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Abstract

Modern high performance electronic devices often rely on PCIe to perform inter-chip communica-
tions in a fast manner. Due to increasing demand for new features with the goals such as improving
the throughput even further, reducing power consumption or adding new administrative and virtu-
alization capabilities the already complex and organically grown PCIe protocol is becoming even
more complex. Furthermore the once internal protocol is exposed to outside connections for quite
some time now and reprogrammable devices are exposed to both external connections as well as
the PCIe network for an equally long period of time.
Having a PCIe fuzzer capable of sending arbitrary TLP messages might prove to be a valuable tool
for analysing the exposed interfaces and thus hardening the protocol. In this thesis we are going
to describe our path towards implementing one using an Intel Agilex F-Series Field Programmable
Gate Array development kit with an PCIe x16 interface capable of being modified to send arbitrary
TLP messages.
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Zusammenfassung

Moderne Hochleistungselektronik setzt häufig auf PCIe um eine schelle Kommunikation zwis-
chen einzelnen Computerchips zu gewährleisten. Aufgrund der steigenden Anforderungen an die
Geschwindigkeit, Virtualsierungsfunktionsdichte und Energiespareigenschaften, wird das, ohnehin
schon sehr komplexe und organisch gewachsene, PCIe Protokoll zusehends komplizierter. Erschw-
erend kommt hinzu, dass dieses Protokoll, welches historisch betrachtet, nicht dazu gedacht war,
mit der Außenwelt in Kontakt zu stehen, seit einiger Zeit auch für externe Verbindungen genutzt
wird. Zu guter Letzt sind außerdem rekonfigurierbare Komponenten, welche an das PCIe Netz
eines Gerätes angeschlossen sind, keine Seltenheit mehr.
Die Fähigkeit, mithilfe eines FPGA basierten PCIe Fuzzers, diese offenen Schnittstellen unter-
suchen zu können, könnte sich in der Zukunft als ein Wertvolles Werkzeug erweisen, um das PCIe-
Protokoll und die verbundenen Geräte ab zu sichern. In dieser Arbeit beschreiben wir, wie wir einen
solchen Fuzzer auf Basis eines Intel Agilex F-Series FPGA Entwicklungsbausatzes gebaut haben,
welcher in der Lage ist, mithilfe der PCIe x16 Schnittstelle beliebige modifizierte TLP Datagramme
zu versenden.
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1 Introduction

Prior to understanding how we build a fuzzer we may discuss why we did it.

1.1 What is this PCIe thing all the cool kids are talking about?

First of all we will gain some insight on what PCIe is and why it is an interesting thing to look at
from a security stand point.

1.1.1 What is PCIe and where does it come from?

PCIe (which is short for "Peripheral Component Interconnect - Express") is a switched network
connecting various components on and between printed circuit boards (PCB) enabling them to
communicate with each other. The main advantages of using PCIe instead of any are interconnect,
are that PCIe is extremely wide spread which results in great compatibility of components and the
high data transfer rates it achieves while providing comparatively stable signaling.

Modern PCIe does not have a lot in common with its first predecessor presented by Intel in 1991.
Most notably it is not a BUS anymore1. Instead it consists of multiple serial connections (referred
to as "lanes") between individual components (a single root port, multiple switches and multiple
end points and nowadays even firewalls). All of these components route packages to their requested
destination but they behave differently doing so:

• An End Point is a member of a PCIe network whose job is to provide an actual device (for
example a NIC) to the PCIe network (and thus to the computer we use). Almost all PCIe end
points provide some kind of MMU in order to provide access to memory mapped I/O (see
info box 1.1.1).

• The Root Port is a special kind of end point. It is the one that enumerates all other devices
on the PCIe bus, configures them and has the final word on power management. Usually a
CPU acts as the root port.

• A Switch is a device providing only minimal configuration registers. Its purpose is limited
to forwarding packages received from other network members to their destination members.
Some switches also perform certain packet processing techniques.

1Although it is still referred to as a "bus"
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1 Introduction

• A Firewall is a device that can be configured to only pass through packets if certain criteria
are matched. Usually these criteria include TLP type, source and destination address. Some
also perform advanced packet inspection and processing but those are quite rare.

Like most (if not all) modern electronic communication protocols, the PCIe protocol can be sepa-
rated into layers each fulfilling a different task. The first layer (Layer 1) is referred to as the physical
layer. Its job is providing a synchronous serial lane between two devices. This layer does not know
about other PCIe lanes let alone other devices than the two it provides direct connectivity for. The
second layer is referred to as the data link layer. Its job is to bind the individual physical lanes
(usually x1, x4, x8, x16 or x32) into a logical link and perform basic error detection and correction
tasks. It also makes sure that a packet that got lost between the two devices will be resend if the
package is still within the buffer of the sending device. However this layer does not guarantee that
a packet will not get lost or altered (due to transmission error or maliciously). The third layer is
called the transaction layer. Its purpose is to send messages between devices with multiple hops.
This layer is also supposed to ensure that broken packages will be resent and all packages arrive.
There are multiple types of transaction layer packets with different purposes which are listed below
(see Table 1.1) together with their type flags as listed within the PCIe spec[PCI06]. A more detailed
description of a TLP2 can be found at subsection 2.5.3,where we explain how to generate those.
The fourth (and possibly further) layer(s) are application specific.

Info 1.1.1

Memory Mapped I/O is a methology where control registers (and even entire device memo-
ries) are mapped into the virtual address space of other devices. Using this method to configure
and control devices is much faster and flexible than other methods (such as special processor
instructions) used in the past since implementing a driver for a certain feature does not require
interacting with special hardware registers. Instead a process can simply map the correspond-
ing memory into its own address space and write to device registers like own variablesa. This
works both for kernel processes as well as userland processes as long as systems like the Linux
/dev/mem wrapper exist.

aIt is also common to declare static volatile variables for particular device registers

Besides the above mentioned primary types defined by the Type field, there exist further types
(like power management or proprietary vendor specific ones), which are defined by the Fmt field
and some type values are reserved for future use. There are also some "forbidden" combinations
of Type and Fmt that should not be used, which are designed for error detection. Although these
should not exist in real communication some vendors decided to use them for internal features.

2Transaction Layer Packet – Layer 3 of PCI. Basically all acronyms are explained when they are first used but can also
be looked in the glossary.
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1.1 What is this PCIe thing all the cool kids are talking about?

Table 1.1: Most important TLP packet types
Fmt[7:5], Type[4:0] value Name Description

"00B 0000B"h Memory read Read the memory content at the specified
address

"01B 00000"h Memory write Write to the specified memory location
"000 00010"h I/O read Deprecated: Read an I/O value
"010 00010"h I/O write Deprecated: Write to an I/O register
"000 0010B"h Configuration read Read a value from the destination devices

PCIe configuration registers
"010 0010B"h Configuration write Write a value to a PCIe configuration reg-

ister of the destination device
"0BB 10BBB"h Message Vendor specific PCIe messages. They are

often used to implement interrupts

Hence they are usually not filtered as some devices would break without them and there are colli-
sions in the meaning between different vendors. Last but not least there are combinations of Type
and Fmt which are only mentioned as deprecated in the specification and some that are described
as "confidential". — In short: It is a mess.

Info 1.1.2

Register notation: Specifying a name followed by [A : B] means that the bits corresponding
to said name are the bits A down to B. For Example "Fmt[7:5], Type[4:0]" means that the
bits 7 to 5 of the byte correspond to Fmt and the bits 4 to 0 correspond to Type. Prior one
saw the usage of bit strings (for example "000 00010"h or "01B XZ010"h). These are
simply a list of all bits right next to each other. The first bit is the most significant (in this
case 7) one and the last bit the least (in this case 0). A 0 refers to the logical ’0’ (respectively
’LOW’), 1 means a logical ’1’ or ’HIGH’, B means that depending on the case the value might
be ’0’ or ’1’, Z means high-impedance (I will get to that later) and last but not least X means
"we do not care". The optimizer may choose either ’1’ or ’0’ – which ever way proves to
be beneficial – in that last case. There are other notation symbols that are less common and
will be introduced once they become necessary.
The h at the end of that string indicates that we are dealing with 9-way logic. If we are only
dealing with binary logic, and want to emphasize this, we may write a b instead.
One thing to look out for: hardware people as well as some computer scientists start counting
at 0. This means that the first bit is referred to as bit 0 and the last will be, for example, 31 if
the word is 32 bit long in total.
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1 Introduction

1.1.2 Why is PCIe security important all the sudden?

So there are some chips in the computer that talk to each other — What is the deal? Until the early
21st century one could say that what happens on your motherboard stays on your motherboard.
This is not true anymore. It has been shown that remotely compromised hardware may cause harm
to your sensitive data[DPVL10][DPM11] and any device connected to the PCIe network may steal
secrets from memory[MRG+19]. It does not help that exposing PCIe over thunderbolt or USB4 is
becoming mandatory[USB21]. Furthermore one can rent FPGAs, GPUs and other accelerators in
the cloud. Assuming that one would be able to somehow send arbitrary messages to other devices
from such accelerators one could theoretically compromise other devices and in turn steal or alter
other parties (secret) data.

Last but not least there is a huge trend in the industry[VD19] to connect more and more devices
with each other without having a CPU in the middle. This approach has the advantage of having
less bottlenecks but enforces each device to care for its own security (and sometimes safety). As
security considerations tend to become more complex from generation to generation and every
device needs to implement the entire security stack perfectly, it is becoming more and more likely
that a link in the chain breaks.

Unfortunately the efforts of PCIe hardware and software vendors do not seam to reflect these re-
quirements well. Since in the future we can expect DMA (over PCIe) to be the default way to go
with our increasing bandwidth demand, we should make sure we at least know what is going on.

1.1.3 Wait. They access your memory now and (almost) never tested it for bugs?

Of course we are not the first looking into PCIe security matters. There are plenty of people looking
into operating system security in regards of PCIe. The most relevant are described below.

Bypassing IOMMU Protection against I/O Attacks This paper [MANK16] shows that an
attacker having access to the PCI(e) bus using either their own hardware (or design on an FPGA)
or compromising other hardware within the system may gain access to the systems main memory
due to a lack of proper IOMMU (see info box 1.1.3) usage and misconfiguration. They show that
the security model highly depends on correct usage of MMUs and show that (at least at the time of
their writing) the Linux kernel failed to properly utilize the IOMMU.

Info 1.1.3

The IOMMUs are a special kind of MMU found on many x86 based computers. Its purpose
is to translate between a CPUs main memory and a virtual address space of a device attached
to the PCIe network.

4



1.1 What is this PCIe thing all the cool kids are talking about?

Thunderclap While the Thunderclap paper[MRG+19] was not the first to reveal massive is-
sues with DMA security measures, they show that IOMMU protection on Intel based hardware can
be bypassed due to bad implementation of this feature in most common operating systems (here:
Microsoft Windows, Linux, macOS and FreeBSD). They focused their work on PCIe enabled exter-
nal peripherals (they assumed this to be the only practical way to send untrustworthy PCI messages)
but any device connected to the PCI(e) bus is capable of such actions. While some of the vulnera-
bilities they have found, are allegedly fixed by the operating system vendors, some of them are not.
The authors also note that IOMMU protection is disabled by default in most operating systems due
to performance issues3. Last but not least they show that complete protection from such attacks is
impossible with the current architecture as the 4K page overlaps are too widespread across RAM
for most devices and driver implementations.

Info 1.1.4

Thunderbolt is a proprietary external interconnect developed by Intel, becoming mandatory
with USB 4.0, that routes direct PCIe lanes outside the computer and hence requires additional
security measures. Such security measures include proper configuration of all MMUs a device
has as well as performing checks that should make sure that only "trustworthy" devices acquire
DMA access. Due to the ongoing demand in high speed peripherals and Thunderbolts high
bandwith characteristics, Thunderbolt is seeing a widespread adoption on desktop computers,
laptops, phones and other consumer devices.
Further information can be obtained from the corresponding specifications for USB 4.0
[USB21] which is the first public specification of thunderbolt as its previous versions were
proprietary.

Thunderspy The thunderspy paper[Ruy20] is yet another example of Thunderbolt devices (for
example PCIe/NVMe thumb drives) performing DMA attacks on victim computers. In this paper it
is being made clear that existing IOMMU protection is flawed to say the least and that Thunderbolt
firmware verification is really easy to bypass. They also show further flaws in the IOMMU design
by Intel. In addition they published tools on their website that promise to alleviate the dangers
of having non disabled Thunderbolt ports combined with flawed operating systems by correctly
configuring the devices MMUs on boot.

NetTLP The NetTLP[KNMS20] project provides a way to send TLP (Transaction Layer
Packet, Layer 3 of PCIe) packets directly over TCP/IP. Unfortunately the FPGA they have selected

3Even though modern MMUs are build for performance they still imply a performance penalty compared to just raw
pointers. Manufactures go to great effort, to fix these performance issues while trying to maintain a reasonable level
of security.
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performs extensive data integrity checks in hardware prior to sending the TLP packets making
sure one can only tamper with the TLP payload rendering their project a PCIe Layer 4 to Ethernet
adapter. This was used to debug and test operating system driver implementations.

1.2 What is Fuzzing and why do we do it?

First of all we will look into what fuzzing is. We will see why we are doing it and what kind
of fuzzers there are. Last but not least we will look into what we are dealing with when we are
approaching PCIe fuzzing.

1.2.1 What is Fuzzing?

Info 1.2.5

A bug is an issue with a computer system (within its hardware or software) commonly caused
by flawed design. Some of those bugs are of minor importance while others may severely
impact the health of the system or lead to data corruption or leakage. Further information on
the classification of certain bugs as well as a funny anecdote on where the therm bug originated
can be reviewed in the work "Etymology of the computer bug". [Sha87]

Fuzzing is a technique where one inserts malformed data into a system and records abnormal be-
haviour. One then analyses what part of the data caused the issue. A data set entry is called a fuzz
case and an issue that is triggered by one or multiple fuzz cases is called a bug (see info box 1.2.5
for further information).

As one is searching for bugs using flawed data one does not know exactly what such data looks like
in advance. Due to this limitation one has to try numerous combinations of such data in order to
find working (e.g. breaking) cases. Hence one measures the quality of a fuzzer by the effectiveness
of the fuzz cases it produces, the variation of bugs it finds (different fuzz cases might trigger the
same bug) but also the speed at which the fuzzer is able to test the system (measured in fuzz cases
per second or FCPS).[LPJ+18]

1.2.2 Why is this a great thing?

While there are other techniques for finding bugs in foreign designs, a fuzzer is a good approach as
it is quite easy to begin with and usually results in quite deep analyses. Other popular methods are:

• Static analysis is generally speaking trying to find issues by looking at the implementation
of a system. When done by human experts this technique proves to be rather effective but
does not scale well. There are also pieces of software to statically analyse other software and

6
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while using such tools proves to scale well for larger software these tools tend to be quite
error prone.

• Dynamic analysis is done by defining a set of forbidden states a system may never enter.
When the system under test reaches one of these states a human has to research how the
system entered the state and fix the issue. While this approach works well for systems where
it is quite easy to observe the state the system is in, it is also quite labour intensive to just
debug a single fault.

• While the two above-mentioned alternatives to fuzzing are used wildly, Symbolic execution
is mainly of academic interest due to its tendency towards exponential complexity. In theory,
one models the entire system as a set of symbolic equations and defines forbidden states.
One then solves the equation system towards the forbidden states and obtains the bugs of
said system. Unfortunately this has only ever been done for very small software programs as
every new path within the system at least doubles the amount of possible states.

Due to the obvious disadvantages of the above-mentioned alternatives (most notably the common
need for perfect observability of the system), fuzzing can be considered a good approach for testing
hardware.[LZZ18]

1.2.3 What kind of fuzzers are there?

There are multiple approaches to fuzzing. All have in common that they try to produce test cases
that discover as many distinguishable bugs as possible, but differ on how they try to reach this goal.
The most important distinction lies in the dependence on having access to the inner workings of the
design under test (later called DUT).

If the fuzzer has complete knowledge of the inner workings and states of a system one calls the
fuzzer a white-box fuzzer. If the fuzzer cannot access the source code (in our case, the hardware
schematics in some form) of a system but is capable of tracing the state of execution (software:
for example by performing taint analysis[GS17], in our case for example by probing state machine
counters) one calls such a fuzzer a grey-box fuzzer. If a particular fuzzer does not have access to
both information, it is known as a black box fuzzer.[MHH+19]

One classifies fuzzers also by their usage (and acquisition) of feedback from the system under
test. A fuzzer which is not using feedback is considered to be a dumb fuzzer. One that is using
feedback such as areal coverage of the fuzz cases is considered to be a smart fuzzer. Usually smart
fuzzers are way slower but produce slightly better fuzz cases and thus are considered to be more
efficient.[VKC17][LPJ+18]

Furthermore one can classify fuzzers based on the way they generate their fuzz cases. A mutation
based fuzzer does not know how the input needs to be formed in order to achieve good coverage.

7
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Instead it "mutates" a given set of input data and inserts the result. A generation based fuzzer on
the other hand knows how input needs to be crafted in order to reach deep paths within the system
under test and generates fuzz cases using that knowledge. A generation based fuzzer often uses an
input grammar to craft the input data.

Last but not least one can further classify fuzzers having knowledge about their DUT (white- and
grey box fuzzers) based on their approach of coverage. A directed fuzzer tries to reach a specified
target that might lay deep inside the system. A coverage-based fuzzer tries to maximize its total
coverage of the system.

1.2.4 The caveats of fuzzing hardware instead of software

According to multiple papers dealing with fuzzing[LZZ18][LPJ+18] [GWY+15][MHH+19] it is
always a nice thing to know how input affects the system one wants to test. Unfortunately such
information is hard to obtain when dealing with hardware. The following possibilities exist (in
ascending order of difficulty):

1. Using the response channels of hardware: more complex circuits tend to have signals that
tell the user if a certain action succeeded. One can monitor these channels for unexpected
behaviour.

2. Measuring the response time of a circuit. If a circuit does a particular action one expects the
circuit to perform it in more or less constant time. If there is a large deviation of time one
can assume that the circuit either reached a bad state and had to reset itself or did something
that it was not supposed to do. Either way it notifies a human to take a closer look on what
was going on.

3. Measuring side-effects. When we are talking with a NIC we do not expect other devices on
the same BUS to answer or even perform undesired action. The same goes for other chips on
the PCIe network.

4. Measuring side-channels for coverage: Electronic circuits consume power when operating
and while doing so they emit heat and a magnetic field. One can measure these three param-
eters and deduce the area of effect (coverage) on the chip.

1.2.5 Other (more classical) approaches to testing hardware

Fuzzing hardware is a quite new approach. The default methods of testing hardware usually involve
elaborated testing of smaller modules using simulation and formal verification both manually and
by utilizing automated tools. Integration tests are usually limited to answering the question "Does
it work?" by either manual testing or running suits of predefined tests automatically. The most
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common way of doing so is writing an input file (or a firmware) that is supposed to trigger every
hardware feature at least once and if the end of said file is reached without any detected errors the
hardware is considered to be working.

The upside of doing so is that it is fast. Having a short time to market4 is crucial for companies
delivering hardware. The downside is that it is quite common that one encounters major issues
with hardware that is already on the market. Perhaps the most common examples of such issues are
the pentium bugs[Pra95] and the recent plenitude of side channel attacks and exploited speculative
execution bugs.

1.3 What is an FPGA

In order to fulfil the requirements of fuzzing hardware we need a device that is capable of injecting
arbitrary data on the PCIe network.

1.3.1 Why can’t we simply use some microcontroller and call it a day?

Microcontrollers are little processors that you can program using your favourite programming lan-
guage. They are easy to use, real flexible and cheap. They usually are the first choice for building
things that interact with hardware. Unfortunately we can not use one for our purposes.

So we want to fuzz some hardware (PCIe components in our case). This means that we can not use
microcontrollers because we need to have access to a layer that is as low as possible in the protocol
stack. Although there are some microcontrollers that are actually capable of communicating using
the PCIe protocol, they enforce a great deal of error detection and correction and offer a very
generalized interface for programming. Usually this is a good thing but not for fuzzing since that
involves sending corrupted data.

Fortunately some FPGAs allow us to do so.

1.3.2 What exactly is an FPGA then?

The acronym FPGA is short for Field Programmable Gate Array. The name says it all. It is an array
of gates that do not form a hardware circuit on their own. The logic gates need to be connected first
in order to obtain something useful and this can be done "in the field" (outside the chip factory).
The process of connecting those logic gates (or in reality look up tables, but more on this later) is
called configuring or programming.

The benefits of having an FPGA instead of having a fixed chip or classic Gate Array or Complex
Programmable Logic Device (CPLD) are numerous. Here are the points that are relevant to us:

4Time required to finish a product and starting to sell it
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• We can actually afford one. It is way cheaper to buy an FPGA kit than getting someone to
produce your own chip design.

• Contrary to CPLDs one can configure an FPGA as often as one wants to as long as your
design does not damage the hardware. One does not have to buy a new one if the design is
not working or needs to be changed for some reason.

1.3.3 The gotchas of working with a big FPGA

Besides consisting of countless logic building5 blocks and their interconnects (which combined
is called the fabric) modern FPGAs also feature so called hard IP (where IP generally means In-
tellectual Property which is some hardware that you did not design by yourself but use in your
design).

Usually such hardware is necessary since the inner workings of a particular FPGA remain a well
kept industry secret6 and one cannot implement own hardware in a serious manner without them.
Popular examples for such elementary building block IP are PLLs for dealing with clock boundaries
(see info box 1.3.6), BRAMs for having on chip storage or DSPs for performing complex arithmetic
operations such as (floating point-) multiplications or FFTs in a space and time efficient manner.

Info 1.3.6

Clock Boundaries are areas in your hardware where circuit A and circuit B need to exchange
data with each other but both circuits use different clocks and thus are not synchronized.
These clocks may run on different frequencies and may have a non-zero phase shift, may have
different duty cycles or different setup and hold timings. Based on the knowledge of the nature
of the data to be transmitted and knowledge of the clocks in use, one needs to design special
behaviour on these boundaries in order for the data transfer to not loose or damage any data.
Such transmission hardware can be arbitrarily complex.

The downside of such plenitude of functionality is complexity. Complexity of hardware is the root
cause of long synthesis times (even our little fuzzer design takes well over an hour to synthesize
even on a very powerful computer7) and a lot of issues to think about. This makes it practically
impossible to use the popular programmers approach of rapid prototyping so one needs to adopt a
new work algorithm:

1. Think how you like your hardware to function

5The most common logic devices are: Lookup Tables (LUT), Arithmetic Logic Units (ALU) and Muxes
6There are significant attempts from the open source community in providing FOSS toolchains for dealing with FPGA.

[SHW+19] While writing those tools, they also document the inner workings of popular models.
7Recommended system specs for building the project are more than 32 GB of memory, at least 500 GB of free disk

space and as many fast CPU cores you can get.
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2. Design your hardware module

3. Simulate your module and (if possible) use a formal verifier to proof that your hardware
works (at least in theory)

4. Fix your hardware if it does not work in simulation (most of the time one needs to deal with
bad timings)

5. Pray that your module will work in its final place.

Unfortunately a simulation is only as good as the model it is based on and if one forgot to add
certain constraints it is still possible that hardware works perfectly fine in simulation but fails in
reality. Part of this is due to the fact that while working with small FPGA one does not have to think
about clock and reset trees. When working with big ones one has to make sure the signal arrives at
the right time and think about clock distribution.

1.4 What others already have done

Of course we are not the first ones looking into this matter. Let us gain some insight into other
contributions in this field.

1.4.1 Google PCIe Fuzzing

In 2017 researchers at Google already had a look at IOMMU security[Han17]. They built a system
that searched the entire address space of a server to check if their MMUs within their cloud services
were correctly configured. Unfortunately there are no further information on this matter. All we
could find was a press notice and no paper or extended results.

1.4.2 The Pulsar paper

The Pulsar paper[GWY+15] references a collection of smart algorithms for black box fuzzing of
proprietary network protocols. They used records of unknown clients and servers in order to create
fake clients and fuzz the server without knowing implementation details of either of them. This
revealed certain starting points for designing our payload generator.
Unfortunately hardware usually does not return such comprehensive error messages and thus we
can not use their techniques directly but they are an inspiration for sure.

1.4.3 The Agamotto fuzzer and related work

Agamotto[SHK+20] is a VM-Based PCIe fuzzer. It fuzzes TLP payloads from a VM in order to
test devices the VM has access to with the intention to harden kernel based virtualization. It is also
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used the other way around to test device drivers within the kernel by emulating these devices for the
VM under test. Their fuzzer is based on AFL8. Unfortunately it is not possible to generate arbitrary
TLP messages or send messages to a real device. Due to this limitation we consider this to be a
layer 4 fuzzer.
Based on the Agamotto fuzzer or using a similar approach there are some other projects dedicated
to hardening kernel drivers and hypervisors by fuzzing their input buffers using various payloads.
The only one of those we found even considering PCIe to be an issue is the hyper cube paper
[SAA+20]. Some smaller projects within the Linux community did not produce papers though.

1.4.4 PCIe Man-In-The-Middle

The "Toward a Hardware Man-in-the-Middle Attack on PCIe Bus" paper[KLR+20] describes the
approach of using an FPGA to log data transactions occurring on a PCIe link. They want to use
this technology to obtain information required to unlock a smartphone in the setting of forensic
analyses. They demonstrated this capability on a simulation platform and would like to enhance
their setup to perform replay attacks in order to trick a smartphone into allowing endless pin entries
without locking the storage. They are currently using an Intel Stratix 10 FPGA to read the data but
want to switch to an Intel Arria 10 in the future due to its advanced PCIe capabilities.

1.5 What is the goal of this work?

Just prior to getting into on how to build a fuzzer we may recapitulate on what we are trying to
achieve. PCIe is one of – if not the – most important high speed interconnect in todays computers,
ranging from smartphones over laptops to servers and supercomputers. Devices connected over
PCIe are usually granted read and write access to various memory locations of other connected
devices. Furthermore this interconnect provides numerous other features that are fairly new and
thus untested as well as ones that are mostly forgotten while still being present and providing
powerful access to hardware functionalities. While there are significant barriers towards efficiently
testing PCIe it is still surprising how little research there seams to be.
Having a tool capable of efficiently fuzzing devices connected to this network could help closing
the gap between the lack of research and the potential security implications of using PCIe.
We would like to engineer an FPGA design capable of sending raw unfiltered Transaction Layer
Packets. While doing so we solve the issues of using the given hardware outside of its intended
purpose. Furthermore we discuss a way to judge the outcome of fuzz cases without being capable of
directly observing the state of the target hardware. Last but not least we demonstrate the workings
of the fuzzer.

8https://github.com/google/AFL
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2 Building the Fuzzer

Let us start with the actual development of the fuzzer.

2.1 Preparations

Prior to getting started we need to decide on what we are targeting and how we would like to do so.

2.1.1 Reading through the PCIe specs and select desired targets

First of all we read the PCIe specifications for revision two in order to get an idea of what needs to
be done and what are worthy targets for a fuzzer. The reason that we started with revision two was
due to it being easier to obtain. Later we also took a look at revision 4.

We quickly realized that Layer one and two of the PCIe protocol are not interesting in terms of
fuzzing them. Layer one, while being complicated in terms of physical properties does not come
with anything to fuzz at all and layer two only features a state machine which either works or does
not. Those two layers do not seem to be that complicated at all and manufacturers probably get
them right. Layer 4 of the PCIe protocol, while also being really interesting in terms of attack
surface, is out of scope of this work due to the fact that testing this layer from software is supposed
to be quite simple. All one has to do is to write a driver that sends the data one likes and record the
behaviour9.

Layer three turned out to be a completely different story. It is filled with all kinds of configuration
registers, especially with revision 4, that are hard to reach, if not impossible, from an operating
systems perspective. These registers also represent a deep intervention into the inner workings of a
device. If for example one could trick the configuration of SR-IOV into switching virtualization do-
mains an attacker VM would have access to all the data a victim VM loaded on a rented accelerator
in a cloud environment.

2.1.2 Reading through manufacturers documentation to find suitable hardware

So we found our target layer which proved to contain a lot of interesting targets that are complicated
to implement and hard to test. The only downside is that they are actually hard to reach. One needs
to send specially crafted TLP to reach them and user applications (both hardware and software) are

9As it turns out it is still complicated enough to write a separate paper about how you did it in addition to the paper
about the results you got.
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not supposed to directly invoke these features. Users should only configure their own hardware the
way these features are supposed to function and let the hardware deal with the rest.

As a consequence we are looking for FPGAs capable of transmitting raw and unmodified Trans-
action Layer Packets from user configuration space without filtering those out that are considered
to be malformed. Unfortunately this does not seem to be a common use case. Some server grade
FPGA support our use case, although not directly.

So we decided to acquire an Intel Agilex F-Series dev kit for PCIe 10 and contacted a merchant.
This FPGA is much larger in terms of fabric size than we would ever need but it features a P-Tile
capable of performing the plain packet bypass we need.

About one month later we have received the FPGA and began building a test bench for working
with it.

2.1.3 Designing an architecture

When beginning a bigger project it may be wise to first think about what one wants to accomplish.
A fuzzer needs a way to send its test cases to the DUT. It also needs some form of control system
that is capable of deciding what to send next and one that is capable of processing the results.
Furthermore, we need modules that are capable of maintaining a steady connection to the connected
PCIe devices.

Our goal is to use ready made IP where possible and to engineer the remaining modules ourselves.

The Diagram 2.1 gives an overview of our SoC design. Of course the real architecture contains
further components, such as necessary memories, protocol converters, timers, PLLs, etc. that are
not drawn here for the sake of simplicity.

On the right side we have drawn the components essential for maintaining a PCIe connection as
well as actually sending data through the PCIe interface. Besides a Phy for that interface, which is
the P-Tile, we also need modules for managing the connection state as well as modules designed to
react to power management hints in time. In the centre of Figure 2.1 we see a big module named
’Fuzzing Controller’. Its purpose is to instruct the package generation module as well as having an
overall eye on the process of fuzzing. The development of this module is described in Section 2.6.

Having a piece of hardware that can fuzz the PCIe network is no good without actually being able to
extract the results from it as well as controlling it. This is where the left side of the above mentioned
diagram comes into play. Hence we need some kind of software driven processor that we can use
to do so.

10https://www.intel.com/content/www/us/en/programmable/products/boards_and_kits/
dev-kits/altera/kit-agf-fpga.html
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Figure 2.1: Simplified Architecture of our Fuzzer

Info 2.1.1

A Finite State Machine (or short FSM) is a piece of hardware that resides within one of a
collection of predefined states. On every rising edge clock cycle the FSM may perform a set
of predefined actions, like outputting or transmitting something. On every falling edge clock
cycle it transitions to a new state while the new state might be the old one.
A FSM closely matches the concept of a DFA with output as known from theoretical computer
science. The reason a lot of hardware is implemented in some form of FSM is due to its
simplicity and robustness.

As a consequence, we decided to utilize the HPS as our control instance for setting fuzzing patterns,
starting, pausing, resetting the Fuzzer as well as conditioning the results. Our development kit
features a gigabit Ethernet port that one can connect to the SoC we designed. This enables us to use
features such as SSH to control our experiments and transmit data. For convenience and debugging
matters we also decided to add a simple UART connection as even the simplest bootloader prompt
is capable of dealing with it. The entire development process of the HPS is described in Section
2.3.

Furthermore we decided to implement the packet generation and connection state management as
Finite State Machines (see info box 2.1.1) in hardware. Self-evidently we implemented all other
required pieces for communicating over PCIe in hardware as well. Intel provides us with an IP
block for decoding layer 2 of PCIe called the P-Tile though. We can interface with it in order to
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Table 2.1: Hardware required to perform operations
Purpose OS CPU RAM equipped (used) Required Storage

Synthesis Linux 16 Threads @ 4.5GHz 64GB (about 40GB) 256GB
Programming Windows 6 Threads @ 4.1GHz 8GB (> 8GB) 200GB
HPS Image Linux 32 Threads @ 3.5GHz 128GB (about 20GB) up to 400GB

send the TLPs we need. This is described in detail in section 2.5.

Last but not least we still have two separate chunks of hardware that we still need to interconnect.
This is where the bold arrow in the middle of the block diagram comes into play. As a matter of fact
it is a quite complex module itself, connecting the AXI interface of the HPS to the fuzzing control
FSM. Its development is described in Section 2.4.6.

2.2 Beginning the Odyssey

Designing an entire SoC from the ground up is quite an endeavour. At first one has to lay down the
foundations though.

2.2.1 Setup the build environment

Last but not least we installed Intel Quartus (a piece of software that allows one to synthesize
hardware designs and program the FPGA) which turned out to be surprisingly complicated due to
installers that refused to install device drivers on Microsoft Windows (due to long expired certifi-
cates) and requiring long outdated operating systems when working on Linux.

Generally Quartus works way better when running under Linux as there seem to be quite a few
hard coded paths within software that indicate it was written with a UNIX-like operating system in
mind. At least the Linux version does not complain about not finding the /tmp directory.

So after having downloaded multiple hundred GB of software, edited countless environment vari-
ables and a lot of manual OS patching we are ready to go. One also needs to install the development
tools for the HPS but despite the fact that these tools are distributed all over the place they were
surprisingly easy to install as they did not require fixing first.

Finally we ended up with a test bench computer running Windows for programming matters (the
JTAG driver simply refused to be loaded with any recent Linux kernel) and two powerful Linux
workstations for designing the hardware, synthesis and compiling a firmware for the HPS. Hard-
ware combinations that worked for us are described in Table 2.1.
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2.2.2 Configuring a first Hello World bitstream

Whenever one get new hardware one would like to perform initial tests in order to figure things out.
In particular we tried to achieve the following two things:

• Get some debug lights to blink – This is a common "Hello World" example when working
with FPGAs as it shows one how the clocks work and how one configures the FPGA.

• Let the FPGA show up as an unknown device within the host operating system – This shows
us that the PCIe layer one decoder (also known as Phy) is working.

While doing so we learned a couple of lessons. First of all we need to tell Quartus to preserve
unused transceiver channels or they will degrade when being unused within an active design (see
info box 2.2.2). So we had to enable PRESERVE_UNUSED_XCVR_CHANNEL within our qsf file11

and route an active clock to the unused transceiver channels (in this case the E-Tile channels to
stimulate them). The second thing we observed was the fact that we were not able to configure the
FPGA. It took us (and the Intel support we contacted) quite a while to figure out that the engineering
sample we have got did not come with a pre-burned SDM image and we had to flash one ourself.
Furthermore we had some DIP switch configured incorrectly which was quickly fixed.
After having sorted out these issues it was just a matter of debugging the P-Tile settings (as it turns
out it is quite easy to provoke a Windows blue screen when one does now yet know how to properly
utilize PCIe enumeration), programming the FPGA using JTAG and watching LEDs blink.

Info 2.2.2

High speed tranceivers degrade over time if they encounter a static signal due to burn out of
silicon based power amplifiers. Sending a high frequency signal over a relatively long copper
wire requires a large amount of energya. In order to achieve such high insertion power rates
one has to use said amplifiers and if they encounter a static HIGH they may degrade resulting
in poorer signal quality which in turn results in more packet errors resulting in more packets
that must be resent which results in lower total bandwidth. As most high speed signals are
implemented using differential signalling one has to toggle these amplifiers.

aThis is the main reason why tera bit speed network switches may require multiple kilo watts of energy for even
modest port counts.

2.2.3 Writing the structure of the actual circuit

When dealing with projects in Quartus one should be aware of four different concepts. First of all
(like many other EDA suites) Quartus expects one to maintain a top level module. This module
must not be created using QSYS (see info box 2.3.3). Instead one needs to write this module using
11A .qsf file is the file where Quartus stores environment variables (a. k. a. project settings) for the synthesis.
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a text based hardware description language like System Verilog or VHDL which may lead to quite
large files to maintain (especially if one has to feature a lot of LVDS signals like PCIe is. This
module instantiates all submodules and its outside connections are mapped to the FPGA pins.

Simply having connections within the top module does not really connect them. How should the
software know which human readable name should correspond to which pin of the chip? This is
where the second concept about the constraints file comes into place. The current active constraints
file (*.qsf file defined within the .qpf, Quartus project file) tells Quartus, among many other
things, which pin correspons to which port of the top level module. We also need to define the
voltage levels, LVDS pairs, maximum current loads, signal characteristics etc. in this file. It is
of utmost importance that one uses the correct values within this file because in the best case the
design does not work and one is wasting time looking for the error but in the worst case one is
producing magic blue smoke.

At next one needs to setup the timing constraints file (<project name>.sdc). This file tells
Quartus which signals toggle at which rate using what duty cycle. It is not necessary to tell Quartus
about every signal (remember, there are thousands of them) as it can deduce them by following the
clock tree but one needs to specify each input clock as well as how the clock tree should be used.
One also may define false paths within this file (see info box 2.5.11).

The last thing one should know is that one has to use the Reset-Release IP when dealing with Agilex
FPGAs. This IP only has one single output and one should not release the reset of our circuit as
long as this signal is HIGH as it means that the configuration of the FPGA is still not done.

After having dealt with all of those issues it is a simple matter of implementing everything.

2.3 Getting the HPS to work

We need some sort of control instance for the fuzzer in order to process the data. Similar to many
other FPGAs our Agilex chip features a hard processor we can use. It is called Hard Processor
System (HPS). Getting it to work is our next objective.

2.3.1 Designing the hardware we need

The HPS itself only features four 64 bit Arm cores and some very basic peripherals. In order
to form a working SoC we need to surround it with further required peripherals, design interrupt
channels and build a physical memory layout. Fortunately we can use QSYS for this matter.
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Figure 2.2: A screenshot of the QSYS setup of the HPS SoC

Info 2.3.3

QSYS is a part of Quartus allowing us to compose systems using a graphical interface. Instead
of having to manually connect every signal of an interface like we had to do for the PCIe
interface in our top level module we can simply connect parts together using connection lanes
on the left side of Figure 2.2. In the middle we see important system parameters like interrupt
routing, address mappings, clock- and reset trees as well as custom instructions.

Listing 2.1: Quartus latency error message

1 Error(11928): ’enet_intn~pad’ with I/O standard 1.8 V, was constrained to be

within bank ’HPS’

2 Info(11929): ’1.8V’ is a valid VCCIO value

The main thing we have to do is provide clock bridges and instantiate the HPS. A HPS is hard IP
so one can only instantiate as many as there are instances of it on the FPGA. In this case exactly
one. Regarding parameters this block is actually quite simple. All there is, are the bridge settings
for various interconnects, reset settings and peripheral routing options. While the former two do
not require much explanation the last one does.

When dealing with the HPS we want to connect various peripherals to it (in our case a mico SD card
for storage (MMC), a gigabit Ethernet interface, UART, and an I²C controller for management).
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When doing so one needs to configure the peripheral routing of the HPS to perform the correct
routing in addition to setting up the pin constraints. Furthermore, and this is really crucial, leaving
the input latency configurations on auto for certain peripherals within the IP parameter editor will
cause the fitting step to fail – with a very meaningless error message, see Listing 2.1. It took quite
some time to figure out that this was the cause.

As a consequence we need to research the data sheet of every peripheral controller we like to use
and calculate, using the schematics, the input chain delay for those components.

When having configured the external peripherals it is about time to configure the internal periph-
erals of our SoC. By now all we have are four ARM cores, with some controllers connected to the
AMBA BUS (see info box 2.3.4). Next we need to setup the timers and clocks that are required for
the HPS to function. Furthermore we need to route the interrupt signals using QSYS. They need to
be routed to both the HPS and to an interrupt latency controller. Connecting an interrupt lane to at
least one watchdog instance is not a bad idea either. We also still need to connect our own hardware
modules to it and do so by enabling the HPS to FPGA AXI Lite bridge and performing the address
and clock translation. In order to finish what we were doing we need to export the remaining AXI
bus to our top level module and instantiate our bridge to our fuzzing controller (more on that in
subsection 2.4.6).

Info 2.3.4

AMBA, which is short for Advanced Microcontroller Bus Architecture, is a platform specifi-
cation for integrating ARM based SoC. Its main purpose is to interconnect ARM processing
cores with each other and their MMUs. It also defines AXI as an memory mapping edge
connector to external network-on-chip devices.

2.3.2 The art of having more than 256KB memory

Up until now, we have underestimated the fact that we do not have memory for our processing cores
yet. The Agilex HPS has 256KB of on chip memory. That is approximately enough storage to run
a bootloader and some bare metal applications. We like the convenience of an operating system
though. While we could technically run a FreeRTOS within this space we would like to run Linux
and thus need to utilize one of the four DDR4 DIMM slots on our dev kit.

When settings up the HPS one may notice that the cache coherence unit is connected to multiple
muxes. They switch the onboard memory from being the primary memory source to being utilized
for different purposes. As the SDM bootstraps the HPS using this memory as the primary memory
and copies the FSBL to it we need to make sure that our FSBL payload switches the used memory
properly. More on this in subsection 2.3.3.
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After bootstrapping we enable the 32KB instruction and data caches each ARM core has as their L1
caches, use the 1MB of cache connected directly to the four ARM cores as their shared L2 cache
and use the 256KB of on board memory as our IO cache. Last but not least we configure our main
memory be provided by our DDR memory controller.
While almost all of the above is a matter of correctly configuring the CCU and the MMU, the usage
of our primary memory involves further work. The HPS MMU is connected to a specific region of
the FPGA containing only basic lookup tables and a lot of configurable muxes as well as outside
connections to the DIMM slots. We have to use this section in order to perform the following
tasks12:

1. Provide a DDR4 controller that controls the memory stick and serves it to the HPS.

2. Provide a DDR4 initialization module that initializes the memory, queries its timing and
configures the controller with the values it obtained.

While one can utilize Intellectual Property provided by Intel one would be overwhelmed by the
number of highly technical parameters. We suggest reading an introduction13 to DDR4 on the
internet in order to better understand the meanings of these parameters. After having done so we
used Intel IP modules where appropriate but were forced to write the memory hand-off ourself as
this part is application and design dependant.

2.3.3 How to build an embedded operating system

Once we have our SoC we need software to run on it. Let us start with the FSBL as it is the first
piece of software that is running on the HPS after the SDM copied it to the onboard memory and
set the PC to the start address of it.

The Bootloader One has to build it using the µBoot14 source code for Agilex devices. Besides
that, one has to compile the Arm Trusted Firmware (see info box 2.3.5) for Agilex and assemble
the memory setup code generated by QSYS (which is just a collection of moving magic numbers
into certain memory mapped registers causing the CCU and MMU of the SoC to switch to external
memory) when generating the HPS system. Finally one has to link15 them all together and keep
the resulting binary file. We need this .hex to supplement the bitstream with it as the programmer
will pass it to the SDM during configuration of the FPGA (as we already discussed).
12One may also implement other kind of memory here, for example sharing the memory with the application imple-

mented on the FPGA or using the FPGA BRAM as HPS memory
13For example https://www.systemverilog.io/ddr4-basics as a starting point and https:

//www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/
mnl-1100.pdf to find suitable data sheets for parameter lookup.

14https://github.com/altera-opensource/u-boot-socfpga
15In computer science the process of merging multiple fragments of software in binary form into a complete software is

referred to as linking.
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Prior to compiling the ATF we need to either generate a signature of our second stage bootloader
and pass it to the ATF configuration or disable the signature validation of the ATF. As there is no
documentation on how to disable the signature validation of the second stage boot loader (SSBL,
we always got a crashing firmware while trying to do so) we simply pass the signature to it. Con-
veniently the default configuration of make socfpga_agilex_atf_defconfig generates a
suitable PEM file16 for us yet oddly enough does not automatically build an ATF compatible SSBL.
At this point one starts to notice that automating the build script would be a good idea. Have a look
at Listing 4.1 in the appendix to review ours.

Info 2.3.5

The ATF is a piece of software that is responsible of setting up Arm Trustzone (a special
execution mode that promises advanced execution security for accessing data) and validating
software signatures of software to be run (in this case the second stage bootloader SSBL
µBoot). Besides that, the ATF version for Agilex devices communicates with the SDM which
seams to be mandatory.

At the end of the script we see a command to build an SD card image. After having built our entire
bootloader we can use that command (without specifying a Linux Image, device tree binary (DTB)
and userland (have a look at info box 2.3.6) – we have none of those yet) to try it out. We may now
generate our bitstream as well as our image and burn it to an empty SD card.

Now it is time for a first test. After having debugged any issues with the hardware side, one is
greeted by UBoot with the initialization logs presented in Figure 2.3.

After having switched to the new memory mode the SSBLs signature is being validated and if
it passes it will be executed. Once the bootloader finished initializing the rest of the attached
peripherals, it greets us with a warning message that no u-boot.scr file was found (we expected
that as we did not specify one yet) and begins a countdown. After firmly pressing backspace we
can verify that UART works (we are getting a console after all), Ethernet works (we can ping things
and got an IP address from the DHCP server) and mass storage works (we can review the content
of our (yet pretty empty) SD card). A complete list of all commands our UBoot image features can
be reviewed in Table 1 in the appendix.

16A PEM file — which stands for Privacy Enhanced Mail due to historical reasons — is a file containing a cryptographic
certificate. In this case it is responsible for signing code.
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2.3 Getting the HPS to work

Figure 2.3: A screenshot from the UART output of the HPS SoC right after reset

Info 2.3.6

The userland is the part of an operating system that provides the default executable programs
(for example text editing, settings management, a shell, etc. ) as well as the default file system
layout to the user. Some people also refer all non-kernel processes as part of the userland even
though they are only existing in memory as opposed to programs on hard storage. In addition
to the userland an operating system also provides a kernel.
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Device Trees Now prior to explaining how to compile Linux and building a user space we shall
have a look at device trees. When dealing with all the memory mapped I/O (see info box 1.1.1)
the question arises how does the kernel know where hardware is located and what it is? The short
answer: It does not as long as we do not tell it.

While certain hardware structures are always available on certain architectures and provide a bus
enumeration capability (for example the internal UART interface every Windows compatible com-
puter still has or PCIe) the majority of hardware is not. At the beginning of embedded devices there
was a special Linux port for every device there was. These sub-architectures contained information
on how the hardware needs to be used. Since the explosion of availability of such devices this
approach does not scale any more hence the device tree concept was introduced.[GH06]

Instead of having a special Linux kernel for every device17 we now have a special kernel suitable
for every mayor CPU architecture and specify the layout of our device within a device tree, even
including information such as resets, clocks and memory layout. The bootloader loads the compiled
version of the device tree from a .dtb file into memory and passes the DTB address in a register to
the application that is supposed to be booted (usually Linux). Since the advent of embedded devices
capable of supporting dynamic memories (like out HPS) the bootloader also patches the device
tree in memory, to fill in a list of all available memory and to pass the kernel boot parameters,
prior to jumping to the start address of the kernel. A compatible kernel then boots in the most
basic operation mode the hardware supports18 and parses the device tree in order to initialize the
hardware and retrieve the boot parameters.

With the advent of SoC we usually have architectures around the CPU that have a lot in common.
Due to this SoC manufacturers usually provide a template for their hardware that includes all the
devices the SoC features having only mandatory devices (like for example memory and clock con-
trollers) enabled. Such templates are packed within *.dtsi files where the i stands for include.
One includes the correct file then and enables the hardware one wishes to use inside the platforms
.dts19 file. Of course one may include several files (for example one for the SoC one uses and
one for the peripherals one connected to the SoC).

As we are building our own SoC we have to provide such a file for ourselves as well (see List-
ing 4.2). Furthermore we wrote several device tree definitions (for debugging reasons) of which
Listing 4.3 provides the final one.

Building a Linux Distro But first we need to compile a kernel. All we have to do is patch certain
parameters, calling the configuration system (make socfpga_defconfig) and building the

17Special device drivers may still be included as one only needs to ship the drivers one really needs but they are main-
tained separately.

18Usually the bootloader already initializes certain hardware itself. UBoot nowadays also uses the very same DTB file
to do so.

19dts stands for device tree source
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kernel (make Image dtbs)20. It helps to enable a parallel build by specifying -j <number

of cores> as building the kernel would take ages using just a single thread. After everything
compiled we have a file called Image. Congratulations, we have got ourself a kernel.

Last but not least we have to build our userland. We use a software called bitbake21 to not have to
build one completely by hand. Furthermore we need meta layers from the yocto project22 as well as
layers provided by Intel covering the HPS23 specific part as well as our own building our software.

As each meta layer is supposed to be only specifying how a particular layer of the OS is supposed
to look like24 all we need to do in theory is write our own meta layer for our specific drivers and
software and call it a day. We choose the following layers for our image:

• meta-core — A dependency for other layers

• meta-mentor-common — Another dependency

• meta-intel-fpga — Hardware support for our SoC

• meta-oe — The basic userland

• meta-mel — Debugging and development Tools

• meta-networking — A network stack, including TLS libraries

• meta-filesystems — Extended file system support

• meta-python — Our favourite programming language

• meta-fuzzer — Our own kernel modules and software

In reality the layers provided by Intel are deeply broken and need to be heavily patched prior to
being usable (at least for our purpose). As broken embedded designs seem to be normal the yocto
project provides a tool (have a look at bitbakes recipetool) to fix these layers without touching
them too much and we do not need to use sed25 that much and after patching and configuring the
layers we can finally press the start button and grab a cup of tea.

It is a good investment of time to optimize the setup though as it is quite common that a yocto build
process takes up to a week. After optimizing it, it is possible that it will only take a couple of hours
on decent hardware. We should also keep in mind that it is wise to include developer tools with our

20dtbs stands for device tree binaries, this target compiles all applicable .dts files to the corresponding .dtb one.
21https://github.com/openembedded/bitbake
22https://www.yoctoproject.org/
23https://git.yoctoproject.org/git/meta-intel-fpga
24This way one can for example exchange the machine dependent part when switching to a new hardware version and

can keep using the upper layers of the firmware
25sed is a streamlining editor found on most Linux or UNIX based operating Systems
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distro as modifying software in place is much faster than having to rebuild the entire image every
time one wants to change something.
The complete build script can be reviewed in Listing 4.1 in the appendix.

2.3.4 Digression: Hacking the Linux Kernel

Info 2.3.7

The differences between kernel and user space lay in the way security measures are being
enforced to the running code.
While being in user space a process cannot access resources that it does not own and is guar-
anteed that all resources that its own are not altered from the outside (except when the process
explicitly allows it). Memory protection and exceptions are enabled and guard your code.
Furthermore code running in user space does not have to perform cooperative multitasking.
When the process is taking too long all of its memory (registers, PC, heap and stack) are be-
ing saved, the process is being rescheduled and its memory restored later when the process is
running again.
The complete opposite applies to code running in kernel space. While this is very inconvenient
it is still mandatory as the kernel code needs to interact with the hardware on that level.

We need to understand a hand full of things prior to reading the next chapters as kernel code requires
special treatment and thus certain things might seem strange.
The process of writing kernel code is actually quite well documented within the Linux documen-
tation26. First of all we need to acknowledge the fact that we are not the only code running on the
CPU. Other code wants to run too. While the Linux kernel provides a scheduler for kernel code it is
not available in every scenario and we need to make sure that our code is not blocking when it is not
available — otherwise we would freeze the entire computer. It is also best practice to leave such an
area as fast as possible27 due to obvious reasons and not call functions that may block carelessly.
Second although most of kernel code we are going to see is run in "user context" this has nothing
to do with user space (see info box 2.3.7) so our code needs to align to that. In particular it is
wise to not perform any long computations within kernel space since we have to schedule manually
and are bound to certain limitations regarding memory. Furthermore it is of utmost importance to
not use any floating point or SIMD code while in kernel space without explicitly handling register
configurations. The latter is hard to get right so we simply delegate all data processing to user
space.
26https://www.kernel.org/doc/html/latest/#introduction-to-kernel-development
27For example schedule a soft IRQ or tasklet when serving a hard IRQ and exit. Then use the soft IRQ to handle the

rest.
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Last but not least kernel space functions, while working similar most of the time, behave differently
than their user space equivalents and sometimes in an unexpected manner. Most notably memory
allocation works entirely differently and calling the same function from different contexts may not
always yield a valid value. One has to check from which context one may call which function and
should always check in which context the code is being executed at the moment.
These are the most fundamental differences one should always keep in mind as loosing one precious
data would be a bad thing. We will mention further differences as needed

2.3.5 Writing drivers for our hardware

As we have our basic image and an idea of how one might write kernel code, it is about time we
write some drivers. While understanding all the interfaces the Linux kernel provides might be a
life time job, understanding the most important parts is relatively straight forward. For the vast
majority of drivers one has to understand the following three concepts:

• Devices are a structure that represent physical devices. They are used to distinguish the actual
device requiring attention. For example there might be multiple thumb drives connected to a
computer while only having one driver for all of them. The driver then uses the information
of the current device data to identify where to store your cat pictures.

• Busses organize the structure of device instances. Usually they correspond to real hardware
structures like the PCIe network and feature functions to query devices. While a device itself
is only a data structure a bus contains code that manages the devices registered with it. If
for example an IRQ (interrupt request) from the PCIe stack happens the corresponding ISR
(interrupt service routine) schedules the bus responsible. In this case it would be the one
for the PCIe subsystem. The scheduled function should do something with it, which it turn
might, for example (if a new device was connected), identify the driver responsible for said
device and calls its probe function.

• Frameworks are collections of functions that allow similar drivers to share common func-
tionality. For example a GPU driver may register with the DRM framework28 and all it
has to do is translate the drawing requests coming from the framework to its GPU drawing
commands and not implement all the other functionality required for providing a graphics
environment. As a result an application drawing things in userspace only has to know how
to use the DRM framework and not every interface from every graphics driver out there.

The entry code of every late driver29 is the module_init function of the driver regardless
whether or not the module is compiled into the kernel and thus loaded right at the end of the boot
28DRM – which stands for Direct Rendering Manager – Is an abstraction layer between graphic card drivers and kernel

modules that want to draw something.
29A late driver is a driver that is being loaded after start_kernel finished initialization.
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process or being loaded at runtime using modprobe. The purpose of this method is to check if the
module can be loaded and if so, initialize the module. In our case that would be registering with a
bus in order to listen for our device type (a.k.a. the compatibility string from our device tree) and
registering with a framework in order to communicate with userland. Regarding the bus system to
use we have chosen the platform bus system as it is a good choice for memory mapped hardware
that is directly connected to the CPUs via a memory mapped path and fixed30. We have chosen
the misc devfs framework for our driver as it is causing our fuzzer to show up as /dev/fuzzer
and is quite convenient to use without providing any special functionality (There is no hardware
category "hardware fuzzer" in Linux).

After all our driver is quite simple. We write our init function which registers our driver with the
bus and framework. We also need two functions that handle the case of the device being removed as
well as a function that handles the unloading of the module. Next we write our probe function that
is called for every fuzzer device the kernel finds (which should be not more than one but we make
it capable of handling multiple instances – we may not need it but it is considered good practice).
When this function gets called it extracts the memory location of the fuzzer and maps it into its
address space. Furthermore we write functions that get called when a process opens the device file,
reads from it, writes to it and closes it.

Having written those functions we than add some fundamental management logic and leave all the
real processing to the userland process which we will notify about every new fault coming in. The
complete driver source code can be reviewed at Listing 4.4 in the appendix.

2.3.6 Writing software to control the fuzzer

As we now have a device driver and can export our fuzzer to /dev/fuzzer, we need some
userland software to handle it. For the sake of simplicity we have decided to write this software in
Python. All it really does for now is, starting the fuzzer and logging the recorded exceptions. To
do so it first opens the device file and configures and starts the fuzzer by writing the configuration
commands as well as the magic word start to it. After doing so it reads all events that our driver
sends us from said file. When we receive an event we check that it is actually a new one (as fuzzing
might reveal a lot of faults that are actually the same) and if so format it to JSON and store it on a
remote computer using the network.

2.4 Communicating with the fuzzer

We have the HPS now to control the fuzzer by setting the registers provided by the fuzzing control
module. But how do we send the data to those registers and read the results back?

30As in not hot pluggable
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2.4.1 How does one establish communication between the HPS and the fuzzer

First of all we should have a look how the HPS is capable of communicating with the configurable
part of the FPGA. There are three AXI (have a look at chapter 2.4.6 for further information) bridges
between the HPS and the FPGA and some conduit signals connected to the interrupt ports of the
ARM cores.

The first bridge on the chip is called FPGA to HPS bridge. It is a 512 bit wide interconnect enabling
the hardware application to access the HPS internal memory. A popular example on how to use
this in a typical situation would be by sending the FPGA a memory address and letting the FPGA
fetch data from the HPS without having the ARM cores of the HPS doing all the work of copying
the data.

Another popular example would be implementing a core that is capable of reading and writing the
HPS memory for debugging purposes. We did this only to be disappointed by the fact that we were
only capable of reading data outside the external registers.

The second bridge is called HPS to FPGA bridge and lets the HPS access memory or registers
provided by the FPGA. We will not use this one and use the last one instead.

The third bridge is called lightweight HPS to FPGA bridge and provides a 32 bit wide AXI Lite
interconnect serving the same purpose as the second bridge but is more user friendly at the downside
of providing less bandwidth. As our limiting factor is either the actual processing rate of the HPS
or the test case generation rate anyway we can live with this penalty and take the much improved
usability of AXI Lite compared to AXI.

We are utilizing this bridge to write to control registers of our fuzzer control unit which are mapped
to memory as well as reading out the FIFO implemented as a ring buffer (see info box 2.4.8) used
to store detected faults. Our underflow strategy is best described as pausing the kernel driver in
case of eminent underflow. Our overflow strategy is based on the idea of slowing down the test case
generation in case of the buffer reaching its limits.

While the overflow strategy results in a slow down in case of many faults being detected it is
preferable over dropping them which would cause a loss of faults in such a case.

Info 2.4.8

A ring buffer is a buffer consisting of shared memory and two pointer registers. The first
register is incremented every time data is being inserted into the buffer. The second register
is incremented every time data is being read from the memory. Every now and then these
registers overflow causing them to start at address 0 again, thus the name. In order to prevent
data loss at the event of one side being faster than the other, the module has to stall under the
condition of both registers containing the same content if one would increment.
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2.4.2 What is this AXI (lite) thing?

As we were speaking of AXI (lite) we should clarify certain things a bit. First of all AXI is one
of multiple31 on chip interconnects available for designing hardware. Usually one cannot simply
use I³C (or I²C for that matter) or other external interconnects to form a NoC32 as those usually
require bidirectional data transfers in order to save wires on PCBs. Having bidirectional or high-
impedance I/O requires special I/O buffers that are (usually) only available at the boundaries of the
FPGA connecting to outer pins. Furthermore if one is using purpose built interconnects one can
utilize optimizations for the particular domain, respectively platform one is working with. As with
DMA on chip interconnects are usually the same bit width as the memory controller ports they are
interfacing with and optimized to be capable of delivering the data at the speed of the MMUs they
are connected to.

As the wire count usually is of no concern on modern FPGA (or other chips) fabrics, one is us-
ing specialized interconnects on them. Furthermore the HPS is build using ARM cores and thus
required to use AXI so we will have to use AXI as well.

Basically it allows us to read and write memory exposed by the modules we are speaking with.
When dealing with multiple modules we need to make sure that each module has a different address
space as there is no chip addressing using AXI. Besides that we can connect as many children33 to
the bus as we have space available on our FPGA.

The main difference between the two versions of AXI is that the lightweight version neither sup-
ports priority queues nor burst transmissions. Due to these limitations AXI Lite proves to be much
simpler to implement. There are further differences like not supporting dynamic bit width changes
as well but these smaller ones would not be that hard to implement.

2.4.3 Why do we need to write our own AXI core?

Intel provides a hand full of IP cores one can utilize within their own design. The majority of these
cores either provides basic building blocks and thus do not require complex interconnects or use
the proprietary Avalon bus developed by Altera (now owned by Intel). While not being particularly
fast the Avalon bus is quite simple to use. We have to use the AXI protocol though as it is provided
by the HPS as priorly stated.

When using Intel IP within QSYS (have a look at subsection 2.3.1) we can utilize tools to auto-
matically bridge between the Avalon bus required by most IP and the AXI bus provided by the
HPS. Doing so allows us to mix and match these components. However we cannot instantiate these

31Other popular examples include wishbone, Intels proprietary Avalon bus, STBus or even EIB (Element Interconnect
Bus, not to be confused with European Installation Bus)

32Network on Chip – A fancy way of saying that one is connecting multiple IP cores on a single package
33The AXI specification calls a ’child’ device slave and a ’controller’ master. Due to ongoing debates about these terms

we chose to not use those.
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bridges individually and cannot use such a bridge for components not provided by Intel (including
our own).
Unfortunately the components provided by Intel do not reflect our use case well. In fact they do not
reflect most use cases but the most basic ones and encourage one to build an AXI child endpoint
per purpose. The IP provided by Intel designed to interface an application running on the FPGA
from the HPS is limited to a parallel IO module, an SPI module and a vector interrupt controller.
While we intermediately used a parallel IO core for interfacing, non of these are well suited for our
application.
This yields two options:

1. Build a bridge controller to some other interconnect

2. Build an AXI child controller ourself.

As building a bridge controller would include building an AXI child anyway we decided to build a
AXI controller.

2.4.4 How does AXI work in detail?

Let us have look into the basic concepts of AXI Lite prior to describing the bridge core. It consists
of three signalling groups, each carrying multiple data streams:

• Global Control Signals

• Write Control Signals

– Address Handling

– Data Handling

– Control

• Read Control Signals

– Address Handling

– Data Return

Next we are going to have a look at them in detail.

Global Control Signals This group is quite lucid. It consists out of A_CLK and A_RESETN. As
these names imply they handle the clock of the bus, which needs to guarantee a 50 percent duty
cycle and an active low reset.

Write Control Signals This group can be subdivided into address handling, data handling and
control (also called "Write Return" within the specifications). These channels are explained below.
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Write Address handling First of all we have the AW_VALID and AW_READY signals.
With AW_READY being ’1’ the child signals that it is ready to receive the next address. With
AW_VALID the parent signals that the Address written to AW_ADDR is in a valid state. AW_ADDR
itself contains the address the parent would like to write next.

The AW_PROT signal contains the write protection type and defines if one is accessing data or
instructions and at which security level, encoded as a three bit twos complement ring number (see
info box 2.4.9). It also states how one is accessing the mapped memory.

Furthermore there are AW_ID to identify different transmissions over the same channel as well as
AW_BURST, AW_LEN and AW_SIZE to control the type, number (length) and size of messages
within a burst. Last but not least there are AW_LOCK to mark a transaction as atomic, AW_CACHE
to control the caching behaviour, AW_QOS to control the priority of the transmission and AW_USER
to handle any user-defined protocol extensions on the write address side.

Write Data handling Again we have W_VALID and W_READY signalling valid data on the
write channel by the parent and readiness to receive this data on the child side. We also have the
W_DATA signals containing the actual data to write as well as the W_STRB signal to mask which
bits defined in W_DATA are actually valid and supposed to be written. As it turns out there are quite
a lot of write requests marking not a single bit as valid within W_STRB, but this behaviour is for
some reason not considered to be an issue by Intel.

The W_LAST signal will be HIGH when the last transmission of the same burst is reached. Last but
not least in this category the W_USER signal is provided to allow user defined protocol extensions
and in this case is actually used by the HPS. Up to this date we could not identify what this signal
actually does in this case.

Write return control channel In this channel we have the B_VALID signal notifying our
child module about burst acknowledgement initializations and B_READY to mark the child ready
for receiving these control sequences. Furthermore we have the B_RESP and B_ID signals to
notify the child module about the state of a particular burst transmission. Of course there is the
B_USER signal set dedicated to protocol extensions. This time it is pointing towards the next
parent module.

Read channel The read channel is working quite similar to the write channel except for the fact
that the directions are reversed and some minor differences we will look into now.

The address channel actually works exactly the same except that all signals are prefixed with AR
instead of AW. The write data channel does not have a corresponding channel within this group.

The read return channel features two extra signals. First of all we have the R_DATA signal con-
taining the data that was read. Secondly we have the R_LAST signal designed to mark the last
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transmission of a read burst.

The R_USER signals are also facing towards the parent module.

Info 2.4.9

Rings define different layers of security within a computer. As a general rule of thumb: If
the current ring number is higher one generally has less access rights. The ARM architecture
however defines a higher number as more privileged. As hardware modules (or devices) are
commonly mixed and matched this can lead to confusion and security issues.
Ring 0 is generally considered to be the access level an operating systems kernel has to the
hardware. Userland processes usually a have access to ring three and above. Sometimes there
are access privileges with negative numbers reserved to controllers handling deep functionality
of the platform, such as the Intel Management Engine or other embedded controllers.

aThe are exceptions when userland processes are partially mapped into kernel space for performance reasons.

2.4.5 Digression: Formal Verification of hardware designs

As hardware designs tend to be quite complex with a lot of things going on at the same time
influencing each other it is quite easy to loose track of what is going on and hard to find the real
cause of bugs (see info box 1.2.5). In order to find problems within a complete design one usually
instantiates modules that perform debugging output (like for example signal tap modules). However
as hardware tends to be quite complex, one can only focus on smaller parts of the design. If the
cause of this problem is not within the module one is looking right at, it is usually difficult to find
the issue.

Classic approaches to address this problem include simulating the module and comparing the results
to predefined golden outputs similar to basic unit testing of software or simply looking at the wave
forms with a human eye. The idea behind this is that if every single module is working correctly,
everything should be fine. This method has two downsides though.

First, it is quite easy to miss an important test case or simply overlook them when analysing the
graphs. Furthermore these hardware simulations are quite calculation intensive and may really take
a long time to perform.

Fortunately thanks to the liberation of hardware development by the open source community there
is finally an answer to this. It is called formal verification. While this approach never reached
popularity within software development due to its complexity it is easier to do with hardware due
to the way most designs look and is also faster to compute than simulating.

The basic idea is that instead of testing the module with a large set of example input, asserting
the correct output and hoping that our tests actually cover all relevant conditions we define a set
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of properties that our module must fulfil under a set of defined conditions. The verification soft-
ware then parses the hardware description and generates a model of temporal logic. Finally the
defined assumptions are solved using the model and the verification process succeeds if there is no
contradiction or fails if there is one.

In case there are contradictions the software then generates an example of input signals that would
cause such a contradiction. Hence we do not think that our module is working correctly, we let the
computer prove it.

Of course there are downsides with this approach as well. First of all one has to really think about
the constraints one needs to define. Secondly the tools, while being open source, are not yet well
(or in the case of Intel Quartus not at all) supported by commercial EDA tools and thus usually do
not include clock boundary information or information about oddities of the target platform. It is
still possible to use them but some of their results might be better taken with a grain of salt.

One major upside though is that the open source community generally provides quite a lot of
matured constraint files for common issues. This means that we can download a verification file for
our AXI lite controller and test our design with it.

2.4.6 The actual core we wrote

Since we have a basic understanding of the way AXI lite works it is now time to have a look how
one might realize such a core. We choose to build an asymmetric AXI child as we particularly do
not need to read and write to the same registers.

Listing 2.2: AXI core registers
1 type r e g i s t e r _ b a n k i s array ( n a t u r a l range <>) of s t d _ l o g i c _ v e c t o r ;
2 s i g n a l r e g s : r e g i s t e r _ b a n k (0 to a m o u n t _ o f _ 3 2 _ b i t _ c o n t r o l _ r e g i s t e r s − 1) (31 downto 0) ;
3
4 s i g n a l s c h e d u l e d _ d a t a _ t o _ w r i t e _ b a n k : r e g i s t e r _ b a n k (0 to a m o u n t _ o f _ 3 2 _ b i t _ c o n t r o l _ r e g i s t e r s − 1) (31 downto 0) ;
5 s i g n a l s c h e d u l e d _ d a t a _ t o _ w r i t e _ w o r d : s t d _ l o g i c _ v e c t o r (31 downto 0) ;
6 s i g n a l s c h e d u l e d _ d a t a _ t o _ w r i t e _ s t r o b e _ m o d e : s t d _ l o g i c _ v e c t o r (3 downto 0) ;
7 s i g n a l w r i t e _ r e g i s t e r _ a d d r e s s : n a t u r a l range 0 to a m o u n t _ o f _ 3 2 _ b i t _ c o n t r o l _ r e g i s t e r s − 1 ;
8
9 s i g n a l s c h e d u l e d _ r e a d _ a d d r : n a t u r a l range 0 to (2 ** o u t p u t _ m e m o r y _ a d d r e s s _ w i d t h ) − 1 ;

10 s i g n a l w r i t e _ r e a d y : s t d _ l o g i c ;
11 s i g n a l r e a d _ r e a d y : s t d _ l o g i c ;
12 s i g n a l n e x t _ r e a d _ v a l i d : s t d _ l o g i c ;
13 s i g n a l awready : s t d _ l o g i c := ’ 0 ’ ;

First of all we need to declare the registers we are going to use. As we can see in Listing 2.2 there
actually are not that many. Of course we need to store the control registers we want to write to.
As we need to synchronize transactions we also need to buffer the data which is why we have the
series of scheduling registers for both channels. Contrary to migen34 we can not use automatic
signal scheduling and thus have to also manually register our control signals in order to meet the
signal travelling characteristics of the other AXI end points.

34https://m-labs.hk/migen/manual/
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2.5 The P-Tile site of things

First of all we implement the write channel behaviour. Besides some combinatorical logic regarding
synchronization and control this essentially boils down to

Listing 2.3: AXI write channel
1 i f w r i t e _ r e a d y = ’1 ’ then
2 r e g s ( w r i t e _ r e g i s t e r _ a d d r e s s ) <= s c h e d u l e d _ d a t a _ t o _ w r i t e _ b a n k ( w r i t e _ r e g i s t e r _ a d d r e s s ) ;
3 end i f ;

and the reset logic. The read channel is as simple. All we have to do is to implement the control
logic and forward the translated read address to our output memory and its data output port to the
R_DATA port whenever we are allowed to use it.

Furthermore we need to take care of the acknowledgements and validity signals. The idea here is
that we set a VALID flag whenever we were done initializing a burst and had a successful transac-
tion. The acknowledgements are quite simple. Whenever we are in a clock cycle that is supposed to
acknowledge something, we simply check if the channel is ready to transmit and in a valid state as
well as a transaction was requested. The idea behind this is that if we are supposed to do something
we assume that we did it as we do not enforce security policies within our own design — nor do
something that might abort the transaction.

Last but not least we handle the control signals which follow some synchronous combinatoric logic
which is also very intuitive. The remaining lines within the file are used up by boiler plate code
being necessary due to low level HDLs like VHDL tending to be very infantile.

2.5 The P-Tile site of things

In this section we are going to have a look on how to use the heart of the fuzzer. The P-Tile.

2.5.1 What is the P-Tile and why do we need it?

As we are building a PCIe fuzzer it is mandatory to communicate with PCIe devices. As this
protocol relies on very high speed transmissions one can not simply use arbitrary GPIO pins of the
FPGA to build the differential signalling transceivers. This is where the P-Tile comes into play.

This piece of hardware provides transceivers to communicate with a connected PCIe network and
may either act as an endpoint or root port for a channel, depending on the desired configuration.
Each channel controls four PCIe lanes and one can combine these channels as ones design requires
it. Not all combinations are possible though: One might configure four independent ones with four
lanes each, two channels with eight lanes each or a single channel controlling all 16 lanes. If this is
not enough one might use PCIe bifurcation to further multiply the number of combinations.

Each channel can either be configured to be an all-in-one memory mapped I/O adapter serving
memory channels for each SR-IOV node, providing reconfigurable Avalon interfaces for accessing
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2 Building the Fuzzer

devices when in endpoint mode or can be used as upstream or downstream ports (see info box
2.5.10) when configured in TLP-bypass mode.

Info 2.5.10

Up- and downstream ports in PCIe describe the direction of data travelling across a PCIe
network. A port connected towards the root port is called an upstream port. A port connected
towards end points is called a downstream port.
In relation to the P-Tile, this notation was slightly abandoned. While it is still important to
distinguish between ports facing a root complex or endpoints, these terms are also used to
describe the capability of a port of initializing transactions. Intel provides a chart stating
where which notation is used within their documentation. Unfortunately different versions of
the documentation contradict with each other so we have to do some investigations from time
to time to figure out what is meant in certain situations.

The IP block itself is divided into a hard IP portion and a portion that is implemented as soft logic.
The hard IP deals with enumeration, link management and some basic configuration registers every
PCIe capable device needs to provide in order to function. The soft logic part deals with everything
else.

Between those two parts is a bridge consisting of a bus carrying the content of the TLPs and an
Avalon bus for controlling the hard IP part. When a channel is configured in TLP bypass mode the
soft logic equivalent is simply left out and this bridge is exposed. This is the place that we tap into
with our fuzzer.

2.5.2 How to use the P-Tile IP

In order to use the P-Tile we need to take care of a few things. First of all we need to design an
initialization module that configures the P-Tile in a correct way and handles events at run time.
Furthermore we need to provide power management and above all we need to design our packet
generator. But first things first.

As a starting point we take care of the control interface. We are provided with an Avalon-MM bus
called hip_reconfig for every channel (here called port) we are using. Our goal is to setup
the channel in a way enabling us to send arbitrary packets. The idea behind this is quite simple.
We need to populate a hand full of registers with their associated configuration data and do so by
implementing a sequential control module that iterates over a read only memory containing the
data to be configured after reset. Its content can be reviewed in Table 2 in the appendix. The
main difficulty resides in the fact that Intel only provides a long list of register definitions but no
documentation on how to use these registers or which ones of them are actually relevant.
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2.5 The P-Tile site of things

After having implemented this hardware one may notice, that our synthesis tool complains about
a couple of timing constraint violations. When dealing with the P-Tiles interfaces one has to deal
with multiple clock boundaries. While one of them definitely was a false path (see info box 2.5.11)
the others were not. A property of the PCIe protocol is the fact that it may operate on a variable
control sequence frequency between 125 MHz and 500 MHz. The solution to this non trivial timing
issue is to operate all related circuitry on the clock provided by the P-Tile and cross the domains
with skid buffers were necessary.

Info 2.5.11

A false path is a theoretical path between two registers that may never be reached. Sometimes
the timing tools find these and if they are considered to be the longest path a signal may travel
they will be marked as the critical path. If the duration of the signal on such a false path
exceeds the theoretical time limit between clock cycles the timing tool will throw an error. In
such a case one needs to mark this path as a false path in order for the timing tool to continue.
A common source for false paths are clock boundaries (see info box 1.3.6) and Phase Locked
Loop (PLL) feedbacks but one needs to make sure that the suspected false path is indeed
unreachable.

Next we need to take care of the power management functions. This piece is one of the most
important parts of a PCIe design as it has direct impact on the behaviour of other devices35. The
basics are quite simple. We need to wake up a device that we would like to talk to if it is sleeping
and put it back to sleep if we are finished talking to it and it was sleeping prior to us waking it
up. Self-evidently we must not do this if a different device started talking to said device while
we were and instead hand over this burdon to the new device. Furthermore we need to handle the
power management notifications other devices toss towards us – but we are lazy on that side and do
not implement any power states other than full power on and »we are about to loose power due to
shutdown«. Last but not least we need to handle the events that occur when other parties veto our
actions.

Table 2.2 describes the most important power states. While there are other ones, we really need to
take care of those. Especially classes 2 and 3 can be divided into further states. One needs to know
that even though the PCIe power states sound a lot like the ACPI ones, and often work in a similar
way they are not one to one related and should not be confused with each other.

Most of the time our own device will reside in L0 (function space S0) which means that our device
will be enabled completely. When we are interacting with other devices we use the temporary D

35In fact we already crashed our test computer a couple of times due to improper power management behaviour. In
theory the root complex should have the final word on power management – if your operating system implements it
correctly. In practise at least Windows seams to be less talented on that side.
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2 Building the Fuzzer

Table 2.2: Important power management states
Sequence State State Code D-State D-State Code

– IDLE "000"h INVALID "0000"h
Completely turned on L0 "001"h D0 "0001"h

Preserve Power L1 "010"h D1 "0010"h
Selective Suspend L2 "011"h D2 "0100"h

Suspend L3 "100"h D3 "1000"h

states but ask the device about its preferred state prior to setting it.

One can really fill entire books about power management but these basics suffice to build basic
devices. As a last step we need to implement the actual TLP generator which we will do next.

2.5.3 Digression: How do TLP packets work?

In order to build said generator we first need to have a look what to build. As with every recent
protocol layer they can be splitted into a prefix, header, a payload part and an optional digest field.
Each of these fields has a variable length (a multiple of 32 bit) but the maximum total length of a
TLP is defined by the hardware capabilities of the decoder. A common value now a days would be
512 Bytes although older hardware may only process up to 256 Bytes [LDL14] and devices of the
latest generation will happily support more than 4096 Bytes[Law14]. It is up to the sending device
to figure this out and thus many devices implement protocol extensions to do so36.

We distinguish between TLP with prefixes and ones without as they are optional. The next four
or eight bytes after the last prefix (or the first four if there were none) define the header. After the
header there may be any number (up to the transmission limited we discussed before) of data bytes
and finally an optional TLP digest marking the last 32 bits.

Lets have a look at TLP prefixes. If the first three bits of a packet are "100"b we know that
we have got ourself one. Otherwise it would indicate a Fmt field of a header. There may be any
number of prefixes prepended to the packet and we know we are still parsing those as long as each
32 bit word still starts with this magic number. The next four bits define the type of prefix and all
the remaining bits up to bit 0 can be used as a prefix payload. A list of current prefix types and their
meaning can be obtained from Table 3 in the appendix.

The header of a TLP consists of four to eight bytes total. As one already saw in Table 1.1 there are
the Fmt and Type fields defining the first byte. The content of the remaining three bytes is defined
by the TLP type but they usually 37 contain their traffic class, request flags (memory alignment –

36They usually start with a maximum packet length of 128 Bytes as this seams to be the minimum length commonly
supported, then exchange their hardware capabilities and choose the greatest number supported by both. For some
reason this is not a standardized behaviour though.

37Except for legacy messages
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2.5 The P-Tile site of things
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B unexpected payload received
C timeout after test case
D unexpected error message

Figure 2.4: TLP generation state machine

little endian or big endian, presence of TLP processing hints (TPH) and error correction settings),
a flag indicating if a digest is present after the payload and the length of the payload.

The header is followed by n bytes of data (or payload) where n is the length defined in the header.
This part of a TLP is completely application dependant.

If the TD flag was set ("1") there is still the digest containing error correction information. It is a
32 bit check sum for the payload.

2.5.4 Writing a TLP packet handler and processor

The last thing we had to do for these modules was to write the actual Transaction Layer Packet
handler. The basic behaviour can be described with the automaton in Figure 2.4. The basic idea is
that we enter a valid state and then try our fuzz cases.

We generate our TLP based on the configured masks. Their purpose is to define the patterns we
would actually like to fuzz as we cannot search the entire PCIe address space in one run. The masks
define the registers which we like to alter based on one of the following strategies:

• iterate over all bit combinations with increasing number patters

• switch different bits using an output combination o of on = r ⊕ (x + on−1), where x is a
circling checkerboard pattern (see info box 2.5.12) and r is the register seed.

We then shift each bit of the output patterns into its correct location configured by the positions
register. The result is that we can define for each bit of a TLP if it should be 0, 1, or defined by a
fuzzing pattern. This way our fuzzer is rather dumb but the best way we could come up with since
we are bound to the limitations described in chapter 1.2.4.
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Figure 2.5: The general behaviour of the control module

Info 2.5.12

A checkerboard pattern is a pattern where a group of logical 1 are followed by a symmetric
group of logical 0 and vice versa. A circling checkerboard pattern is one where for each new
iteration (usually on the next clock cycle or state transition) the entire pattern does a barrel
shift towards a constant side of a constant amount of bits.

2.6 Let us glue everything together: The control FSM

The final hardware module we wrote is the control state machine. Its purpose is to obey to the
commands from the HPS and orchestrate the individual messaging modules.

2.6.1 The purpose of this module

As the TLP handlers only know of their own state but influence the total fuzzer we need an instance
to keep track of all states the submodules are in. Furthermore this module keeps track with the
HPS in order to stall the fuzzing if necessary. In short one can describe the behaviour of the state
machine with the automaton in figure 2.5.

For the main part we generate fuzz cases, test them and report them back to the HPS if they are out
of the ordinary. Assuming that we would find unexpected behaviour faster than we are capable of
transmitting results to the HPS (or processing them with our software for that matter) we enter the
idle state in order to let the HPS process. We also enter the idle state if the assigned task finished.

Assuming that there would be an error that a deeper module was not able to recover from, we report
this error and reset our fuzzing hardware.
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2.7 Simulation

2.6.2 The different fault detection mechanisms

The final puzzle piece is the detection of faults. As already mentioned in the introduction, this is
not as easy as we do not have access to the coverage our fuzz cases produce. We came up with the
following possibility classes though.

First: Let’s see if the designated error flags are set As one can see in Figure 2.4 we are capable
of interpreting the error messages our DUT returns (if any). This causes the corresponding error
flags to bet set in the return registers of the P-Tile enabling us to judge the test case.

It is also possible that the absence of such error reports indicates malfunction. Furthermore the
PCIe protocol, like many other, defines answer time frames in which certain answers need to occur.
If these constraints are violated (e.g. we get a timeout error) we are also notified and may react on
such events.

We engineered our fuzzer to be configurable to assert the presence or absence of any combination
of these misbehaviours.

Second: Let’s check for unexpected behaviour Although we have not used this module in
production yet we have build hooks into our fuzzing hardware to combine different properties of
the total communication into assertions. For example one can configure the fuzzer to listen to
unexpected incoming transmissions and report the last n transmitted Transaction Layer Packets if
such an event occurs.

For example this could become handy if some packets cause the device under test to send out
(potentially interesting) data.

2.7 Simulation

All modules are debugged using a combination of on-chip signal taps and model simulation. As
we are currently struggling with a broken Linux kernel booting process, we decided to selectively
include the simulation results of two critical modules within this work.

2.7.1 Simulating the AXI bridge

First of all we would like to show how our child module works. As the output of our formal
verifier38 is not very graphic (see Listing 4.5 in the appendix) we have decided to show wave form
results from Modelsim, which is shipped in a stripped down version with Intel Quartus.

38We use SymbiYosys (https://yosyshq.readthedocs.io/projects/sby/en/latest/), a more pow-
erful but also more complicated alternative would be CoSA (https://github.com/cristian-mattarei/
CoSA).
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2 Building the Fuzzer

Figure 2.6: A screenshot from the write channel of our AXI bridge debug test bench

Figure 2.7: A screenshot from the read channel of our AXI bridge debug test bench

In the Figure 2.6 one can observe that any input write requests from the AXI BUS are getting
acknowledged and the output control registers are being updated accordingly. Furthermore one can
observe in Figure 2.7 that any requested memory address is being properly delivered within two
clock cycles.

2.7.2 Simulating the P-Tile control

Simulating the P-Tile behaviour is a done through connecting the Modelsim simulator with the
corresponding P-Tile simulation binary. This binary in only intended to be used for regular PCIe
behaviour though. Sending incorrect TLP causes this tool to crash. This way we can only show
that we are capable of configuring the P-Tile correctly which we have done in Listing 4.6 in the
appendix.
The important line is the one stating Enumeration succeeded. This means that the simula-
tion tool was brought to a state where it can send and receive arbitrary TLP messages.
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Table 2.3: Resource consumption and clock speeds of all major modules
Module # ALUT # reg. banks # PLL # BRAM # DSP Clocked at
clock and reset and
initialization logic

637 1682 1 5 0 various speeds

fuzzing control 66 43 0 0 0 100 MHz
TLP generation 448 1436 0 0 1 350 MHz
HPS support 2170 2006 3 128 0 up to 500MHz
AXI Bridge 14 47 0 0 0 100 MHz

2.7.3 Achieved design quality

At the time of writing our synthesized design consumes 3432.5 ∗ 104 logic elements in total. This
is approximately 1.5 percent of the overall size of the FPGA of which the majority is used for HPS
support. After the place and routing steps are done this results in 3371 out of 1437240 ALUT39

blocks being used, 5248 out of 1948800 register banks, 4 out of 24 PLLs, 135 out of 284672
BRAMs and 1 out of 4510 DSP blocks. This means that we have plenty of space for further
refinements or extensions. Table 2.3 displays the resource consumption as well as clock speeds on
a per-module basis.
Our modules achieve all required clock speeds of 100, 350 and 500 MHz respectively at a static
power consumption of 19.9 watts with a maximum dynamic power consumption of 17.6 watts. The
FPGA development kit is rated for up to 130 watts of power consumption so we are on the safe
side.
Finally, our fuzzer is capable of running at the full PCIe 4.0 x8 data rate (about 15.75 GB/s) in
linear mode, as long as the transmission of test cases is keeping up and the ring buffer does not
stall. This would be about 30 million test cases per second. Assuming that every test case would
produce a fault this number would decrease dramatically to only a couple of thousand test cases
per second at most as the HPS could not keep up. Assuming that such a test case would crash
significant components and larger parts of the PCIe network would need to recover we would only
be capable of transmitting a hand full of test cases per second.
Searching the entire space of all TLP combinations for 512 Bit messages in such a linear fashion
would take at least 1.45 ∗ 10139 years and is thus not feasible. Instead it is more promising to
concentrate on altering certain fields of TLP. A different approach would be, to let a classic fuzzer
determine the areas of a TLP to fuzz. If one would fuzz attached components using a classic fuzzer
dictating every single TLP we could still yield a couple thousand fuzz cases per second.

39Intel calls their logic cells ALUT which refers to the fact that they are build out of an ALU, LUT and a Mux.
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3 How to use this fuzzer in the future

In the previous chapter we showed how we layed down the foundation for fuzzing PCIe devices
that we can now work on. In a future work it is now possible to address the following topics:

3.1 Fuzzing the IOMMU

We would like to see if we can replicate the research from the Googles Security Team and scan an
entire virtual address space for misconfigured access privileges. Doing so would prove the correct
workings of our fuzzer as designing the control interface and correct enumeration features proved
to be a major challenge.

It is also quite interesting to see if mayor operating system vendors have fixed the reported issues
with the IO-MMU.

It would also be possible to go further and test if the IO-MMU (or any other MMUs involved with
the PCIe network) is resilient to malformed memory transactions.

3.2 Fuzzing PCIe switches

As the PCIe network is a switched network with active network coupling devices these devices are
as important to the overall security of the computer system as all members. Yet unlike Ethernet
networks, there does not seam to be a lot of research interest into them. A broad scan of their
behaviour could shine some first light into this matter.

3.3 Fuzzing other controllers

Furthermore we would like to fuzz the countless configuration interfaces exposed to the PCIe net-
work that are unreachable from software running on CPUs as the hardware usually manages those.
Examples include, but are not limited to, power management, enumeration notifications, bandwidth
management, interrupt messages, MFVC, SR-IOV etc.

Doing so we need to find a way to generate fuzz cases efficiently as iterating over all possibilities
is far too time consuming. We also need to find a way to collect feedback from the hardware that is
being tested.
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3.4 Looking into PCIe power management

During the development of our fuzzer we discovered that the actual implementations of power
management features in PCIe devices is way more fragile than we would have anticipated. As
a matter of fact we provoked malfunctions multiple times by accident. Given the huge potential
attack surface of power management features for side channel attacks or inducing glitches in the
device operations it would be an interesting target to look into.
To the authors knowledge there are plenty of research projects looking into controlling the power
delivery of computer chips by directly manipulating the hardware in a physical. At the time of
writing I am not aware of any project looking into this matter from the perspective of PCIe though.

3.5 Compute eXpress Link - The next big thing in data centres

CXL – which is short for Compute eXpress Link – is a protocol to interconnect device memories,
including cache coherence guaranteeing mechanisms. While the next generation of Agilex FPGA
are designed to have CXL offloading hardware, the protocol itself is defined as an additional layer
over PCIe (or possibly any other protocol). Furthermore we have all the basic work in place to
build a CXL debugging device on top of our TLP state modules. This would allow us to have a
look at these new types of devices and search for potential issues.

3.6 Improving the fuzzer

Last but not least there is still plenty of room for improvements to the fuzzer. First of all it would be
great to implement further pattern generation techniques. Furthermore the fault detection capabil-
ities could still be improved. The fuzzer currently also lacks support for dynamic latency analysis
for all send TLPs. Finally it would be helpful to expand the basic modules of the fuzzer towards a
general TLP test framework.

46



4 Summary

Having a tool to analyse potential security flaws within the PCIe realm would be a beneficial ad-
dition to hardware debugging tools. As a consequence we developed an TLP message generator
capable of sending arbitrary TLP as fuzz cases and registering the hardware responses. We proved
its functionality in simulation.
Furthermore we developed an SoC connected to the FPGA using an AXI bridge and created an
U-Boot configuration that is capable of being bootstrapped by the SDM. This involved porting
Intels HPS reference implementations to our dev kit. We also composed an Linux-based operating
system designed to control the fuzzing logic using the Yocto project. This includes a custom kernel
module as well as userland software for convenience measures. While we were able to briefly test
the prototype of the kernel module using QEMU there are ongoing issues with the modifications to
the Linux boot code provided by Intel rendering us unable to test the fuzzer outside simulations for
now.

Lessons learned We learned that, while it is not as easy as fuzzing software due to the common
lack of output, it is ideed possible to test hardware using fuzzing though. It became clear that this
approach has a lot of potential to find new issues within hardware as test benches of real world
hardware are usually limited to the unit itself without extensive integration tests beyond ensuring
basic operation. Moreover these unit test benches are often of poor quality.
Furthermore we learned that Intel does not ship their Agilex line of devices as complete products.
This manifests as their shipped develompent kits do not have completely working Linux support
yet, feature missing and sometimes incorrect documentation and certain functions often simply
do not work as intended. This also holds true for the software support for this series within their
Quartus EDA suite which can best be described as being in beta testing status.
Last but not least we learned that there are a few ways to theoretically observe the behaviour of a
black box hardware DUT but there is no default way to go about this. Instead one has to use domain
dependent knowledge here.
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Appendix

1 The build script

Listing 4.1: SD Image Build Script
1 # ! / u s r / b i n / env bash
2
3 CLEAN= t rue
4 NUMBER_OF_CORES=32
5 QUARTUS_HOME=/ o p t / in te lFPGA_pro / 2 1 . 2
6
7 POKY_BRANCH= h a r d k n o t t
8 META_INTEL_FPGA_BRANCH= m a s t e r
9 META_INTEL_FPGA_REFDES_BRANCH= m a s t e r

10 MENTOR_BRANCH= h a r d k n o t t
11
12 #ATF_VER=v2 . 4 . 0
13 ATF_VER=v2 . 4 . 1
14 #ATF_VER=
15 UBOOT_VER=v2021 . 0 1
16
17 #LINUX_VER =5 .4 .114 # save k e r n e l v e r s i o n i n o r d e r f o r bb t o choose c o r r e c t s y s c a l l l i s t
18 #LINUX_VER_APP=− l t s
19 LINUX_VER=5.12
20 LINUX_VER_APP=
21
22 # Check f o r r e q u i r e d e x t e r n a l deps
23 i f [ [ − f . . / o u t p u t _ f i l e s / t o p . s o f ] ] ; then
24 echo " Using . . / o u t p u t _ f i l e s / t o p . s o f a s i n p u t f o r r b f g e n e r a t i o n "
25 e l s e
26 echo " P l e a s e make s u r e t h a t . . / o u t p u t _ f i l e s / t o p . s o f e x i s t s "
27 e x i t 1
28 f i
29
30 i f [ [ −d b u i l d _ d i r ] ] ; then
31 i f [ [ "$CLEAN" == t rue ] ] ; then
32 rm − r f b u i l d _ d i r
33 e l s e
34 echo " S k i p p i n g b u i l d d i r c l e a n i n g "
35 f i
36 f i
37 mkdir −p b u i l d _ d i r
38 TOP_FOLDER= ‘pwd ‘
39 # cd b u i l d _ d i r
40
41 # Make s u r e t h e hw l i b i s i n p l a c e
42 mkdir −p $TOP_FOLDER / r e p o s
43 i f [ [ −d $TOP_FOLDER / r e p o s / i n t e l − soc fpga − hwl ib ] ] ; then
44 # e x p o r t CROSS_COMPILE=$TOP_FOLDER / r e p o s / i n t e l −soc fpga −h w l i b / t o o l s / gcc −l i n a r o −7.5.0 −2019.12 − x86_64_aarch64 −l i n u x −gnu /

b i n / aarch64 −l i n u x −gnu−
45 export CROSS_COMPILE=$TOP_FOLDER / r e p o s / gcc −arm −10.2 −2020.11 − x86_64 − aarch64 −none − l i n u x −gnu / b i n / aa rch64 −none − l i n u x −gnu

−
46 e l s e
47 pushd $TOP_FOLDER / r e p o s > / dev / n u l l
48 echo " C r o s s c o m p i l e r n o t found . P e r f o r m i n g s e t u p . "
49 # commented o u t as c u r r e n t l y broken ( o n l y arm works atm )
50 # g i t c l o n e h t t p s : / / g i t h u b . com / a l t e r a −o p e n s o u r c e / i n t e l −soc fpga −h w l i b | | e x i t
51 # cd i n t e l −soc fpga −h w l i b / t o o l s
52 # bash . / i n s t a l l _ l i n a r o . sh
53 wget h t t p s : / / d e v e l o p e r . arm . com / − / media / F i l e s / downloads / gnu −a / 1 0 . 2 − 2 0 2 0 . 1 1 / b i n r e l / gcc −arm −10.2 −2020.11 − x86_64 − aarch64

−none − l i n u x −gnu . t a r . xz
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54 t a r − xf gcc −arm −10.2 −2020.11 − x86_64 − aarch64 −none − l i n u x −gnu . t a r . xz
55 rm gcc −arm −10.2 −2020.11 − x86_64 − aarch64 −none − l i n u x −gnu . t a r . xz
56 export CROSS_COMPILE= ‘pwd ‘ / gcc −arm −10.2 −2020.11 − x86_64 − aarch64 −none − l i n u x −gnu / b i n / aa rch64 −none − l i n u x −gnu −
57 popd > / dev / n u l l
58 f i
59
60 export ARCH=arm64
61 BUILDDIR=$TOP_FOLDER / b u i l d _ d i r
62
63 # c o m p i l e b o o t l o a d e r
64 i f [ [ −d r e p o s / u−boot − soc fpga − r e l _ s o c f p g a _ v 2 0 2 0 . 1 0 _21 . 0 5 . 0 1 _pr ] ] ; then
65 cd r e p o s / u−boot − soc fpga − r e l _ s o c f p g a _ v 2 0 2 0 . 1 0 _21 . 0 5 . 0 1 _pr
66 e l s e
67 cd $BUILDDIR
68 g i t c l o n e h t t p s : / / g i t h u b . com / a l t e r a − o p e n s o u r c e / u−boot − s o c f p g a
69 cd u−boot − s o c f p g a
70 g i t c h e c k o u t socfpga_$UBOOT_VER | | e x i t
71 echo " f e t c h e d u− boo t @$UBOOT_VER"
72 f i
73 make c l e a n && make mrprope r
74 # i t ’ s u n c l e a r i f t h e l i n e below i s r e q u i r e d or n o t
75 # sed − i ’ s / SOCFPGA_AGILEX / SOCFPGA / g ’ c o n f i g s / s o c f p g a _ a g i l e x _ d e f c o n f i g
76 i f [ [ − f . c o n f i g ] ] ; then
77 rm . c o n f i g
78 f i
79 sed − i ’ s / s o c f p g a _ a g i l e x _ s o c d k / s o c f p g a _ a g i l e x _ f u z z e r / g ’ c o n f i g s / s o c f p g a _ a g i l e x _ d e f c o n f i g | | e x i t
80 sed − i ’ s / s o c f p g a _ a g i l e x _ s o c d k _ q s p i / s o c f p g a _ a g i l e x _ f u z z e r / g ’ a r c h / arm / d t s / M a k e f i l e | | e x i t
81 # echo ’ / dtb −$ (CONFIG_ARCH_SOCFPGA) += / a s o c f p g a _ a g i l e x _ f u z z e r . d t b \ \ / ’ >> arch / arm / d t s / M a k e f i l e
82 cp $TOP_FOLDER / o v r f i l e s / d t / * . d t s * a r c h / arm / d t s / | | e x i t
83 i f [ [ −z ATF_VER ] ] ; then
84 DEVICE_TREE= s o c f p g a _ a g i l e x _ f u z z e r . d t b make s o c f p g a _ a g i l e x _ d e f c o n f i g | | e x i t
85 e l s e
86 make s o c f p g a _ a g i l e x _ a t f _ d e f c o n f i g | | e x i t
87 f i
88 make − j $NUMBER_OF_CORES | | e x i t
89 cp . / u− boo t . img . . / . . / b u i l d _ d i r
90 cp . / s p l / u−boot − s p l − d t b . hex . . / . . / b u i l d _ d i r
91 cd $TOP_FOLDER
92
93 # c o m p i l e l i n u x
94 cd b u i l d _ d i r
95 # I n t e l p r o v i d e s an ( s l i g h t l y o u t d a t e d and ) c u s t o m i z e d v e r s i o n o f t h e l i n u x
96 # k e r n e l c a p a b l e o f r u n n i n g on an HPS . So l e t s use t h a t one .
97 i f [ [ "$CLEAN" == t rue ] ] ; then
98 rm − r f l i n u x − s o c f p g a
99 f i

100 i f [ [ −d l i n u x − s o c f p g a ] ] ; then
101 cd l i n u x − s o c f p g a
102 g i t p u l l
103 e l s e
104 g i t c l o n e h t t p s : / / g i t h u b . com / a l t e r a − o p e n s o u r c e / l i n u x − s o c f p g a
105 cd l i n u x − s o c f p g a
106 g i t c h e c k o u t −b f w _ b u i l d − t " o r i g i n / soc fpga −$LINUX_VER" "$LINUX_VER_APP"
107 echo " CONFIG_JFFS2_FS=y " >> a r c h / arm64 / c o n f i g s / d e f c o n f i g
108 echo "CONFIG_OF_CONFIGFS=y " >> a r c h / arm64 / c o n f i g s / d e f c o n f i g
109 sed − i ’ s / CONFIG_ALTERA_SYSID=m/ CONFIG_ALTERA_SYSID=y / g ’ a r c h / arm64 / c o n f i g s / d e f c o n f i g
110 echo " dtb − \ $ (CONFIG_ARCH_AGILEX) += s o c f p g a _ a g i l e x _ f u z z e r . d t b " >> a r c h / arm64 / boo t / d t s / i n t e l / M a k e f i l e
111 echo " dtb − \ $ (CONFIG_ARCH_AGILEX) += s o c f p g a _ a g i l e x _ m i n i m a l . d t b " >> a r c h / arm64 / boo t / d t s / i n t e l / M a k e f i l e
112 f i
113 cp . . / . . / o v r f i l e s / d t / * a r c h / arm64 / boo t / d t s / i n t e l /
114 make c l e a n && make mrprope r
115 #make s o c f p g a _ d e f c o n f i g
116 make d e f c o n f i g
117 #make − j $NUMBER_OF_CORES Image d t b s modules && make − j $NUMBER_OF_CORES m o d u l e s _ i n s t a l l INSTALL_MOD_PATH=

m o d u l e s _ i n s t a l l | | e x i t
118 make − j $NUMBER_OF_CORES Image d t b s | | e x i t
119
120 # cp arch / arm64 / boo t / Image . . / k e r n e l _ i m a g e
121 cp a r c h / arm64 / boo t / d t s / i n t e l / s o c f p g a _ a g i l e x _ f u z z e r . d t b . . /
122 cp a r c h / arm64 / boo t / d t s / i n t e l / s o c f p g a _ a g i l e x _ m i n i m a l . d t b . . /
123 # cp −r m o d u l e s _ i n s t a l l . . / k e r n e l _ m o d u l e s
124 cd . .
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125
126 # These f u n c t i o n s are s h a m e l e s s l y c o p i e d ( and t h e n m o d i f i e d ) from t h e y o c t o examples
127
128 MACHINE= a g i l e x
129 IMAGE= g r s d # nand # v a l i d are nand ghrd q s p i
130 l o c a t i o n =$TOP_FOLDER / b u i l d _ d i r
131
132 ## Sp in up p y t ho n web s e r v e r f o r bb s u p p o r t i n background and t r a p i t s e x i t
133 echo " Spun up web s e r v e r on p o r t 8000 f o r ‘pwd ‘ "
134 python3 −m h t t p . s e r v e r &
135 trap " echo T r i n g t o c l o s e py thon w e b s e r v e r && t r a p − SIGTERM && k i l l −− −$$ " SIGINT SIGTERM EXIT
136
137 s a n i t y _ b i t b a k e ( ) {
138 whi le t rue ; do
139 BITBAKE_PROCESS_RUNNING= ‘ ps aux | g r ep b i t b a k e | wc −l ‘
140 i f [ $BITBAKE_PROCESS_RUNNING −eq 1 ] ; then
141 break ;
142 e l s e
143 echo −e " \ n [ INFO ] There i s a l r e a d y an i n s t a n c e o f b i t b a k e p r o c e s s r u n n i n g i n t h e background . Wai t i ng . . "
144 s l e e p ‘ expr $RANDOM % 30 ‘
145 f i
146 done
147 }
148
149 e n v i r o n m e n t _ c l e a n u p ( ) {
150 i f [ −d "$BUILDDIR" ] ; then
151 echo −e " \ n [ INFO ] Cleanup t h e / tmp , / con f f o l d e r s i n t h e workspace f o r n e x t b u i l d "
152 pushd $BUILDDIR > / dev / n u l l
153 rm − r f $MACHINE− r o o t f s / tmp /
154 rm − r f $MACHINE− r o o t f s / con f /
155
156 i f [ −d $MACHINE− images ] ; then
157 echo " [ INFO ] Cleanup images f o l d e r i n t h e workspace f o r n e x t b u i l d "
158 rm − r f $MACHINE− images
159 f i
160 popd > / dev / n u l l
161 f i
162
163 i f [ ! −d $BUILDDIR /$MACHINE− r o o t f s ] ; then
164 echo −e " \ n [ INFO ] C r e a t e b u i l d workspace "
165 mkdir −p $BUILDDIR /$MACHINE− r o o t f s
166 f i
167
168 i f [ ! −d $BUILDDIR /$MACHINE− images ] ; then
169 echo −e " \ n [ INFO ] C r e a t e image s t a g i n g a r e a "
170 mkdir −p $BUILDDIR /$MACHINE− images
171 f i
172 STAGING_FOLDER=$BUILDDIR /$MACHINE− images
173
174 i f [ −d "$BUILDDIR / meta − i n t e l − fpga " ] ; then
175 echo −e " \ n [ INFO ] Remove meta − i n t e l − fpga and meta − i n t e l − fpga − r e f d e s i f t h e y a r e a l r e a d y e x i s t i n BUILDDIR"
176 pushd $BUILDDIR > / dev / n u l l
177 rm − r f meta − i n t e l − fpga /
178 rm − r f meta − i n t e l − fpga − r e f d e s /
179 popd > / dev / n u l l
180 f i
181 }
182
183 # Update e x i s t i n g meta l a y e r s or c l o n e a new one i f i t does n o t e x i s t s
184 g e t _ l a t e s t _ m e t a ( ) {
185 pushd $BUILDDIR > / dev / n u l l
186 # Make s u r e b u i l d _ d i r / poky i s i n c o r r e c t s t a t e
187 i f [ −d " poky " ] ; then
188 echo −e " \ n [ INFO ] Poky s o u r c e t r e e a v a i l a b l e . P roceed t o u p d a t e poky s o u r c e t r e e ($POKY_BRANCH) b ra nc h . "
189 pushd poky > / dev / n u l l
190 g i t c h e c k o u t m a s t e r
191 g i t b r a n ch −D $POKY_BRANCH | | t rue
192 g i t f e t c h o r i g i n
193 g i t p u l l
194 g i t c h e c k o u t $POKY_BRANCH
195 popd > / dev / n u l l
196 e l s e
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197 echo −e " \ n [ INFO ] Poky s o u r c e t r e e n o t a v a i l a b l e . P roceed t o download poky s o u r c e t r e e ($POKY_BRANCH) b ra nc h . "
198 g i t c l o n e −b $POKY_BRANCH h t t p s : / / g i t . y o c t o p r o j e c t . o rg / g i t / poky . g i t
199 f i
200
201 # make s u r e t h e meta l a y e r s are i n t h e c o r r e c t s t a t e
202 i f [ −d " meta − i n t e l − fpga " ] ; then
203 pushd meta − i n t e l − fpga > / dev / n u l l
204 echo −e " \ n [ INFO ] meta − i n t e l − fpga s o u r c e t r e e a v a i l a b l e . P roceed t o u p d a t e meta − i n t e l − fpga s o u r c e t r e e ( m a s t e r

) b r a nc h . "
205 g i t c h e c k o u t −− .
206 g i t c h e c k o u t $META_INTEL_FPGA_BRANCH
207 g i t f e t c h o r i g i n
208 g i t p u l l
209 popd > / dev / n u l l
210 e l s e
211 echo −e " \ n [ INFO ] meta − i n t e l − fpga s o u r c e t r e e n o t a v a i l a b l e . P roceed t o download meta − i n t e l − fpga s o u r c e t r e e (

m a s t e r ) b r a nc h . "
212 g i t c l o n e −b $META_INTEL_FPGA_BRANCH h t t p s : / / g i t . y o c t o p r o j e c t . o rg / g i t / meta − i n t e l − fpga
213 f i
214
215 i f [ −d " meta − i n t e l − fpga − r e f d e s " ] ; then
216 echo −e " \ n [ INFO ] meta − i n t e l − fpga − r e f d e s s o u r c e t r e e a v a i l a b l e . P roceed t o u p d a t e meta − i n t e l − fpga − r e f d e s s o u r c e

t r e e ( m a s t e r ) b r an ch . "
217 pushd meta − i n t e l − fpga − r e f d e s > / dev / n u l l
218 g i t c h e c k o u t −− .
219 g i t c h e c k o u t $META_INTEL_FPGA_REFDES_BRANCH
220 g i t f e t c h o r i g i n
221 g i t p u l l
222 popd > / dev / n u l l
223 e l s e
224 echo −e " \ n [ INFO ] meta − i n t e l − fpga − r e f d e s s o u r c e t r e e n o t a v a i l a b l e . P roceed t o download meta − i n t e l − fpga − r e f d e s

s o u r c e t r e e ( m a s t e r ) b r a n ch . "
225 g i t c l o n e −b $META_INTEL_FPGA_REFDES_BRANCH h t t p s : / / g i t h u b . com / a l t e r a − o p e n s o u r c e / meta − i n t e l − fpga − r e f d e s . g i t
226 f i
227
228 i f [ −d " meta − mentor " ] ; then
229 echo "TODO: add p r o p p e r h a n d l i n g " # TODO
230 e l s e
231 g i t c l o n e −b $MENTOR_BRANCH h t t p s : / / g i t h u b . com / MentorEmbedded / meta − mentor . g i t
232 # g i t c h e c k o u t $MENTOR_BRANCH
233 f i
234
235 ## Patch i n meta−mel
236 # cp −a . / meta−mentor / meta−mel / l i b . / meta− i n t e l −fpga / # TODO check i f r e a l l y n o t r e q u i r e d
237
238 # copy core and image t o o l s from r e f d e s t o base repo
239 echo " [ INFO ] Copying c o r e and image t o o l s from r e f d e s t o base r epo "
240 cp − r . / meta − i n t e l − fpga − r e f d e s / r e c i p e s − c o r e . / meta − i n t e l − fpga /
241 cp − r . / meta − i n t e l − fpga − r e f d e s / r e c i p e s − s u p p o r t . / meta − i n t e l − fpga /
242 cp − r . / meta − i n t e l − fpga − r e f d e s / r e c i p e s − t o o l s . / meta − i n t e l − fpga /
243 cp − r . / meta − i n t e l − fpga − r e f d e s / r e c i p e s −bsp / u− boo t . / meta − i n t e l − fpga / r e c i p e s − c o r e
244
245 cp − r . / meta − i n t e l − fpga − r e f d e s / r e c i p e s − images . / meta − i n t e l − fpga /
246 cp − r . / meta − i n t e l − fpga − r e f d e s / r e c i p e s − g s r d / soc fpga − gsrd − w e b c o n t e n t . / meta − i n t e l − fpga / r e c i p e s − images /
247 cp − r . / meta − i n t e l − fpga − r e f d e s / r e c i p e s − g s r d / soc fpga − gsrd − l i g h t t p d − conf . / meta − i n t e l − fpga / r e c i p e s − images /
248
249 mkdir −p meta − i n t e l − fpga / r e c i p e s −bsp / b i t s r e a m
250 cp . . / o v r f i l e s / hw− r e f − d e s i g n . bb . / meta − i n t e l − fpga / r e c i p e s −bsp / b i t s r e a m / hw− r e f − d e s i g n . bb
251 cp . . / o v r f i l e s / packagegroup −common− e s s e n t i a l . bb . / meta − i n t e l − fpga / r e c i p e s − images / p a c k a g e g r o u p s / packagegroup −common

− e s s e n t i a l . bb
252 cp . . / o v r f i l e s / packagegroup −common− e s s e n t i a l / * . / meta − i n t e l − fpga / r e c i p e s − images / p a c k a g e g r o u p s /
253
254 i f [ −d " meta −openembedded " ] ; then
255 echo −e " \ n [ INFO ] meta −openembedded s o u r c e t r e e a v a i l a b l e . P roceed t o u p d a t e meta −openembedded s o u r c e t r e e (

$YOCTO_BRANCH) br an ch . "
256 pushd meta −openembedded > / dev / n u l l
257 g i t c h e c k o u t m a s t e r
258 g i t b r a n ch −D $POKY_BRANCH | | t rue
259 g i t f e t c h o r i g i n
260 g i t p u l l
261 g i t c h e c k o u t $POKY_BRANCH
262 popd > / dev / n u l l
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263 e l s e
264 echo −e " \ n [ INFO ] meta −openembedded s o u r c e t r e e n o t a v a i l a b l e . P roceed t o download meta −openembedded s o u r c e t r e e

($YOCTO_BRANCH) b ra n ch . "
265 g i t c l o n e −b $POKY_BRANCH h t t p s : / / g i t . openembedded . o rg / meta −openembedded
266 f i
267
268 g e t _ v e r s i o n _ i n f o
269 popd > / dev / n u l l
270 }
271
272 c o n f i g u r e _ m e t a ( ) {
273 pushd $BUILDDIR > / dev / n u l l
274 i f [ ! −z $ATF_VER ] ; then
275 ATF_BRANCH=socfpga_$ATF_VER
276 # Get COMMIT ID HASH from arm−t r u s t e d −f i r m w a re
277 echo −e " \ n [ INFO ] Update ATF r e c i p e wi th l a t e s t s o u r c e r e v i s i o n f o r ATF $ATF_VER "
278 COMMIT_HASH=" $ ( g i t l s − remote h t t p s : / / g i t h u b . com / a l t e r a − o p e n s o u r c e / arm− t r u s t e d − f i r m w a r e . g i t $ATF_BRANCH | awk ’{

p r i n t $1 } ’ ) "
279 # Change SRCREV i n ATF r e c i p e t o g e t l a t e s t commit
280 pushd meta − i n t e l − fpga / r e c i p e s −bsp / arm− t r u s t e d − f i r m w a r e > / dev / n u l l
281 sed − i /SRCREV\ = \ \ " / d arm− t r u s t e d − f i rmware_ ‘ c u t −d . −f1 −2 <<< "$ATF_VER" ‘ . bb
282 echo "SRCREV = \ "$COMMIT_HASH\ " " >> arm− t r u s t e d − f i rmware_ ‘ c u t −d . −f1 −2 <<< "$ATF_VER" ‘ . bb
283 popd > / dev / n u l l
284 e l s e
285 rm − r f meta − i n t e l − fpga / r e c i p e s −bsp / arm− t r u s t e d − f i r m w a r e
286 f i
287
288 i f [ ! −z $UBOOT_VER ] ; t h e n
289 UBOOT_SOCFGPA_BRANCH=socfpga_$UBOOT_VER
290 # Get COMMIT ID HASH from u−boot − s o c f p g a
291 echo −e " \ n [ INFO ] Update u− boo t r e c i p e wi th l a t e s t source r e v i s i o n f o r u− boo t $UBOOT_VER "
292 COMMIT_HASH=" $ ( g i t l s − remote h t t p s : / / g i t h u b . com / a l t e r a − o p e n s o u r c e / u−boot − s o c f p g a . g i t $UBOOT_SOCFGPA_BRANCH | awk

’ { p r i n t $1 } ’ ) "
293 # Change SRCREV i n u− boo t r e c i p e t o g e t l a t e s t commit
294 pushd meta − i n t e l − fpga / r e c i p e s −bsp / u− boo t > / dev / n u l l
295 echo " O v e r r i d e u−boot − s o c f p g a SRC_REV in r e c i p e wi th commit ID $COMMIT_HASH"
296 sed − i /SRCREV\ =\ \ " / d u−boot −socfpga_$UBOOT_VER . bb
297 echo "SRCREV = \ "$COMMIT_HASH\ " " >> u−boot −socfpga_$UBOOT_VER . bb
298 popd > / dev / n u l l
299 f i
300
301 i f [ ! −z $LINUX_VER ] ; then
302 LINUX_SOCFPGA_BRANCH=" soc fpga −$LINUX_VER"$LINUX_VER_APP
303 # Get COMMIT ID HASH from l i n u x −s o c f p g a
304 echo −e " \ n [ INFO ] Update k e r n e l r e c i p e wi th l a t e s t s o u r c e r e v i s i o n f o r k e r n e l $LINUX_VER "
305 COMMIT_HASH=" $ ( g i t l s − remote h t t p s : / / g i t h u b . com / a l t e r a − o p e n s o u r c e / l i n u x − s o c f p g a . g i t $LINUX_SOCFPGA_BRANCH | awk

’{ p r i n t $1 } ’ ) "
306 # Change SRCREV i n k e r n e l r e c i p e t o g e t l a t e s t commit
307 pushd meta − i n t e l − fpga / r e c i p e s − k e r n e l / l i n u x > / dev / n u l l
308 echo " O v e r r i d e l i n u x −socfpga$LINUX_VER_APP SRC_REV i n r e c i p e wi th commit ID $COMMIT_HASH"
309 sed − i /SRCREV\ = \ \ " / d " l i n u x −socfpga$LINUX_VER_APP "_$LINUX_VER . bb
310 echo "SRCREV = \ "$COMMIT_HASH\ " " >> " l i n u x −socfpga$LINUX_VER_APP "_$LINUX_VER . bb
311 echo " O v e r r i d e LINUX_VER in r e c i p e wi th v e r s i o n $LINUX_VER"
312 sed − i / LINUX \ _VERSION \ = \ \ " / d " l i n u x −socfpga$LINUX_VER_APP "_$LINUX_VER . bb
313 echo "LINUX_VERSION = \ "$LINUX_VER \ " " >> l i n u x − s o c f p g a "$LINUX_VER_APP"_$LINUX_VER . bb
314 popd > / dev / n u l l
315 f i
316 popd > / dev / n u l l
317 }
318
319 s e t u p _ b b _ b u i l d _ e n v ( ) {
320 pushd $BUILDDIR > / dev / n u l l
321 echo −e " \ n [ INFO ] Source poky / oe − i n i t − b u i l d −env t o i n i t i a l i z e poky b u i l d e n v i r o n m e n t "
322 source poky / oe − i n i t − b u i l d −env $BUILDDIR /$MACHINE− r o o t f s /
323
324 # S e t t i n g s f o r l o c a l . c o n f
325 echo −e " \ n [ INFO ] Update l o c a l . con f "
326 sed − i /MACHINE/ d con f / l o c a l . con f
327 sed − i /UBOOT_CONFIG/ d con f / l o c a l . con f
328 sed − i / IMAGE\ _TYPE / d con f / l o c a l . con f
329 sed − i / SRC \ _URI \ _ / d con f / l o c a l . con f
330

53



Appendix

331 echo "MACHINE = \ " ${MACHINE} \ " " >> con f / l o c a l . con f
332 echo "DL_DIR = \ " $ l o c a t i o n / downloads \ " " >> con f / l o c a l . con f
333 echo ’DISTRO_FEATURES_append = " sys temd " ’ >> con f / l o c a l . con f
334 echo ’VIRTUAL−RUNTIME_init_manager = " sys temd " ’ >> con f / l o c a l . con f
335 echo "IMAGE_TYPE = \ "$IMAGE \ " " >> con f / l o c a l . con f
336 echo ’IMAGE_FSTYPES += " j f f s 2 t a r . gz " ’ >> con f / l o c a l . con f
337 echo ’EXTRA_IMAGE_FEATURES += " t o o l s −sdk t o o l s −debug " ’ >> con f / l o c a l . con f
338 echo ’IMAGE_ROOTFS_SIZE = "262144" ’ >> con f / l o c a l . con f
339 # L inux
340 echo " PREFERRED_PROVIDER_virtual / k e r n e l = \ " l i n u x −socfpga$LINUX_VER_APP \ " " >> con f / l o c a l . con f
341 i f [ ! −z $LINUX_VER ] ; then
342 echo " PREFERRED_VERSION_linux−socfpga$LINUX_VER_APP = \ " ‘ c u t −d . −f1 −2 <<< "$LINUX_VER" ‘%\ " " >> con f / l o c a l . con f
343 f i
344 # U−boo t
345 echo "UBOOT_CONFIG = \ "$UB_CONFIG \ " " >> con f / l o c a l . con f
346 echo ’ PREFERRED_PROVIDER_virtual / b o o t l o a d e r = " u−boot − s o c f p g a " ’ >> con f / l o c a l . con f
347 i f [ ! −z $UBOOT_VER ] ; then
348 echo "PREFERRED_VERSION_u−boot − s o c f p g a = \ "$UBOOT_VER%\" " >> con f / l o c a l . con f
349 f i
350
351 # ATF
352 i f [ ! −z $ATF_VER ] ; then
353 echo "PREFERRED_VERSION_arm− t r u s t e d − f i r m w a r e = \ " ‘ c u t −d . −f1 −2 <<< "$ATF_VER" ‘ \ " " >> con f / l o c a l . con f
354 e l s e
355 # sed − i ’ s / arm−t r u s t e d −f i r m wa r e \ bash / bash / g ’ meta− i n t e l −fpga / r e c i p e s −core / u−boo t / u−boot −s o c f p g a _ v 2 0 %. bbappend
356 # sed − i ’ s / s o c f p g a _ a g i l e x _ a t f _ d e f c o n f i g / s o c f p g a _ a g i l e x _ d e f c o n f i g / g ’ meta− i n t e l −fpga / r e c i p e s −bsp / u−boo t / u−boot −

soc fpga −common . i n c
357 # sed − i ’ s / s o c f p g a _ a g i l e x _ q s p i _ a t f _ d e f c o n f i g / s o c f p g a _ a g i l e x _ q s p i _ d e f c o n f i g / g ’ meta− i n t e l −fpga / r e c i p e s −bsp / u−boo t

/ u−boot −soc fpga −common . i n c
358 # sed − i ’ s / a g i l e x −socdk − a t f / a g i l e x −socdk ’ meta− i n t e l −fpga / c o n f / machine / a g i l e x −e x t r a . c o n f
359 echo " D i s a b l i n g ATF s u p p o r t i n u− boo t . P a t c h i n g from ‘pwd ‘ "
360 sed − i ’ s / arm− t r u s t e d − f i r m w a r e \ bash / bash / g ’ $TOP_FOLDER / b u i l d _ d i r / meta − i n t e l − fpga / r e c i p e s − c o r e / u− boo t / u−boot −

soc fpga_v20 * . bbappend | | e x i t
361 # Al so d e a c t i v a t e i t b p a t c h i n g
362 sed − i ’ s / cp \ $ . DEPLOY_DIR_IMAGE . . b l31 . b i n / t o u c h / g ’ $TOP_FOLDER / b u i l d _ d i r / meta − i n t e l − fpga / r e c i p e s − c o r e / u− boo t /

u−boot − soc fpga_v20 * . bbappend | | e x i t
363 sed − i ’ s / s o c f p g a _ a g i l e x _ a t f _ d e f c o n f i g / s o c f p g a _ a g i l e x _ d e f c o n f i g / g ’ $TOP_FOLDER / b u i l d _ d i r / meta − i n t e l − fpga / r e c i p e s

−bsp / u− boo t / u−boot − soc fpga −common . i n c | | e x i t
364 sed − i ’ s / s o c f p g a _ a g i l e x _ q s p i _ a t f _ d e f c o n f i g / s o c f p g a _ a g i l e x _ q s p i _ d e f c o n f i g / g ’ $TOP_FOLDER / b u i l d _ d i r / meta − i n t e l −

fpga / r e c i p e s −bsp / u− boo t / u−boot − soc fpga −common . i n c | | e x i t
365 sed − i ’ s / a g i l e x −socdk − a t f / a g i l e x − socdk / g ’ $TOP_FOLDER / b u i l d _ d i r / meta − i n t e l − fpga / con f / machine / a g i l e x − e x t r a . con f

| | e x i t
366 sed − i ’ s / a g i l e x −socdk − a t f / a g i l e x − socdk / g ’ $TOP_FOLDER / b u i l d _ d i r / a g i l e x − r o o t f s / con f / l o c a l . con f | | e x i t
367 f i
368
369 # MACHINE s p e c i f i c s e t t i n g s
370 echo " r e q u i r e con f / machine / a g i l e x − e x t r a . con f " >> con f / l o c a l . con f
371
372 # S e t t i n g s f o r b b l a y e r s . c o n f
373 echo −e " \ n [ INFO ] Update b b l a y e r s . con f "
374 echo ’BBLAYERS += " ${TOPDIR } / . . / meta − i n t e l − fpga " ’ >> con f / b b l a y e r s . con f # We’ d l i k e b a s i c HW s u p p o r t
375 # echo ’BBLAYERS += " $ {TOPDIR } / . . / meta− i n t e l −fpga − r e f d e s " ’ >> c o n f / b b l a y e r s . c o n f # We o n l y use p a r t s o f t h e

r e f e r e n c e image
376 echo ’BBLAYERS += " ${TOPDIR } / . . / meta −openembedded / meta −oe " ’ >> con f / b b l a y e r s . con f # A u s e r l a n d ? Yes , p l e a s e
377 echo ’BBLAYERS += " ${TOPDIR } / . . / meta −openembedded / meta − n e t w o r k i n g " ’ >> con f / b b l a y e r s . con f
378 echo ’BBLAYERS += " ${TOPDIR } / . . / meta −openembedded / meta − py thon " ’ >> con f / b b l a y e r s . con f
379 echo ’BBLAYERS += " ${TOPDIR } / . . / meta −openembedded / meta − f i l e s y s t e m s " ’ >> con f / b b l a y e r s . con f # ’ Cause s s h f s i s

awesome
380 echo ’BBLAYERS += " ${TOPDIR } / . . / meta − mentor / meta −mentor −common " ’ >> con f / b b l a y e r s . con f
381 echo ’BBLAYERS += " ${TOPDIR } / . . / meta − mentor / meta −mel " ’ >> con f / b b l a y e r s . con f # We need k e r n e l p a t c h i n g t o o l s as

our board i s n ’ t m a i n l i n e s u p p o r t e d .
382
383 pushd $BUILDDIR > / dev / n u l l
384 cd . .
385 echo " P a t c h i n g c o n f i g s r e l a t i v e t o ‘pwd ‘ "
386 # TODO: Use sed t o p a t c h s e l e c t e d d t b i n o v r f i l e s / c o n f / a g i l e x . c o n f
387 rm . / meta − i n t e l − fpga / con f / machine / a g i l e x . con f | | e x i t
388 rm . / meta − i n t e l − fpga / con f / machine / a g i l e x − e x t r a . con f | | e x i t
389 cp . . / o v r f i l e s / con f / * meta − i n t e l − fpga / con f / machine / | | e x i t
390
391 # Patch merged i n t e l −fpga −l a y e r
392 # sed − i " s / u−boot −soc fpga −s c r / u−boot −s o c f p g a / g " . / meta− i n t e l −fpga / c o n f / machine / a g i l e x −e x t r a . c o n f | | e x i t
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393 # echo "KERNEL_DEVICETREE += \ " s o c f p g a _ a g i l e x _ f u z z e r . d t b \ " " >> . / meta− i n t e l −fpga / r e c i p e s −k e r n e l / l i n u x −s o c f p g a . i n c
394 r e c i p e t o o l a p p e n d s r c f i l e −wm a g i l e x . / meta − i n t e l − fpga v i r t u a l / k e r n e l . . / o v r f i l e s / d t / s o c f p g a _ a g i l e x _ f u z z e r . d t s i ’

a r c h / ${ARCH} / boo t / d t s / i n t e l / s o c f p g a _ a g i l e x _ f u z z e r . d t s i ’
395 r e c i p e t o o l a p p e n d s r c f i l e −wm a g i l e x . / meta − i n t e l − fpga v i r t u a l / k e r n e l . . / o v r f i l e s / d t / s o c f p g a _ a g i l e x _ f u z z e r . d t s ’

a r c h / ${ARCH} / boo t / d t s / i n t e l / s o c f p g a _ a g i l e x _ f u z z e r . d t s ’
396 # r e c i p e t o o l a p p e n d s r c f i l e −wm a g i l e x . / meta− i n t e l −fpga v i r t u a l / k e r n e l . . / o v r f i l e s / d t / s o c f p g a _ a g i l e x _ g h r d . d t s i ’

arch / $ {ARCH } / boo t / d t s / s o c f p g a _ a g i l e x _ g h r d . d t s i ’ # The f i l e i n t h i s d i r i s o n l y r e q u i r e d because poky i s
w i e r ed abou t i n v o k i n g t h e k e r n e l m a k e f i l e

397 # r e c i p e t o o l a p p e n d s r c f i l e −wm a g i l e x . / meta− i n t e l −fpga v i r t u a l / k e r n e l . . / o v r f i l e s / d t / s o c f p g a _ a g i l e x _ f u z z e r . d t s ’
arch / $ {ARCH } / boo t / d t s / s o c f p g a _ a g i l e x _ f u z z e r . d t s ’ # The f i l e i n t h i s d i r i s o n l y r e q u i r e d because poky i s
w i e r ed abou t i n v o k i n g t h e k e r n e l m a k e f i l e

398 # r e c i p e t o o l k e r n e l _ a d d _ d t s . / meta− i n t e l −fpga . . / o v r f i l e s / d t / s o c f p g a _ a g i l e x _ f u z z e r . d t s
399 # echo " r e q u i r e r e c i p e s −k e r n e l / l i n u x / l i n u x −d t b . i n c " >> . / meta− i n t e l −fpga / r e c i p e s −k e r n e l / l i n u x / l i n u x −soc fpga − l t s _ %.

bbappend
400 echo ’KERNEL_DEVICETREE += " i n t e l / s o c f p g a _ a g i l e x _ f u z z e r . d t b " ’ >> . / meta − i n t e l − fpga / r e c i p e s − k e r n e l / l i n u x / " l i n u x −

socfpga$LINUX_VER_APP " _%. bbappend
401 r e c i p e t o o l a p p e n d s r c f i l e −wm a g i l e x . / meta − i n t e l − fpga v i r t u a l / k e r n e l . . / o v r f i l e s / d t / M a k e f i l e . p a t c h ’ a r c h / ${ARCH} /

boo t / d t s / i n t e l / M a k e f i l e . p a t c h ’
402 # r e c i p e t o o l a p p e n d s r c f i l e −wm a g i l e x . / meta− i n t e l −fpga v i r t u a l / k e r n e l . . / o v r f i l e s / d t / DummyMakefile . p a t c h ’ arch / $ {

ARCH } / boo t / d t s / M a k e f i l e . pa tch ’
403 popd > / dev / n u l l
404 popd > / dev / n u l l
405 }
406
407 b u i l d _ l i n u x _ d i s t r o ( ) {
408 pushd $BUILDDIR > / dev / n u l l
409 echo −e " \ n [ INFO ] Clean up p r e v i o u s k e r n e l b u i l d i f any "
410 b i t b a k e v i r t u a l / k e r n e l −c c l e a n a l l
411 echo −e " \ n [ INFO ] Clean up p r e v i o u s u− boo t b u i l d i f any "
412 b i t b a k e u−boot − s o c f p g a −c c l e a n a l l
413 echo −e " \ n [ INFO ] Clean up p r e v i o u s ghrd b u i l d i f any "
414 # b i t b a k e hw−r e f −d e s i g n −c c l e a n a l l
415 echo " ========================WARNING======================== "
416 echo " Commented o u t r e f d s c l e a n i n g "
417
418 echo −e " \ n [ INFO ] S t a r t b i t b a k e p r o c e s s f o r t a r g e t c o n f i g . . "
419 # b i t b a k e c o n s o l e −image−min imal gsrd −c o n s o l e −image 2>&1
420 # WARN n o t b u i l d i n g t h e min imal image as w e l l migh t break t h i n g s .
421 b i t b a k e c o n s o l e −image − minimal | | e x i t
422 popd > / dev / n u l l
423 }
424
425 b u i l d _ i m a g e ( ) {
426 echo −e " \ n [ INFO ] Copy t h e b u i l d o u t p u t and s t o r e i n $STAGING_FOLDER \ n "
427 pushd $ l o c a t i o n /$MACHINE− r o o t f s / tmp / de p lo y / images /$MACHINE/ > / dev / n u l l
428
429 cp −vrL *−$MACHINE . t a r . gz $STAGING_FOLDER / | | echo " [ INFO ] No t a r . gz found . "
430 cp −vrL *−$MACHINE . j f f s 2 $STAGING_FOLDER / | | echo " [ INFO ] No j f f s 2 found . "
431 cp −vrL *−$MACHINE . wic $STAGING_FOLDER / | | echo " [ INFO ] No j f f s 2 found . "
432
433
434 cp −vrL zImage $STAGING_FOLDER / | | cp −vrL Image $STAGING_FOLDER / | | echo " [ INFO ] No zImage / Image found . "
435
436
437 cp −vrL * . d t b $STAGING_FOLDER / | | echo " [ INFO ] No d t b found . "
438 popd > / dev / n u l l
439
440 mkdir −p $STAGING_FOLDER / u−boot −$MACHINE−socdk − a t f
441
442 u b _ c p _ d e s t i n a t i o n =$STAGING_FOLDER / u−boot −$MACHINE−socdk − a t f
443 pushd $ l o c a t i o n /$MACHINE− r o o t f s / tmp / work /$MACHINE−poky −*/ u−boot − s o c f p g a / 1 _v20 * / b u i l d / socfpga_$MACHINE * / > / dev / n u l l
444 cp −vL u− boo t $ u b _ c p _ d e s t i n a t i o n
445 cp −vL u−boot − d t b . b i n $ u b _ c p _ d e s t i n a t i o n
446 cp −vL u−boot − d t b . img $ u b _ c p _ d e s t i n a t i o n
447 cp −vL u− boo t . d t b $ u b _ c p _ d e s t i n a t i o n
448 cp −vL u− boo t . img $ u b _ c p _ d e s t i n a t i o n
449 cp −vL u− boo t . map $ u b _ c p _ d e s t i n a t i o n
450 cp −vL s p l / u−boot − s p l $ u b _ c p _ d e s t i n a t i o n
451 cp −vL s p l / u−boot − s p l − d t b . b i n $ u b _ c p _ d e s t i n a t i o n
452 cp −vL s p l / u−boot − s p l . d t b $ u b _ c p _ d e s t i n a t i o n
453 cp −vL s p l / u−boot − s p l . map $ u b _ c p _ d e s t i n a t i o n
454
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455
456 cp −vL s p l / u−boot − s p l − d t b . hex $ u b _ c p _ d e s t i n a t i o n
457 cp −vL u− boo t . i t b $ u b _ c p _ d e s t i n a t i o n
458 popd > / dev / n u l l
459
460 pushd $ u b _ c p _ d e s t i n a t i o n > / dev / n u l l
461 chmod 644 u−boot − d t b . img
462 chmod 644 u− boo t . img
463 chmod 744 u− boo t . i t b | | echo " [ INFO ] F i l e u− boo t . i t b n o t found f o r t h i s b u i l d c o n f i g u r a t i o n . "
464 popd > / dev / n u l l
465
466 pushd $ l o c a t i o n /$MACHINE− r o o t f s / tmp / work /$MACHINE−poky −*/ u−boot − soc fpga − s c r / 1 . 0 * / deploy −u−boot − soc fpga − s c r > / dev /

n u l l
467 cp −vL u− boo t . s c r $ u b _ c p _ d e s t i n a t i o n
468 popd > / dev / n u l l
469
470 pushd $ l o c a t i o n /$MACHINE− r o o t f s / tmp / de p l oy / images /$MACHINE > / dev / n u l l
471 cp −vrL ${MACHINE} _$ {IMAGE} _ghrd / $STAGING_FOLDER / .
472 # cp −vrL $ {MACHINE} _ghrd / $STAGING_FOLDER / .
473 popd > / dev / n u l l
474 echo −e " \ nBeg inn ing merge s e q u e n c e \ n "
475 BUILDDIR=$TOP_FOLDER / b u i l d _ d i r
476 pushd $BUILDDIR > / dev / n u l l
477 echo −e " \ n===== DEBUG =====\ n B u i l d i n g image i n ‘pwd ‘ "
478 echo −e " \ n C a l l i n g : \ n "
479 echo bash $TOP_FOLDER / c r e a t e I m a g e . bash $STAGING_FOLDER $MACHINE $BUILDDIR $QUARTUS_HOME
480 echo " "
481 sudo bash $TOP_FOLDER / c r e a t e I m a g e . bash $STAGING_FOLDER $MACHINE $BUILDDIR $QUARTUS_HOME
482 popd > / dev / n u l l
483 }
484
485 b u i l d _ r b f _ f i l e ( ) {
486 echo " Debug : C u r r e n t working d i r e c t o r y : ‘pwd ‘ "
487 pushd $BUILDDIR > / dev / n u l l
488 # The e x i s t a n c e o f . . / o u t p u t _ f i l e s / t o p . s o f has a l r e a d y been a s s u r e d
489 # bash $QUARTUS_HOME/ n i o s 2 e d s / n ios2_command_she l l . sh q u a r t u s _ p f g −c . . / . . / o u t p u t _ f i l e s / t o p . s o f $BUILDDIR / f l a s h _ i m a g e .

j i c −o d e v i c e=MT25QU02G −o f l a s h _ l o a d e r =AGFB014R24A2E3VR0 −o h p s _ p a t h=$BUILDDIR / u−boot −s p l −d t b . hex −o mode=
ASX4 | | e x i t

490 echo " C r e a t i n g r b f f i l e . . . "
491 bash $QUARTUS_HOME/ n i o s 2 e d s / n ios2_command_she l l . sh q u a r t u s _ p f g −c . . / . . / o u t p u t _ f i l e s / t o p . s o f $BUILDDIR / f l a s h _ i m a g e .

c o r e . r b f −o h p s _ p a t h =$BUILDDIR / u−boot − s p l − d t b . hex | | e x i t
492 popd > / dev / n u l l
493 }
494
495 # b u i l d u s e r l a n d
496 cd $BUILDDIR
497 s a n i t y _ b i t b a k e
498 i f [ [ "$CLEAN" == t rue ] ] ; then
499 e n v i r o n m e n t _ c l e a n u p
500 echo " ========================WARNING======================== "
501 echo " Cleaned BB f i l e s p r i o r t o b u i l d "
502 f i
503
504 g e t _ l a t e s t _ m e t a
505 c o n f i g u r e _ m e t a
506
507 i f [ "$IMAGE" == " q s p i " ] ; then
508 UB_CONFIG="$MACHINE−socdk −$IMAGE− a t f "
509 e l s e
510 UB_CONFIG="$MACHINE−socdk − a t f "
511 f i
512
513 b u i l d _ r b f _ f i l e
514 s e t u p _ b b _ b u i l d _ e n v
515 b u i l d _ l i n u x _ d i s t r o
516 b u i l d _ i m a g e
517
518
519 echo " \ n \ n============================ FINISHED ============================ "
520 echo " \ n P l e a s e have a look a t t h e $STAGING_FOLDER f o l d e r f o r g e n e r a l p u r p o s e images . "
521 echo " The sd c a r d o p t i m i z e d image has been w r i t t e n t o $BUILDDIR / sdca rd − b u i l d / sd image . img "
522 echo " Burn t h i s image t o an micro sd c a r d and use i t a s your boo t d e v i c e . "
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523 echo " Use t h e j i c f i l e l o c a t e d a t $BUILDDIR / f l a s h _ i m a g e . j i c t o program t h e fpga "

2 The kernel modules source code overview

Listing 4.2: The device tree include source
1 / *
2 * Add t h i s p i e c e o f d t s i f r a g m e n t as # i n c l u d e " s o c f p g a _ a g i l e x _ g h r d . d t s i "
3 * i n t h e f i l e s o c f p g a _ a g i l e x _ s o c d k . d t s . Compile i t i n t h e k e r n e l a long w i t h
4 * s o c f p g a _ a g i l e x . d t s i .
5 * /
6
7 / {
8 soc {
9

10 l e d _ p i o : gpio@1080 {
11 c o m p a t i b l e = " a l t r , p io −1 .0 " ;
12 r e g = <0 xf9001080 0x8 >;
13 a l t r , gpio −bank − wid th = <4 >;
14 # gpio − c e l l s = <2 >;
15 gpio − c o n t r o l l e r ;
16 r e s e t v a l u e = <0 >;
17 s t a t u s = " d i s a b l e d " ;
18 } ;
19
20 f z z _ d a t a _ i n : gpio@1090 {
21 c o m p a t i b l e = " a l t r , p io −1 .0 " ;
22 r e g = <0 xf9001090 0x10 >;
23 / / i n t e r r u p t −p a r e n t = <&i n t c >;
24 / / i n t e r r u p t s = <0 18 4>;
25 a l t r , gpio −bank − wid th = <32 >; / / 8 b i t w i d t h
26 / / a l t r , i n t e r r u p t −t y p e = <2>; / / Shou ld be TYPE=EDGE
27 / / a l t r , i n t e r r u p t _ t y p e = <2>; / / Shou ld be DERIVED_TYPE=EDGE
28 # gpio − c e l l s = <2 >;
29 gpio − c o n t r o l l e r ;
30 s t a t u s = " d i s a b l e d " ;
31 } ;
32
33 f z z _ d a t a _ o u t : gpio@10a0 {
34 c o m p a t i b l e = " a l t r , p io −1 .0 " ;
35 r e g = <0 xf90010a0 0x8 >;
36 a l t r , gpio −bank − wid th = <32 >;
37 # gpio − c e l l s = <2 >;
38 gpio − c o n t r o l l e r ;
39 r e s e t v a l u e = <0 >;
40 s t a t u s = " d i s a b l e d " ;
41 } ;
42
43 f z z _ c t r l _ o u t : gpio@10b0 {
44 c o m p a t i b l e = " a l t r , p io −1 .0 " ;
45 r e g = <0 xf90010b0 0x8 >;
46 a l t r , gpio −bank − wid th = <8 >;
47 # gpio − c e l l s = <2 >;
48 gpio − c o n t r o l l e r ;
49 r e s e t v a l u e = <0 >;
50 s t a t u s = " d i s a b l e d " ;
51 } ;
52
53 / / D e a c t i v a t e d f o r now as I ’m t r y i n g o f f −the − s h e l f components even dough t h e y ’ re n o t t h a t w e l l s u i t e d
54 / * f u z z i n g _ c t r l : gpio@2000 {
55 c o m p a t i b l e = " i t s u z l , f z z c t l − 1 . 0 " ;
56 reg = <0x f9002000 0 x1000 >;
57 s t a t u s = " d i s a b l e d " ;
58 } ; * /
59
60 / * d i p s w _ p i o : gpio@1070 {
61 c o m p a t i b l e = " a l t r , p io − 1 . 0 " ;
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62 reg = <0x f9001070 0x10 >;
63 i n t e r r u p t −p a r e n t = <&i n t c >;
64 i n t e r r u p t s = <0 17 4>;
65 a l t r , gpio −bank−w i d t h = <4>;
66 a l t r , i n t e r r u p t −t y p e = <3>;
67 a l t r , i n t e r r u p t _ t y p e = <3>;
68 # gpio − c e l l s = <2>;
69 gpio − c o n t r o l l e r ;
70 } ; * /
71
72 / * t r i g g e r _ p i o : gpio@1040 {
73 c o m p a t i b l e = " a l t r , p io − 1 . 0 " ;
74 reg = <0x f9001040 0x20 >;
75 a l t r , gpio −bank−w i d t h = <4>;
76 # gpio − c e l l s = <2>;
77 gpio − c o n t r o l l e r ;
78 r e s e t v a l u e = <0>;
79 } ; * /
80
81 s o c _ l e d s : l e d s {
82 c o m p a t i b l e = " gpio − l e d s " ;
83 s t a t u s = " d i s a b l e d " ;
84
85 l e d _ f p g a 0 : fpga0 {
86 l a b e l = " f p g a _ d b g _ l e d 0 " ;
87 g p i o s = <&l e d _ p i o 0 1 >;
88 } ; / / end fpga0 ( l e d _ f p g a 0 )
89
90 l e d _ f p g a 1 : fpga1 {
91 l a b e l = " f p g a _ d b g _ l e d 1 " ;
92 g p i o s = <&l e d _ p i o 1 1 >;
93 } ; / / end fpga1 ( l e d _ f p g a 1 )
94
95 l e d _ f p g a 2 : fpga2 {
96 l a b e l = " f p g a _ d b g _ l e d 2 " ;
97 g p i o s = <&l e d _ p i o 2 1 >;
98 } ; / / end fpga2 ( l e d _ f p g a 2 )
99

100 l e d _ f p g a 3 : fpga3 {
101 l a b e l = " f p g a _ d b g _ l e d 3 " ;
102 g p i o s = <&l e d _ p i o 3 1 >;
103 } ; / / end fpga3 ( l e d _ f p g a 3 )
104 } ;
105
106 } ;
107 } ;

Listing 4.3: The device tree source
1 / / SPDX−L i c e n s e − I d e n t i f i e r : GPL−2.0
2 / *
3 * C o p y r i g h t (C) 2019 , I n t e l C o r p o r a t i o n
4 * /
5 # i n c l u d e " s o c f p g a _ a g i l e x . d t s i "
6 # i n c l u d e " s o c f p g a _ a g i l e x _ f u z z e r . d t s i "
7
8 / {
9 model = "SoCFPGA A gi l ex SoCDK" ;

10
11 a l i a s e s {
12 s e r i a l 0 = &u a r t 0 ;
13 e t h e r n e t 0 = &gmac0 ;
14 / / e t h e r n e t 1 = &gmac1 ;
15 / / e t h e r n e t 2 = &gmac2 ;
16 } ;
17
18 chosen {
19 s t d o u t − p a t h = " s e r i a l 0 :115200 n8 " ;
20 } ;
21
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22 / * l e d s {
23 c o m p a t i b l e = " gpio −l e d s " ;
24 hps0 {
25 l a b e l = " h p s _ l e d 0 " ;
26 g p i o s = <&p o r t b 20 GPIO_ACTIVE_HIGH>;
27 } ;
28
29 hps1 {
30 l a b e l = " h p s _ l e d 1 " ;
31 g p i o s = <&p o r t b 19 GPIO_ACTIVE_HIGH>;
32 } ;
33
34 hps2 {
35 l a b e l = " h p s _ l e d 2 " ;
36 g p i o s = <&p o r t b 21 GPIO_ACTIVE_HIGH>;
37 } ;
38 } ; * /
39
40 memory {
41 d e v i c e _ t y p e = " memory " ;
42 / * We e x p e c t t h e b o o t l o a d e r t o f i l l i n t h e reg * /
43 r e g = <0 0 0 0 >;
44 } ;
45
46 soc {
47 c l o c k s {
48 osc1 {
49 c lock − f r e q u e n c y = <25000000 >; / / 25 MHz
50 } ;
51 } ;
52 } ;
53 } ;
54
55 &gpio1 {
56 s t a t u s = " okay " ;
57 } ;
58
59 &l e d _ p i o {
60 s t a t u s = " okay " ;
61 } ;
62
63 &s o c _ l e d s {
64 s t a t u s = " okay " ;
65 } ;
66
67 &f z z _ d a t a _ i n {
68 s t a t u s = " okay " ;
69 } ;
70
71 &f z z _ d a t a _ o u t {
72 s t a t u s = " okay " ;
73 } ;
74
75 &f z z _ c t r l _ o u t {
76 s t a t u s = " okay " ;
77 } ;
78
79 / /&f u z z i n g _ c t r l {
80 / / s t a t u s = " d i s a b l e d " ; / / f o r now
81 / / } ;
82
83 &gmac0 {
84 s t a t u s = " okay " ;
85 phy −mode = " r g m i i " ;
86 phy − h a n d l e = <&phy0 >;
87
88 max−frame − s i z e = <9000 >;
89
90 mdio0 {
91 # a d d r e s s − c e l l s = <1 >;
92 # s i z e − c e l l s = <0 >;
93 c o m p a t i b l e = " snps , dwmac−mdio " ;
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94 phy0 : e t h e r n e t −phy@0 {
95 r e g = <4 >;
96
97 txd0 −skew −ps = <0 >; / * −420 ps * /
98 txd1 −skew −ps = <0 >; / * −420 ps * /
99 txd2 −skew −ps = <0 >; / * −420 ps * /

100 txd3 −skew −ps = <0 >; / * −420 ps * /
101 rxd0 −skew −ps = <420 >; / * 0 ps * /
102 rxd1 −skew −ps = <420 >; / * 0 ps * /
103 rxd2 −skew −ps = <420 >; / * 0 ps * /
104 rxd3 −skew −ps = <420 >; / * 0 ps * /
105 txen −skew −ps = <0 >; / * −420 ps * /
106 txc −skew −ps = <900 >; / * 0 ps * /
107 rxdv −skew −ps = <420 >; / * 0 ps * /
108 rxc −skew −ps = <1680 >; / * 780 ps * /
109 } ;
110 } ;
111 } ;
112
113 &mmc {
114 s t a t u s = " okay " ;
115 cap −sd − h i g h s p e e d ;
116 broken −cd ;
117 bus − wid th = <4 >;
118 } ;
119
120 &u a r t 0 {
121 s t a t u s = " okay " ;
122 } ;
123
124 / *&usb0 {
125 * s t a t u s = " okay " ;
126 * d i s a b l e −over −c u r r e n t ;
127 * } ;
128 * /
129
130 / *&watchdog0 {
131 s t a t u s = " okay " ;
132 } ; * / / / T e s t i n g d i s a b l e d watchdog
133
134 / *&i 2 c 1 {
135 s t a t u s = " okay " ;
136 } ; * /
137
138 / *&q s p i {
139 s t a t u s = " okay " ;
140 f lash@0 {
141 # addres s − c e l l s = <1>;
142 # s i z e − c e l l s = <1>;
143 c o m p a t i b l e = " mt25qu02g " ;
144 reg = <0>;
145 s p i −max−f r e q u e n c y = <100000000 >;
146
147 m25p , f a s t −read ;
148 cdns , page− s i z e = <256>;
149 cdns , b lock − s i z e = <16>;
150 cdns , read −d e l a y = <1>;
151 cdns , t s h s l −ns = <50>;
152 cdns , t sd2d −ns = <50>;
153 cdns , t c h s h −ns = <4>;
154 cdns , t s l c h −ns = <4>;
155
156 p a r t i t i o n s {
157 c o m p a t i b l e = " f i x e d − p a r t i t i o n s " ;
158 # addres s − c e l l s = <1>;
159 # s i z e − c e l l s = <1>;
160
161 q s p i _ b o o t : p a r t i t i o n @ 0 {
162 l a b e l = " Boot and fpga da ta " ;
163 reg = <0x0 0x03FE0000 >;
164 } ;
165
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166 q s p i _ r o o t f s : par t i t ion@3FE0000 {
167 l a b e l = " Root F i l e s y s t e m − JFFS2 " ;
168 reg = <0x03FE0000 0x0C020000 >;
169 } ;
170 } ;
171 } ;
172 } ; * /

Listing 4.4: The axi bridge driver source
1 # i n c l u d e < l i n u x / module . h>
2 # i n c l u d e < l i n u x / p l a t f o r m _ d e v i c e . h>
3 # i n c l u d e < l i n u x / i o . h>
4 # i n c l u d e < l i n u x / m i s c d e v i c e . h>
5 # i n c l u d e < l i n u x / f s . h>
6 # i n c l u d e < l i n u x / t y p e s . h>
7 # i n c l u d e < l i n u x / u a c c e s s . h>
8
9 s t a t i c i n t f u z z e r _ p r o b e ( s t r u c t p l a t f o r m _ d e v i c e * pdev ) ;

10 s t a t i c i n t f u z z e r _ r e m o v e ( s t r u c t p l a t f o r m _ d e v i c e * pdev ) ;
11 s t a t i c s s i z e _ t f u z z e r _ r e a d ( s t r u c t f i l e * f i l e , char * b u f f e r , s i z e _ t l en , l o f f _ t * o f f s e t ) ;
12 s t a t i c s s i z e _ t f u z z e r _ w r i t e ( s t r u c t f i l e * f i l e , c o n s t char * b u f f e r , s i z e _ t l en , l o f f _ t * o f f s e t ) ;
13
14 / / Dev ice i n s t a n c e s t r u c t
15 s t r u c t c u s t o m _ f u z z e r _ d e v {
16 s t r u c t m i s c d e v i c e miscdev ;
17 void __iomem * r e g s ;
18 u32 f u z z e r _ s t a t e _ r e g ;
19 u32 f u z z e r _ c m d _ r e g ;
20 u32 o l d _ r p t r ;
21 } ;
22
23 / / d e v i c e t r e e mapping
24 s t a t i c s t r u c t o f _ d e v i c e _ i d c u s t o m _ f u z z e r _ d t _ i d s [ ] = {
25 {
26 . c o m p a t i b l e = " i t s u z l , f z z c t l −1 .0 "
27 } ,
28 { / * e o t * / }
29 } ;
30
31 / / r e g i s t e r d e v i c e mapping
32 MODULE_DEVICE_TABLE( of , c u s t o m _ f u z z e r _ d t _ i d s ) ;
33
34 / / p l a t f o r m framework f o r i d b mapping
35 s t a t i c s t r u c t p l a t f o r m _ d r i v e r f u z z e r _ p l a t f o r m = {
36 . p robe = f u z z e r _ p r o b e ,
37 . remove = fuzze r_ remove ,
38 . d r i v e r = {
39 . name = " f u z z i n g module b r i d g e d r i v e r " ,
40 . owner = THIS_MODULE,
41 . o f _ m a t c h _ t a b l e = c u s t o m _ f u z z e r _ d t _ i d s
42 }
43 } ;
44
45 / / misc framework i d b mapping
46 s t a t i c c o n s t s t r u c t f i l e _ o p e r a t i o n s a x i _ b r i d g e _ f o p s = {
47 . owner = THIS_MODULE,
48 . r e a d = f u z z e r _ r e a d ,
49 . w r i t e = f u z z e r _ w r i t e
50 } ;
51
52 s t a t i c i n t f u z z e r _ i n i t ( void )
53 {
54 / / The l i n u x k e r n e l somehow s t i l l u s e s ANSI C89
55 i n t r e t _ v a l = 0 ;
56 p r _ i n f o ( " I n i t i a l i z i n g f u z z e r b r i d g e module \ n " ) ;
57 r e t _ v a l = p l a t f o r m _ d r i v e r _ r e g i s t e r (& f u z z e r _ p l a t f o r m ) ;
58 i f ( r e t _ v a l != 0 ) {
59 p r _ e r r ( " p l a t f o r m _ d r i v e r _ r e g i s t e r r e t u r n e d e r r o r code %d \ n " , r e t _ v a l ) ;
60 re turn r e t _ v a l ;
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61 }
62 p r _ i n f o ( "AXI b r i d g e i n i t s u c c e s s f u l l . \ n " ) ;
63 re turn 0 ;
64 }
65
66 s t a t i c i n t f u z z e r _ p r o b e ( s t r u c t p l a t f o r m _ d e v i c e * pdev )
67 {
68 s t r u c t c u s t o m _ f u z z e r _ d e v * dev ;
69
70 i n t r e t _ v a l = −EBUSY;
71 s t r u c t r e s o u r c e * r = 0 ;
72
73 r = p l a t f o r m _ g e t _ r e s o u r c e ( pdev , IORESOURCE_MEM, 0) ;
74 i f ( r == NULL) {
75 p r _ e r r ( " Unable t o map MMIO r e g s t o own a d d r e s s s p a c e u s i n g IORESOURCE_MEM\ n " ) ;
76 goto b a d _ e x i t _ r e t u r n ;
77 }
78
79 / / dev = k z a l l o c (&pdev −>dev , s i z e o f ( s t r u c t c u s t o m _ f u z z e r _ d e v ) , GFP_KERNEL) ; / / TODO f i n d o u t why t h i s i s n ’ t

work ing
80 dev = devm_kza l loc (&pdev −>dev , s i z e o f ( s t r u c t c u s t o m _ f u z z e r _ d e v ) , GFP_KERNEL) ;
81 dev −> r e g s = devm_io remap_re sou rce (&pdev −>dev , r ) ;
82 i f ( IS_ERR ( dev −> r e g s ) ) {
83 p r _ i n f o ( " F a i l e d t o map memory r e g i o n f o r AXI b r i d g e : \ n " ) ;
84 re turn PTR_ERR( dev −> r e g s ) ;
85 }
86
87 / / S top t h e f u z z e r i n case i t i s r u n n i n g
88 dev −> f u z z e r _ c m d _ r e g = 0 x0000 ;
89 i o w r i t e 3 2 ( dev −> fuzze r_cmd_reg , dev −> r e g s ) ;
90
91 dev −> miscdev . minor = MISC_DYNAMIC_MINOR;
92 dev −> miscdev . name = " f u z z e r a x i b r i d g e " ;
93 dev −> miscdev . f o p s = &a x i _ b r i d g e _ f o p s ;
94
95 r e t _ v a l = m i s c _ r e g i s t e r (&dev −> miscdev ) ;
96 i f ( r e t _ v a l != 0 ) {
97 p r _ i n f o ( " Couldn ’ t r e g i s t e r misc d e v i c e : ( " ) ;
98 re turn r e t _ v a l ;
99 }

100
101 / / r e g i s t e r d e v i c e i n s t a n c e w i t h p l a t f o r m d r i v e r
102 p l a t f o r m _ s e t _ d r v d a t a ( pdev , ( void *) dev ) ;
103
104 p r _ i n f o ( " S u c c e s s f u l l y r e g i s t e r e d new f u z z e r i n s t a n c e \ n " ) ;
105 re turn 0 ;
106 }
107
108 s t a t i c s s i z e _ t f u z z e r _ r e a d ( s t r u c t f i l e * f i l e , char * b u f f e r , s i z e _ t l en , l o f f _ t * o f f s e t )
109 {
110 i n t s u c c e s s = 0 ;
111 s t r u c t c u s t o m _ f u z z e r _ d e v * dev = c o n t a i n e r _ o f ( f i l e −> p r i v a t e _ d a t a , s t r u c t cus tom_fuzze r_dev , miscdev ) ;
112
113 / / r e t u r n s t a t u s r e g i s t e r
114 s u c c e s s = c o p y _ t o _ u s e r ( b u f f e r , &dev −> f u z z e r _ s t a t e _ r e g , s i z e o f ( dev −> f u z z e r _ s t a t e _ r e g ) ) ;
115 i f ( s u c c e s s != 0) {
116 p r _ i n f o ( " F a i l e d t o f e t c h f u z z e r s t a t u s r e g i s t e r c o n t e n t \ n " ) ;
117 re turn −EFAULT ;
118 }
119
120 u32 n e w _ r p t r = ( i o r e a d 3 2 ( dev −> f u z z e r _ s t a t e _ r e g , dev −> r e g s ) & 00111111111100000000000000000000 b ) >> 2 0 ;
121 whi le ( n e w _ r p t r != &dev −> o l d _ r p t r ) {
122 i n t i ;
123 f o r ( i = 0 ; i < 4 ; i ++) {
124 s u c c e s s = c o p y _ t o _ u s e r ( b u f f e r , &dev −> r e g s + &dev −> o l d _ r p t r + i , s i z e o f ( u32 ) ) ;
125 }
126 &dev −> o l d _ r p t r = &dev −> o l d _ r p t r + 4 ;
127 }
128 i f ( s u c c e s s != 0) {
129 p r _ i n f o ( " There was an u p d a t e d r i n g p o i n t e r p o s i t i o n b u t f e t c h i n g i t f a i l e d . \ n " ) ;
130 re turn −EFAULT ;
131 }
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132 re turn 0 ;
133 }
134
135 s t a t i c s s i z e _ t f u z z e r _ w r i t e ( s t r u c t f i l e * f i l e , c o n s t char * b u f f e r , s i z e _ t l en , l o f f _ t * o f f s e t )
136 {
137 i n t s u c c e s s = 0 ;
138 s t r u c t c u s t o m _ f u z z e r _ d e v * dev = c o n t a i n e r _ o f ( f i l e −> p r i v a t e _ d a t a , s t r u c t cus tom_fuzze r_dev , miscdev ) ;
139 s u c c e s s = copy_f rom_use r (&dev −> fuzze r_cmd_reg , b u f f e r , s i z e o f ( dev −> f u z z e r _ c m d _ r e g ) ) ;
140 i f ( s u c c e s s != 0) {
141 p r _ i n f o ( " F a i l e d t o r e a d f u z z e r command from p r o c e s s \ n " ) ;
142 re turn −EFAULT ;
143 } e l s e {
144 i o w r i t e 3 2 ( dev −> fuzze r_cmd_reg , dev −> r e g s ) ;
145 }
146
147 / / TODO o n l y ack commands r e a l l y send
148 re turn l e n ;
149 }
150
151 s t a t i c i n t f u z z e r _ r e m o v e ( s t r u c t p l a t f o r m _ d e v i c e * pdev )
152 {
153 s t r u c t c u s t o m _ f u z z e r _ d e v * dev = ( s t r u c t c u s t o m _ f u z z e r _ d e v *) p l a t f o r m _ g e t _ d r v d a t a ( pdev ) ;
154 / / S top t h e f u z z e r
155 i o w r i t e 3 2 (0 x0000 , dev −> r e g s ) ;
156 m i s c _ d e r e g i s t e r (&dev −> miscdev ) ;
157 p r _ i n f o ( "AXI b r i d g e d e r e g i s t e r e d \ n " ) ;
158 re turn 0 ;
159 }
160
161 s t a t i c vo id f u z z e r _ e x i t ( void )
162 {
163 p l a t f o r m _ d r i v e r _ u n r e g i s t e r (& f u z z e r _ p l a t f o r m ) ;
164 p r _ i n f o ( " F uz z e r AXI b r i d g e s u c c e s s f u l l y u n r e g i s t e r e d \ n " ) ;
165 }
166
167 / / T e l l t h e k e r n e l which f u n c t i o n s are t h e i n i t i a l i z a t i o n and e x i t f u n c t i o n s
168 m o d u l e _ i n i t ( f u z z e r _ i n i t ) ;
169 m o d u l e _ e x i t ( f u z z e r _ e x i t ) ;
170
171 / / D e f i n e i n f o r m a t i o n abou t t h i s k e r n e l module
172 MODULE_LICENSE( "GPL" ) ;
173 MODULE_AUTHOR( " Leon D i e t r i c h < l e o n . d i e t r i c h @ s t u d e n t . uni − l u e b e c k . de >" ) ;
174 MODULE_DESCRIPTION( " C o n t r o l s an FPGA based PCIe Fu zz e r " ) ;
175 MODULE_VERSION( " 0 . 1 " ) ;
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3 Additional simulation output listings

Listing 4.5: End of SymbiYosys output of AXI bridge verification
1 SBY 1 9 : 1 3 : 3 7 [ t b _ a x i b r i d g e _ b m c ] Removing d i r e c t o r y ’ t b _ a x i b r i d g e _ b m c ’ .
2 SBY 1 9 : 1 3 : 3 9 [ t b _ a x i b r i d g e _ c o v e r ] Removing d i r e c t o r y ’ t b _ a x i b r i d g e _ c o v e r ’ .
3 SBY 1 9 : 1 3 : 4 7 [ t b _ a x i b r i d g e _ p r o v e ] Removing d i r e c t o r y ’ t b _ a x i b r i d g e _ p r o v e ’ .
4 SBY 1 9 : 1 3 : 4 7 [ t b _ a x i b r i d g e _ p r o v e ] Copy ’ t b _ a x i b r i d g e . vhd ’ t o ’ t b _ a x i b r i d g e _ p r o v e / s r c / t b _ a x i b r i d g e . vhd ’ .
5 SBY 1 9 : 1 3 : 4 7 [ t b _ a x i b r i d g e _ p r o v e ] Copy ’ r con .mem ’ t o ’ t b _ a x i b r i d g e _ p r o v e / s r c / r con .mem ’ .
6 SBY 1 9 : 1 3 : 4 7 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 : smtbmc
7 SBY 1 9 : 1 3 : 4 7 [ t b _ a x i b r i d g e _ p r o v e ] base : s t a r t i n g p r o c e s s " cd t b _ a x i b r i d g e _ p r o v e / s r c ; yosys − q l . . / model / d e s i g n . l o g . . /

model / d e s i g n . ys "
8 SBY 1 9 : 1 3 : 4 7 [ t b _ a x i b r i d g e _ p r o v e ] base : f i n i s h e d ( r e t u r n c o d e =0)
9 SBY 1 9 : 1 3 : 4 7 [ t b _ a x i b r i d g e _ p r o v e ] smt2 : s t a r t i n g p r o c e s s " cd t b _ a x i b r i d g e _ p r o v e / model ; yosys − q l d e s i g n _ s m t 2 . l o g

d e s i g n _ s m t 2 . ys "
10 SBY 1 9 : 1 3 : 4 7 [ t b _ a x i b r i d g e _ p r o v e ] smt2 : f i n i s h e d ( r e t u r n c o d e =0)
11 SBY 1 9 : 1 3 : 4 7 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : s t a r t i n g p r o c e s s " cd t b _ a x i b r i d g e _ p r o v e ; yosys −smtbmc −− p r e s a t −−

u n r o l l −− n o p r o g r e s s − t 4 −−append 0 −−dump−vcd e n g i n e _ 0 / t r a c e . vcd −−dump− v l o g t b e n g i n e _ 0 / t r a c e _ t b . v −−dump−smtc
e n g i n e _ 0 / t r a c e . smtc model / d e s i g n _ s m t 2 . smt2 "

12 SBY 1 9 : 1 3 : 4 7 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : s t a r t i n g p r o c e s s " cd t b _ a x i b r i d g e _ p r o v e ; yosys −smtbmc −− p r e s a t
−− u n r o l l − i −− n o p r o g r e s s − t 4 −−append 0 −−dump−vcd e n g i n e _ 0 / t r a c e _ i n d u c t . vcd −−dump− v l o g t b e n g i n e _ 0 /
t r a c e _ i n d u c t _ t b . v −−dump−smtc e n g i n e _ 0 / t r a c e _ i n d u c t . smtc model / d e s i g n _ s m t 2 . smt2 "

13 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : ## 0 : 0 0 : 0 0 S o l v e r : y i c e s
14 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 S o l v e r : y i c e s
15 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : ## 0 : 0 0 : 0 0 Check ing a s s u m p t i o n s i n s t e p 0 . .
16 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : ## 0 : 0 0 : 0 0 Check ing a s s e r t i o n s i n s t e p 0 . .
17 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 T r y i n g i n d u c t i o n i n s t e p 4 . .
18 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : ## 0 : 0 0 : 0 0 Check ing a s s u m p t i o n s i n s t e p 1 . .
19 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : ## 0 : 0 0 : 0 0 Check ing a s s e r t i o n s i n s t e p 1 . .
20 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 T r y i n g i n d u c t i o n i n s t e p 3 . .
21 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : ## 0 : 0 0 : 0 0 Check ing a s s u m p t i o n s i n s t e p 2 . .
22 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : ## 0 : 0 0 : 0 0 Check ing a s s e r t i o n s i n s t e p 2 . .
23 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 T r y i n g i n d u c t i o n i n s t e p 2 . .
24 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 T r y i n g i n d u c t i o n i n s t e p 1 . .
25 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : ## 0 : 0 0 : 0 0 Check ing a s s u m p t i o n s i n s t e p 3 . .
26 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : ## 0 : 0 0 : 0 0 Check ing a s s e r t i o n s i n s t e p 3 . .
27 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 T r y i n g i n d u c t i o n i n s t e p 0 . .
28 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 Temporal i n d u c t i o n s u c c e e d e d !
29 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 W r i t i n g t r a c e t o VCD f i l e : e n g i n e _ 0 / t r a c e _ i n d u c t .

vcd
30 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : ## 0 : 0 0 : 0 0 S t a t u s : pas se d
31 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . b a s e c a s e : f i n i s h e d ( r e t u r n c o d e =0)
32 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 : S t a t u s r e t u r n e d by e n g i n e f o r b a s e c a s e : pass
33 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 W r i t i n g t r a c e t o V e r i l o g t e s t b e n c h : e n g i n e _ 0 /

t r a c e _ i n d u c t _ t b . vhd
34 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 W r i t i n g t r a c e t o c o n s t r a i n t s f i l e : e n g i n e _ 0 /

t r a c e _ i n d u c t . smtc
35 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : ## 0 : 0 0 : 0 0 S t a t u s : pas se d
36 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 . i n d u c t i o n : f i n i s h e d ( r e t u r n c o d e =1)
37 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] e n g i n e _ 0 : S t a t u s r e t u r n e d by e n g i n e f o r i n d u c t i o n : pass
38 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] summary : E l a p s e d c l o c k t ime [H:MM: SS ( s e c s ) ] : 0 : 0 0 : 0 1 ( 1 )
39 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] summary : E l a p s e d p r o c e s s t ime [H:MM: SS ( s e c s ) ] : 0 : 0 0 : 0 1 ( 1 )
40 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] summary : e n g i n e _ 0 ( smtbmc ) r e t u r n e d pass f o r b a s e c a s e
41 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] summary : e n g i n e _ 0 ( smtbmc ) r e t u r n e d pass f o r i n d u c t i o n
42 SBY 1 9 : 1 3 : 4 8 [ t b _ a x i b r i d g e _ p r o v e ] DONE (UNKNOWN, r c =4)
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3 Additional simulation output listings

Listing 4.6: Output of the P-Tile verification tool
1 S t a r t i n g A l t e r a IP S i m u l a t i o n h e l p e r .
2 C o p y r i g h t (C) A l t e r a C o r p o r a t i o n 2000 −2003
3 S t a r t i n g S i m u l a t i o n o f f i l e . . / . . / s r c / i p / p _ t i l e . i p
4 ===================================== LOG =====================================
5 [ INFO ] R e s e t was t r i g g e r e d .
6 [ WARN ] I n v a l i d power s t a t e d e t e c t e d .
7 [ WARN ] E n t e r i n g D4
8 [ WARN ] E n t e r i n g D4
9 [ WARN ] E n t e r i n g D4

10 [ WARN ] E n t e r i n g D4
11 [ WARN ] E n t e r i n g D4
12 [ WARN ] E n t e r i n g D4
13 [ INFO ] P o w e r s t a t e r e s e t
14 [ INFO ] Sending REASSOC
15 [ INFO ] R e g i s t e r 0 x00104194 was c o n f i g u r e d
16 [ INFO ] R e g i s t e r 0 x00000038 was c o n f i g u r e d
17 [ WARN ] TLP e r r o r management was s e t t o manual mode .
18 [ INFO ] R e g i s t e r 0 x00000039 was c o n f i g u r e d
19 [ INFO ] R e g i s t e r 0 x00104068 was c o n f i g u r e d
20 [ INFO ] Enumera t ion s u c c e e d e d . Device ID : 0x80865227@0 : 0 : 0 : 0
21 [ WARN ] SR−IOV s u p p o r t was e n a b l e d t h r o u g h r e c o n f i g u r a t i o n i n t e r f a c e b u t wasn ’ t c o n f i g u r e d i n IP p a r a m e t e r l i s t .
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4 Tables

Table 1: UBoot command prompt reference
Command Behaviour

base Manage memory base offsets

bdinfo debug hardware offsets that are used to fill empty
fiels in the passed DTB.

blkcache Diagnose \Gls{mmc} blocks

boot[_,d,efi,elf,i,m,p,vx,z] boot different image formats

bridge configure \Gls{sdm} bridge

chpart change active boot partition

clocks Display clock properties

cmp compare memory contents at address

coninfo UART debugging

cp Copy length bytes of memory from address1

to address2

crc32 Various checksum tools

dcache Data cache setup management tools (Processor L1
data cache)

dhcp Obtain an IP Address using dhcp, then try to boot
using DHCP Option 66

dm UBoot driver debugging tools

echo Output things to the command line

editenv Manipulate UBoot envirnoment variables in a high
level fashion

env Set or reset environment variables

erase Delete data partitions

exit exit scripts or return from functions

ext4load load files from specified Ext4 paths to the specified
memory location

ext4ls list files in the specified Ext4 path

ext4size Obtain the size of a specified Ext4 file

false|true Boolean constants for evaluations in scripts

fatinfo print debugging information about FAT file systems

fatload load files from specified FAT path to the specified
memory location
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4 Tables

Table 1: UBoot command prompt reference
Command Behaviour

fatls list files in specified FAT path

fatmkdir create a new directory in a FAT partition

fatrm remove a file from a FAT partition

fatsize Obtain a file size from a FAT partition

fatwrite Write a file to a FAT partition

fdt Manipulate loaded flattened device trees

flinfo print flash memory debug informations

fpga Release reset of FPGA configuration in HPS-first
boot mode

fstype Guess the file system type of a partition

go <address> Set the program counter to address

gpio Manipulate GPIO pins that are directly connected to
the HPS

gzwrite Manipulate gz compressed archives

i2c Interact with devices connected to a I²C bus

icache Enable or disable processor L1 instruction cache

iminfo decode Linux image header information

imxtract Extract data from a zipped linux archive

itest Integer comparison tools

ln Manage symbolic links in file systems

lzmadec decompress a memory region using the LZMA algo-
rithm

md <address> [bytes] Display decoded memory content from address,
up to bytes total.

mdio manage MDIO controllers for attached ethernet in-
terfaces

mii manage MII controllers for attached ethernet inter-
faces

mm interactive memory content editor

mmc manage attached MMC states

mmcinfo print out MMC device debugging information

mtd Manage MTD compatible NAND flash

mtdparts Manage flash partitions
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Table 1: UBoot command prompt reference
Command Behaviour

mtest Test defined memory regions

mw fill memory with predefined patterns

nfs Connect to a NFS server and boot the specified
Linux image from it

nm alter the content of memory at the specified location

panic panic the SSBL

ping send ICMP ping responses and wait for an answer

pr FPGA partial reconfiguration utilities

printenv print environment variables

protect alter flash memory write protection

random fill a specified memory location with random data

reset issue reset signals for various hardware components

rsu perform remote system upgrades of the
\Gls{sdm} and FPGA

run execute commands specified in environment vari-
able

save save content from memory to a file on permant stor-
age

setenv set an environment variable

setexpr evaluate an expression and set the result as the value
of the specified environment variable

sf SPI flash management tools

showvar print content of local variables

size determine the size of a continues object in memory
or mapped file

sleep <seconds> pause the CPU for the seconds specified

source execute spcified memory location as UBoot script

sspi manage connected SPI devices

test UNIX like test evaluation tool

tftpboot boot an image from a TFTP share

unlz4 decompress a memory region using the LZ4 algo-
rithm
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4 Tables

Table 1: UBoot command prompt reference
Command Behaviour

unzip decompress a memory region using the ZIP algo-
rithm

usb manage devices connected via USB

usbboot boot an image from an attached USB mass storage
device

version print information about the used compiler and com-
pile time

Table 2: Data to Initialize a P-Tile channel
Address Content

0x104194 "XXXXXXXXXXXX11010110010100000000"h
0x000038 "XXXXXXXXXXXXXXXXXXXXXXXX00000000"h
0x000039 "00000000000000000000000000000000"h
0x104068 "XXXX00000000110XXXXXXXXXXXXXXX11"h

Table 3: Relevant TLP Prefix types
Type Domain Label Purpose

MR-IOV Local "0000"h Multi Root IO Virtualization Control Information
RMTRewrite Local "0010"h Unknown to the author – Ignoring it did not do any-

thing yet.
VendorPrefixL0 Local "1110"h Vendor specific prefix type.
VendorPrefixL1 Local "1111"h Vendor specific prefix type.

ExtTPH End to End "0000"h Mark header as extended
PASID End to End "0001"h PCIe PASID management

VendorPrefixE0 End to End "1110"h Vendor specific prefix type.
VendorPrefixE1 End to End "1111"h Vendor specific prefix type.
All other combinations are reserved for future use.
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5 The userland control script

Listing 4.7: The userland control script
1 # ! / u s r / b i n / env py thon3
2
3 import j s o n
4
5 c l a s s F u z z e r S t a t e ( ) :
6
7 def _ _ i n i t _ _ ( s e l f , s t a t e _ r e g ) :
8 s e l f . i n i t _ d o n e = bool ( s t a t e _ r e g [ 3 ] & 00000001 b )
9 s e l f . f u z z e r _ r u n n i n g = bool ( s t a t e _ r e g [ 3 ] & 00000010 b )

10 s e l f . r i n g _ p t r = ( ( s t a t e _ r e g [ 3 ] & 0 b11111100 ) << 6) | ( s t a t e _ r e g [ 2 ] & 0 b00000111 )
11 s e l f . b u f f e r _ s t a l l e d = bool ( s t a t e _ r e g [ 2 ] & 0 b00001000 )
12 s e l f . f u z z e r _ i n _ e r r o r _ s t a t e = bool ( s t a t e _ r e g [ 2 ] & 0 b00010000 )
13
14
15 p r e v i o u r s _ m e s s a g e s = [ ]
16
17 def e n c o d e _ a s _ j s o n ( a r r , i n d e x ) :
18 i f a r r in p r e v i o u s _ m e s s a g e s :
19 re turn F a l s e
20 e l s e :
21 p r e v i o u s _ m e s s a g e s . append ( a r r )
22 d = {}
23 d [ " i n d e x " ] = i n d e x
24 d [ " t e s t _ c a s e " ] = a r r
25 re turn j s o n . dumps ( d )
26
27
28 wi th open ( " / dev / f u z z e r " , " rwb " ) a s f f :
29 # s t o p t h e f u z z e r −− j u s t i n case i t i s r u n n i n g
30 s t a t e : F u z z e r S t a t e = F u z z e r S t a t e ( f f . r e a d ( 4 ) )
31 f f . w r i t e ( "STOP" . encode ( " ASCII " ) )
32 # c o n f i g u r e s t a r t TLP
33 s t a r t _ a d d r e s s = [
34 bytearray ( [ 0 , 0 , 0 , 0 ] ) ,
35 bytearray ( [ 0 , 0 , 0 , 0 ] ) ,
36 bytearray ( [ 0 , 0 , 0 , 0 ] ) ,
37 bytearray ( [ 0 , 0 , 0 , 0 ] ) ]
38 f o r s e q u e n c e in s t a r t _ a d d r e s s :
39 f f . w r i t e ( s e q u e n c e ) )
40 f f . w r i t e ( "START" . encode ( ’ ASCII ’ ) )
41 s t a t e : F u z z e r S t a t e = F u z z e r S t a t e ( f f . r e a d ( 4 ) )
42 p r i n t ( " S t a r t e d F uz ze r " )
43 l a s t _ p o i n t e r = s t a t e . r i n g _ p t r
44 i = 0
45 whi le s t a t e . f u z z e r _ r u n n i n g :
46 s t a t e = F u z z e r S t a t e ( f f . r e a d ( 4 ) )
47 t e s t _ c a s e _ s t u b = [ ]
48 whi le s t a t e . r i n g _ p t r != l a s t _ p o i n t e r :
49 l a s t _ p o i n t e r += 4
50 i f l a s t _ p o i n t e r > 512 :
51 l a s t _ p o i n t e r −= 512
52 t e s t _ c a s e _ s t u b . append ( f f . r e a d ( 4 ) )
53 i f l e n ( t e s t _ c a s e _ s t u b > 0) :
54 j s _ s t r i n g = e n c o d e _ a s _ j s o n ( t e s t _ c a s e _ s t u b , i )
55 i f j s _ s t r i n g :
56 p r i n t ( "MESSAGE " , j s _ s t r i n g )
57 i += 1
58 p r i n t ( " F i n i s h e d . " )
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6 The FPGA HDL overview

6 The FPGA HDL overview

This is an overview of the most important parts of the directory structure. As this list does not fit
on a single page it is continued on the next one.

pcie_fuzzer/
hps_firmware

build.bash..................................Buildscript for userland and kernel
make_sdimage.py..............................Partition helper script from Intel
createImage.bash..........Script to generate an image after userland compiling
ovrfiles.........................................Directory containig patch files

ip_upgrade_port_diff_reports.....Quartus IP and QSYS management reports
pcie_fuzzer.qpf.............................................Quartus project file
pcie_fuzzer.qsf................................................Constraints file
pcie_fuzzer.sdc..................................Clocking information database
signal_tap.stp......................................Signal tap configuration file
simulation

aldec........................................................aldec library setup
cadence...................................................cadence library setup
common........................................Setup of common simulation tools

modelsim_files.tcl
ncsim_files.tcl
riviera_files.tcl
vcs_files.tcl
vcsmx_files.tcl
xcelium_files.tcl

mentor.................................................Actaul simulation scripts
libraries
mentor_tb_axi_slave.do
mentor_tb_skid_buffer.do
mentor_tb_tlp_gen.do
modelsim.ini
msim_setup.tcl
vsim.wlf

src.....................................Testbenches, Mocks and SymbiYosys files
synopsys
transcript
xcelium
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pcie_fuzzer/
src

ip
output_memory
output_memory.ip......................................Agilex BRAM IP
PLL_100MHz_Locked
PLL_100MHz_Locked.ip
p_tile
p_tile.ip
reset_release
reset_release.ip.........Required to schedule initialization after cold reset

qsys
ip
platform_designer_hps...................................The HPS SoC

vhdl
axi_lite_to_register_slave.vhd.....................The AXI bridge
clock_divider.vhd
domain_boundry_tools

fast_to_slow_clk_OBUF.vhd
skid_buffer.vhd
slow_to_fast_clk_IBUF.vhd
slow_to_fast_edge_forward.vhd

fuzzing_controller.vhd...............................The control FSM
mux.vhd
pcie_message_generator.vhd
pcie_pwr_manager.vhd
pci_port_handler.vhd
pio_to_ctrl_reg_converter.vhd
ptile_state_controller.vhd
rslatch.vhd
top.vhd...................................The top level module of the design
tx_tlp_converter.vhd

synth_dumps
top_assignment_defaults.qdf
top.qws

72



Acronyms

ACPI is short for Advanced Configuration and Power Interface and defines a set of interfaces
modern x86 based computers provide for power and device management such as setting the
screen brightness or putting the computer to sleep. It is often criticized for its ridicules
complexity and the source of many issues as most software and hardware vendors fail to
implement it correctly. 37

ALU Arithmetic Logic Unit. 10

ALU An arithmetic logic unit is a circuit that is capable of performing basic arithmetic operations
such as full additions or logical comparisons. 10, 43

ATF Arm Trusted Firmware. 21, 22

AXI Advanced eXtensible Interface Bus. 29, 31, 34

AXI AXI is an interconnect specified within the AMBA specifications by Arm. It is used to connect
various modules on a chip by utilizing DMA. Due to it being usable royalty free and being
relatively fast it became quite popular. 16, 29–31, 34, 47

BRAM stands for Block Random Access Memory and is a piece of memory on the fabric of an
FPGA or CPLD one can use in order to store data. Usually those blocks are somewhat
flexible in terms of port configuration and allow one to store multiple KB without building
registers from other logic blocks. 10, 21, 43

BUS A Bus is a simple interconnect between two or more circuits enabling them to communicate
with each other. Its primary characteristic is that it consists of multiple wires that are con-
nected to every member and only one member can write on those wires at a time whereas all
others can read at that time. 1, 8, 20, 42

CCU A Cache Coherence Unit is a piece of hardware that ensures that when a value in memory
is being modified all caches currently storing this value de-validate it in order to re-fetch it.
This way all hardware that is using this value always has the correct version of it. 21

CPLD Complex Programmable Logic Device. 9
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CPLD A CPLD or simply PLD is a computer chip which also allows the user to specify the desired
circuit but on a much smaller scale. A CPLD only allows a very limited number of sequential
circuits and is usually not reconfigurable. 10

CPU A Central Processing Unit is a type of processor that usually acts as the main processor within
a system. It consists of one or multiple processing cores that are usually quite fast at general
purpose computations and management but need to rely on more specialized accelerators in
order to efficiently process large amount of equable data. 1, 4, 24, 26, 28, 45

DHCP the Dynamic Host Configuration Protocol is a computer network protocol supplying com-
puters in a network with various information on how deal with the network. Such information
commonly contains, but is not limited to, the assigned IP address and host name, packet rout-
ing information, domain name resolution servers, boot image servers, access policies, etc. .
22

differential signalling Differential signalling is a technique where every bit is encoded on two
lines that have inverted polarity. At the receiving end the difference between both lanes
determines the bit that was transmitted. A positive polarity means a logical 1 and a negative
polarity means a logical 0. A disturbance affects both lanes approximately equally if both
lanes are placed close to each other and thus the difference between both signals stays the
same. This way one can transmit at very high speeds without having tremendous signal
errors. 17, 35

DIP switch A DIP switch (where DIP stands for dual inline package) is a (or series of) switches
within a single package. They are commonly used to configure electronics. 17

DMA DMA stands for direct memory access. It is a technique where two communication partners
do not schedule a data transmission with each other. Instead they each give each other an
address to a buffer within their private memory region and read and write to that region
directly. The upside of using this technique is that it is really fast. The downside is that one
needs to implement numerous security measures in order to make sure that the other party
only accesses memory it is allowed to, as memory is known to contain the most sensitive
information (file and process trees, cryptographic keys, open and recently closed file contents,
pictures of your cat, banking account credentials, etc. ) a system has. 4, 5, 30

DSP A digital signal processor (in the context of an FPGA) is a hard logic block on the fabric
of an FPGA capable of performing various complex operations such as FFT, floating point
operations (including multiplication), big integer operations or in some cases even crypto-
graphic functions such as single AES rounds. The purpose of these blocks are based on the
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common need of such features in most designs and allowing them to be packed more densely
on the chip and operating at a much higher frequency. 10, 43

DUT A design under test is a piece of hardware (or sometimes software) design that is being veri-
fied for proper working. Such verification is often performed by simulation and comparison
of output, formal verification, or simply by running it and observing whether or not it works
. 7, 8, 14, 41, 47

E-Tile The E-Tile is a piece of hard IP on Intel Agilex F-Series FPGAs that provides high speed
Ethernet (2 times 40GBit/s) connectivity. It is superseded by the F-Tile providing two
transceivers with 400GBit/s throughput in each direction. 17

EDA Electronic Design Automation. 17, 34, 47

FCPS Fuzz Cases per Second. 6

FFT An Fast Fourier Transformation (FFT) is a mathematical operation outputting the composing
frequencies and their share from a given input signal. 10

FIFO A FIFO (short for First In First Out) buffer is a type of buffer, commonly found in hardware,
designed to queue packets in a way that the packets are read in the order they came in. 29

FOSS Free and Open Source Software is software that is provided to one with the free rights
of usage in any kind of said software, modification of source code (which needs to be pro-
vided), learning from said source code and providing the source code to others under the
same conditions. 10

FPGA Field Programmable Gate Array. iii, v, ix, 9–12, 14, 16–19, 21, 29, 35, 43, 46, 47, 67, 68

FPGA An FPGA (Field Programmable Gate Array) is a device (usually one or a set of computer
chips) which allows to user to dynamically specify the circuit it reassembles. 4, 14, 29–31

FSBL A First Section Boot Loader (commonly referred to as "Firmware") is a short piece of
software that is run prior to the actual boot loader and ensures that the actual bootloader
meets a hardware setup that it can operate on. 20, 21

FSM Finite State Machine. 15

GPIO stands for General Purpose Input Output and describes hardware that can be utilized for
various functionality in a flexible manner at runtime. 35, 67
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GPU A Graphics Processing Unit is an accelerator that historically speaking was designed to pro-
cess graphical tasks. Doing so they require huge amount of not that powerful stream lining
processors that perform these tasks in parallel. At some point people discovered that one
can not only process graphics data on such devices but any data that massively scales to par-
allelism. Since then they are freely programmable and used for all kind of processing. 4,
27

hard IP Hard IP are pieces of hardware that are already embedded on the FPGA outside the fabric.
They are called hard because they are not implemented in soft logic and thus not modifiable
by the end user. 10, 19

HDL hardware description language. 18, 35

heap The heap is the part of a processes memory that is used to store constant or large objects. 26

HPS The Hard Processor System is a companion processor composed of four modified Arm A53
processor cores and some periphery. As most FPGA designs require some form of processor
for control one might as well embed one using fixed hardware on the FPGA. The Intel HPS
is such a fixed processor. 15, 16, 18–21, 25, 28–32, 40, 43, 47, 67, 72

hypervisor A hypervisor is a computer (software) that hosts one or multiple virtual machines. 12

interrupt An interrupt is a signal lane that causes, when triggered, the CPU to stop what it is
doing and jumping to a predefined address where the corresponding ISR is being held. 27

IP Intellectual Property. 10, 18, 21, 36

IP Intellectual Property in this context referees to foreign hardware pieces, usable under a license.
14, 15, 21, 30, 31

IRQ An Interrupt Request is the actual event of an interrupt being triggered. 26, 27

ISR An Interrupt Service Routine is a piece of code that is being jumped to when a corresponding
IRQ occurs. Ideally this code handles what ever needs to be done when the interrupt is being
triggered. 27

I²C I²C (which is short for inter integrated circuit, but no one actually says that) is an intercon-
nect between different computer chips commonly found on PCBs. While it does not reach
high transmission speeds, it is quite simple to implement and very robust and hence enjoys
constant popularity. 19, 30, 67

76



Acronyms

JSON JavaScript Object Notation is a data format that was originally used for transmitting data in
the context of websites. Due to its good human readability as well as good parsing properties
it gained great popularity far beyond web pages and is one of the most common data exchange
formats by now. 28

JTAG JTAG refers to Joint Test Action Group and is a debugging protocol where the outputs and
inputs of device registers are chained together in order to read or write arbitrary data from
device within that chain. This protocol is often used to program various devices. 16, 17

kernel A kernel is the part of an operating system that deals with all hardware interaction and
schedules the processes to be run as well as providing interfaces to commonly used features
such as networking or file systems. 16, 24, 29

LUT Lookup Table. 10

LUT A lookup table is a device which stores for each possible input sequence an output sequence.
They can be used implement basic combinatorial logic statements. 10, 43

LVDS Low Voltage Differential Signalling. 18

meta layer A meta layer is a set of configuration files that specify how a specific part of an
operating system is supposed to be built. 25

MFVC MFVC is short for Multi-Function Virtual Channel and can be described as feature where
an enumerated PCIe devices is capable of changing its supported features (functions, capa-
bilities) on the go. 45

MMC MMC (in this context) stands for Multi Media Card and is together with the NAND Flash
protocol the most common way to provide storage to embedded devices. Applicable storage
devices come in the form of SD-cards or are soldered to the board (eMMC, the e stands for
embedded). 19

MMU An MMU (short for Memory Management Unit is a device that at least translates memory
addresses between multiple virtual address spaces and the physical address space of the at-
tached device. It is quite common for an MMU to also check the access privileges of the
requesting device to see if the device or process is allowed to read or write to that particular
address. Since MMUs tend to be very complex and need to be really fast in order to not slow
down communications they always are an interesting attack target. 1, 4, 5, 11, 20, 21, 30, 45

MR-IOV MR-IOV stands for Multi Root - IO Virtualization and is similar to SR-IOV except that
one feature might be shared across multiple virtual machines and there might be multiple
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virtual root complexes. This feature can also be used to communicate to a PCIe device
within a different a different root complex domain possibly on a remote machine. 69

mux A Mux is a piece of hardware that is capable of selecting one out of many input signals and
passing it through to the output based on a given signal selection input. 10, 21, 43

NIC Network Interface Card. 8

NIC A network interface card is a device that provides network (most commonly Ethernet) con-
nectivity to a computer. 1

P-Tile Intel FPGA are equipped with certain hard IP they call Tile. The P-Tile is one that is
capable of providing PCIe connectivity. Despite the clever naming, its successor IP for PCIe
5.0 with CXL offloading features is named R-Tile. 14, 15, 17, 35–37, 41, 42, 65, 76

PASID stands for Process Address Space ID and is a feature that allows a PCIe network to use
multiple overlapping 64 bit address spaces. 69

PC The Program Counter is a register within a processor that stores the current instruction address.
When an instruction is due for being executed the instruction will be loaded from the address
specified by the program counter. After doing so the PC is incremented by the instructions
length in order to point to the next instruction. 21, 26

PCB A printed circuit board is peace of compound material (usually glass fibre but other materials
are used as well) containing computer chips as well as other electrical components and circuit
traces connecting them. 1, 30

PCIe Peripheral Component Interconnect - Express. iii, v, 1, 2, 4–6, 8, 9, 12–15, 24, 27, 35–37,
39, 41–43, 45–47, 69

PCIe bifurcation is the technology to split multiple PCIe lanes that are bound together to form
a logical link into multiple links in order to connect more devices to the same port. For
example on might split an x16 link into four x4 links in order to connect four devices to this
link or one might split an x4 link into four single lane links. One can use any divisor as long
as it is a power of two. This technique is often used to connect more devices within a server
or to need a single port for multiple lower speed peripherals within an embedded device in
order to save costs. 35

PCIe enumeration PCIe enumeration refers to the process where a unique address is promoted
to a newly connected device. In the past this was only done at the upstart of the computer
but as soon as PCIe became hot plug capable it is being done every time a new device gets
connected. 17
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Phy A phy is a circuit or chip that is responsible for translating digital signals (which are usually
of short reach) into longer range signals for usage on a physical transmission medium. 14,
17

PLL Phase Locked Loop. 37

PLL A phase locked loop is a device capable of synthesizing based on a given frequency A a
secondary frequency B. The ratio of both signal frequencies is constant and user defined.
The phase shift between A and B is also constant and locked to a defined target. Such a
device is useful whenever one needs to cross clock boundaries. 10, 14, 43

QEMU which is short for Quick EMUlator is an open source simulator for computer architectures
one can use to test operating system features. 47

register A register is a piece of hardware that stores a value which it can alter. Such alternation
may may occur in the form of overwriting the value with a new one, performing arithmetic
operations on it or performing logical operations. Other operations are conceivable as well.
1, 2, 13, 21, 26, 29, 34, 37, 43

ring buffer A ring buffer is buffer consisting of a shared memory and two pointer registers. The
first register is being incremented every time data is being inserted into the buffer. The second
register is being incremented every time data is being read from the memory. Every now and
then these registers overflow causing them to start at address 0 again thus the name. In order
to prevent data loss at the event of one side being faster than the other one has to stall under
the condition of both registers containing the same content. 29, 43

SDM The Secure Device Manager is a piece of hardware on higher tier FPGAs from Intel. It is,
among other things, responsible for configuring the FPGA, bootstrapping the HPS, perform-
ing bitstream authentication and decryption as well as resetting parts of the hardware that
either became unresponsive or requested a reset. 17, 20–22, 47

sed sed is a streamlining editor found on most Linux or UNIX based operating Systems. 25

SIMD stands for Single Instruction Multiple Data and means instructions that apply the same op-
eration to multiple data entries at the same time. 26

skid buffer A skid buffer is a special type of pipelined FIFO buffer negotiating between two de-
vices on different clock domains about sending data, stalling the sending one if the receiver
is not ready and notifying the receiver about data integrity thus preventing data loss or cor-
ruption. A special property of a skid buffer is that it does not introduce further latency if both
devices can keep up with the transmission speed. 37
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SoC A System On a Chip is complete computer equipped with all required device to perform
normal operation within a single computer chip package or a single region of a larger chip.
14–16, 18, 20, 21, 24, 47, 72

SPI stands for Serial Peripheral Interface — A popular external chip interconnect. 31

SR-IOV SR-IOV stands for Single Root - IO Virtualization and is a technique, were a single PCIe
device can be forwarded to multiple virtual machines without involving a special emulation
driver at the hypervisor. 13, 35, 45

SSBL The Second Section Boot Loader (commonly referred to as "Bootloader") is a piece of
software that is started by the FSBL and in turn is responsible for further hardware setup and
booting (a.k.a. starting) an operating system or bare metal application. It is usually the first
piece of software that enables user interaction. 22, 68

SSH Secure SHell is a network protocol were one can control and transmit data to and from a
remote computer. It provides strong encryption and provides decent data integrity checks. 15

stack The stack is the part of a processes memory that is being used to store small temporary
objects. 26

TLP Transaction Layer Packet. iii, v, 2, 5, 11–14, 16, 36, 38–43, 46, 47, 75

UART UART, which is short for Universal Asynchronous Receiver Transmitter is a common type
of serial interface. It is commonly used to connect to serial consoles. 15, 19, 22, 24

VM A virtual machine is a virtualized computer, running, possibly together with a lot of other
VMs, on a real computer or other VM. Virtual machines are commonly used to share compute
resources of a physical machine as it is quite seldom that a single service would utilize the
resources of the computer it is running on all the time. That way one can provide large
amount of processing power to a single service and utilize the physical hardware one got in
a more efficient manner resulting in less required hardware and thus lower cost. In a cloud
environment it is crucial that different virtual machines ca not access each others data. 13

wave form A wave form is a set of output signals of a hardware module. They consist of their
voltage levels plotted over the time of observation. 33
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