
MemJam+Abort: Combining two microarchitectural side-channel
attacks

MemJam+Abort: Kombination zweier mikroarchitektonischer Seitenkanal-
angriffe

Bachelorarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Jonas Sebastian Sander

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

mit Unterstützung von
Jan Wichelmann

Lübeck, den 15. November 2018

Abstract

Microarchitectural side channel attacks exploit particular behaviours of processors to col-
lect security-relevant information. A well-studied subfamily is the class of cache attacks,
which exploit the properties of modern cache hierarchies. This work summarizes the
fundamental properties of modern cache hierarchies and briefly explains the principle of
virtual memory to subsequently discuss some essential representatives of the family of
cache attacks. We also implement the attacks Prime+Abort and MemJam as well as an
algorithm to determine the eviction sets needed for the prime phase of cache attacks. We
then analyse whether it is possible to add a temporal resolution to the MemJam attack by
combining it with Prime+Abort (to enable attacks on asymmetric encryptions). While we
were not able to fully implement a new attack, we can present some intermediate results
and implementations that support the development of an attack in the future.

iii

Kurzfassung

Mikroarchitektonische Seitenkanalangriffe nutzen bestimmte Verhaltensweisen von Pro-
zessoren aus, um sicherheitsrelevante Daten zu sammeln. Eine gut untersuchte Unterfa-
milie dieser Angriffsklasse sind die sogenannten Cache Angriffe, welche die Eigenschaf-
ten moderner Cache Hierarchien ausnutzen. Diese Arbeit führt in die grundlegenden Ei-
genschaften moderner Cache Hierarchien ein und erläutert kurz das Prinzip des virtuel-
len Speichers, um anschließend einige wichtige Vertreter der Familie der Cache Angriffe
vorzustellen. Wir implementieren zudem die Angriffe Prime+Abort und MemJam sowie
einen Algorithmus mit dem aktuelle Cache Angriffe, die für die sogenannte Prime Phase
benötigten eviction sets bestimmen. Anschließend analysieren wir, ob es möglich ist, den
MemJam Angriff durch Kombination mit Prime+Abort um eine zeitliche Auflösung zu
ergänzen (um Angriffe auf asymmetrische Verschlüsselungen zu ermöglichen). Während
es uns nicht möglich war einen neuen Angriff vollumfänglich zu implementieren, können
wir einige Zwischenergebnisse und Implementierungen präsentieren, die die Entwick-
lung eines Angriffs in der Zukunft unterstützen.

v

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, 15. November 2018

vii

Acknowledgements

At this point, I would like to thank Professor Eisenbarth and Jan Wichelmann for their
great patience and excellent support. Both assisted me with advice and practical support
throughout the entire project and often dissolved my incomprehension with detailed ex-
planations and illustrative panel drawings. From time to time the unknown development
in C and x86 assembly and the numerous index orgies challenged me a lot, but mostly
Jan could help with handy tips. I would also like to thank all the other members of the
Institute for IT Security. I felt very welcome and comfortable. To listen to numerous excit-
ing lectures, when the Institut members talked about their work, was a real Highlight. In
particular, I would also like to thank Moritz Krebbel and Daniel Moghimi for their sup-
port by finding eviction sets. I thank my cousins Malte and Tobias Sander for their many
comments on my English. And last but not least I have to thank my parents, whom I can
always rely on. They not only supported me during my bachelor thesis, but throughout
all my studies.

ix

Contents

1 Introduction 1

2 Background and Related Work 5
2.1 Cache Architecture . 5
2.2 Virtual Memory . 8
2.3 Cache attacks and their variants . 10

2.3.1 General Structure . 10
2.3.2 Flush+Reload . 11
2.3.3 Prime+Probe . 12
2.3.4 Prime+Abort(-L3) . 13
2.3.5 MemJam . 15
2.3.6 Finding Eviction Sets . 16

3 Combining MemJam and Prime+Abort 21
3.1 The general procedure and a first dummy victim 21
3.2 The second dummy victim . 25

4 Conclusion 33
4.1 Summary . 33
4.2 Discussion and open problems . 34

References 35

xi

1 Introduction

The “classical” cryptanalysis treats cryptographic primitives as abstract mathematical ob-
jects that transform an input, possibly by using a key, into an output. The level of security
of a cryptographic algorithm is made accordingly dependent on its mathematical proper-
ties and the key length. Typically it is assumed that the corresponding implementations
are ideal black boxes whose internal operations cannot be observed or disturbed from the
outside. For a cryptographic system to be secure, the utilized secret key must not be dis-
closed in any way. Since cryptographic algorithms have been verified for years by many
experts to be resistant against classical cryptanalysis, attackers try to exploit vulnerabili-
ties in the hardware and the system (the black box) in which the cryptographic schemes
are implemented. They use information such as energy consumption and electromagnetic
emanation, that leak through the implementation during protocol execution and are not
taken into consideration in classical security models. This so-called side-channel informa-
tion correlates with the internal state of the cryptographic implementation and this way
also with the secret key. As a result, the attackers can significantly weaken or even by-pass
the theoretical security of security solutions entirely [ZF05].
Kocher developed the class of attacks described above in 1996 [Koc96, KJJ99]. These side-
channel attacks are a large and currently very active field of cryptographic research. At
this point, we will briefly introduce some subfamilies of the side channel attacks.

• Timing Attack: These attacks take advantage of the fact that the runtime of cryp-
tographic algorithms and their operations depend to a certain extent on the secret
keys. In this way, it is possible for the attacker to conclude the secret key with sim-
ple runtime measurements [ZF05]. Kocher [Koc96] introduced the idea of Timing
Attacks, Brumley and Boneh demonstrated the practicability of remote timing at-
tacks against OpenSSL in 2005 [BB05].

• Fault Attack: This class of attacks takes advantage of the fact that external influences
such as manipulated supply voltage, photon irradiation or heat can induce errors in
the executions performed by hardware that lead to failure of the system security
[BDL97, Til11].

• Power Analysis Attack: This type of attack is only possible on implementations in
hardware. It was also introduced by Kocher in 1999. It takes advantage of the fact

1

1 Introduction

that the energy consumption of a cryptographic device can correlate with its opera-
tions and parameters [KJJ99].

• EM Attack: The hardware components of computers often generate electromag-
netic emanation in their calculations. An attacker can measure this emaniation and
possibly draw conclusions about the performed operations and the processed data
[ZF05].

• Low-Bandwidth Acoustic Attack: This attack exploits the fact that many computers
generate high pitched noises during their computations due to vibrations in the elec-
tronic components. This results in a side channel that can be used to extract security-
critical information. Genkin et al. [GST14] demonstrate that a mobile phone placed
next to the victim’s computer is sufficient to carry out such measurements. Besides,
they show a similar attack that exploits the electronic potential of a computer hous-
ing that can be picked up by touching it with one’s hand.

• Meltdown and Spectre: The publication of these two attack classes has met with
great media interest in the recent past. This is because they exploit one of the most
significant IT security vulnerabilities for a long time and are not based on a software
bug, but on a design flaw in the most common processor microarchitectures (x86,
x64, ARM), which can be exploited via side channel attacks. Both attack families
make considerable use of the speculative execution processor feature to gain access
to the entire address space of the victim, including all security-critical data stored in
it [KGG+18, LSG+18].

• Cache Attack: These attacks exploit the microarchitectural structure of modern
CPUs. For this reason, they are also often called microarchitecture attacks. Modern
CPUs have caches, fast, small buffer memories that are located between main mem-
ory and CPU and are intended to speed up access to requested data. If a required
address is in the cache, it is called a cache hit. Otherwise, it is called a cache miss.
Cache hits lead to fast access times, while cache misses lead to significantly slower
access times, because the requested data must be retrieved from a lower and slower
level of the memory hierarchy to the CPU. In a cache attack, an attacker tries to
exploit this characteristic of the CPU architecture. To do this, he prepares the cache
and then measures the access times to specific addresses. In this way, an attacker can
build a side channel based on runtime differences [Hu92]. Unlike timing attacks, the
runtime differences in cache attacks are not directly based on conditional branches
in cryptographic implementations. The runtime differences are rather based on the
properties of the microarchitecture of the CPU, and by preparing the cache, the at-

2

tacker can then force runtime differences that allow conclusions about the secret key.
With Prime+Abort there is also an attack that exploits the cache without running
time measurements. Instead of time dependencies, Intel’s implementation of hard-
ware transactional memory called Intel Transactional Synchronization Extensions
(Intel TSX) is exploited [DKPT17, gui18].

The project developed during the thesis aims to combine the attacks Prime+Abort and
MemJam. MemJam achieves intra cache level resolution and creates time dependencies
in otherwise constant-time implementations. However, only full encryptions can be mea-
sured with the attack, and thus only implementations of symmetric encryptions can be
attacked. With AES and DES, the attack of some S-Box1 indices allows tracing back the
entire key statistically, since a large part of the key is also included in the last encryption
round. In many asymmetric implementations, such as RSA, statistical conclusions of this
kind are not as easy to reach because the individual key parts are processed one after an-
other. As a result, it is possible to conclude some key bits, but not a large part of the key
as in symmetrical ciphers. By combining MemJam with Prime+Abort, we can determine
which key block is currently processed and apply the MemJam attack to each block. In
this way, significantly more key bits can be exposed than with previous MemJam attacks.
The work is organised as follows. In Chapter 2 we introduce the background and present
the related work. In particular, we will discuss the cache architecture of current Intel pro-
cessors. Furthermore, the general structure of cache attacks is presented to introduce the
attacks Flush+Reload, Prime+Probe, Prime+Abort and MemJam. We close the chapter
with a section that explains the determination of eviction sets. In the third Chapter we
discuss a combination of MemJam and Prime+Abort and point out several problems. In
the end we present a conclusion with details about the success and failure of the Mem-
Jam+Abort, point out open problems and provide an overall summary.

1According to Claude Shannon confusion and diffusion are the two basic concepts with which strong ciphers
can be realized. Confusion obscures the relationship between key and ciphertext and is realized in AES
by using a substitution table called S-Box [Sha49, Pub01].

3

2 Background and Related Work

2.1 Cache Architecture

The rapidly increasing transistor density and clock speed of modern CPUs lead to ever
stricter demands on the speed of memory requests. Today’s processors use combinations
of different caches and advanced caching techniques to meet their requirements. These
structures of relatively small memories are called the cache architecture of a CPU. There
are a wide variety of architectures that meet a range of requirements. The architecture of
the current eighth generation Intel processors is described below. Where possible, more
exact numbers and descriptions refer to the processor of the type used in the thesis’ project:
Core i7-8650U. Unlike many other eighth-generation Intel processors, it is not based on
Coffee Lake microarchitecture, rather on the improved Kaby Lake architecture called Kaby
Lake Refresh [Wik].

Cache architectures are based on the principle of locality. The principle is made on two
assumptions [PH14]:

• The temporal locality, which assumes that addresses in memory are more likely to
be reaccessed if their last access happened recently. Cache architectures, therefore,
keep recently used data as close as possible to the CPU in the lower cache levels.

• The spatial locality, which assumes that addresses that are located close to recently
accessed addresses are more likely to be queried again than addresses that are lo-
cated further away. Processors take this assumption into account by also loading
speculatively neighbored data of currently accessed addresses into the cache.

To follow the principles above, cache architectures often have several hierarchically ar-
ranged cache levels. The smaller the cache level number, the closer is the memory to the
CPU and the faster and smaller is the memory. At each cache level, the memory is either
uniquely partitioned to each CPU core or shared across all cores. The present processor
has three cache levels, with each processor core having its own L1 and L2 cache, while
the last cache level (L3 or LLC) is shared across all cores. Besides, the first cache level is
divided into an instruction cache (L1I) and a data cache (L1D), while the other two cache
levels are not divided [Wik]. Figure 2.1 shows a graphical illustration of the cache hierar-
chy and Table 2.1 shows all relevant data of our target processor.

5

2 Background and Related Work

core 0 core 3

L1I

L1D

L2

L1I

L1D

L2

Ring Bus

L3

Figure 2.1: The schematical
structure of the cache architec-
ture of our victim processor.

L1I or L1D* L2* L3
Size 32 KiB 256 KiB 8 MiB
Associativity 8 4 16
Sets 64 Sets 1024 Sets 1024 Sets
Line Size 64 B 64 B 64 B
Slices - - 8

Table 2.1: The relevant cache parameters of our vic-
tim processor Intel Core i7-8650U . (*)The data for the
L1 and L2 cache refer to individual cores. For exam-
ple, the L2 cache has 4*1024 sets.

The smallest unit of information that can or cannot be stored in a cache is called a block or
line. If the CPU requests a line and that is in the cache, it is called a cache hit, otherwise
it is called a cache miss. As already described in the introduction, cache misses lead to
significant time delays, because the requested line must be transferred from a lower level
of the memory hierarchy to the level at which the miss occurred [PH14].
In principle there are two schemes to keep cache and deeper memory levels consistent:

• Write-through: With each update in the cache the next level of the memory hierarchy
is also updated. A write buffer that holds the data until it is written back to the main
memory can speed up the process.

• Write-back: A modified line is only written back to the main memory when it is
removed from the cache. A write-back buffer can be used to speed up the caching of
new lines. Alternatively, a store buffer can also be used.

Like all Intel processors based on the current microarchitectures Haswell, Broadwell, Sky-
lake, Kaby Lake and Coffee Lake, this processor uses the write-back policy at all cache
levels [Wik].
There are mainly three ways in which a cache level can be organised. These are directly
mapped, set associative and fully associative caches, whereby the first and the latter are in
principle only special cases of the second. With direct mapped caches, each line can only
fill one location in the cache depending on its address (set associativity with sets of size 1).
With set associative caches, the cache is divided into sets. A line can take any position in
a particular set, depending on its address. Fully associative caches are like set associative
caches with only one set. Each line can be cached anywhere, regardless of its address
[PH14]. Each cache level of the present processor is set associative. The numbers of sets
and the sizes of the sets (called associativity) can be found in Table 2.1.

6

2.1 Cache Architecture

In the following, we will look at how the L3 cache of the present processor is addressed.
The six least significant bits, the so-called line offset, determine the position of the ad-
dressed data byte within a line. The next ten bits following the line offset, called set index,
describe to which cache set the data is assigned. All other bits belong to the so-called
tag, which is stored in the cache in addition to each line and is used to determine the ad-
dresses and their data within a set uniquely. Up to here, the description corresponds to
the general way of addressing a set associative cache. Additional current Intel proces-
sors divide the L3 cache into so-called slices, in order to enable parallel access by mul-
ticore CPUs. The number of slices corresponds mostly either to the number of physical
cores or logical cores. The processor used below has eight slices. The assignment of the
lines to the slices is done via an undocumented hash function, which uses all bits of the
physical address except for the line offset, to distribute the accesses uniformly over all
slices [LYG+15]. In the past, these hash functions were reverse-engineered several times
[IES15b, IGI+16, YGL+15, MLSN+15, KAGPJ16]. Reverse-engineering will not be neces-
sary for the attacks described later. This makes the attack more flexible for different Intel
processor versions and generations. Figure 2.2 gives a rough overview of the entire struc-
ture of the L3 cache of this processor.

Another important feature of the L3 cache for cache attacks is that every cache line in
lower cache levels must also be in the L3 cache, so the L3 cache is called to be inclusive.
This means that any line accessed by a core must not only be placed in the private L1 cache
but also in the shared L3 cache. On the other hand, if a line is evicted from the L3 cache,
this line must also be invalidated in all private L1 and L2 caches [PH14].

As already described, all cache levels of the present processor are set associative, and each
cache set can hold a certain number of lines determined by the associativity. If the CPU
assigns a new line to a set of valid lines, one line must be evicted. The eviction policy is the
scheme by which a processor evicts lines from the cache. The processor removes the line
from the cache that has not been accessed for the longest time and in this way exploits
the temporal locality. This eviction policy is called least recently used (LRU). Since track-
ing this policy accurately would be very costly, many processors use an approximation
called pseudoLRU. Often it is not documented for the current Intel processors which evic-
tion policy they use. This also applies to the present processor. The following procedure
assumes that the used processor implements a pseudoLRU policy.

Caches have a significant influence on the performance of CPUs, which is noticeable with
every memory access. For this reason, processor manufacturers are rapidly driving the
development of fast cache systems and regularly introducing new technologies. The high
speed at which new features are introduced makes a comprehensible evaluation of mi-
croarchitectural security impossible. As a consequence, well researched cryptographic

7

2 Background and Related Work

63

tag

15

set index

5

offset

0

hash

slice

set index

= =
& &

mux data line

way 0 way 15
valid tag data

way 0 way 15
valid tag data

0
1

7

way 0 way 15
valid tag data

way 0 way 15
valid tag data

0
1

7

Set 0

Set 1023

Figure 2.2: The graphic gives a rough overview of the cache of our victim processor and
its addressing. It can be seen how the requested cache line is determined based on the
physical addressing of the cache.

implementations can become insecure with the introduction of the next processor genera-
tion, or worse when discovering a previously unobserved behavior. In section 2.3 we will
explore such unwanted and exploitable behavior.

2.2 Virtual Memory

In addition to the cache architecture of the CPU, the memory hierarchy of a computer
usually has two further levels consisting of the main memory and a mass storage such as
HDDs or SSDs. The main memory acts as a kind of cache for the mass storage. This
technique is called virtual memory. Primarily, two goals are pursued with the use of virtual
memory [PH14].

First, the use of virtual memory ensures that various programs such as virtual machines
can securely share the physical address space of the main memory. This means that each

8

2.2 Virtual Memory

Programm 1:
Virtual addresses

Programm n:
Virtual addresses

Main Memory:
Physical addresses

Mass Storage

address
translation

Figure 2.3: This figure shows the relationships between physical and virtual addresses
through address translation. The technique of virtual memory enables each program to
gets its own contiguous virtual address space.

program can read and write only the physical addresses assigned to it.

The other reason for using virtual memory is that many programs do not fit into the
main memory. By using virtual memory, operating systems manage automatically the
two memory levels of main and mass storage, so that inactive program parts are stored in
the mass storage (swap space), and active program parts remain in the main memory.

Since the requirements of a program for the size of its main memory change dynamically,
virtual memory assigns each program to its own contiguous virtual address space. Virtual
memory uses a technique called address translation to map the physical addresses of the
main memory to the virtual addresses of the programs, threrefore isolating the virtual
address spaces of the individual programs from each other. Figure 2.3 shows a schematic
representation of the relationship between virtual and physical address space.

Unlike caches, the smallest memory size to be processed is called a page [Den70]. Page
faults occur if a requested page is not in the main memory. Usually, the size of a page is 4
KiB. Most current CPU architectures also support larger pages. In Linux, these are called
Huge Pages, in BSD Super Pages and in Windows Large Pages. Since the project environment
runs Linux, the following refers to Huge Pages with a size of 2 MiB [Deb].

When using virtual memory, each address gets a page number and a page offset. The page
number determines the position of the page in the main memory, and the page offset
determines the position of the addressed byte within the page. For some cache attacks,
a so-called eviction set must be determined. It is necessary to find addresses that match
the same cache set. The cache of the present processor is physically indexed, so the physical
address determines in which set a line is allocated. First of all, it is not clear which virtual
addresses have the same set index in their associated physical addresses. Because the

9

2 Background and Related Work

physical page∗1 number

4 Kib Page

63∗2

virtual page number

11

offset

0

physical page∗1 number

2 MiB Page

63∗2

virtual page number

21

offset

0

L3 Cache

63∗2

tag

15

set index

5

offset

0

Figure 2.4: The graphic shows the process of address translation in the context of ad-
dressing the L3 cache. ∗1Physical pages are often called frames in the literature. ∗2This
number is not accurate. Often the possible 64-bit address space in x86-64 instruction
set architectures is not used for either virtual or physical addresses. Besides, the vir-
tual address space of current machines is often larger than the physical address space
[Hen17, PH14].

page offset remains constant during address translation, the address bits in this interval
are identical for physical and virtual addresses. If the page offset is large enough, the set
index can be read from the virtual address. Figure 2.4 shows a graphical representation of
the address translation for 4 KiB pages and 2 MiB huge pages in the context of addressing
the L3 cache. As one can see, 2 MiB pages are sufficient to determine the cache set to a
virtual address as described in [LYG+15, PH14]. A detailed description of determining
the eviction sets follows in subsection 2.3.6. The mapping of virtual to physical addresses
is stored individually for each program in so-called page tables.

2.3 Cache attacks and their variants

Cache attacks are a well-researched subfamily of side channel attacks. There exist several
attacks and the four most common are: Prime+Probe (with Prime+Abort), Flush+Reload,
Evict+Time and MemJam. Due to their comparatively high resolution and distribution in
the literature, we will only consider the variants Prime+Probe, Flush+Reload and Mem-
Jam in this chapter.

2.3.1 General Structure

Disselkoen et al. [DKPT17] classify attacks (at a high-level perspective) into a pre-attack
portion and an active portion. This subdivision enables a quick and precise description of
attacks and is also made in the subsequent sections.

10

2.3 Cache attacks and their variants

The pre-attack portion collects important architecture and runtime specific information.
The active portion that uses this information to analyse the victim’s memory access con-
sists of three phases:

1. The initialisation phase prepares the cache in a certain way,

2. the waiting phase gives the victim the possibility to request the observed memory
addresses,

3. and the measurement phase performs measurements to determine whether the cache
state has changed in a way that would imply memory accesses to the observed mem-
ory addresses.

2.3.2 Flush+Reload

Flush+Reload [GBK11, YF14] monitors accesses to a specific memory line. This results
in a high accurate attack which is less prone to false positives. Furthermore, the attack is
successful across cores due to the properties of the L3 cache. The attack can monitor access
to instructions and data. Due to the content-based page sharing technique, also called
memory deduplication, which is used by many virtual machine monitors, the attack also
works across VMs. The attack operates in the following way:

• The active portion:

1. Initialization phase: The attacker uses Intel’s CLFLUSH instruction to evict the
observed address out of the cache.

2. Waiting phase.

3. Measurement phase: The attacker reaccesses the observed address and mea-
sures the time for the access operation. If the access is fast, the attacker can
conclude that another process has accessed the address because it has been
reloaded into the cache. If the access was slow, consequently the address was
not accessed.

• The pre-attack portion: Before the attacker initiates the active portion of the attack,
he must determine a timing threshold and an exact target address in the virtual
address space, which maps to the physical address the attacker wants to monitor.

1. Time threshold: The attacker must determine the timing of a fast and a slow
access in the measurement phase of the active portion.

2. Determine the target address: There exist two procedures which were intro-
duced by Yarom and Falkner [YF14]. Both are limited to shared memory, so
Flush+Reload can only be applied to addresses in shared memory.

11

2 Background and Related Work

With Flush+Flush [GMWM16] and Evict+Reload [GSM15], there are also two variants of
Flush+Reload. The first variant exploits the fact that the CLFLUSH command itself leads
to temporal dependencies and thus makes it possible to combine the measurement and
initialisation phases. The latter variant uses a prime phase instead of the CLFLUSH com-
mand (just like Prime+Probe) to evict the cache line. So this variant avoids the CLFLUSH
command.

2.3.3 Prime+Probe

Prime+Probe does not rely on shared memory. The first forms of Prime+Probe were tar-
geting the L1 cache [Per05, OST06]. Recent work extended the attack on the L3 cache of
Intel processors, allowing attacks over several cores [IES15a, KAGPJ16, LYG+15]. Like all
L3 cache attacks, Prime+Probe can monitor access to both instructions and data. Also, L3
Prime+Probe works across VMs. The attack monitors a single cache set and detects ac-
cesses from any other process including the operating system. The attack proceeds in the
following phases:

• The active portion:

1. Initialization phase (called prime): The attacker accesses enough cache lines
from the cache set to be monitored such that this cache set is only filled with his
data.

2. Waiting phase.

3. Measurement phase (called probe): The attacker reloads the data that he already
accessed during the initialisation phase and observes how long this operation
takes. If the victim has not accessed any data in the observed cache set, the
operation is fast. However, if the victim has accessed data in the cache set, the
operation takes longer because of cache misses.

• The pre-attack portion: Before the attacker initiates the active portion of the attack,
he must determine a timing threshold and an eviction set.

1. Timing threshold: The attacker must determine the timing of a fast and a slow
access is in the measurement phase of the active portion.

2. Eviction set: The attacker must determine a set of cache line addresses that fill
an entire cache set (See subsection 2.3.6).

Typically, several runs of this attack are performed sequentially. In this case, the probe
phase can serve as the prime phase for the following attack cycle.

12

2.3 Cache attacks and their variants

2.3.4 Prime+Abort(-L3)

Prime+Abort is a relatively new attack introduced in 2017 by Disselkoen et al. [DKPT17].
Last-level cache attacks are typically based on precise timer operations for the measure-
ment phase (see subsections 2.3.2 and 2.3.3). Many defence strategies against these attacks
are based on limiting access to precise timers. Prime+Abort undermines these defence
strategies by using Intel’s TSX hardware instead of timers and completely avoids a mea-
surement phase and the determination of a time threshold. Apart from that, this attack
beats Prime+Probe both in its accuracy, as well as in its efficiency and maximum detec-
tion speed while producing less false positives [DKPT17]. Before the attack process is
described below, we give a brief overview of how Intel’s TSX works.

Intel Transactional Synchronization Extensions (Intel TSX)

Multithreaded applications use the increasing number of cores in modern processors to
work as efficiently as possible. Programmers must use synchronisation mechanisms to
manage the shared data of such applications. Typically, serialisation mechanisms are used
that protect critical sections with locks. The use of locks during serialisation is pursued
quite conservatively in practice. This procedure limits parallel execution more than nec-
essary and therefore has a negative effect on the performance of the application [gui18].
Unlike the traditional locks described above, Intel’s TSX 2 allows multiple threads to run
in parallel, which are aborted when a conflict occurs. With the commands XBEGIN and
XEND TSX allows to divide the program code into transactions. For each transaction TSX
guarantees either completeness, which means that all memory changes made during the
transaction will be visible atomically to all other processors and cores, or that the trans-
action will be aborted, which means that all changes caused by the transaction will be
undone. If the transaction is terminated, a fallback routine is executed, which is also spec-
ified by the developer [gui18].
A TSX transaction may also terminate for some reasons without a memory conflict occur-
ring. The reason for the termination of a transaction is reported by TSX using the EAX

register. Table 2.2 lists the most important termination reasons from the Intel Software
Developer’s Manual [gui18]. The last two abort reasons were communicated by Dyce et
al. [DHKL15] and exploited in [DKPT17] using Prime+Abort.
The attack described here exploits the fact that a transaction is aborted if a cache line that
was read during the transaction is deleted from the L3 cache (Reason 9). With this abort
criterium in Intel’s TSX, one can use the fallback routine described above to construct a
hardware callback that notifies the attacker as soon as a corresponding cache line has been

2TSX is a Hardware implementation of transactional memory. See also [HEM93, Sco13].

13

2 Background and Related Work

1. Internal buffer for tracking the transaction state overflows.
2. Execution of XABORT, CPUID, PAUSE, ENCLS or ENCLU In-

struction
3. Execution of system calls (e.g. fopen())
4. Interrupts
5. Exceed implementation specific depth for nesting transac-

tions
6. Access violation and page faults (implementation specific)
7. False dependencies
8. A cache line in the write set of the transaction (written dur-

ing the transaction) is evicted from the L1 cache
9. A cache line in the read set of the transaction (read during

the transaction) is evicted from the L3 cache

Table 2.2: Reasons for transactional aborts in Intel’s TSX

accessed by another process [DKPT17].

Attack Procedure

As already described, the attack does not require a measurement phase. Memory requests
by the victim are not registered by time operations, but directly by hardware callbacks via
TSX. This means that the attacker can wait for the victim’s memory access to happen and
can avoid splitting the attack into intervals at which he suspects the memory accesses.
This prevents the attacker from missing the victim’s memory accesses due to an incorrect
subdivision. Consequently, the attack has a higher resolution [DKPT17].

The attack has a disadvantage compared to Prime+Probe and Flush+Reload. It cannot
monitor multiple targets, i.e. cache sets or addresses, simultaneously and distinguish be-
tween their accesses. Prime+Abort works across cores and can detect access to instructions
and data. The attack goes through these steps [DKPT17]:

• The active portion:

1. Initialization phase (called "prime"): The attacker opens a TSX transaction and
accesses enough cache lines from the cache set to be monitored such that this
cache set is only filled with his own data.

2. Waiting phase: The attacker waits until the transaction from the prime phase is
terminated (with the correct termination criterion). With the aborted transac-
tion, the attacker can now conclude that an address in the monitored cache
set has been accessed. The attacker gets the same information as during a
Prime+Probe attack.

14

2.3 Cache attacks and their variants

• The pre-attack portion: The attacker must determine an eviction set as in the regular
Prime+Probe attack. A time threshold is not required.

2.3.5 MemJam

MemJam was introduced in 2017 by Moghimi, Eisenbarth and Sunar and later further
researched in collaboration with Jan Wichelmann. It uses false dependency of memory
read-after-writes and is the first intra cache level attack that can be applied to all major
Intel processors [MWES18]. The attack is based on 4K Aliasing which is explained in the
following section. At this point, we should also mention the CacheBleed attack, which
was developed by Darom, Genkin and Heninger and also exploits false dependencies
[YGH17].

4K Aliasing

Aliasing occurs when two objects have the same name [PH14]. In 4K Aliasing, this am-
biguity occurs due to the virtual addressing of the L1 cache when two virtual addresses
may reference the same physical address [MWES18].

Using 4 KiB Pages the physical and virtual addresses share the last twelve bits (see fig-
ure 2.4). This means that two virtual addresses which match in the last twelve bits, can
refer to the same physical address. Simultaneous reading and writing of these addresses
is not possible and slows down both the reading and writing process, because an address
translation must be performed before the dependency of the two accesses can be resolved.
This simultaneous access occurs with out-of-order execution on two different virtual pro-
cessor cores that share a physical core (Intel’s implementation of this technique known as
Simultaneous Multithreading is called Hyper-Threading.) [MWES18, gui18].

Because our test environment supports the x86-64 instruction set as well as the x86-32
instruction set, the processor works using the latter instruction set with a word size of 32
bits or 4 bytes. From this, it follows that not the last 12 bits of the addresses must agree,
but rather the bits 2 to 11 to cause the described dependency [MWES18].

Moghimi, Eisenbarth and Sunar describe in [MWES18] a series of experiments to analyse
the memory dependencies of virtual processor cores. They use two threads running on
the same physical core but different virtual cores. Both threads perform memory opera-
tions, and one thread (the future victim thread) also performs time measurements. The
experiments show that read-after-write false dependencies with simultaneous access to
addresses of the same cache line but different line offsets cause a two cycle penalty, while
access to addresses of the same cache line and the same line offset cause a ten cycle penalty.
Thus the attack channel achieves intra cache line resolution. The attacker can observe the

15

2 Background and Related Work

address bits 2 to 11, where the bits 2 to 5 describe the intra cache line leakage. Besides, the
experiments showed that the attacker must write continuously on the victim’s address in
order to maintain the effectiveness of the attack channel [MWES18].
The attack described here uses the read-after-write false dependencies and the associated
timing behaviour to open a side channel on the cache. The attacker intentionally creates
such dependencies by comparing the last twelve bits of his address with the last twelve
bits of the monitored address of the victim [MWES18].

Attack procedure

MemJam uses read-after-write false dependencies to create time dependencies over the
described side channel even in constant time implementations. The measured time de-
pendencies are then exploited by a correlation attack [MWES18]. The attack takes place in
the following steps:

• The active portion:

1. Initialization phase: The attacker starts a process (same physical core as the
victim process) in which he writes to a particular address continuously. This
address matches the virtual memory offset, on which the victim performs
security-related read operations, in the last twelve bits.

2. Waiting/Measurement phase: Now the attacker asks the victim to execute en-
cryption on a given plain text. The attacker records pairs of ciphertext and cor-
responding execution times. Higher times mean more accesses to the observed
memory offset. The attacker repeats this step to continue collecting ciphertext-
time pairs for the later following correlation attack.

3. Analysis phase: Subsequently, the recorded ciphertext-time pairs are exploited
using a correlation attack.

• The pre-attack portion:

1. The attacker must find out on which virtual core the victim process is executed
and with which other virtual core it shares the physical core.

2. The attacker has to determine at which address the security-critical data he
wants to observe is located.

2.3.6 Finding Eviction Sets

As described in the previous paragraphs, during the prime phase of the attacks
Prime+Probe and Prime+Abort eviction sets are required. An eviction set consists of a set

16

2.3 Cache attacks and their variants

of virtual addresses whose associated cache lines are located in the same cache set. The
eviction set has exactly one address for each possible position (way) in the cache set. With
a n-associative cache, each eviction set, therefore, consists of n addresses. With the L3
cache, an eviction set covers precisely one cache slice instead of an entire cache set.

Determining an eviction set for the L1 cache is trivial. As Table 2.1 shows, the L1 cache
consists of 64 cache sets per core while the line size is 64 bytes. Consequently, the set index
and the line offset of the L1 cache each require 6 bits. As shown in Figure 2.4, the address
translation of 4 KiB pages keeps exactly an offset of 12 bits constant. By comparing the
page offset, one can find virtual addresses whose associated data all reside in the same
cache set.

The L3 cache has 1024 sets, so its set index requires 10 bits. Since the line size does not
change compared to the L1 cache, the line offset also requires 6 bits. The Bits 6-15 of the
physical address, therefore, determines the cache set. Consequently, when using 4 KiB
pages, a simple comparison of the page offsets of the virtual addresses is no longer suffi-
cient to determine the eviction set (see Figure 2.4). Besides this hurdle, cache slicing of the
L3 cache also makes it difficult to find addresses for the eviction set. As mentioned before,
an eviction set for the L3 cache does not cover an entire cache set but only a cache slice.
We introduce the algorithm of Mastik [Yuv] for creating eviction sets, which overcomes
the hurdles of physically indexed caches and cache slicing. The idea of this algorithm was
introduced initially by [LYG+15].

To avoid the problem of physical indexing, we will proceed like [LYG+15, IES15b,
DKPT17] in the following. As depicted in Figure 2.4 the cache index of the L3 cache
can easily be read from the page offset if 2 MiB huge pages are used instead of 4 KiB
pages. Because huge pages play a major role in the performance3 of many applications,
they are available on many systems. In the thesis’ project, the libhugetlbfs library [lib] is
used to access Huge Pages.

The addresses that match in both the set index and the line offset will be called set-aligned.
Algorithm 1 determines a set of eviction sets, called evictionGroup. To determine whether
an eviction set evicts the current line there are two methods. One is the Prime+Probe
method shown in algorithm 2, which is also used in Mastik, and the other one is the
Prime+Abort method introduced in [DKPT17] and shown in algorithm 3.

Both the method presented in algorithm 2 and the method presented in algorithm 3 were
implemented in the thesis’ project and were successfully used on the present CPU to de-
termine eviction sets. In the following, we will only work with the Prime+Abort method,
which proved to be more precise, practical and faster. The idea of the algorithm is based

3Huge Pages use the Translation Lookaside Buffer more efficiently because they need comparatively fewer
entries for the same memory areas.

17

2 Background and Related Work

Algorithm 1: Determines an evictionGroup for a given cache set.

1 Input: A set of set-aligned cache lines called lines
2 Output: An evictionGroup for lines
3 evictionGroup← {}
4 evictionSet← {}
5 while lines not empty do
6 repeat // 1. Step
7 line← random member of lines
8 remove line from lines
9 if evictionSet evicts line then // algorithm 2 or algorithm 3

10 c← line
11 break

12 add line to evictionSet
13 until forever
14 foreach member in evictionSet do // 2. Step
15 remove member from evictionSet
16 if evictionSet evicts c then // algorithm 2 or algorithm 3
17 add member back to lines

18 else
19 add member back to evictionSet

20 foreach line in lines do // Cleaning loop
21 if evictionSet evicts line then // algorithm 2 or algorithm 3
22 remove line from lines

23 add evictionSet to evictionGroup
24 evictionSet← {}
25 return evictionGroup

on abort reason 9 from Table 2.2. If after accessing the whole eviction set followed by
accessing our target line a TSX abort follows reliably, we can conclude that the transac-
tion cannot hold the lines together in its read set. This means that more cache lines were
accessed than fit into a cache slice (associativity +1) [DKPT17].

Algorithm 1 gets a set of set-aligned cache lines called lines as input and determines as
already described an evictionGroup. The algorithm consists of an outer loop that deter-
mines an eviction set at each run. The determination of an eviction set consists of two
steps respectively two loops followed by a loop to clean up the lines set. The first step
of the algorithm consists of adding lines to an eviction set until the eviction set evicts the
current line. In the second step, the algorithm removes any line from the eviction set that
is not needed to form a valid eviction set. The cleaning loop at the end removes all lines

18

2.3 Cache attacks and their variants

Algorithm 2: Prime+Probe method to test whether an eviction set evicts a given cache
line. The number of loop iterations used below is system dependent and the given
values proved to be a good tradeoff between performance and completeness.

1 Input: An eviction set evictionSet and a cache line line
2 Output: evictionSet evicts line return true else return true
3 times← {}
4 repeat
5 access line
6 repeat
7 foreach member in evictionSet do
8 access member

9 until 20 times
10 timed access to line
11 times← times + {elapsed time}
12 until 16 times
13 if median of times > predetermined threshold then
14 return true

15 else
16 return false

from the lines set that are evicted by the current eviction set. Therefore, they can be ig-
nored in the future. In the last step, the current eviction set is added to the evictionGroup.
The algorithm terminates as soon as the set lines is empty.
Extracting a given target line from an evictionGroup results in two different cases. The
first case occurs when only the virtual address of the target line is known. Then one has
to iterate over all eviction sets of the evictionGroup that match from bit 0 to bit 11 (if the
victim uses 4 KiB pages; for larger pages this interval can be extended to speed up the
search) with the virtual address and test with algorithm 3 if the target line is evicted. In
the second case, the set index of the target line is known. Now the search can be shortened
by testing only the eviction sets using algorithm 3 which are set-aligned to the target line.
If n is the associativity, at worst n eviction sets have to be tested in this case.
If the physical address or the set index of the target line is already known at the time of
determining the eviction set, the performance of the algorithm can be increased again by
determining only the required eviction set. See also algorithm 4.

19

2 Background and Related Work

Algorithm 3: Prime+Abort method to test whether an eviction set evicts a given cache
line. The number of loop iterations used below is system dependent and the given
values proved to be a good tradeoff between performance and completeness.

1 Input: An eviction set evictionSet and a cache line line
2 Output: evictionSet evicts line return true else return true
3 aborts← {}
4 commits← {}
5 while aborts < 32 and commits < 32 do
6 begin transaction
7 foreach member in evictionSet do
8 access member

9 access line
10 end transaction
11 if transaction committed then
12 increment commits

13 else if transaction aborted with appropriate status code then
14 increment aborts

15 if aborts ≥ 32 then // Number based on experience
16 return true

17 else
18 return false

Algorithm 4: Determines an eviction set to a target line (set index known)

1 Input: The target line called targetLine; a set of cache lines called lines, that is
set-aligned to the target line

2 Output: An eviction set evictionSet for the target line targetLine
3 evictionSet← {}
4 while evictionSet do not evict targetLine do
5 line← random member of lines
6 remove line from lines
7 add line to evictionSet

8 foreach member of evictionSet do
9 remove member from evictionSet

10 if evictionSet do not evict targetLine then
11 add member back to evictionSet

12 return evictionSet

20

3 Combining MemJam and Prime+Abort

We now try to combine the attacks MemJam and Prime+Abort to allow attacks on asym-
metric encryptions such as RSA. Our target platform is the Intel Core i7-8650U, a current
Intel CPU of the 8th generation. Since Intel is quite discreet regarding the microarchitec-
ture of its processors and only a few details are known about the internals of this new
processor, the function of Prime+Abort and MemJam was validated in the first step of
the project. Both attacks were successfully implemented for the existing CPU. In order
to reduce the measurement noise in our results (especially the MemJam measurements),
we used Intel’s pstate driver [Lin] to fix the CPU frequency of all cores to a constant
500MHz.
In this chapter the procedure of the attack combination as well as its development and
occurring problems are explained on the basis of different dummy victims. The idea of
developing an attack using different dummy victims is to adapt the victim step by step
until it is replaced by a real victim (e.g. a real encryption used in practice), while the
attack is optimized for the victim at each iteration. The thesis’ project does not contain
a functioning attack, but the results support the development of an attack based on this
approach in the future.

3.1 The general procedure and a first dummy victim

This section covers the general procedure of the attack combination. As before, the de-
scription of the attack is based on the general structure of cache attacks, as described
in subsection 2.3.1. We introduce a first dummy victim in order to be able to describe
the procedure of the attack more clearly and to verify that the two attacks do not in
any way interfere unfavorably with each other (e.g. by a processor behavior unknown
to us). This victim consists of an array, called sbox, containing 256 1-byte entries and a
buffer array containing 640 64-byte entries. The victim accesses the sbox[200] and the
buffer[32] in 640 iterations. Every 64 iterations it accesses sbox[0] and buffer[0]

(See Listing 3.1).
The MemJam part of our attack observes accesses to the first sbox entry, while the
Prime+Abort part observes the first entry of the buffer array. We now describe the at-
tack based on this dummy victim. This victim is highly simplified to understand the
procedure of the attack. Afterwards, we will adjust the dummy victim slightly so that the

21

3 Combining MemJam and Prime+Abort

for(int x=0;x<640;x++){
access = buffer[(x%64==0)?0:32];
access = sbox[(x%64==0)?0:200];

}

Listing 3.1: Memory accesses of the first dummy victim

advantage of the attack becomes clearer. Figure 3.1 visualises the chronological sequence
of the attack. The attack phases of MemJam+Abort are as described below.

• The pre-attack portion: Before the attacker can start the active portion of the attack,
he must satisfy some preliminaries.

1. MemJam: The attacker has to determine at which address the security-critical
data he wants to observe is located.

2. MemJam: The attacker must find out on which virtual core the victim process
is executed and which other virtual core shares the same physical core.

3. Prime+Abort: The attacker must determine an eviction set.

• The active portion:

1. Initialization phase:

– MemJam: The attacker starts a process (same physical core as the victim
process) in which he writes to a particular address continuously. This ad-
dress matches the 12 least significant bits of the target line (sbox[0]).

– Prime+Abort (prime phase): The attacker opens a TSX transaction and ac-
cesses enough cache lines from the cache set to be monitored such that this
cache set is only filled with his data.

2. Waiting phase:

– MemJam: The attacker waits for access to the observed target line. In Fig-
ure 3.1, the access times to sbox[0] were measured in the victim thread
to check if the attacks influence each other and to facilitate the debugging
of the attacks. (The next dummy victim will not have to perform any mea-
surements.)

– Prime+Abort: The attacker waits until the transaction from the prime
phase is aborted (with the correct abort criterion). With the aborted trans-
action, the attacker can now conclude that an address (e.g. buffer[0]) in
the monitored cache set has been accessed.

22

3.1 The general procedure and a first dummy victim

pre-attack portion

initialization phase

measurement phase

analysis phase

physical core physical core

virtual core

Attacker
(MemJam)

write continuously
to virtual memory
offset of target line
(sbox[0])

delayed access
due to 4K Aliasing

virtual core

Victim

RDTSC timestamp
access=sbox[0];
access=buffer[0];
RDTSC timestamp

virtual core

Attacker
(Prime+Abort)

start TSX transaction,
prime target cache
set (eviction set for
buffer[0])

TSX abort
hardware callback
with RDTSC times-
tamp

Figure 3.1: The graphic shows the chronological flow of MemJam and Prime+Abort start-
ing with the pre-attack portion followed by the active portion with its three phases: ini-
tialisation, measurement and analysis. The memory accesses shown here refer to the first
dummy victim.

3. Analysis phase: Since the attack on this dummy victim is less aimed at col-
lecting data than at showing the phases of the attack, there is no real analysis
phase. Figure 3.2 shows the measurement results of the attack. The curved
course describes the access times of the MemJam attack and the vertical lines
the time points of the TSX aborts.

If we analyze this graphical representation of the measurement results, we first notice
a large amplitude after the 4th TSX abortion. This noticeable effect was also apparent
in further executions of the attack. We dismiss this peak as measurement noise, since it
is related to the time measurements in the victim thread and thus no longer occurs in
the next dummy victim. It is also noticeable that we get several spikes in the MemJam
measurement with each sbox[0] access. Especially between the last two TSX aborts the
measurement is very noisy. In the case of later attacks we will perform several iterations
of the attack and average over these to minimise the noise in the measurement data for
further analysis. The Prime+Abort attack provides twelve TSX aborts with the correct
abort criterion. Ideally, we would have expected eleven aborts, whereby it is noticeable

23

3 Combining MemJam and Prime+Abort

Time
0

2000

4000

6000

8000

10000

12000

14000

A
c
c
e
s
s
 D

u
ra

ti
o
n
 (

C
P

U
 C

y
c
le

s
)

Figure 3.2: The curve shows the MemJam access times and the vertical lines the time
points of the TSX aborts.

that the 5th and 6th aborts are very close to each other and can be assigned to the same
buffer[0] access. In this way, we get a useful measurement for our Prime+Abort attack
in the present case. However, further measurements show a further inaccuracy, which did
not occur in this measurement. It can also happen that a buffer[0] access is not tracked
by Prime+Abort. This may be because shortly before the buffer[0] access occurs, the
TSX transaction has to be terminated and restarted due to a different termination reason
and therefore misses the interesting access. We will also compensate for this behavior with
several measurement iterations at the next dummy victim.

When this first victim was attacked, accesses to a fixed address in the buffer array were
observed, allowing the two attacks to run independently of each other, apart from their
start and end times, and requiring no coordination between them. This requirement dra-
matically simplifies the practical implementation of the attack. When attacking the next
victim, we will remove this requirement and analyse the dependencies between the two
attacks.

24

3.2 The second dummy victim

for(int x=0;x<640;x++){
access = buffer[x];
access = sbox[(x%64==0)?0:200];
//empty loop for performance degradation
for(int i=0;i<30;i++){}

}

Listing 3.2: Memory accesses of the second dummy victim

3.2 The second dummy victim

We now introduce a second dummy victim, which is slightly modified in comparison to
the first dummy victim. Instead of accessing buffer[0] every 64 iterations, the victim
now accesses buffer[i], where i is the loop counter for the 640 iterations of all accesses
(See Listing 3.2). The attacker no longer observes continuous accesses to buffer[0]

but accesses to buffer[x], where x is increased by the value of the resolution of the
Prime+Abort attack at each TSX abort, with appropriate abort criteria (See Listing 3.3).
The sbox accesses remain the same as in the first dummy victim, but the victim no longer
performs time measurements. Besides, an empty loop with 30 iterations (number based on
experience) is executed after each access to the sbox to reduce the noise of the Prime+Abort
attack. Without this loop, the attacker could not start TSX transactions fast enough to
watch the buffer accesses. This performance degradation in the dummy victim is not
unrealistic, because real targets would also be slower than the dummy victim without this
loop.

The MemJam attacker continues to slow down access to the first sbox entry. Compared to
the first attack constellation we increase the resolution of the Prime+Abort attack and it
now tracks every 16th access to the buffer. We are also developing a small analysis phase
for our second dummy victim. The following measurement results come from 101.000
iterations of the attack, whereby we ignore the first 1.000 iterations to reduce measurement
noise on the startup. In the first step of the analysis phase, we normalise the Prime+Abort
measurements of all iterations. Therefore, each instance of Prime+Abort starts at time-
point 0. Afterwards, we perform a k-means clustering4 with 40 (buffer accesses/resolution
Prime+Abort) cluster centres on the Prime+Abort data. We now look at the distances
between these cluster centres to draw conclusions about the intervals at which accesses
to sbox[0] occurred. If such access occurs between two neighbouring cluster centres,
it is slowed down by MemJam and should cause them to lie further apart. A plot of the
distances between the cluster centres is depicted in Figure 3.3.

The number of spikes, as well as their distance to each other, corresponds to our expecta-

4MathWorks’ implementation in MatLab [Mat] with ’MaxIter’ 1000 and ’Replicates’ 5

25

3 Combining MemJam and Prime+Abort

while(runPrimeAbort){
status = _xbegin();
if(status == _XBEGIN_STARTED){ //transactional path

//access eviction set for the observed line

while(1){}
xend();

}else{ //non-transactional path

//save RDTSC timestamp

//if status = abort reason for conflicted memory access
if(status==6){

observedBufferLine+=resolutionPrimeAbort;
}

//save status
//...

}
}

Listing 3.3: The TSX Transaction procedure in the attacker’s Prime+Abort thread

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Cluster Center

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

ta
n
c
e
 (

C
P

U
 C

y
c
le

s
)

10
4

Figure 3.3: Measurements results of the second dummy victim - The curve shows the
distances between the cluster centres of the measured TSX aborts (with appropriate ter-
mination criteria).

26

3.2 The second dummy victim

//NUMBER_ITERATIONS: Iterations of the Attack
while(iteration<NUMBER_ITERATIONS){

//notify attacker
runPrimeAbort=1;
//empty loop for performance degradation
for(int i=0;i<10000;i++){}
for(int i=0;i<64;i++){

//buffer and sbox Accesses
access=sbox[hash(buffer+i*64)];
for(int i=0;i<10000;i++){}

}
//notify attacker
runPrimeAbort=0;
for(int i=0;i<10000;i++){}
iteration++;

}
//kill attacker
victimFinished=1;

Listing 3.4: New synchronization mechanism of the second dummy victim

int hash(uint8_t thisBuffer[]){
int sum=0;
//iterate over one buffer index with 64 bytes
for(int i=0;i<64;i++){

sum+=*thisBuffer;
thisBuffer++;

}
return sum%256; //sbox has 256 entries

}

Listing 3.5: Hash-function for the memory accesses - The for loop enables a sim-
ple and effective performance degradation attack.

tions regarding the sbox accesses. However, we expect MemJam to only generate a delay
of about twenty cycles, which means that the spikes in the graphic are too large and not
related to the MemJam attack. A simple additional test with an increased number of sbox
accesses confirms the assumption because the measurements again show ten peaks.

In order to ensure that these peaks are not caused by TLB misses due to an unfavourable
alignment of the buffer or insufficient synchronisation of the attack, adjustments of the
dummy victim are necessary. These include a shortening of the buffer from 640*64 bytes
to 64*64 bytes (= 4096 bytes = size of standard 4 KiB pages), as well as several empty loops
to slow down the attack and variables for synchronisation (see Listing 3.4 and 3.6). Also,
the buffer and sbox accesses are now generated using a simple hash function (see listing
3.5) in order to allow performance degradation attacks later.

Besides, the already mentioned changes we increase the resolution of the Prime+Abort

27

3 Combining MemJam and Prime+Abort

while(!victimFinished){
observedBufferLine=0;
//number of aborts with appropriate abort criterion
int rightAborts=0;
//wait for victim to start round
while(!runPrimeAbort && !victimFinished){}
while(rightAborts<NUMBER_OBSERVED_CACHELINES &&
numberOfAborts[iteration]<NUMBER_MEASURED_ABORTS &&
observedBufferLine < NUMBER_OBSERVED_CACHELINES &&
runPrimeAbort && !victimFinished){

status = _xbegin();
if(status == _XBEGIN_STARTED){

//access eviction set for the observed line

// Wait for abort
while(runPrimeAbort && !victimFinished){}
xend();

}else{

//save RDTSC timestamp

}
if(status==6){

observedBufferLine+=resolutionPrimeAbort;
rightAborts++;

}

//save status
//...

}
//wait for victim to notify end of round
while(runPrimeAbort && !victimFinished){}

}

Listing 3.6: New Synchronisation mechanisms in the attacker’s Prime+Abort
thread

28

3.2 The second dummy victim

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Cluster Center

0

0.5

1

1.5

2

2.5

3

3.5

D
is

ta
n
c
e
 (

C
P

U
 C

y
c
le

s
)

10
5

Figure 3.4: Measurement results of the updated second dummy victim. The curve shows
the distances between the cluster centres of the measured TSX aborts (with appropriate
termination criteria).

attack to the maximum so that every buffer access is now tracked. Before the attack goes
to the analysis phase, we filter our recordings so that we only look at iterations in which
Prime+Abort tracks exactly the 64 expected aborts with the appropriate abort criterion
(Between the aborts with the corresponding abort criterion, an arbitrary number of aborts
with a different abort reason can occur).

Figure 3.4 shows the measured data of the new setup. 101.000 iterations of the attack have
been performed, and again the first 1000 iterations have been ignored. Of the 100.000
iterations considered, 61.120 matched the filter rules and had precisely 64 aborts with the
desired abort reason. The first thing to notice when looking at the measurement results in
the graph is the negative peak. This indicates that TLB misses do not cause the measured
deflections. A miss would slow down the victim and not accelerate it. We also have the
buffer array aligned with the 4 KiB pages so that we would expect a peak due to a TLB
miss at the beginning or end of our measurement. This is also not the case and supports
the thesis that these are not TLB misses.

Figure 3.5 shows a plot of the cumulative distribution (CDF) over the timepoints of the
TSX aborts. For each of the 64 buffer entries, the graph shows a curve describing the sum
of the aborts over time for each buffer index. Contrary to what is expected, the curves do
not have a sharp increase, but a stepped increase, with these steps "stacked on top" of each

29

3 Combining MemJam and Prime+Abort

Figure 3.5: The plot shows the cumulative distribution over the timepoints of the TSX
aborts. Contrary to what was expected, the curves have a stair-like ascent. We would
have expected an abrupt steep rise, as in the curve to the far left, and that they would all
be shifted at about the same distance from each other.

other. It would have been expected that all curves would have a course like the first curve
and be shifted at the same distance from each other. It can be assumed that the shape
and displacement of the individual curves lead to artefacts in k-means clustering, which
are manifested as the peaks in Figure 3.3 and Figure 3.4. The reason for this unexpected
course of the CDF remains as an open problem (see section 4.2).

To support later analyses, two further interesting measurements will be presented here. In
the second development stage of the second dummy victim, a filter is used that only con-
siders measurement iterations with exactly 64 aborts with the appropriate abort criterion.
In addition to the expected aborts, a high number of aborts with a different abort reason
also occur in these iterations. The distribution of the reasons for the aborts can be seen in
Figure 3.6.

The most significant portion, around 53% of the aborts, is due to abort Reason 9, which we
cause using the Prime+Abort attack. With about 44% of the aborts follows abort reason 1,
i.e. the overflow of an internal buffer to track the transaction state. Interrupts (reason 4)

30

3.2 The second dummy victim

1 4 9

Abort reason

0

0.5

1

1.5

2

2.5

3

3.5

4

N
u
m

b
e
r

o
f
a
b
o
rt

s

10
6

Figure 3.6: Distribution of the aborts to the their various reasons (1: Internal buffer for
tracking the transaction state overflows, 4: Interrupts, 9: Caused by Prime+Abort).

cause about 3% of the aborts. Besides, nine aborts occurred due to combinations of reason
9 and 1, which we ignore here. To what extent the aborts due to reason 1 and 4 correlate
with the unexpected form of the CDF results in Figure 3.5 remains as an open problem. To
explore this correlation, the unexpected aborts should be reduced (see section 4.2).

The sbox accesses in the second development stage of the second dummy victim are done
using a hash function to allow a performance degradation attack (to be able to study the
influence of such an attack on the measured values, if it becomes necessary by attacking a
real Victim, which is not slowed down by empty loops). First attacks on the dummy victim
2, following the example of Allan et al. [ABF+16], enabled a performance degradation
by a factor of 22 (using clflush; a prime approach would be less effective, since one
needs to reload the entire eviction set each time). The hash function implements a loop
which is called repeatedly. Allan et al. speak of a hot code section, which the processor
regularly executes and therefore keeps in the cache. If this section of code is now flushed
out of the cache, the processor has to load it repeatedly from memory, which massively
slows down the execution of the code. A significant advantage of this approach over
many other performance degradation attacks is that not all program parts that depend on
the microarchitecture of the CPU are slowed down, but only the attacked code segment.
The performance degradation by a factor of 22 described above was realised by three

31

3 Combining MemJam and Prime+Abort

attacker threads, which continuously flush the code segment, in which the loop of the
hash function is located, from the cache. Together with the victim thread, the Prime+Abort
thread, the MemJam thread and the main thread (starts Prime+Abort and victim), seven
threads run in parallel on eight logical cores, leaving one logical core for the operating
system.

32

4 Conclusion

4.1 Summary

In the project of the present bachelor thesis, we dealt with cache-based side channel at-
tacks, a particular subgroup of the large family of side channel attacks. In detail, we have
studied the possibility of combining the attacks MemJam and Prime+Abort to develop
the new attack MemJam+Abort, which (in theory) allows attacks on asymmetric cryp-
tosystems with intra-cacheline granularity. We developed the new attack step by step on
a current Intel CPU of the 8th generation. In the first step, we verified the executability of
the attacks MemJam and Prime+Abort on this current CPU. In the same step, we deter-
mined all essential parameters of the cache architecture of our victim CPU and developed
our implementation of the algorithm for determining eviction sets.

In the next step, we implemented the combination of attacks and developed dummy vic-
tims to record measurement series with MemJam+Abort. The first of the two dummy
victims was used to debug the attack and verify the possibility of combining the attacks
to prevent them from interfering with each other. Compared to the first dummy victim,
we have slightly adjusted the second dummy victim to create a more realistic scenario
in which the Prime+Abort component observes consecutive addresses as the attack pro-
ceeds. An analysis phase has also extended the active portion of the attack. The main
idea of this first analysis phase is that clustering of the TSX aborts should result in a dis-
tribution of the cluster centres that allows conclusions about the sbox accesses. It has been
shown that the measurements of the dummy victim 2 are too noisy for the analysis phase
to generate a distribution that reveals the sbox accesses in this way.

For debugging purposes and obtaining more accurate measurements, the dummy victim
was extended in the next step to include synchronisation mechanisms and a vulnerable
(for performance degradation) hash function. The analysis of this further adapted dummy
victim showed that the attack provides an unexpected temporal distribution of TSX aborts
that may be responsible for clustering artefacts. The analysis of the distribution of the
aborts over their causes also showed us that besides the aborts generated by Prime+Abort,
many aborts with a different cause also noise the measurements.

33

4 Conclusion

4.2 Discussion and open problems

In the time available for the bachelor thesis it was not possible to answer the question of
the realizability of the Abort+MemJam attack completely. However, it was possible to lay
a foundation for the further development and analysis of the attack. The thesis closes with
some open problems, whereby in particular the unexpected temporal characteristic of the
TSX aborts (see Figure 3.5) complicates a further analysis of the attack data. Probably, this
problem can be solved if the high number of aborts that are not caused by Prime+Abort
can be reduced. This may be achieved by limiting interrupts to CPU cores, that are not
affected by the Prime+Abort attack, or by preventing the overflow of the internal buffer
to track the transaction state of TSX through making the code within the TSX transaction
(i.e., the eviction set accesses) as minimal and efficient as possible.
If we can solve the remaining open problems and enable deductions about the sbox ac-
cesses through the temporal distribution of the TSX aborts, we get a time resolution on our
MemJam data. With the help of this time resolution, it becomes possible to attack asym-
metric encryptions like RSA as well as symmetrical encryptions (like they were already
possible with the conventional MemJam attack).

34

References

[ABF+16] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop Van de Pol, and
Yuval Yarom. Amplifying side channels through performance degradation.
In Proceedings of the 32nd Annual Conference on Computer Security Applications,
pages 422–435. ACM, 2016. 31

[BB05] David Brumley and Dan Boneh. Remote timing attacks are practical. Com-
puter Networks, 48(5):701–716, 2005. 1

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of
checking cryptographic protocols for faults. In International conference on the
theory and applications of cryptographic techniques, pages 37–51. Springer, 1997.
1

[Deb] Debian Wiki contributors. Hugepages. https://wiki.debian.org/

Hugepages. [Online; accessed 6-September-2018]. 9

[Den70] Peter J. Denning. Virtual memory. ACM Computing Surveys, 2(3):153–189,
Sep 1970. 9

[DHKL15] Dave Dice, Tim Harris, Alex Kogan, and Yossi Lev. The influence of
malloc placement on tsx hardware transactional memory. arXiv preprint
arXiv:1504.04640, 2015. 13

[DKPT17] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. Prime+
abort: A timer-free high-precision l3 cache attack using intel tsx. In 26th
USENIX Security Symposium (USENIX Security 17),(Vancouver, BC), pages 51–
67, 2017. 3, 10, 13, 14, 17, 18

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games–
bringing access-based cache attacks on aes to practice. In Security and Privacy
(SP), 2011 IEEE Symposium on, pages 490–505. IEEE, 2011. 11

[GMWM16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment, pages 279–
299. Springer, 2016. 12

35

https://wiki.debian.org/Hugepages
https://wiki.debian.org/Hugepages

References

[GSM15] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template at-
tacks: Automating attacks on inclusive last-level caches. In USENIX Security
Symposium, pages 897–912, 2015. 12

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. Rsa key extraction via low-
bandwidth acoustic cryptanalysis. In International cryptology conference, pages
444–461. Springer, 2014. 2

[gui18] Intel® 64 and ia-32 architectures software developer’s manual. 2018. 3, 13,
15

[HEM93] M. Herlihy, J. Eliot, and B. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. In Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture, page 289–300. IEEE Comput. Soc.
Press, 1993. 13

[Hen17] John L. Hennessy. Computer architecture: a quantitative approach. Elsevier, 6th
edition edition, 2017. 10

[Hu92] W.-M. Hu. Lattice scheduling and covert channels. In Proceedings 1992 IEEE
Computer Society Symposium on Research in Security and Privacy, page 52–61.
IEEE Comput. Soc. Press, 1992. 2

[IES15a] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S $ a: A shared cache
attack that works across cores and defies vm sandboxing–and its application
to aes. In Security and Privacy (SP), 2015 IEEE Symposium on, pages 591–604.
IEEE, 2015. 12

[IES15b] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic reverse en-
gineering of cache slice selection in intel processors. In 2015 Euromicro Con-
ference on Digital System Design (DSD), pages 629–636. IEEE, 2015. 7, 17

[IGI+16] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Cache attacks enable bulk key recovery on the cloud. In In-
ternational Conference on Cryptographic Hardware and Embedded Systems, pages
368–388. Springer, 2016. 7

[KAGPJ16] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on last-level cache. In Proceed-
ings of the 53rd Annual Design Automation Conference on - DAC ’16, page 1–6.
ACM Press, 2016. 7, 12

36

References

[KGG+18] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yu-
val Yarom. Spectre attacks: Exploiting speculative execution. arXiv preprint
arXiv:1801.01203, 2018. 2

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual International Cryptology Conference, pages 388–397. Springer, 1999. 1,
2

[Koc96] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Annual International Cryptology Conference, pages
104–113. Springer, 1996. 1

[lib] libhugetlbfs contributors. libhugetlbfs. https://github.com/

libhugetlbfs/libhugetlbfs. [Online; accessed 6-September-2018]. 17

[Lin] Linux Kernel Organization. Intel p-state driver. https://www.kernel.

org/doc/Documentation/cpu-freq/intel-pstate.txt. [Online;
accessed 29-September-2018]. 21

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown. arXiv preprint arXiv:1801.01207, 2018. 2

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-
level cache side-channel attacks are practical. In 2015 IEEE Symposium on
Security and Privacy, page 605–622. IEEE, May 2015. 7, 10, 12, 17

[Mat] MathWorks. k-means clustering. https://de.mathworks.com/help/

stats/kmeans.html. [Online; accessed 29-September-2018]. 25

[MLSN+15] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier
Heen, and Aurélien Francillon. Reverse engineering intel last-level cache
complex addressing using performance counters. In International Workshop
on Recent Advances in Intrusion Detection, pages 48–65. Springer, 2015. 7

[MWES18] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar.
Memjam: A false dependency attack against constant-time crypto imple-
mentations. International Journal of Parallel Programming, Nov 2018. 15, 16

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and coun-
termeasures: the case of aes. In Cryptographers’ Track at the RSA Conference,
pages 1–20. Springer, 2006. 12

37

https://github.com/libhugetlbfs/libhugetlbfs
https://github.com/libhugetlbfs/libhugetlbfs
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://de.mathworks.com/help/stats/kmeans.html
https://de.mathworks.com/help/stats/kmeans.html

References

[Per05] Colin Percival. Cache missing for fun and profit, 2005. 12

[PH14] David A. Patterson and John L. Hennessy. Computer organization and design:
the hardware/software interface. The Morgan Kaufmann series in computer ar-
chitecture and design. Elsevier/Morgan Kaufmann, Morgan Kaufmann is an
imprint of Elsevier, fifth edition edition, 2014. 5, 6, 7, 8, 10, 15

[Pub01] NIST FIPS Pub. 197: Advanced encryption standard (aes). Federal information
processing standards publication, 197(441):0311, 2001. 3

[Sco13] Michael L. Scott. Shared-memory synchronization. Synthesis lectures on com-
puter architecture. Morgan & Claypool, 2013. 13

[Sha49] Claude E Shannon. Communication theory of secrecy systems. Bell system
technical journal, 28(4):656–715, 1949. 3

[Til11] Encyclopedia of cryptography and security. Springer reference. Springer, 2nd ed
edition, 2011. 1

[Wik] WikiChip contributors. Core i7-8650u - intel. https://en.wikichip.

org/wiki/intel/core_i7/i7-8650u. [Online; accessed 2-September-
2018]. 5, 6

[YF14] Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack. In USENIX Security Symposium, pages
719–732, 2014. 11

[YGH17] Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a timing
attack on openssl constant-time rsa. Journal of Cryptographic Engineering,
7(2):99–112, 2017. 15

[YGL+15] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B Lee, and Gernot Heiser. Mapping
the intel last-level cache. IACR Cryptology ePrint Archive, 2015:905, 2015. 7

[Yuv] Yuval Yarom. Mastik: A micro-architectural side-channel toolkit. https://
cs.adelaide.edu.au/~yval/Mastik/. [Online; accessed 8-September-
2018]. 17

[ZF05] YongBin Zhou and DengGuo Feng. Side-channel attacks: Ten years after its
publication and the impacts on cryptographic module security testing. IACR
Cryptology ePrint Archive, 2005:388, 2005. 1, 2

38

https://en.wikichip.org/wiki/intel/core_i7/i7-8650u
https://en.wikichip.org/wiki/intel/core_i7/i7-8650u
https://cs.adelaide.edu.au/~yval/Mastik/
https://cs.adelaide.edu.au/~yval/Mastik/

	Introduction
	Background and Related Work
	Cache Architecture
	Virtual Memory
	Cache attacks and their variants
	General Structure
	Flush+Reload
	Prime+Probe
	Prime+Abort(-L3)
	MemJam
	Finding Eviction Sets

	Combining MemJam and Prime+Abort
	The general procedure and a first dummy victim
	The second dummy victim

	Conclusion
	Summary
	Discussion and open problems

	References

