UNIVERSITAT ZU LUBECK

Side-Channel Leakage Analysis of Randomized Implementations

Seitenkanalanalyse von randomisierten Programmen

Bachelorarbeit

verfasstam
Institut fiir IT Sicherheit

im Rahmen des Studiengangs
Informatik
der Universitat zu Liibeck

vorgelegt von
Kjell Dankert

ausgegeben und betreut von
Prof. Dr.-Ing. Thomas Eisenbarth

mit Unterstitzung von
Jan Wichelmann

Libeck, den19.Juli 2024

IM FOCUS DAS LEBEN

Eidesstattliche Erklarung

Ich erklive hiermit an Eides statt, dass ich diese Arbeit selbstindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Kjell Dankert

Zusammenfassung

Seitenkanalangriffe auf kryptografische Bibliotheken in der Vergangenheit
haben die Notwendigkeit einer automatisierten Analyse aufgezeigt, da diese
Schwachstellen von Entwicklern nur schwer erkannt werden. Dies ist insbeson-
dere bei Implementierungen der Fall, welche Randomisierung wie Blinding
einsetzten. Bisherige Forschungsergebnisse haben gezeigt, dass dynamische
Seitenkanalanalysen mithilfe statistischer Tests diese Schwachstellen in ran-
domisierten Implementierungen effektiv finden kdnnen. Die meisten Tools
bendtigen dafiir immer noch einen manuellen Arbeitsanteil, sodass Personen
ohne Vorkenntnisse iiber Seitenkanile diese Analyse nicht durchfithren kon-
nen. In dieser Arbeit stellen wir einen Algorithmus vor, welcher den Vergleich
von mehreren Programmabldufen in Seitenkanalanalysen mithilfe der Kon-
struktion eines azyklisch gerichteten Graphen ermdglicht. Der vorgeschlagene
Algorithmus verbessert die Fihigkeit, Schwachstellen zu finden, welche an-
sonsten durch andere Schwachstellen itberdeckt werden witrden. Wir zeigen,
dass Microwalk mithilfe dieses Ansatzes in der Lage ist, weitere potenzielle
Schwachstellen in kryptografischen Bibliotheken zu erkennen. Dariiber hinaus
implementieren und evaluieren wir einen Ansatz, kritische Instruktionen in
randomisierten Implementierungen zu finden. Hierfiir vergleichen wir die
Verteilungen von Schwachstellen, die bei zufilligen und festen geheimen Ein-
gaben beobachtet werden, mithilfe von statistischen Tests, ohne dass Analysten
oder Entwickler manuell in diesen Prozess eingreifen miissen. Dabei zeigen
wir, dass die Anwendung dieses Ansatzes innerhalb von Microwalk hilft, feh-
lerhafte Blinding-Implementierungen zu identifizieren. Wir demonstrieren
jedoch auch, dass diese Technik nicht in der Lage ist, falsche Verwendungen
von Blinding-Implementierungen in einigen Beispielen zu erkennen, da keine

zusammengesetzten Schwachstellen detektiert werden konnen.

Abstract

Side-channel vulnerabilities within cryptographic libraries have proven the ne-
cessity of automatic side-channel analysis tools since side-channel leakages are
challenging to identify, particularly in implementations that involve random-
ization. Previous research has indicated that statistical tests within dynamic
side-channel analysis tools effectively assist the detection of side-channel leak-
ages. However, most tools still require manual intervention from developers,
which prohibits their practical usage without prior knowledge. We propose a
trace alignment algorithm for differential side-channel analysis tools to align
multiple execution traces within acyclic directed word graphs. This algorithm
enhances the ability of differential side-channel analysis tools to find leakages
covered by control flow leakages. With this approach, we demonstrate that
Microwalk can detect additional potential side-channel vulnerabilities within
common cryptographic libraries. Additionally, we implement and evaluate
the approach to finding randomized leakages at the instruction level by statis-
tically comparing distributions of leakages observed from random and fixed
secret inputs, without requiring manual interventions of analysts or developers.
We show that the application of statistical tests in the analysis of randomized
implementations within Microwalk can help to identify incorrect blinding im-
plementations. However, we also demonstrate that this technique might not
detect some incorrect usages of blinding since it cannot detect composite leak-

ages.

Danksagung

An dieser Stelle mochte ich die Gelegenheit nutzen, mich bei den Personen
zu bedanken, welche diese Arbeit méglich gemacht haben. Zunachst gebiihrt
dieser Dank dem ITS und insbesondere Professor Eisenbarth, welcher mich
im vergangenen Jahr auf das Thema aufmerksam gemacht hat und mir die
Moglichkeit anbot, durch das Bachelor-Projekt und der Bachelorarbeit einen
Einblick in die Forschung zum Thema Seitenkanile zu bekommen. Des Weit-
eren gilt mein Dank auch dir, Jan. Unsere wochentlichen Besprechungen
haben mir stets weitergeholfen und mich motiviert bis zur nichsten Woche
neue Ergebnisse prasentieren zu konnen. Ich mochte auch meiner Familie
danken, welche mich in dieser nicht ganz stressfreien Zeit immer unterstiitzt
hat. Mein Dank gilt euch auch fiir das mehrfache Korrekturlesen dieser Ar-
beit. Frank, dir bleibt dies zumindest fiir die nichsten paar Jahre ersparrt,
auch wenn es dich mit anderen Themen schlimmer hitte treffen konnen.
Auch bei dir, Malin, mochte ich mich fiir die stundenlangen Telefonate be-
danken, um iiber die englische Kommasetzung zu diskutieren, nur um erneut
festzustellen, dass ein Komma an dieser Stelle mal wieder weggelassen wer-

den kann. Ohne euch wire diese Arbeit nicht moglich gewesen.

Contents

1.1
1.2

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

Introduction
Contributions of this thesis

Structure

Background and related work
Caches

Microarchitectural side-channel attacks
Side-channel prevention

Dynamic side-channel leakage analysis
Microwalk

Alignment of multiple execution traces
Call tree construction

Problem

Idea

Implementation
Verification

Evaluation

Statistical leakage test
Idea

Leakage test

Evaluation

Conclusion

Bibliography

—Vii—

10
12
14

16

16
18
19
20
24
26

28
28

29
33

38

40

—viii—

Introduction

Microarchitectural side-channel attacks have proven critical in real-world applications,
enabling malicious users to extract information from cryptographic processes in shared
processing environments (Irazoqui et al., 2014; Inci et al., 2016). As enterprises and indi-
viduals shift towards cloud computing, hardening cryptographic programs and libraries
against side-channel attacks proves significant.

However, various attacks against common cryptographic libraries that already try to
prevent side-channel attacks have demonstrated the necessity of finding side-channel
leakages in applications and libraries efficiently and reliably (Aranha et al., 2020; Sieck
et al., 2021; Weiser et al., 2020). In recent years, researchers have developed plenty of
side-channel analysis tools that follow different approaches to support developers and
analysts in finding side-channel leakages.

Differential side-channel analysis represents one of these approaches and relies on
comparing execution traces collected by observing library invocations and executions. In
deterministic settings, each difference in the execution trace indicates secret-dependent
leakages that an attacker might be able to exploit. However, the naive comparison of the
execution traces only finds leakages until different conditional branches are executed
since the following entries within the traces no longer match. Therefore, it is necessary
to realign execution traces beyond the scope of the conditional branches to reduce the
number of false negatives in the analysis. Since the alignment of multiple execution traces
is not trivial, most trace-based side-channel analysis tools compare all possible pairs of
traces (Xiao et al., 2017; Weiser et al., 2018).

Microwalk, a differential side-channel analysis framework developed by the University
of Libeck, compares multiple execution traces simultaneously (Wichelmann et al., 2022).

However, it does not realign execution traces beyond the scope of conditional branches.

1 Introduction

Therefore, Microwalk might yield false negative results. This thesis aims to implement
and evaluate an algorithm to realign execution traces within Microwalk to improve its
potential to find leakages in cryptographic libraries.

Another problem in dynamic side-channel analysis is how to analyze randomized
implementations that use techniques like blinding to harden them against side-channel
attacks. Randomness is especially problematic for differential side-channel analysis tools
since they assert that differences within traces indicate secret-dependent side-channel
leakages. This implication is incorrect for randomized implementations, as differences
in execution traces might be unrelated to secret inputs. However, recent research has
indicated that detecting secret-dependent side-channel leakages within randomized
implementations is possible by using statistical tests (Weiser et al., 2018).

We aim to adopt this approach and extend Microwalk’s ability to discover side-channel

leakages within randomized implementations.

1.1 Contributions of this thesis

This thesis proposes an algorithm to realign execution traces within a directed acyclic word
graph using an iterative construction approach to increase the accuracy of differential
side-channel analysis tools to discover leakages. Moreover, it evaluates the implemen-
tation of this algorithm into Microwalk by analyzing real-world cryptographic libraries.
Additionally, the thesis implements a suggested leakage test proposed in DATA (Weiser
et al., 2018) into Microwalk to extend its ability to analyze randomized library imple-
mentations. Furthermore, it evaluates the implementation of the leakage test on sample
applications and presents limitations of finding leakages in randomized implementations

using statistical tests.

1.2 Structure

This thesis commences by providing some background information in Chapter 2. It
includes information about caches, microarchitectural side-channel attacks, dynamic
side-channel analysis approaches and an introduction to Microwalk. Chapter 2 also
presents research related to this thesis and summarizes the current state of the research
in automated dynamic side-channel analysis. The following chapters present the two
functionalities to improve Microwalk’s side-channel analysis. Chapter 3 proposes an

algorithm for aligning multiple execution traces within Microwalk to reduce false negative

1 Introduction

results during the analysis, especially within randomized settings. The chapter also ex-
plains the implementation of the proposed algorithm and evaluates its application within
Microwalk’s analysis. Afterwards, Chapter 4 discusses an idea about finding leakages in
randomized implementations using statistical tests within Microwalk. It also presents
the implementation and evaluation of this idea to assess leakages in randomized imple-
mentations. Chapter 5 concludes the final results and gives an outlook on open questions

and future work.

Background and related work

This chapter discusses basic concepts that include information about caches and microar-
chitectural side-channel attacks. Additionally, it presents different approaches to finding
secret-dependent leakages used in side-channel analysis tools. This chapter concludes

with a basic introduction to Microwalk’s analysis approach and architecture.

2.1 Caches

As processors have gotten faster through the years, accessing the main memory has be-
come a major bottleneck in modern computer architecture (Hennessy and Patterson,
2011). Caches have been developed to allow faster access to parts of the memory recently
requested from the main memory. Faster access times are possible due to the lower mi-
croarchitectural complexity of caches compared to the main memory and the fact that
they are closer to the processor cores. The spatial location of caches also provides another
benefit since transferring data over smaller distances requires less energy.

Caches store memory blocks within cache lines with a fixed length that usually defaults
to 64 bytes. If data from the memory is requested and not yet stored within the cache, the
cache loads the block of data that contains the requested address from the main memory.
It stores the requested data in one of its cache lines for future access. Caches, additionally,
store an identifier called a tag, which uniquely determines the memory block stored within
a cache line. The cache can identify whether a memory block is stored within a cache line

by comparing the requested tag to the stored one.

2 Background and related work

211 Cache placementstrategies

Platform-specific cache placement strategies determine the placement of data within
cache lines (Hennessy and Patterson, 2011). These strategies can be grouped into three
categories.

Direct-mapped caches use the tag of the requested memory block to calculate the
cache line to store data. Given the tag of the requested memory block t, the cache line
size of s, and the number of cache lines », the used cache line is often calculated with
t/s mod n. The direct usage of the tag means that the same requested memory block is
always saved within the same cache line, as each cache line i can only contain blocks with
starting addresses a that satisfy t/s mod n = i.

Fully associative caches use another placement strategy to circumvent the inflexibility
of direct-mapped caches. They try to be more flexible by allowing every cache line to store
every memory block. If data is requested from the cache, the requested tag is compared
to all tags inside the cache and the data is returned if a matching cache line is found. Else,
the data is loaded into the cache from the main memory. Therefore, it is not possible to
calculate which memory blocks will be stored in a single cache line.

However, nowadays, most caches use a layered combination of both approaches called
set-associative caches. These caches consist of a direct-mapped cache that maps memory
block addresses to cache sets instead of cache lines. Each of those cache sets is then fully
associative, allowing them to store every memory block from this set in different cache
lines. It combines the efficient data fetching from direct-mapped caches and the flexibility
of fully associative caches. Due to the direct-mapped association with cache sets, it is
possible to infer possible memory blocks that could be saved within the observed cache

set.

2.1.2 Cache hierarchies

Caches are organized hierarchically to facilitate even quicker memory access (Hennessy
and Patterson, 2011). Cache hierarchies typically consist of three layers with different
access times and capacities. L1 caches are closest to the processor cores and provide quick
access to a small amount of memory. Due to its limited capacity, data is evicted from the
cache if new data is stored and no cache line is available. The memory management unit
inserts the evicted data into a larger L2 cache with slightly larger access times. Typically,
each processor core hasits own L1 and L2 cache. Processor cores usually share an additional
L3 cache. It serves the same purpose for the L2 caches as the L2 caches do for the L1 caches.

Due to its larger capacity and its shared access from multiple processors, it is slower than

2 Background and related work

the L1 and L2 caches. Nevertheless, accessing data from the L3 cache is still faster than
accessing it directly from the main memory. If requested data is not stored within the
caches, it is retrieved from the main memory instead.

Common computer architectures like x86 hide this cache hierarchy from the software
components. Since the computer architecture manages memory automatically, developers
only use a single address space to address memory. This method eases the development of
programs and the efficient usage of memory in multiprocessor environments. However,

it also causes memory accesses to have different execution times.

2.2 Microarchitectural side-channel attacks

In contrast to most other attacks, side-channel attacks try to infer information about
processed data by observing the nonfunctional characteristics of a program (Wichelmann
etal., 2018). There are a lot of different characteristics that could be exploited, such as exe-
cution times and power consumption of computers during computations. However, this
thesis will focus on a subset called microarchitectural side-channels. Attacks on microar-
chitectural side-channels exploit different hardware features present in current computer
architectures to gain information about data of other processes. More specifically, shared
caches and branch prediction units are used to gain information about another running
process on the same system.

The following sections present different microarchitectural side-channels relevant
to the analysis of Microwalk. An attacker could exploit them to infer information about

processed data.

2.2.1 Memory accesses

Side-channel attacks often rely on observing memory access patterns to infer information
about other processes (Wichelmann et al., 2018). As caches have different access times,
an attacker can learn which cache was accessed to retrieve the requested data. Using
cache attacks, such as Flush+Reload (Yarom and Falkner, 2014) or Prime+Probe (Osvik
et al., 2006), an attacker can manipulate cache line entries and infer possible addresses
of accessed memory locations. If these memory accesses are secret-dependent, which
means that accessed memory addresses correlate to the secret, an attacker might be able
to infer secrets from cryptographic processes. Therefore, programs with secret dependent

memory accesses are potentially vulnerable to side-channel attacks. Since an attacker

2 Background and related work

might infer information about secret keys, critical cryptographic implementations should
avoid secret-dependent memory accesses.

Flush+Reload attacks exploit shared memory between processes (Yarom and Falkner,
2014). The victim’s and the attacker’s process must run simultaneously and share some
memory for this attack to work. Memory is shared between processes, for example, if
they use the same shared library. Using a cache flush instruction like cflush for the x86
architecture, an attacker can evict the shared memory of the victin’s process. If the victim
then tries to access a secret-dependent memory address from the shared memory address
range, its memory block is loaded into the cache from the main memory. After that, the
attacker accesses all memory blocks within the shared memory and measures its access
times. The attacker can identify accessed memory blocks since they have lower access
times due to being already stored within the cache. If the accessed memory addresses
depend on a secret value, the attacker might learn something about the secret.

Figure 2.1 shows a simple Flush+Reload (Yarom and Falkner, 2014) implementation
that an attacker could use to gain information about a victim’s secret input parameter. In
this case, lookup.c is a dynamically linked shared library that provides a lookup table for
pre-calculated function values. It is assumed that a single cache line consists of 64 bytes,
so each entry of the aligned lookup table has its own memory block. The attacker begins
by clearing all the shared memory. It then waits for a lookup in the victim’s process. After
that, the access time for each potential lookup is measured and reported to the attacker.
Using this information, the attacker can reconstruct the victin's secret parameter since
memory blocks associated with the key will have faster access times.

Prime+Probe (Osvik et al., 2006) also exploits shared caches to gain information
about memory accesses of another process. However, it does not require shared memory
between the attacker’s and victim’s processes. Instead, Prime+Probe exploits the eviction
behavior of caches by filling it with its own data. It then waits for the victim to access
different memory addresses. If the victim'’s process accesses the memory, it evicts some of
the attacker’s data from the cache. In the next step, the attacker can check the access times
toits data. If some memory accesses are quicker, an attacker can infer address ranges that
correlate with cache lines that the victim’s process accessed. The resolution of memory
address ranges depends on the platform-specific cache placement strategies presented
in Section 2.1.1. Prime+Probe’s accuracy is worse than Flush+Reload’s since it can only
determine all memory blocks correlating to the same cache line. However, its application

is more diverse since it does not require sharing memory with the victim’s process.

AW N =

VO 0 NNV W N

o e e —
o G T R o

Ao R A T U R VO o B)

e T N S S T T S
vV NN 1A WD = O

20
21
22
23

25
26
27
28
29
30
31
32
33

2 Background and related work

#include <stdint.h>

__attribute__((aligned(64)))
uint8_t LOOKUP_TABLE[2561[64] = { ... };

lookup.c

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

extern uint8_t LOOKUP_TABLE[256][64];

int secretFunc(uint8_t input, uint8_t output[64]) {
output = LOOKUP_TABLE[input];
return 0;

int main(int argc, char **argv) {
char* p;
vint8_t input = strtol(argv[1], &p, 10);
printf("%u\n", LOOKUP_TABLE[input]);

victim.c

#include <stdio.h>
#include <stdint.h>
#include <x86intrin.h>

extern vint8_t LOOKUP_TABLE[2561[64]; // 256 % é4 bytes

// Flushes the given memory address from the cache.
static void clflush(void *ptr) {
__builtin_ia32_clflush(ptr);
_mm_1fence();

// Gets the current time stamp counter value from the processor.
static uinté4_t rdtsc() {

_mm_1fence();

return __rdtsc();

int main() {
for(int i = 0; i < 256; ++1) {
c1flush(LOOKUP_TABLE[i]);

... // Waits for the victim to perform a lookup.
for(int 1 = 0; i < 256; ++i) {

vinté4_t timeStart = rdtsc();

uint8_t tmp = LOOKUP_TABLE[i][0];

vinté4_t timeEnd = rdtsc();

uinté4_t time = timeEnd - timeStart;
printf("%d: %ull\n", i, time);

attacker.c
Figure 2.1: Flush+Reload cache timing attack

—8—

2 Background and related work

I y«1
2: whilen>1do
3 if2 | nthen
4: L yex-y
N ETNC D R R 5: nen—1
7 nen/2
(a) Defintion forn > 0 (b) Algorithm

Figure 2.2: Control flow leakage through Square-and-Multiply

2.2.2 Control flow

Another side-channel that an attacker could exploit is observing the control flow of a
program (Wichelmann et al., 2018). As branches within the execution of programs change
the sequence of executed instructions, an attacker can infer which branch has been exe-
cuted. These attacks are possible, as information about a single branch might leak through
execution time differences or other memory accesses. Especially in the case of loops, the
instruction cache, which is typically a small part of the cache hierarchy described in Sec-
tion 2.2.1, might leak information about the number of iterations. If control flow depends
on the secret data, an attacker might infer information about the secret. Consequently,
secret-dependent branches should be avoided in cryptographic libraries.

A typical example of leakage through control flow is exponentiation by squaring, typ-
ically called the Square-and-Multiply algorithm shown in Figure 2.2. Due to its simple
definition shown in Figure 2.2a and its applicability in the Diffie-Hellman Key Exchange
and RSA encryption, naive modular exponentiation implementations might use it. How-
ever, the naive implementation in Figure 2.2b is vulnerable to side-channel attacks. The
third line introduces a branch that depends on the current value of n. Depending on
which branch was executed, an attacker might infer the last bit of n in each iteration and
reconstruct the original value of n. The Diffie-Hellman Key Exchange and RSA encryption
use a secret key as the exponent in calculations. Consequently, naive implementations

with conditional control flow might be vulnerable to side-channel attacks.

2 Background and related work

if (x % 2 ==0) {

1

2 y = TABLE[a];

3 F else { 1 int mask = -(x % 2);

. y = TABLE[b]; 2

5} 3 res = ~mask & TABLE[a] | mask & TABLE[b];
(2) Original vulnerable code (b) Constant-time implementation

Figure 2.3: Constant-time example written in ¢

2.3 Side-channel prevention

Since developers cannot always avoid secret-dependent control flow or memory accesses,
different techniques have been established to harden cryptographic libraries against side-

channel exploitation.

231 Constant-time programming

Constant-time programming is a paradigm for eliminating conditional operations within
implementations. It has become popular after Kocher demonstrated that timing attacks
can leak information about performed operations since different operations might not
always take the same amount of time (Kocher, 1996). Constant-time programming can
harden programs against side-channel attacks by eliminating conditional control flow. It
works by effectively performing computations from multiple branches and discarding all
but one of the results depending on the original condition of the branches.

Figure 2.3 shows an example of the application of constant-time programming. Fig-
ure 2.3a, implemented in ¢, is vulnerable to side-channel attacks since it involves secret-
dependent branches. Figure 2.3b uses bit masks constructed from the condition of the
branch to compose the result from both data accesses, each performed in one of the
branches. Since the mask’s construction in the first line does not leak any information
about x, an attacker cannot infer any information by observing the program’s execution.
All observations would register data accesses to TABLE[a] and TABLE[b] so that an attacker
cannot conclude which lookup is discarded.

Constant-time programming is a powerful technique to harden library implemen-
tations against side-channel attacks. However, it also introduces a performance penalty
if computations are expensive or plenty of different branches are possible since all of
them are being computed instead of a single one. Yet, it is still an effective technique to

eliminate secret-dependent control flow.

10—

2 Background and related work

2.3.2 Blinding

Another strategy used to prevent the leakage of sensitive information is called blinding.
Blinding is a technique to compute functions without revealing information about the
input or output values (Chaum, 1983). It is used within cryptographic implementations to
harden them against side-channel attacks since leakages within the computation do not
reveal any relevant information. Blinding randomizes some inputs before critical code
sections in a particular way so that randomness is removed from the result afterwards.

Given a compatible computationy = f(x) withx € Xandf : X — Y, blinding
introduces randomness by choosing a random permutation E : X — X on the input
space of f as encoding and its associated decoding D : Y — Y, which removes the
randomness from the result afterwards. The value y can be computed by calculating
¥y =D(f(E(x))) = (Do f o E)(x) instead of applying f to x directly. Since E is unknown
to the observer, they cannot infer information about x by observing the computation.
Observed leakages are randomly distributed and cannot be used to extract information
about the original input values.

For example, blinding can be applied to RSA's modular exponentiation by choosing
arandomr € [1,N) with gcd(r, N) = 1 (Kocher, 1996). Instead of directly encrypting
the plaintext m, it can be encoded first by applying E(x) = x - r mod N. In the final step,
blinding removes randomness by applying the decoding D(x) = x - (" ')¢ mod N, which

yields the following blinding implementation:
(Dof oE)(m) = (Dof)(m-r mod N) = D((m-r)* mod N) = (m-r-r")* mod N = f(m).

Kocher argues that an attacker cannot infer any information about the message m
using the described blinding implementation as long as r and (') mod N are unknown
to the attacker (Kocher, 1996). Since calculating (r~!)¢ mod N or reusing previous values
might be vulnerable to timing attacks, he also proposes a method to derive new values for

rand (r~!)¢ mod N from previous ones in a secure way.

—11-

2 Background and related work

2.4 Dynamicside-channel leakage analysis

In recent years, multiple side-channel leakage analysis tools have been developed, which
use different methods to find and localize secret-dependent control flow and memory ac-
cesses. These tools can be categorized into static and dynamic analysis approaches (Weiser
etal., 2018). These approaches fundamentally differ in how they gain information about
the analysis target. Static approaches produce statements about the target that apply
to all input parameters to prove the absence of secret-dependent side-channels without
actually executing it. Instead, dynamic approaches use instrumentation to infer informa-
tion about the program by its executions. Due to this approach, dynamic approaches do
not guarantee to find all side-channel leakages within the code base, as this ultimately
depends on whether vulnerable code sections are executed. This approach also causes
problems with randomized applications as dynamic side-channel leakage analysis tools
rely on statistical tests to verify whether leakages are random.

The following sections present multiple dynamic approaches to the problem of finding
side-channel leakages dynamically. This overview is limited to dynamic approaches since
the objective of this thesis is ultimately the integration of functionality within Microwalk,

which also uses a dynamic approach based on trace diffing.

2.41 Tainttracking

Taint tracking is one of the most intuitive ways to detect secret-dependent leakages.
It allows one to annotate different inputs with labels and track their usage within the
program. Taint tracking detects secret-dependent memory accesses and branches as they
depend on values marked as secret-dependent.

ct-grind (Langley, 2010) is a tool that tracks the usage of secret-dependent input values
by providing a patch for the Valgrind debugging framework. ct-grind prevents secret
inputs within the program from being initialized and tracks their usage with memcheck.
It can detect whether memory accesses or control flow relies on this data by propagating
the undefined values throughout the program. ct-grind reports found leakages with an
instruction-level granularity.

However, using the approaches from ct-grind, any masking or blinding of the input
values is marked as secret-dependent. Both implementations would report those leakages,
even if the implementation is not flawed. Irazoqui et al. investigated this by also collecting
cache traces for the affected code locations (Irazoqui et al., 2017). They estimated depen-
dencies between cache traces and input values with mutual information analysis and were

able to reduce false positive results.

—-12—

2 Background and related work

2.4.2 Fuzzing

Another method related to the field of side-channel analysis is fuzzing. Fuzzing is a
method to create different input values automatically that produce different execution
paths. ct-fuzz (He et al., 2020) and DifFuzz (Nilizadeh et al., 2019) use this method to
generate two different inputs repeatedly. These tools pass the inputs to the analysis target,
which records potential leakages using dynamic instrumentation. If the two generated
leakage reports differ, they argue that an attacker could observe the program’s execution
using different inputs and inevitably learn something about them. The analyses of both
tools prove efficient for deterministic applications since these approaches often find

vulnerabilities within a short time.

2.4.3 Statistical tests

One of the rudimentary solutions to detect secret behavior is measuring the execution
times of specific parts of an algorithm. dudect (Reparaz et al., 2017) uses this approach
by performing multiple measurements for different input values. Statistical tests can
find significant differences between the measured times of input values. Reparaz et al.
argue that input-dependent control flow causes significant differences in the measured
execution times. However, they cannot localize leakages since they do not record any
information about the instructions.

While Zankl et al. also use statistical tests to detect side-channel leakages, their ap-
proach differs (Zankl et al., 2017). Focusing specifically on libraries that perform modular
exponentiation, they use statistical methods to determine the correlation of the expo-
nent to the number of executions of single instructions. If the exponent correlates with
the number of executions, evidence for control flow side-channel leakages is found and

reported with instruction-level granularity.

2.4.4 Tracediffing

Trace-based or differential leakage analysis tools generate traces of accessed addresses
and branches within different executions using dynamic instrumentation. Differences
between execution traces might indicate exploitable leakages.

STACCO (Xiao etal., 2017) uses this approach. It focuses its analysis on TLS implemen-
tations and Bleichenbacher attacks. It traces branches within the process of two random
TLS packets and compares these control flow traces with regular diff tools. Moreover,
STACCO also reports whether an attacker could use these leakages within cache or page

attacks by calculating the cache line and page of the exact leakage address.

—13—

2 Background and related work

DATA (Weiser et al., 2018), which stands for differential address trace analysis, is
another tool that performs differential side-channel analysis using dynamic instrumenta-
tion. It aims to facilitate the analysis of x86 binaries and collects memory accesses and
branches in traces during the execution with different input parameters. Using a custom
diff algorithm, DATA detects leakages between two different traces. DATA repeatedly
traces instructions whose target addresses differ in execution traces with random and
fixed inputs. After that, a statistical test compares the distributions of target addresses
and the number of accesses within traces for both input sets. With this strategy, DATA can
detect leakages in programs that use randomization to harden them against side-channel
attacks. However, quantifying leakages still needs manual intervention, as the analysis
requires the development of a specific leakage model that correlates inputs with found leak-
ages. Nevertheless, it is the only tool extensively tested with randomized implementations

to detect secret-dependent leakages efficiently.

2.5 Microwalk

Microwalk is a trace-based microarchitectural leakage detection framework that quan-
tifies and localizes side-channel leakages using dynamic instrumentation and statisti-
cal methods. It currently supports the analysis of x86 (Wichelmann et al., 2018), RISC-
V (Wichelmann et al., 2023) and Node.js (Wichelmann et al., 2022) libraries and appli-
cations. Microwalk aims to be a tool for developers that easily integrates with existing
Continuous Integration (CI) pipelines to help developers detect vulnerabilities within
their code. Moreover, it also allows the analysis and verification of closed-source libraries
and applications (Wichelmann et al., 2018).

Most of Microwalk’s analysis relies on the comparison of execution traces. Each trace
consists of multiple trace entries that contain observed jumps (including calls and returns),
memory accesses, and memory allocations. A call tree aligns these entries within the traces
for an efficient comparison. See Section 3.1 for further information about the construction
of the call tree. The analysis modules then traverse the tree and examine differences
between trace entries and splits within the tree. Using the number of test cases accessed
in each node, Microwalk quantifies found leakages using statistical methods (Wichelmann
etal., 2022).

Microwalk’s architecture is based on a custom analysis pipeline (Wichelmann et al.,
2018) shown in Figure 2.4. Its pipeline consists of multiple stages in which different mod-
ules are available. The analysis commences with generating or loading different test cases.

Microwalk then passes these test cases to the trace generation stage in which applications

14—

2 Background and related work

Trace
generation Raw

Trace
preprocessing

Trace
My [\ analysis

Intel Pin (x86) Binary Mem. trace leakage

call f1
read X
jump A - B

Test
cases

Analysis
Result

Babel (JS)

Text Control flow leakage

Trace dump

Figure 2.4: Microwalk Pipeline (Wichelmann, 2022)

are instrumented to record memory accesses and control flow in execution traces. The
preprocessor optimizes them to process them efficiently in later stages. At last, these
traces are processed in different analysis modules to identify leakages within the targeted
library and applications. This pipeline approach allows Microwalk to be easily extendable,
as extensions for different languages or platforms only require the development of com-
patible tracers. It also allows one to develop analysis modules specifically crafted to target

different analysis use cases.

—15—

Alignment of multiple execution traces

This chapter discusses the development of a data structure to efficiently compare multiple
execution traces while constantly realigning the traces across the scope of control flow.
We discuss this implementation of this approach into Microwalk and describe changes
necessary to adapt the previous alignment implementation. This chapter also verifies the
effectiveness of this approach by analyzing the call graphs constructed in various sample
scenarios. Finally, we evaluate the application of this construction approach by analyzing

common cryptographic libraries.

3.1 Call tree construction

Since Microwalk’s approach to finding microarchitectural side-channel leakages within
applications is based on detecting differences between execution traces, it is necessary
to facilitate the efficient comparison between different traces. Microwalk achieves this
by constructing a call tree that encodes differences of execution traces in its underlying
structure (Wichelmann et al., 2022).

The call tree is implemented using a radix tree structure often used to compare text
sequences efficiently. Each node contains a part of the sequence and references to subse-
quent nodes. The radix tree splits in case sequences deviate from each other so that its
paths encode the sequences inserted into the radix tree.

Microwalk adapts this structure to encode execution traces as sequences of trace
entries. Atrace entry contains information from the memory accesses, memory allocations
and jumps within a program’s execution. This information is later used during the analysis

to localize and quantify leakages. These sequences are extracted from the execution traces

—16—

3 Alignment of multiple execution traces

1: [A]
7\
1: [A] 2:[B,C] 3:[D]
7N\ /N
1: [A, B, C] 2:[B,C] 3:[D,E] 4:[E] 5:[F, G]
(a) Addition of [4, B, C] (b) Addition of [A, D, E] (c) Addition of [A, D, F, G]

Figure 3.1: Construction of the call tree using the traces [A, B, C], [4, D,E]and [4, D, F, G]

and are added to the radix tree individually. Therefore, each node of the radix tree contains
a list of trace entries and a list of pointers to the following nodes within the tree.

However, there is an exception to splitting the radix tree in case of deviations within
execution traces. Multiple memory accesses with different target addresses are saved
within the same trace entry since they should not cause splits within the radix tree. Mi-
crowalk also handles function calls differently. To support the analysis of nested function
calls, Microwalk translates each function call to a single trace entry and adds it to the radix
tree as usual. However, this trace entry also contains a child radix tree that encodes the
execution trace of this function call. The call tree, therefore, represents a nested radix tree.

The first addition of an execution trace into the call tree would create a single node
that contains the whole sequence of call tree entries. However, in later additions, inserted
execution traces might deviate from the preceding sequences. In this case, two new nodes
are created that represent the execution traces beginning from the point of execution
where they start to deviate. Consequently, each deviation in the execution traces creates a
split within the call tree.

The example in Figure 3.1 shows the iterative construction of a call tree using three
test cases with their corresponding traces. The first trace contains entries [A, B, C], the
second one [A, D, E] and the third one [A, D, F, G].

As this type of visualization will be used in the rest of this chapter, some remarks on
the notation of this figure: Each node in this graph presents a node of the radix tree. Anode
can have an optional numerical name to reference them within explanations. Additionally,
it contains a list of trace entries identified by letters. Each outgoing edge represents a
pointer to a subsequent node.

In the first step, the sequence [4, B, C] is added, which produces a single node 1 that
contains all entries as shown in Figure 3.1a. After that, another execution trace containing
A, D and E is added. This sequence splits the node 1 during construction since entries B
and D differ. Node 2 is created, which contains the rest of the entries of node 1. In addition

to that, the construction adds a new node 3 that contains the rest of the sequence that

—17—

3 Alignment of multiple execution traces

1. if be then /[bc]\
2: ‘ sl
3. else [be] [bt,s1,be] [bf,s2]
4: | s2 ‘/ \‘ \ /
5. m [bt,s1,be,m] [bf,s2,m] [m]
(a) Algorithm (b) Call tree (c) Call graph

Figure 3.2: Example for the alignment of conditional branches

Legend: bc: branch condition, bt: jump to if block, bf: jump to else block, be: jump to skip else block, s1: statement
inif branch, s2: statement in else branch, m: rest of the algorithm

was added to the radix tree. The resulting radix tree is shown in Figure 3.1b. Figure 3.1c
shows the addition of the sequence [4, D, F, G]. Since this sequence differs from [4, D, E]
at the second position, node 3 is split. Node 4 is created and contains the rest of the
sequence added in the second round. Additionally, the algorithm creates another node
5 that contains all remaining entries of the third sequence. The construction process,

therefore, constructs a radix tree with two deviations at the nodes 1 and 3.

3.2 Problem

Microwalk’s current methodology for identifying deviations in execution traces involves
the iterative construction of a radix tree. It splits the radix tree into multiple branches in
case of different conditional or indirect jumps in different execution traces. This approach
is problematic since each deviation might cover later leakages after the conditional or
indirect branch. More specifically, leakages originating within conditional branches are
not discovered later. This is caused by the fact that execution traces which split due to
different conditional or indirect jumps are kept independent since radix trees do not
merge if they encounter an identical entry later on. It is, therefore, required to realign
the branches in the call tree to reduce the number of false negative results in the analysis
stage.

Figure 3.2 shows an example of the problem of missing leakages in case of deviations
within the call tree. It represents a simple case where execution traces deviate after
evaluating the condition of the branch bc in Figure 3.2a. Microwalk’s current approach
would construct a call tree similar to the one shown in Figure 3.2b. Each branch of the tree
would be constructed independently due to the deviation caused by bc, thus producing
two entries for m. Each entry for m within the call tree is analyzed individually, which

might result in false negative results. For example, this might be the case if m represents

~-18—

3 Alignment of multiple execution traces

[bc]
e
[bc] [bt, s, bl, bc]
VAN l
. bt,s,bl,bc] [bf, m] [bt, s, bl, bc]
1: while bc do [2=
2 s 7N N
3. m [bt,s,blbc,bf,m] [bf, m] [bf, m]
(a) Algorithm (b) Call tree (c) Call graph

Figure 3.3: Example for the alignment of branches within loops

Legend: bc: branch condition, bt: jump to the loop, bl: jump to the start of the loop, bf: jump to the end of the loop, s:
statement inside the loop, m: rest of the algorithm

a memory access instruction and the target address is modified in both sI and s2. As
shown in the algorithm in Figure 3.2a, m is the same instruction for each execution as the
branches merge in line five at the end of the if-statement. A better approach would be to
merge the entries of m to form a graph as shown in Figure 3.2c. In this case, the leakage
of the conditional control flow would no longer shadow potential leakages within m.
There are a few more cases where such a merge could be helpful to reduce the number
of false negatives. Most notably, Figure 3.3 shows a loop where the number of iterations
depends on the loop’s condition. The current analysis would miss leakages after the
loop due to the deviations caused by the loop’s condition since it constructs a call tree as
illustrated in Figure 3.3b. However, it would be best to merge branches within the call
tree if they contain the same sequence of entries as shown in Figure 3.3c. In this case, this
is satisfied by the jump bf and the rest of the algorithm m, which are performed by all
executions. If we merge branches, Microwalk can perform its analysis independently on

the number of iterations of the loop.

3.3 Idea

For Microwalk’s new approach, we construct a directed acyclic word graph instead of a
radix tree to additionally encode the program’s control flow correctly since we can use
this information to facilitate a more precise analysis. More specifically, we want to merge
branches that split due to control flow within executions to facilitate a more accurate
analysis of leakages for the following code sections.

Our approach to enable merges of different branches relies on keeping track of splits
caused by indirect and conditional branches within execution traces. We track trace

entries added to the graph after such splits as possible merge points since branches might

19—

3 Alignment of multiple execution traces

merge into them again. As the graph is constructed iteratively, we can track merge points
in one iteration and use them in later ones to prevent searching the graph for the correct
merge point in later iterations.

There is a single difference to the previous construction approach. If the current test
case deviates from previous execution traces, we use the information of potential merge
points to merge branches again instead of keeping them independent. We achieve this by
searching for a similar already discovered trace entry in the other branch and merging
both branches into that entry if it exists. We also save performed merges to keep track of
which splits still require to be merged.

However, there are a few caveats to this kind of construction. Firstly, we need to
prohibit merges across different function calls, as these would not correctly represent
the program’s control flow and could cause unexpected results in the analysis of nested
function calls. Secondly, we also require splits to be merged in the reverse order as they
have appeared since the program’s conditional blocks are constructed hierarchically. As
blocks of nested conditionals might end before the same instruction, we allow merges
of multiple splits within the same entry as long as they are still possible according to the
rules above. Since our goal is ultimately the correct control flow representation and not
to maximize the alignment of execution sequences, we always try to merge splits within
their first possible merge point. Section 3.4.4 explains the reason for this in more detail.

Our new approach for Microwalk’s call graph construction aims to be backwards
compatible with previous analysis modules. Additionally, it facilitates a quantitative

comparison to Microwalk’s call tree construction approach.

3.4 Implementation

Despite our aim to encode execution traces within a new data structure, we do not re-
quire any changes to its underlying trace entry and analysis structure, which facilitates

backwards compatibility with previous Microwalk versions.

3.41 Memorization

Our new construction approach relies on memorization to store merge points for different
branches that split due to conditional control flow. The algorithm keeps track of actual
and possible splits within all function calls using triples, which are stored in a stack-like

data structure to represent the call stack.

—20—

3 Alignment of multiple execution traces

CallstackID Splits Trackers

(cid, [(bs2,1)], [bsl, bs2, bs3])
-~

Figure 3.4: Triple inside the branch split stack

An example of such a triple is shown in Figure 3.4. Each triple consists of an associated
call stack ID, the actual splits within the current function call and potential splits that
might occur in future iterations, further called trackers. Before each conditional or indirect
jump within the execution trace, we insert temporary branch split nodes into the directed
acyclic word graph, which contains all observed jumps at this point. These temporary
nodes simplify the management of splits and merges within the implementation. However,
we are required to remove them before the analysis since they would break backwards
compatibility. If we visit a branch split node in an insertion, we add this node to the list
of trackers in the current call stack triple. If this branch split node contains more than a
single jump after adding the jump entry of the current trace, we also add this branch split
node to the split list in the triple with its position in the tracker list. This index is later
used to clean the tracker list efficiently if branches are merged successfully.

During construction, we use the tracker list from the current function call to store
possible merge points for the following iterations. Merge points for a trace entry consist
of a pointer to its parent node and the index it is stored within its parent’s sequence. We
use this information to know at which position to split the parent node if we merge into
this merge point. Merge points are registered if the algorithm does not find a matching
trace entry within the current position in the graph. These points are associated with all
branch split nodes inside the current tracker list and are efficiently stored within a hash

map.

3.4.2 Merge process

During the construction of the graph, merges might happen if we do not find a matching
trace entry at the current position. If this is the case, the algorithm checks whether a
matching entry is found in the map of potential merge points. If it is not, construction
continues as usual. Otherwise, we merge the current branch into the found merge point.
To achieve this, we split the node of the found trace entry at its position in the sequence
using the information provided from the hash map that stores potential merge points.
The node that begins with the found merge point is added as a successor to the current

node. After that, we resume the sequence’s insertion at the found merge point.

21—

3 Alignment of multiple execution traces

I [...]
/ N\
1: [...] 2:[A] 5:[D]
/N N/
2:[A,B,C] 5:[D] 6: [B, C]
/N /N
3:[...]1 4:[...] 3:[...] 4:[.]
(a) Before insertion of Bin 5 (b) After insertion of Bin 5

Figure 3.5: Node splitting within merge processes

An example of the merge process is shown in Figure 3.5. It is assumed that nodes 2
and 5 have the equivalent parent node 1 and the split was caused by different conditional
branches. If we insert a trace entry similar to B into 5, we will find B in the map storing
potential merge points. We then split node 2 at the second position and add the newly cre-
ated node 6 as successor to node 5. By performing this operation, we merged the branches
represented by node 2 and 5. Finally, we can continue adding the current sequence into
the graph in node 6.

However, since we merged branches, we need to clean the stack keeping track of splits
within the graph during each insertion. For that, the algorithm checks how many branch
splits could be merged into the found merge point by using the split list inside the triple.
This is achieved by finding the last branch split node in the list associated with the found
merge point. We then use its position within the list and the associated tracker index
to remove all branch splits from the split and the tracker list beginning at the respective
index. This way, it is ensured that the hierarchy of branch splits within the execution traces

is handled correctly.

3.4.3 Preventing cycles

Nevertheless, cycles would still be a problem that could arise in the merge process. An
example of this problem is shown in Figure 3.6. Figure 3.6b shows the cyclic merge from
node 2 into 1, which is also a predecessor of 2. These merges might happen if a merge point
is chosen that was already visited by insertions of previous sequences that also visited the
current node. This means there is a path between the found merge point and the current
node, which causes cycles if merges are performed.

Fortunately, it is easy to prevent this problem since we already store which nodes were
visited when adding different execution traces. We can use this information by calculating

the intersection of the execution traces that visited the merge point and the current node.

—22—

3 Alignment of multiple execution traces

[bc]

e

[bt, s, bl, bc]

1: [bc] l
1: while bc do K \\ [bt, s, bl, bc]
2: L S \
3. m 2: [bt, s, bl] 3: [bf, m] [bf, m]

(a) Algorithm (b) Call tree (c) Call graph

Figure 3.6: Example for cyclic merges within the call graph

Legend: bc: branch condition, bt: jump to the loop, bl: jump to the start of the loop, bf: jump to the end of the loop, s:
statement inside the loop, m: rest of the algorithm

If the intersection is not empty, there is a path within the graph from the merge point to
the current node. In that case, we would have to create new trace entries and ignore the

merge point instead, which produces a graph like the one shown in Figure 3.6c.

3.4.4 Alignment with similarinstructions

Since we require multiple memory addresses to be stored within the same trace entry, we
cannot determine possible merge points by comparing trace entries. Instead, we merge
splits by checking the similarity of a trace entry to its potential merge point. Similarity
is based on custom hash codes and comparators, which use different properties of the
trace entries to determine whether a pair of entries is similar. Most of the implemented
hash codes compare all properties present. However, in the case of memory accesses,
we omit the target addresses from this hash code to match merge points with different
target addresses. A custom hash function has the advantage of being able to use highly
optimized built-in data structures and optimizing access times within the hash map.
These implementations also handle hash collisions using the specified comparators in our
implementation. Since the algorithm merges based on similarity, we have to take care of
later instructions that might overwrite the correct merge point. Moreover, this is also the

case if instructions are executed multiple numbers of times.

—23—

3 Alignment of multiple execution traces

. [bc]
1 if be Ihen N
?j Llses [bt,s1,be,s] [bf,s2] (be]
s w2 NS SN\
5. s [s] [bt, s1,be] [bf, s2]
6: S \/ \ \ ./
7: m [m] [s,m] [s,s,m]

(a) Algorithm (b) Merging into the second s (c) Merging into the first s

Figure 3.7: Example for incorrect similarity merges

Legend: bc: branch condition, bt: jump to if block, bf: jump to else block, be: jump to skip else block, s1: statement
inif branch, s2: statement in else branch, s: statement after the conditional block, m: rest of the algorithm

Figure 3.7 shows an example that causes issues if we do not handle this problem.
Figure 3.7a presents an algorithm that executes conditional instructions before continuing
with the executions of s and the rest of the algorithm m. It is assumed instructions s are
deemed similar by the algorithm, thus producing the same similarity hash code. During
the construction of the first branch, the first and second occurrences of s in the algorithm
shown in Figure 3.7a would be registered as possible merge points. However, as both
instructions would be deemed similar, the merge point association of the first occurrence
would be overwritten by the second. If the second branch is constructed and trying to
find merge points, it only discovers the second instruction and merges the branches at
this entry as shown in Figure 3.7b. However, since the merge point represents the second
instruction followed by m, the algorithm splits this node another time since it cannot find
a matching trace entry s. This graph, though, does not represent the control flow in the
algorithm. The correct merge should happen in the first instruction of s, so the algorithm
constructs a graph like the one shown in Figure 3.7c. Only the first discovered merge point
for each similar trace entry should be stored in the hash map to prevent such behavior. If
we follow this approach, we merge branches into the first occurrence of each trace entry,

which is the desired behavior.

3.5 Verification

We constantly checked the algorithm against simple examples during the implemen-
tation process. These samples can easily be verified without delving deep into real-world
libraries, as they produce complex call graphs that are difficult to check for correctness.
Figure 3.8 shows sample cases in which Microwalk’s new call graph construction provides

advantages compared to the old one. All examples specifically include leakages originating

—24—

RCRNECIEEN T T, B VO SIS

—_
o

NN RN IR LY R NN VORR S

—
vl S =)

3 Alignment of multiple execution traces

Scenario Tree Graph
(b) if-case 4 4,8
(c) if-else-case | 4 4,11
(d) for-case 5 5,12
(e) nested-case | 4,7 4,7,13

(a) Found leakages identified by their line numbers using the call tree and call graph

vintl6_t ifc(uint8_t input) {

uintlé_t c = 0;

int a = 0;

if (input % 2 == 0) {
a++;

}

c |= array[1];

c |= cases[a] << 8;

return c;

(b) if-case

vintl6_t forc(uint8_t input) {

vintlé_t c = 0;
int a = 0;
int bound = i
for(uint8_t i
i < bound
i++) {
c += indexAccess[i];
a++;

nput >> 6;
:0;

1

|= array[0];
|= cases[a] << 8;
eturn c;

(d) for-case

O 0 NN AW N

[
w N = O

O 0N NN AW N

11
12
13
14

vintlé6_t ifelsec(uint8_t input) {
uintlé6_t c = 0;
int a = 0;
if (input % 2 == 0) {
c |= array[0];
a++;
} else {
c |= array[1];

c |= array[2];

c |= cases[a] << 8;
return c;

(c) if-else-case

vintl6_t nestedc(uint8_t input) {
uintlé_t c = 0;

int a = 0;
if (input % 2 == 0) {
c |= array[0];
a++;
if (input >> 7 % 2) {
c |= array[1];
at++;
}
}
c |= array[2];
c |= cases[a] << 8;
return c;

(e) nested-case

Figure 3.8: Leakage analysis verification using Microwalk’s call graph construction

3 Alignment of multiple execution traces

within conditional branches to check whether our algorithm facilitates the analysis of
these leakages. All executions that follow the same execution path yield the same memory
accesses. These leakages cannot be found by Microwalk’s previous radix tree construction
approach, because they are covered by the control flow leakage above. However, analysis
results shown in Figure 3.8a show that our new approach to constructing a directed acyclic

word graph detects those leakages.

3.6 Evaluation

We expect our new algorithm to find at least as many leakages as the old one without
introducing new false positives since the old radix tree is a special case of our graph
approach. If no conditional branches are merged during construction, the same call tree
as the old one is constructed. In all other cases, conditional branches have been merged,
that combine previously separated execution paths. Due to the increased number of
test cases in these merged execution paths, the new algorithm might be able to detect
differences if they are not detected with the original approach as shown in Figure 3.8. If
they are already detected, we use additional information about the test cases that visited
this node to estimate the amount of the leaked information more accurately.

Table 3.9 compares both approaches using the same traces for mbedTLS’s RSA signing
with a 2048-bit key and WolfSSL's ECDSA signing with secp192rl1. This benchmark was
performed with eight test cases on a Linux Ubuntu 22.04.3 with an Intel(R) Core(TM)
i5-10210U CPU @ 1.60GHz and 8GiB system memory @ 2667 MHz. All libraries were built
using their preferred build tool and compiled using gcc v11.4.0. Microwalk was built in
Release configuration using .NET v8.0.102 and MSBuild v17.8.5.

As shown in Table 3.9a, the new algorithm provides an advantage over the previous
construction of the call tree since it reduces the number of independent execution paths.
The new approach finds all the leakages previously detected by the old one. Moreover,
these results prove that Microwalk’s previous analyses might have missed leakages that
were found using the new approach. The benchmark of mbedTLS also shows that only
a few merges within the call graph might significantly improve the number of potential
leakages.

The benchmark also includes the construction times of each approach as presented
in Table 3.9b. One remarkable discrepancy is the difference between the construction
times for the first trace in both approaches. The overhead is caused by the memorization
described in Section 3.4.1. If branch trace entries are encountered during the construction

of the first trace, each branch is added to the tracker list until the call stack is dropped

—26—

3 Alignment of multiple execution traces

Target Number of merges | Call tree leakages Call graph leakages
wolfSSL ECDSA 8975 11 35
mbedTLS RSA 15 3 7

(a) Comparison of Microwalk’s analysis results using its trace representations

Iteration
Target I) ; 4 p P . g Post | Overall
1417 837 557 750 677 636 544 493 5914
wolfSSL ECDSA 28756 1080 883 1071 880 819 729 639 | 382 35242
22 22 5 5 4 7 1 1 72
mbedTLS RSA 75 8 7 5 6 9 1 1| 1 117

(b) Time comparison between Microwalk’s call tree and call graph construction for each
iteration, their post-processing duration and the overall construction times in ms

The bottom time in each cell corresponds to the analysis using the call graph as presented in Chapter 3

Table 3.9: Benchmark of selected libraries

at the end of its function. Each trace entry constructed afterwards is inserted into the
map, which stores possible merge points. As every trace entry is constructed in the first
iteration, this produces high overhead since plenty of entries have to be inserted into the
map, which eventually has to be resized. Additionally, the number of insertions heavily
depends on the depth of branches within the code bases since it causes the tracker list to
grow, which multiplies the number of insertions into the map. Therefore, it is currently
impossible to analyze complex libraries efficiently with high branch depths. However, it
might be possible to use further information about an instruction’s basic block provided
by dynamic instrumentation tools like Intel Pin to improve the algorithm’s performance
by keeping track of less potential merge points. Such optimization techniques could be
relevant in future work to improve Microwalk’s analysis performance.

As described in Section 3.4, our new approach introduces temporary branch split
nodes before conditional or indirect branches. These temporary nodes are removed from
the graph in a post-processing step. As shown in Table 3.9b, this post-processing step
takes additional time. Nevertheless, this cost is negligible to the cost of constructing the
graph itself. It might also be possible to remove these branch split nodes entirely so that
the necessity of the post-processing step will be inapplicable.

We conclude that the new graph construction algorithm provides a significant ad-
vantage over the previous one, as shown in this evaluation. However, optimizations are
required to improve its performance in analyzing complex libraries. Furthermore, poten-
tial leakages that were found should be verified in future work to notify the developers of

the libraries in case these leakages are critical.

—27—

Statistical leakage test

In this chapter, we discuss the implementation of statistical tests to find partially ran-
domized leakages. This chapter also verifies the effectiveness of this approach in finding
leakages within randomized implementations that use blinding to prevent side-channel
attacks by analyzing various sample targets. Finally, we present the advantages and limi-

tations of this approach by using the results of the analysis.

41 ldea

The side-channel leakage model for implementations without randomness is straight-
forward, as any deviation within execution traces might lead to leakages. However, it is
not as evident in the context of randomized implementations. Randomness might cause
deviations that are not related to the input values which would result in false positive
results. Tools for dynamic side-channel analysis have difficulties determining whether
leakages are secret-dependent in randomized implementations. This is caused by the fact
that those tools can only test a few inputs and have to remove randomness from the results
by using statistical methods.

The reason above explains why automated side-channel leakage analysis tools often
do not support randomness in their analyses. However, DATA has shown that the analysis
of randomized implementations is possible using statistical tests (Weiser et al., 2018).
The approach from DATA is to consider leakages for single instructions and compare
their distributions of accessed addresses and the number of occurrences within execution
traces for fixed and random inputs. An attacker might be able to infer information about
an input value if it is possible to distinguish between the leakages of a single input and

the leakages caused by different inputs. As shown in further research, DATA can analyze

—28—

4 Statistical leakage test

S N
Trace - <| Difference . Histogram Kuiper's —
Generation Z1> Detection o — Construction . I Test —

l Random Traces Instructions Histograms Report

—
> 3¢

Fixed Traces

Figure 4.1: Leakage test steps

randomized implementations and correctly determine leakages within them (Weiser et al.,
2020).

As Microwalk aims to be a general-purpose tool for microarchitectural side-channel
leakages, we adopt DATA's approach to detecting randomized leakages. More specifically,
we implement DATA’s leakage test within an additional Microwalk analysis module to
discover secret-dependent leakages that are randomized. We refrain from implementing
DATA’s quantification since it requires the manual development of a leakage model specific

to the analysis target.

4.2 Leakage test

DATA’s approach to detecting secret-dependent leakages in randomized applications
consists of multiple steps (Weiser et al., 2018). These steps are visualized in Figure 4.1.
Firstly, we generate traces for the two input sets described in Section 4.1. In the next step,
we use the set of random inputs to detect differences between these execution traces, which
are handed to the histogram construction. This step uses the information from the traces
to construct multiple histograms for each instruction that was found to cause differences
in the difference detection step. The histogram construction creates histograms for each
input set that are passed on to Kuiper’s test. This statistical test finally tests whether the
distributions described by the histograms are significantly different so that an attacker can
infer information about the inputs. The following sections describe the implementation of

these steps into Microwalk in more detail and discuss some minor adaptations to DATA.

—29—

4 Statistical leakage test

Trace
My [\ analysis

Trace
preprocessing

Trace
generation Raw

Intel Pin (x86) Binary Mem. trace leakage

Test
cases

Analysis
Result

Babel (JS)

Text Control flow leakage

Trace dump

Figure 4.2: Microwalk Pipeline (Wichelmann, 2022)

4.2.1 Trace generation

As mentioned in Section 4.1, the approach is based on generating traces for random inputs
and comparing them with traces for a single fixed input. However, due to its pipeline
approach, Microwalk does not yet support tracing inputs multiple times without manually
copying the input file a few times.

As mentioned in Section 2.5 and shown in Figure 4.2, Microwalk’s pipeline starts with
loading test cases (Wichelmann et al., 2018). Each test case produces a trace entity ex-
changed between different stages and stores intermediate results. A test case ID uniquely
identifies these trace entities.

The idea to support multiple traces per test case is to create more trace entities per
test case within the pipeline. For this, a secondary ID is introduced, uniquely identifying
the repetition of a single test case. This way, trace entities from the same test case can be
identified by their secondary ID and grouped by their test case ID. As zero is the default
value for secondary IDs in scenarios without repetitions, old test environments are still
compatible with this approach. This is achieved by omitting the default secondary ID
value from the trace file naming convention. Backwards compatibility within the trace
modules is facilitated by providing multiple entry points for dynamic instrumentation
to pass on secondary IDs to the tracer. These traces are then used within the leakage test
module depending on their assigned IDs.

This contradicts the approach from DATA since we already record traces for both input
sets during the initial trace stage (Weiser et al., 2018). DATA’s approach intends to record
traces at different times during its analysis to minimize the number of instructions ob-
served during the instrumentation. However, this approach is impractical for Microwalk’s
current architecture, as it would result in circular dependencies and require bidirectional
communication between pipeline stages. To implement DATA's approach, we would have
to extend the pipeline, which would increase Microwalk’s configuration complexity and,
therefore, would decrease the analysts’ user experience. Nevertheless, adjustments to the
infrastructure to optimize the trace collection for the leakage test could be interesting to

explore further.

—30-—

4 Statistical leakage test

4.2.2 Difference detection

At this stage, we aim to detect potentially leaking instructions to consider within the
statistical test. We detect differences by traversing the call graph constructed by the
randomized data set as described in Chapter 3. During the traversal of the call graph, we
record instructions that caused splits within the call graph and memory accesses with
multiple target addresses.

As already described in Section 4.2.1, this contrasts with DATA's approach, as DATA
uses these differences to instrument the target library again to collect shorter traces for

the input sets.

4.2.3 Construction of histograms

DATA’s approach to detecting leakages in randomized applications includes the construc-
tion of histograms for different input sets, which are used to estimate the distributions of
accessed memory addresses and the number of leakages within test cases (Weiser et al.,
2018). In this step, Microwalk requires the information from the previous steps about
potentially leaking instructions, as histograms are only constructed for these instructions.

We then search for these instructions within execution traces and collect information

to build the following histograms for each potentially leaking instruction:

— The number of accesses for each target address
- The number of leakages in a single test case at this particular instruction
- The number of accesses for each target address sorted by its access count

- The number of unique target addresses in a single test at this particular instruction

Note that the original publication of DATA at USENIX Security 2018 only included
the generation of the first two histograms (Weiser et al., 2018). After the publication, they
added the last two histograms to improve their leakage test further (Fraunhofer AISEC,
2018). This is the reason why we decided to implement them as well.

We also align corresponding histograms from both input sets to prepare the collected
data for the following steps. This is required as both input sets might have different
accessed memory addresses and we would like to compare the same corresponding address
within the statistical test. This means that keys that do not exist in the other histogram
are initialized with zero to facilitate the comparison of values with the same key. The
algorithm also collects the number of samples used to construct the histograms to facilitate

calculations performed within Kuiper’s test.

31—

4 Statistical leakage test

4.2.4 Kuiper’s test

In the next step, these histograms are compared for similarity based on Kuiper’s test. The
Kuiper’s statistical test can be used to verify whether two data samples originate from the
same unknown base distribution (Kuiper, 1960). While the Kuiper’s test is closely related to
the Kolmogorov-Smirnov test, Weiser et al. argue that it yields better results in scenarios
where no assumptions about distributions can be made (Weiser et al., 2018).

Kuiper’s test first calculates the empirical distribution function from the aligned
histograms constructed for the fixed and random input sets, called Fr and F,. It then

calculates the Kuiper’s statistic
V = sup [F,(x) — F;(x)] — inf [F,(x) — F;(x)].

Afterwards, it compares V to the significance threshold V, for a given significance level «

using the number of samples n, and n; collected in the previous step, which is defined as

1 —a
Ve = Q% ()-
Cy(n,, 1g)

Q,; and its inverse, which associates the test with a significance threshold, are calcu-

lated approximately using the following equation (Lanzante, 2021)
Q,(\) =2 Z(4m2 — 1)e 2V,
i=1

C links the test to the number of samples in the histograms to the test and can be
estimated (Stephens, 1970) with

nr'nf

N(n, mp) = n,+n
r f

and Cy(m,,me) = N(nm,, ne) + 0.155 + W

If V exceeds the significance threshold V,, the distributions of the histograms can be
assumed to be different. If this is the case for any histogram provided in Section 4.2.3, an
attacker might be able to differentiate between leakages of fixed and random inputs and
inevitably learn something about secret inputs.

This test produces false positives with a probability of 1 — & (Weiser et al., 2018), which
defaults to 0.01% within Microwalk’s leakage tests. However, false negatives can occur if
the constructed histograms do not sufficiently estimate the base distribution of leakages
at a particular instruction (Weiser et al., 2018). This might be the case if the sample sizes of
histograms are too low, which can be fixed by increasing the number of test cases within

the analysis.

—32—

4 Statistical leakage test

Finally, the results from Kuiper’s test could be aggregated with results from other

Microwalk modules to omit instructions that do not leak any information.

4.3 Evaluation

This section applies the statistical leakage test to multiple specifically constructed targets
with different leakages. This approach has been chosen to verify the effectiveness of the test.
It is explicitly not evaluated against real-world libraries, as verification of found results
would be beyond the scope of this thesis. However, an evaluation would be interesting for
future studies.

This evaluation considers four targets for memory access leakages and control flow
leakages in its analysis. All of them perform the same calculations but leak different values.
Each target has a set of 32 random inputs, out of which the first one is traced 32 times to

form the fixed input set.

1. Leakage: Leaks the input value directly

2. Blinding: Applies blinding correctly and only leaks the blinded value

3. Mistake: Applies blinding incorrectly and leaks parts of the input value through the
blinded value

4. Mask: Applies blinding correctly and leaks the mask used for blinding as well as the
blinded value

Figure 4.3 and Figure 4.4 show the leakage analysis of these targets for memory access
leakages and control flow leakages, respectively. The tables present found leakages related
to the source code below and list Kuiper’s statistics V for some of the histograms described
in Section 4.2.3. Figure 4.3a show the relevant Kuiper’s statistics for the histograms of
accessed addresses in their sorted and unsorted form. Figure 4.4a lists Kuiper’s statistic
for the number of executions at a particular instruction in a single test case. Kuiper’s
statistics that exceed the threshold, which means that the histograms are significantly
different, are underlined and marked in bold. These values would cause the leakages to be

reported, as it has to be assumed that they are secret-dependent.

—33—

O 0 NN N1 RA W N

w wON N)) N 1S53 — —_
BRIV ENRRRURRSoOSsSTamrERR=o

4 Statistical leakage test

Target | Line number | Accessed addresses Sorted accessed addresses | Threshold
Leakage 9 0.9375 0.9375 0.5902
Blinding 15 0.3125 0.375 0.5902
Mistake 22 0.53125 0.625 0.5902
Mask 29 0.1875 0.4375 0.5902
30 0.3125 0.375 0.5902

() Statistical memory leakage results

uint8_t lookup[32];

void init(void) {
for (int i = 0; i < sizeof(lookup); ++i)
lookup[i] = 1i;
}

vint8_t leakage(uint8_t input) {
return lookup[input % 32];

vint8_t blinding(uint8_t input) {
input = input % 32;
vint8_t randomness = rand() % 32;
uint8_t masked_output = lookup[input 7~ randomness];
return masked_output * randomness;

h

vint8_t mistake(uint8_t input) {
input = input % 32;
uint8_t randomness = rand() % 16;
uvint8_t masked_output = lookup[input 7~ randomness];
return masked_output * randomness;

h

vint8_t mask(uint8_t input) {
input = input % 32;
uint8_t index = rand() % 32;
uvint8_t randomness = lookup[index];
uvint8_t masked_output = lookup[input * randomness];
return masked_output * randomness;

(b) Memory target source code

Figure 4.3: Memory access leakages in randomized settings

—34—

O 0 NN VTR W N

W oW W W W wWON N [N N N [e — — — —_
ERRUB LRIV ENIERRRRERIRSOSEIRARESRES

4 Statistical leakage test

Target Line number | Number of accesses | Threshold
Leakage 3 0.9375 0.5902
Blinding 12 0.1875 0.5902
Mistake 21 0.8125 0.5902
Mask 30 0.25 0.5902
33 0.375 0.5902

(a) Statistical control flow leakage results

vint8_t leakage(uint8_t input) {
uint8_t output = 0;
for (int 1 = 0; i < input; i++)
output++;
return output;

I

vint8_t blinding(uint8_t input) {
uint8_t randomness = rand();
uint8_t masked = input ” randomness;
uint8_t masked_output = 0;
for (int 1 = 0; i < masked; i++)
masked_output++;
return masked_output * randomness;

}

vint8_t mistake(uint8_t input) {
uint8_t randomness = rand() % 64;
uint8_t masked = input ” randomness;
uint8_t masked_output = 0;
for (int i = 0; i < masked; i++)
masked_output++;
uint8_t output = masked_output 7 randomness;
return masked_output * randomness;

F

vint8_t mask(uint8_t input) {

vint8_t randomness = rand();

uint8_t masked = input ” randomness;

for (int i = 0; i < randomness; i++)
masked++;

uint8_t masked_output = 0;

for (int i = 0; i < masked; i++)
masked_output++;

return masked_output * randomness;

(b) Control flow target source code

Figure 4.4: Control flow leakages in randomized settings

4 Statistical leakage test

Require: input

1: mask « rand()

2: unmask — reverse[mask]

3: masked « lookup[input @ mask]
4: output < masked & unmask

Figure 4.5: Leakages of the mask and the masked value

Direct leakage of the input value leads to significant differences between the his-
tograms of the two input sets. Each trace in the fixed input set accesses an address for
the same number of times. This number varies within the random input set and causes
different probability distributions. The same behavior can be observed in the third sce-
nario. Since these targets implement blinding incorrectly and leak a single bit of data,
the number of accessed addresses varies more in the random input set. The observed
difference is deemed significant within both scenarios.

However, the two other scenarios implementing blinding correctly also find differ-
ences in the histograms, but the differences are not significant enough. This is true for the
second scenario, where only the masked value leaks. Since it is impossible to differentiate
between the mask and the input value within the leaked information, an attacker can-
not infer any information about the secret input. The fourth scenario is examined more

broadly in the following section.

431 Limitations

Due to the analysis approach applied to each potentially leaking instruction independently,
Microwalk and DATA cannot find any leakages composed of multiple instructions. They
consider each of these instructions harmless if they are analyzed individually. However, it
might be possible that an attacker might infer secret data by combining the information
from them.

An example of this is shown in Figure 4.5, which represents scenario four in the
previous section. Assuming the data lookups in lines two and three cause leakages about
the mask and the masked value, an attacker could use this information to recover the
unmasked value. For example, if both leakages contain the mask m and masked value v,
the attacker can reconstruct the original value by calculating m & v.

Unfortunately, it would be crucial to catch those cases during the analysis of random-
ized implementations since this case covers correct blinding implementations that leak
information. For example, Microwalk would miss that any leakages of the mask besides

leakages of the masked value in the same execution are critical. Microwalk would not

—36—

4 Statistical leakage test

report any vulnerabilities in the implementation since each leakage is not vulnerable
independently. These leakages might be detectable by performing the leakage test for
all subsets of potentially leaking instructions. Due to the number of 2" — 1 non-empty
subsets with n being the number of leaking instructions, this approach is unpractical for
real-world scenarios with plenty of potential leaking instructions. It might be possible to
catch these kinds of composite leakages by combining all histograms from Section 4.2.3 for
all instructions that were assumed not to be leaking information. In scenarios with a lot
of leakages, however, it is likely that the number of critical instructions is too low and does
not influence histograms in a significant way. Reducing the amount of information in
such aggregated histograms and applying the statistical test afterwards might be relevant
for future studies.

We conclude that Microwalk’s statistical leakage test detects partially randomized
leakages in sample scenarios. Although, it misses other leakages that are composed of mul-
tiple leaking instructions. However, these observations should be verified on real-world
applications in future studies since the amount of data might influence the effectiveness
of this test.

Conclusion

In this thesis, we have implemented and evaluated two techniques to improve Microwalk’s
side-channel analysis. Moreover, this thesis also established some open questions that
could be investigated further in future work.

Firstly, we developed an approach to realign multiple execution traces within an acyclic
directed word graph to improve the accuracy of finding leakages within differential side-
channel analysis tools. Since Microwalk did not realign execution traces beyond the scope
of control flow, we adapted its previous representation of execution traces to support
realigning them. We have shown that this technique improves the analysis of leakages
originating from instructions within conditional branches that were previously not found.
An evaluation has demonstrated that Microwalk detects more potential leakages within
typical cryptographic libraries than it did with the previous approach.

Due to performance limitations within the current implementation, the call graph
construction cannot currently be used to analyze complex libraries. However, general
optimizations within the algorithm and the usage of additional information from dynamic
instrumentation tools during the trace generation could improve the performance of the
call graph construction. Using the new call graph construction approach, Microwalk has
found multiple potential leakages in real-world libraries that could be subject to future
research to verify whether they are critical and report them to the developers if they are. It
could also be interesting to compare Microwalk to other differential side-channel analysis
tools that rely on the pairwise comparison of execution traces.

Secondly, we adopted DATA's leakage test and implemented it into Microwalk, ex-
tending its potential to detect randomized leakages. We have shown in sample scenarios
that it detects incorrect blinding implementations. The results from the evaluation also

illustrate that Microwalk can statistically filter leakages unrelated to the secret. However,

—38—

5 Conclusion

we have also demonstrated that this approach does not detect all kinds of randomized
side channels since it fails to detect composite leakages.

Since we have shown that statistical tests at the instruction level do not find composite
leakages, it remains an open question of how differential side-channel analysis tools
can detect them efficiently without the manual intervention of analysts. Nevertheless,
the current implementation might be able to analyze real-world cryptographic libraries.
Therefore, whether Microwalk can detect critical leakages in real-world applications and
how it compares to other tools capable of analyzing randomized implementations could

be subject to further research.

—39_

Bibliography

Aranha, D.F., Novaes, F.R., Takahashi, A., Tibouchi, M., and Yarom, Y. (2020). LadderLeak:
Breaking ECDSA with Less than One Bit of Nonce Leakage. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, CCS "20. Virtual
Event, USA: Association for Computing Machinery, pp. 225-242. ISBN: 9781450370899.
DOI:10.1145/3372297.3417268. URL: https://doi.org/10.1145/3372297.3417268.

Chaum, D. (1983). Blind Signatures for Untraceable Payments. In Advances in Cryptology,
(Chaum, D., Rivest, R.L., and Sherman, A.T., eds.). Boston, MA: Springer US, pp. 199-203.
ISBN: 978-1-4757-0602-4.

Fraunhofer AISEC (Aug. 2018). DATA. https:/ /github.com /Fraunhofer- AISEC/
DATA. [Online; accessed July 10, 2024].

He, S., Emmi, M., and Ciocarlie, G. (2020). ct-fuzz: Fuzzing for Timing Leaks. In 2020
IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST), pp. 466—471. DOI: 10.1109/1CST46399.2020.00063.

Hennessy, J.L. and Patterson, D.A. (2011). Computer Architecture, Fifth Edition: A Quanti-
tative Approach. 5th. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Chap. 2.
ISBN: 012383872X.

Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., and Sunar, B. (2016). Cache
Attacks Enable Bulk Key Recovery on the Cloud. In Cryptographic Hardware and Embed-
ded Systems — CHES 2016, (Gierlichs, B. and Poschmann, A.Y., eds.). Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 368—388. ISBN: 978-3-662-53140-2.

Irazoqui, G., Cong, K., Guo, X., Khattri, H., Kanuparthi, A., Eisenbarth, T., and Sunar, B.
(Sept. 2017). Did we learn from LLC Side Channel Attacks? A Cache Leakage Detection
Tool for Crypto Libraries. English. CoRR abs/1709.01552.

Irazoqui, G., Inci, M.S., Eisenbarth, T., and Sunar, B. (2014). Wait a Minute! A fast, Cross-
VM Attack on AES. In Research in Attacks, Intrusions and Defenses, (Stavrou, A., Bos, H.,
and Portokalidis, G., eds.). Cham: Springer International Publishing, pp. 299-319. 1SBN:
978-3-319-11379-1.

Kocher, P.C. (1996). Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Advances in Cryptology — CRYPTO '96, (Koblitz, N., ed.). Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 104-113. ISBN: 978-3-540-68697-2.

— 40—

https://doi.org/10.1145/3372297.3417268
https://doi.org/10.1145/3372297.3417268
https://github.com/Fraunhofer-AISEC/DATA
https://github.com/Fraunhofer-AISEC/DATA
https://doi.org/10.1109/ICST46399.2020.00063

Bibliography

Kuiper, N.H. (1960). Tests concerning random points on a circle. In Nederl. Akad. Wetensch.
Proc. Ser. A, vol. 63.1, pp. 38—47.

Langley, A. (Sept. 2010). ctgrind. https://github.com/agl/ctgrind. [Online; accessed
April 4,2024].

Lanzante, J.R. (2021). Testing for differences between two distributions in the presence
of serial correlation using the Kolmogorov—Smirnov and Kuiper’s tests. International
Journal of Climatology 41, 6314—6323. DOI: https://doi.org/10.1002/joc.7196. URL:
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.7196.

Nilizadeh, S., Noller, Y., and Pasareanu, C.S. (2019). DifFuzz: Differential Fuzzing for
Side-Channel Analysis. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 176-187. DOI1: 10.1109/ICSE.2019.00034.

Osvik, D.A., Shamir, A., and Tromer, E. (2006). Cache Attacks and Countermeasures:
The Case of AES. In Topics in Cryptology — CT-RSA 2006, (Pointcheval, D., ed.). Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 1-20. ISBN: 978-3-540-32648-9.

Reparaz, O., Balasch, J., and Verbauwhede, I. (2017). Dude, is my code constant time? In
Design, Automation Test in Europe Conference Exhibition (DATE), 2017, pp. 1697-1702.
DOI: 10.23919/DATE.2017.7927267.

Sieck, F., Berndt, S., Wichelmann, J., and Eisenbarth, T. (2021). Util::Lookup: Exploiting
Key Decoding in Cryptographic Libraries. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS "21. Virtual Event, Republic of
Korea: Association for Computing Machinery, pp. 2456—-2473. ISBN: 9781450384544. DOI:
10.1145/3460120.3484783. URL: https://doi.org/10.1145/3460120.3484783.

Stephens, M.A. (1970). Use of the Kolmogorov—Smirnov, Cramér-Von Mises and Related
Statistics Without Extensive Tables. Journal of the Royal Statistical Society: Series B
(Methodological) 32, 115-122. poI: https://doi.org/10.1111/j.2517-6161.1970.
tb00821.x. URL: https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-
6161.1970.tb00821.x.

Weiser, S., Schrammel, D., Bodner, L., and Spreitzer, R. (Aug. 2020). Big Numbers -
Big Troubles: Systematically Analyzing Nonce Leakage in (EC)DSA Implementations.
In 29th USENIX Security Symposium (USENIX Security 20), USENIX Association,
pp. 1767—-1784. ISBN: 978-1-939133-17-5. URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/weiser.

Weiser, S., Zankl, A., Spreitzer, R., Miller, K., Mangard, S., and Sigl, G. (2018). DATA -
Differential Address Trace Analysis: Finding Address-based Side-Channels in Binaries. In
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018, (Enck, W. and Felt, A.P., eds.). USENIX Association, pp. 603—620. URL: https:
//www.usenix.org/conference/usenixsecurity18/presentation/weiser.

https://github.com/agl/ctgrind
https://doi.org/https://doi.org/10.1002/joc.7196
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.7196
https://doi.org/10.1109/ICSE.2019.00034
https://doi.org/10.23919/DATE.2017.7927267
https://doi.org/10.1145/3460120.3484783
https://doi.org/10.1145/3460120.3484783
https://doi.org/https://doi.org/10.1111/j.2517-6161.1970.tb00821.x
https://doi.org/https://doi.org/10.1111/j.2517-6161.1970.tb00821.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1970.tb00821.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1970.tb00821.x
https://www.usenix.org/conference/usenixsecurity20/presentation/weiser
https://www.usenix.org/conference/usenixsecurity20/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser

Bibliography

Wichelmann, J. (Nov. 2022). Microwalk Pipeline. https:/ / github . com / microwalk -
project / Microwalk / blob / 02904d4afc191454dffa8791dbb2431c78d9f293 /
resources/images/MicrowalkPipeline.drawio. [Online; accessed June 15, 2024].

Wichelmann, J., Moghimi, A., Eisenbarth, T., and Sunar, B. (2018). MicroWalk: A Frame-
work for Finding Side Channels in Binaries. In Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC’18. San Juan, PR, USA: Association for Comput-
ing Machinery, pp. 161-173. ISBN: 9781450365697. DOI: 10.1145/3274694.3274741. URL:
https://doi.org/10.1145/3274694.3274741.

Wichelmann, J., Peredy, C., Sieck, F., Pitschke, A., and Eisenbarth, T. (2023). MAMBO-V:
Dynamic Side-Channel Leakage Analysis on RISC-V. Lecture Notes in Computer Science,
Springer Nature Switzerland, pp. 3—23. ISBN: 9783031355042. DOI1: 10.1007/978-3-031-
35504-2_1. URL: http://dx.doi.org/10.1007/978-3-031-35504-2__1.

Wichelmann, J., Sieck, F., Pitschke, A., and Eisenbarth, T. (2022). Microwalk-CI: Practi-
cal Side-Channel Analysis for JavaScript Applications. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS 22. Los Angeles,
CA, USA: Association for Computing Machinery, pp. 2915-2929. ISBN: 9781450394505. DOI:
10.1145/3548606.3560654. URL: https://doi.org/10.1145/3548606.3560654.

Xiao, Y., Li, M., Chen, S., and Zhang, Y. (2017). STACCO: Differentially Analyzing Side-
Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS’17. Dallas, Texas, USA: Association for Computing Machinery, pp. 859—-874. ISBN:
9781450349468. DOI: 10.1145/3133956.3134016. URL: https://doi.org/10.1145/
3133956.3134016.

Yarom, Y. and Falkner, K. (Aug. 2014). FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-Channel Attack. In 23rd USENIX Security Symposium (USENIX Secu-
rity 14), San Diego, CA: USENIX Association, pp. 719-732. ISBN: 978-1-931971-15-7. URL:
https://www . usenix. org/ conference / usenixsecurity14 / technical - sessions /
presentation/yarom.

Zankl, A., Heyszl, J., and Sigl, G. (2017). Automated Detection of Instruction Cache Leaks
in Modular Exponentiation Software. In Smart Card Research and Advanced Applica-
tions, (Lemke-Rust, K. and Tunstall, M., eds.). Cham: Springer International Publishing,
Pp- 228-244. ISBN: 978-3-319-54669-8.

—42 —

https://github.com/microwalk-project/Microwalk/blob/02904d4afc191454dffa8791dbb2431c78d9f293/resources/images/MicrowalkPipeline.drawio
https://github.com/microwalk-project/Microwalk/blob/02904d4afc191454dffa8791dbb2431c78d9f293/resources/images/MicrowalkPipeline.drawio
https://github.com/microwalk-project/Microwalk/blob/02904d4afc191454dffa8791dbb2431c78d9f293/resources/images/MicrowalkPipeline.drawio
https://doi.org/10.1145/3274694.3274741
https://doi.org/10.1145/3274694.3274741
https://doi.org/10.1007/978-3-031-35504-2_1
https://doi.org/10.1007/978-3-031-35504-2_1
http://dx.doi.org/10.1007/978-3-031-35504-2_1
https://doi.org/10.1145/3548606.3560654
https://doi.org/10.1145/3548606.3560654
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1145/3133956.3134016
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	1 Introduction
	1.1 Contributions of this thesis
	1.2 Structure

	2 Background and related work
	2.1 Caches
	2.2 Microarchitectural side-channel attacks
	2.3 Side-channel prevention
	2.4 Dynamic side-channel leakage analysis
	2.5 Microwalk

	3 Alignment of multiple execution traces
	3.1 Call tree construction
	3.2 Problem
	3.3 Idea
	3.4 Implementation
	3.5 Verification
	3.6 Evaluation

	4 Statistical leakage test
	4.1 Idea
	4.2 Leakage test
	4.3 Evaluation

	5 Conclusion
	Bibliography

