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Abstract

Process-Mining is a discipline in which event logs are mined to generate process
models. With the use of these models, it is possible to improve processes and
workflows in various ways. Since these models are a pure, unfiltered representa-
tion of the underlying event log, privacy concerns are of special interest.

To face this problem, we implement two approximations of existing algo-
rithms combined with differential privacy.

The first approach uses the filtering function of the Heuristic-Miner. This
function filters the transition of the process model based on their weighting. We
manipulate this function to measure the transition score over the whole event
log and filter by the AboveThreshold mechanism, using a threshold τ . Since the
resulting graph is filtered using a differential privacy mechanism, it is a privacy-
preserving representation of a process.

In the second approach, the Inductive Miner is modified to generate a privacy-
preserving Process-Structure-Tree. For this, the selection process of a cut is
randomised. This randomisation is done by counting the number of traces that
voted for a specific cut. Using these scores in the Exponential-Mechanism, a cut
is randomly selected, with a probability scaling to the scores.

In contrast to related works, we are not modifying the underlying data sets or
creating a new algorithm for process mining. Instead, we implement approxima-
tions of existing process mining algorithms, which provide a differential private
representation of event logs and ensure that privacy concerning data is not leaked.
Since the underlying data is not changed, it can be reused for further analysis.
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Zusammenfassung

Process-Mining ist eine Disziplin, bei der Event-Logs ausgewertet werden, um
Prozessmodelle zu erstellen. Mit Hilfe dieser Modelle ist es möglich, Prozesse
und Arbeitsabläufe auf verschiedene Weise zu verbessern. Da diese Modelle eine
reine, ungefilterte Darstellung des zugrundeliegenden Event-Logs sind, ist der
Datenschutz von besonderem Interesse.

Um diesem Problem zu begegnen, implementieren wir zwei Approximationen
von existierenden Algorithmen in Kombination mit Differential Privacy.

Der erste Ansatz nutzt die Filterfunktion des Heuristic-Miners. Diese Funk-
tion filtert die Transitionen des Prozessmodells auf der Grundlage ihrer Gewich-
tung. Wir manipulieren diese Funktion, um die Gewichtungen über das gesamte
Event-Log zu messen und filtern diese mit dem AboveThreshold-Mechanismus
unter Verwendung eines Thresholds τ . Da der resultierende Graph mit Hilfe von
Differential Privacy gefiltert wird, handelt es sich um eine datenschutzkonforme
Darstellung eines Prozesses.

Im zweiten Ansatz wird der Inductive Miner modifiziert, um einen daten-
schutzfreundlichen Process-Structure-Tree zu erzeugen. Dazu wird der Auswahl-
prozess eines Schnitts randomisiert. Diese Randomisierung erfolgt durch Zählen
der Anzahl der Traces, die für einen bestimmten Schnitt gestimmt haben. Unter
Verwendung dieser Werte im Exponential-Mechanismus wird ein Schnitt zufällig
ausgewählt, mit einer Wahrscheinlichkeit, die mit den Werten skaliert.

Im Gegensatz zu verwandten Arbeiten modifizieren wir nicht die zugrundelie-
genden Datensätze oder entwickeln einen neuen Algorithmus für Process Mining.
Stattdessen implementieren wir Approximationen von bestehenden Process Mi-
ning Algorithmen, die eine Datenschutzkonforme Darstellung von Event-Logs
bieten und sicherstellen, dass die Privatsphäre der Daten nicht beeinträchtigt
wird. Da die zugrunde liegenden Daten nicht verändert werden, können diese für
weitere Analysen wiederverwendet werden.

– v –



Contents

1 Introduction 1
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 3

3 Preliminaries 4
3.1 Process Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Event Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.2 Heuristic Miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.3 Inductive Miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Problem Statement 10
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Thread Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Approach 13
5.1 The modified Heuristic-Miner . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1.1 The Idea Behind The Implementation . . . . . . . . . . . . . . . . . 13
5.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 The DP-Inductive-Miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.1 The basic concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Experiments 21
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Evaluation Of The modified Heuristic-Miner . . . . . . . . . . . . . . . . . . 24

6.2.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.2 Interpretation Of The Results . . . . . . . . . . . . . . . . . . . . . . 25

6.3 Evaluation Of The DP-Inductive-Miner . . . . . . . . . . . . . . . . . . . . . 26
6.3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3.2 Interpretation Of The Results . . . . . . . . . . . . . . . . . . . . . . 30

– vi –



7 Conclusion 33
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography 35

A Pseudocodes i
A.1 The modified Heuristic-Miner . . . . . . . . . . . . . . . . . . . . . . . . . . i
A.2 DP-Inductive-Miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

B Figures x
B.1 Workflow Nets and Resulting Trees Of The Experiments . . . . . . . . . . . x

B.1.1 Workflow Nets Of The Used Event Logs . . . . . . . . . . . . . . . . x
B.2 Resulting Process-Structure-Trees of the DP-Inductive-Miner implementation xii

B.2.1 Results of with complex workflow without loops . . . . . . . . . . . . xii
B.2.2 Results of with a complex workflow with loops . . . . . . . . . . . . xiv
B.2.3 Results with a non complex workflow . . . . . . . . . . . . . . . . . . xvi
B.2.4 Results with the SEPSIS data cases . . . . . . . . . . . . . . . . . . xviii

– vii –





List of Figures

Figure 3.1 The resulting Directly-Follows-Graph of the example Trace-Log L,
without a threshold τ , Figure 3.1a, and with a threshold τ = 0.5,
Figure 3.1b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 3.2 The Process-Structure-Trees of the event log used for the
Directly-Follows-Graphs in Figure 3.1. Figure 3.2a being the
resulting tree of the event log without noise and 3.2b being the
resulting tree of the same event log, except one activity got changed. 7

Figure 6.1 The workflow net of the Sepsis data set [8], with the black boxes
being the silent transitions τ . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 6.2 The workflow net of a non complex event log. . . . . . . . . . . . . . 22
Figure 6.3 The workflow nets of the synthetic event logs that were generated

with the tool from [17]. . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 6.4 The Utility-Privacy-Tradeoffs, see 6.1, of the four previously

defined workflow nets, see Figure 6.1 and below. Each analysis was
done with a threshold τ ∈ [0, 100] and a fixed ε1 of 2. At the top
right is a legend in which the colour with the corresponding
workflow is defined. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 6.5 The influence of ε1 on each of the event logs, see description 6.1 for
a short explanation. With a static threshold τ , which differs for
each event log. However, the τ is set a value so that the optimal
Directly-Follows-Graph would result as an output if the ε1 value is
chosen correctly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 6.6 The Evaluation of the top-k cuts on the left side 6.6a and the
Evaluation of the fitness of the generated trees on the right side
6.6b, for further information on these evaluations, see description
6.1 on page 21. For both evaluations, the DP-Inductive-Miner
section 5.2 was executed one hundred times with a different ε being
[2, 1, 0.5, 0.1, 0.05, 0.05]. At the bottom right of both diagrams is a
legend which shows the colour to the corresponding ε that was used. 27

Figure 6.7 The Evaluation of the top-k cuts on the left side 6.7a and the
evaluation of the fitness of the generated trees on the right side
6.7b, for further information on these evaluations, see description
6.1 on page 21. For both evaluations, the DP-Inductive-Miner
section 5.2 was executed one hundred times with a different ε being
[2, 1, 0.5, 0.1, 0.05, 0.05]. At the bottom right of both diagrams is a
legend which shows the colour to the corresponding ε that was used. 28

– vii –



Contents

Figure 6.8 The Evaluation of the top-k cuts on the left side 6.8a and the
evaluation of the fitness of the generated trees on the right side
6.8b, for further information on these evaluations, see description
6.1 on page 21. For both evaluations, the DP-Inductive-Miner
section 5.2 was executed one hundred times with a different ε being
[2, 1, 0.5, 0.1, 0.05, 0.05]. At the bottom right of both diagrams is a
legend which shows the colour to the corresponding ε that was used. 29

Figure 6.9 The Evaluation of the top-k cuts on the left side 6.9a and the
evaluation of the fitness of the generated trees on the right side
6.9b, for further information on these evaluations, see description
3.2 on page 8. For both evaluations, the DP-Inductive-Miner
section 5.2 was executed one hundred times with a different ε being
[2, 1, 0.5, 0.1, 0.05, 0.05]. At the bottom right of both diagrams is a
legend which shows the colour to the corresponding ε that was used. 29

Figure 6.10 The original Process-Structure-Tree of the non-complex event log. . 30
Figure 6.11 The modified workflow net, used to evaluate the importance of the

order of cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 6.12 The original 6.12a and modified 6.12b Process-Structure-Tree of

the original and modified non complex event log. In the modified
version we switched the AND − Cut from the original, with a
XOR− Cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 6.13 The Evaluation of the top-k cuts on the left side 6.13a and the
evaluation of the fitness of the generated trees on the right side
6.13b, for further information on these evaluations, see description
6.1 on page 21. For both evaluations, the DP-Inductive-Miner
section 5.2 was executed one hundred times with a different ε being
[2, 1, 0.5, 0.1, 0.05, 0.05]. At the bottom right of both diagrams is a
legend showing the colour to the corresponding ε used. . . . . . . . . 31

Figure B.1 The workflow net of the Sepsis data set [8], with the black boxes
being the silent transitions τ . . . . . . . . . . . . . . . . . . . . . . x

Figure B.2 The workflow net of an event log that represents a simple process
structure. Generated with [17] . . . . . . . . . . . . . . . . . . . . . x

Figure B.3 The workflow net of an event log that represents a complex process
structure, with repetitions in it. Generated with [17] . . . . . . . . . xi

Figure B.4 The workflow net of an event log that represents a complex process
structure, without any repetitions. Generated with [17] . . . . . . . xi

Figure B.5 A complex workflow-net without any loops, with the corresponding
Process-Structure-Tree . . . . . . . . . . . . . . . . . . . . . . . . . xii

Figure B.6 Two possible versions of the computed Process-Structure-Tree with
privacy parameter ε = 1 and for 1.050 Traces, for the complex
workflow-net without loops (See B.5 on page xii) . . . . . . . . . . . xiii

Figure B.7 A complex workflow-net with loops, with the corresponding
Process-Structure-Tree . . . . . . . . . . . . . . . . . . . . . . . . . xiv

– viii –



Contents

Figure B.8 Three possible versions of the computed Process-Structure-Tree
with privacy parameter ε = 1 and for 5.000 Traces, for the complex
workflow-net with loops (See B.7 on page xiv) . . . . . . . . . . . . xv

Figure B.9 A non complex workflow-net, with the corresponding
Process-Structure-Tree . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Figure B.10 Five versions possible versions of the computed
Process-Structure-Tree with privacy parameter ε = 1 and for
500.000 Traces, for the non complex workflow-net (See B.9 on
page xvi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Figure B.12 The first three possible versions of the computed
Process-Structure-Tree with privacy parameter ε = 1 and for 1.050

Traces, for the SEPSIS-data cases (See B.11b on page xviii) . . . . . xix
Figure B.13 The next three possible versions of the computed

Process-Structure-Tree with privacy parameter ε = 1 and for 1.050

Traces, for the SEPSIS-data cases (See B.11b on page xviii) . . . . . xx
Figure B.14 The last possible version of the computed Process-Structure-Tree

with privacy parameter ε = 1 and for 1.050 Traces, for the
SEPSIS-data cases (See B.11b on page xviii) . . . . . . . . . . . . . xxi

– ix –



1
Introduction

Process-Mining is a discipline that creates models that are a graphical visualization of an
event log, which can be used to improve the efficiency and quality of processes. These models
display the event log and its structure without any editing. Because of this, sharing such
models is not always possible since an adversary could gain information about any individual
represented in such an event log or even about sensitive workflows that are described.

There already exist approaches that face this problem [10, 11, 7]. However, while these
works are creating entirely new systems to create a privacy-preserving event log or model,
we are using existing and used process mining algorithms. We are doing this since we want
to create an algorithm which produces accurate and privacy-preserving process models.

We use the ideas behind the Heuristic-Miner [15] and Inductive-Miner [13] to create
approximations of these algorithms, to mine an event log correctly and privacy-preserving.
To make these models privacy-preserving, we are using differential privacy [6], giving us
privacy guarantees while the resulting models are as accurate as possible.

For the modification of the Heuristic-Miner [15], we look at the creation of a Directly-
Follows-Graph. This graph is then so created by us that we filter transitions, with differential
privacy, that is not fulfilling a specific property. The Heuristic-Miner also filters transitions.
However, this filtering aims to filter out transitions potentially generated through the noise
in the event log. So with our algorithm, we create a filtering system that preserves differ-
ential privacy and uses the technique of the Heuristic-Miner to generate a process model.
This makes an accurate and privacy-preserving process model.

In addition, we are doing something similar in our approximation of the Inductive-
Miner. The model generated through the Inductive-Miner is a so-called Process-Structure-
Tree. These trees can be highly adaptive. So it is possible to use this model and generate
any wanted visualization with it, such as Petri-nets or Directly-Follows-Graphs. Because of
this property, the Inductive-Miner has no filter function like the Heuristic-Miner and shows
the structure of an event log in its complete form. To minimize the leakage, we implement
a mechanism to modify the cut selection of the Inductive-Miner. This modification results
in a Process-Structure-Tree that is privacy-preserving and still shows the overall structure
of an event log.

In summary, we create two algorithms that generate two different process models. How-
ever, both are privacy-preserving and still hold the property of showing the structure and
workflow of an event log.

– 1 –



1 Introduction

1.1 Contribution

Our contribution to this thesis is as follows

1. We implement two algorithms that generate process models that are both privacy-
preserving and as accurate as possible

2. We test our algorithms with the use of three synthetically generated event logs [17] and
the Sepsis data set [8]

3. The proposed algorithms are approximations of existing mining algorithms. Therefore
further improvements can be adapted easily

1.2 Structure

In chapter 2, we are talking about work related to ours. We define terms in chapter 3 and
explain existing algorithms used throughout the thesis. Chapter 4 gives a detailed overview
of our motivation for the approaches and describes possible thread models. In chapter 5,
we are looking at the idea behind our approaches and how we implemented them. In
chapter 6, we evaluate our systems and discuss the usage based on the experimental results.
In chapter 7, we are concluding the whole work and looking at future work.
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2
Related Work

Process mining uses several algorithms to mine event logs, like presented in [1, 13, 15].
These algorithms fulfil the purpose of mining so that an event log is reconstructed based on
the underlying data [3]. Due to the focus on constructing a model that shows the behaviour
of a process, privacy concerning data is not secured in these algorithms.

The Heuristic Miner [15] is the closest standard mining algorithm to achieve some
privacy-preserving model. It uses a threshold between −1 and 1 to filter out transitions
that most likely occur due to potential noise in the event log and are, therefore, rare. The
filtering is possible since the Heuristic Miner calculates the dependency relations between
two events. Should the computed value be under a defined threshold τ , the corresponding
transition is filtered out. Since the filtering is not randomised, the generated Directly-
Follows-Graphs are not privacy-preserving. Therefore the Heuristic Miner is neither.

[14] states that an event log contains sensitive information and has a closer look at the
re-identification risk of individuals in an event log. The proposed approach can measure how
unique data is. Therefore, the risk of identifying a specific individual can be determined.

Several approaches exist for privacy-preserving process mining to face the risk of iden-
tifying individuals in an event log [7, 10, 11].

In [7], the authors focus on creating a privacy-preserving Directly-Follows-Graph. This
graph uses the weighting of transitions to visualise different scenarios, for example, the
average time from one event to another or the number of times one event follows after the
other. Due to the closeness of these weightings to the actual data, [7] aims to do privacy-
preserving weighting using differential privacy. Therefore their generated weighting system
generates weights that do not leak sensitive information about the event log. Nevertheless,
this weighting is insufficient as soon as the underlying data set is too small.

[10] and [11] focus on generating event logs that are privacy-preserving rather than
developing a privacy-preserving visualisation. [11] focuses on modifying the XES standard
to generate a more private one. This modification of the XES-Standard faces the privacy
problem concerning metadata in event logs. However, this focuses only on one standard for
an event log system and is modifying the event log, which might not be wanted. [10] focuses
on a general approach of generating a privacy protection model for event logs. This approach
is the closest one to our approach. While this approach uses different privacy stages in which
data leakage is possible, we are implementing approximations of already existing process
mining algorithms, which ensures a privacy-preserving and accurate visualisation.

– 3 –



3
Preliminaries

In this chapter, we focus on the two main topics of this work. We start with an overview
of process mining and look closely at some algorithms from this field. After that, we will
define differential privacy, and we have a look into relevant theorems.

3.1 Process Mining

Process Mining is a discipline that aims to analyse and reconstruct processes based on event
logs containing process execution data, or simple workflows. The output of such mining
algorithms is a graphical visualisation, such as a Petri net, a Directly-Follows-Graph or a
workflow net. Therefore Process Mining is used to gain an overview of working processes
[1, 2, 3, 16].

3.1.1 Event Log

An event log E is a data set with different columns which describe a process. While each
data set has a different length and number of columns, three necessary ones are needed for
every event log to make mining possible. These columns are case id, activity name and
timestamp, these names may differ, but the underlying meaning is always the same [3,
10].

1. Each event e ∈ E refers to a case id, which is a process instance. Every case id is a
defined trace T ∈ E. If we have the case id′s [1, 2, 3, 4], we have four traces in E.
case id′s can be every form of enumeration

2. The activity name is the defined name of each event e ∈ E

3. The timestamp refers to the time of execution of an event e ∈ E, this also defines the
total order of events

3.1.2 Heuristic Miner

The Heuristic Miner mines an event log E by viewing the order of activities within a trace
T . In each trace, T , the activities can have different dependency relations. To define these
relations let a, b ∈ T :
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3 Preliminaries

1. a >E b iff a is followed by b
2. a →E b iff a is always followed by b, and b is never followed by a
3. a#Eb iff a and b never follow each other directly
4. a||Eb iff a >E b and b >E a

These are the fundamental relations we use throughout the thesis. For more details, see
[15]. To create a Directly-Follows-Graph, the Heuristic Miner calculates a frequency-based
value to check how specific the dependency relation between two activities a and b is. Let
a, b ∈ T , then |a >E b| defines the number of times a >E b occurs in the event log E. With
this, we can calculate a value that determines how specific a dependency relation is. For
this, the two equations below are needed, for additional information see [15].

a ⇒E b =

(
|a >E b| − |b >E a|

|a >E b|+ |b >E a|+ 1

)
(3.1)

a ⇒E a =

(
|a >E a|

|a >E a|+ 1

)
(3.2)

Equation 3.1 determines the dependency of two different activities a and b, with a 6= b

and b being the successor of a. On the other hand, equation 3.2 determines the dependency
of a self-referencing event a, a so-called self-loop. The calculated value of both equations is
always between -1 and 1. With a high positive value, we can presume that a dependency
relation between event a and b exists.

To create a Directly-Follows-Graph, all traces Ti ∈ E are viewed, and similar traces are
summarised. Let E contain a finite number of traces i, then we have traces T1, ..., Ti ∈ E.
For each trace Tn | n ∈ L, we look at the successor of an event am | m ∈ num of activities
in Tn. With these, we generate a Trace-Log L = [T1, ..., Ti] that does not contain duplicates
due to the summarising of traces that occur more than once in E. A summarised trace is
defined as T j , with 1 < j <= i | i = number of traces. With this information, tuples are
created that display am and its successor am+1. These tuples represent the transition from
one event to another. Every tuple is stored once, alongside a value representing the number
of occurrences, of this tuple, over all traces ∈ L.

For example, if we have twenty traces with six activities, a Trace-Log could be L =

[ABDC2, ABCD3, AECD5, AEDCFBCD,ADD3, ABCDFEDC6]. The list of tuples t

would then be t = [(A,B) : 11; (A,E) : 6; (A,D) : 1; (B,C) : 10; (B,D) : 2; (C,D) :

15; (C,F ) : 1; (D,C) : 9; (D,D) : 3; (D,F ) : 6; (E,C) : 5; (E,D) : 7]. With this, the
dependency relations are calculated using the equations 3.1 and 3.2. The results are shown
in the matrix below.

⇒E A B C D E F
A 0.0 0.917 0.0 0.75 0.857 0.0
B 0.0 0.0 0.909 0.666 0.0 0.0
C 0.0 0.0 0.0 0.05 0.0 0.3
D 0.0 0.0 -0.24 0.75 0.0 0.875
E 0.0 0.0 0.83 0.875 0.0 0.0
F 0.0 0.5 0.0 0.0 0.875 0.0
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3 Preliminaries

With this dependency matrix and the list of tuples t, the Directly-Follows-Graph is
created, using a threshold τ to filter for unlikely transitions.

(a) The Directly-
Follows-Graph without
a τ being applied

(b) The Directly-
Follows-Graph with
τ = 0.5 applied

Figure 3.1: The resulting Directly-Follows-Graph of the example Trace-Log L, without a
threshold τ , Figure 3.1a, and with a threshold τ = 0.5, Figure 3.1b.

3.1.3 Inductive Miner

The Inductive Miner mines an Event-Log E by viewing all predecessors and successors of
an event a over all traces T ∈ E, where a occurs. That is done since the Inductive Miner
creates a Process-Structure-Tree and not a Directly-Follows-Graph like the Heuristic Miner.
A Process-Structure-Tree shows the overall structure of an Event-Log and not the relations
of the individual events.

To create a Process-Structure-Tree, we first define the relations below, with a, b ∈ Ti |
i being any trace T ∈ E.

1. a >E b iff a is followed by b
2. a →E b iff a is always followed by b, and b is never followed by a
3. a#Eb iff a and b never follow each other directly
4. a||Eb iff a >E b and b >E a

With these relations, we can create cuts. These cuts are used to display the structure

– 6 –



3 Preliminaries

of the E. We define four cuts as follows, with a, b, c ∈ Ti and a 6= b 6= c, for more detail see
[13].

– SEQUENCE-Cut: iff a →E b, with a 6= b, then a SEQUENCE-Cut (a → b)) exists
– XOR-Cut: iff a →E b and a →E c, with a 6= b 6= c, then a XOR-Cut (a ⊕ (b, c))

exists
– AND-Cut: iff a >E b and b >E a, with a 6= b, then a AND-Cut (a

∧
b) exists

– LOOP-Cut: iff a →E b, b →E c and c >E a, then a LOOP-Cut (a 	 (b, c)) exists

Due to the property of the Inductive Miner to check the predecessor and successors of
an event a over all traces T ∈ E, a single trace can change the cut that is made.

For example, if we have twenty traces and in these, we always have the relation AB,
we know that a SEQUENCE-Cut is made. By now adding the twenty-first trace with the
relation BA, we do an AND-Cut instead of a SEQUENCE-Cut. Because of this property,
the Inductive Miner is prone to noise, as can be seen in Figure 3.2.

(a) The Process-Structure-Tree of an
event log without noise

(b) The Process-Structure-Tree of
the same event log, expect that one
activity got changed in the event log
changed

Figure 3.2: The Process-Structure-Trees of the event log used for the Directly-Follows-
Graphs in Figure 3.1. Figure 3.2a being the resulting tree of the event log without noise
and 3.2b being the resulting tree of the same event log, except one activity got changed.
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3 Preliminaries

3.2 Differential Privacy

Differential privacy aims to hide the influence of a single data point on a resulting data
set when analysing this set. Therefore it should not be possible for an adversary or any
other individual to gain enough information from the resulting data set to be sure about
the absence or attendance of a single data point.

More formally, it is assumed that an adversary has access to two neighbouring data
sets D and D′, with one of them being the output and the other one being the input for a
randomised differential private mechanism M . Neighbouring means that the data sets D

and D′ differ in at most one element.
In this scenario, the adversary has access to the output data set of M as well as to the

two neighbouring data sets D and D′. The goal of the adversary is now to identify whether
D or D′ was the input data set.

Two needed parameters to define the privacy guarantees M can give are ε and δ. While
ε defines the maximum difference between outputs of M , δ describes the probability that
elements are not covered by ε. It is important to note that the lower the ε, the higher the
privacy, but also the lower the accuracy of the output data set D of the mechanism M [6].

Definition 3.1 (Differential Privacy). A randomized mechanism M : D → R is (ε,
δ)-differentially private, with ε > 0 and δ ≥ 0, if for all S ⊆ R and for all neighboring data
sets D, D′ ∈ D:

Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S] + δ

Important mechanisms of differential privacy that we use throughout the thesis are
described below, for further information see [6].

Sensitivity An important aspect of differential privacy is sensitivity. Sensitivity describes
the maximum difference between two data sets due to the addition of a single data point.
The worst-case difference a single data point can cause is considered to determine the
sensitivity.

Counting Queries Another important aspect are counting queries. These are used to get
the number of elements which satisfy a predefined property in a data set. For example,
if we consider a data set D with n elements, a valid request on this data set could
be: ”How many elements in D are greater than x?”. The output of this request is a
counting query, with the condition may changing depending on the task.

Post-Processing Theorem Any output of a differential private mechanism M is immune
to post-processing. More formally, any individual without additional knowledge about
the differential private data set D cannot generate a function that uses the differential
private data set D as input that has a less differential private data set D′ as output.

AboveThreshold This mechanism is used to check if an element from a given set is above
a defined threshold τ . This threshold defines a value which has tho reached to be
fulfilled so that the query can stay in the set of consideration. The first element that
fulfils this condition is returned for further computations.

BelowThreshold The BelowThreshold-mechanism is an approximation of the AboveThreshold-
mechanism. Instead of checking if an element is above a defined threshold τ it checks
if the element is below this threshold.
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3 Preliminaries

Exponential-Mechanism The exponential mechanism takes a data set D, some objects
O and the results of a utility scoring function u as input. With u, it is counted how
many objects from O satisfy property P on D. These computed scores are tied to
the corresponding objects in O. The exponential mechanism outputs an object x ∈
O with the maximum possible utility score. The probability that this x is selected is
proportional to exp( εu(D,x)

2∆u ), with ∆u being the sensitivity of the utility function u.

Definition 3.2. The exponential mechanism preserves ε-differential privacy if the sen-
sitivity of the utility function is limited.
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4
Problem Statement

In this chapter, we look at our motivation for our approaches in more detail, some challenges
we have to address and an overview of possible thread models.

4.1 Motivation

Process Mining is a discipline that uses event logs to produce a graphical visualisation
called process models. These event logs consist of different entries, with the main needed
ones being the trace id, the timestamp and the activity name. With these three values,
it is possible to differentiate between all the events in the event log. With these three
being the needed part, adding extra specifiers, such as names or gender, is likely. These
extra specifiers are not used for process mining, but when publishing such an event log, an
adversary can gain additional information. Due to this, event logs usually are not published.
Only their generated models are. [14] also states that the re-identification risk of event logs
must not be ignored. A measuring method to calculate the uniqueness of data is proposed
to show the relevance of this risk.

Nonetheless, publishing the event log used for specific tasks might be wanted. This
could be the case for scientific research to prove the correctness of an approach. Since it is
impossible to publish these event logs, as discussed before, there exist techniques to create
privacy-preserving event logs [10, 11]. The downside of such event logs is that information
is lost, even for the owners of the original event log. [7] creates a Directly-Follows-Graphs
that uses a differential private mechanism to manipulate the weighting of the transitions.
While this approach does not change the underlying data, it has the problem that with a
small amount of underlying data, it is possible to analyse which of the transitions has a
small weighting and is, therefore, rarely used.

Due to these problems, we aim to create approximations of already existing process
mining algorithms. This helps us to generate process models that are, on the one hand,
privacy-preserving and, on the other hand, as accurate as possible. Since we focus on
creating process models, the underlying event logs are not manipulated, ensuring that the
owner of an event log still has access to the original data and can use it for further work.
Additionally, one can approximate the actual event log using the generated process model.
Because of the privacy-preserving property of our generated models, the generated event
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4 Problem Statement

log can be published without privacy concerns.
The algorithms we want to approximate are the Heuristic-Miner [15] and the [13]. We

use techniques from [6] for both of these approximations. The Heuristic-Miner uses a filtering
system to filter for transitions with a weighting under a defined limit of [−1, 1]. This filter
functionality is changed by us using the AboveThreshold-Mechanism, see description 3.2
and [6] so that the filtering is privacy-preserving. For the approximation of the Inductive-
Miner, we are manipulating the choice of cuts. This manipulation is done by using a scoring
function that counts the number of traces that voted for cut and then using the Exponential-
Mechanism, see description 3.2 and [6], to select a cut randomly. The property of the
Exponential-Mechanism ensures us that the resulting Process-Structure-Tree is privacy-
preserving.

4.2 Challenges

This section describes the challenges we must consider throughout the thesis. These are
privacy guarantees and the persistent accuracy of the generated process models.

Privacy We have to create privacy-preserving models. The used ε value should stay the
same when using our algorithms on different event logs. Additionally, we have to ensure
that no additional data is published. Only the data initially used by the two algorithms
are processed.

Accuracy While we want to ensure privacy-preserving models, we also have to ensure that
the resulting models are accurate. This is important since the output of our algorithms
should be used to show how the underlying event log might have looked like. Therefore
the used ε must be reasonable since this directly influences the accuracy of the output,
see section 3.2 and [6].

4.3 Thread Models

This section discusses two possible thread models for our generated process models and the
implementations in general. Additionally, we discuss the protection we can assume from
different work against these threads.

For both models, we assume that the underlying event log of the process model is not
being leaked. Therefore the receiver only has access to the process models generated and
to two neighbouring event logs.

Honest In this scenario, the receiver of the process model is honest. For him, it might
be possible to gain information about the processes by analysing the model. This
analysation is normal and must always be considered when publishing data. Since we
are using differential privacy, this scenario is of no concern and is our consideration
throughout the whole thesis.

Malicious In this scenario, the process model receiver wants to gain information about the
underlying event log actively. For that, a Membership Inference attack can be assumed.
This attack is used to decide whether a particular data point is part of the data set. For
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that, we assume that the adversary has access to the implementations and can generate
new outputs using the neighbouring event logs. Nevertheless, the adversary may have
access to the event logs and the implementations and can analyse various data sets from
[5, 12]. We know that differential privacy is a good protection against such attacks.
Therefore our privacy assumptions are not violated in this thread model.
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Approach

This chapter looks at two implementations that create differential private process models.
In the first section, we discuss a modification of the Heuristic-Miner (See chapter 3.1.2
on page 4). In the second section, we look at the computation of a differential private
Process-Structure-Tree using the approximation of the Inductive-Miner (See chapter 3.1.3
on page 6).

5.1 The modified Heuristic-Miner

This section focuses on the first approach of generating a privacy-preserving process model.
For that, the concept of the Heuristic-Miner is used. For the corresponding complete pseu-
docode see chapter A.1 on page iv.

5.1.1 The Idea Behind The Implementation

While the original Heuristic-Miner generates a Directly-Follows-Graph and filters based on
the dependency relations, see section 5.1, of a transition. Our approach views the hole
Directly-Follows-Graph. Due to that, we filter based on the occurrence, in percent, of a
transition in all traces, of the given Event-Log. Therefore we count the occurrence of all
transitions and are saving this count alongside the corresponding transition. After that, we
use the AboveThreshold- and BelowThreshold-Mechanism (See description 3.2 on page 8) to
filter out all transitions that occur in less than threshold τ -percent traces of the Event-Log.
Every count is capped at cap to minimize the possible leakage of the specific transition.

5.1.2 Implementation

For the implementation, we use Python 3.10 along with the PM4PY library [4].
At first, we are determining the type of the input event log file. It is possible to use the csv
or xes standard. Additionally, it is possible to use a trace log as input. These trace logs
have to be stored in an .txt file. For clarification, a trace log is a simple documentation of
all of the traces from an event log, no other information, besides the traces, is given, see
Listing 5.1.
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Listing 5.1 main function

1: class main(InputFile i) {
2: #determine file type
3: if filetype of i == '.csv':
4: log = read (event lgo)
5: call csvFile(log)
6: else if filetype of i == '.xes':
7: log = read (event log)
8: call traces(log)
9: else if filetype of i == '.txt':

10: log = read (trace log)
11: call traces(log)
12: else:
13: print('Please choose a valid file')
14: }

Depending on the input a different class is executed. Since xes files and trace log files
are providing full traces, for which we can traverse each trace in tuples of size two. By
doing this we store each tuple in a dictionary along with a score of one, if the tuple is not
already stored. If a tuple is already stored, we increment the score by one. By doing this
we generate a dictionary that has knowledge about every transition and the amount this
transition exists in the event log, see Listing 5.2.

Listing 5.2 Getting the edges from a XES file or a trace log file

1: class traces(EventLog D, Threshold T, Epsilon ε1, cap, n) {
2: queries = dict()
3:
4: for i in range(len(D)) do
5: for j in range(i+2, len(D)+2)
6: if tuple(i, j) not in queries:
7: queries.update({tuple(i, j): 1})
8: else:
9: queries[tuple(i, j)] += 1

10: end
11:
12: }

Should the input file be of type csv we first check the case id and the timestamp for
each activity and sort the log based on these. After that, we check if the case ids for two
consecutive activities are the same. Should this be the case then we store these as a tuple
that looks like (first activity, second activity) as a key in a dictionary, if the key does not
already exist. The corresponding value is set to one if the tuple is new, otherwise, we
increment the corresponding value by one. This is done for all entries in the event log (See
Listing 5.3).
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Listing 5.3 Getting the edges from a CSV event log file

1: class csvFile(EventLog D, Threshold τ, Epsilon ε1, cap, n) {
2: #define nedded dictionary
3: edges = dict()
4:
5: #EventLog is sorted based on the TraceIDs and Timestamps
6: sort D
7:
8: #get transitions
9: for i in range(len(D.TraceID)) do:

10: if D.TraceID(i) == D.TraceID(i+1) do:
11: for j in range(i+2, len(D.TraceID)+2) do:
12: if tuple(D.ActivityName[i:j]) not in edgesList do:
13: edges.update({tuple(D.ActivityName[i:j]): 1})
14: break
15: else:
16: edges[tuple(D.ActivityName[i:j]] += 1
17: break
18: end
19: end
20: }

After generating the dictionaries with the transitions and their values we use the
AboveThreshold-Mechanism, see description 3.2 on page 8, to check if a tuple occurs in
less than τ -percent of the traces. With τ being the value to determine the overall per-
centage of a transition to occur in the event log. With the BelowThreshold-Mechanism,
we verify the results of the AboveThreshold-Mechanism. The BelowThreshold-Mechanism
does the same as the AboveThreshold-Mechanism. However, it returns the index of values
below the defined τ .

So the resulting lists of the two mechanisms should be different. A tuple may be in
both lists. For such a tuple, we can assume that it is near τ , and therefore the change by
ε1 can cause the value to fit the condition, although it does not fit. The AboveThreshold-
and BelowThreshold-Mechanism are executed n-times. After the nth iteration, we have two
lists of tuples. By comparing these lists, we exclude all tuples to ensure the edge cases are
not shown in the Directly-Follows-Graph, see Listing 5.4 for both mechansims. Therefore
the remaining tuples of the resulting list from the AboveThreshold-Mechanism, are stored
as keys in a dictionary, along with their corresponding count values, which are computed in
Listing 5.2 or Listing 5.3.

Listing 5.4 Exectuion of the AboveThreshold- and BelowTHreshold mechanism, to filter
the transitions and generate a privacy-preserving Directly-Follows-Graphs

1: class Thresholds(Data dpDict, EventLog D, Threshold τ, Epsilon ε1, cap, n) {
2:
3: edgesList = dpDict.keys()
4: cQueries = dpDict.values()
5:
6: #filter the transitions and output the filtered list of transitions -> which
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queries are above the threshold
7: a := 1
8: def AboveThreshold(Database edgesList, Queries cQueries, τ, ε1){
9: while a < n do:

10: for Each query i do:
11: Let vi = τ,+ Lap(4/ε1)
12: if ((numID/numTraces)*100 + vi) ≥ 70% do:
13: Output ai = >
14: Halt.
15: else do:
16: Output ai = ⊥
17: end
18: end
19: a += 1
20: end
21: }
22:
23: #filter the transitions, so that it is known which queries are below the

threshold
24: b := 1
25: def BelowThreshold(Database edgesList, Queries cQuries, τ, ε1){
26: while b < n do:
27: for Each query i do:
28: Let vi = τ + Lap(4/ε1)
29: if ((numID/numTraces)*100 + vi) < 70% do:
30: Output ai = >
31: Halt.
32: else do:
33: Output ai = ⊥
34: end
35: end
36: b += 1
37: end
38: }
39: }

For each value, we then check if it is below or above the defined cap. Should a value be
above cap then we are capping it at cap and update the corresponding entry in the dictionary
This resulting dictionary is used to create the Differential Private Directly-Follows-Graph.
This algorithm is nε1 · cap

τ#traces Differential Private, which is proven below, in Theorem 5.1.2.

Lemma 5.1 (The modified Heuristic Miner is nε1 · cap
τ#traces Differential Private).

Proof. We apply n times the AboveThreshold-Mechanism with noise parameter ε1 to all
elements in the Event-Log so that we can exclude edges that were visited in less than τ

number of traces in the Event-log D.
For the ith invocation of AboveThreshold, we have a sequence [(⊥)i=1,...,mi−1,>] (for

some mi ∈ N). We then compute BelowThreshold for the same queries and noise pa-
rameter ε1, until we get a ⊥, so a sequence looks like [(>)i=1,...,mi+1−1,⊥]. So if we get
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> from the AboveThreshold-Mechanism, we have to get ⊥ for that same query with the
BelowThreshold-Mechanism. The BelowThreshold-Mechanism provides the same privacy as
the AboveThreshold-Mechanism, which can be proven like the AboveThreshold-Mechanism
in [6]. These results can be used without additional leakage due to the post-processing
theorem, see 3.2.

From [6], we know that the AboveThreshold-Mechanism is ε-DP, with ε being the noise
parameter. Using the basic composition theorem, we also know that by executing a ε-DP
algorithm n1 times, we get that it is n1ε-DP. Therefore executing the AboveThreshold-
Mechanism n times, with noise parameter ε1, we get that nε1-DP holds.

Next, the algorithm computes the frequency for every edge evaluated with >. If an
edge has a frequency greater than cap, we will cap it at cap. Hence, we minimize leakage
about which processes are carried out the most. Additionally, we filter out edges that occur
in less than a τ ∈ [0, 1] fraction of traces in the Event-Log. We consider the queries of the
following form: qe(D) := “In which frequency does edge e to occur in the Event-log D?”
Each query has sensitivity cap/(τ#traces).

Therefore nε1 · cap
τ#traces -DP holds, due to the basic composition theorem. Everything

that is done with this graph has no additional leakage due to the post-processing theorem,
see 3.2.
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5.2 The DP-Inductive-Miner

This section looks at the second approach of creating a privacy-preserving graph. Though
this time, we create an approximation of the Inductive-Miner [13] since the generated
Process-Structure-Trees are highly adaptable. See chapter A.2 on page v for the whole
pseudocode of the implementation. In chapter B.1 on page x are various generated example
Process-Structure-Trees with a used ε of 2

5.2.1 The basic concept

To create Process-Structure-Trees, the Inductive-Miner (See 3.1.3 on page 6) is a well-known
algorithm in the Process-Mining community. Our approximation aims to create Process-
Structure-Trees that are differential private. Since the overall problem of the Inductive-
Miner is that Process-Structure-Trees show the whole process without filtering. Therefore an
adversary can gain information about processes without any effort. To create a differential
private approximation, we use the Exponential-Mechanism, to alter the cut selection, see
3.2, [6].

5.2.2 Implementation

For the implementation, we use Python 3.10 along with the PM4PY library [4].
PM4PY already has an implementation of the Inductive-Miner. To create differential private
Process-Structure-Trees, we use parts of this implementation and modify them.

In the class /discovery/inductive/algorithm.py, we modify the call in the function
apply_tree(), the same kind of modification we also do in the function aplly_tree(), in
the class /discovery/inductive/variants/im_clean/algorithm.py. These two modifica-
tions ensure that we use our implementation and not the PM4PY one since with every
update of PM4PY, any changes, in the corresponding library, are reverted. In the func-
tion apply_tree() of the /discovery/inductive/variants/im_clean/algorithm.py class we
change the tree = __inductive_miner(...) call, to our function __dp_tree() in the
new /expo_mech.py class. The changed classes of the PM4PY library are stored in the
Expo_Package, alongside our classes to avoid changes due to updates.

Listing A.6 on page v is the main class for the computation of a differential private
Process-Structure-Tree. To compute such a tree, we first need to determine a value for
each cut made by the original Inductive Miner. The value we specify for each cut de-
termines the number of traces which voted for this cut. To get this value, we call the
cut_counting.__get_cutCount() function (See listing A.7 on page vi). In this function,
the occurrence of a trace in the given event log E is counted. We store this trace in a
dictionary as the key and the occurrence as the value. This is done for every trace in E

if the trace is not already stored in the dictionary. The resulting dictionary is needed to
determine how many traces voted for a cut ⊕, with ⊕ being any possible cut the Inductive
Miner can make, see description 3.1.3.

After creating this dictionary, the __cut_recursive() function is called. This function
is needed to handle the recursion of the __recursion() function. The __recursion()

function checks the activities viewed in the next cut and stores this as base. After this
checkup the __check_cut() function is called. This function checks for all cuts after the
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other, which cut is possible. When a cut is possible, this cut is made, and the cuts that
were not checked yet are ignored. Due to our approximation, the cut is not made, but we
check how many traces voted for that cut by calling the __count_traces() function. This
function counts the traces in which the viewed activities occur, which is sufficient since the
Inductive Miner always checks every trace in the event log E. Therefore every trace, in
which one of the activities from the set of all activities occurs, is counted.

If the Inductive Miner detects a sequence cut, we call the __count_traces_seq(),
which is the only exception among all cuts. This function counts the traces of all activities
on the leftmost branch. That is enough due to the property of a sequence (See 3.1.3 on
page 6).

After counting the traces that voted for the cut, we increment two global values by
one. The first value is numCuts, we need to determine the ε, which we work later with
when using the Exponential Mechanism. The second value depends on the cut that is made.
Therefore one out of four values is incremented. These four values are the sequenceCount,
the xorCount, the parallelCount and the loopCount. These values differentiate between
all made cuts because every cut differs from the others, even if the same cut is made again.
With these values, we create a key for the cutDict-dictionary. This key contains the name
of the cut with the corresponding value appended. The value we store along with the key is
the previously calculated number of traces that voted for this cut. An example entry that
could be stored in the cutDict-dictionary looks like xor3: 34. As soon as the creation of
the cutDict is finished, we return to the __get_cutCount() function. This function then
returns the cutDict-dictionary and the numCuts value.

The returned cutDict-dictionary is a global variable in the expo_mech.py file. The
cutDict-dictionary is used in the choose_cut()-function to select a cut with the exponen-
tial mechanism. Since we call this function from another file and change the dictionary
with every call, the dictionary must be global. With the returned numCut and the given
goalEpsilon, we calculate the ε that has to be used in the Exponential Mechanism later on.
To calculate ε we do goalEpsilon

numCut , this ε is stored global for a later use in the choose_cut()

function.
In the next step, we call the log_im_modified.__inductive_miner(), see listing A.8

on page viii, to compute the differential private Process-Structure-Tree. In this function, we
create the desired tree step by step. The modified part of this implementation is that if a cut
is detected, we call the expo_mech.choose_cut() function. This function implements the
Exponential Mechanism; see 3.2 on page 8. Our used score function is the cut_counting.py

file, listing A.7, which we described before. For the implementation, we used the code
from [9] and modified some parts to match our approach. One change is that we do not
pass the scores and the set of cuts to choose from to the function. The needed scores
alongside the cuts are in the cutDict dictionary, which we set global to have access to it.
We create two lists from this dictionary, the first contains the cuts we choose from, and
the second includes the scores. We make the probabilities list the second list, which we
also normalize. With these probabilities, we then choose a cut. This choice is ε-differential
private since the Exponential Mechanism is ε-differential private 3.2. After this, we delete
the chosen cut from the dictionary, so with every call of this function, we have a smaller
set of cuts. As soon as the log_im_modified.__inductive_miner() function is finished,
a Process-Structure-Tree is returned and displayed, which is differential private.
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This approximation of the Inductive-Miner is ε-differential private, which is proven be-
low in Theorem 5.2.2

Lemma 5.2 (The DP-Inductive-Miner is ε-Differential Private).

Proof. From [6] and description 3.2, we know that the Exponential Mechanism is ε-differential
private if the sensitivity of the utility function is limited. It can be assumed that every pro-
cess terminates at some time.

Because we are working on event logs, which represent the individual execution of a
specific process, we can assume that these processes also have a start and endpoint of some
sort. Even though an event log represents multiple individual executions of a process, the
number of represented executions is finite since an event log has to be a finished one to
be mine-able. Therefore the event log file is also finite. So because the number of process
executions is finite and, therefore, the event log itself, the sensitivity of the utility function
is limited.
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Experiments

In this chapter, we look at the evaluation of the previously described approaches chapter 5.
We first explain how we evaluated the implementations. After that, we have a look at the
results of the modified Heuristic-Miner, see section 5.1 and after that, we look at the results
of DP-Inductive-Miner, see section 5.2.

6.1 Experimental Setup

To evaluate our implementations, see chapter 5 for these, we used the Sepsis data set [8] and
generated three synthetic event logs with the tool from [17]. The corresponding workflow
nets for these event logs are shown below in Figure 6.1 and Figure 6.3. For a more detailed
view, see also B.1.1 on page x in the appendix.

For the evaluation of the two implementations, we followed two different ways.

modified Heuristic-Miner
To evaluate the modified Heuristic-Miner implementation, see section 5.1, we create a
Utility-Privacy-Tradeoff analysis, in which we evaluate the number of nodes present in
the resulting graph for different thresholds τ and a fixed ε1 of 2. This fixation of ε1 is
done because we want to analyse the results of a privacy-preserving Directly-Follows-
Graph. Furthermore, a value of 2 is not too big to significantly impact the filtering and
not too low to make the results inaccurate.

In addition, an analysis in which we checked the influence of ε1 with a fixed threshold
τ was done. The fixed value τ is for each event log different and is fixed at a value which
creates a Directly-Follows-Graphs similar to the resulting one of the Heuristic-Miner.

DP-Inductive-Miner
To evaluate the implementation of the DP-Inductive-Miner, see section 5.2, we mined
each event log one hundred times, with ε = [2, 1, 0.5, 0.1, 0.05, 0.01]. Therefore each
event log has been mined a total of six hundred times.

We created a placement system for the cuts we can choose from, which is refreshed
in every execution. In this, the cut with the highest score is in the first place, and the
cut with the lowest is in the nth place. If some cuts have the same score, they have
the same placement. The place after this is the number of cuts plus the placement of
those. For example, if we have three cuts in third place, then the next cut, or cuts, are

– 21 –



6 Experiments

in sixth place (num of cuts = 3, current placement = 3 ⇒ 3 + 3 = 6). Due to the
deletion of the chosen cut, after every call of the corresponding choose_cut() function
(See section 5.2), the placements of the cuts changes. Therefore we recalculate the
placements with each call of the choose_cut() function. Also, we store each placement
of the chosen cut to have an overview of the number of times a cut with placement
m | m ∈ #Placements was selected.

Additionally, we analysed the fitness of our created trees. The fitness gives us a value
that says how well this trace can be reproduced with the generated Process-Structure-
Tree. To do so, we used PM4PY [4] to align the traces of our event logs. This is
done one hundred times for each ε = [2, 1, 0.5, 0.1, 0.05, 0.01]. Each trace is stored,
along with the corresponding fitness score and then these values are plotted to have an
overview of the overall fitness of the Process-Structure-Tree.

It must be noted that the returned fitness score is between 0 and 1, with 1 being a
perfect fit. We define good fitness at a score of 0.7 or more.

Figure 6.1: The workflow net of the Sepsis data set [8], with the black boxes being the silent
transitions τ .

Figure 6.2: The workflow net of a non complex event log.
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(a) The workflow net of a complex event log, with loops.

(b) The workflow net of a complex event log, without loops.

Figure 6.3: The workflow nets of the synthetic event logs that were generated with the tool
from [17].
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6.2 Evaluation Of The modified Heuristic-Miner

In this section, we look at the evaluation results of the modified Heuristic-Miner implemen-
tation, see section 5.1.

For this, we look at the Utility-Privacy-Tradeoffs, as well as at the analysis of the
influence of the ε1 value, see description 6.1.

6.2.1 Experimental Results

Figure 6.4 shows us the results of our Utility-Tradeoff analysis, see 6.1 for a short explana-
tion, of the four defined workflows. For clarification, the y-axis represents the number of
nodes present in the resulting Directly-Follows-Graph, and the x-axis represents the thresh-
old τ from 0 to 100 percent.

Figure 6.4: The Utility-Privacy-Tradeoffs, see 6.1, of the four previously defined workflow
nets, see Figure 6.1 and below. Each analysis was done with a threshold τ ∈ [0, 100] and
a fixed ε1 of 2. At the top right is a legend in which the colour with the corresponding
workflow is defined.

The first thing that can be noticed is that except for the Sepsis data set [8], all of the
workflows have a strong decrease in terms of the number of nodes present in the resulting
Directly-Follows-Graph. Additionally, it can be observed that the event log for the complex
workflow with loops, Figure 6.3a, has two different lines. The line representing min traces

is an event log based on the same workflows (See Figure 6.3a), but only with 5.000 traces
instead of 10.000. What can be observed by comparing these two is that the line representing
the larger event log has not a decrease in the number of nodes as high as the corresponding
line, representing the smaller event log.

Secondly, we look at the influence the ε value can have on the result. For this, we look
at figure 6.5, which shows us for each of the workflows the influence of ε1 in terms of the
number of existing nodes in the resulting Directly-Follows-Graph. As we can see each of
the workflows has a different high since the total number of nodes is for all of the workflows
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different. Since we are using the same workflow, only with fewer traces with the min traces

line in Figure 6.4, we are not representing this in Figure 6.5.
The first thing that can be noticed here is that the scale goes from 0.0 to 1.0 ∗ 1e8.

This is the index that tells us to multiply each of the x-axis values with 1e8to get the correct
value.

As we can see all of the event logs are having all of their nodes, with a seemingly low
ε1 value. This on the other hand means that the resulting Directly-Follows-Graphs are
showing the event log without any filtering when using a high ε1 value.

Figure 6.5: The influence of ε1 on each of the event logs, see description 6.1 for a short
explanation. With a static threshold τ , which differs for each event log. However, the τ is
set a value so that the optimal Directly-Follows-Graph would result as an output if the ε1
value is chosen correctly.

6.2.2 Interpretation Of The Results

To interpret the previously described results, we need to define the goal of this approach.
The overall goal is to create a Directly-Follows-Graph that fulfils two main objectives. These
are as follows.

Ob1 The graphs generated are privacy-preserving
Ob2 The graphs generated are as accurate as possible

While we have proven the first objective to be true (See 5.1.2 on page 16), because
every graph generated has to fulfil this property, the second objective has to be answered
with our experimental results.

Based on the results described above, we know we have some tipping point for every
event log, in which the total number of nodes in the graph suddenly drops. This point can
cause a massive drop in the accuracy of the generated Directly-Follows-Graphs.

Additionally, we can observe a high decrease in the number of nodes present in the re-
sulting graph the higher the used τ is. Since we are using the differential private mechanism
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AboveThreshold, we add random noise to the calculated percentage value of each transi-
tion. This random noise means that scores near the threshold could be filtered out. On top
of that, we are also checking the BelowThreshold with added random noise. This random
noise has the same effect as the AboveThreshold mechanism. These two mechanisms can
increase the number of transitions filtered out since the random noise can cause edge cases
to be added or deleted. Due to this, it is essential to use the correct threshold τ that is
neither too high nor too low to get a Directly-Follows-Graph that does not leak too much
information but is also not too abstract.

With this in mind, adjusting the Below-Threshold mechanism could solve some issues.
However, such an adjustment would be needed to solve the tipping, since we are highly
sensitive to τ . On top of that, any adjustment could cause a mechanism that no longer
fulfils the property of differential privacy (See 3.2 on page 8).

Because of this property, we can have graphs that fulfil Ob1 but are not capable of
fulfilling Ob2, independent of ε1 since for the Utility-Privacy-Tradeoff analysis, we use a ε1
of 2, which is small, but the tipping points are nevertheless extreme.

By observing the Figure 6.5, it can be noticed that with a high ε1 the resulting Directly-
Follows-Graph shows the corresponding event log without any filtering. From this, we can
conclude that we need to use a low ε1 value to ensure that the resulting graph does fulfil
Ob1. Therefore it is possible with the correct ε1 to generate a graph that violates Ob1.

Furthermore, we can observe that the number of traces is an important factor in the
filtering. When looking at Figure 6.4, we can see that we are using two different event logs
of the same workflow, see Figure 6.3a. The difference between these two event logs is the
number of traces, which influences the result. The line corresponding to the event log with
fewer traces has, at an earlier point, fewer nodes in its generated Directly-Follows-Graph,
than the line corresponding to the event log with more traces.

Due to this, we can conclude that the number of traces and, therefore, the length of
the event log is a crucial factor in our filtering function.

6.3 Evaluation Of The DP-Inductive-Miner

In this section, we look closely at the experimental results and their interpretation for the
DP-Inductive-Miner implementation, see section 5.2.

For each of the four defined workflows, see Figure 6.1 and below, we look at the place-
ment evaluation results and the corresponding fitness evaluation. See description 6.1 for
further details.

6.3.1 Experimental Results

First, we have a look at the results of the Sepsis data set [8] to have knowledge about
the performance, of our DP-Inductive-Miner implementation 5.2, on a widely known and
accepted data set.

As we can see in figure 6.6a with ε = 2 all of our selected cuts are in the top-1 of all
cuts. Additionally, it can be observed that with ε = [1, 0.5], approximately 98 percent of all
cuts are in the top-1. Furthermore, as soon as ε = 0.1, or lower, the overall percentage of
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cuts in the top-1 goes from 64 up to 85 percent. With ε = 0.01, we have the steepest slope,
which results in 80 percent of the cuts being in the top-5.

(a) Placement evaluation for the Sepsis data
set [8]

(b) Fitness evaluation for the Sepsis data set
[8]

Figure 6.6: The Evaluation of the top-k cuts on the left side 6.6a and the Evaluation of
the fitness of the generated trees on the right side 6.6b, for further information on these
evaluations, see description 6.1 on page 21. For both evaluations, the DP-Inductive-Miner
section 5.2 was executed one hundred times with a different ε being [2, 1, 0.5, 0.1, 0.05, 0.05].
At the bottom right of both diagrams is a legend which shows the colour to the corresponding
ε that was used.

In figure 6.6b, we have the results of the fitness evaluation 6.1 for the Sepsis data set [8].
This analysis shows us how well the traces of the underlying event log can be reproduced
using the resulting tree. As we can see with all ε values, we have a perfect fitting for some
traces. The interesting part is that with ε = 2, we have fewer traces with a perfect fitting
score than with ε = 0.1. However, the overall fitting score of ε = 2 is the best. The increase
of the fitting score is the highest, and the increase flatters as soon as we have a score of 0.4.

Additionally, it is observable that with ε = 1, we have a similar curve to ε = 2. The
difference is that we have more traces with a perfect fit, but on the other hand, we have
more traces with a worse fitting score. Furthermore, with ε = 0.01, we also have perfectly
fitting traces, but also the overall score of good fitting traces is fewer than for the other ε

values.
By now, we are looking at the results in figure 6.7a, which represent the results for the

workflow in figure 6.2. For each of the ε, one hundred percent of all traces are in the top-1.
This behaviour is unique among all of the workflows.

However, if we compare this with the results of the corresponding fitness evaluation,
figure 6.7b, we can observe a different behaviour. Here we can see that none of the generated
trees reproduces all the traces of the underlying event log perfectly. Nonetheless, the number
of perfect-fitting traces is for all of the ε values higher than what we observed in figure 6.6b,
which corresponds with the results of the placement evaluation. Even the overall number
of good fitting traces is higher than what we observed for the Sepsis data set in figure 6.6b.
Additionally, it can be seen that the lowest fitting score is approximately 0.3, while we are
near 0 for the Sepsis data set.
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(a) Placement evaluation for the non-
complex workflow 6.2

(b) Fitness evaluation for the non-complex
workflow 6.2

Figure 6.7: The Evaluation of the top-k cuts on the left side 6.7a and the evaluation of
the fitness of the generated trees on the right side 6.7b, for further information on these
evaluations, see description 6.1 on page 21. For both evaluations, the DP-Inductive-Miner
section 5.2 was executed one hundred times with a different ε being [2, 1, 0.5, 0.1, 0.05, 0.05].
At the bottom right of both diagrams is a legend which shows the colour to the corresponding
ε that was used.

In figure 6.8, we can see the results of the two analyses done on the complex workflow,
Figure 6.3a.

Figure 6.8a, shows us a logarithmic growth over the cut-to-placement relation. With
ε = 2, we have with 55 percent the most traces in the top-1. Also, the overall number of
traces with a good placement is the highest. As soon as we reach the top-10 value, the
number of cuts for ε = 1 are on par with ε = 2. On the other hand, we can see that with
ε = 0.01, we have the most incredible range of placements out of all of the ε values.

By now having a look at figure 6.8b, we can see that for none of the ε values, we have a
perfect fitting trace. We have the first traces we can partly reproduce as soon as we reach
a fitness score of approximately 0.8 with the generated Process-Structure-Tree. At a score
of 0.6 for all of the ε values, we can reproduce some part of the trace from the event log of
the underlying workflow, Figure 6.3a. Even though it is possible with ε = 2 to reproduce
parts of the most traces, we also can see that we have traces for that we can not reproduce
even a part of it.

When we look at Figure 6.9, we can observe the event log results from the workflow in
Figure 6.3b. This workflow is similar to the one in Figure 6.3a but differs because it has no
loops.

By looking at Figure 6.9a we can see that it is similar to Figure 6.8a. However, they
differ because we have a lower number of traces in the top-1, Figure 6.9a. Nevertheless, the
overall growth of the cut-to-placement relation is bigger than in Figure 6.8a.

This growth directly influences the fitness score, which we can observe in Figure 6.9b.
Here we have up to 5 percent of all fully reproducible traces with the generated Process-
Structure-Trees. This is in direct contrast to Figure 6.8b, where we have no trace being
reproducible until a fitting score of 0.8. Additionally, the overall fitness of the workflow
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(a) Placement evaluation for the complex
workflow 6.3a

(b) Fitness evaluation for the complex work-
flow 6.3a

Figure 6.8: The Evaluation of the top-k cuts on the left side 6.8a and the evaluation of
the fitness of the generated trees on the right side 6.8b, for further information on these
evaluations, see description 6.1 on page 21. For both evaluations, the DP-Inductive-Miner
section 5.2 was executed one hundred times with a different ε being [2, 1, 0.5, 0.1, 0.05, 0.05].
At the bottom right of both diagrams is a legend which shows the colour to the corresponding
ε that was used.

6.3b is better than the workflow in Figure 6.3a since we have a minimal fitness score of 0.1,
Figure 6.9b. In Figure 6.8b, we have a minimal fitness score of 0.

(a) Placement evaluation for the complex
workflow without loops 6.3b

(b) Fitness evaluation for the complex work-
flow without loops 6.3b

Figure 6.9: The Evaluation of the top-k cuts on the left side 6.9a and the evaluation of
the fitness of the generated trees on the right side 6.9b, for further information on these
evaluations, see description 3.2 on page 8. For both evaluations, the DP-Inductive-Miner
section 5.2 was executed one hundred times with a different ε being [2, 1, 0.5, 0.1, 0.05, 0.05].
At the bottom right of both diagrams is a legend which shows the colour to the corresponding
ε that was used.
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6.3.2 Interpretation Of The Results

When having a closer look at figure 6.7a we can get some information about the behaviour
of cuts. Since the Process-Structure-Tree of the underlying workflow 6.2 has a depth of two
and a SEQUENCE − Cut as root, see Figure 6.10, it can be assumed that every cut has
to have the same score due to the property of the SEQUENCE − Cut (See 3.1.3).

By having a closer look at Figure 6.10 we can see that all events and cuts are executed
sequentially or in parallel. This causes the events to be in every cut, which also causes the
cuts, we want to manipulate to all have the same score. Therefore we can assume that the
order of cuts is relevant to the scoring function.

Due to this, every cut has the same probability of being chosen, resulting in trees with
a top-1 cut score. However, the underlying event log is not perfectly reproducible even with
ε = 2, as seen in the fitness evaluation, Figure 6.7b.

Figure 6.10: The original Process-Structure-Tree of the non-complex event log.

To check the relevance of the cut order, we modify the workflow. This modification is
done by replacing the parallelism of the AND − Cut with a XOR − Cut. The following
SEQUENCE−Cut should have a different score than the other cuts in the tree, Figure 6.11
shows the resulting workflow net. The corresponding Process-Structure-Tree of such a
modified workflow can be seen below, in Figure 6.12b, alongside the original one to have a
direct comparison.

Figure 6.11: The modified workflow net, used to evaluate the importance of the order of
cuts.

Due to this new workflow, another placement is made. The resulting new placement
changes the cut selection and fitness score of the resulting Process-Structure-Trees, what
we can see in Figure 6.13. For ε = [2, 1, 0.5], the results of the cut placement evaluation
are the same as in Figure 6.7a. We can see a difference with ε = 0.1 and lower. For these
values, we have a cut selection that is not limited to the top-1.

With such a new placement, the fitness score also changed. While we can observe a
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(a) The Process-Structure-
Tree of the original workflow
6.2

(b) The Process-Structure-
Tree of the modified workflow

Figure 6.12: The original 6.12a and modified 6.12b Process-Structure-Tree of the original
and modified non complex event log. In the modified version we switched the AND−Cut

from the original, with a XOR− Cut.

steep slope in Figure 6.7b, at a score of 0.9 to 0.8, we have a relatively weak slope in the
fitness evaluation of Figure 6.13b. Not until a score of 0.4 does the degree of slope increase.

Due to this observation, we can conclude that the type and order cuts in the original
Process-Structure-Tree, are essential factors for our scoring function.

(a) Placement evaluation for the modified
non-complex workflow 6.11

(b) Fitness evaluation for the modified non-
complex workflow 6.11

Figure 6.13: The Evaluation of the top-k cuts on the left side 6.13a and the evaluation of
the fitness of the generated trees on the right side 6.13b, for further information on these
evaluations, see description 6.1 on page 21. For both evaluations, the DP-Inductive-Miner
section 5.2 was executed one hundred times with a different ε being [2, 1, 0.5, 0.1, 0.05, 0.05].
At the bottom right of both diagrams is a legend showing the colour to the corresponding
ε used.

Besides the relevance of order, we correlate with the complexity of workflows and the
accuracy of the cut selection. In figure 6.8a and 6.3b, we can see that we have worse
placements for the selected cuts. These placements result in Process-Structure-Trees that
can not reproduce any trace of the underlying original event log, see Figure 6.8b.
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Additionally, we can observe that the lower the ε, the lower the overall fitness score of
the Process-Structure-Trees, since with ε = 2, the fitness score is the first that increases.
This behaviour corresponds with the property of ε for differential private mechanism, which
says that the lower the ε, the less accurate the resulting data. Conversely, the higher the ε,
the less privacy-preserving the data, see description 3.2.

While the complexity of the workflows is essential, it can be observed in Figure 6.8
and Figure 6.9 that loops are also an essential factor. As we can see in Figure 6.9, with
a workflow without loops Figure 6.3b, a wide range of possible Process-Structure-Trees is
possible. This can be concluded since we have fitness scores of 1, which means we can
reproduce complete traces. On the other hand, we can only reproduce small parts of the
traces. This can not be observed in Figure 6.8b. Here, we are not getting any Process-
Structure-Tree that can reproduce a complete trace of the original event log. It is only
possible for the resulting tree to reproduce parts of the original traces. With these observed
results, we can conclude that loops significantly influence the resulting trees. The main loop
that may have the most significant influence is the one that restarts the workflow. This can
be assumed since the self-loops from the workflow in Figure 6.3a are not repeating any of
the cuts.

While the synthetic event logs show us the things which influence the results the most,
the Sepsis data set [8] shows that the DP-Inductive-Miner implementation, see section 5.2,
is capable of generating trees that have a high fitness but are also privacy-preserving. When
looking at Figure 6.6, it can be seen that the overall placement and the fitness score generate
Process-Structure-trees that are similar to the original by using the privacy parameter ε = 2.

Looking at B.1 on page x, we can see various Process-Structure-Trees that are possible
outputs of the DP-Inductive-Miner implementation. As can be seen, the trees corresponding
to the Sepsis data [8] are different from the original but are similar and fulfil our privacy
assumption while being capable of reproducing complete traces of the actual event log.

Based on these results, we know that the order and type of cuts are the most important
for our scoring function. Furthermore, it is possible to generate usable Process-Structure-
Trees based on complex workflows, as long as the degree of complexity is manageable.
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Conclusion

In this thesis, we designed two algorithms for privacy-preserving process mining. We ap-
ply techniques from differential privacy and process mining to create approximations of
algorithms that produce a privacy-preserving model of an event log. To make such a visu-
alization, we have a deeper look into two frequently used algorithms: the Heuristic-Miner
[15] and the Inductive-Miner [13]. For the approximation of the modified Heuristic-Miner,
we are using the general idea of filtering transitions on a Directly-Follows-Graph. In com-
parison, we are modifying the Inductive-Miner, to generate a privacy-preserving model for
our second algorithm. For both algorithms, we prove that these fulfil differential privacy.
In the evaluation of chapter 6, we tested both algorithms on four workflows, three of them
being synthetic [17] and one being the Sepsis data set [8].

Firstly we evaluate the modified Heuristic-Miner algorithm. Here it can be seen that
the algorithm can fulfil our defined objectives. Nonetheless, the precision needed to select
the correct threshold τ and ε1 is too high. It might be possible to optimize this using
automated testing of each generated Directly-Follows-Graphs before giving one as an output.
However, this optimization would not fulfil the intention of getting a privacy-preserving
process model if it is possible to select the output model. Another way could be a change
in the scoring function. When using the intentional way of scoring and combing this with
the AboveThreshold mechanism, it would be possible to use the built-in scoring function
from the Heuristic-Miner and simultaneously filter transitions with a differential private
mechanism.

Secondly, we evaluate the DP-Inductive-Miner algorithm. Here it is easy to see, based
on the fitness scores, that our algorithm generates trees that are privacy-preserving and not
too inaccurate. While it is not possible to use the resulting trees to present the workflow
structure, it is possible to publish these without any privacy concerns. Nonetheless, if
an event log has a specific order of cuts and/or is overly complex, the resulting Process-
Structure-Tree has the potential to be highly inaccurate. This could be solved using a
weighting function that supports the scoring function so that the probability is higher
based on the correct order of cuts. With this, the accuracy might increase, but this would
reduce the privacy of the resulting trees.

In summary, we show that both algorithms fulfil the intention of generating privacy-
preserving process models. While the modified Heuristic-Miner algorithm is too inaccurate
and therefore is not fulfilling our objective of generating an accurate and privacy-preserving
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process model. However, the DP-Inductive-Miner algorithm can be used on most event logs
and still produces process models that are, on the one hand, privacy-preserving and, on the
other hand, not inaccurate for usage.

7.1 Future Work

This section describes possible future work for each of the two algorithms.

modified Heuristic-Miner As mentioned before, it is possible to use the build-in scoring
function of the original Heuristic-Miner, to filter the transitions. This scoring function
views the dependency of each trace without observing other transitions. By combining
this with the AboveThreshold-mechanism, it is possible to filter randomly. This would
create a filtering that fulfils differential privacy. By combing this with the approach
from [7], where the authors make the weighting of the transitions differential private,
it is possible to have a fully differential private Directly-Follows-Graph.

DP-Inductive-Miner To overcome the dependency of the scoring function on the order
of cuts, an additional weighting function helps. This function checks which cut we are
currently at. For example, if it is the root cut, then we would have the maximum weight
added to the score of the cut. However, this weight should be a random value. This is
so that it might be possible that a ”higher” cut can be lower, so it is ensured that the
resulting tree is not more predictable than before. With this weighting, the resulting
trees are not perfectly accurate, but when computing a complex workflow, the accuracy
is higher than before.
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A
Pseudocodes

A.1 The modified Heuristic-Miner

Listing A.1 main function

1: class main(InputFile i) {
2: #determine file type
3: if filetype of i == '.csv':
4: log = read (event lgo)
5: call csvFile(log)
6: else if filetype of i == '.xes':
7: log = read (event log)
8: call traces(log)
9: else if filetype of i == '.txt':

10: log = read (trace log)
11: call traces(log)
12: else:
13: print('Please choose a valid file')
14: }

Listing A.2 Getting the edges from a CSV event log file

1: class csvFile(EventLog D, Threshold τ, Epsilon ε1, cap, n) {
2: #define nedded lists
3: id = list()
4: edges = dict()
5:
6: #EventLog is sorted based on the TraceIDs and Timestamps
7: sort D
8:
9: #get the number of traces

10: for TraceID i in D do:
11: if i = first Element in D do:
12: add i to id
13: else if i is in id do:
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14: skip
15: else do:
16: add i to id
17: numTraces = len(id)
18:
19: #get transitions
20: for i in range(len(D.TraceID)) do:
21: if D.TraceID(i) == D.TraceID(i+1) do:
22: for j in range(i+2, len(D.TraceID)+2) do:
23: if tuple(D.ActivityName[i:j]) not in edgesList do:
24: edges.update({tuple(D.ActivityName[i:j]): 1})
25: break
26: else:
27: edges[tuple(D.ActivityName[i:j]] += 1
28: break
29: end
30: end
31:
32: #computethe privacy-preserving Directly-Follows-Graph
33: privacy(edges, D, τ, ε1, cap, n)
34:
35: }

Listing A.3 Getting the edges from a XES file or a trace log file

1: class traces(EventLog D, Threshold T, Epsilon ε1, cap, n) {
2: queries = dict()
3:
4: for i in range(len(D)) do
5: for j in range(i+2, len(D)+2)
6: if tuple(i, j) not in queries:
7: queries.update({tuple(i, j): 1})
8: else:
9: queries[tuple(i, j)] += 1

10: end
11:
12: #computethe privacy-preserving Directly-Follows-Graph
13: privacy(queries, D, τ, ε1, cap, n)
14:
15: }

Listing A.4 Exectuion of the AboveThreshold- and BelowTHreshold mechanism, to filter
the transitions and generate a privacy-preserving Directly-Follows-Graphs

1: class privacyComputation(Data dpDict, EventLog D, Threshold τ, Epsilon ε1, cap,
n) {

2:
3: edgesList = dpDict.keys()
4: cQueries = dpDict.values()
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5:
6: #filter the transitions and output the filtered list of transitions -> which

queries are above the threshold
7: a := 1
8: def AboveThreshold(Database edgesList, Queries cQueries, τ, ε1){
9: while a < n do:

10: for Each query i do:
11: Let vi = τ,+ Lap(4/ε1)
12: if ((numID/numTraces)*100 + vi) ≥ 70% do:
13: Output ai = >
14: Halt.
15: else do:
16: Output ai = ⊥
17: end
18: end
19: a += 1
20: end
21: }
22:
23: #filter the transitions, so that it is known which queries are below the

threshold
24: b := 1
25: def BelowThreshold(Database edgesList, Queries cQuries, τ, ε1){
26: while b < n do:
27: for Each query i do:
28: Let vi = τ + Lap(4/ε1)
29: if ((numID/numTraces)*100 + vi) < 70% do:
30: Output ai = >
31: Halt.
32: else do:
33: Output ai = ⊥
34: end
35: end
36: b += 1
37: end
38: }
39:
40: #Each query that is > from AboveThreshold and ⊥ from BelowThreshold is

considered, every other is filtered out
41: for each Query q from return AboveThreshold:
42: for each Query i from return BelowThreshold:
43: if q = i and q = > and i = ⊥
44: add q to consideredQueries
45:
46: #cap the frequency of the considered Traces
47: def capQuries(cQueries) {
48: for k, v in dpDict.items():
49: if v > cap:
50: dpDict.update({k: cap})
51: }
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52:
53: #output the directly follows graph
54: directly-follows-graph(dpDict)
55: }
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A.2 DP-Inductive-Miner

Listing A.5 Main Class

1: class main(EventLog E):
2: read E
3:
4: call expo_mech.__dp_tree(E)
5:
6: show process-structure-tree
7: end class

Listing A.6 Chooses the cut with the Exponential-Mechansim and retruns the computed
Process-Structure-Tree

1: class expo_mech(EventLog E):
2: def __dp_tree(E):
3: cut_dict, numCuts = cut_counting.__get_cutCount(E)
4: tree = log_im_modified.inductive_miner(E)
5: return tree
6: end def
7:
8: #uses the exponential mechanism to choose a cut
9: def choose_cut():

10: elements = list(cut_dict.keys())
11: scores = list(cut_dict.values())
12:
13: probabilities = exp((scores∗ε)/(sensitivityu))

[(
∑

cut′)∗exp((scores∗ε)]/(2∗sensitivityu))

14:
15: #chooses a random cut based on the calculated probabilities
16: cut = numpy.random.choice(elements, 1, p=probabilities)[0]
17:
18: #return the cut to use and change the score, since we used a cut
19: if 'sequence' in cut:
20: cut_dict.update({cut: 0})
21: return SEQUENCE-Cut
22: elif 'xor' in cut:
23: cut_dict.update({cut: 0})
24: return XOR-Cut
25: elif 'and' in cut:
26: cut_dict.update({cut: 0})
27: return AND-Cut
28: elif 'loop' in cut:
29: cut_dict.update({cut: 0})
30: return LOOP-Cut
31: end def
32:
33: end class
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Listing A.7 Counts the Traces that voted for a cut

1: class cut_counting(EventLog E):
2: traceDict = dict()
3: cut_dict = dict()
4:
5: numCuts = 0
6: sequenceCount = 0
7: xorCount = 0
8: parallelCount = 0
9: loopCount = 0

10:
11: def __get_cutCount(log E):
12: for trace in E:
13: trActivities = list(activities in trace)
14: traceKeys = list(traceDict.keys())
15:
16: if tuple(trActivities) not in traceKeys:
17: traceDict.update({tuple(trActivities): 1})
18: elif tuple(trActivities) in traceKeys:
19: traceDict[tuple(trActivities)] += 1
20:
21: __cut_recursive(E)
22:
23: return(cutDict, numCuts)
24: end def
25:
26: def __cut_recursive(log E):
27: tree = __recursion(E)
28: return tree
29: end def
30:
31: def __recursion(log E):
32: if E = {ε}:
33: base = {τ}
34: elif ∃a ∈

∑
: E = {〈a〉}:

35: base = {a}
36: else:
37: base = ∅
38:
39: P = __check_cut(E)
40:
41: if |P| == 0:
42: if base = ∅
43: return {	(τ, a1, ..., am) where {a1, ..., am} =

∑
(L)}

44: else:
45: return base
46: retrun P ∪ base
47: end def
48:
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49: def __check_cut(log E):
50: for L in E:
51: if Li == len(1):
52: return ∅
53: elif there is is a nontrivial XOR-Cut c in DFG(L):
54: activities = list(events in L)
55: count = count_traces(E, activities)
56: numCuts += 1
57: xorCount += 1
58: cut_dict.update({'xor' + str(xorCount): count})
59: return{(X, ((L1, 0), ..., (Li,0))}
60: elif there is is a nontrivial SEQUENCE-Cut c in DFG(L):
61: activities = list(events in L)
62: count = count_traces_seq(E, activities)
63: numCuts += 1
64: sequenceCount += 1
65: cut_dict.update({'sequence' + str(sequenceCount): count})
66: return{(→, ((L1, 0), ..., (Li,0))}
67: elif there is is a nontrivial PARALLEL-Cut c in DFG(L):
68: activities = list(events in L)
69: count = count_traces(E, activities)
70: numCuts += 1
71: parallelCount += 1
72: cut_dict.update({'parallel' + str(parallelCount): count})
73: return{(

∧
, ((L1, 0), ..., (Li,0))}

74: elif there is is a nontrivial LOOP-Cut c in DFG(L):
75: activities = list(events in L)
76: count = count_traces(E, activities)
77: numCuts += 1
78: loopCount += 1
79: cut_dict.update({'loop' + str(loopCount): count})
80: return{(	, ((L1, 0), ..., (Li,0))}
81: return ∅
82: end def
83:
84: def __count_traces(log, activitis):
85: count = 0
86: for act in activities:
87: for trace in log:
88: if act in trace:
89: count += 1
90: return count
91: end def
92:
93: def __count_traces_seq(log, activities):
94: count = 0
95: seqGroup = activities[0]
96: for act in seqGroup:
97: for trace in log:
98: if act in trace:
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99: count += 1
100: return count
101: end def
102:
103: end class

Listing A.8 Discover Cuts and create a Process-Structure-Tree (See [13] for the original
implementation)

1: class log_im_modified():
2:
3: def inductive_miner(Log E)
4: tree = inductive_miner_internal(E)
5: return tree
6: end def
7:
8: def inductive_miner_internal(E):
9: if L == {ε}:

10: base = {τ}
11: elif ∃a ∈

∑
: L = {〈a〉}:

12: base = {a}
13: else:
14: base = ∅
15:
16: P = choose_cut(E)
17: if |P| == 0:
18: if base == ∅:
19: return {	(τ, a1, ..., am) where {a1, ..., am} =

∑
(L)}

20: else:
21: retrun base
22: return P ∪ base
23: end def
24:
25: def choose_cut(log E):
26: if Li == len(1):
27: return ∅
28: elif there is is a nontrivial XOR-Cut c in DFG(L):
29: divide Activities to Sets

∑
1, ...,

∑
i

30: ⊕ = expo_mech.choose_cut()
31: return{(⊕, ((L1, 0), ..., (Li,0))}
32: elif there is is a nontrivial SEQUENCE-Cut c in DFG(L):
33: divide Activities to Sets

∑
1, ...,

∑
i

34: ⊕ = expo_mech.choose_cut()
35: return{(⊕, ((L1, 0), ..., (Li,0))}
36: elif there is is a nontrivial PARALLEL-Cut c in DFG(L):
37: divide Activities to Sets

∑
1, ...,

∑
i

38: ⊕ = expo_mech.choose_cut()
39: return{(⊕, ((L1, 0), ..., (Li,0))}
40: elif there is is a nontrivial LOOP-Cut c in DFG(L):

– viii –



A Pseudocodes

41: divide Activities to Sets
∑

1, ...,
∑

i

42: ⊕ = expo_mech.choose_cut()
43: return{(⊕, ((L1, 0), ..., (Li,0))}
44: return ∅
45: end def
46: end class
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Figures

B.1 Workflow Nets and Resulting Trees Of The Experiments

B.1.1 Workflow Nets Of The Used Event Logs

Figure B.1: The workflow net of the Sepsis data set [8], with the black boxes being the
silent transitions τ

Figure B.2: The workflow net of an event log that represents a simple process structure.
Generated with [17]
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Figure B.3: The workflow net of an event log that represents a complex process structure,
with repetitions in it. Generated with [17]

Figure B.4: The workflow net of an event log that represents a complex process structure,
without any repetitions. Generated with [17]
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B.2 Resulting Process-Structure-Trees of the
DP-Inductive-Miner implementation

B.2.1 Results of with complex workflow without loops

(a) complex workflow-net without loops

(b) Original Process-Structure-Tree of the above workflow-net

Figure B.5: A complex workflow-net without any loops, with the corresponding Process-
Structure-Tree
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(a) One possible version of the computed Process Structure-Tree

(b) Second possible version of the computed Process Structure-Tree

Figure B.6: Two possible versions of the computed Process-Structure-Tree with privacy
parameter ε = 1 and for 1.050 Traces, for the complex workflow-net without loops (See B.5
on page xii)
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B.2.2 Results of with a complex workflow with loops

(a) complex workflow-net with loops

(b) Original Process-Structure-Tree of the above workflow-net

Figure B.7: A complex workflow-net with loops, with the corresponding Process-Structure-
Tree
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(a) The first possible version of the computed Process Structure-Tree

(b) The second possible version of the computed Process Structure-Tree

(c) The second possible version of the computed Process Structure-Tree

Figure B.8: Three possible versions of the computed Process-Structure-Tree with privacy
parameter ε = 1 and for 5.000 Traces, for the complex workflow-net with loops (See B.7 on
page xiv)
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B.2.3 Results with a non complex workflow

(a) a non complex workflow-net

(b) Original Process-Structure-Tree of the above workflow-net

Figure B.9: A non complex workflow-net, with the corresponding Process-Structure-Tree
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(a) The first possible version of the
computed Process Structure-Tree

(b) The second possible version of the
computed Process Structure-Tree

(c) The third possible version of the
computed Process Structure-Tree

(d) The fourth possible version of the
computed Process Structure-Tree

(e) The fifth possible version of the
computed Process Structure-Tree

Figure B.10: Five versions possible versions of the computed Process-Structure-Tree with
privacy parameter ε = 1 and for 500.000 Traces, for the non complex workflow-net (See B.9
on page xvi)
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B.2.4 Results with the SEPSIS data cases

(a) Workflow-net of the SEPSIS-data

(b) Original Process-Structure-Tree of the above workflow-net
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(a) The first possible version of the computed Process Structure-Tree

(b) The first possible version of the computed Process Structure-Tree

(c) The first possible version of the computed Process Structure-Tree

Figure B.12: The first three possible versions of the computed Process-Structure-Tree with
privacy parameter ε = 1 and for 1.050 Traces, for the SEPSIS-data cases (See B.11b on
page xviii)
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(a) The first possible version of the computed Process Structure-Tree

(b) The first possible version of the computed Process Structure-Tree

(c) The first possible version of the computed Process Structure-Tree

Figure B.13: The next three possible versions of the computed Process-Structure-Tree with
privacy parameter ε = 1 and for 1.050 Traces, for the SEPSIS-data cases (See B.11b on
page xviii)
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Figure B.14: The last possible version of the computed Process-Structure-Tree with privacy
parameter ε = 1 and for 1.050 Traces, for the SEPSIS-data cases (See B.11b on page xviii)
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