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Abstract

With the ongoing increase of digital data storage and processing, the confidentiality of
private information has gained a high significance within the society, economy and sci-
ence. One of the recent threats towards privacy is the development of side-channel at-
tacks, exploiting the microarchitecture of the computing system to leak sensitive informa-
tion to an adversary. In order to make side-channel vulnerability of software detectable,
the MicroWalk framework offers a toolset to analyse binaries for leakages due to input-
dependent runtime characteristics that might be exposed through a side-channel towards
the attacker. There are different information theoretical techniques on the basis of Shannon
entropy, min-entropy and guessing entropy that can provide a profound quantity mea-
surement for identified leakages. These are explored in this thesis and evaluated for the
given use case. Finally, the MicroWalk analysis stage is extended by an implementation of
the evaluated techniques.

Je weiter die gegenwärtige Entwicklung in Richtung digitaler Speicherung und Verar-
beitung von Daten voranschreitet, desto wichtiger wird auch der Schutz sensitiver Infor-
mationen. Dieser wird unter anderem auch durch die jüngere Entwicklung verschiedener
Seitenkanalangriffe gefährdet, die Eigenschaften der Mikroarchitektur ausnutzen, um In-
formationen zu erlangen. Daher ist es für die effektive Entwicklung von Gegenmaß-
nahmen notwendig, Verwundbarkeiten gegen derartige Seitenkanalangriffe erkennbar
zu machen. Das MicroWalk Framework ist eine Softwarelösung, die genau diese Auf-
gabe der Analyse von ausführbaren Binärdateien auf Informationspreisgabe übernimmt
und den Instruktionsablauf auf eingabeabhängige Charakteristika prüft, die durch einen
Seitenkanal von einem Angreifer ausgenutzt werden können. Diese Arbeit betrachtet
verschiedene Quantifizierungen basierend auf den Maßen der Shannon-Entropie, Min-
Entropie und Guessing-Entropie, die genutzt werden können, um eine fundierte Aus-
sage über die Größenordnung einer Datenpreisgabe zu treffen. Diese werden anhand
verschiedener Szenarien für den gegebenen Anwendungsfall evaluiert und schließlich als
Teil der Analyse-Phase von MicroWalk implementiert.
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1 Introduction

During an age of digital information, data privacy and confidentiality have gained a high
significance within the society, economy and science. A large field of research in computer
science focusses on the development, applicability and provability of means required for
a secure communication and information storage.
By now, there are widely used and well proven cryptographic methods that provide con-
fidentiality in information transfer and storage. They are proven to be secure against at-
tackers with limited resources of computational time and space. However in practice, the
algorithm itself is not the only potentially vulnerable element that has to be considered in
terms of security.
Side-channel attacks, different to other attack techniques like cryptanalysis, do not target
weaknesses of the algorithm, but exploit characteristics of the implementation and com-
putational environment to gain secret information. There are different hardware features
known to be exploitable for side-channel attacks and caches are one of them. There are
various attacks on caches introduced in research literature targeting cryptographic im-
plementations [Ber05, OST06]. Additionally, successful recoveries of secret keys exploit-
ing leakages of key-dependent system activities have been shown based on cache-attacks
[YB14, PGBY16].
Hence, the prevention of sensitive data being leaked via side-channels is increasingly con-
sidered in computer security research. Among others, especially the aforementioned im-
plementations of cryptographic algorithms are highly relevant for the confidentiality of
the processed information. Given an attacker that is able to observe memory accesses or
time behaviour of a cryptographic process, she must not be able to learn secret information
from her observation.
In detail, this implicates that there may not be any parts of the control flow of the binary
that are directly or indirectly dependent from a secret value. This includes, but is not
limited to, the frequency of function calls, the number of iterations within a loop as well
as the count of memory accesses and the location of information within the cache.
Recent approaches in the research literature show how these requirements can be met.
There are concepts of implementation techniques and technical mitigations to prevent
information from leaking towards an unauthorised eavesdropper using a side-channel
to spy on her victim. The approach that will be mostly focussed on in this thesis is the
concept of constant time execution: It requires each run of a program to take the exact
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1 Introduction

same amount of time. Combined with invariant memory allocations and accesses, all runs
of the cryptographic binary are indistinguishable and therefore to be considered secure
against this kind of side-channel analysis [ABB+16].
Besides the conceptual work regarding this kind of attacker model, there is also a practical
need for reliable tools to verify implementations and to detect leakages, so developers in
charge of the examined implementation can efficiently identify and fix existing vulnera-
bilities. For this purpose, researchers from the University of Lübeck, Germany, and the
Worcester Polytechnic Institute, USA, developed the MicroWalk framework, which is an
essential basis of this thesis.

1.1 The underlying framework

Fundamental for this work is the MicroWalk framework, a software framework relying on
binary instrumentation to detect side-channels in binaries [WMES18]. Published in 2018,
MicroWalk searches for dependencies between a secret value and the computational states
of the binary regarding memory access and control flow specifics.
With regard to the findings during the instrumented execution, the possible leakage is
quantified using a Shannon entropy based mutual information analysis. This resembles
the average amount of leaked data in the case that an adversary can combine measurement
values, she observed, with a secret information, she does not know, and eventually learn
parts of the secret by doing so.

1.2 Focus of this thesis

The MicroWalk framework is a valuable framework for software examination focussing on
vulnerability towards side-channel attacks for researchers and developers. But to gain a
significant result on the actual severity of a leakage, the mutual information analysis might
not be suitable for any possible constellation of leakages. Assuming a scenario where for
every possible secret exactly the same runtime behaviour occurs except for one, then an
adversary will gain full knowledge of this secret, as soon as she observes the deviating
execution. In this case, the average leakage would be quantified as rather small, although
the attacker might learn the victims secret completely.
This thesis focusses on describing and evaluating different quantification methods exist-
ing in research literature for the specific usage within the MicroWalk framework. Espe-
cially the appropriate quantification of worst case leakages is discussed.
Part of the compared quantification techniques are the mutual information analysis based
on the Shannon entropy, which is implemented by the MicroWalk framework, and an-
other mutual information approach using min-entropy, as suggested by Wichelmann et
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1.2 Focus of this thesis

al. [WMES18] as a possible enhancement of the MicroWalk analysis for certain use cases.
The min-entropy, as a part of the Rényi-family of entropies, is related to the Shannon
entropy, but does not focus on expressing the average amount of information. Instead,
min-entropy takes a more conservative approach and therefore emphasises the presence
of secret values that are more vulnerable than others.
Additionally, this thesis considers the concept of guessing entropy to further determine
the attackers probability to learn the secret from the exploited leakage using a well-defined
quantification technique.
Finally, the mathematical considerations of the different quantifications are implemented
and integrated in the analysis section of the MicroWalk framework to also evaluate the
practical usage besides the theoretic discussion.
The thesis is structured accordingly. At first, Chapter 2 introduces the referred mathe-
matical concepts and formulas used for the considered entropies and frames the assumed
attacker model. The next Chapter 3 introduces the underlying framework MicroWalk, fol-
lowed by the utilisation of the introduced formulas for leakage quantification within the
framework in Chapter 4. The acquired results are discussed in Chapter 5 on a theoretic
basis, using numerous examples to emphasise the advantages and disadvantages of the
given approaches. Finally, Chapter 6 takes the practicability of the quantifications as a
part of the implementation of the MicroWalk framework into account.
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2 Definitions and delimitations

The classification of vulnerability of any kind essentially depends on the scope of the
attacker’s actions. Therefore, the first step to approach the problem that was outlined in
Chapter 1 is to shape the abilities of the assumed adversary.

2.1 Attacker model

Assuming that an adversary might learn secret data from observing a program during
the runtime requires a suitable attacker model to discuss abilities and boundaries of the
opponent.

In order to learn information that should remain secret, solely known by the victim, by
analysing the runtime behaviour and specifics of a binary, the attacker must have access
to any information regarding the program execution. This includes, but is not limited
to, the memory accesses performed by the program, register values at any time of the
execution, timing behaviour and accessed shared resources like system libraries. All these
characteristics of a single program execution the attacker can observe with a specific input
value are summarised by the term trace.

The system on which the target binary is executed can therefore be considered a white-
box [WMES18] where the attacker can legally observe every internal state of the program.
Also, when it comes to the analysis of the binary, the attacker is in full control. She can
choose arbitrary input values to observe the runtime behaviour for, as many as she wants
before running the actual attack, and thereby build herself a knowledge base of known
execution traces, whose specific characteristics she might recognise in the future if they
happen to be unique.

Compared to other attacker models used in side-channel attack considerations, this is
the profile of an attacker with a perfect side-channel. As long as the attacker is on the
same machine and CPU, she can access all the beforehand described information about
the binary execution. But at the same time she can not read the victim’s input or directly
access memory contents. This makes her different from highly privileged attackers on
the same system as the victim, who in fact might be able to spy on the victim’s keyboard
inputs and files as well as RAM contents of user space processes, as conceivable in various
OS-level attacks [Gen19].
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2 Definitions and delimitations

secret result

victim

attacker

computation

Figure 2.1: Visualisation of the attacker’s action during the assumed observation of the
target.

The attacker has to launch her attack in different stages, which are not uncommon for
side-channel attackers exploiting runtime behaviour such as observable timing for their
attack:

Stage 0 - Implementation Profiling: Before an actual attack can be executed, the attacker
would profile the target implementation regarding trace characteristics of specific inputs.
She would collect a preferably high number of tuples (x, tx), where x is an input and tx

the corresponding trace observable during the program runtime. The attacker is able to do
this for as many inputs as she wants, therefore her knowledge about these characteristics
can be considered complete after this stage.

Stage 1 - Observation of the target: As visualised in Figure 2.1, the attacker uses her
side-channel to eavesdrop on the execution behaviour of the target implementation on
the secret input of the user. She gains knowledge of a trace txi without directly learning
the corresponding xi.

Stage 2 - Recovery of the secret: Using txi and her knowledge base from the preparation
stage 0, the attacker might be able to recover information about the value xi [KB07].

The latter two stages of the actual attack are depicted in Figure 2.2. The success of the
attack in Stage 2 depends solely on the amount of information about xi that is revealed by
txi . The more the value xi affects the characteristics of the program execution, the higher
is the attacker’s probability to successfully recover xi in Stage 2.

2.1.1 Information leakage

Therefore, the attacker should not be able to directly learn the victim’s secret input (or
parts of it) by just observing execution characteristics of the binary running on the input.

6



2.1 Attacker model

Provided that for any input the victim might choose it is impossible to distinguish any
two executions of the program, then there is no information leakage.

But if in fact the attacker can gain information on the secret input by using her given
perfect side-channel, this is called a leakage. Depending on the amount of information
received by the attacker, she might be able to identify inputs that she chose in the past and
that led to a similar program trace. In the worst case she can reduce the set of possible
inputs from the cardinality 2n, where n is the length of the secret, to very few or even a
single value.

Sabelfeld and Myers identified two “sensitivity levels” of information processed during
calculation, which they entitle high and low. Any confidential data that is entered by the
user or computed during the calculation is regarded high information and thus should
be protected from unauthorised access. On the other hand, there might be internal states,
results and even inputs that are known by the public due to computational reasons or
because they were designed to be. These are called the low information of the program
and require lesser or even no protection in terms of confidentiality by definition [SM06].

As a direct conclusion, the low data should not leak parts of the high information due
to lack of protection. An attacker should not be able to derive high information from
observing low states or outputs of the program.

Considering the attacker model defined in this section, the concerned data can as well be
divided into low and high information for the later mathematical consideration.

Data Entity Description Classification
X User input high
M Memory contents high
c Computational instructions and constants low1

tx Detailed trace for specific input x ∈ X low
Yi Occurring traces at a time point i low
Ti Affiliation of traces to corresponding inputs x ∈ X low

Table 2.1: Classification of the sensitivity levels of the concerned data in the given attacker
model.

Let X be a set of secret input values, M a set of memory contents accessed during the
calculation, and tx a trace invoked when executing a program c on input x ∈ X . Further-
more, let h(tx) = y be the hash value of the trace (required for efficient storage of multiple
traces) and Ti a set of tuples (x, y), in which the inputs x along with their corresponding
trace hashes y are stored for traces up to a certain time point of execution i. Finally Yi is

1This is not necessarily required by the attacker model, but due to the contemporary conception of
Kerckhoffs’ principle [Ker83] the security of high information may not depend on the attacker’s unknow-
ingness of neither the used algorithm nor the implementation.
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2 Definitions and delimitations

the set of all occurring values y within tuples of Ti. Then these mathematical entities are
partitioned in high and low information as shown in Table 2.1 due to the knowledge of
the attacker in this model.
Different to many OS-level attacker models, in this case the attacker is required to have
performed a successful side-channel attack beforehand to read the traces on the victim’s
machine. She is actually allowed or at least assumed to know about all runtime char-
acteristics of the program execution, which are therefore classified as low information.
However, the program should aim for protecting the instances of high data even facing
this comparatively strong attacker. Outputs of the program that are deliberately publicly
shared are not considered during the leakage analysis in this scenario.

secret

victim

attacker

computation

.

.

.

.

x1
.

.

xi
.

.

xn

1 2

Figure 2.2: Stages of a successful side-channel attack on a system in order to learn secret
data according to Köpf and Basin [KB07] applied to the considered attack sce-
nario
(1) extract information (related to the secret key or data) from the target system
(2) effectively recover the key from the extracted information

2.2 Quantification of information

In order to describe the mathematical properties of an information leakage and to derive
the severity based on the amount of knowledge the attacker can gain, it is required to use
an adequate measurement for the exposed information.
Information can usually be measured by calculating corresponding entropy values. En-
tropy is the average rate of information that is produced by a stochastic source and is
usually measured in bit. It also gives a lower bound for the average number of digits
necessary to encode the outcome in a bit string over the binary alphabet.
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2.2 Quantification of information
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Figure 2.3: Visualised entropy H(X) of a coin flipping in dependence of the probability
distribution (p, 1− p). The entropy in this example is calculated as
H(X) = −(p log2(p) + (1− p) log2(1− p)).

Looking at the stochastic event of a coin flipping, the entropy depends on the probability
of each side of the coin as depicted in Figure 2.3. Naturally, the entropy is the largest for
uniform distributions, as there is the least a priori knowledge about the upcoming result
of the flip. Since there are two possible outcomes, the flipping of a coin has the exact
entropy of 1 bit (e.g. by representing heads by 1 and tails by 0) for a fair coin.

Definition 2.1. The entropy value H(X) for a given random source X with a probability
distribution P is calculated by the following formula summing up the weighted probabil-
ities

H(X) =
∑
x∈X

p(x) log2

(
1

p(x)

)
(2.1)

in bit.

This is what is called the Shannon entropy due to its introduction by Claude Shannon in
a 1948 paper on information theory [Sha48].
Let X denote such a random variable as described above, then H(X) is the entropy of this
random variable.
The Shannon entropy is applicable for arbitrary random experiments on the basis of ran-
dom variables to measure the uncertainty of the outcome and especially useful when mea-
suring the average strength of a cryptographic secret towards an attacker.
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2 Definitions and delimitations

Example 2.2.1 Usual passwords consist of lower and upper case letters with a count of 26
each in the ASCII, 10 digits and a subset of allowed special characters e.g. “!@#$%&*?”.
This makes 52 + 10 + 8 = 70 characters in total to choose a password from. Considering
passwords of length 6 without additional restrictions regarding the choice of characters,
there are 706 ≈ 11.7649× 1010 different passwords.
Assuming that these passwords are equally likely to be chosen by users, and X being the
random variable to describe this choice, the Shannon entropy is calculated as follows:

H(X) =
706∑
i=1

1

706
log2(70

6) = log2(70
6) ≈ 36.7757

Further assume that the passwords have mandatory rules they need to fulfil: Each pass-
word must contain at least one special character. Then there are

n =

6∑
i=1

(
6

i

)
· 8i · 626−i ≈ 6.0849× 1010

passwords and a Shannon entropy of

H(X) =
n∑
i=1

1

n
log2(n) = log2(n) ≈ 35.8245

which is approximately 1 bit less than for the first scenario. This is conform to the obser-
vation that without the additional special character rule there were roughly twice as many
valid passwords.

2.2.1 Mutual information

In information theory, the mutual information describes dependencies between two ran-
dom variables. Precisely, it quantifies the amount of information that can be derived about
one random variable using knowledge of the other. The following formulas were initially
defined by Shannon [Sha48] and are given in numerous textbooks and research literature,
of which Robert Gray’s “Entropy and Information Theory” [Gra90] is referenced here be-
sides Shannon’s paper.
First, the entropy of a distribution characterised by two random variables X and Y is
represented by the joint entropy H(X,Y ).

Definition 2.2. The joint entropy of random variables X and Y is defined as

H(X,Y ) = −
∑

x∈X,y∈Y
p(x, y) log2(p(x, y)) (2.2)

10



2.2 Quantification of information

Second, consider the entropy of a conditional probability of random variables X and Y :

Definition 2.3. Let X and Y be random variables. Then the conditional entropy H(X|Y )

of X conditioned on Y is defined as

H(X|Y ) = −
∑

x∈X,y∈Y
p(y) · p(x|y) log2(p(x|y)) (2.3)

From this definition, the mutual information can be deduced as the difference between the
entropy of a random variable X itself and the amount of information that is gained about
X when knowing an outcome of another specific random variable Y , which is given by
H(X|Y ).

Definition 2.4. Let X and Y be random variables. Then the mutual information I(X,Y )

is defined as follows:

I(X,Y ) = H(X)−H(X|Y ) =
∑

x∈X,y∈Y
p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(2.4)

It is obvious that the mutual information of stochastically independent random variables
is exactly 0 bit of information, due to the fact that the entropy of X is not lowered by the
knowledge of an independent outcome of Y .
Furthermore, the mutual information of two random variables is symmetric:

Theorem 2.5.

H(X)−H(X|Y ) = I(X,Y ) = I(Y,X) = H(Y )−H(Y |X) (2.5)

2.2.2 Rényi entropy

The Shannon entropy as introduced in the sections before is probably the most widely
used information quantification in Computer Science. For example, the Shannon entropy
is perfectly suitable for calculating the average number of bits required to encode the
outcome of a dice roll or similar random experiment. In terms of security, the Shannon
entropy can be used to judge the average strength of passwords of a given length over a
certain alphabet as shown in Example 2.2.1.
However, there are use cases for which an average case consideration is not the best fit.
Looking at the following example, there is a a clear gap between the actually requested
result and the Shannon entropy:

Example 2.2.2 Consider again passwords of length 6 that may contain lower case and up-
per case letters, digits and a choice of 8 special characters. In Example 2.2.1 it was shown

11



2 Definitions and delimitations

that there are approximately 11.8×1010 different passwords with an entropy for a uniform
distribution of H(X) = 36.8.
Given a uniform input distribution, the maximum entropy is reached as this provides the
highest uncertainty about the (equally likely) values. But in reality, a uniform distribu-
tion can not always be presupposed, especially when it comes to user chosen passwords.
There are other factors that influence the choice of a password than its strength: What also
matters is that it can be easily memorised and exactly this circumstance tends to draw
users to choose more simple and thereby “weak” passwords.
For this example, assume the probability distribution of the random variable X , describ-
ing the user’s choice of the password, to be as follows: Let half of the users choose
“123456” as their password (which was the most commonly used password in 2019 ac-
cording to a breach analysis performed by the National Cyber Security Centre [Cen19]),
and the other half pick theirs randomly and uniformly among the 706 − 1 other valid
passwords.
The Shannon entropy in this case computes as

H(X) =
1

2
· log2(2) +

1

2
log2(2 · (706 − 1)) ≈ 19.3878

which is still a rather high value considering that an attacker can guess the password
correctly in 50% of the cases. This still accurately represents the average number of bits
required to encode the outcome, but it does not highlight the vast advantage an attacker
gains from the given probability distribution all that well.

This example imposes the question if there is a related but more moderate quantifica-
tion measure of the information, which in this case directly implies an overall security
estimation on X . The answer is given by a generalisation approach on the Shannon en-
tropy, which allows different scopes for the quantification. It gives a parametrised formula
which by choice of the parameter α can produce more optimistic or more conservative re-
sults respectively on the given source X than the Shannon entropy.
Namely, this generalisation is called Rényi entropy and subsumes the Shannon entropy
and other approaches to uncertainty quantifications known as the min-entropy, the colli-
sion entropy and the Hartley entropy in research literature [ABH18].
These different entropies all depict a varying confidence in the actual uncertainty of a ran-
dom source. Whereas the Shannon entropy measures the average amount of information
gained when learning a value from the random source, there are entropies representing a
more optimistic or moderate point of view on the considered input. Considering the use
case of data protection from an attacker and a leakage quantification that gives security
assertions, average values might not exactly be the measurement of choice.
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2.2 Quantification of information

Therefore, the Rényi entropy in general and especially the min-entropy as a representative
of this entropy family are adduced in the following [Ré61]:

Definition 2.6. The Rényi entropy of order α of a discrete random variable X , where α ∈
N0 \ {1}, is defined as

Hα(X) =
1

1− α
log2

(∑
x∈X

p(x)α

)
(2.6)

For different values of α and a fix probability distribution P = (p1, p2...pn) the various
Rényi entropies measure the amount of uncertainty of a random variable X in different
ways, except for a uniform distribution. Just like the Shannon entropy, any Rényi entropy
reaches the same maximum value Hα(X) = log n for the uniform distribution Puni =

( 1n , ...,
1
n), independent from the choice of α.

The limiting value of Hα with α → 1 equals the Shannon entropy [BTBT10], whereas for
α → ∞ it converges to the so called min-entropy H∞, which is defined to be the most
conservative measurement of uncertainty.
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Figure 2.4: Visualised Shannon entropyH1(X) and min-entropyH∞(X) of a coin flipping
in dependence of the probability distribution (p, 1− p).
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2.2.3 Min-entropy

Definition 2.7. In the limit α→∞ the min-entropy ofX denoted withH∞(X) is obtained
from the general Rényi entropy Hα(X) [Smi09]:

H∞(X) = − log2

(
max
x∈X

Pr[X = x]

)
(2.7)

As one can derive from the definition of the min-entropy, this represents the most conser-
vative way of measuring the unpredictability of a random source. For any distribution,
it holds that the Shannon entropy, corresponding to the average uncertainty in bits, is
always larger than or equal to the min-entropy.

The definition given in the following is based on the concept of vulnerability given by
Smith as a part of an alternative foundation representing quantitative information flow
with min-entropy instead of the well known Shannon entropy. The vulnerability V (X)

thereby denotes the probability that an adversary’s guess on the value of X is correct on
the first try in a worst case consideration [Smi09].

Definition 2.8. The vulnerability V (X) of a random variable X is defined as

V (X) = max
x∈X

Pr[X = x] (2.8)

It turns out that for this definition there is an immediate correlation to the previously
given min-entropy, as

H∞(X) = log2

(
1

V (X)

)
(2.9)

holds.

The min-entropy is as well measured in bits just like the Shannon entropy. The amount of
bits min-entropy equals the greatest lower bound for the uncertainty of a random variable
X . So the min-entropy H∞(X) = m guarantees that with each observation of X at least
m bits are provided and that m is the maximum value with this property. Therefore, it
is often used as a worst case measurement for unpredictability of e.g. random number
generators [BK15].

However, there seems to be no consensus about the definition of a conditional min-
entropy, as different approaches are found in research literature [Cac97, DRS04].

Sticking to the publication of Smith, the conditional min-entropy can be defined as follows
using an underlying concept of conditional vulnerability [Smi09].
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2.2 Quantification of information

Definition 2.9. Let X and Y be random variables. Then the conditional min-entropy is
given by

H∞(X|Y ) = log2

(
1

V (X|Y )

)
(2.10)

V (X|Y ) is the conditional vulnerability of X and Y defined as

V (X|Y ) =
∑
y∈Y

max
x∈X

Pr[Y = y|X = x]Pr[X = x] (2.11)

All of the given formulas hold for arbitrary distributions on X and deterministic as well
as probabilistic calculations. In case that the program’s behaviour is deterministic for each
input and X is uniformly distributed, then the calculations can be notably simplified:

V (X) =
1

|X|
(2.12)

H∞(X) = log2(|X|) (2.13)

V (X|Y ) =
|X|
|Y |

(2.14)

Example 2.2.3 Returning to the Example 2.2.2, for the given non-uniform probability dis-
tribution of the random variable X , representing the choice of password of length 6, the
corresponding min-entropy calculates as

H∞(X) = − log2

(
max
x∈X

Pr[X = x]

)
= − log2

(
1

2

)
= 1

since there is one password, “123456”, which has a probability of 1
2 , whereas all other

passwords have a probability of 1
2·(706−1) . This depicts a much smaller quantification of

the information content that is in the secret choice of an x ∈ X in this example.

The corresponding vulnerability as introduced in this section is consequently:

V (X) =
1

2

This shows that the vulnerability is especially high due to the existence of the given weak-
est value ofX : The attacker is guaranteed to guess the value ofX correctly in one try with
a likelihood of 50%. On the other hand, it guarantees that no outcome has a probability
greater than this.

However, if the attacker happens to try on the password of a user who did not choose a
vulnerable value, then her success chances are low due to the large number of remaining
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2 Definitions and delimitations

possible passwords. Up to now, there is no quantity used for the leakage analysis to give
the expected number of guesses she would need in such a case. In order to cover this, the
guessing entropy is covered next in Section 2.2.4.

2.2.4 Guessing entropy

A third approach to the characterisation of the strength and the knowledge gain of an
attacker is the guessing entropy, which as well provides another point of view that should
be taken into account additionally to the Shannon entropy and the min-entropy described
earlier.
The guessing entropy is not exactly a mathematical quantification of the information
within some kind of binary data. Different to the Shannon entropy and the min-entropy
it does not provide directly a quantification of uncertainty in the average or respectively
worst case. Instead, it gives the expected number of guesses an attacker A needs in order
to find out which value x is attained by a random variable X [Mas94].
Especially of interest and not that well covered by the already introduced quantifications
is the crucial case that a specific input can be indistinguishably identified when observing
a corresponding trace. In an average case consideration, the impact of such a case might
likely be vanishingly low, but especially for applications guarding and guaranteeing the
confidentiality of user data, one extraordinary vulnerable input value might be striking
enough to consider the whole program as faulty in terms of security.
Also, it is possible that the attacker can not unambiguously identify the value of X , but
narrow the uncertainty down to a reasonable small amount of possible candidates. As-
suming the attacker has a possibility to check her assumptions for correctness, she prob-
ably could simply brute force the correct value if there are only a few left from the initial
|X| values after her observation.
In order to consider this characteristic leakage type appropriately, guessing entropy might
prove itself as a valuable measurement technique. The definition is given by Köpf and
Basin [KB07] as follows.

Definition 2.10. The guessing entropy of a random variableX equals the average number
of questions

Is X = xi true?

an attacker has to ask to identify the correct value of X . More formally speaking, if X has
an a priori probability distribution P = (p1, ...pn), the attacker might benefit from values
that are more likely than others. Without loss of generality, X is assumed to be indexed
such that the probabilities are arranged in a nonincreasing order from highest at position
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2.2 Quantification of information

p1 to lowest at pn. Then the guessing entropy G(X) dependent of this a priori distribution
can be described as:

G(X) =
n∑
i=1

i · pi (2.15)

The guessing entropy for a coin flip is depicted in Figure 2.5 along with the Shannon
entropy, showing that both function reach their maxima for a uniform distribution.
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Figure 2.5: Visualised Shannon entropy H(X) and corresponding guessing entropy G(X)
of a coin flipping in dependence of the probability distribution (p, 1− p). Note
that the measurement for the Shannon entropy depicted on the left-hand y-axis
denotes the number of bits of information, whereas the guessing entropy on
the right-hand y-axis quantifies the expected number of guesses. The two axis
are unevenly aligned in order to visualise the correspondence of the functions
extreme values.

In an analogous way as the guessing entropy, the conditional guessing entropy for random
variables X and Y is defined:

Definition 2.11. The conditional guessing entropy G(X|Y ) represents the expected num-
ber of questions of the form mentioned above to determine the value of X given that the
value of Y is known at this time.

G(X|Y ) =
∑
y∈Y

p(y)G(X|Y = y) (2.16)
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To especially cover the weakest x ∈ X , if there is such, in a worst case analysis, the mini-
mal guessing entropy is additionally given by the following definition.

Definition 2.12. The minimal guessing entropy Ĝ(X|Y ) quantifies the number of guesses
an attacker needs to learn the value x of X that is the easiest to guess with knowledge of
the value of Y .

Ĝ(X|Y ) = min
y∈Y

G(X|Y = y) (2.17)

Assuming, by any coincidence, the user chooses this weakest value x as the secret input,
then the attacker is expected to derive the value within Ĝ(X|Y ) guesses on the basis of
the performed observation.

Example 2.2.4 The concept of guessing entropy concludes the Examples 2.2.2 and 2.2.3.
Continuing with the recent consideration of X as the random variable of the chosen pass-
word with one especially vulnerable value “123456” with the probability of 1

2 , there is still
the question, how many guesses an adversary would need to attack such a password.
The guessing entropy in this scenario is given as

G(X) =

|X|∑
i=1

i · pi =
1

2
+

706∑
i=2

i · 1

2 · (706 − 1)
≈ 2.9412× 1010

because there is still such a large number of possible values in half of the cases.
However, if there were no values more vulnerable than the others, as in the uniformly
distributed case from Example 2.2.1, the expected number of guesses would be twice as
high:

G(Xuni) =

706∑
i=1

i · 1

706
= 5.8825× 1010
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3 Binary instrumentation

Prior to discussing leakage quantification, the presence of a certain leakage must be de-
tected within a given binary with some method of binary instrumentation. This resembles
closely the knowledge the attacker has, as presented in Section 2.1, about the exact prop-
erties of the execution of the binary on the secret input.
A framework that is able to perform a full instrumentation of the binary during runtime
produces the same trace an attacker with a perfect side-channel would observe and there-
fore is a tool to detect possible leakages. The MicroWalk framework, as presented in the
paper MicroWalk: A Framework for Finding Side Channels in Binaries by Wichelmann et al.,
is based on the Dynamic Binary Instrumentation (DBI) framework Pin [WMES18].

3.1 DBI and DBI frameworks

In research literature, typically two types of binary instrumentation are distinguished:
static binary instrumentation (SBI) and dynamic binary instrumentation (DBI). In general,
both techniques rely on inserting code into an existing binary. This instrumentation code
can then be used to analyse the binaries’ behaviour in terms of control flow and execution
characteristics.
While SBI modifies the compiled binary on disk permanently using binary rewriting tech-
niques, DBI on the other hand places the instrumentation code during the runtime of the
binary. To be able to do so, DBI monitors the execution and injects the code directly into
the instruction stream. Therefore, using DBI, the code section of the binary is not directly
modified and the instrumentation proceeds transparently. However, due to this on the fly
operating, DBI tends to slow down the execution significantly, increasing the total execu-
tion time by four times or more [And19].
Naturally, DBI supports dynamically generated instrumentation code, such as just-in-time
(JIT) compiled code, which would not be possible for SBI. Furthermore, DBI does not
require a correct disassembly of the binary but uses a DBI framework which performs the
instrumentation during a contained execution of the binary.
A DBI framework includes an API for user-defined DBI tools specifying the instrumenta-
tion. Starting the analysis, the framework successively fetches code from the binary, adds
the instrumentation according to the DBI tool and then utilises a JIT compiler to write the
instrumented instructions to a code cache. Different to most other JIT compilers, there is
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Pin APIs 
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Code Instrumented
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Figure 3.1: Visualisation of the main components of the DBI framework Pin, showing the
connection between the Pintools, the target application that is to be instru-
mented, the Pin API and the JIT compiler, executing the combined application
and instrumentation code.
Figure from the paper MicroWalk by Wichelmann et al. [WMES18]

no translation between languages but from machine code to machine code, ensuring that
the instrumentation parts are included correctly and that there is no control transfer to the
application process during the execution.

From the code cache, the instrumented code is executed until it reaches a code part that is
not already present in the cache, but instead has to be prepared by the DBI engine. In this
case, the control is handed over to the DBI engine in order to have it fetch and instrument
the next code block like before so that the execution can be continued afterwards [And19].

3.1.1 Pin and Pintools

One widely used DBI framework is Intel Pin, developed and maintained as proprietary
software by Intel, supporting Intel x86 and x64 CPUs [Int12]. For non-commercial pur-
poses, the software is free to use, available for Windows, Linux and macOS2.

The definition of trace as used in this thesis originates from the Pin JIT process, where
instructions are fetched on trace granularity. Hereby, trace denotes a sequence of instruc-
tions ending on an unconditional control transfer or after a specified number of instruc-
tions. The JIT compilation of Pin takes place at trace granularity. However, the actual in-
strumentation of the code can be performed on different granularity levels ranging from
the complete binary to instruction level.

2Published at https://software.intel.com/content/www/us/en/develop/articles/pin-a-
binary-instrumentation-tool-downloads.html [Accessed: 23-May-2020]
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3.2 MicroWalk: A framework for finding side channels in binaries

Testcase
generation 

Random bytes

Trace generation
(Pin tool) 

Trace data
collection

PEM files

CPU emulation

RDRAND
replacement

Trace
preprocessing

Preprocessor

Leakage
granularity

Analysis

Trace
comparison

Mutual
information

Visualization

Trace dump

Visualizer

IDA plugin

Figure 3.2: The pipeline of the MicroWalk framework including steps for the preparation
of test cases, the instrumentation of the binary and the preprocessing of the
traces that are then provided for analysis.
Figure from the paper MicroWalk by Wichelmann et al. [WMES18]

Pintools are DBI tools written for Pin, comprising the instrumentation routines and analy-
sis routines. The first-mentioned hold the information regarding the instrumentation pro-
cess, i.e. where instrumentation instructions shall be inserted. Analysis routines on the
other hand are the ones containing the actual instrumentation instructions. The instru-
mentation routines are only executed the first time a specific code part is encountered,
installing callbacks to the analysis routines that are called on every execution [And19].

3.2 MicroWalk : A framework for finding side channels in binaries

MicroWalk is a framework to perform an automated leakage detection and quantification
for binaries, using up to this time Shannon entropy mutual information (MI) analysis as
described in Section 4.1 and DBI. It aims to detect leakages in binaries occurring due to
input dependent memory accesses and control flow variations.

The used DBI backend is Pin as described in the previous Section 3.1.1. MicroWalk is
a tool to support the security analysis for specific binaries of interest, e.g. cryptographic
libraries, by performing a white-box threat analysis, revealing if and where leakages occur
in the binary. Also, the framework uses the mentioned MI analysis to give a mathematical
quantification serving as a guidance level to assess the severity of an occurred leakage.

The MicroWalk framework operates as a pipeline, executing separate stages as depicted in
Figure 3.2. In the first stage, test inputs are generated. They can either be random with a
specified length or based on required input formats like for example the PEM format for
cryptographic keys. Using these inputs, a custom Pintool generates the traces using the
inputs, the instrumentation specification and the code that is to be instrumented. In this
step, the DBI framework performs the DBI, runs the emulations and stores the resulting
traces to disk in a custom binary format.
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On those traces, the preprocessing stage adds allocation data and performs a calculation of
the relative offsets of memory addresses, to e.g. further identify instruction offsets that are
used as branch targets within traces. As a result, the preprocessed trace file is smaller than
the raw data generated using Pin. Directly before passing the data to the analysis stage,
the desired leakage granularity is applied, which defines the number of least significant
address bits that should not be considered in the analysis.
The analysis, taking place afterwards in the analysis stage, comprises different methods:
The full trace comparison, and the Shannon entropy MI analysis for either the whole traces
or each single instruction. Further information on the analysis stage is given in Section 4,
where also additional quantification techniques are suggested.
The results of the analysis are stored as human readable files. Furthermore, there is an
option to convert the binary traces from the preprocessing stage into a human readable
format. Other visualisation components are a plug-in for IDA Pro3, an interactive disas-
sembler and debugger, which is widely used in the area of reverse engineering and binary
analysis [WMES18].
The MicroWalk framework has been published on GitHub4. For portability and modu-
larity reasons, the implementation recently underwent major changes. Up to commit

#8c5fc265 the version as presented in the paper MicroWalk: A framework for finding side-
channels in binaries by Wichelmann et al. [WMES18] is present. The reimplemented ver-
sion, which as well will be referenced in Chapter 6, starts from commit #ea0b2d86

on and provides an improved maintainability and extensibility of the separate pipeline
stages.

3IDA is a product by Hex-Rays. They provide additional information on their website https://www.hex-
rays.com/products/ida/. [Accessed 24-May-2020]

4https://github.com/UzL-ITS/Microwalk [Accessed 24-May-2020]
5https://github.com/UzL-ITS/Microwalk/commit/8c5fc2666d3eb3827596c5ab57c3ec83445243e3
6https://github.com/UzL-ITS/Microwalk/commit/ea0b2d898c862519cddac716ae217081ab2c4516
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4 Quantification of binary leakages

The accurate quantification of a binary leakage detected by MicroWalk is an important
concern to be able to classify the severity of a leakage. The quantification of information
in general makes use of entropy as a quantity in information theory associated to random
variables representing the data. As depicted in Section 2.2, there are different entropies
that vary in specific mathematical properties and in their resulting assertions regarding
the data. Thereby, different approaches lead to varying results dependent on the particular
entropy used for the calculation.
Unless various measures take different views on the data, there are some relevant key
values for each of the considerations [Smi09]:

• The initial uncertainty on the secret input.

• The amount of information leaked to an adversary A.

• The remaining uncertainty which is not affected by the leakage.

Intuitively, the quantities considered in the following should satisfy the following [Smi09,
KB07]:

initial uncertainty = information leaked + remaining uncertainty

Using the MicroWalk framework, the scope of the analysis can be used to add another
viewing angle to the calculation of the results. It distinguishes three different analysis
scopes, of which two use an entropy based leakage quantification [WMES18].

1. Trace Comparison

This analysis technique compares two processed traces gradually. Thereby, it is
checked, looking at the respective entries of both traces, whether they differ at all. If
the trace is indifferent between varying inputs, then they can not be differentiated
by an attacker A.

2. Whole-trace Analysis

Using this analysis technique, again two traces are considered as a whole. It inter-
nally processes observations on matchings between input values x ∈ X , the set of
valid inputs, and hash values y ∈ {0, ..., 264 − 1} of a hash function h, representing
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corresponding traces. A tuple (x, y) is stored if the executions of the examined pro-
gram or algorithm c on input x results in a trace tx so that the hash value h(tx) = y.
As a consequence, the analysis relies on judging the amount of leakage by means of
equivalence classes like {(x′, y′)|y′ = y} for occurring y and not by observations on
the traces ty themselves.

Especially, if there are multiple leakages caused by different instructions in the ex-
amined program, all of these are assumed have their individual impact on the trace.
Thereby the number of distinctive hash values for varying inputs x ∈ X increases,
the more leaking instructions are present. However, this technique is clearly limited
to an aggregated view on the leakages, where each leaking instruction has its impact,
but afterwards one can not tell from the stored hash value how many instructions
actually affected the result.

3. Single-instruction Analysis

This analysis technique is similar to the whole-trace analysis, but only for traces
that cover exactly one specific instruction. It provides the most precise result for the
single instruction, but at the same time naturally covers only the smallest part of an
examined program.

4.1 Mutual information analysis with Shannon entropy

The quantity originally used in the MicroWalk framework for leakage quantification is a
mutual information (MI) analysis. For simplification only deterministic calculations are
considered and the set of inputs X is assumed to be uniformly distributed.

Given these prerequisites, then Y is a set of internal states that are attained during the
program executions on the inputs, represented as hash values, and Ti is defined as the
execution state at a time i from X×Y . Naturally, for each input x ∈ X there is exactly one
execution state (x, y) in each set Ti, because the execution on x eventually attains state y
at time point i. Let Yi denote the set of all y occurring in tuples of Ti for an arbitrary but
fixed i.

Geoffrey Smith adduces numerous research sources to conclude the consensus of mathe-
matical entities in this consideration as follows [Smi09]:

• initial uncertainty: H(X)

• information leaked: I(X,Yi)

• remaining uncertainty: H(X|Yi)
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4.2 Min-Entropy based mutual information analysis

with random variables X and Yi representing the secret input and the attacker’s observa-
tion as defined above.
Leakages detected by the MicroWalk framework are now quantified as follows [WMES18]:

Ii(X,Yi) =
∑

(x,y)∈Ti

1

|X|
log2

(
|Ti|

|{(x′, y′) ∈ Ti|y = y′}|

)
(4.1)

4.2 Min-Entropy based mutual information analysis

As stated in Section 2.2.2, the widely used Shannon entropy is one part of the Rényi-family
of entropies. Another is the min-entropy, which is characteristical for having the smallest
values on input variables among the Rényi entropies, and thus gives a rather conservative
assessment of the actual unpredictability of a source.
Just as for the MI analysis using the Shannon entropy, let X be a set of uniformly dis-
tributed input values, for which a deterministic calculation is performed. Again, Y repre-
sents the internal states of the program that are hashed and associated to the correspond-
ing x ∈ X by storing tuples (x, y) in sets Ti for an arbitrary but fixed i. Let Yi denote the
set of all y occurring in tuples of Ti.
Then, the leakage using min-entropy is characterised as [Smi09]

H∞(X)−H∞(X|Yi) (4.2)

which is, for deterministic programs and uniformly distributed X :

H∞(X)−H∞(X|Yi) = log2(|Yi|) (4.3)

This considers the relevant entities described above according to Smith [Smi09] as

• initial uncertainty: H∞(X) = log2(|X|)

• information leaked: H∞(X)−H∞(X|Yi) = log2(|Yi|)

• remaining uncertainty: H∞(X|Yi) = log2

(
|X|
|Yi|

)
Thus, only the number of equivalence classes regarding y present in Ti, which is just |Yi|,
do have an impact on the leakage quantification. But this consideration does not pay
regard to the fact of what cardinality these equivalence classes might be. Especially, when
an equivalence class contains exactly one tuple (x′, y′), then x′ can be unambiguously
identified when observing y′, which is not exactly stressed by neither of both MI analyses
using the Shannon entropy or the min-entropy.
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4.3 Analysis of guessing vulnerability

The guessing entropy introduced in Section 2.2.4 does not directly quantify the amount of
information gained by the attacker, but the number of guesses she has to make to find the
secret value X attained out of all possible and uniformly distributed input values.
In the previous sections it was described how the attacker is able to build a set Yi from the
traces containing all occurring y in tuples of Ti. Yi hereby indicates that by every value y
there is a corresponding equivalence class of values of X causing the execution to show a
trace with hash value y.
Before observing the trace, the attacker has the maximum uncertainty on a uniformly dis-
tributed X . However, this uncertainty might be reduced by the knowledge of the corre-
spondencies of Ti and the resulting equivalence classes. This consideration can be adapted
analogously to the other considered entropies as follows, where the guessing difficulty,
expressed by the guessing entropy, replaces the uncertainty suitably:

• initial average guessing difficulty: G(X) =
|X|∑
k=1

k · 1
|X| =

|X|+1
2

• number of guesses spared by additional knowledge: G(X)−G(X|Yi)

• remaining average guessing difficulty:

G(X|Yi) =
∑
y∈Yi

p(y) ·G(X|Yi = y) =
∑
y∈Yi

p(y) ·
|X|∑
k=1

k · Pr[X = xk|Yi = y]

This holds for the average case. For a worst case consideration it is expected that the
attacker needs only one guess if at least one weakest value exists inX which is completely
revealed when observing the (unique) trace tx. So an analogous definition of relevant
entities can take place using the minimum guessing entropy, as introduced in Section 2.2.4
as well, instead of the guessing entropy. Then the following is obtained:

• initial worst case guessing difficulty: Ĝ(X) = G(X)

• number of guesses spared by additional knowledge: Ĝ(X)− Ĝ(X|Yi)

• remaining average guessing difficulty: Ĝ(X|Yi) = min
y∈Yi

G(X|Yi = y)

Since all values of X have an equal probability due to the uniform distribution, the initial
guessing difficulty is not different between worst and average case consideration.

4.4 On the uniformity of the input distribution

When taking any of the various Rényi entropies as a measurement for uncertainty, a uni-
form distribution always maximises the value Hα(X) independently from the other pa-
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rameters. Furthermore, as stated before, this maximum is the very same for every Rényi
entropy [Cac97].
Returning to the concept of an attacker spying on a victim, the aim must be to present a
maximum amount of uncertainty about secret user inputs to the attacker. This can obvi-
ously be reached by maintaining a uniform distribution across all possible user input val-
ues. Assume that the user chooses her secret input value for a program perfectly random
from the set of possible values. This might not exactly depict the reality of passphrases
chosen by average users [Cen19], but it is clearly the worst case assumption from the at-
tacker’s point of view, as she has the least knowledge about the target secret.
In this situation, the attacker has a chance of guessing the secret input correctly of 1

|X| ,
when |X| is the count of possible input values. But according to the attacker model as-
sumed for this consideration, she still can observe an execution trace of the program run-
ning on the user’s secret input value, after observing as many executions on any input
values she chooses.
Then the maximum uncertainty of the user’s secret input might be reduced if the attacker
is able to retrieve additional information from her observation. This is especially the case,
when she observes a distinct part of the input values to cause a deviating timing behaviour
of the binary during run time. To avoid such a inadvertent knowledge gain of the attacker,
the concept of constant time execution, which will be covered in Section 5.1.1, is crucial.
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Having defined the mathematical tool set for leakage quantification in Chapter 4, the dif-
ferent techniques can be evaluated on examples in order to understand individual advan-
tages and drawbacks for each as well as rate the particular significance of the results.

There are a number of leakage constellations, on which the precision and reliability of the
varying approaches might likely differ when giving certain security guarantees for these
inputs.

5.1 Leakage free calculations

The best case to be considered is a program c that does not have exploitable leakages at
all. Assuming an optimal input distribution as described in Section 4.4, then the original
uncertainty of the attacker about the value of X is not lowered in any way by observing
the execution and learning the traces of c on the desired value.

This can be achieved, if the trace tx does not provide additional knowledge about x. Nei-
ther may contents of tx be used to directly compute the value x (e.g. an accessed address
is directly determined by x), nor might tx split X in distinguishable equivalence classes in
dependence of y. Especially the latter is not as easy to achieve, but there are countermea-
sures to prohibit this kind of information leakage. There are different actions that can be
taken in order to mitigate or completely prevent high information from leaking within the
execution [GYCH16], of which especially the first will be further considered in this thesis:

• Constant execution: If for input values xi ∈ X and any xj ∈ X \{xi} and for the cor-
responding traces txi = txj = tx holds, then the attacker gains zero knowledge from
observing tx, because it is equally likely to have been caused by xi as well as any
other input value xj . As a consequence, c has to be invariant for all inputs regarding
the information covered by the traces. This concept, especially when applied to the
timing behaviour of c, is summarised in the term constant time execution [ABB+16].

• Randomisation / injecting noise: As for instance in the approach of fuzzy time
[Hu91], the visible events within the computation that might be observed and
evaluated by an attacker are mixed with noise to make measurements hard and
thereby mitigate information leakage. Other approaches in this category suggest
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adding randomisation to the cache permutation [WL07] or even making internal
time sources inaccurate by fuzzing the counter [MDS12].

• Partitioning time: This approach targets the isolation of different security domains
and virtual machines (VMs) by flushing the cache on context or VM switches and
likewise suggestions for other components involved in the information-flow on the
system.

• Partitioning hardware: By prohibiting certain hardware resources to be shared
among processes or VMs, cross-party information-flow can be mitigated, as most
side-channel attacks rely to a certain amount on different components shared with
their victim.

From these countermeasures, constant code is the only one that can fully be controlled by
the developers of an application with sensitive inputs. The others mentioned mostly rely
on mitigating the attack on the underlying platform like the OS, the hypervisor or even
special hardware components. So the usage of them requires the application to trust the
foreign security measures and the developers can not directly control presence or absence
of these measures.

5.1.1 Constant time code

One method to mitigate the impact of side-channel attacks is presenting an invariant code
execution to the attacker. The information leakage depends on the existence of secret de-
pendent control flow or timing characteristics of a program the attacker is able to observe.

These characteristics include especially the execution time of the calculation as well as
conditional branches and memory accesses. In general, a leakage usually emerges with
multiple of these characteristics at once, as for instance in Example 5.1.1.

A leaking computation

In order to visualise the previously mentioned aspects to regard when constructing con-
stant time computations, the first example to be considered now is a counterexample to
constant time code: A computation that indeed leaks the input through the mentioned
execution characteristics.

It serves as a basis to deduce a leakage free version in Example 5.1.2, which performs the
same calculation but with an input independent control flow.

30



5.1 Leakage free calculations

Example 5.1.1 Consider this function as a part of a program that uses a four digit PIN (per-
sonal identification number) as the secret value x in the denoted computation as follows:

Listing 5.1: Example of a computation that is not constant time.
1 func check_pin(String x in ’0000’..’9999’)

2 String x_correct = 1290

3 Integer success = 0

4

5 foreach i in 0..3 do

6 if(x[i] == x_correct[i]) then

7 success++

8 else

9 break

10 fi

11 od

12 return success

The loop is executed more or less often in dependence of the secret as also visualised in
Figure 5.1. As soon as there is the first mismatch of a digit of the input x and the reference
value x_correct, there is a break from the loop causing it to have less iterations. Thereby
it shows both timing behaviour, because there are more or less loop iterations in total and
a conditional branch within the loop controlling the number of iterations by checking the
current digit. Additionally, the variable success is accessed within one branch, so there
are as well differences in the memory accesses related to the secret.
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Figure 5.1: Plot of the number of loop cycles for each input of Example 5.1.1.
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All these leakage characteristics are observable by the side-channel attacker defined
in Section 2.1 and she can directly derive information about x from her observation.
Whether she observed 1, 2, 3 or 4 loop iterations, she is able to narrow down the set of
inputs matching the observation and, in the worst case, to learn the value of x directly if
x == x_correct. This is due to the direct impact, the secret has on the control flow of
the computation.

Definitions of constant time code

Any code that is written in ways to avoid all these pitfalls of the privacy of the secret is
said to be constant in terms of execution. In most research literature, it is simply referred
to as constant time code, because timing behaviour is one of the most fundamental charac-
teristics of a leakage that comes along with almost any other. In the following parts of the
thesis these terms both refer to a leakage free program with invariant executions, i.e. the
observable traces are indifferent for any input value x ∈ X .
Constant time code, by definition, is reliably resistant to certain types of side-channels,
primarily timing attacks, as the uncertainty of the input data is not lowered just by ob-
serving timing characteristics during the run time, since these are not distinguishable for
any two inputs [Ber05].

Definition 5.1. Almeida et al. give a profound and generalized definition of constant time
security as follows:

A program is secure when:

1. Initially i-equivalent and finally o-equivalent executions are indistin-
guishable.

2. Initially i-equivalent infinite executions are indistinguishable.

Otherwise, P is insecure. [ABB+16]

The so called i-equivalence and o-equivalence express the equality of low inputs and outputs,
which are issued with a public accessibility by design, as a requirement for the program
to be secure. In other words, there may no high inputs determine the execution so that it
becomes distinguishable for an attacker observing it during the runtime, what is exactly
part of the assumptions in the attacker model in Section 2.1.
Although infinite executions and public inputs / outputs are not part of the consideration
in this thesis, they might as well be treatable with analogous approaches, as they share im-
portant similarities in their conceptual foundation regarding constant time requirements
as well as dangers invoked by inconstancies in the execution. Almeida et al. furthermore
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stated that the definition holds completely for programs that are free of public outputs,
as they are by definition always finally o-equivalent [ABB+16]. A similar statement can
trivially be applied to the initial i-equivalence, as non-existent public inputs are the same
for each execution.

However, writing constant time code is challenging [Ber05] as not only the code itself, but
also compiler optimisations [McL] and even microarchitecture instructions [LM99], nam-
ing the floating point operations in x86 processors [AKM+15], can have input depended
effects on the execution time.

Performing leakage analyses on security critical programs might help detecting inadver-
tently leaking parts of the calculation that probably actually should have been constant
time code or were assumed to be. The MicroWalk framework could serve as a white-box
test to developers. Most helpful to this, as motivated at the beginning of this thesis, would
a reliable quantification of the detected leakage and optimally a localization of the leakage
within the control flow of the execution be in addition to the already existing tool set of
the framework.

A similar contribution to test cryptographic applications for leakages with a completely
different analysis approach has been achieved by Reparaz et al., introducing the tool
dudect that performs leakage detection by statistically analysing execution time mea-
surements of the target program [RBV17].

5.1.2 Leakage free computations

Example 5.1.2 Consider the following pseudo-code example of a constant time calculation
and assume it to have been implemented in a way that it runs in constant time:

Listing 5.2: Example without leakage.
1 func check_pin(String x in ’0000’..’9999’)

2 String x_correct = 1290

3 Integer success = 0

4

5 foreach i in 0..3 do

6 success += (x[i] ^ x_correct[i])

7 od

8 return (success == 0)

In this example, similar to the first Example 5.1.1, the user provides a four digit PIN as a
string that is checked against a system internal hard-coded value x_correct that repre-
sents the correct value. The success of the user is calculated in a way that avoids condi-
tional jumps by counting the number of bits different between digits of the input and the
target value (^ denotes the bit-wise XOR).
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From an algorithmic point of view, there are apparent areas of improvements in terms of
efficiency in this code: The program could simply return false as soon as the equality
check (x[i] == x_correct[i]) fails for the first time. Then there would be no neces-
sity of the additional variable success and the correlated return statement. That would
save a little memory and especially time in case that the user entered a wrong PIN.

But those algorithmic improvements would also impair the constant execution time prop-
erty of the program. For the security it is important that an attacker is not able to derive
the position of mismatch or to see differences in the access of the variable success dur-
ing the calculation, because if she could, then she would gain information on the provided
value x, which is what the program shall prevent.

Instead, the programs behaviour is exactly the same for any correct or incorrect x. The
need of evaluating x is covered by an arithmetic evaluation, which has the same compu-
tational characteristics for each input. The attacker, being unable to directly read the value
of x as well as any intermediate or the final value of success just as defined in the at-
tacker model in Section 2.1, can thereby not draw any conclusions about certain properties
of x and gains no information.
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Figure 5.2: Initial uncertainty and guessing difficulty depending on |X| = n for a uni-
formly distributed input.
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Formally, considering the previously in Chapter 4 elaborated quantifications, the follow-
ing observations can be made, which support the aforesaid conclusion drawn from the
attacker model:
The initial uncertainty is H(X) = log2(10

4), as there are four digits with exactly ten pos-
sible values. For the min-entropy in this case the special equality to the Shannon entropy
occurs as described in Section 4.4, as they reach the same amount on uniformly distributed

inputs: H∞(X) = − log2

(
max
x∈X

Pr[x = X]

)
= − log2

1
104

= log2(10
4). The attacker is ex-

pected to succeed on guessing the user PIN within G(X) = 104+1
2 guesses.

As for the traces, the attacker can observe the following program behaviour during the
runtime:

• A for-loop is executed four times in a row.

• Within the loop, one variable as well as the i-th bit of the input and of the correct
value are accessed. Two operations + and ^ are performed.

• The content of one variable is returned.

Therefore, all traces tx look exactly the same for any x for the attacker, as there are no
memory accesses, conditional branches or execution time changes dependent on the spe-
cific PIN.
Concluding, none of the initial uncertainties nor the expected number of guesses required
are lowered by knowing characteristics of tx. The calculated values for the different con-
sidered mathematical quantities are listed in Table 5.1.

Average case consideration using Shannon entropy and guessing entropy

Initial uncertainty H(X) = log2(n) G(X) = n+1
2

Initial number of
guesses

Information leaked I(X,Yi) = log2(1) = 0 G(X)−G(X|Yi) = 0
Number of

guesses spared
Remaining
uncertainty

H(X|Yi) = log2(n) G(X|Yi) = n+1
2 Remaining guesses

Worst case consideration using min-entropy and minimum guessing entropy

Initial uncertainty H∞(X) = log2(n) Ĝ(X) = n+1
2

Initial number of
guesses

Information leaked
H∞(X)−H∞(X|Yi)

= log2(1) = 0
Ĝ(X)− Ĝ(X|Yi) = 0

Number of
guesses spared

Remaining
uncertainty

H∞(X|Yi) = log2

(
n
|Yi|

)
= log2(n) Ĝ(X|Yi) = n+1

2
Remaining guesses

Table 5.1: Summary of the results of leakage quantification in a leakage free example with
|X| = n and a uniform input distribution. Note that |Yi| = 1 in this example as
all x ∈ X cause the very same trace hash y.
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5 Evaluation of leakage quantification measurements

As visualised by the calculated values, the initial uncertainty, as also depicted in Figure
5.2 for different |X| = n, stays the same in this case, no matter if the attacker learns Yi, and
even in a worst case consideration constant time code with a uniformly distributed secret
input delivers the same security guarantees as for the average case.

5.2 Average leakage in calculations

Although there are several recent approaches in research literature to create [Por, MKW18,
ZBPB17] and to verify [RBV17, ABB+16] constant time implementations of cryptographic
methods and protocols, this is still by far not the case for all programs dealing with sensi-
tive user inputs for e.g. cryptographic operations. Thus, this section will look at examples
for code leaking some information through their execution traces, as this is most likely the
case for many applications used, contrary to the extremes of zero leakage and complete
leakage covered in Section 5.1 and 5.3.

Constant leakage per input

First, consider the following example leaking a fix number of bits of the secret input.

Example 5.2.1 Let x ∈ X be a four digit PIN just as in Example 5.1.2.

Listing 5.3: Example leaking one bit.
1 func lookup(String x in ’0000’..’9999’)

2 Integer[] lookup = {0,1}

3 Integer i = lookup[x[0] % 2]

4

5 return i

In this example, an array lookup is performed dependent on the value of the first digit of
x. An attacker can thereby derive knowledge about the value of this digit by analysing
the memory accesses during the program execution.
Intuitively, this means a reduction of the initial uncertainty by 1 bit of x[0] (odd and even
values are distinguishable), which is just the result of the mutual information analysis for
the leakage for both the Shannon entropy and the min-entropy based calculation:

I(X,Yi) = log2

(
104

103 · 5

)
= log2(2) = log2(|Yi|) = H∞(X)−H∞(X|Yi)

This is due to the fact that the input distribution is uniformly (which only affects the mu-
tual information using the Shannon entropy and not the min-entropy) and the resulting
equivalence classes by y ∈ Yi are of the same size. The same holds for the guessing entropy
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and minimum guessing entropy respectively, where in both cases the remaining guesses
required for the attacker are (103·5)+1

2 .

For this example, the difference between the varying quantification approaches are not
apparent, as it partitions the input in same sized equivalence classes by Yi. To work this
out further, consider a slightly modified version of the same example where the inputs are
not evenly partitioned by the observation of the traces.

Leakages causing an uneven partitioning of the inputs

Example 5.2.2 Let x ∈ X again be a four digit PIN.

Listing 5.4: Example leaking with an uneven partitioning by Yi.
1 func cases(String x in ’0000’..’9999’)

2 Integer i

3 if(x < ’4000’) then

4 i = 0

5 else

6 i = 1

7 fi

8 return i

In this example, an if-else statement is executed dependent on the value of x. As in Exam-
ple 5.2.1, the input is partitioned into 2 equivalence classes by Yi, but different to the first
example, they are not even regarding their size. To be precise, the first class contains 4000
values (’0000’ to ’3999’) and the second 6000 values (’4000’ to ’9999’).
In this case, the mutual information calculates as

I(X,Yi) = 4000 · 1

104
log2

(
104

4000

)
+ 6000 · 1

104
log2

(
104

6000

)
≈ 0.9710

< 1 = log2(2) = log2(|Yi|) = H∞(X)−H∞(X|Yi)

The guessing entropy is

G(X|Yi) =
2

5
· 4000 + 1

2
+

3

5
· 6000 + 1

2
=

5200 + 1

2

>
4000 + 1

2
= min

y∈Yi
G(X|Yi = y) = Ĝ(X|Yi)

In this example, there is a noticeable difference between the average case consideration
and the worst case. Assuming the average case, the attacker gains less knowledge about
the secret input and accordingly needs more guesses, to find the correct value. On the
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other hand, assuming x to be a weak value increases the advantage of the attacker, raising
the leaked information and lowering the expected number of guesses.

According to this, the relation of average and worst case quantification in the previous
Example 5.2.1 becomes apparent. For some leaking programs, the mutual information
analysis might give the same results for Shannon entropy and min-entropy under certain
circumstances.
For a uniformly distributed X the following equation holds

I(X,Yi) =
∑

(x,y)∈Ti

1

|X|
log2

(
|Ti|

|{(x′, y′) ∈ Ti|y = y′}|

)

= log2

(
|X|

|{(x′, y′) ∈ Ti|y = y′}|

)

= log2

 |X|
|X|
|Yi|


= log2(|Yi|)

= H∞(X)−H∞(X|Yi)

if and only if for all y ∈ Yi the size of {(x′, y′) ∈ Ti|y = y′} is exactly the same and every
x ∈ X is contained in one tuple (x, y) ∈ Ti.
With a similar calculation the same constraints on the partitioning of X by Yi lead to
an equality of the guesses spared for the attacker using guessing entropy and minimum
guessing entropy:

G(X)−G(X|Yi) =
|X|+ 1

2
−
∑
y∈Yi

p(y)

|X|∑
k=1

k · Pr[X = xk|Yi = y]

=
|X|+ 1

2
−min
y∈Yi

|{(x′,y′)∈Ti|y=y′}|∑
k=1

k · 1

|{(x′, y′) ∈ Ti|y = y′}|

=
|X|+ 1

2
−min
y∈Yi

|X|∑
k=1

k · Pr(X = xk|Yi = y)

=
|X|+ 1

2
−min
y∈Yi

G(X|Yi = y)

In this particular case, every y ∈ Yi is associated with {(x′, y′) ∈ Ti|y = y′} values x ∈ X ,
and all these sets have the same size. Therefore, any y fulfils the minimum and they are
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have the same impact on their respective x

i.e. Pr[X = xk|Yi = y] =

 1
|{(x′,y′)∈Ti}| if y′ = y

0 else

However, generally speaking the average and the worst case consideration do not result
in the same quantities, as they naturally depict different circumstances. A visualisation is
given in Example 5.2.2.

Indirect leakage of input parts

The two previous examples dealt with cases where there was a directly leaking of input
bits. As the attacker from the attacker model is capable to analyse the whole trace, there
are also accumulated leakages that reduce the uncertainty about the secret input by an
indirect leakage.

Consider the following example to highlight code parts that are not being constant in
execution, but do not leak input bits directly. Instead, the attacker can derive properties
of the secret and thereby narrow down the number of possible value.

Example 5.2.3 Let x ∈ X be a secret user PIN just as in the examples before.

Listing 5.5: Example leaking the input partly calculating an internal sum.
1 func conditional(String x in ’0000’..’9999’)

2 Integer i = 0, a = 1

3 while (i < (x[0] + x[1])) do

4 a = a*i++

5 od

6 return a

In this example, a value a is computed based on the loop counter i. The number of loop
iterations is determined by the sum of the first two digits of x.

Different to previous examples in this section, there are not directly bits from the secret
leaked, but instead a property that the number l of observed loop iterations is exactly
x[0]+x[1] because of the loop condition. This makes the leakage quantification clearly
more complicated, as there are more cases that impact the number and size of equivalence
classes of X determined by the attackers knowledge.

With regard to Figure 5.3 the leakage can be quantified as follows. The probability for
each sum s that can occur for x[0]+x[1] is calculated as p(s) = cs ·10−2 for the respective
number of configurations (x[0], x[1]) with sum s. The size of the respective equivalence
class |{(x, y) ∈ Ti|x[0] + x[1] = s}| is cs · 102.
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Figure 5.3: Number of configurations (x[0], x[1]) for each occurring sum s in Example
5.2.3. There are 102 = 100 configurations of x[0], x[1] in total and 19 different
s covering all 104 possibilities for x ∈ X .

The conditional Shannon entropy is then calculated as

H(X|Yi) = −
∑

x∈X,y∈Yi

p(y) · p(x|y) log2(p(x|y))

= −
∑
s

p(s) log2

(
1

|{(x, y) ∈ Ti|x[0] + x[1] = s}|

)
≈ 9.2572

where s denotes the sum of x[0] and x[1]. Accordingly the occurring leakage given by
the mutual information of X and Yi quantifies as

I(X,Yi) =
∑

(x,y)∈Ti

1

|X|
log2

(
|Ti|

|{(x′, y′) ∈ Ti|y = y′}|

)

=
∑
s

cs
104
· log2

(
104

|{(x, y) ∈ Ti|x[0] + x[1] = s}|

)
≈ 4.0306

bit, which is more than one quarter of the initial uncertainty H(X) = log2(10
4) ≈ 13.2877.
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In comparison, the min-entropy quantifies the remaining uncertainty as

H∞(X|Yi) = log2

(
|X|
|Y |

)
= log2

(
104

19

)
≈ 9.0398

and the according leakage as

H∞(X)−H∞(X|Yi) = log2(|Yi|) = 4.2479

which is slightly more than the equivalent average case consideration using the Shannon
entropy. But still, the value of the min-entropy indicates a higher leakage looking at the
vulnerable input values.
In this example the attacker requires

G(X|Yi) =
∑
y∈Yi

p(y) ·
|X|∑
k=1

k · Pr[X = xk|Yi = y]

=
∑
s

p(s) ·
|{(x,y)∈Ti|x[0]+x[1]=s}|∑

k=1

k · 1

|{(x, y) ∈ Ti|x[0] + x[1] = s}|
= 192.775

guesses in the average case to guess the value of x correctly. Assuming the worst case
with the smallest set of possible values, then the attacker is expected to need

Ĝ(X|Yi) = min
y∈Yi

|X|∑
k=1

k · Pr[X = xk|Yi = y]

=
102 + 1

2
= 50.5

guesses to learn a “weak” value of x. In this example, especially the guessing entropy
shows crucial differences between the average and the worst case assumption. The mini-
mum guessing entropy turns out to be approximately a quarter of the guessing entropy, as
there are only 102 different inputs in the smallest equivalence class of x ∈ X determined
by the leakage.

The results of the examples given in this chapter are accumulated in table 5.2 for direct
comparability.
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5.3 Worst case leakage in calculations

While the average case might be the mostly expected when examining binaries, there can
also be the case that the program leaks the input or parts of the input completely.

The latter might still give relatively high security guarantees for a huge number of inputs,
except for some inputs that are more vulnerable. However, if these weak inputs are nev-
ertheless available for the choice of the user, they might be chosen by chance or because
of other characteristics like memorability (as also mentioned in Example 2.2.2).

Leakage of some inputs

Example 5.3.1 As a first example the complete leakage of some inputs is exactly the case:

Listing 5.6: Example leaking some inputs completely.
1 func unique(String x in ’0000’..’9999’)

2 Integer i

3 if(x == ’0000’) then

4 i = 0

5 else

6 i = 1

7 fi

8 return i

Like before, x is a secret user input. This function differentiates the value of a variable i
depending on whether x is exactly the special value ’0000’ or not. In this case, all traces
generated by observing the program execution are invariant except for this one weakest
input of all, which causes the trace to be a singleton among the others and as such uniquely
identifiable.

So whenever a user chooses ’0000’ as their value for x, this reveals the full information to
the attacker, on the other hand, the information gained for any other value is particularly
small.

Therefore, the gap between average and worst case quantification means becomes signifi-
cantly greater than for the consideration of average case leakages. The information leaked
quantifies as follows

I(X,Yi) =
∑

(x,y)∈Ti

1

|X|
log2

(
|Ti|

|{(x′, y′) ∈ Ti|y = y′}|

)

=
1

104
log2

(
104

1

)
+

104 − 1

104
log2

(
104

104 − 1

)
≈ 0.0015

< 1 = log2(2) = log2(|Yi|) = H∞(X)−H∞(X|Yi)
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In this example, the quantified leakage using min-entropy exceeds the Shannon entropy
mutual information by more than a six hundredfold, emphasising the leakage to be highly
critical for the most vulnerable high value ’0000’.

In fact, the according gap between average and worst case guessing entropy is even more
striking, as is does not just give a numerical approximation of the magnitude of a leakage,
but directly corresponds to the number of guesses an adversary needs, to find out the
secret value.

The number of guesses required for the attacker knowing Yi is

G(X|Yi) =
∑
y∈Yi

p(y) ·
|X|∑
k=1

k · Pr[X = xk|Yi = y]

=

(
1

104
· 1 + 104 − 1

104
· 10

4

2

)
≈ 4999.5

> 1 = min

{
1,

104 − 1

2

}

= min
y∈Yi

|X|∑
k=1

k · Pr[X = xk|Yi = y] = Ĝ(X|Yi)

While in the average case the guessing entropy is nearly not reduced compared to the
initial guessing entropy of G(X) = 101+1

2 = 5000.5, the minimal guessing shows that,
assuming x = ’0000’, the attacker needs only one guess to have the value of x correct;
the value of x in the worst case is completely determinable from the observed trace.

Leakage of all inputs

The previous Example 5.3.1 shows, how different the security guarantees emerging from
an average case and a worst case consideration can turn out. In contrary, in the case, where
all inputs are similarly leaked by the program, the average and worst case should become
aligned again.

Example 5.3.2 Consider the following program taking again a four digit PIN as it’s input:

Listing 5.7: Example leaking the whole input.
1 func retrieve_input(String x in ’0000’..’9999’)

2 Integer[] lookup = {0,1,2,3,4,5,6,7,8,9}

3 foreach i in 0..3 do

4 lookup[x[i]]

5 od

6 return 0
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5 Evaluation of leakage quantification measurements

For each digit of x there is a specific memory access done that leaks the value of x com-
pletely to an attacker observing the traces.

In this example, the amount of leakage is quantified as

I(X,Yi) = log2

(
104

1

)
= log2(10

4) = H∞(X)−H∞(X|Yi)

because there are 104 traces corresponding to exactly one value of x each.

The attacker is guaranteed to learn the secret PIN correctly within one guess:

G(X|Yi) = 104 · 1

104
· 1 = 1 = min

y∈Yi
G(X|Y = y) = Ĝ(X|Yi)

The relation between the Shannon entropy and the min-entropy mutual information de-
pending on the number of equivalence classes of cardinality 1 is further visualised by
Figure 5.4.
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Figure 5.4: Relation of the Shannon entropy and min-entropy MI for a fixed input set size
|X| = 250 and a variable number of inputs x ∈ X that are completely revealed
when observing the corresponding trace.
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5.4 Comparison

As for the examination of a leakage free computation, Section 5.1 has shown by exam-
ple and for the general case listed in Table 5.1 that there is no difference between worst
case and average case consideration. This is exactly the result expected, because for a uni-
formly distributed input with a total leakage of 0 bit, any input value is from the attacker’s
perspective indifferent from all the other.

For the average case considerations, the Shannon entropy based mutual information per-
forms quite well; the min-entropy MI is very close to Shannon entropy MI in the consid-
ered examples as listed in Table 5.2. In fact, the min-entropy emphasises the impact of the
count of leakage classes emerging from the observation of the program traces on the quan-
tity of leakage, regardless how many input values x are within each of these equivalence
classes.

The behaviour of the guessing entropy compared to the minimum guessing entropy
shows similar characteristics in the average case: The number of guesses spared for the
attacker of guessing entropy and minimum guessing entropy are more alike, the smaller
the differences in size of the leakage classes are. The minimal guessing entropy does not
take into account how many leakage classes are present, but instead emphasises the size
of the smallest.

If the smallest equivalence class turns out to have a size of 1, then the attacker can derive
this x-value from the observation of the trace. This case is covered in the worst case con-
sideration, where the examples show how much more impact the presence of such a small
equivalence class has on the min-entropy MI and the minimal guessing entropy.

The min-entropy MI shows a much higher leakage in this case and the minimal guessing
entropy judges such a program as bad as one that leaks the whole input completely.

5.4.1 Utilisation in the context of MicroWalk

The evaluation of the quantification techniques gives also clues about a possible utilisation
for the analysis of MicroWalk. The aim is still to improve the preciseness and significance
of the analysis results. This can support developers to reasonably rate the severity of a
found leakage and estimate the possible impact on the confidentiality of the input.

First, the result of the quantification highly depends on the input characteristics. Looking
at Example 5.1.2 and 5.3.1, they show in Table 5.2 nearly the same value for the Shannon
entropy MI. However, the min-entropy based MI of the latter is significantly higher, as
there is one input leaked completely. This has nearly zero impact on the average quantifi-
cation, so the Shannon entropy MI remains close to the leakage free computation.
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5 Evaluation of leakage quantification measurements

The benefit of this observation depends on the security requirements of the analysed bi-
nary: There might be use cases, where just one weak high value might be crucial. This
is for instance the case, when an attacker attacks multiple targets and just needs to com-
promise one of them. Then the likelihood that one of the targets chooses the weak secret
is increased with the overall number of targets and so is the success probability of the
attacker. On the other hand, there might be applications where a small number of weak
input values are not that critical, so the severity of the leakage complies with the average
quantification again.
The second observation is that for leakages that evenly affect all input values the Shannon
entropy MI and the min-entropy based MI perform equally good as in Example 5.2.1.
Therefore, if the analysis stage of MicroWalk conducts both analyses and they turn out to
be equal or close to equal, this induces the conclusion that there is a static leakage within
the application that is the same for any high value. To be able to distinguish leakage types
by comparing the analysis results, might be valuable for finding the root of the leakage.
Comparing the values I(X,Yi) and H∞(X)−H∞(X|Yi) that both quantify the leakage, a
developer in charge of remedying the application can distinguish between leakages that
occur for all / most high values (Example 5.2.1) or for rather few (Example 5.3.1) by eval-
uating the difference of the leakage results.
However, in the case that the applications leaks a small number high inputs completely
even the min-entropy approach does not emphasise this circumstance. This is due to
the fact that the min-entropy leakage solely depends on the total number of equivalence
classes the attacker can create using the traces. The size of the equivalence classes is
not taken into account, as visualised by Example 5.2.2 and 5.3.1 which both have a min-
entropy leakage quantification of 1 bit.
Therefore to be also able to determine, if there are values, the attacker can learn completely
observing the corresponding trace, the minimum guessing entropy must be considered as
well. But even apart from this strong worst case scenario, the guessing entropy can pro-
vide useful information on the knowledge of the adversary after exploiting the leakage.
The quantification, how many request the attacker is expected to put, might help deter-
mining mitigations such as limiting the number of failed attempts to insert the correct
secret application-sided.
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Ĝ
(X
|Y
i)

50
0
0
.5

25
00
.5

20
00
.5

50
.5

1
1

N
um

be
r

of
le

ak
ag

e
cl

as
se

s
1

2
2

19
2

1
0,
0
00

Si
ze

of
le

ak
ag

e
cl

as
se

s
1
0,
00

0
50

00
V

ar
yi

ng
40

00
/
60

00
V

ar
yi

ng
10

0
to

1
00

0
V

ar
yi

ng
1

/
9
99

9
1

Fo
cu

s
be

st
ca

se
:

le
ak

ag
e

fr
ee

av
er

ag
e

ca
se

:
sa

m
e

si
ze

le
ak

ag
e

cl
as

se
s

av
er

ag
e

ca
se

:
di

ff
er

en
ts

iz
e

le
ak

ag
e

cl
as

se
s

av
er

ag
e

ca
se

:
di

ff
er

en
t

pr
ob

ab
ili

ty
of

le
ak

ag
e

cl
as

se
s

w
or

st
ca

se
:

on
e

in
pu

t
le

ak
ed

w
or

st
ca

se
:

al
li

np
ut

s
le

ak
ed

Ta
bl

e
5.

2:
O

ve
rv

ie
w

of
th

e
re

su
lt

s
fo

r
al

lg
iv

en
ex

am
pl

es
in

Se
ct

io
n

5.
1

to
5.

3
ap

pr
ox

im
at

ed
to

1
0−

4
.

47





6 Implementation

Having the quantification techniques evaluated for different scenarios of occurring leak-
age, the next step is implementing them within the MicroWalk analysis stage and executing
them on binaries.
The stages of the MicroWalk framework are implemented in C#, the PinTracer and
PinTracerWrapper used for the DBI are external C++ components. The configuration is
provided by a .yaml file that defines the execution parameters of the framework in
several configuration blocks7:

Dictionary Contents
general Logging configuration
testcase Testcase generation parameters
trace Pin and image configuration
preprocess Preprocessing options
analysis Analysis stage configuration

Table 6.1: Top-level configuration blocks for MicroWalk in the config.yaml.

Each of the configuration blocks listed in Table 6.1 except for general, which only con-
tains the logger, has the following subordinate elements: module, module-options and
options. Most of the stages contain exactly one of each. The analysis stage, different
to the other stages, allows the user to store a list of multiple modules within the block
modules, each with own module-options. This structure is depicted in Figure 6.1 for
two different analysis-modules exemplarily.

analysis modules module:<first>

module-options

module:<second>

module-options

options

Figure 6.1: Visualisation of the configuration structure of the analysis stage.

7Further information on the YAML syntax can be found the YAML specification https://yaml.org/
spec/1.2/spec.html [Accessed: 26-May-2020]
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6 Implementation

Listing 6.1: Configuration of the analysis stage with additional modules.
1 analysis:
2 modules:
3 - module: dump
4 module-options:
5 output-directory: <Path>\traces
6 include-prefix: true
7 map-files:
8 - /tmp/a.map
9 - /tmp/b.map

10 - module: memory-access-mi
11 module-options:
12 output-directory: <Path>\results
13 - module: memory-access-minentropy-mi
14 module-options:
15 output-directory: <Path>\results
16 - module: memory-access-guessingentropy
17 module-options:
18 output-directory: <Path>\results
19 - module: memory-access-minguessingentropy
20 module-options:
21 output-directory: <Path>\results
22

23 options:
24 keep-traces: true
25 max-parallel-threads: 2

6.1 Configuration

The described configuration has to be customised for the implementation of new analysis
modules. First, any paths used in the configuration need to be adjusted for the execution
environment. The installation path of Intel Pin and of the builds of the MicroWalk PinTracer
and PinTracerWrapper have to be provided accordingly to the locations of the respective ex-
ecutables. The output directories for the logs, testcases, traces and analysis results require
customisation as well.

The next step is to register the new analysis modules in the modules list of the analysis
stage as depicted in Figure 6.1. Analogous to the existing memory-access-mi mod-
ule, each of the new modules has subordinate module-options specifying the
output-directory.

The emerging configuration of the analysis stage for the three additional modules looks
as shown in the Listing 6.1.

6.2 Module implementation

Additional modules are implemented in the same way as the existing MemoryAccessMi.cs.
The class Analysis.cs provides a generalised abstract base class.
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6.2 Module implementation

Each analysis module has a reference that serves as a handle for the configuration file,
consisting of the name and a description.

Listing 6.2: The framework module declaration.
1 [FrameworkModule("<Name>", "<Description>")]

The input consists of a map of test case IDs and maps of instructions and observed hashes.
So the mapping is twofold: For each test case k there is a map of instructions ij that were
encountered during the execution of the instrumented application for k. For each ij in
the map, the corresponding tij is stored along with it. Then tij is the hash of the trace
observed for instruction ij during the execution of the application on test case k.

This input is then reshaped to fit an instruction level analysis. For each occurring in-
struction a list is generated that stores the instructionData for this instruction. Each
entry of this complex data type consists of a count of test cases, in which the instruction
occurred, and a dictionary HashCounts storing any encountered trace hash for this in-
struction along with the number, for how many test cases this trace was observed.

6.2.1 Implementation of the min-entropy leakage

Recall that the min-entropy leakage for uniformly distributed inputs, which is the case for
the random generated test cases of MicroWalk, is calculated as

H∞ −H∞(X|Yi) = log2(|Yi|)

The value |Yi| is provided as the number of hash values in the HashCounts-dictionary.
Then the leakage can be computed as follows in a newly implemented analysis module:

Listing 6.3: Implementation of the min-entropy MI analysis.
1 // Calculate min-entropy mutual information of each instruction

2 foreach (var instruction in instructions)

3 {

4 // Since the keys are uniquely generated, we have a uniform distribution

5 // Calculate min-entropy mutual information

6 double minEntropyMutualInformation =

7 Math.Log(instruction.Value.HashCounts.Count,2);

8 }

This value is then stored in a map of instructions for the currently evaluated instruction.
The result of the analysis is printed to a human readable text file.
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6 Implementation

6.2.2 Implementation of the guessing entropy

For the Shannon entropy and the min-entropy approaches, the value of concern to be cal-
culated for each instruction is clearly the amount of leakage occurring for the instruction.
The result is very comprehensible and can easily be used for the analysis of the leakage.

However, for the guessing entropy approach, the amount of remaining guesses, after the
attacker successfully observed and exploited a present leakage, is more valuable than con-
sidering the number of guesses the attacker can skip by exploiting the leakage. The num-
ber of remaining guesses is quantified by

G(X|Yi) =
∑
y∈Yi

p(y) ·
|X|∑
k=1

k · Pr[X = xk|Yi = y]

This value can be computed using the respective hash counts in the HashCounts-
dictionary and the number of test case. In the original guessing entropy formula the
probabilities Pr[X = xk|Y = y] had to be ordered nonincreasingly beforehand, as this is
a requirement for the guessing entropy formula.

In this case, since the input values are uniformly distributed, there are only two possible
probabilities Pr[X = xk|Yi = y]:

Pr[X = xk|Yi = y] =

 1
|{(x′,y′)∈Ti}| if y′ = y

0 else

Traces that never occurred for an instruction are not stored, therefore it is sufficient to
only consider the nonzero probabilities, which are also all equal for the test cases. Then,
the formula can be simplified as follows in Listing 6.4.

Listing 6.4: Implementation of the conditional guessing entropy analysis.
1 // Calculate the conditional guessing entropy of each instruction

2 foreach (var instruction in instructions)

3 {

4 double conditionalGuessingEntropy = 0.0;

5 // Since the keys are uniquely generated, we have a uniform distribution

6 foreach (var hash in instruction.Value.HashCounts)

7 {

8 double pY = (double)hash.Value / instruction.Value.TestcaseCount;

9 conditionalGuessingEntropy += pY * (hash.Value + 1.0) / 2;

10 }

11 }

Again, the computed value conditionalGuessingEntropy is stored in a map with
the instruction it has been computed for and printed line-wise to a text file.
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6.3 Testing the implementation

6.2.3 Implementation of the minimum guessing entropy

The implementation of the minimum guessing entropy is very similar to the guessing
entropy implementation, as the required calculation is

Ĝ(X|Yi) = min
y∈Yi

|X|∑
k=1

k · Pr[X = xk|Y = y]

The implementation computes the conditionalGuessingEntropy, which represents
G(X|Yi = y), for each hash value and keeps the minimum in the end.

Listing 6.5: Implementation of the conditional minimum guessing entropy analysis.
1 // Calculate the conditional guessing entropy of each instruction

2 foreach (var instruction in instructions)

3 {

4 double minimumConditionalGuessingEntropy = double.MaxValue;

5 double conditionalGuessingEntropy = 0.0;

6 // Since the keys are uniquely generated, we have a uniform distribution

7 foreach (var hash in instruction.Value.HashCounts)

8 {

9 conditionalGuessingEntropy = (hash.Value + 1.0)/2;

10 if (conditionalGuessingEntropy < minimumConditionalGuessingEntropy)

11 {

12 minimumConditionalGuessingEntropy = conditionalGuessingEntropy;

13 }

14 }

15 }

The results are stored for each instruction and printed to a text file.

6.3 Testing the implementation

To assure the functionality of the newly implemented task, there were several tests exe-
cuted using at first an own .dll that was purposefully implemented to show a certain
leakage. The sample takes 1 byte as the input value. To reach a full coverage of input sam-
ples, the test case generation has been modified for these examples to not use a random
function, but instead provide each possible input value exactly once. As a result, 256 test
cases were run on each example.

6.3.1 A leakage free sample library

Example 6.3.1 At first, just as in Section 5, the .dll implements a leakage free calculation,
avoiding input dependencies completely. The function called is the pin_checker for the
aforementioned input of one byte.
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Listing 6.6: Test code of a leakage free computation.
1 volatile int a[255];

2 int pin_checker(uint8_t pin) {

3 return a[0];

4 }

Since there are no input dependent operations and instead a constant memory access, the
function is not supposed to leak at all. The results exactly matches this expectation:

Memory Access Mutual Information
Instruction 0x0116B7: a[0] 0.000 bits
Other Instructions 0.000 bits
Min-Entropy Memory Access Mutual Information
Instruction 0x0116B7: a[0] 0.000 bits
Other Instructions 0.000 bits
Guessing Entropy
Instruction 0x0116B7: a[0] 128.500 guesses
Other Instructions 128.500 guesses
Minimum Guessing Entropy
Instruction 0x0116B7: a[0] 128.500 guesses
Other Instructions 128.500 guesses

Table 6.2: Summary of the results for the leakage free test.

The results of the tests are summarised in Table 6.2. Both mutual information techniques
show no signs of leakage and the guessing entropies stay at their highest possible value
(for test case size 256).

6.3.2 Average leakage sample libraries

In Chapter 5 there were two primary cases of average leakage considered. First, a small
leakage affecting all input values, and second, a leakage affecting a small number of input
values. In this order, suitable examples are also evaluated for the implementation.

Example 6.3.2 In the first example, there is a calculation dependent on the PIN being either
even or odd. The expected leakage is 1 bit for both the Shannon entropy MI analysis and
the min-entropy MI, as there are exactly 2 equivalence classes of PINs distinguishable by
their traces and each PIN leaks 1 bit within the leaking instruction. There should just be
one leaking instruction, as there is only one leakage dependent operation. The guessing
entropy is expected to be approximately half of the leakage free guessing entropy.
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6.3 Testing the implementation

Listing 6.7: Test code of a calculation leaking one bit for each input.
1 volatile int a[255];

2 int pin_checker(uint8_t pin) {

3 return a[pin % 2];

4 }

The results are listed in Table 6.3. As assumed, both MI analyses return the same quantities
of leakage, which is 1 bit for the leaking memory access instruction, and 0 for the others.

Memory Access Mutual Information
Instruction 0x0116DD: a[pin%2] 1.000 bits
Other Instructions 0.000 bits
Min-Entropy Memory Access Mutual Information
Instruction 0x0116DD: a[pin%2] 1.000 bits
Other Instructions 0.000 bits
Guessing Entropy
Instruction 0x0116DD: a[pin%2] 64.500 guesses
Other Instructions 128.500 guesses
Minimum Guessing Entropy
Instruction 0x0116DD: a[pin%2] 64.500 guesses
Other Instructions 128.500 guesses

Table 6.3: Summary of the results for the test for an average leakage among all input val-
ues.

Example 6.3.3 The second average leakage test case, where a leakage only applies to some
of the test cases, uses a variable i to make the access dependent from small inputs. In this
case, there are actually two input dependent instructions, the access itself and the condi-
tional branch to set i in case the current PIN is, regarding its numerical value, smaller
than 10.

Listing 6.8: Test code for a computation leaking only on few inputs.
1 volatile int a[255];

2 int pin_checker(uint8_t pin) {

3 int i = 0;

4 if (pin < 10) {

5 i = 200;

6 return a[i];

7 }

Of 28 = 256 input values in total, there are 9 with a numerical value smaller than 10. So
the assumed leakage should be 1 for the min-entropy, as |Yi| = 2, splitting the input into
the very small and the larger values.
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Hence, the expected value for the Shannon entropy MI should be approximately

Ii(X|Yi) =
246

256
log2

(
256

246

)
+

10

256
log2

(
256

10

)
≈ 0.2379

bit.

The results as returned by the MicroWalk analysis is listed in Table 6.4

Memory Access Mutual Information
Instruction 0x0116EA: a[i] 0.238 bits
Instruction 0x0116D8: i = 200 0.000 bits
Other Instructions 0.000 bits
Min-Entropy Memory Access Mutual Information
Instruction 0x0116EA: a[i] 1.000 bits
Instruction 0x0116D8: i = 200 0.000 bits
Other Instructions 0.000 bits
Guessing Entropy
Instruction 0x0116D8: i = 200 5.500 guesses
Instruction 0x0116EA: a[i] 118.891 guesses
Other Instructions 128.500 guesses
Minimum Guessing Entropy
Instruction 0x0116D8: i = 200 5.500 guesses
Instruction 0x0116EA: a[i] 5.500 guesses
Other Instructions 128.500 guesses

Table 6.4: Summary of the results for the test for an average leakage among few input
values.

This example shows, besides the expected outcome for the leaking memory access, an-
other interesting circumstance: There is a second leaking instruction 0x0116D8 that does
not appear in the mutual information analyses, but as the lowest guessing entropy result
indicating a comparable high vulnerability.

When stepping through the instructions with a debugger, the reason for this behaviour
of the analyses becomes clear: The instruction that has a leaking memory access is the
assignment within the conditional block. The structure can also be seen in Figure 6.2.

When this instruction is executed, the set of possible input values the secret shrinks to the
set of test cases that pass the < 10 constraint. These are much less than the test case count
as a whole, because there are 10 out of 256 matching the constraint. Therefore, the number
of guesses required to learn the correct input value is much lower that for guessing the
value without observing the telltale instruction execution.
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cmp eax, 0Ah
jge short loc_1800116BF

mov [rp+0F0h+var_EC], 0C8h

loc_1800116BF

Figure 6.2: The assignment i = 200; within the conditional branch dependent on the
input.

On the other hand, the mutual information analysis does not detect this leakage source
at all. The instruction is listed with a value of 0.000 for both the Shannon based and the
min-entropy based MI analysis. This is due to the fact that both quantification techniques
result in log2 1 = 0 for this input. There is no further distinguishability or splitting of
equivalence classes among the few values that passed the constraint. Both quantification
techniques are not aware of a decrease of the test case count for single instructions.

This is remarkable, because the newly implemented analysis modules using the guessing
entropy are able to detect leakages within the single instruction analysis that can not be
discovered using the MI analysis only. The guessing entropy adds a viewing angle to the
analysis, considering the vulnerability of small sized subsets of the input that are caused
by a conditional control flow.

6.3.3 Worst case leakage sample library

Example 6.3.4 The worst case scenario for this consideration is clearly one leaking the in-
put completely. That might happen if there is a memory access that solely depends on the
full input.

Listing 6.9: Complete input leakage
1 volatile int a[255];

2 int pin_checker(uint8_t pin) {

3 return a[pin];

4 }

All quantification techniques are expected to judge this example as gravely leaking code.

In this example as shown in Table 6.5 the leakage is indeed 8 bits as expected, since the
test cases cover every possible input value. The input is quantified as completely leaked
by both MI analyses.
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Memory Access Mutual Information
Instruction 0x0116D3: a[pin] 8.000 bits
Other Instructions 0.000 bits
Min-Entropy Memory Access Mutual Information
Instruction 0x0116D3: a[pin] 8.000 bits
Other Instructions 0.000 bits
Guessing Entropy
Instruction 0x0116D3: a[pin] 2.900 guesses
Other Instructions 128.500 guesses
Minimum Guessing Entropy
Instruction 0x0116D3: a[pin] 1.000 guesses
Other Instructions 128.500 guesses

Table 6.5: Summary of the results for the test for a worst case leakage of all inputs.

Furthermore, the guessing entropy shows that there is a seriously high chance that an at-
tacker can guess the PIN within one, respectively two tries. This is a severe result in terms
of the confidentiality of the secret inputs which are completely revealed to an attacker who
is able to successfully observe the traces.

6.3.4 Test on Microsoft CNG

The Microsoft Cryptography API: Next Generation (CNG) is the default cryptography plat-
form used within the Microsoft Windows OS since Windows Vista. The API is provided
by the system library bcrypt.dll, while the actual implementation is located in the
bcryptprimitives.dll. The CNG comprises multiple cryptographic algorithms from
different algorithmic classes. It provides primitives for random number generation, hash-
ing (e.g. SHA2), signing (e.g. DSA), secret agreements (e.g. Diffie-Hellman) as well as
asymmetric (e.g. RSA) and symmetric encryption (e.g. AES) [Mic18].

MicroWalk has been applied to CNG and uncovered leakages within the ECDSA and DSA
as well as AES. For AES there was a 7.96 MI score quantifying the leakage of a subroutine
in the T-table implementation variant. The original analysis has taken place for bcrypt-
primitives.dll v10.0.17134.1 [WMES18].

For this new test, the MicroWalk PinTracerWrapper.cpp8 can be used to again address
the T-table based fallback AES implementation of CNG.

The results in Table 6.6 show a large number of instructions, that have a noticeable high
leakage quantity. However, the used 5000 random inputs are still a small part of the actual

8As it was added to the repository with commit #e225b5b: https://github.com/UzL-ITS/
Microwalk/blob/master/PinTracerWrapper/PinTracerWrapper.cpp [Accessed 28. May 2020]
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6.3 Testing the implementation

Memory Access Mutual Information
Instruction 0x03F6D0: SymCryptAesExpandKeyInternal+24050
and 15 others

12.288 bits

Instruction 0x03F3C1: SymCryptAesExpandKeyInternal+23D41 12.226 bits
Instruction 0x03F47D: SymCryptAesExpandKeyInternal+23DFD
and two others

12.219 bits

Min-Entropy Memory Access Mutual Information
Instruction 0x03F6D0: SymCryptAesExpandKeyInternal+24050
and 15 others

12.288 bits

Instruction 0x03F3C1: SymCryptAesExpandKeyInternal+23D41 12.243 bits
Instruction 0x03F47D: SymCryptAesExpandKeyInternal+23DFD
and two others

12.238 bits

Guessing Entropy
Instruction 0x03F6D0: SymCryptAesExpandKeyInternal+24050
and 15 others

1.000 guesses

Instruction 0x03F3C1: SymCryptAesExpandKeyInternal+23D41 1.031 guesses
Instruction 0x0347D: SymCryptAesExpandKeyInternal+23DFD
and three others

1.035 guesses

Minimum Guessing Entropy
Instruction 0x03F6D0: SymCryptAesExpandKeyInternal+24050
and 35 others

1.000 guesses

Instruction 0x0262D6: SymCryptAesEncryptAsmInternal+346 2.000 guesses

Table 6.6: Summary of the results for the test for bcryptprimitives.dll v10.0.18362.836. Some
instructions with the found leakage results are listed with their symbolic func-
tion name and offset..

set of valid inputs. For these 5000 inputs, as H(X) = log2(5000) ≈ 12.288, the values can
be considered completely leaked by different instructions.

The guessing entropy for several leaking instructions is exactly or close to 1, so an attacker
requires just a single guess to learn the secret input. This matches the aforementioned
observation during the MI analysis that the input values can be considered completely
leaked. Even more striking is the result of the minimum guessing entropy, detecting that
for a weak input there are multiple instructions leaking all information to the attacker so
that she can guess the input correctly within one or respectively two tries.

Concluding, this is the behaviour of a worst case leaking computation as in Example 6.3.4,
thus this time not for a specifically designed demonstration example but for the fallback
AES encryption of the cryptography platform supplied with every Microsoft Windows
system. However, due to the algorithmic characteristics of the T-table implementation of
AES, the found leakage was expected [WMES18].

This conclusion also justifies the differences between the quantification techniques to be

59



6 Implementation

rather small for the highly leaking instructions, since the average and the worst case con-
sideration converge for high leakages on all inputs (Example 5.3.2). Still, the guessing
entropy of 1 emphasises the full leakage more than the MI result does, as the leakage in
bit is returned without a direct comparison to the initial uncertainty for the considered
number of inputs.
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7 Conclusion

7.1 Summary of the work

In order to enhance the quantification of binary leakages detected by the DBI based frame-
work MicroWalk, this thesis has taken account to different quantification approaches from
research literature. Namely the min-entropy, the guessing entropy and the minimum
guessing entropy have been adapted to the given use case of binaries, that might leak
high information to a side-channel attacker observing the binary during runtime.

Three approaches of quantification have been discussed for several example cases of leak-
age, including computations that are leakage free, that have a small amount of leakage
throughout the whole input, and the worst case of computations that leak few or all input
values completely.

Especially for the worst case assumption, the min-entropy and minimum guessing en-
tropy have both proven to emphasise the leakage due to the fact, that there are weak in-
puts revealed via the attacker’s side-channel. However, the min-entropy leakage is solely
dependent on the number of equivalence classes, the input is split to by the observed
traces. It does not further increase for the circumstance, that there might be very small
equivalence classes with just few values in them.

This has especially been underlined for the example that the number of different traces Yi
is exactly 2. For the min-entropy, the result is the same if both hashes occurred equally
often as it is, if one of the hashes is unique for a special input. To increase the precision of
the analysis in this problematic case, the minimum guessing entropy has proven its value,
as it depends highly on the size of the smallest equivalence class for uniformly distributed
inputs.

Thus, the guessing entropy and the minimum guessing entropy are able to detect a certain
type of memory access related leakages (see Example 6.3.3) that can not be discovered us-
ing the Shannon entropy or min-entropy MI as implemented in the MicroWalk framework.

7.1.1 Future work

All examples, tests and finally the implementation have been conducted for deterministic
target programs and uniformly distributed inputs only. This is in accordance to the origi-
nal scope of the MicroWalk framework [WMES18]. However, the bare analysis techniques
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7 Conclusion

are not necessarily restricted to this and might as well be evaluated for non-deterministic
programs or non-uniform inputs in the future.
Besides, the usability of the existing analysis could be further improved. The results of
the different quantification approaches could be set into a relation to one another to en-
hance comparability and strengthen the achieved analysis. This might turn out useful,
since considering not only one of the quantification techniques has shown to be a sig-
nificant advance for the analysis results. There will always be use cases for which some
of the considered quantification techniques give a rather coarse idea of how severe the
threat actually is. To mitigate the impact of such edge cases, it would be helpful, to not
regard just one of the quantification techniques but create a bigger picture of the quantity
characteristics of an observed leakage.
Furthermore, what also impacts the evaluability of the analysis results is that
MicroWalk supports no localisation measures of the affected instructions within the
control-flow of the binary up to now. Leakages in low level code segments, at the moment
identified at instruction level, may have their causes in the high level implementation of
a cryptographic algorithm. As well, as an accurate quantification is important for a the
software analyst making use of the MicroWalk framework, also a precise localisation of
leakages is.
Without knowing the actual cause of the leakage, the accurate identification of the present
security flaws and fitting countermeasures is more complicated. Also, there is a vast dif-
ference between treating a problem in the high level algorithm implementation or within
low level functions, both bringing their own risks and challenges when mediating the
leakage. Therefore, it might be helpful, to take the control flow into consideration for the
analysis results of a future version of MicroWalk.
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