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Abstract

Privacy notions like Differential Privacy can provide provable privacy guarantees for data
accesses, however these guarantees come with a loss in utility. This results in a reluctance
to use DP mechanisms in scenarios where precise data is a necessity. Partial Knowledge
Differential Privacy tries to tackle such scenarios and provide privacy guarantees assum-
ing a weaker attacker scenario.
This thesis analyses Partial Knowledge Differential Privacy and if it really provides a gain
in utility over standard Differential Privacy notions.
To achieve this goal, we continue the research work from Arnold & Pätschke, which
constructed two different algorithms. The algorithms estimate the data distribution of
attacker background knowledge sets and use these estimations to calculate noise scale
parameters which guarantee Passive Partial Knowledge Differential Privacy results. We
show these algorithms to be correct and PPK-DP. We further evaluate the utility of them
against state-of-the-art DP algorithms by comparing the calculated scales of noise needed
to achieve similar results.
We achieve results that show that, under some assumptions about the data distribution of
databases, the provided algorithms are competitive with standard DP results, achieving
better utility for realistically sized databases while providing the same privacy guarantees
against the weaker attacker scenario. Thereby we show that Partial Knowledge Differen-
tial Privacy can provide quantitative improvements for utility, but needs further research
into it to guarantee support for generic data distributions.

iii



Zusammenfassung

Differential Privacy ist eine Eigenschaft, mit welcher nachweisbar Datenschutz für Ver-
fahren garantiert werden kann, die auf privaten Daten arbeiten. Diese garantierte Privacy
kommt jedoch mit einem inhärenten Verlust der Genauigkeit in den Ergebnissen. Dies
führt jedoch dazu, dass in Bereichen in denen präzise Daten erforderlich sind häufig DP-
Mechanismen aufgrund ihrer Ungenauigkeit nicht verwendet werden. Partial Knowledge
Differential Privacy versucht, für solche Szenarien dennoch Datenschutzgarantien unter
der Annahme eines schwächeren Angreifers zu bieten.
In dieser Arbeit wird untersucht, ob mit Partial-Knowledge Differential Privacy Verfahren
tatsächlich eine Nutzungsverbesserung über bekannte Differential Privacy Verfahren
erzielt werden kann.
Für das erreichen dieses Ziels, führen wir die Forschungsarbeit von Arnold & Pätschke
fort, in welcher zwei verschiedene Algorithmen konstruiert wurden. Die Algorithmen
schätzen die Datenverteilungen von möglichen Hintergrundwissen ab und verwenden
diese Schätzungen um additiven Noise zu skalieren. Die Ergebnisse können dann ver-
wendet werden, sodass Passive Partial Knowledge Differential Privacy Garantien gel-
ten gegenüber Angreifern, die ein schlechteres Hintergrundwissen besitzen als die Ab-
schätzung. Wir zeigen in dieser Arbeit, dass die zwei Algorithmen korrekt funktionieren
und Ausgaben liefern, die PPK-DP Eigenschaften erfüllen. Wir bewerten den Nutzen
dieser Algorithmen im Vergleich zu modernen DP-Algorithmen, indem wir die jew-
eils berechneten Rauschskalierungen vergleichen, welche für garantierte Privacy Eigen-
schaften erforderlich sind.
Wir zeigen, dass die bereitgestellten Algorithmen unter bestimmten Annahmen über die
Datenverteilung von Datenbanken mit modernen DP-Algorithmen konkurrieren können.
Wir können die selben Privacy Garantien unter Annahme eines schwachen Angreifers er-
füllen und erhalten dabei eine nachweisbare Nutzungsverbesserung. Wir zeigen damit,
dass Partial Knowledge Differential Privacy quantitative Verbesserungen im Nutzens bi-
eten kann. Es wird aber weitere Forschung benötigt, um die Unterstützung für generische
Datenverteilungen zu garantieren.
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1 Introduction

Privacy has become a more and more relevant necessity in IT settings throughout the last
decade. Especially the search for provable privacy notions has been on the rise. Differ-
ential Privacy is one such established notion of modern privacy systems in IT settings.
Differential Privacy guarantees are achieved by adding scaled noise assuming worst-case
adversaries, hiding the influence of single data points on mechanism outputs. While en-
suring privacy, adding noise results in a deterioration of utility in the results. This utility
deterioration can lead to problems in sectors where precise data is needed [7, 24], often
leading to a reluctance to implement DP strategies. This leads to the question of how to
improve the utility of deferentially private results.
In differential privacy, it is assumed that an attacker knows all the data except for one
challenge element. In most realistic settings, this over-approximates any real attacker by
a wide margin. On average, adversaries will only know some subset of the accessed data.
Suppose the possible background knowledge of all realistic adversaries would be known
or could be approximated. In that case, additive noise can be calibrated to this realistic
background knowledge instead of the over-approximation.
(Active & Passive) Partial Knowledge Differential Privacy, as introduced by Desfontaines,
Mohammadi, Krahmer, and Basin in their 2019 paper "Differential privacy with partial
knowledge" [6], tries to tackle this topic by providing a setting with verifiable models for
such weak attackers. While the theoretical setting is provided, no mechanism for achiev-
ing the specified boundaries was proposed, leaving open the question if the introduced
setting has real-world merit.
Building upon this, Arnold, Pätschke, Berndt, Mohammadi and Sommer in [1] developed
such a mechanism for passive partial knowledge settings, but only under some conjec-
tures. Their mechanism uses two algorithms to compute a noise scale parameter that
provides a passive partial knowledge differentially private output when used as σ for ad-
ditive Gaussian noise. Furthermore, as no working example of their work was provided,
an evaluation of the mechanism and the possible improvement on the utility is left unre-
solved.
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1 Introduction

1.1 Contributions

We continue the work from Arnold, Pätschke, Berndt, Mohammadi, and Sommer in [1].
We do this by

• providing a general overview of the work done so far

• reanalysing their mechanism construction

• refactor the algorithms used in the mechanism

• resolve all necessary conjectures.

We improve on the provided privacy proofs by

• improving on the structure

• providing additional proofs for assumed ground truths

We show the constructions to suffice passive partial knowledge differential privacy.
We furthermore provide working code for the mechanism. We analyse the implementa-
tion by

• discussing problems met during implementation and their solutions

• evaluating achievable results

• testing the achieved utility against currently achievable utility using a state-of-the-
art (ε, δ)-DP mechanism.

Lastly, we discuss generalisations for the usage of the mechanism.

1.2 Related Works

The topic of Partial Knowledge Differential Privacy is built upon the concepts of Differ-
ential Privacy and Noiseless Privacy. Differential Privacy as one of the standard models
of modern privacy notions is a constant in privacy research. New concepts for special use
cases are introduced, for example the work in [35] which analyses DP guarantees using
asymmetric noise distributions, while older notions are re-evaluated with new attacker
scenarios[18] or in entirely new settings [12, 25].
Noiseless privacy, and following from that partial knowledge differential privacy, how-
ever, has not received much research in recent years. Partial Differential Knowledge was
recently discussed by Desfontaines in a blog post [5] and reintroduced in the book "Guide

2



1.2 Related Works

to Differential Privacy Modifications" [26] by Pejó and Desfontaines. Besides these two
occurrences no active public research has been published since the release of the original
paper in 2019 [6].
Noiseless privacy, while also not the focus of most privacy related research, has been the
focus of two research works in the papers "Noiseless Privacy" [11] and "Development and
Analysis of Deterministic Privacy-Preserving Policies Using Non-Stochastic Information
Theory" [10] by Farokhi in 2019. The papers reintroduce into the concept of noiseless
privacy and iterate on the original concepts from 2014 by Bhaskar et al [3].
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2 Preliminaries

Privacy can, at times, be a complex concept to grasp. To introduce the topic, we use this
chapter to discuss current formal notions of privacy and their use cases. Starting with
concise definitions of databases and access mechanisms, we define the environment in
which privacy notions are considered. Afterwards, we define the concept of Differential
Privacy and Privacy Loss as currently used privacy notions on which we will iterate in
this thesis.

2.1 Basic Concepts

Before defining privacy notions used in this thesis, we first need to formally define in
which context we will be working. For this, we first discuss the assumed base setting,
data sets/databases.

Definition 2.1 (Data Set / Database).
Let X be the power set of all elements and E ∈ X a set choice of elements.
A database D is defined as an array of elements e ∈ E. We denote the ith position of a
database with D[i] and I as the set of all indices for a given database D.
The set of all possible databases is defined as D.

For conformity’s sake we’ll be using the term database throughout the thesis.
When talking about databases, we will also need to consider a way to describe if the data
has some inherent structure, if specific data points correlate with each other, or if other
compositional oddities occur in it. For this, we abstract these concepts with stochastic
distributions; from here on out, also called data distributions.

5



2 Preliminaries

Definition 2.2 (Data Distribution).
Let D be a database and E a set choice of elements.
A data distribution θ describes the element composition in D, i.e. how often each e ∈ E

exists in D, as well as possible correlations of entries.
The support of the distribution is denoted as supp(θ). It describes the set of elements
that have an occurrence probability greater than 0, i.e. the support describes the set of
all elements e that are at least once in D.
The set of all possible data distributions θ is, furthermore, denoted as Θ.

When acting in stochastic settings, we model selections from distributions as so-called ran-
dom variables. Random variables define the set of possible outputs with the occurrence
probabilities of the outputs scaled to the stochastic distribution.

Definition 2.3 (Random Variables).
Random variables are described as a measurable function over a set of evaluations O

with distribution θ. Distribution θ describes the probability with which each value in O

is assigned to the random variable.
We denote a random variable that outputs values in set O as RV (O).
The support of a random variable supp(RV (O)) is described as the subset of all evalua-
tions o ∈ O such that o ∈ supp(θ).

A database contains a given set of information that users can access. Working with
databases, we need a way to access the data contained within them. For this, we define
the concept of a query.

Definition 2.4 (Query).
Let D be a database adhering to θ ∈ Θ and I = {1, . . . , |D|} the set of all indices.
A query q is defined as an access to database D where a user may choose a subset J ⊆ I

or a subset F ⊆ E as input and learn either D[i] for all i ∈ J or i for all D[i] ∈ F .
Formally we write these two options as

q : D× I → {D[i] | i ∈ J} (2.1)

q : D× E → {i | D[i] ∈ F} (2.2)

6



2.1 Basic Concepts

In most use cases, it suffices to know how many elements in a database fulfil some con-
dition ω, rather than learning more precise information about the database [19]. For ex-
ample, it might suffice us to know that more than 10000 people live in a city rather than
learning the names, addresses, etc., of these 10000 citizens.
For such scenarios, we define a special case query that looks at each entry in a database,
counts how many data points equal a specified element or suffice some constraints, and
returns that count. We call such a query a counting query.

Definition 2.5 (Counting Query [19]).
Let D be a database and e ∈ E a user-chosen element.
A counting query q : D × E → N takes a database D and a specified element e and
returns how often that specific element is present in the database.

q(D, e) = |{i | D[i] = e}| (2.3)

If e is clear from context, we omit it.

With this, we have all the necessary definitions to describe the setting we will work in
throughout the thesis. Advancing over setting descriptions, we now need to dwell on
more complex topics.
Before we dive into privacy notions, however, we still need one more concept introduced:
noise. As we will see in the next section, most formal definitions of privacy use noise to
prove their notions of privacy.

Definition 2.6 (Noise).
We define noise as a stochastic distribution θ over the real numbers with mean µ and
variance σ, denoted by random variable N . If not otherwise specified, we assume µ = 0

and σ = 1. Adding noise to deterministic numeric outputs o ∈ O transforms the output
set to a random variable over the real numbers:

N ×O → RV (R) (2.4)

Noise can also be used over natural numbers (N) and integers (Z). For this, we only need
to round the output to the nearest valid output.
When we provide a parameter β, we consider it to be a scaling parameter for the vari-
ance, i.e. the variance to be β · σ. We formally write N (β).

7



2 Preliminaries

Common types of noise we need for privacy guarantees are Laplace noise [9] and Gaus-
sian noise [9]. Other types of noise distributions are used in practice [28, 38] but are not
discussed in this thesis.
With the basic concepts down, we can tackle formal definitions of privacy.

2.2 Formal Definitions of Privacy

Privacy as a concept has been researched for the last few decades. While, at first, not a
prevalent research field, with the ever-evolving field of information technology, privacy
has become more and more important by the day. For example, negligence regarding per-
sonal privacy in data collection and the resulting consequences [22, 4] show that provable
privacy compliance is needed more than ever.
Therefore, the raised question is how to properly provide privacy in data collection while
still allowing for data usage in data-dependent fields, like the medical sector or machine
learning.
First methods often tried anonymising data, as an example k-Anonymity [30, 34], but
were shown time and time again to fail in realistic settings [8]. Other techniques, like
access control policies [29], that provide privacy by barring access to databases entirely,
break down if we want third parties to access the data for evaluation purposes and not
simply store it.
Other approaches tried adding noise to outputs to veil the influence of elements, but, in
most cases, it was not provable if the added noise provided any privacy guarantees [13, 9].
The biggest problem with most approaches was how to formalise the problem statement
of privacy. A clear and concise model is needed, which can provide provable results even
in realistic settings.
One of the first steps to such a model is to formalise private access to databases. For this,
the concept of mechanisms was introduced as the standard model.

8



2.2 Formal Definitions of Privacy

Definition 2.7 (Mechanism [9]).
Let D ∈ D be a database and e ∈ E a challenge element.
A mechanism is a function that approximates a query result on D and e. If the used
query is a counting query, a mechanism M : D× E → RV (N) is then further defined as
a function that takes a database D ∈ D and an element e ∈ E as inputs and maps them
to the space of random variables over natural numbers RV (N).
When adding an index β to a mechanism Mβ(D, e), β is assumed a noise scale parameter
and the mechanism is assumed as a counting query on e. The mechanism Mβ(D, e) then
works by adding noise N (β) to the counting query, resulting in an output of form:

Mβ(D, e) = q(D, e) +N (β) (2.5)

Similarly to counting queries, if e is clear from context, we omit it.

Using mechanisms private database accesses can now be modelled. The next step is to
model the probability of an attacker breaking the privacy constraints given by the access
mechanism. A similar problem was discussed in the cryptographic sector a few decades
before, introducing the concept of indistinguishability and the corresponding left-right
game used to formalise it.

Remark 2.8 (Cryptographic Left-Right Game [20]).
In cryptography, the goal is to achieve provable security against poly-time attackers when
building encryption schemes. A poly-time attacker is defined as an attacker that can make
at most O(nk) calculation steps, where k is some constant. Any cipher c generated via an
encryption scheme Enc(m), where m is some message, should not provide any informa-
tion about m except for its length. The idea is to model the attacker in a worst-case sce-
nario and prove that even in such a scenario, the attackers’ advantage is only negligible in
a security parameter ρ.
In such a worst-case scenario, the attacker can specify two arbitrary messages m0, m1 of
equal length, one of which will be encrypted using Enc(·). As the messages are arbitrary,
it can be assumed that the two provided messages give the attacker the best chance of
success.
To prove the security of the encryption scheme, it is then enough to only model the two
distinct cases Enc(m0) and Enc(m1) and the probabilities with which any attacker would
answer m0 or m1 in them. The scheme is assumed to flip a coin with result b ∈ {0, 1} to
choose which message mb to encrypt and the attackers answer to consist of a b′ ∈ {0, 1}
describing which message mb′ they think was encrypted. This means we only need to

9



2 Preliminaries

Cry Adv

choose m0,m1

choose b ∈R {0, 1}
calculate c← Enc(mb)

calculate b′ ← Adv(c)

return b == b′

m0,m1

c

b′

Figure 2.1: The cryptographic Left-Right Game
The security of the encryption process Enc can be modelled as a game between
an adversary Adv and a cryptographer Cry. Adv sends two messages m0,m1

to Cry and receives the encryption of one of the two messages as a challenge
c returned. The choice of the message mb for challenge c is assumed to be
perfectly random. If Adv can discern with a non-negligible advantage which
message was chosen, then the encryption system is deemed not secure.

determine the four probabilities:

Pr
[
b′ = x|b = y

]
for x, y ∈ {0, 1} (2.6)

Choice b is assumed to be randomly chosen in the game, meaning by randomly choosing
their answer as well, all attackers’ can trivially achieve a 50% win rate. If this win rate can
now be upper-bounded for an attacker by an additive parameter negl(ρ) where

negl(ρ) <
1

2ρ
(2.7)

then the attackers’ advantage is called negligible.
If such a bound is found to hold in a worst-case scenario, then this implies for all weaker
attackers that the same bound must hold as well. The encryption scheme secure is then
deemed secure. Encryption schemes that achieve this bound are called (chosen plain-text
attack) indistinguishable.
The left-right game is visualised in Figure 2.1.

When simply transposing the left-right game to the privacy context, we get the problem
that, in the case of privacy, the requirements for such a game are way too strict. The left-
right game transposed would require that any two arbitrarily chosen databases cannot be
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distinguished from their output when queried. However, this means that all databases
would be able to produce all outputs equally likely, which breaks the utility constraints
we want to achieve.

The concept of neighbouring databases was introduced to loosen these requirements.

Definition 2.9 (Neighbouring databases).
Let D0 and D1 be two databases of equal size.
D0 and D1 are neighbouring if the databases differ at most in one element overall data
positions, meaning there exists a permutation p for database D1 such that

|{i | D0[i] ̸= D1[pi]}| ≤ 1 (2.8)

When two databases are neighbouring, we will denominate this with D0 ∼ D1.
The influence of the one differing element on the output is called the data sensitivity and
denominated with λ.

Defending only against neighbouring databases will help loosen security constraints, but
more is needed to lessen the strict guarantees of the cryptographic left-right game.

Assuming the privacy game would be the cryptographic left-right game that only needs
to hold for neighbouring databases instead of for arbitrary ones, we run into a problem.

Let adv(Di,Dj) be an attackers advantage to distinguish between databases Di and Dj .

Let us now further assume that we have databases D0, D1 and D2 with D0 ∼ D1 and
D1 ∼ D2, but D0 ̸∼ D2 and output M(D2, e) = o. With the adapted privacy game,
the advantage of any attacker to test if o was produced by M(D2) or M(D1) should be
negligible, meaning adv(D1,D2) = negl(ρ). For the test, if o was produced by M(D0) or
M(D2) this must not hold, meaning adv(D0,D2) > negl(ρ).

However, we also assumed M(D0) ∼ M(D1), meaning that the advantage between the
two databases is at adv(D0,D1) = negl(ρ).

11
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This results in the following contradiction:

Pr[M(D1, e) = o]
D1∼D2= Pr[M(D2, e) = o]︸ ︷︷ ︸

= Pr[M(D0, e) = o] + adv(D0, D2)

− adv(D1, D2)︸ ︷︷ ︸
=negl

(2.9)

D2 ̸∼D0
= Pr[M(D0, e) = o] + adv(D0, D2)− negl︸ ︷︷ ︸

=ξ>negl

(2.10)

= Pr[M(D0, e) = o] + ξ (2.11)
D0∼D1
> Pr[M(D0, e) = o] + adv(D0, D1)︸ ︷︷ ︸

=negl

(2.12)

= Pr[M(D1, e) = o] (2.13)

Even though we only force neighbouring databases to be indistinguishable, this still im-
plies that all databases need to be indistinguishable via the transitive properties shown
above. The indistinguishability requirement must, therefore, also be loosened for some-
thing less constraining.
The concept of ε-indistinguishability was introduced to solve this problem.

Remark 2.10 (ε-indistinguishability).
ε-indistinguishability, similar to the negligible constraint in the cryptographic left-right
game, bounds the advantage that any attacker could differentiate between two outputs.
Instead of an additive term of negligible size, the allowed advantage is now bounded by
a multiplicative term eε.
Let D0 and D1 be two databases, the two databases are ε−indistinguishable in regards to
a mechanism M when the probabilities of all outputs o are bounded by

eε · Pr[M(D0) = o] ≥ Pr[M(D1) = o] ≥ e−ε · Pr[M(D0) = o] (2.14)

ε-indistinguishability, together with the concepts of neighbouring databases and mecha-
nisms, build the basis for Differential Privacy.

Definition 2.11 (Differential Privacy [9]).
A mechanism M suffices ε−DP (Differential Privacy) if for any neighbouring databases
D0 and D1, the mechanism outputs M(D0) and M(D1) are ε−indistinguishable, mean-
ing for all possible outputs o it holds that

e−ε ≤ Pr[M(D0) = o]

Pr[M(D1) = o]
≤ eε (2.15)
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Standard ε−differential privacy already brings massive improvements to provable pri-
vacy but is limited by the fact that we have hard bounds that may not always be obtain-
able. A mechanism may not fulfil ε-DP norms with 1-in-a-trillion odds, despite producing
correct and differentially private outputs in all other cases. ε−differential privacy would
not support such a mechanism, despite its obvious use cases.
If we also want to consider such mechanisms, we must iterate on the definition of dif-
ferential privacy. A way to include a mechanism with low odds of leaking privacy is to
introduce a small error bound, upper bounding the probability of privacy leaking errors.
We call this error δ. To formalise this, we define (ε, δ)−Differential Privacy.

Definition 2.12 ((ϵ, δ)-Differential Privacy [9]).
A mechanism M suffices (ε, δ)−DP (Differential Privacy) if for any neighbour-
ing databases D0 and D1, the mechanism outputs M(D0) and M(D1) are (ε, δ)-
indistinguishable, meaning for all possible outputs o it holds that

Pr[M(D0) = o] ≤ eε · Pr[M(D1) = o] + δ (2.16)

and

Pr[M(D1) = o] ≤ eε · Pr[M(D0) = o] + δ (2.17)

where δ is an additional error bound.
δ can be understood as the cumulative probability of all outputs of M for which the
specified ε−indistinguishability does not hold. As we cannot guarantee privacy in these
cases, we want δ to be small.

When evaluating differential privacy results for some mechanisms, we include one addi-
tional notion; Privacy Loss. Privacy loss describes the logarithmic scale of the differential
privacy term and is used to represent the DP-inequalities more concisely to simplify fur-
ther analyses.

Definition 2.13 (Privacy Loss [9]).
Given two databases D0 and D1 as well as a mechanism M , the Privacy Loss of each
output o is defined as the logarithmic ratio between occurrence probabilities of o using
D0 and D1 respectively as input for M:

PLM,D0,D1(o) := ln

(
Pr[M(D0) = o]

Pr[M(D1) = o]

)
(2.18)
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One such analysis, which is also often used, is the Privacy Loss Distribution.

Definition 2.14 (Privacy Loss Distribution [9]).
Let PLM,D0,D1 be the privacy Loss random variable of a mechanism M . The distribution
of all possible values in PLM,D0,D1 can be described as the following Lebesgue integral
over all possible observations.

ωM,D0,D1(y) =

∫
{o|PLM,D0,D1

(o)=y}
Pr[M(D0) = o]dy. (2.19)

Figure 2.2: Two ε−DP mechanisms that share the same DP guarantees but different pri-
vacy loss distributions. While in the case of mechanism M1, we have strict ε
bounds for the privacy losses, for M2, we can see that it is very likely that the
privacy loss is 0 and only in some cases ε.

We can use privacy loss distributions to quantify and compare the usability of mecha-
nisms. Two mechanisms may suffice the same (ε, δ)-DP parameters, but the individual
privacy losses per mechanism run may vary massively. One mechanism might always
produce privacy losses close to ε, while another only reaches ε in one case and stays far
below the bound in all other cases. An example that showcases this possible difference
between privacy loss distributions of two ε−DP mechanisms is provided in Figure 2.2.
With this, we introduced all necessary concepts for current privacy understanding. While
we won’t actively use them for the research topic of this thesis, we will use them for
comparing achieved results.
In the next chapter we will iterate on the definitions of differential privacy, introducing the
context of partial knowledge privacy settings and the formal definitions of active partial
knowledge differential privacy and passive partial knowledge differential privacy. Fur-
thermore, we will state the goals of this thesis in relation to these new concepts.
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In this chapter, we will introduce into the main research field of this thesis, partial knowl-
edge differential privacy.

We will start by discussing some of the problems differential privacy faces in use cases
where precise data is a necessity. We will introduce noiseless privacy a first concept to
handle such problem cases and, finally, partial knowledge differential privacy as a com-
promise between the two extremes.

From this we will transfer to the research work by Arnold & Pätschke in [1], which builds
the basis of the work in this thesis. We will introduce the general ideas achieved in their
research and which statements were left open. Furthermore, we will discuss how to con-
tinue on with their research.

Lastly, we state the scope and goals of this thesis.

3.1 Setting the context

We always assume a worst-case attacker when considering privacy in differential privacy
settings. In most cases, this over-approximates the actual threat any realistic attacker
poses. However, this is by design. By using an over-approximation, we can guarantee
specified privacy levels (ε−indistinguishability with error δ) against any real attackers.

While we can guarantee privacy constraints under these notions, using differential pri-
vacy mechanisms often results in a loss of utility from the queried database. To provide
DP results, we generally add noise to query outputs, resulting in approximate results.
While this introduced error can in some cases be acceptable, these inaccuracies prove to
be a problem in use cases where we need precise data.

For example, medical sciences need patient data to be as precise as possible. Patient data
will in a lot of cases be used to analyse disease progressions and the effectiveness of pro-
cedures. For these analyses it is crucial to remove as many points of failure. A similar
problem exists in the banking sector, where inaccuracies in collected data could veil mali-
cious transactions. In such critical use cases, this poses the problem that introduced errors
through standard DP results could lead to massive cascading errors in consecutive calcu-
lations & evaluations [7, 24].
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So how can we remove privacy-induced errors?

Most of the induced errors in computations come from using additive noise distributions.
The results are perturbed by adding a value chosen from the noise distribution scaled to
the database size and sensitivity of the data. This noise is not representative of any data we
possess and, in most cases, results in the accounting error being, by design, unpredictable.

Researchers tried to mitigate these errors by reducing the additive noise as much as possi-
ble without breaking guaranteed privacy bounds. Most commonly evaluated was Gaus-
sian noise, resulting in the following first lower bound for its scale, referenced as Pure-DP.

Theorem 3.1 (Pure-DP [9]).
Let ε > 0 be arbitrary and λ be the sensitivity of the data.

For a parameter c2 > 2 ln(1.25/δ) a mechanism M using Gaussian noise with scale parameter
σ ≥ cλ/ε is (ε, δ)-differentially private.

Further research in [2] and [33] found another, even smaller, bound for Gaussian noise,
improving utility even more.

Corollary 3.2 (Optimal σ for Gauss-Mechanism [2, 33]).
A Gauss mechanism M : D × E → RV (R) with M(D, e) ∼ N (|{i|D[i] = e}|, σ2) with
sensitivity λ requires for a privacy loss δ := δ(ε) ≤ 1/4 after c compositions

σ(ε, δ, n) =
λ
√
c√

2ε

(
erfc−1(2δ) +

√
(erfc−1(2δ))2 + ε

)
(3.1)

where erfc−1 is the inverse of the well-understood complementary Gaussian error function.

Plotting Pure-DP and Optimal σ calculated noise scale parameters shows that Optimal σ
produces a better lower bound for the necessary noise. Some examples that visualise this
behaviour can be seen in Figure 3.1.

While overall resulting in an improvement in utility over trivial DP-bounds [9], even Pure-
DP and optimal σ scaled noise can impact results too much for critical use cases. Espe-
cially the noise scale being unrelated to the underlying data proves itself as being a mas-
sive problem. Uncertainty that still partially relies on underlying data distributions could
increase the usability of outputs, but would loosen possible privacy guarantees.
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Figure 3.1: Example plottings of noise scale parameters calculated with Pure-DP and op-
timal σ for databases D of size 1e4, 1e5, 1e6 and 1e7, sensitivity 1/|D| and one
composition. The results for Optimal σ construct a lower bound for all results
of Pure-DP.

3.1.1 Noiseless privacy

As an interesting point of research researchers introduced the notion of noiseless and de-
terministic privacy [3, 11] to construct uncertainty scales based on underlying data. In-
stead of adding noise, inputs and databases are assumed inherently noisy or at least mod-
ifiable without additive noise to reach noisy properties.

For example, the influence of single elements in databases could be modified by some
mechanism, making outputs solely reliant on data distributions while hiding the impact
each element actually had on outputs.

It has been shown that noiseless privacy achieves results similar to (ε, δ)-DP for data-
independent queries. The guarantees aren’t based on the independence of added noise
as in (ε, δ)-DP, but from inferences and assumptions about underlying data distributions
and reduction of supported settings. For example, noiseless privacy as described in [3]
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reduces its spectrum of outputs to Boolean functions or counting queries. Furthermore,
these guarantees break down when queries are run multiple times on the same data [3, 6].
The same breakdown of privacy guarantees occurs if correlations in the original data exist
that are not inherently visible. This privacy leakage is similar to problems with concepts
like k-anonymity as mentioned in Section 2.2.
In the best case, however, we would want the guarantees of (ε, δ)-DP while only assuming
a noiseless privacy setting, providing privacy without inherently influencing data distri-
butions.
However, research into the topic shows that, at most, we can achieve a compromise be-
tween achieving noiseless differential privacy and accessing correlated data [6].

But how can we find such a compromise?

Data for critical use cases should, at least in theory, be stored in a comparatively safe
environment. The amount of possibly leaked data should, therefore, also be limited and,
in the best case, comparatively small in size. DP adversaries would then be worse than
any privacy adversary encountered in realistic settings.
One idea proposed by Desfontaines et al. [6] tries to use this divergence between DP and
realistic settings to gain privacy guarantees. The authors approximate possible attackers
instead of always assuming worst-case scenarios. As stated above, in most cases, any
attacker will only know a subset D′ of the entire database D. This may be, for example,
due to a data breach in the past, leaking entries in D or if a public database D̃ was used to
create D.
Such a subset D′ is assumed to be known by the attacker and classified as their back-
ground knowledge. We define such a background knowledge database D′ as follows:
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Definition 3.3 (Background Knowledge[1]).
Let D be a database with length n and indices I = {1, . . . , n}.
Background knowledge of a given database D is formalised as a sequence D′ containing
n′ elements and a partial permutation m ⊂ I , which contains all indices of the known
elements in regards to D. This means for a given partial permutation m = (m1, . . . ,mn′)

and 1 ≤ mk ≤ n,∀k
D′ = (D[mk])

n′
k=1 (3.2)

holds.
Let now D′ be a background knowledge set of length n′ with data distribution θ′.
The background knowledge random variable Bn′,n describing the evaluations of D′ is
then instantiated with

Bn′,n =
n′∏
i=1

θ′ × Perm(n)[1 : n′] (3.3)

where Perm(n)[1 : n′] describes the uniformly distributed random variable over all pos-
sible partial permutations length n′ over n elements. We omit n′ and n when they are
clear from the context.

Generally, it is possible to quantify the information a database provider has about such
open data to gauge the number of entries that any attacker could know. Assumedly they
would, therefore, know the size of background knowledge D′, but often not which exact
data points are compromised. The size of a given background knowledge n′ can be con-
sidered known to the database provider, the data distribution θ′ with D′ ∼ θ′ in most cases
however not. Nonetheless, we still gain a new upper bound for the number of data points
any attacker could know with |D′| instead of |D| − 1 as assumed in standard DP notions.
Furthermore, assuming a D′ also implies a further subset D′′ in our database D, which
consists only of data points unknown to attackers. These points work in theory as de-
scribed in noiseless privacy notions [3]. They perturb the output for possible attackers
when those try to learn the influence of any one data point, but significantly do not influ-
ence the usability of the output for honest users [6].
We call these points non-compromised and define such a non-compromised data subset
as follows:
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Definition 3.4 (Non-compromised data subset).
For any database D with a sequence D′ containing n′ elements and a partial permutation
m fixing all indices of the known elements in regards to D,

D′′ = (D[i])i ̸∈m (3.4)

describes all non-compromised data points in the database D.

We can seemingly use non-compromised data to emulate noise against attackers, improv-
ing the utility of our mechanisms while still keeping privacy intact. While sounding
promising, the informal structure of the concepts presented so far skim over some prob-
lems that do not seem evident at first glance. To further analyse this concept and potential
problems, we formalise the concept as Partial-knowledge Differential Privacy.

3.1.2 Partial-Knowledge Differential Privacy (PK-DP)

When approximating an attacker, looking at a subset of all possible sets of background
knowledge will, on average, result in non-representative approximations. Important edge
cases could be ignored, and privacy would not be guaranteed. For example, consider a
database containing zeros and ones pertaining to some distribution. We may assume the
distribution bias to be similar in the background knowledge, but this must not be the
case. However, through this the non-compromised data we use as natural noise will also
be highly biased, leading to possible privacy leakage in worst-cases.
Partial-knowledge Differential Privacy notions use the formalised structure of back-
ground knowledge D′ as introduced in Definition 3.3. By explicitly mentioning that
D′ must be from the support of all background knowledge subsets, the notions incor-
porate that we need to consider all possible background knowledge equivalence classes
when estimating attacker. Through the introduced constraints, we remove this former
inaccuracy.
As our standard models of analysing PK-DP notions, we use the privacy loss and loss
distribution of mechanisms, similar to standard DP. While their use is similar, we need to
adapt their definitions to the new setting, resulting in the following two re-definitions of
privacy loss and privacy loss distributions under background knowledge.
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Definition 3.5 (Privacy Loss Under Background Knowledge [1]).
Given a database D over the set of elements E, a background knowledge sequence D′,
with partial permutation m = (m1, . . . ,mn′) fixing all contained elements and position i

with i ̸∈ m set to a or b, a, b ∈ E.
For each observation o the Privacy Loss random variable is defined as

PLM,D′,m,a,b,i,bias(o) :=

∣∣∣∣∣ln
(
PrD[M(D) = o|D′ = (D[mk]

n′
k=1) ∧D′′[i] = a]

PrD[M(D) = o|D′ = (D[mk]
n′
k=1) ∧D′′[i] = b]

)∣∣∣∣∣ (3.5)

assuming that indices start from 1.

Definition 3.6 (Privacy Loss Distribution Under Background Knowledge [1]).
Let PLM,D′,m,a,b,i,bias(o) = y be the privacy loss random variable of a given mechanism
M as described in Definition 3.5. Then

ωM,D′,m,a,b,i,bias(y) = Pr
D∼θ|A,γ∼M(D)

[PLM,D′,m,a,b,i,bias(γ) = y] (3.6)

describes the resulting Privacy Loss distribution.

With these two definitions, we will look at exact specifications for PK-DP.
Partial-knowledge Differential Privacy is, instead of being defined only once, divided into
two different notions, Active Partial-knowledge Differential Privacy (APK-DP) and Pas-
sive Partial-knowledge Differential Privacy (PPK-DP). We need to do this to differentiate
between two scenarios: one where attackers can influence the creation of the database by
inserting their own data and one where they can not influence the creation.
We will first discuss APK-DP and afterwards PPK-DP.

Active Partial-knowledge Differential Privacy

APK-DP describes the setting where an attacker could actively manipulate the original
database D before asking any queries. For example, an online questionnaire on chronic
illnesses and their occurrence probability in a populous may be spammed with malicious
inputs by an attacker during its data collection phase. In this case, we must assume that
the attacker can more or less ’choose’ his preferred background knowledge D′ by fine-
tuning the submitted inputs to his liking.
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We define active partial-knowledge differential privacy as follows:

Definition 3.7 (Active Partial Knowledge Differential Privacy (APK-DP) [6]).
Given a family of distributions Θ, a mechanism M achieves (Θ, ε, δ)-APK-DP (Active Par-
tial Knowledge Differential Privacy) if for all distributions θ ∈ Θ, all indices i, all elements
a, b ∈ supp (θ′) and all (D′,m) ∈ supp (B):∫ ∞

ε
ωM,D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy ≤ δ. (3.7)

holds.

It is, however, not only of interest to analyse databases where attackers can influence the
data but also databases where attackers can only passively learn some of the data points.
We describe this setting in the following.

Passive Partial-knowledge Differential Privacy

PPK-DP describes the setting where an attacker can only passively listen in on the orig-
inal database D but not manipulate it in any way. We describe a similar example as for
APK-DP. If the questionnaire on chronic illnesses is held in a controlled clinical setting,
an attacker could not influence the data collection phase but could still gain background
knowledge on a subset of the participants through means like social engineering. As the
attacker cannot arbitrarily choose the data points he learns, his background knowledge
will with high probability resemble the average case background knowledge.
We define passive partial-knowledge differential privacy as follows:

Definition 3.8 (Passive Partial Knowledge Differential Privacy (PPK-DP) [6]).
Given a family of distributions Θ, a mechanism M achieves (Θ, ε, δ)-PPK-DP (Passive
Partial Knowledge Differential Privacy) if for all distributions θ ∈ Θ, all indices i and all
elements a, b ∈ supp (θ′):

E(D′,m)∼B

[∫ ∞

ε
ωM,D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy

]
≤ δ. (3.8)

holds.

The question arises now, which of the two introduced cases should we put our research
focus on?
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So which notion should we further investigate?

APK-DP attackers are more powerful than PPK-DP attackers and all mechanisms suffic-
ing APK-DP notions also suffice PPK-DP notions [6]. With this, it might seem like the
optimal way to find mechanisms that achieve APK-DP and also use them in PPK-DP set-
tings. However, as APK-DP attackers are significantly stronger, this both increases the
precautions we need to uphold to keep privacy intact, reducing utility unnecessarily, as
well as constructional complexity.

The research not only into APK-DP but also into PPK-DP sufficient mechanisms is an
interesting research topic for utility maximisation in both settings. PPK-DP weakens the
attacker significantly, at least in theory making mechanisms sufficing the notion easier to
construct. It sounds more reasonable to start looking into PPK-DP mechanisms and then
using the gained intuition to abstract concepts to APK-DP settings.

With these basic intuitions covered, let us look into the research work which this thesis is
based on.

3.2 Introducing the work so far

The work of this thesis builds upon the research from Arnold & Pätschke in [1]. Their
work research set out to construct a mechanism that can estimate approximately worst-
case adversary distributions for background knowledge sets. With such a mechanism,
such the idea, it would then be possible to upper bound the background knowledge of
realistic attackers. The estimation could then be used as a bounding input to calculate
additive noise reduced by the natural noise in the non-compromised rest of the data.

As we build upon their achieved goals in this thesis, we first recap the research results
and discuss where we will continue.

So what results were achieved?

The research by Arnold & Pätschke resulted in two algorithms for mechanisms providing
noise parameters that guarantee PPK-DP for specified (ε, δ) under a set of conditions, as-
sumptions and, in some parts, conjectures. The assumptions are that databases and back-
ground knowledge sets follow a binomial distribution and that the size of the background
knowledge is known to the defending party.

Furthermore, they first constructed an algorithm under the additional condition that the
distribution of a specific attacker is known before the mechanism is executed. This is done
to get a grasp on the concept of passive partial knowledge differential privacy.
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The second algorithm releases this additional condition and instead approximates the dis-
tribution before calculating results. The first algorithm is used as a subroutine in the sec-
ond algorithm on the estimated distribution.
Both algorithms will be introduced in detail later as a cornerstone of this thesis.

Were claims left open?

While the construction step of the algorithms was finished in [1] by Arnold & Pätschke,
only one of the two algorithms has a completed privacy proof. The other algorithm has
its privacy guarantees based on the following conjecture made by the researchers.

Conjecture 3.9 (PLM,D′,m,a,b,i,bias-bias correlation [1]).
Assuming all other variables M,D′,m, a, b, i to be fixed, the larger the distance |bias− 0.5|, the
higher is the privacy loss PLM,D′,m,a,b,i,bias

Due to time constraints, a proof of the conjecture was deemed out of scope for the work.
However, crucial parts of the approximation and resulting privacy guarantees depend on
it, meaning further research into the correctness of the statement is mentioned as a future
goal. A second conjecture is also provided, but it is not necessary for the privacy proof
and would only improve the efficiency of intermediary calculations in the algorithm. The
conjecture will be stated, in context, later in Section 4.3.2.
Next to the conjectures, further improvements over the provided privacy proofs can be
envisioned. As provided in Arnold & Pätschkes work [1], some parts of the proofs are
assumed correct without reasoning why this should be the case. As an example, it is
stated that all (ε, δ)-DP algorithms are also (ε, δ,Θ)-PPK-DP with no citation or intuitions
given why this statement is correct. A thorough rewrite of the privacy proofs is, therefore,
another point of interest.
A code implementation of the algorithms was furthermore deemed out of scope for the
original research work. An example implementation and corresponding evaluation of
realistically achievable privacy guarantees represent a further point of interest.
These open questions give us a reason to investigate further into the research already
done. Trying to provide a complete and stable basis for the privacy proofs will be the
focus of this thesis.
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3.3 Scope of this thesis

As mentioned above, the scope of this thesis pertains to close the open claims of the re-
search by Arnold & Pätschke [1]. We also improve over the existing proof basis. The
thesis, thereby, focuses on three parts, finishing up the open ends in the provided privacy
proofs, implementing and lastly evaluating the algorithm.

Finishing the formal proof of Algorithm 2

In finishing the formal proof for the algorithm we need to achieve a spectrum of different
goals.

Firstly we need to analyse the algorithms as proposed and refactor possible errors that
exist in them. Afterwards we need to look at the formal basis for the privacy proofs and,
should they not be up to standard, refactor them accordingly. We also need to look for
possible leaps in logic, existent in the proofs as provided in [1] and properly pad them
out.

When we have a stable basis, we can then advance and either proof or disprove Conjec-
ture 3.9. As this conjecture is a crucial cornerstone for the proof, we will formulate this as
a research question.

Research Question 1 (On Conjecture 3.9).
Is Conjecture 3.9 provably correct or can we find a provable statement providing similar
guarantees?

By improving on parts of the proof and also removing any conjecture from the assump-
tions we should then be able to provide a clean, formal privacy proof for the algorithm.
We describe this as a research question as well.

Research Question 2 (On Algorithm 2).
Can we insert our results to provide a complete proof for the correctness and privacy
guarantees of Algorithm 2?

We will answer both of these research questions with the work in Chapter 4.
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Evaluating the work

Next to finishing the formal proof of Algorithm 2, we also want to evaluate if we only
achieve theoretical improvements when using Algorithm 2, or if we can also substantiate
utility improvements in a real implementation. For such an evaluation, we need to con-
struct a working implementation of the provided algorithms. We formulate this as our
next research question:

Research Question 3 (Implementing Algorithm 2).
Can we construct a correct implementation of Algorithm 2.

Similarly, we want to formulate a research question regarding the evaluation and if we
can substantiate utility improvements.

Research Question 4 (Evaluating Algorithm 2).
Can we achieve (Θ, ε, δ)-PPK-DP results that are competitive with (ε, δ)-DP results, as-
suming the same underlying database?

We will answer these two research questions with the work in Chapter 5.

26



4 Method Section

This chapter introduces two algorithms from [1] that suffice the PPK-DP notion as de-
scribed in Definition 3.8. The first algorithm is constructed to suffice privacy guarantees
against an attacker where the algorithm knows the attackers’ background knowledge set
and distribution. The second algorithm then loosens constraints and suffices privacy con-
straints even when only the size of the attackers’ background knowledge set is unknown
and the exact distribution must be approximated. As stated, we will provide proofs for
both algorithms and their privacy guarantees.
We start this chapter by outlining the first algorithm constructed by Arnold & Pätschke [1]
with slight modifications to fix minor errors and improve readability. Afterwards, we
provide a formal proof that this algorithm suffices PPK-DP. After that, we provide the
second algorithm constructed by Arnold & Pätschke [1], again with modifications to fix
flaws in the original design and improve readability. We then provide a general outline
of the proof and state open claims we need to substantiate before formalising our outline.
We then prove the open claims, reforming them into working theorems. Lastly, we close
the chapter with a formal privacy proof for Algorithm 2, showing it to be
(Θ, ε, κ1 + κ2 + κ4 +

∑1
i=0 cdfLap(0,2/ε) (−n·τi/2 + 1))-PPK-DP.

Assumptions

Some assumptions were noted in [1] for the following algorithmic constructions. Most of
them are in regards to the data distribution of input databases and background knowledge
sets. We introduce two assumptions which we will assume throughout the entire chapter.
For all databases it is assumed, that their behaviour and construction follows a binomial
distribution. This implies that each single entry of a database is, therefore, independent
identically distributed (i.i.d.) as a Bernoulli experiment with some bias biasD.
While binomial distributions, in general, do not represent a representative model for real-
istic databases [14, 23], using them here allows us to construct algorithmic structures that
do not inherently need to cover edge cases not intrinsic to the algorithm but its inputs.
We will discuss possible modifications to assumed data distributions for more realistic
models of databases in Section 6.
A further assumption will be made regarding the size of background knowledge sets.
In Section 3.1 we gave reasoning for the assumption that background knowledge sizes
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can be estimated. In this chapter, we will assume that used background knowledge sizes
are correct, as they are needed as input values for both algorithms. Problems with this
assumption will be discussed in Section 6.
With this we covered necessary assumptions and can continue on with the first algorithm.

4.1 A privacy-preserving PPK-DP algorithm for known attacker

To get a clear perspective on how PPK-DP algorithms work, we first introduce an algo-
rithm that, assuming we know the background data distribution θ′, calculates for given
ε, δ, n, n′ a noise scale parameter β′∗. We will show that the calculated β′∗ suffices our
understanding of the PPK-DP notion as presented in 3.8.
The original construction can be found in [1].

4.1.1 Algorithmic outline

When calculating β′∗, it is enough for us if we approach the optimal β and end with a
slightly bigger return parameter. To efficiently achieve this while not over-engineering
the process, the bisection method is used to calculate a noise quantifier that suffices for
our purposes. We use the equation in the following lemma from [1] as the minimisation
function in the bisection method:

Lemma 4.1 (Minimal noise scale parameter [1]).
Let Mβ(D) = q(D) + N (β). Given a set of β values fulfilling a slightly changed PPK-DP
definition where the inequality is transformed into an equation

E(D′,m)∼B

[∫ ∞

ε
ωMβ ,D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy

]
= δ. (4.1)

The element β∗, which minimises the utility loss, is

β∗ = argmin
β

ED̃∼θ[|N (β)|]. (4.2)

Together with the general results of privacy research that more noise gives better pri-
vacy [9], we can state that:
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Corollary 4.2 ((ε, δ)-β∗-dependence).
For a fixed ε, increasing β decreases the necessary error bound δ and vice versa when considering
the PPK-DP notion. If δ is also fixed to create a distinct pair (ε, δ), then the optimal noise scale
parameter β∗ must also be distinctly unique and continuous in δ.

The general idea follows from this; upper and lower bound β∗ and then iteratively narrow
these bounds while the difference between them exceeds a stated error bound. At the very
least, the upper bound should be a good approximation for β∗, differing from the exact
solution by at most the specified error bound. For calculations of Equation 4.1, we can use
the following two lemmas, also from [1]:

Lemma 4.3 (Simplified PLD ωM,D′,m,a,b,i,bias(y) [1]).
Let D be a given database and let in addition to m ∈ Perm(n)[1 : n′], mn′+1, . . . ,mn be defined
such that D[mn′+1, . . . ,mn] = D′′. Then the privacy loss distribution can be even further
reduced to

ωM,D′,m,a,b,i,bias(y) =
∑n′′

o=0

(
n−n′− 1
o− q(a)

)
biasq(D)+ o− q(a)(1−bias)2n−n′− 1− o+ q(a)− q(D)Sq(D′),o,y.

(4.3)

Lemma 4.4 (Describing SD′,o,y [1]).
For the mechanism Mβ = q(D) +N (β) and the distribution θ, we have

SD′,o,y =
∑

{γ∈supp(Mβ(D))|
PLMβ,D′,m,a,b,i,bias(γ)=y}

Pr
v∼N (β)

[v = γ − o− q(D′)]. (4.4)

Having introduced the algorithmic outline, we can now continue on and provide an exact
description of Algorithm 1.

4.1.2 The Algorithm

We initialise two variables during the algorithm’s execution to keep track of our progress
in calculating β′∗. The variable lo is initialised to keep a lower bound on β′∗ such that we
exceed our δ bound and variable hi to keep a higher bound on β′∗ such that we stay below
the δ bound. We further introduce a third variable, mid, as the centre value between lo
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and hi, which we use in the update steps. Using these three variables, we can establish an
interval that must include the β∗ as defined by Lemma 4.1.
During the initialisation we do a binary approximation over possible β′∗ until we find the
interval with bounds [2−i, 2−i+1] including β∗. We then store these interval bounds in sep-
arate variables last_lo and last_hi before starting further calculations with the bisection
method to keep valid bounds. We do this in case any update we make during calculations
breaks the lo or hi constraints.
During the bisection method, we first check if the interval between lo and hi is smaller
than our allowed error. If so, we can terminate the algorithm as we will already produce
outputs we deem good enough. Otherwise, we first update the middle of our interval and
then compare using it as a β against the specified δ bound.
Depending on the result, mid is either smaller than, bigger than, or equal to β∗. We can
either update one of our bounds lo and hi correspondingly or output mid as β′∗.
If we updated lo or hi, we then check if our update broke them as bounds for β∗ analogous
to our check of mid. If not, we update our stored correct bounds with the value we just
checked. We continue this as long as lo and hi are further apart than our allowed error
bound.
In the end, we update mid one last time to the midpoint between the last valid bounds
we encountered and then check if mid upper bounds β∗. If so, we return it; otherwise, we
return the last valid upper bound we recorded. A pseudo-code version of this algorithm
is provided in Algorithm 1.
Having described a generic run of Algorithm 1, we continue onward to its privacy proof.

4.1.3 Proof & Privacy Analysis

Having described Algorithm 1, we now prove its privacy guarantees. For this, we show
the following lemma:

Lemma 4.5.
Algorithm 1 is (Θ, ε, δ)-PPK-DP for a given pair of ε, δ.

While a privacy proof already existed for Algorithm 1 in [1], we deemed it necessary to
refactor it. This is partially due to our slight modification to its construction, as well as the
fact that the original proof was kept short on purpose, but thereby skipping over some in
our opinion crucial parts of it.
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Algorithm 1: Noise computation for a known θ′ using the bisection method.
Input: DB D,D′ ∼ θ′, bias, n′, ε, δ, error, steps
Result: β′∗, ζerror,update(steps) with β′∗ − β∗ ≤ ζerror,update(steps)

1 lo = 0
2 hi = 0
3 mid = 0
4 init = 1
5 while E(D′,m)∼B

[∫∞
ε ωMinit(D),D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy

]
< δ do

6 hi = init
7 init = init/2
8 lo = init

9 end
10 while E(D′,m)∼B

[∫∞
ε ωMinit(D),D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy

]
> δ do

11 lo = init
12 init = 2 · init
13 hi = init

14 end
15 mid = lo
16 last_hi = hi
17 last_lo = lo
18 while lo+ error ≤ hi do
19 mid = (lo+ hi)/2
20 if E(D′,m)∼B

[∫∞
ε ωMmid(D),D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy

]
< δ then

21 hi = mid− steps
22 if E(D′,m)∼B

[∫∞
ε ωMhi(D),D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy

]
< δ then

23 last_hi = hi
24 end
25 else if E(D′,m)∼B

[∫∞
ε ωMmid(D),D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy

]
> δ then

26 lo = mid+ steps
27 if E(D′,m)∼B

[∫∞
ε ωMlo(D),D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy

]
> δ then

28 last_lo = lo
29 end
30 else
31 return β′∗ = mid, ζ = 0
32 end
33 update(steps)
34 end
35 mid = (last_lo+ last_hi)/2
36 if E(D′,m)∼B

[∫∞
ε ωMmid(D),D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy

]
> δ then

37 return β′∗ = last_hi, ζ = last_hi− last_lo
38 end
39 return β′∗ = mid, ζ = last_hi− last_lo
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Proof (for Lemma 4.5).
Let ppk(β) := E(D′,m)∼B

[∫∞
ε ωMβ ,D′,m,a,b,i,bias(y)(1− exp(ε− y)) dy

]
.

We use the bisection method to calculate a maximal β′∗ such that ppk(β′∗) ≤ δ for a given
δ. The bisection method only works for functions that are continuous, which we know
with Corollary 4.2 to be the case for ppk(β). We now need to check whether we always
return valid values or not.

The first steps consist of looping through two while loops. This happens from line (5)
to (9) and line (10) to (14) respectively. By doing this we ensure that hi and lo are valid
boundaries for β′∗. With Corollary 4.2 we know β′∗ to exist, meaning these two while
loops will terminate, and, by design, will result in ppk(hi) < δ and ppk(lo) > δ. We set
last_hi and last_lo using these valid bounds afterwards and initialise mid as the midpoint
value between the two bounds.

Within the algorithm a result may be returned at three distinct locations; mid in line (31),
last_hi in line (37), and mid, once again, in line (39). As we know ppk(β) to be continuous,
we must return at one of the three locations. Otherwise, we would have found a position
at which ppk(β) can’t be evaluated, i.e. a distinct combination of ε and β with no linked δ,
creating a contradiction with Corollary 4.2.

We now evaluate the three return locations and if our results suffice (Θ, ε, δ)-PPK-DP.

When mid is returned in line (31), we beforehand checked in line (20) and (25) whether
ppk(mid) < δ or ppk(mid) > δ. We only enter this case if both tests failed, therefore, the
only option left is that ppk(mid) = δ. As ppk(β) equals our PPK-DP equation for given ε

and noise scale parameter β, and we found with mid a value exhausting its inequality to
an equality with a given δ, we know this return value to suffice (Θ, ε, δ)-PPK-DP.

The next possible return is last_hi in line (37). For our algorithm to get to this point, it
must have terminated the while loop from line (18) to (34) beforehand, so we must have
lo+ error > hi. Furthermore, this while loop must break at some point, as we, at the very
least, half the distance between lo and hi every step. By using a further variable steps > 0

in each update step we more than half the distance, possibly reducing the amount of loop
iterations and calculations needed. At the very most we need log(error) steps.

We only set last_lo and last_hi after first initialisation in line (28) and line (23) respectively.
The check in the line beforehand guarantees that they are still valid bounds when we
update them. We, therefore, know last_hi at all times after initialisation to suffice (Θ, ε, δ)-
PPK-DP, as ppk(last_hi) < δ.

Another candidate for our return value is mid as it may also fulfil the PPK-DP inequality
and, if so, would be a better bound than last_hi. However, mid may also produce a too
large δ as we do not check ppk(mid) when setting it. This is also exactly the case if line (37)
is reached. Returning last_hi is however, as already argued, a safe fallback option. We,
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therefore, know that we suffice (Θ, ε, δ)-PPK-DP in this case.

The last return happens on the last line (39) and returns mid. At this point, we already
checked in the if-statement before (line (36)) if ppk(mid) > δ holds. Since this was not the
case, we have ppk(mid) ≤ δ. With this, we know the return value to suffice (Θ, ε, δ)-PPK-
DP.

Following from the fact that all return values suffice (Θ, ε, δ)-PPK-DP and the fact that we
must return at some point, we can say that Algorithm 1 is (Θ, ε, δ)-PPK-DP. □

In an actual implementation ppk could be calculated using introduced Lemma 4.3 and 4.4
as a convolution of the underlying binomial distribution of D′′ and used noise N (β). To
analyse the run-time of Algorithm 1 independently of this calculation, we will, however,
assume an oracle to compute the function ppk.

The run time of Algorithm 1 is then in O(logmaxβ) for maxβ being the maximal β value
such that ppk(β) ≤ δ, but ppk(β− error) > δ. The endpoints are initialised in O(logmaxβ)

(see line (5) to (14)), as we initialise them using a binary search. The while-loop is in
O
(
log

maxβ

error

)
, as we, again, use a binary search between the two endpoints, but stop when

we reach an interval size of at most error.

At worst, we need as much noise as calculated by optimal Gaussian σ (see Corollary 3.2).
(ε, δ)-DP describes, by design, an upper bound for needed noise scales. If our noise
exceeds optimal Gaussian σ, instead of making further calculations, we can simply re-
turn the output the optimal σ as a safe result. This results in a worst-case complexity

O

(
log λ

√
c√

2ε

(
erfc−1(2δ) +

√
(erfc−1(2δ))2 + ε

))
[2, 33].

We can now continue onward to Algorithm 2.

4.2 A privacy-preserving PPK-DP algorithm for approximated attacker

Now that we analysed an algorithm that, given a fixed, known background knowledge
distribution, suffices (Θ, ε, δ)-PPK-DP, we want to advance over it. In general, we will not
know the exact data distribution an adversary would know for a given database. Instead,
we need to find a way to privately approximate such a distribution with a quasi-worst
case which we can then use as an upper bound.

Arnold & Pätschke [1] provided a basis for this in their work research, providing such an
algorithm but not finishing the proof for it. In this section, we will recap the work done so
far by outlining the algorithm and proven notions which we need to proof its correctness
and privacy guarantees.
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4.2.1 Algorithmic outline and necessary notions

We need a comparison value when approximating the quasi-worst-case background
knowledge for a given database. For this, we use the privacy loss of possible background
knowledge sets. As to not test all background knowledge biases in calculations, we pri-
vately estimate a range of supported biases beforehand, based on the database D. With
the already introduced Conjecture 3.9, if proven correctly, we could then use the interval
bounds as inputs, as they would upper-bound the privacy loss. By Corollary 4.2 we then
also know these calculated noise scale parameters to also suffice for all cases with less
privacy loss, meaning all biases in the support range.
However, with only a subset of all biases, this would still result in exponentially many
computations, as we would still need to consider each possible permutation in the back-
ground knowledge. Arnold & Pätschke [1] researched this problem and proved the fol-
lowing two statements:

Claim 4.6 (PLM,D′,m,a,b,i,bias only depends on q(D′) and not specific D′ [1]).
The privacy loss PLM,D′,m,a,b,i,bias does not directly depend on D′ but on q(D′), that is for
all m, m̃ ∈ Perm(n)[1 : n′] with additionally defining mn′+1, . . . ,mn such that we have
D[mn′+1, . . . ,mn] = D′′ for a given D and for all

• A = D[m1, . . . ,mn′ ] = D′ ∧D′′[i] = a and i ̸∈ {j1, . . . , jn′} ,
B = D[m1, . . . ,mn′ ] = D′ ∧D′′[i] = b and i ̸∈ {j1, . . . , jn′} ,

• Ã = D[m̃1, . . . , m̃n′ ] = D̃′ ∧ D̃′′[i] = a and i ̸∈
{
j̃1, . . . , j̃n′

}
,

B̃ = D[m̃1, . . . , m̃n′ ] = D̃′ ∧ D̃′′[i] = b and i ̸∈
{
j̃1, . . . , j̃n′

}
with q(D′) = q(D̃′) the following holds

PLM,D′,m,a,b,i,bias(γ) = PLM,D̃′,m,a,b,i,bias(γ). (4.5)

Corollary 4.7 (Privacy Loss Distribution dependencies [1]).
The function ωM,D′,m,a,b,i,bias depends only on the query results of the database and the challenge
element and not on specific values of D′ and a.

It follows from these two statements that it is enough to consider one example for each
possible evaluation q(D′) of D′ instead of all possible permutations, as all permutations
will result in the same privacy loss value.
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If we can, therefore, correctly and privately estimate such a quasi-worst case background
knowledge EstD′ with q(EstD′) producing worse privacy losses than most attackers, then
we could use EstD′ in Algorithm 1 to produce a PPK-DP sufficing β-noise scale parameter.
As we will only support attackers with background knowledge sets having less privacy
loss than our estimation, we add the occurrence probability of worse attackers to our
allowed error δ. Combining this with the approximation for the bias support range we
can then also upper bound the β-noise scale parameter, not only for the bias used in our
EstD′ estimation, but for all supported biases.
For these approximations, we further use the previously introduced Lemma 4.3 and
Lemma 4.4.
With this, we introduced all necessary proven statements from [1] and continue by de-
scribing the here outlined algorithm.

4.2.2 The Algorithm

We start by taking all information we have from D to start the background knowledge
approximation, its size and distribution, and use it to calculate the bias of the data. Using
this bias in further calculations would leak privacy; we, therefore, need to perturb it using
noise.
For this, we use Laplace noise with half our privacy budget ε to not introduce cases where
we cannot guarantee privacy. We denote the perturbed bias biasD and use it for further
calculations.
Next, we need to approximate the boundaries for attackers which we support. We use
the bounds given by the Chernoff-Hoeffdinger theorem for additive error bounds [16]. As
these bounds only work on non-noised inputs, we assume biasD to be a non-noised centre
value for our background knowledge bias and bound the support range around it with τ1

and τ2.
Using the Chernoff-Hoeffdinger theorem, we introduce errors, which we check against
our given δ budget and reduce it appropriately. We also check if the Laplace noise we
chose initially exceeds our supported boundaries and return a safe over-approximation
should this be the case. For this the original construction uses Pure-DP (see Theorem 3.1)
which we supplant with the optimal Gaussian noise (see Corollary 3.2).
Afterwards, we now have a range of biases centred around biasD which our algorithm
will support. As we need to obtain an exact background knowledge database estimation
for use in Algorithm 1, we now need to approximate a quasi-worst case that bounds the
background knowledge privacy loss with high probability.
We construct all possible background knowledge set classes using biasD as our approxi-
mation distribution bias and calculate each class’s privacy loss and occurrence probability.
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Afterwards, we consider the class with the worst-case privacy loss after removing classes
up to an error of κ1 to be our approximation. The probability of the attackers real back-
ground knowledge to be worse than our estimation is thereby bounded by κ1 and we
subtract this from the δ error budget.

We now use the proven (Θ, ε, δ)−PPK-DP Algorithm 1 to construct a noise parameter
on the worst-case biases allowed by our approximation. We use the rest of our privacy
budget here to construct the noise.

Lastly, we check if our noise parameter is worse than what comparative (ε, δ)-DP algo-
rithms provide and return the better parameter as our output. We again use optimal
Gaussian noise (see Corollary 3.2) as our comparing value.

A pseudo-code version of this algorithm is provided in Algorithm 2.

Having outlined the algorithm, we need to take the next step and prove its correctness
and privacy guarantees. For this, we first outline the general proof.

4.3 Outlining the privacy proof for Algorithm 2

Before tackling a formal proof, we first outline our general strategy. We have two steps
during the algorithm where we need to guarantee our choices to be ε-indistinguishable,
the Laplace noise when privately choosing biasD and the usage of Algorithm 1 as a sub-
routine. We also have four parts during the algorithm where we must guarantee that we
do not exceed δ-error boundaries. We split our δ-error accordingly into four parts κ1, κ2, κ3
and κ4.

First, we take the knowledge about the entire database to construct an approximation for
attackers as well as a specified support range [biaslo, biashi]. We need to show that we do
not base our approximation solely on our database, as this would leak privacy. We show
that we do not leak privacy by using Laplace noise for estimations. We also need to prove
that the probability for any attacker to be outside of our support range is bounded by the
allowed error κ2. For this, we use the well-understood Chernoff-Hoeffdinger theorem for
additive errors to exclude worst-case attackers with a cumulative occurrence probability
of κ2 and show that the provided bounds meet our requirements.

Secondly, we consider the worst cases in our allowed range of biases and other errors
which exist in these cases. We need to prove that we upper bound the possible error for
such worst cases and have enough error budget to cover them, meaning the produced
error does not exceed κ3. Otherwise we terminate.

Thirdly, we need to choose a quasi-worst-case background knowledge satisfying our ap-
proximation, as we need a fixed background knowledge for later calculations. For this, we
brute force all privacy losses of possible background knowledge sets and their respective
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Algorithm 2: Noise computation for an unknown θ′ distribution
Input: DB D, n′, ε, δ, κ1, κ2, κ3 with κ1 + κ2 + κ3 = δ
Result: β∗ = argminβ ED̃∼θ [|N (β)|]

1 n = |D|
2 c = q(D)
3 bias = c/n
4 ℓ = Lap(2/ε)/n
5 biasD = bias+ ℓ
6 [biashi, biaslo] = biasD ± ℓ
7 τ1 = max

biasi∈[biashi,biaslo]
(x|Pr[biasD − ℓ ≤ biasi − x/2] ≤ κ2/2) [16]

8 τ2 = max
biasi∈[biashi,biaslo]

(x|Pr[biasD − ℓ ≥ biasi + x/2] ≤ κ2/2) [16]

9 κ4=κ3−
∑1

i=0 cdfLap(0,2/ε)((−τi/2+λ)·n)=κ3−
∑1

i=0 cdfLap(0,2/ε)(−n·τi/2+1)

10 if |ℓ| > τ1/2 or |ℓ| > τ2/2 or κ4 ≤ 0 then

11 return β∗ =

√
2·log(1.26/δ)

n·ε/2 \\see Theorem 3.1

12 end
13 base = max(n′ − (n− c), 0)
14 out = min(n′, c)− base
15 losses, prb = [0, . . . , 0]︸ ︷︷ ︸

|·|=out

16 for i = 0 to out do
17 hits = base+ i

18 losses[i] =

∣∣∣∣ln( ( n′
hits)·bias

hits
D ·(1−biasD)n

′−hits

( n′
hits−1)·bias

hits−1
D ·(1−biasD)n

′−(hits−1)

)∣∣∣∣
19 end
20 losses, idx = sort[desc](losses)
21 idx+ = base
22 for i = 0 to out do

23 prb[i] =
( n′
idx[i])(

n−n′
c−idx[i])

(nc)
24 end
25 exclude, wcr = 0
26 while exclude+ prb[wcr] < κ1 do
27 exclude+ = prb[wcr]
28 wcr+ = 1

29 end
30 EstD′ ∈ {D′ ∼ θ′ | n′ = |D′| ∧ wcr = q(D′)}
31 β = max

ξi∈{−(τ1/2+ℓ),τ2/2+ℓ}
(Alg1(D,EstD′ , biasD + ξi, n

′, ε/2, κ4, err, steps))

32 return β∗ = min

(
β,

√
2·log(1.26/δ)

n·ε/2

)
\\see Theorem 3.1
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occurrence probabilities. We need to prove that a quasi-worst-case background knowl-
edge estimation we use upper bounds all further calculations. Furthermore, we need to
prove that our choice has at least a chance of 1−κ1 to upper bound the privacy loss of the
real background knowledge.
Lastly, we use Algorithm 1 with our chosen worst-case background knowledge with the
rest of our error budget, κ4. The results’ correctness follows from Algorithm 1 using a
bisection method and it’s privacy guarantees follow from the above-mentioned proof in
Section 4.1.3. However, similar to the third part, we still need to prove that our results
provide enough privacy guarantees for all our supported attackers and not only the one
singular estimated case used in calculations.
If we can prove all four parts, we can add the error budgets per step as δ. The algo-
rithm then produces noise that suffices (Θ, ε/2, κ4)-PPK-DP under estimations that suffice
(Θ, ε/2, δ − κ4)-DP. The sequential composition theorem for PPK-DP algorithms has been
shown to hold in [6], meaning following with it, we can guarantee (Θ, ε, δ)-PPK-DP.
Formally, we will show the correctness of the following theorem.

Theorem 4.8.
For the family of distributions Θ, the mechanism M with its noise parameter β being computed
in Algorithm 2 for all distributions θ ∈ Θ, all indices i, all a, b ∈ supp (θ′) satisfies the following
inequality

Pr
(D′,m)∼B

[∫ ∞

ε/2
ωMβ ,D′,m,a,b,i,bias(y)(1− exp(ε/2− y)) dy > κ4

]

≤ κ1 + κ2 +

(
1− cdfLap(0,2/ε)

(
min
i

(τi/2)− 1

n

))
. (4.6)

Most of the proofs groundwork was already done in [1]. The notions necessary for the
proof were also already provided in Section 4.2.1. However, as stated before, some notions
need refactoring and necessary conjectures need to be proven before we can dive into a
formal privacy proof. We first provide some updated notions that will help with our proof
and afterwards discuss and prove necessary open conjectures.

4.3.1 Improved notions

In [1] Arnold & Pätschke focused on correctly modelling the background knowledge ap-
proximations and the corresponding privacy loss and privacy loss distribution. However,
due to this focus, the initial privacy proof of the approximation of biasD and the supported
bias interval was not thoroughly enough shown to hold bounds.
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We provide the following statements with proofs to improve on the existing statements
in [1], starting with a thorough analysis of the usage of the Chernoff-Hoeffdinger theorem
as a subroutine.

Lemma 4.9.
Bounding the interval of possible results with E(M)−τ1 and E(M)+τ2 for a Laplace mechanism
M = q(D)+ℓ using the Chernoff-Hoeffdinger theorem for additive error [16] for ℓ = Lap(0, 1/ε)

being scaled Laplace noise of at most absolute size mini∈{1,2} (τi/2) such that

Pr
[
E
(
q(D̃)

)
≤ biasj −

τ1
2

]
≤ δ

2
∧ Pr

[
E
(
q(D̃)

)
≥ biasj +

τ2
2

]
≤ δ

2
(4.7)

holds for biasj ∈ {biaslo, biashi} with

min (E(M)− |ℓ|) = biaslo ≤ E(M) ≤ biashi = max (E(M) + |ℓ|) (4.8)

, then M provides (ε, δ)-DP.

Proof (for Lemma 4.9). M being a Laplace mechanism with Laplace noise Lap(0, 1/ε), we
know this mechanism to be ε-DP. We now bound the allowed realm of output values with
E(M) − τ1 and E(M) + τ2 as described by equation 4.7 and want to show that we do not
exceed these bounds even with our noised input.
From the Chernoff-Hoeffdinger theorem [16], we know that τ1, τ2 ≥ 0.
As the Chernoff-Hoeffdinger theorem [16] does not work on noised random variable in-
puts, we need to assume our input not to be noised and add the noise to the error we want
to bound. We, therefore, assume the output of M to be a query over a secondary database
D̃ with our perturbed random variable input as bias.
The assumptions in the lemma now give us:

Pr
[
E
(
q(D̃)

)
≤ E(M)± |ℓ| − τ1/2

]
Eq. 4.8⇐⇒ Pr

[
E
(
q(D̃)

)
≤ biasj − τ1/2

]
≤ δ

2
(4.9)

The second bound follows analogously.

Pr
[
E
(
q(D̃)

)
≥ E(M)± |ℓ|+ τ2/2

]
⇐⇒ Pr

[
E
(
q(D̃)

)
≥ biasj + τ2/2

]
≤ δ

2
(4.10)

As we bound the absolute value of Lap(0, 1/ε) with mini∈{1,2} (τi/2) we can refactor the
term using this inequality. W.l.o.g we assume τ1/2 = mini∈{1,2} (τi/2).
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It then follows that

δ

2
≥ Pr

[
E
(
q(D̃)

)
≤ biasj − τ1/2

]
= Pr

[
E
(
q(D̃)

)
≤ E(M)± |ℓ| − τ1/2

]
(4.11)

≥ Pr
[
E
(
q(D̃)

)
≤ E(M)− τ1/2− τ1/2

]
(4.12)

= Pr
[
E
(
q(D̃)

)
≤ E(M)− τ1

]
(4.13)

and similarly for the second bound.

δ

2
≥ Pr

[
E
(
q(D̃)

)
≥ biasj + τ2/2

]
= Pr

[
E
(
q(D̃)

)
≥ E(M)± |ℓ|+ τ2/2

]
(4.14)

≥ Pr
[
E
(
q(D̃)

)
≥ E(M) + τ1/2 + τ2/2

]
(4.15)

≥ Pr
[
E
(
q(D̃)

)
≥ E(M) + τ2/2 + τ2/2

]
(4.16)

= Pr
[
E
(
q(D̃)

)
≥ E(M) + τ2

]
(4.17)

Equation 4.13 and Equation 4.17 now show the Chernoff-Hoeffdinger bounds evaluated
at our bounding intervals E(M) − τ1 and E(M) + τ2. In Equation 4.12 and Equation 4.15
we used the worst-cases, either biashi or biaslo, for the used Laplace noise to achieve these
bounds.
We assume ±τ1/2 as the bounds for our Laplace noise, meaning that ℓ ∈ [−τ1/2, τ1/2]. Our
worst-case inputs are then defined by ℓ = ±τ1/2. This exhaust the inequalities in Equa-
tion 4.12 and 4.15 respectively for either biaslo or biashi. It can then be seen that, the
probabilities of landing outside of each of these bounds are then equal to at most δ/2. As
both cases can theoretically occur, we can upper bound the cumulative error by adding
the two singular errors together.
This means our produced error is at most δ/2 + δ/2 = δ. Together with the ε budget for the
initial Laplace noise, we achieve (ε, δ)-DP through the induced error. □

We have shown that using the Chernoff-Hoeffdinger theorem for additive errors produces
an (ε, δ)-DP result for given values. In Lemma 4.9 we assumed the Laplace mechanism to
only produce results in a specified range and did not consider errors that exist, should the
noise be outside of it.
From Lemma 4.9 we know that we achieve the support bounds exactly when we assume
our Laplace noise values to be at most of absolute size min

i∈{1,2}
(τi/2). Laplace noise values

outside this range could, therefore, produce results outside of our support bound for bi-
ases, with some error we haven’t accounted for yet.
Furthermore should our Laplace noise exhaust, but not exceed it’s support size min

i∈{1,2}
(τi/2),

then another error exists.
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Assume our estimated bias for the background knowledge and real bias exhaust one of
the Chernoff-Hoeffdinger bounds. This would mean that the real background knowledge
bias is exactly E(M(D)) − τ1 or E(M(D)) + τ2. However, when we now test against a
neighbouring database D̃, this would result in E(M(D̃)) = E(M(D)) ± λ. The real back-
ground knowledge could in a worst-case then be E(M(D̃))− τ1 − λ or E(M(D̃)) + τ2 + λ,
meaning outside of our allowed support range.

All values in the Laplace distribution that result in us landing outside of the support range
must, therefore, be accounted for by our error. We model this by assuming the Laplace
distribution to be truncated at the calculated bounds± min

i∈{1,2}
(τi/2) and consider the cumu-

lative probabilities of us landing outside those bounds as another error.

We estimate the size of the error by the following lemma.

Lemma 4.10.
A truncated Laplace mechanism that uses noise parameter 1/ε, with a query-sensitivity λ and that
is cut at the data-dependent bounds −τ1 or τ2 satisfies(

ε,
1∑

i=0

cdfLap(0,2/ε) (−τi + λ)

)
-DP. (4.18)

Proof (for Lemma 4.10). We know that the Laplace mechanism using noise parameter 1/ε is
ε-DP [9]. We now truncate the Laplace mechanism at both −τ1 to remove the interval
[− inf,−τ1] and τ2 to remove the interval [τ2, inf].

We can model a truncated Laplace mechanism using a standard implementation and the
removed intervals as error δ. However, this does not cover all possible errors introduced
by truncating the Laplace distribution in our specific case. As we compare against neigh-
bouring data sets that produce outputs shifted by data sensitivity λ, we want our worst
case noise to not exceed our truncation bounds, even if shifted by λ. As these bounds are
data dependent, landing with added λ outside of the truncation would imply that using a
neighbouring database would have resulted in different boundaries.

We, therefore, still need to consider the possibility of our bounds changing in a neigh-
bouring database and adding it to the combined error. For this, we need to increase the
interval by the data sensitivity λ to catch any edge cases as worst cases would now land
exactly on the boundary instead of outside of them. We modify the intervals so that we
either remove [− inf,−(τ1 − λ)] or [τ2 − λ, inf].

With these two introduced errors in mind, we consider the two truncation cases. When
the distribution is cut at −τ1, then the resulting error is the cumulative probability of all
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possible removed results. We can write this error as:

−τ1+λ∫
x=−∞

pdfLap(0,1/ε)(x)dx = cdfLap(0,1/ε)(−τ1 + λ) (4.19)

If the distribution would only be cut at−τ1, then it would satisfy (ε, cdfLap(0,1/ε)(−τ1+λ))-
DP.

Analogously when we cut the distribution at τ2, then we can write the error as:

∞∫
x=τ1−λ

pdfLap(0,1/ε)(x)dx = 1− cdfLap(0,1/ε)(τ2 − λ) = cdfLap(0,1/ε)(−τ2 + λ) (4.20)

If the distribution would only be cut at τ2, then it would satisfy (ε, cdfLap(0,1/ε)(−τ2 + λ))-
DP.

In the considered case, we now not only cut the distribution at −τ1, but also at τ2. As
τ1, τ2 > 0, we know the two intervals to not intersect. The combined probability to land in
either of the two cases can thereby be calculated by simply adding the two errors together.

δ = cdfLap(0,1/ε)(−τ1 + λ) + cdfLap(0,1/ε)(−τ2 + λ) (4.21)

=
1∑

i=0

cdfLap(0,1/ε)(−τi + λ) (4.22)
□

With this we have shown that our subroutines for the bias approximation satisfy an (ε, δ)-
DP bound, but not necessarily a (Θ, ϵ, δ)-PPK-DP bound. Therefore, we also need to show
the following.

Lemma 4.11.
All mechanisms that are (ϵ, δ)-DP are also (Θ, ϵ, δ)-PPK-DP.

Proof (for Lemma 4.11). Let M be an (ϵ, δ)-DP mechanism.
By definition, we know that definition 2.12 holds for M assuming any two neighbouring
databases D0, D1. Furthermore, for any background knowledge D′ drawn from θ′ ∈
Θ, this D′ must be a subset of both D0 and D1 as the challenge element is unknown to
attackers. We now rewrite the D′ in relation to D1 as described in definition 3.3:

D′ = D1[mk]
n′
k=1 (4.23)
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with n′ being the size of the background-knowledge set. Furthermore, we write the rest
of D1 as

D′′ = D1\D′ (4.24)

following from definition 3.4. The following equation then holds:

D1 = D′ ∪D′′ (4.25)

As an adversary never knows the challenge element D[i] in an (ϵ, δ)-DP scenario, we know
that D′′ must at least hold this element but could hold more. A worst case scenario for the
analysis of (Θ, ϵ, δ)-PPK-DP would be exactly the case that the background-knowledge set
D′ contains all elements, except the challenge element.
In all other cases, we could always reduce the analysis to this case and would get a valid
result as we would ascribe adversaries more background knowledge than they have.
The worst case for (Θ, ϵ, δ)-PPK-DP can, therefore, assuming i ̸∈ Perm(n)[1 : n − 1] and
D[i] to be the challenge element, be described as:

D′ = D1[mk]
n−1
k=1 (4.26)

D′′ now only holds the challenge element, while all other positions are assumed to be
known by the attacker. D′′ only consisting of one challenge element describes exactly an
(ϵ, δ)-DP scenario and our mechanism M can be used to achieve a sufficing result. The
worst-case (Θ, ϵ, δ)-PPK-DP scenario can be solved using an (ε, δ)-DP mechanism.
As a mechanism that suffices in the worst-case scenario will always suffice in all other
cases, it follows that an (ϵ, δ)-DP mechanism will also suffice in all (ϵ, δ,Θ)-PPK-DP cases
and is thereby also (ϵ, δ,Θ)-PPK-DP. □

With this, we can now venture onward from improving in [1] assumed notions and tackle
the main territory of this section, answering research question 1. Can we prove or disprove
Conjecture 3.9?

4.3.2 Extant Conjectures

In [1] the achieved results base their privacy claims on the correctness of the in Section 3.2
already introduced Conjecture 3.9. Using the conjecture it would be an implication that we
can upper-bound the privacy loss of background knowledge sets by their biases. This is
used in Algorithm 2 in line (31) when Algorithm 1 is called to guarantee that the returned
results also upper bound the necessary noise.
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However, this is not the only conjecture made by Arnold & Pätschke in [1]. The following
conjecture is also made.

Conjecture 4.12 (Monotonically decreasing Privacy Loss Distribution [1]).
The function ωM,D′,m,a,b,i,bias(y) is monotonically decreasing in y.

While Conjecture 4.12 holding is not necessary for the algorithm to work correctly [1], it
would imply that we could estimate deltas more efficiently than needing to calculate the
entire privacy loss distribution. However, as its contribution is only run-time improving,
we consider the conjecture to be out of scope for this thesis.
The question now remains, if we can prove or disprove Conjecture 3.9. Through analysing
Conjecture 3.9, we come to the following conclusion:

Claim 4.13.
Conjecture 3.9 is false.

Proof (for Claim 4.13). One simple way to disprove Conjecture 3.9 is to show one counter-
example where the privacy loss PLM,D′,m,a,b,i,bias is not growing with larger distance
|bias− 0.5|while all other variables are fixed.
We give such an example with |D| = 5000, |D′| = 3000, biasD = 0.4, plotted in Figure 4.1a
evaluated at three different values for q(D′). While the conjecture holds for q(D′) = 1000,
we can see that for q(D′) ∈ {500, 1500} it does not prove to hold. Instead the privacy loss
appears to grow with larger distance |bias − 0.75| for q(D′) = 500 and |bias − 0.25| for
q(D′) = 1500. We will see in the next section that this is indeed the case.
Instead of growing with a larger distance |bias − 0.5|, the privacy loss is minimising in
some linear function dependent on q(D′). We will discuss the linear function in q(D′) and
what it describes in Section 4.3.3. □

As we can see, Conjecture 3.9 does not hold, breaking all privacy guarantees that are
based on it. It is, therefore, necessary to fix the conjecture before we are able to prove
that Algorithm 2 is private. We need a theorem that provides similar guarantees for the
bounds to finish the proof.
Plotting more of the privacy loss domain PLM,D′,m,a,b,i,bias gives an intuition on how to
advance. As a starting point, we plotted a representative subset of all possible q(D′) and
bias combinations for |D| = 5000, |D′| = 3000 and biasD = 0.4. The resulting plane can be
seen in Figure 4.1b.
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(a) Plot of small example cases
of q(D′) for the privacy losses
PLM,D′,m,a,b,i,bias with |D| = 5000,
|D′| = 3000 and biasD = 0.8 fixed
and varying bias. The privacy loss
minimises dependent on the value
q(D′) instead of 0.5 as conjectured.

(b) Plot for the privacy loss plane PLM,D′,m,a,b,i,bias with
|D| = 5000, |D′| = 3000 and biasD = 0.4 fixed in
regards to varying q(D′) and bias. The privacy loss
seems to minimise in a linear function dependent on
q(D′).

Figure 4.1: Example plottings for PLM,D′,m,a,b,i,bias, showing that Conjecture 4.12 does not
hold by providing an example where we can observe the privacy loss behaving
antithetical to the conjecture.

Starting with the intuition from this plotting, our next goal is to fix the disproved conjec-
ture.

4.3.3 Fixing Conjecture 3.9

As shown in the last section, the Conjecture 3.9 as introduced in [1] fails to hold. Further-
more, a critical section of our proof for algorithm 2 initially needs this conjecture to hold.
We now face the problem to fix the proof by first fixing conjecture 3.9 and then showing
that our fixed version gives the exact properties needed.

To fix the conjecture, we try and see how the privacy loss PLM,D′,m,a,b,i,bias is influenced
by the used bias for its calculations. Figure 4.1 provides the intuition that the bias seems
to be inversely influenced by q(D′) in regards to increases in privacy loss. While at first
seemingly counter-intuitive, we need to consider that the privacy loss is also dependent
on the non-compromised data subset D′′. D′′ is exactly comprised of all elements of D
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not in the background knowledge D′. We can make an informed guess that the observed
inverse influence might be traceable to D′′.

Based on this idea, we formulate the following theorem.

Lemma 4.14.
Let biassec be the expected value of a fixed D′′ as defined by Definition 3.4 and bias the expected
value of the background knowledge D′.
Assume that all variables besides bias are fixed in PLM,D′,m,a,b,i,bias. With increasing, ab-
solute distance between the two biases bias and biassec |bias− biassec|, the privacy loss
PLM,D′,m,a,b,i,bias also increases.

Proof (for Lemma 4.14). For a function to increase in an absolute distance equates to the
function being monotonically decreasing for any values smaller than the comparative
value and similarly monotonically increasing for any bigger values. The privacy loss
PLM,D′,m,a,b,i,bias must then be monotonically decreasing in background knowledge bi-
ases bias ∈ [0, biassec). Similarly, the privacy loss must increase monotonically in interval
bias ∈ (biassec, 1].

To show this functional behaviour, we need to analyse the first partial derivative of the
Privacy Loss in the direction of bias. With the Privacy Loss as defined in Definition 3.5,
we, therefore, need to determine:

∂PLM,D′,m,a,b,i,bias(o)

∂bias
=

∂

∣∣∣∣∣ln
(

PrD

[
M(D)=o|D[mj ]

n′
j=1=D′∧D′′[i]=a

]
PrD[M(D)=o|D[mj ]n

′
j=1=D′∧D′′[i]=b]

)∣∣∣∣∣
∂bias

(4.27)

To efficiently analyse this equation, we take a look at the innermost ratio of probabilities.
The used probability fixes the background knowledge and challenge element, only keep-
ing the non-compromised data points variable. We can use this to refactor the term as
follows:

PrD
[
M(D)=o|D[mj ]

n′
j=1=D′∧D′′[i]=a

]
PrD

[
M(D)=o|D[mj ]

n′
j=1=D′∧D′′[i]=b

] [1]
=

(
n−n′−1
o−q(D′)

)
biaso−q(D′)(1− bias)n−n′−1−(o−q(D′))(

n−n′−1
o−q(D′)−1

)
biaso−q(D′)−1(1− bias)n−n′−1−(o−q(D′)−1)

(4.28)
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We simplify the term by grouping bias and (1− bias) terms.

=
(n−n′−1
o−q(D′))bias

o−q(D′)−(o−q(D′)−1)

( n−n′−1
o−q(D′)−1)(1−bias)n−n′−1−(o−q(D′)−1)−(n−n′−1−(o−q(D′)))

(4.29)

=

(
n−n′−1
o−q(D′)

)
bias(

n−n′−1
o−q(D′)−1

)
(1− bias)

(4.30)

We now also break down the binomial coefficients, rewriting them in their factorial form

=

(n−n′)!
(o−q(D′))!(n−n′−1−(o−q(D′))!)

(n−n′)!
(o−q(D′)−1)!(n−n′−1−(o−q(D′)−1))!

· bias

1− bias
(4.31)

and continue simplifying the term by breaking down the factorials as much as possible.

=
n− n′ − o+ q(D′)

o− q(D′)︸ ︷︷ ︸
=const

· bias

(1− bias)
(4.32)

The first term in Equation 4.32 does not rely on the only variable term bias. This means, all
values are fixed and the result of it is a constant value in regards to further calculations. We
denote the term with const. With this, we can now insert Equation 4.32 into the original
Equation 4.27, thereby simplifying the term.

∂PLM,D′,m,a,b,i,bias(o)

∂bias
=

∂
∣∣∣ln(const · bias

(1−bias)

)∣∣∣
∂bias

(4.33)

Now we can start calculating the partial derivative via recursive usage of the chain rule.

∂
∣∣∣ln(const · bias

(1−bias)

)∣∣∣
∂bias

=
∂

∂bias

√(ln(const · bias

1− bias

))2
 (4.34)

= 1
2
· 1

|ln(const· bias
1−bias)|

·2 ln(const· bias
1−bias)·

1

const· bias
1−bias

· 1
(1−bias)2

(4.35)

=
ln
(
const · bias

1−bias

)
∣∣∣ln(const · bias

1−bias

)∣∣∣ · 1

const · bias · (1− bias)
(4.36)
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We now need to different cases in the partial derivative. Depending on the result of
ln
(
const · bias

1−bias

)
the first fraction of Equation 4.36 either evaluates as 1 or −1. The eval-

uation depends on if the term results in a positive or negative value, in the negative case
resulting in a change of sign for the entire Equation 4.36. As the natural logarithm is
monotonically increasing in its input, it suffices to analyse const · bias

1−bias and if it evaluates
to a value smaller or bigger than 1.
Case 1: 0 < const · bias

1−bias < 1

ln(const· bias
1−bias)

|ln(const· bias
1−bias)|

· 1
const·bias·(1−bias)

= −1 · 1

const · bias · (1− bias)
(4.37)

In case 1, the first derivative of the privacy loss always evaluates to a negative value. For
the interval of biases that fulfil this condition, we know the privacy loss to be monotoni-
cally decreasing.
Case 2: const · bias

1−bias > 1

ln(const· bias
1−bias)

|ln(const· bias
1−bias)|

· 1
const·bias·(1−bias)

= 1 · 1

const · bias · (1− bias)
(4.38)

In case 2, the first derivative of the privacy loss always evaluates to a positive value. Simi-
larly to case 1, we can infer that the interval of biases that fulfil this condition will increase
the privacy loss monotonically.
Lastly, we also need to evaluate which value is the boundary value between the two cases.
For this we can solve const · bias

1−bias = 1 for the value bias.
Case 3: const · bias

1−bias = 1

const · bias

1− bias
= 1 (4.39)

n− n′ − o+ q(D′)

o− q(D′)
· bias

1− bias
= 1 (4.40)

(n− n′ − o+ q(D′)) · bias = (o− q(D′)) · (1− bias) (4.41)

(−bias)·(o−q(D′))+bias·(n−n′) = (−bias) · (o− q(D′)) + o− q(D′) (4.42)

bias · (n− n′) = o− q(D′) (4.43)

bias =
o− q(D′)

n− n′ (4.44)

We can now rewrite this equation as follows:

bias =
o− q(D′)

n− n′ =
q(D)− q(D′)

|D| − |D′|
Def. 3.4

=
q(D′′)

|D′′|
= biassec (4.45)
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The boundary value between the privacy loss monotonically de- and increasing is biassec.
For any bias smaller than biassec, the privacy loss is, therefore, monotonically decreasing
and, analogously, for any bias bigger than biassec, monotonically increasing.
Stated differently, the Privacy Loss PLM,D′,m,a,b,i,bias(o) is monotonically decreasing for
biases bias in the interval [0, biassec) and monotonically increasing for biases in the interval
(biassec, 1]. Thereby it follows that the privacy loss PLM,D′,m,a,b,i,bias(o) monotonically
increases in |bias− biassec| □

biassec is inherently dependent on bias for fixed biasD, as can be followed from Defini-
tion 3.4. Therefore, we can not use the results of Lemma 4.14 unmodified, as we would
otherwise test background knowledge approximations against the same approximation
and not a fixed point of reference. We will discuss how to fix this problem in detail. For
this, we restate the dependency between biassec, bias and biasD in the following corollary.

Corollary 4.15.
Let D be a database adhering to a distribution with expected value biasD, D′ be a background
knowledge with expected value bias and D′′ the non-compromised data with biassec, then it
follows that:

biasD =
|D′|
|D|

bias+
|D′′|
|D|

biassec (4.46)

Proof (for Corollary 4.15). By Definition 2.2, we know that

biasD =
q(D)

|D|
(4.47)

holds. Furthermore, from Definition 3.4 we know that D′ and D′′ split both D and q(D)

into two disjoint subsets. We can now rewrite the term in Equation 4.47 as follows

=
q(D′)

|D|
+

q(D′′)

|D|
(4.48)

=
|D′| · q(D′)

|D′| · |D|
+
|D′′| · q(D′′)

|D′′| · |D|
(4.49)

=
|D′|
|D|

bias+
|D′′|
|D|

biassec (4.50)
□

Corollary 4.15 restates that biassec is inherently linked to bias. Approximating one of the
two values results in the other value also only being approximated. As stated before, we
can not use biassec as the comparative value in Algorithm 1, as we would test the quality
of the approximation against the approximation itself.
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However, an interesting fact can be learned from this. As we can construct biasD from
bias and biassec, it follows that:

Corollary 4.16.
When Corollary 4.15 holds, then if follows for biasD, bias and biassec that

min(bias, biassec) ≤ biasD ≤ max(bias, biassec) (4.51)

Using this corollary, we can now rewrite Lemma 4.14 to the following theorem.

Theorem 4.17.
Let bias be the expected value of the background-knowledge D′ and biasD the expected value of
the entire database D.
Assume that all variables besides bias are fixed in PLM,D′,m,a,b,i,bias. With increasing, absolute
distance |bias− biasD|, the privacy loss PLM,D′,m,a,b,i,bias also increases.

Proof (for Theorem 4.17).
From Lemma 4.14 we know that the privacy loss PLM,D′,m,a,b,i,bias(o) is monotonically
increasing in |(bias−biassec)|, reaching its minimum at bias = biassec. From Corollary 4.15,
we furthermore know biasD to be the weighted average of bias and biassec. This means
for fixed biasD that both of the values are inherently linked and for the particular case
|bias− biassec| = 0 it follows from Corollary 4.15 that:

bias = biassec = biasD (4.52)

In the considered setting we assume biasD to be fixed. Only bias is variable in the setting,
however biassec will also vary as modifying bias without changing biasD forces changes
in biassec. This, again, follows directly from Corollary 4.15. It follows that increasing the
difference |bias − biassec| will also increase the differences |bias − biasD| and |biasD −
biassec|. It follows thereby that

Lemma 4.14 ⇔ Theorem 4.17 (4.53)
□

The combination of the so-far provided proofs gives us another insight on the privacy
loss random variable behaviour. Increasing the absolute difference between two values
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while keeping their weighted average fixed also increases the absolute distance between
the values and the average. We can create the following corollary from Theorem 4.17 and
Lemma 4.16.

Corollary 4.18. For any fixed M,D′,m, a, b, i, k, biasD and biases bias, bias′ that satisfy the
equation

PLM,D′,m,a,b,i,bias(o) ≤ PLM,D′,m,a,b,i,bias′(o) (4.54)

the biases bias and bias′ also satisfy the equation:

|bias− biasD| ≤ |bias′ − biasD| (4.55)

Proof (for Corollary 4.18). From Theorem 4.17 we know that for fixed values M , D′, m, a, b,
i, k and biasD the privacy loss is monotonically increasing in increasing absolute distance
|bias− biasD|.
bias and bias′ now satisfy for fixed M,D′,m, a, b, i, k, biasD, that the privacy loss under
bias is smaller than or equal to the privacy loss under bias′ (Equation 4.54). However, as
can easily be deduced, this can only be the case if also Equation 4.55 holds. □

With Theorem 4.17 and Corollary 4.18, we now have similar constraints as given by the
false conjecture 3.9. With biasD, we can use a value known to us as an optimum for bias,
and biassec, and show that biases varying from it will result in increasing privacy losses.
The next step is to apply our constructed theorem (Theorem 4.17) and corollary (Corol-
lary 4.18) to show that we can estimate a worst-case noise scale parameter.

4.3.4 Applying Theorem 4.17 and Corollary 4.18

When applying Theorem 4.17 and Corollary 4.18, while applicable to the entire range [0, 1],
we only want to look at a comparatively small range around biasD.
As established, the background knowledge we want to approximate is assumed to be
chosen randomly from all background knowledge sets. Starkly varying from biasD could,
therefore, leak more privacy than we could estimate when assuming random background
knowledge choices.
To bound our support range of biases, we introduce the concept of (τ1, τ2), κ2-representa-
tive databases and (τ1, τ2), κ2-closeness.

51



4 Method Section

Definition 4.19 ((τ1, τ2)-close bias).
A bias bias is (τ1, τ2)-close for some values τ1, τ2 > 0 to another bias bias′ if the two biases
fulfil the following inequality:

bias′ − τ1 ≤ bias ≤ bias′ + τ2 (4.56)

Definition 4.20 ((τ1, τ2), κ2-representative database).
A database D′ is (τ1, τ2), κ2-representative for some values τ1, τ2, κ2 > 0 to another
database D if its bias bias is (τ1, τ2)-close to the bias biasD of D with at least 1 − κ2

probability:
Pr[biasD − τ1 ≤ bias ≤ biasD + τ2] ≥ 1− κ2 (4.57)

In Corollary 4.18 we stated that the privacy loss is inherently smaller for one bias bias

compared to bias′ if bias′ varies more from biasD.
We can now adapt Corollary 4.18 to work with (τ1, τ2), κ2-close databases and, there-
fore, (τ1, τ2)-close biases. We only limit the maximal divergence between bias and biasD,
thereby providing two bounding biases for the maximal divergence in each direction from
biasD. We formulate the conversion to the new setting in the following lemma.

Lemma 4.21. If database D′ is (τ1, τ2), κ2-representative to database D, then for all biases bias
such that biasD − τ1 and biasD + τ2 are bounding values for bias, meaning
biasD − τ1 ≤ bias ≤ biasD + τ2, the inequality

PLM,D′,m,a,b,i,bias(o) ≤ max(PLM,D′,m,a,b,i,biasD−τ1(o), PLM,D′,m,a,b,i,biasD+τ2(o)) (4.58)

holds.

Proof (for Lemma 4.21). Following Corollary 4.18, we can simplify our proof to only con-
sider the biases used for the respective Privacy Losses. It, therefore, suffices to show that
the following equation needs to hold at all times:

|bias− biasD| ≤ max (|biasD − τ1 − biasD|, |biasD + τ2 − biasD|) (4.59)

52



4.3 Outlining the privacy proof for Algorithm 2

We split the proof into three distinct cases to simplify the analysis. The three cases are
with respect to the bias as follows, the bias is lower than biasD, the bias is equal to biasD,
and the bias is bigger than biasD.

1. bias < biasD

If the bias is less than biasD, then we can rewrite the left side of Equation 4.59 as
follows:

|bias− biasD| = biasD − bias (4.60)

It is implied by D′ being (τ1, τ2), κ2−representative to D and the thereby assumed
bias bounds that

biasD − τ1 ≤ bias (4.61)

From this, we can follow

biasD − bias ≤ biasD − (biasD − τ1) (4.62)

≤ τ1 (4.63)

τ1 must be greater or equal to 0. This follows directly from Definition 4.19.
Inserting this into Equation 4.59, we now know that at least one of the two parame-
ters from the max function on the right side of the equation evaluates to a value at
least as big as the left side. Our maximum, therefore, also needs to evaluate to this
or a bigger value.
The lemma, therefore, holds for biases smaller than biasD.

2. bias = biasD

If bias is equal to biasD, the left side of Equation 4.59 evaluates as

|bias− biasD| = biasD − biasD = 0 (4.64)

As both of the inputs to the maximum function of the equations are absolute values
and upper- and lower-bound bias, we know that both of them must equate to a value
bigger or equal to zero.
The lemma, therefore, holds if bias equals biasD.
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3. bias > biasD

If our bias is bigger than biasD, then we can rewrite the left side of Equation 4.59 as

|bias− biasD| = bias− biasD (4.65)

Evidently we know from the fact that D′ is (τ1, τ2), κ2−representative to D that

biasD + τ2 ≥ bias (4.66)

From this, we can follow

bias− biasD ≤ (biasD + τ2)− biasD (4.67)

≤ τ2 (4.68)

Inserting this result into Equation 4.59, we now know that at least one of the two
parameters from the max function on the right side of the equation evaluates to a
value at least as big as the left side. Our maximum, therefore, also needs to evaluate
to this or a bigger value.
The lemma, therefore, holds for biases bigger than biasD.

The lemma holds in all distinct cases, and these cases also represent all possible values for
bias, it follows that Lemma 4.21 holds. □

We have shown that the Privacy Loss can be upper bounded for databases D′ that are
(τ1, τ2), κ2-representative to some other databases D. Moreover, both biasD and τ1, τ2 can
be learned without knowing anything but the size of D′. The only thing remaining is to
show, that we upper bound the probability of real background knowledge sets breaking
privacy guarantees using estimations created with Lemma 4.21. We need to test if the δ of
the approximation is at least as big as the δ produced by the real background knowledge.
If that is the case, then we can use Corollary 4.2 to imply, that the calculated noise param-
eter with the estimated background knowledge will also suffice for the real background
knowledge. We proof that the estimation background knowledge produces a worse δ with
the following theorem:
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Theorem 4.22. If database D′ is (τ1, τ2), κ2-representative to another database D, then for all
biases bias such that
biasD − τ1 ≤ bias ≤ biasD + τ2

δreal(ε) := E
o∼M(D)

[1− exp
(
ε− PLM,D′,m,a,b,i,bias(o)

)
]

≤max( E
o∼M(D)

[1− exp
(
ε− PLM,D′,m,a,b,i,biasD−τ1(o)

)
],

E
o∼M(D)

[1− exp
(
ε− PLM,D′,m,a,b,i,biasD+τ2(o)

)
])

:=δapproximated(ε) (4.69)

Proof (for Theorem 4.22). The expected value E describes the arithmetic means of its input.
If we want to compare two expected values, E(X) and E(X ′) and we know, that for all
values in X and X’ the inequality X ≤ X ′ holds, that the arithmetic means of X will also
be smaller than that of X’.
For our inequality in Equation 4.69, we can, therefore, simplify the term to consider the
inputs of E instead of the expected values themselves. We can then check if the inputs
fulfil the inequality for all observations o as this would imply the same inequality in the
expected values. We, therefore, need to show that the probability of a privacy loss being
bigger than ε is higher in one the bounding biases biasD − τ1 or biasD + τ2 than real
background knowledge bias bias.

∀o:

1− exp
(
ε− PLM,D′,m,a,b,i,bias(o)

)
≤max(1− exp

(
ε− PLM,D′,m,a,b,i,biasD−(τ1/2+ℓ)(o)

)
, 1− exp

(
ε− PLM,D′,m,a,b,i,biasD+τ2/2+ℓ

)
(o))

(4.70)

For simplicity’s sake, we substitute the privacy loss PLM,D′,m,a,b,i,bias(o) with x(o), privacy
loss PLM,D′,m,a,b,i,biasD−(τ1/2+ℓ)(o) with x′(o) and privacy loss PLM,D′,m,a,b,i,biasD+τ2/2+ℓ)(o)

with x′′(o).
Using the constructed substitutions, we can write the left side of Equation 4.69 as follows:
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∀o:

1− exp

ε− x(o)︸︷︷︸
≤max(x′(o),x′′(o))

 (4.71)

With Lemma 4.21 we can upper bound x(o) with the maximum of x′(o) and x′′(o). From
this follows:

1− exp

 ε− x(o)︸ ︷︷ ︸
≥max(ε−x′(o),ε−x′′(o))

 (4.72)

Similarly, we can now lower bound the term ε− x(o). We continue on with:

1− exp(ε− x(o))︸ ︷︷ ︸
≥max(exp(ε−x′(o)),exp(ε−x′′(o)))

(4.73)

As the exponential function is monotonically increasing in its input, lower bounding its
input will also lower bound its output. We can continue the estimations one final time,
resulting in:

1− exp(ε− x(o))︸ ︷︷ ︸
≤max(1−exp(ε−x′(o)),1−exp(ε−x′′(o)))

(4.74)

We can now write Equation 4.74 as an inequality instead of an estimation. This results in

1− exp(ε− x(o)) ≤ max
(
1− exp

(
ε− x′(o)

)
, 1− exp

(
ε− x′′(o)

))
(4.75)

which, if we reverse the substitution for x(o), x′(o) and x′′(o), is exactly Equation 4.70.
With this we have proven that the inequality holds for all o. □

With this, we introduced all notions necessary to proof Theorem 4.8 and show Algorithm 2
to be (Θ, ε, δ)-PPK-DP.
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4.4 A full privacy guarantees proof for Algorithm 2

In this section, we are finally able to provide a privacy proof for Algorithm 2. The exact
guarantees we need to show have already been specified in Theorem 4.8 earlier in the
chapter. We set all discussed and proven notions together, showing that Algorithm 2
suffices (Θ, ε, κ1 + κ2 + κ4 +

∑1
i=0 cdfLap(0,2/ε) (−n·τi/2 + 1))-PPK-DP.

Proof (for Theorem 4.8). We want to prove the correctness and privacy guarantees of Algo-
rithm 2. For this, we split the algorithm into four distinct steps.

1. In the first step, we show that we privately choose an interval for supported biases
around biasD for databases D ∼ θ with privacy guarantees ε/2 and error of at most

κ2 +
1∑

i=0

cdfLap(0,2/ε) (−n·τi/2 + 1) (4.76)

2. Afterwards, in the second step, we show that we choose a background knowledge
estimation EstD′ such that all worse background knowledge sets ẼstD′ appear cu-
mulatively with a probability of at most κ1.

3. In the third step, we then show, assuming the first two steps, that we calculate a
noise parameter β such that the probability of privacy leakage is bounded by κ4 for
all considered biases bias and background knowledge sets D′.

Should these three steps hold, we can then use the sequential composition theory for dif-
ferential privacy to upper-bound the resulting error of consecutively executing all three
steps with the following:

Pr
(D′,m)∼B

[∫ ∞

ε/2
ωMβ ,D′,m,a,b,i,bias(y)(1− exp(ε/2− y)) dy > κ4

]

≤ κ1 + κ2 +
1∑

i=0

cdfLap(0,2/ε) (−n·τi/2 + 1) . (4.77)

4. Lastly, we still need to show that, should we exceed any of our error bounds at any
point, we still provide a valid output by over-approximating β.

We start with the first step.

1. We choose biasD randomly from a Laplace noise distribution centred around the
expected value of D and scaled by 2/ε. We know such a Laplace mechanism to in-
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herently be ε/2-DP[9]. Afterwards, we use the Chernoff-Hoeffdinger theorem for ad-
ditive error bounds to estimate the interval of supported biases around biasD with
biasD − τ1 and biasD + τ2.

From Lemma 4.9 and Lemma 4.10 we know the introduced error δ1 of this to be
bounded by

δ1 ≤ κ2 +

1∑
i=0

cdfLap(0,2/ε) (−n·τi/2 + 1) (4.78)

Step one, therefore, is private and works correctly.

We continue with the second step.

2. We choose EstD′ by the following strategy:

i.) Firstly, estimate for each possible background knowledge q(D̃) in the range
[0, |D′|] the privacy loss using biasD.
Following from Claim 4.6, we know the privacy losses are only influenced by
the query result of background knowledge sets and not their permutation of
positions.

ii.) Secondly, order the q(D′) descending by their respective privacy loss and cal-
culate the occurrence probability of each q(D̃) using the hypergeometric distri-
bution.
The hypergeometric distribution describes choosing a specified subset with
specified data distribution from another distribution. By definition of the hy-
pergeometric distribution, we know the calculated occurrence probabilities to
be correct.

iii.) Thirdly, exclude worst-case q(D̃) in regards to the privacy loss up to a maxi-
mum cumulative occurrence probability of κ1.
As we, at most, exclude query classes up to a cumulative probability of κ1, the
thereby introduced error is bounded by it.

iv.) Lastly, choose the worst remaining q(D̃) in regards to the privacy loss as our
approximation of q(D′) and choose a random permutation of elements sufficing
the chosen query result as EstD′ .
We know that EstD′ has the worst privacy loss of all q(D̃) that we have not
excluded, thereby being a quasi-worst case approximation of D′.

We now consider all background knowledge sets ẼstD′ that are worse than EstD′

in regards to their privacy loss. Following directly from the described strategy, we
set EstD′ to be the quasi-worst-case background knowledge with an allowed error
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of κ1. This means, we excluded worse background knowledge estimations up to
a cumulative occurrence probability of κ1 and chose EstD′ as the worst remand-
ing background knowledge afterwards. All possible ẼstD′ we could consider must
already be excluded by the strategy design.

With that, we can conclude that step two works correctly with probability 1− κ1.

We continue with the third step.

3. In the third step, we use the interval bounds −τ1 and τ2 as well as the privately
chosen biasD from step 1 and EstD′ from step 2 and use them as inputs for Algo-
rithm 1. With the two interval bounds, we then call Algorithm 1 twice as a subrou-
tine, resulting in the two calls Alg1(D,EstD′ , biasD − τ1, |D′|, ε/2, κ4, err, steps) and
Alg1(D,EstD′ , biasD + τ2, |D′|, ε/2, κ4, err, steps) that respectively return β1 and β2.

From our privacy proof of Algorithm 1 in Lemma 4.5, we know these two calls to be
(Θ, ε, δ)-PPK-DP, meaning they each fulfil their respective version of the following
two equations. Furthermore, we know with Theorem 4.22 that β1 and β2 are lower
bounds for necessary noise when defending against attackers in the support range.

Let β = max (β1, β2) be the worse result of the two outputs.

The first call now fulfils

E(EstD′ ,m)∼B

[∫ ∞

ε/2
ωMβ ,EstD′ ,m,a,b,i,biasD−τ1(y)(1− exp(ε/2− y)) dy

]
≤ κ4 (4.79)

and the second call fulfils

E(EstD′ ,m)∼B

[∫ ∞

ε/2
ωMβ ,EstD′ ,m,a,b,i,biasD+τ2(y)(1− exp(ε/2− y)) dy

]
≤ κ4. (4.80)

The probability that we get inputs that do not achieve these bounds is, at most, the
cumulative errors from step 1 and step 2, as we could have only created erroneous
inputs if we landed in one of their respective error cases.
We can, therefore, write for the first call

Pr
(EstD′ ,m)∼B

[∫ ∞

ε/2
ωMβ ,EstD′ ,m,a,b,i,biasD−τ1(y)(1− exp(ε/2− y)) dy > κ4

]

≤ κ1 + κ2 +

1∑
i=0

cdfLap(0,2/ε) (−n·τi/2 + 1) (4.81)
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and

Pr
(EstD′ ,m)∼B

[∫ ∞

ε/2
ωMβ ,EstD′ ,m,a,b,i,biasD+τ2(y)(1− exp(ε/2− y)) dy > κ4

]

≤ κ1 + κ2 +

1∑
i=0

cdfLap(0,2/ε) (−n·τi/2 + 1) (4.82)

for the second call. As the probability that the privacy leakage is bigger than κ4 is
upper bounded by the errors of steps 1 and 2, it must conversely follow that the
privacy leakage is smaller than κ4 in all cases that provide valid outputs in step 1
and 2.

We now combine the three steps.
From the correctness of step 1, we know, if we did not exceed error bounds δ1, that the
background knowledge bias is (τ1, τ2), κ2-close to biasD and that, together with the cor-
rectness of step 2, D′ must also be (τ1, τ2), κ2-representative to EstD′ , if we did not exceed
error bound κ1. With Theorem 4.22 and step 3, it then follows that:

Pr
(D′,m)∼B

[∫ ∞

ε/2
ωMβ ,D′,m,a,b,i,bias(y)(1− exp(ε/2− y)) dy > κ4

]

≤ max

(
Pr

(EstD′ ,m)∼B

[∫ ∞

ε/2
ωMβ ,EstD′ ,m,a,b,i,biasD−τ1(y)(1− exp(ε/2− y)) dy > κ4

]
,

Pr
(EstD′ ,m)∼B

[∫ ∞

ε/2
ωMβ ,EstD′ ,m,a,b,i,biasD+τ2(y)(1− exp(ε/2− y)) dy > κ4

])
(4.83)

≤ κ1 + κ2 +
1∑

i=0

cdfLap(0,2/ε) (−n·τi/2 + 1) (4.84)

We lastly need to check that at all possible times we return valid (Θ, ε, κ1 + κ2 + κ4 +∑1
i=0 cdfLap(0,2/ε) (−n·τi/2 + 1))-results.

4. When we do not exceed any error bounds throughout the algorithm, then we return
the maximum β from step 3. From Equation 4.84 we know this return value to suffice
a given (Θ, ε, δ)-PPK-DP bound.

Beside this return we only have one other return in line (11). We enter this return
should we exceed given error bounds after step 1. In this case we return the (ε, δ)-
DP noise scale parameter calculated with Pure-DP. With Lemma 4.11 we know this
return value to also suffice a given (Θ, ε, δ)-PPK-DP bound.

We can not return at any other point in the algorithm and all possible return values
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suffice (Θ, ε, κ1 + κ2 + κ4 +
∑1

i=0 cdfLap(0,2/ε) (−n·τi/2 + 1)).

With all steps covered, it follows that when our algorithm returns, it does so in the worst
case sufficing Equation 4.84. □

With this we finished the privacy proof of Algorithm 2. We have shown that only assum-
ing proven statements, that we can calculate a
(Θ, ε, κ1 + κ2 + κ4 +

∑1
i=0 cdfLap(0,2/ε) (−n·τi/2 + 1))-PPK-DP noise scale parameter.

We can now use the proven Theorem 4.8 and state furthermore.

Corollary 4.23.
For the family of distributions Θ, the mechanism M based on Algorithm 2 is (Θ, ε, δ)-PPK-DP,
as we have:

δ = κ1 + κ2 + κ3 (4.85)

= κ1 + κ2 + κ4 +

1∑
i=0

cdfLap(0,2/ε) (−n·τi/2 + 1)) (4.86)

We can estimate the complexity of a mechanism M as given in Corollary 4.23 with
O(g log g) ·O(n).
The code from line (1) to line (11) can be calculated in constant time. The lines (13) to (30)
then need linear time, as we need to estimate privacy losses and occurrence probabilities
for O(|D|) background knowledge sets. Only the calls to Algorithm 1 remain.
The limiting factor for its calculation are the PPK-DP terms which we use to evaluate
noise scale parameters. The paper [33] showed that the privacy loss distribution can be
calculated using so-called privacy buckets in O(g log g) with g being the granularity of the
privacy buckets used to display the distribution. We assume that in our scenario a value
of g = 100, 000 will suffice for our needs.
Setting the run-times together, we land in O(g log g) · O(n) for one database access with
the described mechanism.
With this we finished all privacy proofs and continue to the implementation and evalua-
tion of Algorithm 2.
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Having shown that outputs from Algorithm 2 suffice PPK-DP privacy constraints, we now
want to evaluate the provided utility. In Chapter 3 we mentioned that PPK-DP is a com-
promise between noiseless privacy and standard (ε, δ)-DP, conjectured to improve utility
against the latter. We can quantify utility improvement by assessing the calculated noise
scale parameters. Smaller scaled noise will produce less uncertainty, meaning a smaller
noise scale will improve utility. Comparing some state-of-the-art (ε, δ)-DP mechanisms
and their utility against the results of Algorithm 2 could give us an indication if we actu-
ally improve utility.

To determine if we improve utility, we first present an implementation of a mechanism
that uses Algorithm 2 for calculating its noise scale parameter. We use this implementation
as the basis for our evaluation. We then provide an evaluation sets that we will use in our
experiments, as well as the general setup used. Lastly, we evaluate the achieved results
and compare them against a mechanism using optimal σ as described in Corollary 3.2 for
calculating its noise scale parameter.

5.1 Implementing a mechanism using Algorithm 2

When discussing the implementation of Algorithm 2 we need to consider both the envi-
ronment we want to use for the implementation, as well as problems that could arise with
our choice. For this, we split this section into three parts.

Firstly, we discuss the programming environment we use, why we chose it, and what
difficulties we expect by making this choice. Afterwards, we describe the implementation
of subroutines used in Algorithm 2 and how we implemented them. Lastly, we discuss
how we combine the subroutines as well as code sections not covered up to this point.

Important code sections can be found in the Appendix and will be referenced when ap-
plicable. The entire source code can be found in the projects Git repository [37].

Environment

During the execution of Algorithm 2 we need a variety of mathematical functions for prob-
ability calculations on data distributions. Especially the background knowledge approx-
imations and privacy loss distribution calculations we make during intermediary steps
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need fast and precise calculations. We want to choose an environment that, at best, pro-
vides good maintained libraries for these necessary calculations, the possibility to easily
visualise results, as well as an easily abstractable syntax.

Under these constraints, we have chosen Python as our programming environment.

While standard Python doesn’t provide meaningful support for our requirements, we can
easily fix these by using tried and tested third party libraries such as NumPy [15] and
SciPy [36] for probability calculations and data handling. Furthermore, we can use Mat-
plotlib [17] as another tried and tested third party library to visualise results.

There are no libraries on the same level as NumPy, SciPy and Matplotlib for privacy loss
and differential privacy calculations. However, a comparatively well-researched open-
source implementation exists by David Sommer [32]. The implementation was created for
his with Sebastian Meiser and Esfandiar Mohammadi co-authored 2018 paper "Privacy
Loss classes" [33] and has been used and referenced in further papers since then [27, 21].

With this we fulfil two of our criteria, good maintained libraries and easily visualisa-
tions, with the last one being fulfilled by the general high-level form of Python code. It
is well-understood that Python allows for easy adaptation into other programming lan-
guages [31]. Furthermore, as Python is a script-based programming language, it is also
possible to use it as an intermediary step between lower level database queries and final
outputs [31].

With this we handled our environment and can continue onward to implementations of
used subroutines.

Subroutines

Algorithm 2 uses multiple subroutines for its calculations. Algorithm 1 and its respec-
tive subroutine for PPK-DP-calculations in line (31) are the most obvious ones, but don’t
represent the full set of used subroutines. The additive bounds given by the Chernoff-
Hoeffdinger theorem from line (7) to (8), the privacy loss calculations in line (18) and the
hypergeometric distribution calls in line (23) should, due to their implementation com-
plexity, be modelled as subroutines as well.

Before discussing the implementation of Algorithm 2, it is favourable to discuss these
subroutines first.

Chernoff-Hoeffdinger theorem for additive error bounds

The Chernoff-Hoeffdinger theorem states, that the probability that the expected value over
n independent and identically distributed random variables to exceed or fall below some
divergence err can be upper bound [16]. In our case, we provide the probability we do
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not want to exceed and want to calculate the related err.
While there is a strict 1-to-1 relation between err and the resulting probability, calculating
the error out of the probability is not an easy task, due to the calculation terms structure.
However, for our purpose it is enough to estimate the error with some slight variance.
It is comparatively easy to achieve an estimation using the bisection method, similar to
Algorithm 1. We, therefore, use it to estimate err up to some small chosen variance.

Hypergeometric distribution

For the occurrence probabilities of background knowledge sets we use the hypergeomet-
ric distribution for calculations. We need to calculate these probabilities for all possible
background knowledge sets, meaning the amount of times we execute this term grows in
the size of the database.
While one execution with the standard implementation of SciPy is relatively fast, the prob-
lem we encounter is that we need to access the distribution values for all possible inputs.
With the SciPy implementation this results in the distribution being calculated in its en-
tirety each and every time, which, with growing size, adds up in run-time. In the best-case
scenario we would want to make only one costly step, pre-calculating necessary factorials,
and only make small updates when switching between different background knowledge
set calculations.
For this we need to refactor the term, which we do as follows.

Lemma 5.1.
Line 23 of Algorithm 2 can be rewritten as

prb[i] = eln(n
′!)+ln((n−n′)!)+ln(c!)+ln((n−c)!)−ln(n!)−ln(idx[i]!)−ln((c−idx[i])!)−ln((n′−idx[i])!)−ln((n−n′−(c−idx[i]))!)

(5.1)
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5 Evaluation

Proof. Line 23 of Algorithm 2 describes a hypergeometric distribution. We can, therefore
refactor the term as follows:

prb[i] =

(
n′

idx[i]

)(
n−n′

c−idx[i]

)(
n
c

) (5.2)

=

n′!
idx[i]!(n′−idx[i])! ·

(n−n′)!
(c−idx[i])!(n−n′−c+idx[i])!

n!
c!(n−c)!

(5.3)

=
n′!

idx[i]!(n′ − idx[i])!
· (n− n′)!

(c− idx[i])!(n− n′ − c+ idx[i])!
· c!(n− c)!

n!
(5.4)

= e
ln
(

n′!
idx[i]!(n′−idx[i])!

· (n−n′)!
(c−idx[i])!(n−n′−c+idx[i])!

· c!(n−c)!
n!

)
(5.5)

= e
ln
(

n′!
idx[i]!(n′−idx[i])!

)
+ln

(
(n−n′)!

(c−idx[i])!(n−n′−c+idx[i])!

)
+ln

(
c!(n−c)!

n!

)
(5.6)

= eln(n
′!)−ln(idx[i]!(n′−idx[i])!)+ln((n−n′)!)−ln((c−idx[i])!(n−n′−c+idx[i])!)+ln(c!(n−c)!)−ln(n!)

(5.7)

= eln(n
′!)+ln((n−n′)!)+ln(c!)+ln((n−c)!)−ln(n!)−ln(idx[i]!)−ln((c−idx[i])!)−ln((n′−idx[i])!)−ln((n−n′−(c−idx[i]))!)

(5.8)
□

The additive parts ln(n′!), ln((n− n′)!), ln(c!), ln((n− c)!) and ln(n!) do not depend on the
round variable i in the loop surrounding line (23) and can be pre-calculated and stored
once before the loop to further improve calculation times. For the necessary updates of
the four other parts of the exponential we formulate the following corollary.

Corollary 5.2.
Given two indices i, j so that idx[i] + 1 = idx[j].
The following four equations hold:

ln(idx[j]!) = ln(idx[i]!) + ln(idx[j]) (5.9)

ln((c− idx[j])!) = ln((c− idx[i])!)− ln(c− idx[i]) (5.10)

ln
(
(n′ − idx[j])!

)
= ln

(
(n′ − idx[i])!

)
− ln

(
n′ − idx[i]

)
(5.11)

ln
(
(n− n′ − (c− idx[j]))!

)
= ln

(
(n− n′ − (c− idx[i]))!

)
+ ln

(
n− n′ − (c− idx[j])

)
(5.12)

This can be used to further improve calculation times by stepping through an ascending-sorted
idx rather than the normal idx, using the four equations as update steps to pre-calculated values.
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5.1 Implementing a mechanism using Algorithm 2

Proof. We assume that i, j so that idx[i] + 1 = idx[j]. We now show the equivalence of
Equation 5.9 as an example.

ln(idx[j]!) = ln((idx[i] + 1)!) (5.13)

= ln(idx[i]! · (idx[i] + 1)) (5.14)

= ln(idx[i]!) + ln(idx[i] + 1) (5.15)

= ln(idx[i]!) + ln(idx[j]) (5.16)

The three other equations follow analogously using logarithm rules. □

We can use Lemma 5.1 and Corollary 5.2 to calculate the hypergeometric distribution re-
sults for a subset choice of x + 1 elements when we know the partial natural logarithms
for x elements by simply adding 4 terms and then calculating an exponential term. This
is assuming all other values are fixed and only the amount of elements chosen changes.

The possible background knowledge sets are fixed in size, similarly is the original
database D and it’s bias. Algorithm 2 provides exactly the case described in the para-
graph above. An example plotting of the resulting improvement in run-time has been
plotted in Figure 5.1. Figure 5.1a plots run-times for databases of size 1e4, Figure 5.1b for
databases of size 2e4 and Figure 5.1c for databases of size 5e4.

Scipy’s costly rebuilding of the underlying factorials in the hypergeometric distribution
results in massive run-times even for comparatively small database sizes. With the custom
implementation however, we improve these run-times by factors of above 100.

Privacy Losses of possible Background Knowledge

As a measurement to compare background knowledge sets we use the privacy losses of
the respective background knowledge. We want to make the privacy loss calculations as
simple as possible. We can achieve this by refactoring the privacy loss term as described
in the following lemma.

Lemma 5.3.
Line 18 of Algorithm 2 can be rewritten as

losses[i] = ln(n− (hits− 1)) + ln(biasD)− ln(hits)− ln(1− biasD) (5.17)
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5 Evaluation

(a) Run-time in log10 seconds to calculate all
occurrence probabilities of background
knowledge sets for different background
knowledge sizes and bias values for
databases with size |D| = 10000.

(b) Run-time in log10 seconds to calculate all
occurrence probabilities of background
knowledge sets for different background
knowledge sizes and bias values for
databases with size |D| = 20000.

(c) Run-time in log10 seconds to calculate all
occurrence probabilities of background
knowledge sets for different background
knowledge sizes and bias values for
databases with size |D| = 50000.

Figure 5.1: Run-time disparities between scipy.stats.hypergeom.pmf [36] and the described im-
plementation from Lemma 5.1 with update steps as described in Corollary 5.2.
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5.1 Implementing a mechanism using Algorithm 2

Proof. We can proof the correctness of our refactored line of code, if we can find a line of
equivalency transformations that start with our original line and end with the one pro-
vided in the Lemma.

losses[i] = ln

( (
n′

hits

)
· biashitsD · (1− biasD)

n′−hits(
n′

hits−1

)
· biashits−1

D · (1− biasD)n
′−(hits−1)

)
(5.18)

We can now simplify the fraction inside the natural logarithm by removing exponents as
much as possible.

= ln

( (
n′

hits

)
· biasD(

n′

hits−1

)
· (1− biasD)

)
(5.19)

We can now rewrite the binomial coefficient using it’s defined fraction form.

= ln

(
n′!

hits!·(n′−hits)! · biasD
n′!

(hits−1)!·(n′−(hits−1))! · (1− biasD)

)
(5.20)

We simplify again by removing the common factorial n′!

= ln

(
(hits− 1)! · (n′ − (hits− 1))! · biasD

hits! · (n′ − hits)! · (1− biasD)

)
(5.21)

and simplify the fraction further by also removing parts common in both numerator and
denominator.

= ln

(
(n′ − (hits− 1)) · biasD

hits · (1− biasD)

)
(5.22)

Lastly we use logarithm laws to rewrite our current logarithmic fraction as sums of loga-
rithms.

= ln
(
(n′ − (hits− 1)) · biasD

)
− ln(hits · (1− biasD)) (5.23)

losses[i] = ln(n− (hits− 1)) + ln(biasD)− ln(hits)− ln(1− biasD) (5.24)
□

Algorithm 1

Algorithm 1 is used in the last step of Algorithm 2 and therefore needs to be implemented
as a subroutine. As Algorithm 1 uses a bisection method, we can use the pseudo-code
from Section 4.1.2 as our basis and get the algorithm running almost instantly.
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5 Evaluation

The only difficulty are the comparisons made over the PPK-DP inequality in lines (5), (10),
(20), (23), (25), (28) and (36). For these, we need to discuss how we handle privacy loss
distribution calculations in the implementation.

Privacy Loss Distributions

All calculations regarding privacy loss distributions have been made using the open
source implementation from David Sommer [32]. By specifying two distributions of
neighbouring databases, the resolution of the privacy loss distribution and an allowed
error bound, the implementation calculates upper bounds for δ values under a given
ε. The implementation needs O(g log(g)) time for its calculations, where g describes the
resolution of the privacy loss distribution.
In our case, we provide the distributions of two neighbouring binomial distributions over
the non-compromised data subset D′′, each convoluted with scaled Gaussian noise. For
the convolution we use for small D′′ (|D′′| ≤ 20000) numpy.convolve [15] and for big
databases (|D′′| > 20000) scipy.signal.convolve [36].
Scipy’s implementation of the convolution uses Fast-Fourier transformations (FFT), which
improve the convolution run-time from O(|D′′|2) to O(|D′′| · log(|D′′|)). However using
FFT results in an underlying noise χ of size χ ∼ 1e − 14. While normally negligible, for
our calculations this results in an extreme over-approximation for noise scale parameters,
as they can reach values as low as 1e− 20 and below. For cases where the FFT-introduced
noise outweighs our calculations we try and remove it using an approximation of the
expected noise scale parameter development.
The source code for Algorithm 1 and the parameters used in the privacy loss distributions
can be found in the projects Git repository [37].

The final implementation

The final implementation of Algorithm 2 now combines all mentioned subroutines and
combines them as described in the pseudo code provided in Section 4.2.
The source code for the implementation can be found in the projects Git repository [37].

5.2 Evaluation Set

The output of Algorithm 2 is dependent on multiple different factors, namely the size of
database D, privacy guarantees ε, maximum allowed error δ, the data distribution of D
biasD and the background knowledge size |D′|.
For a thorough analysis of the utility we want to test against all possible influences. There-
fore, we need to test for all mentioned parameters.
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5.3 Experimental Setup

For size |D| we chose a set of databases from sizes 1e4 to 1e7. We believe to cover most
realistic sized databases with these choices.
For ε parameters we looked at ranges normally used in academia. We chose values in
the range [1, 0.001]. During evaluation it proved to be easier to calculate resulting δ pa-
rameters for specified noise scale parameters β instead of the other way around. As we,
however, split δ during the execution of the algorithm into error bounds κ1, κ2, κ3 and κ4

we thus needed to estimate all applicable errors individually and add them together. We
will mention how we approached this in the Experimental Setup 5.3.
For biasD we chose evenly spaced values from the interval [0.01, 0.99] to get an impression
on its influence on results. We similarly chose background knowledge sizes |D′| by spec-
ifying the size in relation to |D|. We chose background knowledge sizes evenly spaced
from relative sizes in interval [0.01, 0.99].

5.3 Experimental Setup

For the experimental setup we first evaluated each subroutine individually. This was due
to time constraints and calculation run times exceeding computation capabilities.
We evaluated each subroutine with (ε, δ) guarantees and added them as described in the
Algorithm 2 together.
We evaluated each subroutine on similar sets as described in Section 5.2 as to be able to
fairly add errors and Epsilon guarantees together.

5.4 Results

We discuss the results achieved ordered by subroutine.

Chernoff Hoeffdinger bounds

We provide visual results for the Chernoff Hoeffdinger bounds in Figure 5.2. We can see,
that the ε-bounds we achieve for specified κ2, so that the Laplace mechanism used to
approximate biasD is supported is inherently linked to database sizes and the bias of the
underlying database.
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5 Evaluation

Figure 5.2: Plotting of resulting τ1, τ2 for Chernoff Hoeffdinger bounds calculated for a
range of different database sizes, biases and sizes of κ2. The colour depicts the
supported ε, such that at least 99% of all values from Lap(0, 2/ε) are smaller
than mini∈{1,2}(τi/2), meaning we have at most a probability of 1% to enter
line 11 in Algorithm 2.
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5.4 Results

Error through Laplace truncation

We can observe similar results to the Chernoff bounds in the Laplace truncation error. We
achieve worse results for highly biased databases, supporting only comparatively big ε.
The exact supported ε for example n = 100000 can be seen in Figure 5.3a.

(a) Plot of the δ-domain for the
Laplace truncation. δ-values
smaller than 1e-5 are coloured
green and assumed acceptable,
while δ-values bigger than 1e-5
are colored red and assumed to
exceed allowed error bounds.

(b) Example plot for worst supported ε for n = 100000 as
shown in Figure5.2. Using ε = 0.05 would result in
the truncation of the Laplace distribution with τ1 and
τ2 always exceeding error budgets.

(c) Follow-up plot to Figure 5.3b with ε = 0.2 instead of
0.05. With this, the error through truncation is smaller
than the allowed error budget for over 90% of cases.

Occurrence Probabilities

Analysing the occurrence probability subroutine showed that the most prevalent influence
on the amount of excluded background knowledge sets was the size of the background
knowledge itself.

The most background knowledge sets in percent could be excluded for background
knowledge sizes around 50% while nearing either of the two extremes would result in the
percent dropping. For smaller database sizes rapidly so.
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5 Evaluation

A plotting of some representative results can be found in Figure 5.4.

Figure 5.4: Plotting of excluded background knowledge sets up to a cumulative occur-
rence probability 1 − κ1. The results were plotted for n ∈ [1e4, 1e5, 1e6, 1e7].
For databases starting at 100000 entries, choosing κ1 ≤ 1e− 14 can be deemed
good enough. For n = 10000 we should use choose κ1 ≈ 1e− 6.

Algorithm 1 and Algorithm 2

Due to time constraints we were unable to finish evaluation, leaving the results for Al-
gorithm 1 sadly out of scope here. Educated guessing would assume that we would see
similar dependencies on the bias, background knowledge size and data size.

74



6 Discussion/Limitations

Having finished our evaluation of results, we use this chapter to discuss possible short-
comings and limitations in our implementation. We first describe limitations due to imple-
mentation choices, afterwards through chosen parameters and lastly limitations inherent
to the algorithmic structure.

6.1 Limitations

6.1.1 Implementation specific limits

We have several limitations in our implementation. Firstly, we use for the Chernoff-bound
calculations a bisection method and introduce further errors when theoretically the bound
should be exhaustible, calculating exact τ1, τ2 instead of approximations.
Furthermore, edge cases for biases are not handled well by our implementation, resulting
in critical errors for biasD and bias values close to 1 or 0.
Another error exists with Pythons 64-bit floats, as the 64-bit precision can result in errors
for certain edge cases, over or under approximating multiple values throughout the exe-
cution.
Further complications with calculating convolutions also diminished achieving possible
results.

6.1.2 Parametric limits

The worst results we achieved were on small databases with n < 100. At that size the
errors in estimations take overhand and outweigh most gained improvements from the
weakened attacker setting.
Similar breakdowns occur for highly biased distributions, with bias values smaller than
0.1 and bigger than 0.9 resulting at times in unusable results. The best results can be
achieved for biases that are close to 0.5, but generally speaking bias values in the interval
[0.25, 0.75] seem to work fine.
Furthermore, due to our construction we need to assume binomial distributions for the
databases, which provides more background noise than most realistic databases. A gen-
eralisation to more realistic data distributions could then give more weight to the achieved
results.
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6 Discussion/Limitations

6.1.3 Algorithmic limits

Lastly we discuss algorithmic limits. At the beginning of Algorithm 2 we use Laplace
noise to privately estimate biasD. While this guarantees us privacy, we introduce massive
errors through this into our system. The Laplace truncation that fixes the size of the noise
to τ1 and τ2 has the biggest impact on the algorithms run.
If we could improve the estimation of biasD, then we could massively improve the guar-
antees achievable with Algorithm 2.

With this, we discussed the most important to mention limitations on our implementation
and results.
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7 Conclusion

Finishing up this thesis, we recap the goals we achieved. We set out to finish up the
privacy proofs of the two algorithms constructed by Arnold& Pätschke in [1]. For this, we
needed to prove a remaining conjecture from the original research work, or disprove it and
create similar guarantees through other means. We described this in Research Question 1.
We achieved the following:

Research Answer 1. Conjecture 3.9 is false. However, we can construct a similar state-
ment with Theorem 4.17 and Corollary 4.18, giving us similar guarantees on which we
can safely base further privacy analysis.

Building on this, we then set out to prove the correctness and privacy guarantees of Al-
gorithm 2. We formulated this as Research Question 2. We were also able to achieve this
goal, which we will summarise in the following answer to our question:

Research Answer 2. It is possible to show the correctness of Algorithm 2. We can also
provide privacy guarantees, namely that Algorithm 2 is (Θ, ε, δ)-PPK-DP for

δ = κ1 + κ2 + κ4 +

1∑
i=0

cdfLap(0,2/ε) (−n·τi/2 + 1)) (7.1)

With this we achieved the goals concerning formal privacy proofs in their entirety. We
showed that PPK-DP algorithms can be constructed and proven to guarantee specified
(Θ, ε, δ) bounds.
However, we also wanted to implement the algorithm to not only proof PPK-DP results
on paper, but also evaluate the algorithm in a test setting. We were able to correctly im-
plement Algorithm 2 as well as all necessary subroutines. This allows us to evaluate for a
noise scale parameter β with a complete input set.
We, therefore, answer our Research Question 3 with the following:
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7 Conclusion

Research Answer 3. We were able to implement Algorithm 2 and are able to calculate
noise scale parameters β for a given input set (D, |D′|, ε, δ, κ1, κ2, κ3).

Lastly, we set out to compare the results from Algorithm 2 against current state-of-the-
art (ε, δ)-DP algorithms. We were able to estimate plausible (ε, δ) guarantees with our
implementation, however due to computational limitations we were not able to test a
varied enough test set to make definitive statements in regards to the improvement on
utility.
We state our results as follows:

Research Answer 4. We were able to calculate singular noise scale parameters β using
our implementation. However, due to time constraints we were unable to Compare
against over optimal σ 3.2.

We were not able to achieve evaluation results, however the theoretical basis has been
proven to hold.
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8 Future Work

We believe this work to be a strong start for further research in the field of partial knowl-
edge differential private algorithms. In this chapter, we will summarise some points of
interest for further research.

8.1 Improving implementation

The Implementation we provided in Chapter 5 currently only supports databases and
noise scale parameters up to certain sizes. Databases with more than one million entries
run on average in time scales of multiple hours. This is mostly due to the iterative calcu-
lations of the privacy loss distributions under differing noise scale parameters. Especially
time consuming is the data distribution convolution with the binomial data distribution
and Gaussian noise. We estimate that over 90% of run-time spent can be traced back to
these calculations.
If it wouldn’t be needed to calculate the entire privacy loss distribution, but only specific
subsets of it, then the run-time could be improved. Conjecture 4.12 would provide such
an estimation, but we were not able to prove it’s correctness in this thesis. However, we
are quite certain that the following conjecture in regards to it is true:

Conjecture 8.1. Corollary 4.18 implies the correctness of Conjecture 4.12.

It would be of interest to formally prove this conjecture correct to improve run-times.
Another way to improve run-time would be to abstract the convolution which is used to
a more efficiently implementable operation. However this would require a deeper under-
standing of the PPK-DP notion and how to show its guarantees. We still regard this as an
interesting point of research.

8.2 Adapt algorithm to support differing distributions

So far, the constructed algorithms only support databases which adhere to binomial dis-
tributions. However, as already mentioned in Chapter 4, we can’t model most databases
using a simple binomial distribution.
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8 Future Work

If it would be able to abstract the algorithm to more complex data distributions, that
would provide more insight if partial knowledge differential privacy can work in real-
istic settings.
One such example of a more realistic database modelling can be achieved with binomial
mixture distributions. Further research could focus on abstracting the constructed algo-
rithms to binomial mixture distributions and check if PPK-DP guarantees can be achieved
at all.

8.3 Adapting the algorithm to APK-DP

So far, this research only focused on passive partial knowledge differential privacy and
mechanisms that suffice its notion. However, as discussed in the introduction of partial
knowledge differential privacy in Section 3.1.2, active partial knowledge differential pri-
vacy is just as interesting a research topic.
With first algorithmic constructions for PPK-DP shown to guarantee privacy, further re-
search into the question if we can also construct similar algorithms for APK-DP comes up
as an interesting research topic. A first idea which research could focus on is, if the proven
PPK-DP algorithm could be modified to also work in APK-DP settings.
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