase, they could not influence the victim, proving
that the attacker entries in the victim’s node table persisted between restarts of the victim

container.

25

6 Conclusions

6.1 Summary

After providing an introduction into our thesis in chapter|l}, we spotlighted uses of eclipse
attacks like double spending in chapter[2| Because a low-resource attacker may also have
a low amount of Ether to spend, we analyzed the impact of Ethereum’s difficulty adjust-
ment algorithm on mining rewards during an eclipse attack (chapter 3). We also took
electricity costs in different countries into account. Chapter [contains the heart of our
thesis: eclipse attacks on Parity Ethereum. We showed that eclipse attacks are possible
on new clients and on clients that have been offline for at least a week. While we heav-
ily relied on Docker for most of our tests, we verified that eclipse attacks can not only
be performed on victim clients running as Docker containers. In chapter 5, we showed
that Parity’s networking algorithms allow table poisoning attacks, in which an adversary
inserts his own node ids into the victim’s internal node table. We hope that our findings
will not only help the Parity Ethereum developers in securing their client, but also benefit
future researchers analyzing it.

6.2 Discussion and Open Problems

As explained in subsection [4.3.4 our attack on a new client relies on the attacker’s knowl-
edge of the victim’s node id, which will most likely only be generated during the first
start of the victim client. This makes our attack less dangerous, to say the least. Further
research could result in attacks that overcome this obstacle, for example by combining the
eclipse attack with an attack on the JSON-RPC or other APIs which could leak the victim's
node id to the attacker.

While a full-fledged eclipse attack with faked transactions, miners confirming them in
fake blocks etc. was out of scope for this thesis, further research and collaboration with
the Parity Ethereum developers could result in advanced measures against eclipse attacks
(beyond simple network rules).

There are also many possibilities to extend our table poisoning attack: Creative setups
utilizing local network attacks like MAC spoofing (see section leave plenty of room
for additional research. If the basic eclipse vulnerability from chapter [4 is fixed, multi-
phase attacks utilizing table poisoning can be developed without accidentally eclipsing

27

6 Conclusions

the victim with many poisonous attackers.

Speaking of fixing: The focus of our work was on attacking Parity Ethereum. However,
locating and fixing the vulnerability that allows eclipse attacks is also an important task.
The removal of vulnerabilities that allow table poisoning is a more complex topic, because
there is a direct correlation between desired traits of Ethereum clients and their vulnera-

bility to table poisoning [26} section V].

28

References

[1] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking Bitcoin: Routing
Attacks on Cryptocurrencies. arXiv:1605.07524 [cs], May 2016. arXiv: 1605.07524.
URL:http://arxiv.org/abs/1605.07524

[2] Protocol rules - Bitcoin Wiki, June 2019. URL: https://web.archive.org/web/
20190624153749/https://en.bitcoin.it/wiki/Protocol_rules.

[3] Vitalik Buterin. On Slow and Fast Block Times, September 2015. URL: https:
//web.archive.org/web/20190624155458/https://blog.ethereum.org/
2015/09/14/on-slow—and-fast-block-times/!

[4] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S. Wal-
lach. Secure Routing for Structured Peer-to-peer Overlay Networks. SIGOPS Oper.
Syst. Rev., 36(51):299-314, December 2002. URL: http://doi.acm.org/10.1145/
844128.844156,d01:10.1145/844128.84415¢6.

[5] Christian Decker and Roger Wattenhofer. Bitcoin transaction malleability and mtgox.
In Mirostaw Kutylowski and Jaideep Vaidya, editors, Computer Security - ESORICS
2014, pages 313-326, Cham, 2014. Springer International Publishing.

[6] John R. Douceur. The Sybil Attack. In Peter Druschel, Frans Kaashoek, and Antony
Rowstron, editors, Peer-to-Peer Systems, Lecture Notes in Computer Science, pages
251-260. Springer Berlin Heidelberg, 2002.

[7] SAPPHIRE Pulse Radeon AMD RX 570 4gb Gddr5 OC giinstig kaufen | eBay,
June 2019. URL: https://web.archive.org/web/20190613115355/https:
//www.ebay.de/p/SAPPHIRE-Pulse—-Radeon-AMD-RX-570-4gb-Gddr5-0C/
14028844310211d=173890059372.

[8] Electricity prices around the world, June 2018 | GlobalPetrolPrices.com, June
2019. URL: https://web.archive.org/web/20190620204657/https://

www.globalpetrolprices.com/electricity_prices/.

[9] Ether — Ethereum Homestead 0.1 documentation. URL: |http://
www.ethdocs.org/en/latest/ether.html.

29

http://arxiv.org/abs/1605.07524
https://web.archive.org/web/20190624153749/https://en.bitcoin.it/wiki/Protocol_rules
https://web.archive.org/web/20190624153749/https://en.bitcoin.it/wiki/Protocol_rules
https://web.archive.org/web/20190624155458/https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://web.archive.org/web/20190624155458/https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
https://web.archive.org/web/20190624155458/https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/
http://doi.acm.org/10.1145/844128.844156
http://doi.acm.org/10.1145/844128.844156
http://dx.doi.org/10.1145/844128.844156
https://web.archive.org/web/20190613115355/https://www.ebay.de/p/SAPPHIRE-Pulse-Radeon-AMD-RX-570-4gb-Gddr5-OC/14028844310?iid=173890059372
https://web.archive.org/web/20190613115355/https://www.ebay.de/p/SAPPHIRE-Pulse-Radeon-AMD-RX-570-4gb-Gddr5-OC/14028844310?iid=173890059372
https://web.archive.org/web/20190613115355/https://www.ebay.de/p/SAPPHIRE-Pulse-Radeon-AMD-RX-570-4gb-Gddr5-OC/14028844310?iid=173890059372
https://web.archive.org/web/20190620204657/https://www.globalpetrolprices.com/electricity_prices/
https://web.archive.org/web/20190620204657/https://www.globalpetrolprices.com/electricity_prices/
http://www.ethdocs.org/en/latest/ether.html
http://www.ethdocs.org/en/latest/ether.html

References

[10] Ethereum 2.0’s Phase Zero Scheduled to Launch on January 3, 2020: Devs, July
2019. URL: https://web.archive.org/web/20190701124455/https:
//cointelegraph.com/news/ethereum—-20s—-phase-zero—scheduled-to-

launch—-on-january—-3-2020-devs.

[11] Ethereum Energy Consumption Index (beta) - Digiconomist, June 2019.
URL: https://web.archive.orqg/web/20190613102532/https://

digiconomist.net/ethereum-energy—-consumption.

[12] Introduction — ENS 0.1 documentation. URL: https://docs.ens.domains/en/
latest/introduction.htmll

[13] Ethereum Project. URL: https://www.ethereum.org/.

[14] Ethereum Average Block Time Chart, May 2019. URL: https://
web.archive.org/web/20190508121409/https://etherscan.io/chart/
blocktime.

[15] Ethereum Node Tracker, March 2019. URL: https://web.archive.org/web/
20190327163104/https://etherscan.io/nodetracker.

[16] 1190 EUR to USD | Convert Euro to US-Dollar | XE, June 2019. URL:
https://web.archive.org/web/20190613115708/https://www.xe.com/

de/currencyconverter/convert/?Amount=1.190&From=EUR&To=USD.

[17] Ittay Eyal and Emin Gun Sirer. Majority is not Enough: Bitcoin Mining is Vulnerable.
arXiv:1311.0243 [cs], November 2013. arXiv: 1311.0243. URL: http://arxiv.org/
abs/1311.0243\

[18] fastecdsa — fastecdsa 1.7.4 documentation, September 2019.
URL: https://web.archive.org/web/20190925080938/https:
//fastecdsa.readthedocs.io/en/latest/fastecdsa.html#
fastecdsa.keys.get_public_key.

[19] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Giin
Sirer. Decentralization in Bitcoin and Ethereum Networks. arXiv:1801.03998 [cs],
January 2018. arXiv: 1801.03998. URL: http://arxiv.org/abs/1801.03998.

[20] Arthur Gervais, Hubert Ritzdorf, Ghassan O. Karame, and Srdjan Capkun. Tamper-
ing with the Delivery of Blocks and Transactions in Bitcoin. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security - CCS 15, pages
692-705, Denver, Colorado, USA, 2015. ACM Press. URL: http://dl.acm.org/
citation.cfm?doid=2810103.2813655,doi1:10.1145/2810103.2813655.

30

https://web.archive.org/web/20190701124455/https://cointelegraph.com/news/ethereum-20s-phase-zero-scheduled-to-launch-on-january-3-2020-devs
https://web.archive.org/web/20190701124455/https://cointelegraph.com/news/ethereum-20s-phase-zero-scheduled-to-launch-on-january-3-2020-devs
https://web.archive.org/web/20190701124455/https://cointelegraph.com/news/ethereum-20s-phase-zero-scheduled-to-launch-on-january-3-2020-devs
https://web.archive.org/web/20190613102532/https://digiconomist.net/ethereum-energy-consumption
https://web.archive.org/web/20190613102532/https://digiconomist.net/ethereum-energy-consumption
https://docs.ens.domains/en/latest/introduction.html
https://docs.ens.domains/en/latest/introduction.html
https://www.ethereum.org/
https://web.archive.org/web/20190508121409/https://etherscan.io/chart/blocktime
https://web.archive.org/web/20190508121409/https://etherscan.io/chart/blocktime
https://web.archive.org/web/20190508121409/https://etherscan.io/chart/blocktime
https://web.archive.org/web/20190327163104/https://etherscan.io/nodetracker
https://web.archive.org/web/20190327163104/https://etherscan.io/nodetracker
https://web.archive.org/web/20190613115708/https://www.xe.com/de/currencyconverter/convert/?Amount=1.190&From=EUR&To=USD
https://web.archive.org/web/20190613115708/https://www.xe.com/de/currencyconverter/convert/?Amount=1.190&From=EUR&To=USD
http://arxiv.org/abs/1311.0243
http://arxiv.org/abs/1311.0243
https://web.archive.org/web/20190925080938/https://fastecdsa.readthedocs.io/en/latest/fastecdsa.html#fastecdsa.keys.get_public_key
https://web.archive.org/web/20190925080938/https://fastecdsa.readthedocs.io/en/latest/fastecdsa.html#fastecdsa.keys.get_public_key
https://web.archive.org/web/20190925080938/https://fastecdsa.readthedocs.io/en/latest/fastecdsa.html#fastecdsa.keys.get_public_key
http://arxiv.org/abs/1801.03998
http://dl.acm.org/citation.cfm?doid=2810103.2813655
http://dl.acm.org/citation.cfm?doid=2810103.2813655
http://dx.doi.org/10.1145/2810103.2813655

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

References

Improvements to discovery implementation - Issue #8757 - paritytech/parity-
ethereum. URL: |https://github.com/paritytech/parity—ethereum/
issues/8757.

GitHub - paritytech/parity-ethereum: The fast, light, and robust EVM and WASM
client., August 2019. URL: https://web.archive.org/web/20190813074353
/https://github.com/paritytech/parity—ethereum.

Sharon Goldberg, Aviv Zohar, Alison Kendler, and Ethan Heilman. Eclipse Attacks
on Bitcoin’s Peer-to-Peer Network. In Eclipse Attacks on Bitcoin’s Peer-to-Peer Network,
pages 129-144, 2015. URL: https://www.usenix.org/node/190891.

Ethereum Mining Pools Rating | Investoon, June 2019. URL: https:
//web.archive.orqg/web/20190611112329/https://investoon.com/

mining_pools/ethl

Michael Kohnen, Mike Leske, and Erwin P. Rathgeb. Conducting and Optimiz-
ing Eclipse Attacks in the Kad Peer-to-Peer Network. In Luigi Fratta, Henning
Schulzrinne, Yutaka Takahashi, and Otto Spaniol, editors, NETWORKING 2009, Lec-
ture Notes in Computer Science, pages 104-116. Springer Berlin Heidelberg, 2009.

Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-resource eclipse attacks
on ethereum’s peer-to-peer network. IACR Cryptology ePrint Archive, 2018:236, 2018.

Christopher Natoli and Vincent Gramoli. The Balance Attack or Why Forkable
Blockchains are Ill-Suited for Consortium. In 2017 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 579-590, Denver, CO,
USA, June 2017. IEEE. URL: http://ieeexplore.ieee.org/document /8023
156/,/doi:10.1109/DSN.2017.44.

K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn Mining: Generalizing Self-
ish Mining and Combining with an Eclipse Attack. In 2016 IEEE European Sympo-
sium on Security and Privacy (EuroS P), pages 305-320, March 2016. doi:10.1109/
Eurosp.2016.32.

Parity Config Generator, June 2019. URL: https://web.archive.org/web/
20190619145320/https://paritytech.github.io/parity—-config-

generator/.

Parity Ethereum - util/network-devp2p/src/host.rs#L761, August 2019. original-
date: 2015-11-23T11:07:327Z. URL: https://github.com/paritytech/parity—

31

https://github.com/paritytech/parity-ethereum/issues/8757
https://github.com/paritytech/parity-ethereum/issues/8757
https://web.archive.org/web/20190813074353/https://github.com/paritytech/parity-ethereum
https://web.archive.org/web/20190813074353/https://github.com/paritytech/parity-ethereum
https://www.usenix.org/node/190891
https://web.archive.org/web/20190611112329/https://investoon.com/mining_pools/eth
https://web.archive.org/web/20190611112329/https://investoon.com/mining_pools/eth
https://web.archive.org/web/20190611112329/https://investoon.com/mining_pools/eth
http://ieeexplore.ieee.org/document/8023156/
http://ieeexplore.ieee.org/document/8023156/
http://dx.doi.org/10.1109/DSN.2017.44
http://dx.doi.org/10.1109/EuroSP.2016.32
http://dx.doi.org/10.1109/EuroSP.2016.32
https://web.archive.org/web/20190619145320/https://paritytech.github.io/parity-config-generator/
https://web.archive.org/web/20190619145320/https://paritytech.github.io/parity-config-generator/
https://web.archive.org/web/20190619145320/https://paritytech.github.io/parity-config-generator/
https://github.com/paritytech/parity-ethereum/blob/66e4410be72da38dd001b7ad6c9e99b18cfae9ad/util/network-devp2p/src/host.rs#L761
https://github.com/paritytech/parity-ethereum/blob/66e4410be72da38dd001b7ad6c9e99b18cfae9ad/util/network-devp2p/src/host.rs#L761

References

[35]

[36]

[37]

[38]

[39]

32

ethereum/blob/66e4410be72da38dd001b7ad6c9e99b18cfae9ad/util/
network—-devp2p/src/host.rs#L761.

Parity-ethereum: util/network-devp2p/src/node_table.rs, June 2019. original-date:
2015-11-23T11:07:32Z7. URL: https://github.com/paritytech/parity-
ethereum/blob/1786b6eedda88clabe87b5ee’cd8c013515ecebec/util/
network—-devp2p/src/node_table.rs#L328l

Releases - paritytech/parity-ethereum - GitHub, May 2019. URL: https:
//web.archive.org/web/20190514143523/https://github.com/

paritytech/parity—ethereum/releases!

Parity Documentation - Light Client. URL: http://wiki.parity.io/Light-
Client.html.

Demo PoA-Tutorial - Parity Tech Documentation, June 2019. URL: https:
//web.archive.orqg/web/20190619150936/https://wiki.parity.io/
Demo—-PoA-tutorial.html.

Radeon RX 580 und RX 570 im Test: AMDs Grafikkarten sind schneller und
sparsamer - Golem.de, June 2019. URL: https://web.archive.org/web/
20190620205546/https://www.golem.de/news/radeon—-rx—580-und-rx—
570-im-test—-amds—grafikkarten—-sind-schneller-und-sparsamer-—
1704-127204.html.

Raspberry Pi Zero W ID: 3400 - $10.00 : Adafruit Industries, Unique & fun DIY
electronics and kits, September 2019. URL: https://web.archive.org/web/
20190925162019/https://www.adafruit.com/product/3400.

Fabian Ritz and Alf Zugenmaier. The impact of uncle rewards on selfish mining in
ethereum. CoRR, abs/1805.08832,2018. URL: http://arxiv.org/abs/1805.0883
2,arxXiv:1805.08832

Thibaut Sardan. What is a light client and why you should care?, July 2018. URL:
https://www.parity.io/what-is—a-light-client/.

Secp256k1 - Bitcoin Wiki, September 2019. URL: https://web.archive.org/web/
20190925080902/https://en.bitcoin.it/wiki/Secp256kl.

Atul Singh, Tsuen wan ‘Johnny” Ngan, Peter Druschel, and Dan S. Wallach. Eclipse
attacks on overlay networks: Threats and defenses. In In IEEE INFOCOM, 2006.

https://github.com/paritytech/parity-ethereum/blob/66e4410be72da38dd001b7ad6c9e99b18cfae9ad/util/network-devp2p/src/host.rs#L761
https://github.com/paritytech/parity-ethereum/blob/66e4410be72da38dd001b7ad6c9e99b18cfae9ad/util/network-devp2p/src/host.rs#L761
https://github.com/paritytech/parity-ethereum/blob/66e4410be72da38dd001b7ad6c9e99b18cfae9ad/util/network-devp2p/src/host.rs#L761
https://github.com/paritytech/parity-ethereum/blob/1786b6eedda88c1a6e87b5ee7cd8c013515ece6c/util/network-devp2p/src/node_table.rs#L328
https://github.com/paritytech/parity-ethereum/blob/1786b6eedda88c1a6e87b5ee7cd8c013515ece6c/util/network-devp2p/src/node_table.rs#L328
https://github.com/paritytech/parity-ethereum/blob/1786b6eedda88c1a6e87b5ee7cd8c013515ece6c/util/network-devp2p/src/node_table.rs#L328
https://web.archive.org/web/20190514143523/https://github.com/paritytech/parity-ethereum/releases
https://web.archive.org/web/20190514143523/https://github.com/paritytech/parity-ethereum/releases
https://web.archive.org/web/20190514143523/https://github.com/paritytech/parity-ethereum/releases
http://wiki.parity.io/Light-Client.html
http://wiki.parity.io/Light-Client.html
https://web.archive.org/web/20190619150936/https://wiki.parity.io/Demo-PoA-tutorial.html
https://web.archive.org/web/20190619150936/https://wiki.parity.io/Demo-PoA-tutorial.html
https://web.archive.org/web/20190619150936/https://wiki.parity.io/Demo-PoA-tutorial.html
https://web.archive.org/web/20190620205546/https://www.golem.de/news/radeon-rx-580-und-rx-570-im-test-amds-grafikkarten-sind-schneller-und-sparsamer-1704-127204.html
https://web.archive.org/web/20190620205546/https://www.golem.de/news/radeon-rx-580-und-rx-570-im-test-amds-grafikkarten-sind-schneller-und-sparsamer-1704-127204.html
https://web.archive.org/web/20190620205546/https://www.golem.de/news/radeon-rx-580-und-rx-570-im-test-amds-grafikkarten-sind-schneller-und-sparsamer-1704-127204.html
https://web.archive.org/web/20190620205546/https://www.golem.de/news/radeon-rx-580-und-rx-570-im-test-amds-grafikkarten-sind-schneller-und-sparsamer-1704-127204.html
https://web.archive.org/web/20190925162019/https://www.adafruit.com/product/3400
https://web.archive.org/web/20190925162019/https://www.adafruit.com/product/3400
http://arxiv.org/abs/1805.08832
http://arxiv.org/abs/1805.08832
http://arxiv.org/abs/1805.08832
https://www.parity.io/what-is-a-light-client/
https://web.archive.org/web/20190925080902/https://en.bitcoin.it/wiki/Secp256k1
https://web.archive.org/web/20190925080902/https://en.bitcoin.it/wiki/Secp256k1

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

References

Emil Sit and Robert Morris. Security Considerations for Peer-to-Peer Distributed
Hash Tables. In Peter Druschel, Frans Kaashoek, and Antony Rowstron, editors, Peer-
to-Peer Systems, Lecture Notes in Computer Science, pages 261-269. Springer Berlin
Heidelberg, 2002.

Mori Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Exploiting KAD:
possible uses and misuses. ACM SIGCOMM Computer Communication Review,
37(5):65, October 2007. URL: http://portal.acm.org/citation.cfm?doid=
1290168.1290176,/do1:10.1145/1290168.1290176.

TALOS-2017-0471 | | Cisco Talos Intelligence Group - Comprehensive Threat In-
telligence. URL: https://web.archive.org/web/20190113160838/https:
//www.talosintelligence.com/reports/TALOS-2017-0471.

r/ethereum - Transaction Malleability: Does Ethereum have this is-
sue? URL: https://www.reddit.com/r/ethereum/comments/309rul/

transaction_malleability_does_ethereum have_this/l

Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. A survey of
DHT security techniques. ACM Computing Surveys, 43(2):1-49, January 2011.
URL: http://portal.acm.org/citation.cfm?doid=1883612.1883615, do1i:
10.1145/1883612.1883615!

Utilities — ETH-Utils documentation, September 2019. URL:
https://web.archive.org/web/20190925083201/https://eth-
utils.readthedocs.io/en/latest/utilities.html#keccak-bytes—
int-bool-text—-str-hexstr-str-bytes.

Border Gateway Protocol, December 2018. Page Version ID:
872170057. URL: |https://en.wikipedia.org/w/index.php?title=
Border_Gateway_Protocol&oldid=872170057.

Decentralized autonomous organization, November 2018. Page Version ID:
868070421. URL: |https://en.wikipedia.org/w/index.php?title=

Decentralized_autonomous_organization&oldid=868070421.

Kademlia, November 2018. Page Version ID: 867855490. URL: https://
en.wikipedia.org/w/index.php?title=Kademlia&oldid=867855490.

Karl Wiist and Arthur Gervais. Ethereum Eclipse Attacks. Technical report, ETH
Zurich, 2016. URL: http://hdl.handle.net/20.500.11850/121310}|/doi:10.3
929/ethz-a-010724205.

33

http://portal.acm.org/citation.cfm?doid=1290168.1290176
http://portal.acm.org/citation.cfm?doid=1290168.1290176
http://dx.doi.org/10.1145/1290168.1290176
https://web.archive.org/web/20190113160838/https://www.talosintelligence.com/reports/TALOS-2017-0471
https://web.archive.org/web/20190113160838/https://www.talosintelligence.com/reports/TALOS-2017-0471
https://www.reddit.com/r/ethereum/comments/3o9ru0/transaction_malleability_does_ethereum_have_this/
https://www.reddit.com/r/ethereum/comments/3o9ru0/transaction_malleability_does_ethereum_have_this/
http://portal.acm.org/citation.cfm?doid=1883612.1883615
http://dx.doi.org/10.1145/1883612.1883615
http://dx.doi.org/10.1145/1883612.1883615
https://web.archive.org/web/20190925083201/https://eth-utils.readthedocs.io/en/latest/utilities.html#keccak-bytes-int-bool-text-str-hexstr-str-bytes
https://web.archive.org/web/20190925083201/https://eth-utils.readthedocs.io/en/latest/utilities.html#keccak-bytes-int-bool-text-str-hexstr-str-bytes
https://web.archive.org/web/20190925083201/https://eth-utils.readthedocs.io/en/latest/utilities.html#keccak-bytes-int-bool-text-str-hexstr-str-bytes
https://en.wikipedia.org/w/index.php?title=Border_Gateway_Protocol&oldid=872170057
https://en.wikipedia.org/w/index.php?title=Border_Gateway_Protocol&oldid=872170057
https://en.wikipedia.org/w/index.php?title=Decentralized_autonomous_organization&oldid=868070421
https://en.wikipedia.org/w/index.php?title=Decentralized_autonomous_organization&oldid=868070421
https://en.wikipedia.org/w/index.php?title=Kademlia&oldid=867855490
https://en.wikipedia.org/w/index.php?title=Kademlia&oldid=867855490
http://hdl.handle.net/20.500.11850/121310
http://dx.doi.org/10.3929/ethz-a-010724205
http://dx.doi.org/10.3929/ethz-a-010724205

Appendices

Appendix A: Glossary

e Ethereum is a decentralized “blockchain app platform” [13]. In contrast to Bitcoin
or Litecoin, apps can run on Ethereum using smart contracts that are executed by
miners. This allows for decentralized autonomous organizations [48], services like the
Ethereum Name Service [12] or simple apps like a coin flip gambling contract.

¢ Ether is the cryptocurrency of the Ethereum blockchain. It has multiple denomi-
nations like Wei (1078 Ether) or Gwei (10~° Ether) [9]. Ether can be sent to smart
contracts and Ethereum addresses and can also be used to pay for gas.

* Gas: “Gas Fee is effectively the amount of Gas needed to be paid to run a particular
transaction or program (called a contract).” [9] These fees are collected by miners
who perform the computations specified in smart contracts.

¢ Eclipse Attack:

“In an Eclipse attack [...], a modest number of malicious nodes conspire to
fool correct nodes into adopting the malicious nodes as their peers, with
the goal of dominating the neighbor sets of all correct nodes. If successful,
an Eclipse attack enables the attacker to mediate most overlay traffic and
effectively “eclipse” correct nodes from each other’s view. In the extreme,
an Eclipse attack allows the attacker to control all overlay traffic, enabling
arbitrary denial of service or censorship attacks.”

Eclipse Attacks on Overlay Networks: Threats and Defenses [40]

A node (network participant) is eclipsed if it is only connected to malicious nodes,
thus having no connections to the good nodes making up most of the network. The
malicious nodes can then withhold transactions from the eclipsed node, or broadcast
transactions only to the eclipsed node. Regarding Ethereum: Those transactions still
have to be cryptographically sound (valid and signed), but the funds can be double-
spent as illustrated in chapter

35

Appendices

Appendix B: Parity Ethereum Pull Requests

These are some interesting pull requests from Parity Ethereum’s GitHub repository. The

first one is directly related to “Low-Resource Eclipse Attacks on Ethereum’s Peer-to-Peer

Network” [26]. The following ones are / may be relevant for further analysis of Parity.

1.

6.

7.

Incoming Connections are limited to

max (max_peers — min_peers, min_peers / 2)

Standard Values 25 and 50 -+ max (50 - 25, 25 / 2) = 25 = min_peers
This seems to imply that the client wants 25 connections, has 25 incoming connec-
tions, and is satisfied now [29]. But Parity manages connections differently, as is

explained in

Unknown nodes are removed if table / nodes.json is too big.

. Light clients choose random peers for requests. l‘ﬂ

Light client requests timeout after 7 seconds and are then reassigned. m
Node Table is sorted by last contact. ﬂ
Full and light client have separate database directories. EI

General P2P Discovery Changes ﬁ

This Parity Substrate issue @ (open as of 6th October 2019) describes the following untar-
geted eclipse attack vector: An attacker crafts many node ids close to each other and waits.

If any node randomly picks one of the crafted node ids for discovery, the attacker could

flood this node with his crafted node ids to eclipse the node.

“nttps://github.com/paritytech/parity-ethereum/pull/8060
Bhttps://github.com/paritytech/parity-ethereum/pull/7716
Yhttps://github.com/paritytech/parity—ethereum/pull/7844
Yhttps://github.com/paritytech/parity-ethereum/pull/7848
Shttps://github.com/paritytech/parity-ethereum/pull/8541
https://github.com/paritytech/parity—ethereum/pull/9064
53https ://github.com/paritytech/parity—ethereum/pull/9526
“https://github.com/paritytech/substrate/issues/332

36

https://github.com/paritytech/parity-ethereum/pull/8060
https://github.com/paritytech/parity-ethereum/pull/7716
https://github.com/paritytech/parity-ethereum/pull/7844
https://github.com/paritytech/parity-ethereum/pull/7848
https://github.com/paritytech/parity-ethereum/pull/8541
https://github.com/paritytech/parity-ethereum/pull/9064
https://github.com/paritytech/parity-ethereum/pull/9526
https://github.com/paritytech/substrate/issues/332

Appendix C: Parity Ethereum’s Connection Management

Number of Allowed Ingress and Egress Connections

This subsection is based on Parity’s util/network-devp2p/src/host.rs module
[30]. Standard Configuration [29] implies:

®* min_peers = 25, max_peers = 50
® max_ingress = max (max_peers — min_peers, min_peers / 2)
= max (50 - 25, 25 / 2) = 25

* ingress_count is the amount of connections started by the Parity client itself.

Ingress connections are allowed if ingress_count <= max_ingress = 25.

* egress_count is the amount of connections started by another network peer.

Egress connections are allowed if egress_count <= min_peers = 25.

Thus, a standard Parity client allows 25 ingress plus 25 egress connections.

About Buckets

Discovery is initialized in Host::init_public_interface () [°] with the current
node’s public and private key pair. Notice the following assignment in the Discovery
constructor: id_hash: keccak (key.public())

To calculate the bucket mapping, Discovery: :update_bucket_record () utilizes the
Discovery: :distance () function m which operates on two id hashes. An attacker
can calculate which node ids will be inserted into a specific victim bucket, because the id
hashes are based on the victim'’s public key. Marcus, Heilman and Goldberg exploited this
vulnerability in their table poisoning attack on Geth [26]].

%5The considered source files are located in util/network—-devp2p/src/.
%6Gee subsection for further details and example values.

37

Appendices

Appendix D: Software We Are Grateful For

This section lists software we used while working on this thesis, which was not men-
tioned yet and may benefit future students and researchers.

Ethereum:

¢ Network Visualization / Status
https://github.com/cubedro/eth-netstats

¢ Parity Config File Generator
https://paritytech.github.io/parity-config-generator/

Python:

¢ JSON “Cleaner”
https://github.com/getify/JSON.minify/tree/python

¢ JSON-RPC
https://github.com/pavlov99/json-rpc

¢ Plotting Library
https://github.com/matplotlib/matplotlib

¢ Colored Terminal Output
https://github.com/tartley/colorama

Various Docker setups and dockerfiles:

¢ https://github.com/paritytech/parity—ethereum/tree/master/

scripts/docker
® https://github.com/Capgemini-AIE/ethereum—docker
® https://github.com/konradkonrad/docker—-pyeth—-cluster
Other:

¢ IATEX Table Generator

https://www.tablesgenerator.com/

e SED Command List
http://sed.sourceforge.net/sedlline.txt

38

https://github.com/cubedro/eth-netstats
https://paritytech.github.io/parity-config-generator/
https://github.com/getify/JSON.minify/tree/python
https://github.com/pavlov99/json-rpc
https://github.com/matplotlib/matplotlib
https://github.com/tartley/colorama
https://github.com/paritytech/parity-ethereum/tree/master/scripts/docker
https://github.com/paritytech/parity-ethereum/tree/master/scripts/docker
https://github.com/Capgemini-AIE/ethereum-docker
https://github.com/konradkonrad/docker-pyeth-cluster
https://www.tablesgenerator.com/
http://sed.sourceforge.net/sed1line.txt

	Introduction
	Related Work
	General Peer-to-Peer (P2P) Networks
	Bitcoin
	Ethereum

	Room for Research
	Eclipse Attack Setup
	Performance with Docker
	Project Goals

	Classical Uses of Eclipse Attacks
	Double Spending
	Transaction Malleability Attacks on Bitcoin
	Transaction Malleability Attacks on Ethereum
	Transaction Drop Attacks on Ethereum

	Usefulness of Eclipse Attacks for a Fundless Attacker
	Proof of Work
	Can an Eclipse Attacker Print Money?
	Three Year Eclipse
	Mining Pools
	Power Costs

	Eclipse Attacks on Parity Ethereum
	The Sunshine Setup: Package Leaflet
	Good Weather in Dockerland
	Mixed Weather in Parityland
	Fresh Start
	Average Joe
	Taking Breaks is Bad
	Wrong Forecasts
	Differences to Go Ethereum and "Low-Resource Eclipse Attacks on Ethereum’s Peer-to-Peer Network"
	Serving the Victim
	Taking Docker out of the Equation

	Table Poisoning
	Setup
	Details

	Local Networking Done Wrong
	Local Networking Done Right-ish
	Modified Attacks
	Separate IPs
	Persistent Poison

	Conclusions
	Summary
	Discussion and Open Problems

	References
	Appendices

