
Fingerprinting and secret extraction in Docker multi-container
applications via memory deduplication

Fingerprinting und Extrahieren von Geheimnissen in Docker Multi-
Container-Anwendungen durch Speicherdeduplizierung

Bachelorarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Volodymyr Bezsmertnyi

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

Die Arbeit ist im Rahmen einer Tätigkeit bei der Firma cbb software GmbH entstanden.
This thesis was created within an activity at the company cbb software GmbH.

Lübeck, den 18. Dezember 2019

Abstract

Docker is a widely utilized software engineering tool, that is supposed to ensure better
portability of an application by packing it with all needed data and dependencies in a sin-
gle file (Docker image). Then Docker images can be distributed to the customer or onto
a server and launched in a Docker container as a screened process. A containerized pro-
cess enhances security of the system as well, since it restricts any direct interaction with
an operating system and only an OS kernel is shared between containers. If an attacker
takes over a container, it mitigates a possible damage to the system by limiting the attack-
ers abilities. Because most of the servers are virtualized by using virtual machines, there
are use cases such as Container-as-a-Service, where a Docker container can be launched
inside a virtual machine. An underlying hypervisor may have a memory deduplication
activated across all virtual machines in order to save physical memory of the system. This
introduces new threats to the virtual machines and processes running inside them due to
the side-channel that comes with enabled memory deduplication. We show, that even if
Docker container technology is supposed to harden security of the system, it is still pos-
sible for an adversary to fingerprint the system and extract some sensitive information,
if a memory deduplication feature is enabled by a hypervisor and the attacker resides on
the same physical machine. The result of this work is, that Docker container technology
does not protect the system against attacks that are based on the memory deduplication
side-channel.

iii

Zusammenfassung

Docker ist ein weit verbreitetes Software-Engineering-Tool, das eine bessere Portabil-
ität einer Anwendung gewährleisten soll, indem es sie mit allen benötigten Daten und
Abhängigkeiten in einer einzigen Datei (Docker-Image) packt. Danach können Docker-
Images an den Kunden oder auf einen Server verteilt und in einem Docker-Container
als abgeschotteter Prozess gestartet werden. Ein containerisierter Prozess erhöht auch
die Sicherheit des Systems, da er jede direkte Interaktion mit einem Betriebssystem ein-
schränkt und nur ein Betriebssystem-Kernel zwischen Containern geteilt wird. Wenn
ein Angreifer einen Container übernimmt, mildert der Container mögliche Schäden am
System, indem er die Fähigkeiten des Angreifers einschränkt. Da die meisten Server mit
Hilfe virtueller Maschinen virtualisiert werden, gibt es Anwendungsfälle wie Container-
as-a-Service, in denen ein Docker-Container innerhalb einer virtuellen Maschine gestartet
werden kann. Ein zugrunde liegender Hypervisor kann die Speicherdeduplizierung über
alle virtuellen Maschinen hinweg aktiviert haben, um physischen Speicher des Systems
zu sparen. Aufgrund des Seitenkanals, der durch eine aktivierte Speicherdeduplizierung
möglich ist, führt dies zu neuen Bedrohungen für die virtuellen Maschinen und Prozesse,
die in ihnen laufen. Wir zeigen, dass es für einen Angreifer immer noch möglich ist,
das System zu fingerprinten und einige sensible Informationen zu extrahieren, wenn
eine Funktion zur Speicherdeduplizierung von einem Hypervisor aktiviert ist und der
Angreifer auf demselben physischen Rechner sitzt, obwohl die Docker-Container Tech-
nologie die Sicherheit des Systems erhöhen soll. Das Ergebnis dieser Arbeit ist, dass
die Docker-Container Technologie das System nicht vor Angriffen schützt, die auf dem
Seitenkanal der Speicherdeduplizierung basieren.

v

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, 18. Dezember 2019

vii

Contents

1 Introduction 1

2 Background 5
2.1 Virtualization Technologies . 5

2.1.1 Hypervisor-based Virtualization . 5
2.1.2 Container-based Virtualization . 6

2.2 Docker Overview . 7
2.3 Memory Deduplication . 11

2.3.1 Kernel Same-page Merging . 11
2.3.2 Memory Deduplication Side-channel 11

3 Related Work 15

4 Attacker Model and Environment 17
4.1 Attacker Model . 17
4.2 Attackers Objectives . 18

5 Fingerprinting a System 21
5.1 Preparation . 21

5.1.1 Determining KSM Pass Duration . 21
5.1.2 Generating Signatures . 23

5.2 Attack Description . 24
5.3 Limitations . 24

6 Secret Extraction 29
6.1 Properties of an Exploitable Application . 29
6.2 Attack Primitives . 30
6.3 Attacking Example Application . 32

7 Experiment Results and Mitigations 35
7.1 Experimental Setup . 35
7.2 Fingerprinting Attack Results . 36
7.3 Secret Extraction Attack Results . 36
7.4 Mitigations . 36

ix

Contents

8 Conclusions 39
8.1 Summary . 39
8.2 Discussion and Open Problems . 39

References 41

x

1 Introduction

With popularity of useful techniques such as continuous integration/delivery (CI/CD)
and DevOps, developers also need powerful tools that allow them to efficiently sup-
port and maintain e.g cloud-based infrastructures or to provide multiple services on a
single machine. Such use cases require virtualization, which is tightly bound to perfor-
mance limitations of hardware servers. Running a service on a virtual machine, which is
one of several possible virtualization techniques, is very expensive from a performance
point of view, because one physical host machine must simultaneously handle multiple
full instances of heavyweight guest OS producing large overhead. With this background,
containerization tools like Docker suit the requirements mentioned above very well and
therefore become very helpful. Even though container security has not been completely
examined, containers are already widely deployed for software development and provid-
ing microservices.

Although Docker is getting more popular, its security has not been thoroughly studied.
Containerized processes are basically simple processes of an OS and therefore share an OS
kernel. This fact is the biggest concern of security researches, since, in this case, process
isolation relies on the OS capabilities of decoupling the process from the system while
providing shared hardware resources at the same time. This work focuses on the concrete
containerization tool - Docker in a Linux environment. This tool is written in Go and based
on libcontainer, a library which allows to create and handle the containers on an abstract
level. The library utilizes Linux kernel features such as namespaces, control groups and
others in order to isolate a process.

The use of containers may be found in different scenarios. In one of the scenarios treated
in this work, containers are used to provide microservices on servers of a cloud comput-
ing provider. Typically the cloud provider virtualizes server functionality and does not
want customers to run their services directly in the host OS, because then boundaries
between multiple customers/functionalities on the same physical server are thin and var-
ious threats to customers are getting available. Therefore, virtual machines are used to
separate different environments from each other. This means, that there are multiple run-
ning VMs on a single physical server. This provides more security to customers and more
scalability to cloud providers. In such manner cloud providers can create a new VM on
the server for each customer or functionality. Finally the customer can order some com-
puter resources in a cloud, install needed software and launch his services. So security

1

1 Introduction

and scalability are established at the same time. Now it is up to the customer to decide
how to deploy his services.

One pretty efficient, scalable and popular way to supply certain application functional-
ity are microservices realized with Docker containers. Microservices are used in software
architectures, where application functionality can be decomposed to standalone compo-
nents which can be developed and deployed independently of the main application, as
far as the communication interface is specified[mic]. This approach improves modular-
ity of the application and allows more transparent architecture and testing. Therefore
Docker is suited perfectly for such a use case. Developers can freely choose program-
ming languages and tools for implementing required functionality. Then they can build
and ship an image with all binaries and dependencies to a Docker repository or directly
onto a server. Before launching a Docker container, it may be configured to fit into the
applications architecture. The container configuration includes settings of CPU, memory
and kernel resources, mounted volumes/folders, some network and IPC settings. Also
the containers can be organized in one or multiple networks, which should be created
before the containers are launched. All these settings are specified, when the container
gets started. Thanks to the CLI of the Docker daemon, some scripts may be prepared for
launching big applications consisting of multiple containers, networks and volumes. In
this way Docker multi-container applications can be deployed relatively easy, which is a
sign of good portability. If an application needs more distributed computing power, all
needed Docker images can be pulled from a repository and directly launched in a con-
tainer (of course, if the application architecture supports such cases), resulting in better
scalability.

Nowadays everyone can launch Docker containers in a cloud or Docker hostings. Most
likely, the container is going to be started by a Docker Engine inside a virtual machine
and therefore has a certain probability to land on the same server among some other po-
tential victim containers. In this case enabled memory deduplication can become rather a
problem than a performance enhancing feature. Thus, all neighbor containers or virtual
machines can become a target for the particular types of attacks. Since the side-channel is
a pure software side-channel, the attacks, that we will present, can be launched indepen-
dently of underlying hardware. That is why it is important to understand implications of
memory deduplication, since if enabled it opens a side-channel and a vector for potential
attacks.

The goal of this paper is to examine resistance to fingerprinting and key extraction at-
tacks based on the memory deduplication side-channel launched from a Docker container.
Given a system with an enabled memory deduplication and multiple virtual machines
which provide microservices using Docker containers, an attacker with the ability to ex-

2

ecute arbitrary code can utilize the memory deduplication side-channel for detecting the
presence of libraries and their specific versions. System fingerprinting is a part of the
reconnaissance phase, in which the attacker collects all available information about the
system, in order to discover and exploit found vulnerabilities. So, first the attacker tries to
find out, what software applications are running as Docker containers. By knowing ver-
sions of used software and libraries, the easiest thing she can do is checking, which known
vulnerabilities a specific version has and then directly exploit them. Another thing, that
the attacker can do to the system, is to examine of used libraries or software components.
And so if the memory layout a particular software has certain properties, it may become
possible for the attacker to extract some sensitive information. Both attacks can be done
from a Docker container inside either the same or neighbor virtual machine and by abus-
ing the same side-channel resulted from the memory deduplication mechanism under
Linux - Kernel Same-page Merging(KSM), a system-wide feature that enhances memory
performance by merging same pages into one and marking it with the Copy-On-Write
(COW) flag. If an attacker writes into a deduplicated page, it takes significantly longer
than writing to the unique page, because the page should be copied first. So, by measur-
ing the time differences the attacker can detect if certain pages are present in the memory.
We show, that even if Docker is supposed to harden security of a system by delimiting
an executing process from an OS and other processes in the system, an adversary is still
able to fingerprint the system and even extract some secrets from it, when the host OS
has enabled memory deduplication and an attacked application has certain properties of
a memory layout which are discussed in the next sections. For this we first provide some
background information about virtualization technologies, Docker components and use
cases, memory deduplication mechanism KSM and the side-channel which is implicated
by enabled KSM. Furthermore we define an attacker model which is appropriate for the
given use cases. As relevant attacks based on the memory deduplication side-channel
we choose fingerprinting and secret extraction, therefore we analyze and describe both
attacks. Then we present the results of tests in different configuration setups. Finally we
conclude and summarize an outcome of this work.

3

2 Background

The following subsections provide information about topics that are essential for under-
standing the explained attacks, techniques and configurations. Since this work is about
testing a security relevant side-channel in a system, in particular in Docker containers
inside a virtual machine, it is important to understand concepts of virtualization tech-
nologies. Also a memory deduplication concept is described which is responsible for the
side-channel. Furthermore a description of the side-channel, that all attacks are built on,
is provided.

2.1 Virtualization Technologies

This subsection provides a brief introduction into the virtualization technologies such as
hypervisor-based and container-based virtualization. The purpose of these technologies is
to isolate systems or application spaces by controlling their resources while running on the
same hardware. This can be useful for different purposes like, for example, Infrastructure-
as-a-Service (IaaS), where a customer can rent an OS on the server and run his own ser-
vices among other customers. IaaS is a good example, where a hypervisor may take care
of the virtualization and separate environments of different customers. On the other hand,
if one needs computing power, there are plenty Cloud Computing providers, where one
can launch an application as a standalone container. In this case, the hardware resources
will be leveraged by container-based virtualization. More detailed description about com-
monly used virtualization technologies follows in further subsections.

2.1.1 Hypervisor-based Virtualization

The main component of this technology is a hypervisor. A hypervisor allows running
multiple virtual guest machines with dedicated OS on a single physical host machine.
There are two types of hypervisors: Type 1 (native or bare-metal) and Type 2 (hosted).
Hosted hypervisors provide an additional abstraction layer between host and guest OSs
and handle resources like CPU time and memory accesses on a software level. How-
ever, a native hypervisor runs directly on top of the underlying hardware and may utilize
hardware virtualization features like Intel VT, which adds new instructions to x86 Intel
processors that help to separate the execution of guest OS and native hypervisor instruc-
tions. In both cases, to run any service on one machine a complete virtual machine with a

5

2 Background

guest OS should be mounted or installed, which includes kernel and all dependencies (see
Figure 2.1a). The biggest disadvantage here is that multiple guest OSs and a lot of depen-
dencies (which might repeat across different services) consume a great amount resources
and time to start up a service. Therefore, the overall performance of a single service cluster
decreases dramatically.
If an attacker wants to break out through the hosted hypervisor into the host OS, she
should do it from regular user space or, what would happen in most cases, first execute
a privilege escalation in order to become root on the guest OS and only then find and
exploit a vulnerability in the hypervisor, if there is no exploit available from user space.
The fact, that this combination of events is necessary, significantly lowers the probability of
a breakout[LC]. Vulnerabilities that allow an attacker to bypass the hardware hypervisor,
are found roughly every two years[BBB+]. As a result, the hypervisor-based virtualization
provides high security, but has high performance costs.
An example for a hypervisor is Kernel-based Virtual Machine (KVM). KVM is a bare-
metal hypervisor which is a virtualization module of the Linux kernel. In order to run
a virtual machine, KVM requires certain hardware features such as Intel VT or AMD-V.
If such features are present, KVM utilizes them and therefore virtual machines may have
near-native performance. Also a software-based emulator QEMU is often used in coop-
eration with KVM. QEMU manages virtual machines from user space and can emulate
different hardware types like CPU and I/O devices. KVM and QEMU are used together
to run and handle resources for different guest operating systems. It is worth mention-
ing, that KVM includes a memory deduplication mechanism for memory performance
optimization. The concept of memory deduplication is explained in Section 2.3.

2.1.2 Container-based Virtualization

In contrast to the hypervisor-based solutions, a container itself is just a simple process
running on a host OS and sharing the kernel with an underlying OS, hence rights separa-
tion and process isolation happen on a software level as shown in 2.1b. Since containers
share the memory of the host OS, there are no duplicated kernels in memory, which makes
containers more lightweight and portable than hypervisor-based virtualization. Even con-
tainers that are using different OS kernels are not causing much trouble, since Windows
and Linux containers can run simultaneously on Windows machines[Pat]. Performance
of containers is nearly equal of native applications and overall better than of a hypervisor-
based solution as shown in[PZW+07]. As a result, container-based virtualization has some
important advantages and more and more developers start using it in their projects.
However, since containers run on the same kernel, escalating privileges in one container
is sufficient to access the host OS. Privilege escalation vulnerabilities in the Linux kernel

6

2.2 Docker Overview

(a) Hypervisor-based virtualization

(b) Container-based virtualization

Figure 2.1: Hypervisor-based and container-based virtualization.

are found roughly once a year[BBB+]. Based on this and according to[LC], the probability
of escaping a container is two times higher than of escaping a hypervisor. This is the
trade-off that comes with simplified deployment and performance gain.

2.2 Docker Overview

Docker is a widespread containerisation tool with a constantly growing ecosystem and
integration with multiple services. It is useful for different purposes including e.g. cloud
computing virtualization, server consolidation and sand-boxing of untrusted code execu-
tion. Because of its popularity and widespread use, Docker has also become a target for
various attacks. For example, the recent vulnerability CVE-2019-5736 allowed an attacker
to gain root access in the container. A lot of hosts with an exposed remote Docker API
were attacked and the attacker turned the machines into a botnet [noa]. The bug in the

7

2 Background

runc library, that resulted in this vulnerability was patched in the next version of the li-
brary. The hosts with the vulnerable library version should have upgraded their library
package.
Since Docker is often used in collaboration with various components like image repos-
itories and orchestration tools, the attack surface is getting wider and Docker security
properties are getting more important. Although Docker can run Windows and Linux
containers, this thesis is focused on a Linux x86_64 Docker installation. This section pro-
vides a brief overview of the Docker architecture and its main components as in a Figure
2.2.

1. Docker images are built from Dockerfiles. Each Dockerfile contains a base image
(usually a distribution of an OS) and consecutive commands, which instruct Docker
how to modify the system in order to get it to the right configuration. Each com-
mand generates a new image, on which the next command will be applied. In such
manner, developers can automatically build and configure their applications. Simi-
lar to the classical virtual machine configuration, images can be modified while they
are already running in the container, and the image state may be stored as a new im-
age. Images can be downloaded from online repositories called registry (e.g Docker
Hub) or created and uploaded to the repository in order to share or populate and
deploy the service on other hosts.

Regarding the registries, Martin et.al. mentioned, relying on other works, that im-
ages and Dockerfiles from Docker Hub are rarely updated and very often contain un-
patched medium- and/or high-priority vulnerabilities [MRCDP]. This knowledge
opens more opportunities for an attacker and increases a chance of a penetration by
just exploiting the already known vulnerabilities. On top of that, the image registry
is similar to a package manager, therefore it inherits all possible attack vectors that
the package managers can have. For example, a man-in-the-middle may sit between
host and registry and distribute malicious images.

2. Docker engine takes advantage of two kernel features - control groups cgroups and
namespaces. Namespaces copies parts of the kernel into the container, which creates
an illusion for the application running in the container, that it operates on its own
kernel. The following namespace types are exposed to the containers: process ID,
mount, IPC, user and network. Cgroups on its own controls and limits the amount
of resources that each container may access and use. It prevents the container from
consuming more resources than it is allowed to consume. The following resources
are controlled by cgroups: CPU, memory, network bandwidth, disk and priority.

Control groups and namespaces together build a big part of the container security.

8

2.2 Docker Overview

The study conducted by Lin et al. [LLW+] has shown how important and, indeed,
security relevant these kernel features are for containerization tools in general. The
authors performed an extensive analysis of the Linux container security. They col-
lected more than 200 publicly available exploits and vulnerabilities that could be rel-
evant to use cases, where a container may be deployed. The main idea was to test,
how a container counters and mitigates exploits in comparison to regular execution
in a host OS. For example, the privilege escalation exploits, the most dangerous at-
tacks, were mostly blocked by namespaces and croups, however 4 of 37 exploits
were successful under default container configuration. Another important conclu-
sion was, that namespaces and cgroups are most beneficial, if they are properly con-
figured and utilized with other security features like Seccomp, Linux capabilities
and MAC (Mandatory Access Control).

3. Docker daemon is a running service on the host which provides REST API and
responds on Docker client requests such as related to container lifecycle, images, net-
work etc. It handles the communication between client and engine and runs with
root privileges in order to manage important assets (e.g. network IP tables) for cre-
ating a proper isolation of the processes. Since a container is an isolated running
process, it exists as long as the process runs. So, when the containerized process
terminates, its Docker container terminates as well.

Figure 2.2: An overview of Docker components.

9

2 Background

Docker Use Cases in Real World

There are several commercial models for Docker deployment available in the real world.
One model allows the customer to have a dedicated virtual machine and to do with it
whatever he wants. In our case the customer used to run own applications either local
or in web. Furthermore Docker containers are utilized for CI/CD or microservice de-
ployment. A good example of a provider with this kind of model is the Microsoft Azure
platform. Customers can rent a virtual machine in a cloud on hour basis and use it for
their own purposes.

Another model is a so called Docker-Hosting or Container-As-A-Service. Such hostings
are specialized on providing a platform with preinstalled tools for managing applications
which are built and shipped as Docker images. Using Docker-Hosting the customer can
build and store Docker images (for example, for continuous integration/delivery/deploy-
ment), run automated tests, perform software/image versioning and finally launch an ap-
plication in a Docker container[HMA19]. This means, that it is possible, that a container
scheduler places containers of different customers on the same physical server or even in
the same virtual machine and launched by the same Docker engine. For example, Ama-
zon provides a service called ‘AWS Fargate’, where customers can run Docker containers
without setting up any virtual machines, scaling and laborious configuration.

Another Docker usage example, where our attacks could have success, targets the simple
case, when companies or private individuals own a server and run an application there.
For better security, server owners can also use a hypervisor and split server resources be-
tween multiple virtual machines. From there on Docker containers can be launched in
order to provide certain microservices. This way the server has been virtualized and par-
titioned into virtual machines with different purposes that are shielded from each other.

Docker containers may also be deployed in the industrial world. Consider a factory which
has its own corporate network. In the past, the network security in the factories was not a
big concern and the networks were not designed to be completely secure. Nowadays, it is
common in the industry to see legacy systems with security problems. Such systems often
contain different machines, devices and office computers in a single network. This means,
if an attacker breaks into the corporate network, she can access every device and cause a
lot of damage. This can be prevented by grouping all devices into different subnetworks
of the same device type or purpose. Subnetworks may be created by connecting devices
to a single node with its own virtualized network. Thereby, the number of devices that
are visible to the attacker is decreased and they are represented by one network interface,
building together a network hierarchy. Docker containers could help with network virtu-
alization in the nodes and serve as a bridge between two subnetworks. Therefore, they
are relevant to the industrial world and may have practical application.

10

2.3 Memory Deduplication

2.3 Memory Deduplication

The most important factor for the presented attacks is an enabled memory deduplication
mechanism in the hypervisor. In general it is a technique utilized by modern hypervisors
(e.g. KVM) to reduce the memory fingerprint of the system. Running multiple virtual ma-
chines produces a high memory consumption. A remarkable property of running multiple
instances of the same OS or its distribution is that the kernels of same operating systems
are mostly equal, meaning there are a lot of physical memory pages with same content. So
the idea is to find equal physical pages in the system and merge them to a single page, such
that the merged page is shared between all virtual machines. The merged page is marked
with a Copy-On-Write (COW) flag to insure, that the page will be explicitly copied for the
VM which writes to it.

2.3.1 Kernel Same-page Merging

In our test system we run KVM with an enabled Kernel Same-page Merging (KSM) -
memory deduplication feature utilized by KVM which comes with Lunix kernel since
version 2.6.32 [AEW09]. If KSM is enabled, it periodically goes through certain pages and
computes a hash value over the page content. If some pages have the same hash value
(meaning the same page content), they will be merged and only one copy of the page will
be shared. However, KSM scans pages that are marked with a special flag. Internally
KVM marks all memory pages, that QEMU requests for a VM, with a special flag. This
is done via madvise call. On Linux one can call madvise with a MADV_MERGEABLE flag
and a pointer to a page and in such manner any page can be merged, if there are other
equal pages like shown in Figure 2.3. In contrast to the Windows memory deduplication
feature, KSM scans a fixed number of pages every given interval. The scanning interval,
the number of pages to scan and some other settings can be configured either manually
or by ksmtuned tool, which, if enabled, adjusts these parameters depending on the current
load of the system.

2.3.2 Memory Deduplication Side-channel

At first glance memory deduplication is a neat and useful feature, but it opens another
timing side-channel. And the reason for this is a Copy-On-Write mechanism. It is trig-
gered, whenever any of the virtual machines writes to the deduplicated page. In this case
the target page should be copied in a new physical page, taking certain amount of time.
So, this time difference between writing into a deduplicated and a non-deduplicated page
can be noticed by an attacker. If writing into the page took more time than some prede-
fined threshold, then an attacker can deduce that, the page was copied on write and hence

11

2 Background

present in the system.

12

2.3 Memory Deduplication

(a) Before deduplication

(b) After deduplication

Figure 2.3: Memory deduplication example. Equal pages L2 and L3 are merged and refer-
ences got updated.

13

3 Related Work

Lindemann et al. [LF] presented a novel timing-based side-channel attack for identifying
software versions running in co-resident VMs. First, the unique page (signature) should
be identified for each version of a software. Then the signature is written to the system
memory and after a memory deduplication pass happens, a spy process overwrites the
signature page while measuring the time needed to write. If writing process has lasted
longer than a threshold, the COW is detected which means a certain software version is
present in the system. Multiple measurements help to reduce the noise and to increase the
probability of detection. The attack was tested on a machine with KVM and with enabled
KSM, where victim and spy VMs were running.

Bosman et al. [BRBG] demonstrated, that the memory deduplication side-channel can be
used for a more advanced attack. The authors developed 3 attack primitives that allowed
them to leak secret information byte for byte. By knowing the data around the secret
the attacker can craft some probing pages by concatenating known data before the secret
with different last bytes. In this way, the attacker can guess first bytes of the secret by
changing last bytes of the probing pages. If one of those probing pages got deduplicated,
the attacker guessed the first bytes of the secret correctly. The whole secret can be disclosed
incrementally part for part. They used these primitives for leaking a randomized heap
pointer and having that performed a rowhammer attack. As a proof of concept, the attack
was implemented in Javascript and took place in the Microsoft Edge browser. The used
attack techniques may be reimplemented in the native code and utilized read an arbitrary
process data.

Irazoqui et al. [IIES15] were able to reliably detect various cryptographic libraries
and even their versions from co-resident virtual machines. For this they utilized a
Flush+Reload, a cache side-channel technique. But Flush+Reload on itself is not suffi-
cient, because in order to detect the presence of certain data in another process/VM via
Flush+Reload, the data need to be shared between the victim and the attacker. Therefore
the attack requires a memory deduplication to be enabled in the system. The libraries
can be detected, when they are deduplicated by a memory deduplication mechanisms
which can be enabled for better memory performance gain, because then only single copy
of the library resides in the system and is shared between multiple virtual machines. So
now, when a certain library is shared and, hence, present in a system, its presence can be
detected by flushing libraries signature functions that are always or usually called, when

15

3 Related Work

any process wants to access cryptographic functions of the library. After that, the signa-
ture functions are reloaded and the time needed to reload is measured. If the measured
time is shorter than a test threshold, then this means, that the presence of the library is
successfully detected. For detecting a specific library version, unique addresses across
all versions should be defined. By flushing and reloading version specific addresses,
the specific library version can be determined. Furthermore, the authors were able to
determine an IP address of the co-located virtual machine. This was done by sending TLS
communication requests to all possible IP addresses in a local network and detecting via
Flush+Reload, whether the TLS handling function was triggered.
There is also a paper [SIYA11] by Suzaki et al. which discusses fingerprinting and software
detection in Linux and Windows virtual machines. It provides an overview of existing
memory deduplication mechanisms, describes attack methods and shares encountered
challenges. The authors were able to detect sshd and apache2 in Linux VM. They achieved
this by loading an ELF binary of respective executables in the RAM of a neighbor VM
and measured the time needed to overwrite the complete file. Afterwards they compared
the times before and after executable invocation and could see significant differences in
time. Similarly to Linux they proceeded with Windows, where they observed a similar
behavior by detecting running instances of Mozilla Firefox and Microsoft IE. Through-
out the experiments the authors noticed, that even though ASLR changes certain pages
of mapped library, there is still enough material, by which a software can be identified.
Also, the page cache of the guest OS was causing false positives, such that loaded exe-
cutables should be gzipped in order to not always be deduplicated. The attack was also
reproducible in Javascript and an attacker could detect previously downloaded images
and thus conclude, which web sites were visited by a victim.

16

4 Attacker Model and Environment

Based on the presented use cases of Docker from previous chapter, we specify an attacker
model which suits scenarios for the real world. We also define capabilities of an attacker
and her positioning in a system. Given this an attacker wants to achieve certain goals, in
particular fingerprint a system and extract sensible information.

4.1 Attacker Model

Here we introduce an attacker model and environments, in which all attacks of this pa-
per will be tested and simulated. Generally an introduction includes a description of the
attacker: her positioning, what she tries to achieve and what she is capable of; and the vic-
tim which operates under certain circumstances. The victim and the attacker are basically
operating on the same physical server, which is virtualized by a hypervisor. Furthermore
the victim possesses a virtual machine, where a Docker multi-container application is run-
ning. Memory deduplication mechanism is available in the hypervisor and turned on.

Now we define, what a Docker multi-container application actually is. First of all Docker
engine is up and running. There are multiple containers registered in the Docker engine
and are potentially running. Some virtual networks are preconfigured and can contain a
subset of available containers. Some of those containers have access to the outside host
network (e.g. Internet, A1 container in Figure 4.1), some of them operate locally within an
isolated network communicating with some other containers and providing local services
for other containers within the same network (B containers in Figure 4.1). Containers may
also share the same logical volume on the host machine and perform an inter process
communication in such manner (shared volume SV in Figure 4.1).

In all our scenarios the victim has a static position in the system and the attacker’s targets
are containers located in the victims virtual machine. However, there are some variations
for the attackers positioning. At this point the setting branches off into several use cases,
including real world models described above and some variations of it. Hence the attacks
described in this paper may be applied to all of the following setups:

1. First model from the previous section: the attacker locates in a Docker container
which is running in a co-resident virtual machine and she has full control of the
container with an ability to execute arbitrary code. In such setup she could get into

17

4 Attacker Model and Environment

Figure 4.1: A Docker multi-container application.

the container due to an exploitable vulnerability in an application logic or vulnerable
versions of used software or libraries. This setup is schematically depicted in Figure
4.2a.

2. Second model from the previous section: here the attacker is located directly in a co-
resident virtual machine. Practically this could be a rogue cloud provider, since he
has control over physical server and hypervisor and can create new virtual machines
for himself. Alternatively this could be a virtual machine from another customer
of the platform which has bad intentions regarding a neighbor virtual machines.
Anyway, from there she can execute own code or launch an attack. This setup is
schematically depicted in Figure 4.2b.

3. Similar to the first setup, the attacker is located in a Docker container which is a part
of the victims application. This might be a result of a successful penetration into the
victims application such that she can execute arbitrary code. Hence now she has an
access to some resources of the application including shared volumes and networks.
She can perform better reconnaissance using network scanners like nmap and even
read or modify contents in shared volumes. This setup is schematically depicted in
Figure 4.2c.

4.2 Attackers Objectives

Having described above setups, we can define attackers objectives. As a part of this thesis
the attacker wants to perform a fingerprinting attack on a Docker multi-container appli-

18

4.2 Attackers Objectives

cation. The goal here is to determine, what software applications and security critical
libraries are in use and present across containers and/or on the host system. Good targets
would be cryptographic libraries, server software etc. and, of course, their versions. If
the attacker gets more information about the victim system during the scan phase, then
having versions of the running software she can prepare exploits of already known vul-
nerabilities for a particular application. In this work the main tool for performing fin-
gerprinting attack is a memory deduplication side-channel. This side-channel has been
already utilized by Lindemann et al. [LF] to fingerprinting a system from within a virtual
machine. The were able to extract information from a co-resident VM about the Apache
web server, SSH daemon and even their versions by detecting a unique software signa-
ture bytes in the memory. The experimental setup included several guest VMs, that were
controlled and running in Linux Kernel-based Virtual Machine (native hypervisor) with
enabled KSM feature. The approach used in that paper can be applied and reimplemented
for a Docker container setup.
So, after fingerprinting, the attacker knows the targets for an attack and is interested in
breaking encrypted data or retrieving sensible information. She knows, that for example
cryptographic libraries may store some secrets in the RAM. That is why another topic of
this thesis is secret extraction from within a Docker container. Again, the memory dedupli-
cation side-channel will be used for a leaking a secret from a neighbor container. However,
this time the attack is more targeted than the fingerprinting and requires precise leakage
of bytes from generic places. There is a paper by Bosman et al. [BRBG] which targets
the problem of retrieving concrete bytes from a memory page with a secret via memory
deduplication. The paper provides some novel techniques to incrementally brute force
the memory by creating pages with different bytes in the specific places of the page. The
authors could successfully launch their attack within a browser and retrieve a password
hash from the nginx server. The idea for this work is to reproduce these techniques in the
Docker environment.

19

4 Attacker Model and Environment

(a) In the container in the neighbor VM

(b) In the neighbor VM

(c) In the neighbor container

Figure 4.2: Attackers positioning in a Docker multi-container application.
20

5 Fingerprinting a System

There are some state of the art methods to approach a system fingerprinting problem via
memory deduplication. One of this utilizes a microarchitectural timing side channel in
order to determine, if a particular function was loaded into the last level CPU cache shared
between guest OSs by a victim[IIES15]. We however concentrate us on another approach.
It includes generating signatures for each software version an attacker wants to detect.
The attack uses a deduplication oracle to ascertain the presence of a particular software
in the system. This chapter describes the used approach more detailed. We explain, what
kind of preparation an attacker needs for a successful attack. The preparation consists
basically of determining the KSM pass duration and of generating software signatures.
Futhermore we discuss key steps of the attack itself. And finally we show some limitations
and downsides of the attack.

5.1 Preparation

Before fingerprinting the system, the attacker needs to do some preparation that is basi-
cally divided into two steps. The first step includes finding out the interval KSM needs to
go through all marked as mergeable pages and, if needed, to deduplicate them. If KSM
is enabled, then an attacker definitely will be able to detect memory deduplication and
after finding out the KSM pass interval can move on to the next step, otherwise KSM is
probably not utilized by a host system. Within the first step the attacker can determine the
time required by KSM to deduplicate a single page. The second step would be generating
signatures for the versions that are likely used by the victim container. Here is a concrete
description of the steps to take:

5.1.1 Determining KSM Pass Duration

In order to determine the duration of a KSM pass, the attacker can write a simple test
program for it. The problem here is that the attacker does not know the exact KSM pass
duration, but there is a kind of oracle that gives an information, whether a deduplication
happened or not. In our case the oracle is a primitive that measures the time to overwrite
a single byte in a page that is supposed to be deduplicated. For this the attacker allocates
a page (an aligned memory buffer of 4096 bytes) with, for example,

21

5 Fingerprinting a System

posix_memalign(void **memptr, size_t alignment, size_t size)C func-
tion which aligns the buffer depending on the alignment argument. If alignment is a
page size (4096 bytes), then memptr will point to the page aligned buffer which is essen-
tially the start of a page. So, in such manner the attacker allocates two pages, generates
some random data and copies it into two allocated pages. This is done in order to mini-
mize a probability of an occasional deduplication with a page that is not under attackers
control, because then it is very unlikely, that there exists another page in the system with
the same 4096 random bytes. So now, in order to detect a deduplication, the attacker
waits for a certain time and after that measures the time needed to overwrite a single byte
of any allocated page. If deduplication and, hence, COW have happened, the measured
time will be significantly bigger (around 20 000 - 30 000 nanoseconds) than an usual write
operation to a memory location (around 30 - 300 nanoseconds).

Now it is about to find out the time, which the attacker needs to wait for KSM to hap-
pen. Normally KSM spends from 20 seconds to 15 minutes to scan all pages depending
on the system load. The difficulty here is to determine the interval ideally accurate to one
second and as fast as possible. For fingerprinting it is not so important to know the exact
interval, because the attacker only needs a single deduplication pass in order to detect
presence or absence of a bunch of pages in the system, if she loads all needed signatures
at once. However it can be crucial, if multiple measurements should be performed and in
this case the deviation from the true interval will be multiplied and added to the overall
attack duration. This may become a problem, if the attacker is limited in time. So, it is
worth to determine right at the beginning the true interval or the interval with least devi-
ation. The Algorithm 1 finds out the KSM pass duration using described above primitive
testDeduplication which returns true, if deduplication has occurred, otherwise false.
The algorithm is similar to exponential search. The main idea is to exponentially increase
the waiting interval until deduplication got finally detected. In this case the algorithm re-
sets an exponent and continues to increase the interval from the previous interval in which
deduplication did not happened. The algorithm executes as long as the waiting interval
is 1 second longer than the actual KSM pass duration. So by running this algorithm the
attacker finds out the minimal KSM pass time.

However the algorithm has a bit of limitation in itself. It will not terminate, if KSM is not
enabled, because testDeduplication will never return true and, thus, the algorithm
will never reach the break statement. On the opposite side, the algorithm will terminate
at some point, if KSM is enabled and utilized by the hypervisor. There are some other
ways to find out, whether KSM is enabled, for example, by checking out the presence of
‘1’ in the file /sys/kernel/mm/ksm/run on the host OS. But the attacker does not have access
to the host OS from a Docker container. So she cannot know for sure, if the KSM service

22

5.1 Preparation

is running. What she can do, is to prevent the currentInterval variable from exceeding
certain upper bound, such that if currentInterval exceeds a upper bound, the program will
terminate. The upper bound can be set to some experience value, for example 15 minutes.
For systems in the real world 15 minutes is a realistic assumption even for some bigger
systems. In such manner the algorithm will terminate, if KSM is disabled in the system.

Algorithm 1: Determining KSM pass duration

1 currentInterval = 0
2 exponent = 1
3 oldInterval = 0
4 while true do
5 wait(currentInterval)
6 if testDeduplication() then
7 if currentInterval - oldInterval == 1 then
8 break

9 exponent = 1
10 currentInterval = oldInterval

11 oldInterval = currentInterval
12 currentInterval += exponent
13 exponent *= 2

14 return currentInterval

5.1.2 Generating Signatures

As the KSM pass duration was found out, the attacker needs other important component
in order to proceed with the actual fingerprinting attack. For each library or software the
attacker wants to detect, she should generate an unique signature of each version she ex-
pects to find in the victim system. For this we followed the instructions from Lindemann et
al. paper[LF]. The signatures are generated from binary files without any execution. Any
executable or library in Linux are built in a specific way called Executable and Linkable
Format (ELF). Any ELF binary consists of executable headers, program headers, sections
and section headers. The only part of the ELF binary that resides in the physical memory
after being loaded are sections. So, the pages of the sections are the material for creating
a signature. The utility from the paper takes different binary versions of a given software
and parses respective headers in order to extract only loadable sections from the ELF bi-
nary. Having the sections the tool divides them into 4KB pages and creates an unique
signature from them. Firstly internal duplicates and pages consisting of zeroes or ones are
removed from the binary. Afterwards the pages that exist in the other versions are taken

23

5 Fingerprinting a System

out as well. In the end the rest of the ELF binary contains only pages that are unique across
all sections and is considered as a final version signature. Now the attacker can move on
to the actual attack.

5.2 Attack Description

A flow diagram of detecting a single signature is presented in Figure 5.2. The attacker is
located in a Docker container and can execute own arbitrary code. What she also needs
are the signatures. They can be transmitted to the occupied container either within a bi-
nary exploit program or as separate files. If the signatures are stored in files, the exploit
program loads all available signatures via posix_memalign into page aligned buffers sim-
ilar as the test page from the first preparation step. Otherwise it copies signatures, that
are embedded into binary file as resources, to the page aligned buffers. After doing this
the program sleeps for the time of KSM deduplication pass that was determined during
the preparation phase. When the KSM deduplication pass happened, the program starts
a timer and overwrites a single byte in each page of the buffer with the signature, mean-
ing overwriting the byte in the buffers at index 0, 4096, 8192 and so on. Overwriting a
single byte of the page is still efficient, because it triggers the COW mechanism and is an
improvement comparing to the measurement program from Lindemann et al. paper[LF],
where they overwrite the complete signature. This optimization leads to smaller measure-
ment times and lower noise, since the measurement time does not include the time needed
for overwriting another 4095 bytes of a single page. After the signature got overwritten,
the program stops the timer and the measurement time is calculated. Before exiting the
program all allocated buffers with signatures are zeroed out. Now the attacker can de-
cide, whether the parts of the signature were deduplicated by comparing the time with a
predetermined threshold. The attacker can generate a file with random data of size same
as size of the signature and perform a measurement on it. The measurement time of the
random file is a threshold for the signature. In order to get better results of the attack,
multiple measurements can be performed.

5.3 Limitations

This naive attack approach has some downsides. Even if the signature was zeroed out in
the attacker process memory and therefore cannot be deduplicated in the next measure-
ment run, a copy of the signature file may still reside in a page cache of a guest OS, as
also noticed in [SIYA11]. A page cache is a standard feature of any modern OS. It caches
content of a file from a secondary storage like HDD or SSD. So it is like a cache between an
OS and physical storage implemented on a software level. Even if the system is not using

24

5.3 Limitations

a certain file, this file may still reside in RAM with an idea, that some file content can be
requested soon. This feature enhances performance of a file system and leads to faster
file access time, if the requested file was already in the page cache. For our attack this
means, that next measurements will deliver false positives for all signatures of versions
that indeed have never been in the system, just because the page aligned buffer allocated
by our exploit program will be deduplicated with a page cache version of itself (green
pages in Figure 5.1a). However, this issue is easy to obviate. Similar to the runtime packer
technique used in [SIYA11], one can obfuscate the signature content by, for example, xor-
ing every byte with a fixed value. And while loading the signatures into the memory, the
signature bytes can be xored with the same fixed value back, resulting in a true signature
(blue pages in Figure 5.1b). So, the true signature resides in the attacker process memory
while waiting for a deduplication pass and after the measurement has finished, the obfus-
cated pages of the signature are in the page cache instead of the true signature pages. In
such manner false positives caused by the deduplication of pages from page cache can be
avoided.
The page cache causes another problem that also results in false positives. Consider a
situation, when the victim starts any program, then its file gets cached by the page cache
and parts of it, such as code and data, are loaded into the memory for further execution.
Finally the victim terminates the process and the pages loaded for the program may now
be freed and reused by another process. However the programs page cache version is
still present in the memory and can be deduplicated, if the attacker makes a measurement
again. This would produce a false positive, just because the targeted software was in
use some time ago and the page cache would trigger a positive result. So the attacker
learned something that is not true and will assume, the victim currently runs a particular
software, although the software is not running anymore. Despite that the fingerprinting
attack is still reliable in a Docker multi-container setting. Docker containers are service-
oriented processes, meaning containers are more likely to be restarted, such that a certain
service can still be provided and a software will continue to persist in the memory.

25

5 Fingerprinting a System

(a) Regular situation

(b) With obfuscated signature

Figure 5.1: How page cache results in detection of wrong pages and a solution for this
problem.

26

5.3 Limitations

Figure 5.2: Flow diagram of the fingerprinting attack with one signature: preparation and
measurement stages.

27

6 Secret Extraction

Another objective of this thesis is to show, that Docker containers are also vulnerable to
memory disclosure attacks based on the memory deduplication side-channel. This is done
by attacking a vulnerable example application. Here describe we the properties, that a
vulnerable application should have in order to be successfully attacked. Later on we ex-
plain the attacker primitives, that are utilized by an adversary for constructing a working
exploit. As a reference we take the paper by Bosman et al. [BRBG], where its authors pro-
vided useful techniques and a comprehensive description of a system-wide exploitation.
Furthermore we show an example attack which serves as a prove for the fact, that Docker
containers are unprotected against memory deduplication side-channel.

6.1 Properties of an Exploitable Application

Not any secret in an application can become a target for this kind of secret extraction at-
tack. To disclose a secret its application should have certain characteristics and memory
layout. In order to determine if an application is exploitable, an attacker should man-
ually inspect target software either by finding certain consistent memory behavior in a
memory image of a process or by looking into a source code and inserting some debug
statements, in case an attacker has an access to the sources of the software. One can claim
an application and a certain secret as vulnerable to memory disclosure attacks based on
memory deduplication side-channel, if an application and target secret satisfy following
conditions:

• There exists an interface in the application, such that the attacker can enter her own
data bytes. The amount of data the attacker can feed in is at least 8KB. The attacker
needs this constraint to be fulfilled in order to be able to control a memory layout
and be aware of the way her data is being laid out in the memory.. Also after the data
was received and written in the memory, it should remain unmodified for the time
of one memory deduplication pass or if it is modified, the attacker should know,
how the modification is done and be able to reproduce the modification process by
herself. This is required in the brute force stage of the attack for the ability to build
brute force pages with data controlled (known) by the attacker.

• Another condition is the placement of the secret which the attacker wants to dis-

29

6 Secret Extraction

close. Essentially the secret should be located after the attackers input and ideally
with none or small offset. This implies indirectly, that with this property the at-
tacker gains an ability to move the secret back and forth by reducing or increasing
the amount of input data. Therefore it allows the attacker to launch an alignment
probing primitive discussed later. Because then the attacker can enter such amount
of data, that first bytes are attacker controlled and the few remaining bytes are un-
known.

• An optional condition that may simplify the attack is a static or computable offset
of attackers data relative to page beginning. In this case, if the attacker knows, that
her input data is always going to be located at the same page offset, then it becomes
relatively easy to calculate the amount of input data. Since the attacker aims to
place a page with known data in the victim application and consequently tries to
brute force unknown bytes in the end of the page, she should craft a page with
known data and prepend to it the amount of bytes needed to fill the space between
data beginning at the known offset and the page ending. This condition is optional,
because without having this property the attacker can still generate desired memory
layout by using another attack primitive, which however makes an exploit consume
more resources and, thus, a bit more complex.

If a target application and a secret fulfill the above constraints, it becomes possible for
the attacker to apply attack primitives and build an exploit. Combined all together these
conditions are sufficient to leak secret bytes in a particular software. Now it is time to
introduce the attack primitives that are essential for constructing an exploit.

6.2 Attack Primitives

Following techniques that were used in the work of Bosman et al. [BRBG] can be applied
on a vulnerable application that has the properties described above. They also allow an at-
tacker to control, predict and generate a certain memory layout. Controlling the memory
layout makes it possible for an attacker to craft probing pages with proper page content
and brute force a secret byte for byte. In a context of memory deduplication, brute forcing
a certain page means to put in the attackers memory the pages with all possible com-
binations of unknown bytes. Then these pages will be tested, whether one of them got
deduplicated. If so, then it means, the page is present in the system and an attacker can
determine the values of bytes previously unknown. However, it does not make sense for
an attacker to brute force whole pages, because there are too many possible combinations
of bytes in a single page. Therefore it is easier and more practical to brute force pages

30

6.2 Attack Primitives

that consist of a lot of known data and a small part of unknown data and doing this in-
crementally. It is also not always guaranteed, that the page, which an attacker wants to
brute force, begins exactly at a page boundary. The following primitives were designed to
address these problems and create a reliable way to disclose parts of page content:

• Alignment probing(Figure 6.1a): this is a primitive that actually allows incremental
brute forcing. The idea is to place a page in the victims memory, that a first part
consists of the known dummy bytes and a second part consists of the secret bytes.
Given such memory layout an attacker can brute force the rest of unknown bytes
which indeed are part of the secret. The amount of secret bytes should be feasible
for brute forcing a page within an acceptable amount of time or with an acceptable
amount of pages. Now, when an attacker knows a small part of the secret, she can
put a page with a smaller amount (amount is reduced by amount of known secret
bytes) of dummy data into the victims memory, such that the next unknown part
of the secret lies at the end the page with known dummy data. Brute force pages
are adjusted respectively, such that the last bytes of the page will be brute forced
and again, they are also placed again in the attackers memory and tested against
being deduplicated. Another part of the secret is disclosed and the attack goes on,
until complete secret is revealed. Using this strategy an attacker can incrementally
disclose bytes of the secret.

• Partial reuse(Figure 6.1b): this technique is useful for disclosing small secrets (e.g.
randomized heap pointer) that can be brute forced with two memory deduplication
passes. If during an initial analysis of the target software memory image an attacker
notices, that memory from last interaction is reused for a next interaction and the
secret is located in the end of the page, then she can overwrite the first part of the
secret with her own known data and brute force the remaining part. In the next
iteration, when the previous situation happens again, she brute forces the first part,
because this part is surrounded by known data (her own data and then second part
of the secret).

• Heap spray: this primitive is used in cases, where the alignment of attackers input
data is unpredictable. The idea is to flood the victim application with input data,
such that afterwards the victims heap consists of multiple pages with attacker pro-
vided data. By flooding enough data pages it is possible to achieve target alignment
meaning, that attackers input data starts at the page beginning and the secret is lo-
cated after this data. Although it is not guaranteed that the attackers data will not
be overwritten, in practice only a small part of the memory area with the attackers
data is reused for other purposes due to reuse patterns of standard memory allocator

31

6 Secret Extraction

malloc[BRBG] and, thus, a target alignment is retained.

The reason of, why the above primitives can be successfully executed, is mainly the mem-
ory allocator used by the software, especially a custom one. Custom allocators usually
tend to not zero out the freed memory. Due to a custom allocation strategy, the allocator
can generate memory reuse patterns. An attacker can find out the used allocation strategy.
This facts allow an attacker to predict a placement of her input data. In such manner an
attacker can utilize the allocators behavior for attackers favor.

6.3 Attacking Example Application

In order to show, that an application inside a Docker container is still vulnerable to mem-
ory disclosure attacks via the memory deduplication side-channel, we implement an at-
tack on a vulnerable example application. For this we created a simple server-like pro-
gram with described above properties. One can connect to the server and provide an
authentication string which serves as a password. The password itself consists of ASCII
letters and numbers and is null-terminated. A protocol that the server speaks with a client
is line based, meaning each message ends with a line-break. If a client sends the correct
string, the server responds with th ‘OK’ string, otherwise with the ‘FAILED’ string. A
buffer for the input data is page aligned. The server stores a password needed for the au-
thentication in a file that is loaded and put into memory directly after clients input data.
The example application allows an attacker to choose alignment probing as a basis for the
attack and it is essential for brute forcing the password byte for byte by shifting the secret
in the memory.
The attack starts by sending 4095 bytes of input to the victim application. The input is then
page aligned and the last byte of the page is the first byte of the server password, because
the password is placed directly after the input data. The password character set consists
of 62 characters, so the attacker prepares 62 brute force pages that differ by last byte and
waits for KSM to pass. By testing, whether one of the brute force pages was deduplicated,
the attacker determines the first byte of the secret. In the next iteration the attacker sends
4094 bytes to the server. Now, when the attacker knows the first byte of the secret, she can
guess the next one by setting the 4095-th byte of brute force pages to known byte. These
steps are repeated until the whole secret is revealed meaning a zero byte is guessed.

32

6.3 Attacking Example Application

(a) First three iterations of alignment probing example

(b) Example of partial reuse

Figure 6.1: Attacking primitives for secret extraction.

33

7 Experiment Results and Mitigations

The attacks we described before were implemented and tested in different setups and
configurations. The system configurations differ by the location of an attacker as it was
stated in the chapter 4 about the attacker model. We also provide a description of our
experimental setup for different attack scenarios. Furthermore we present our results of
both executed attacks. After that we discuss and propose mitigations to this attack vector.

7.1 Experimental Setup

The following experimental setup was taken as a reference system. The test machine has
an Intel Core i3-5010U CPU at 2.10GHz and 4GB of DDR3 RAM. As host operating system
we chose Ubuntu 18.04. Since Ubuntu is a Linux system, its kernel already contains the
KVM module, which we also utilize in our experiments as a bare-metal hypervisor. KSM
is enabled and scans 1000 pages every 100 milliseconds. With QEMU version 2.11.1 we
created two virtual machines with a single CPU core and 1GB RAM assigned to them.
Afterwards Ubuntu Server 19.04 with Docker Engine version 18.09.7 was installed into
both virtual machines. For both attacks, fingerprinting and secret extraction, we launch
in a guest OS a victim container with an application, we want to attack. In case of finger-
printing we pull an already created image with the latest (version 2.4.41) Apache server
from Docker Hub and start a Docker container for it. For the secret extraction attack we
launch an example exploitable application from the previous chapter in a Docker con-
tainer. Overall we tested our attacks with different attacker positions. We refer to this
positions as following:

• Type 1 (Figure 4.2a) position is where the attacker locates in a container in a neighbor
guest OS.

• Type 2 (Figure 4.2b) position is where the attacker locates in a neighbor guest OS.

• Type 3 (Figure 4.2c) position is where the attacker locates in a neighbor container in
the same guest OS.

These types are sorted by level of separation. So type 1 provides maximum separation,
since the victim and the attacker are separated by virtual machine and Docker container
boundaries. And type 3 provides the least separation, since the Docker containers are
basically processes within the same OS.

35

7 Experiment Results and Mitigations

7.2 Fingerprinting Attack Results

The ttackers objective is to detect the Apache Web server latest version 2.4.41 and distin-
guish it from version 2.4.37 which is not used at all and therefore not present in the victim
system. For this we generate signatures of respective versions and do XOR operations
with fixed value on each byte of the signatures. All needed files, including signatures
and an attacking program, were transferred into all types of positions. The attacking pro-
gram loads signatures in its process space and does XOR on each signature byte with the
fixed value that was used before. After waiting for 40 seconds, the first bytes of all sig-
nature pages were overwritten and the time was measured. The attack was executed and
succeeded in every position regardless of the level of separation. That means, we were
able to differentiate between two versions of the Apache Web server. More precisely the
times to overwrite a signature of version 2.4.41 were around 100 ms against 3 ms for ver-
sion 2.4.37. The difference between both times was big enough, such that we could easily
distinguish the versions.

7.3 Secret Extraction Attack Results

The idea of this attack was to extract a correct authentication string that is used in the
example victim application. Similar to the fingerprinting attack we place out attacking
program into all types of positions. However, now we need, that attacker’s and victim’s
applications are in the same network. So we configure virtual machines and Docker con-
tainers, such that attacker’s and victim’s applications may communicate with each other
through a common network. In our attacking program we implemented the alignment
probing primitive. We attack a victim by sending to the victim application a correctly cal-
culated amount bytes and crafting proper pages for a brute force. As a result we uccess-
fully managed to exfiltrate a seven characters long authentication string from the victim
container. Overall the attack took 320 seconds and we used 248KB of RAM.

7.4 Mitigations

There are several strategies for mitigating a memory deduplication attack vector. They
vary between completely disabling the attackers ability to perform any attack based on
memory deduplication and choosing performance over security. So it is always a trade-
off between security and performance. The first obvious mitigation strategy suggests to
completely disable memory deduplication in a system. Thus, this completely takes away
the attackers ability to attack the system over this particular attack vector and none of
the described attacks will have any chance for success. This strategy however removes

36

7.4 Mitigations

possible memory performance improvements, which is not always acceptable, because
then it requires more physical RAM for the system. Next strategy allows a dedupli-
cation of zero pages only. Such strategy keeps a certain degree of increased memory
performance[BRBG] by the memory deduplication mechanism while totally limiting an
attacker in performing his attacks. In this case an attacker can only detect a presence of
zero pages which essentially provides no additional information to an attacker. The last
strategy permits only a deduplication of read-only pages. This gives better memory per-
formance comparing to the previous strategies, since then more pages can be potentially
deduplicated. Nonetheless this solution allows an attacker to perform the fingerprint-
ing attack. For example, a software version can be detected by its unique page of data
section which is, indeed, read-only. This fact may seem undesirable, however, one can
not completely prevent a system from being fingerprinted, because there are other ways
to fingerprint a system, like port scanning a public server and other techniques. So this
mitigation can have its own use case. Simultaneously it completely mitigates an oppor-
tunity for a secret extraction attack, since a secret on a heap cannot be shifted in memory
and therefore can not be deduplicated and guessed byte for byte, because heap pages are
writable. So everyone can decide which mitigation strategy to pick by weighting memory
performance and security implications.

37

8 Conclusions

8.1 Summary

In this work we set a goal to examine the memory deduplication attack vector and its
relevance in Docker multi-container applications. For this we dove into virtualization
technologies, in particular hypervisor-based and container-based virtualization, in order
to understand their use cases and differences. We gave an overview of a widely used con-
tainerization tool called Docker and of KSM, a memory deduplication mechanism in KVM
with a side-channel that comes with it. After we defined use cases and our attacker model,
we started with a fingerprinting attack description. As next important class of attacks we
inspected a secret extraction attack. When we implemented and successfully executed
both attacks in different attacker scenarios, we discovered, that a memory deduplication
side-channel is still a threat to a system with enabled memory deduplication mechanism
like KSM, even if a victim process is running in a Docker container in a different virtual
machine. Considering this fact we discussed some variants of mitigations and came to the
conclusion, that an answer to a question which mitigation to pick, depends on an appli-
cation operator, an attacker model for this particular application and how much security
risk an operator is ready to attend.

8.2 Discussion and Open Problems

The current approach of finding software that is vulnerable to a secret extraction attack is
laborious and requires manual inspection of memory images and, in some cases, reading
source code. So the next question that a reader might ask himself is, how can an adver-
sary generically build an exploit for secret extraction in any application. Maybe there are
certain types of software which are especially vulnerable to memory deduplication at-
tacks. A more advanced question would be, whether there is a way to automatically find
vulnerable software. Implementation, practical evaluation or improvement of suggested
mitigation strategies can also be seen as good next topics, because many cloud providers
tend to disable memory deduplication, even if this feature is useful and can save a good
portion of physical RAM. Another open topic would be to investigate, how to do a se-
cret extraction via FLUSH+RELOAD technique and memory deduplication, since there is
already a fingerprinting attack that utilizes both features.

39

References

[AEW09] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory density
by using ksm. 01 2009.

[BBB+] Salman Baset, Stefan Berger, James Bottomley, Canturk Isci, Nataraj Nagarat-
nam, Dimitrios Pendarakis, J. R. Rao, Gosia Steinder, and Jayashree Ra-
manatham. Docker and container security white paper.

[BRBG] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Dedup est
machina: Memory deduplication as an advanced exploitation vector. page 18.

[HMA19] Mohamed K. Hussein, Mohamed H. Mousa, and Mohamed A. Alqarni. A
placement architecture for a container as a service (caas) in a cloud environ-
ment. Journal of Cloud Computing, 8(1):7, May 2019.

[IIES15] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar.
Know thy neighbor: Crypto library detection in cloud. PoPETs, 2015(1):25–
40, 2015.

[LC] Tao Lu and Jie Chen. Research of penetration testing technology in docker en-
vironment. In Proceedings of the 2017 5th International Conference on Mechatron-
ics, Materials, Chemistry and Computer Engineering (ICMMCCE 2017). Atlantis
Press.

[LF] Jens Lindemann and Mathias Fischer. A memory-deduplication side-channel
attack to detect applications in co-resident virtual machines. In Proceedings of
the 33rd Annual ACM Symposium on Applied Computing - SAC ’18, pages 183–
192. ACM Press.

[LLW+] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou.
A measurement study on linux container security: Attacks and countermea-
sures. In Proceedings of the 34th Annual Computer Security Applications Conference
on - ACSAC ’18, pages 418–429. ACM Press.

[mic] Microservices. https://en.wikipedia.org/wiki/Microservices.
Accessed: 2019-09-27.

41

https://en.wikipedia.org/wiki/Microservices

References

[MRCDP] A. Martin, S. Raponi, T. Combe, and R. Di Pietro. Docker ecosystem – vulner-
ability analysis. 122:30–43.

[noa] Docker API vulnerability allows hackers to mine monero. https:

//www.scmagazine.com/home/security-news/vulnerabilities/

docker-api-vulnerability-allows-hackers-to-mine-monero/.
Accessed: 2019-09-27.

[Pat] Randy Patterson. Running docker windows and linux containers simulta-
neously. https://devblogs.microsoft.com/premier-developer/

running-docker-windows-and-linux-containers-simultaneously/.
Accessed: 2019-09-27.

[PZW+07] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, and Kang G.
Shin. Performance evaluation of virtualization technologies for server consol-
idation. HP Laboratories, 2007.

[SIYA11] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho. Memory
deduplication as a threat to the guest os. In Proceedings of the Fourth Euro-
pean Workshop on System Security, EUROSEC ’11, pages 1:1–1:6, New York, NY,
USA, 2011. ACM.

42

https://www.scmagazine.com/home/security-news/vulnerabilities/docker-api-vulnerability-allows-hackers-to-mine-monero/
https://www.scmagazine.com/home/security-news/vulnerabilities/docker-api-vulnerability-allows-hackers-to-mine-monero/
https://www.scmagazine.com/home/security-news/vulnerabilities/docker-api-vulnerability-allows-hackers-to-mine-monero/
https://devblogs.microsoft.com/premier-developer/running-docker-windows-and-linux-containers-simultaneously/
https://devblogs.microsoft.com/premier-developer/running-docker-windows-and-linux-containers-simultaneously/

	Introduction
	Background
	Virtualization Technologies
	Hypervisor-based Virtualization
	Container-based Virtualization

	Docker Overview
	Memory Deduplication
	Kernel Same-page Merging
	Memory Deduplication Side-channel

	Related Work
	Attacker Model and Environment
	Attacker Model
	Attackers Objectives

	Fingerprinting a System
	Preparation
	Determining KSM Pass Duration
	Generating Signatures

	Attack Description
	Limitations

	Secret Extraction
	Properties of an Exploitable Application
	Attack Primitives
	Attacking Example Application

	Experiment Results and Mitigations
	Experimental Setup
	Fingerprinting Attack Results
	Secret Extraction Attack Results
	Mitigations

	Conclusions
	Summary
	Discussion and Open Problems

	References

