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Abstract

Machine learning (ML) becomes more and more important to solve a variety of problems,
including autonomous driving and medical applications. Since a ML model contains
valuable information not necessarily known to third parties, the model itself as well as all
the training samples are considered intellectual property often worth millions of dollars.
With the rise of Internet-of-Things (IoT) devices, ML moves closer to the end user. This
opens new attack avenues to an adversary with physical access to the device running the
corresponding ML model. Several companies offer special ML acceleration chips for power-
efficient usage in edge devices. The ML accelerator chip that we investigate in this thesis
is Intel’s Neural Compute Stick 2; a plug and play development kit for embeddded ML
acceleration. We investigate how an adversary with physical access to the edge device can
learn internals about the deployed ML model through different side-channels, including
the USB communication as well as power consumption and electromagnetic emanations.
By eavesdropping the USB communication during deployment of a model, an adversary
can perfectly recover the model. Moreover, by measuring the power consumption and EM
emanations of the accelerator device during model inference, we successfully reconstruct
the model’s structure with only a single inference request using Simple Power Analysis.
Both attacks do not rely on expensive equipment and are thus easily applicable even
outside of specialized labs or institutions, making these attacks a serious threat.

iii





Kurzfassung

Maschinelles Lernen (ML) nimmt eine immer wichtigere Rolle ein, um eine Vielzahl an
Problemen zu lösen. Dazu gehören beispielsweise Autonomes Fahren oder medizinische
Anwendungen. Ein ML-Modell enthält wertvolle Informationen, die Dritten nicht notwen-
digerweise zugänglich sind. Daher sollten sowohl das Modell selbst als auch die Trainings-
daten, die für das Modell verwendet wurden, als geistiges Eigentum eingestuft werden.
Dessen Wert beträgt leicht mehrere Millionen Dollar. Mit dem weiteren Aufkommen von
Internet-der-Dinge-Geräten (engl. Internet-of-Things (IoT)) rückt auch ML näher an den
Endanwender heran. Einem Angreifer mit physischem Zugriff auf das Gerät, auf welchem
das entsprechende ML-Modell ausgeführt wird, werden so neue Angriffsmöglichkeiten
eröffnet. Einige Unternehmen bieten inzwischen spezielle ML-Beschleunigerkomponenten
an, die insbesondere auf ihren Stromverbrauch optimiert wurden und sich somit für
sogenannte edge devices eignen. Die ML-Beschleunigerkomponente, die wir in dieser
Arbeit untersuchen ist der Neural Compute Stick 2 von Intel. Wir untersuchen inwie-
fern ein Angreifer mit physischem Zugriff auf das Gerät geheime Informationen über
das aktuell ausgeführte ML-Modell erhalten kann. Dazu untersuchen wir verschiedene
Seitenkanäle: einerseits die USB-Kommunikation, andererseits den Stromverbrauch und
elektromagnetische Strahlung des Geräts während des Betriebs. Ein Angreifer, der die
USB-Kommunikation des Geräts belauschen kann, während ein Modell bereitgestellt wird,
ist in der Lage, dieses Modell perfekt zu rekonstruieren. Mittels Simple Power Analysis
gelingt es uns zudem, die Struktur des ML-Modells zu rekonstruieren, indem wir den
Stromverbrauch und die elektromagnetische Strahlung des Geräts während der Inferenzan-
fragen aufzeichnen. Dazu genügt bereits eine einzige Anfrage. Beide Angriffe erfordern
keine teuren Geräte und sind somit auch außerhalb von Laboren oder Institutionen, die
sich auf solche Angriffe spezialisiert haben durchführbar, sodass diese Angriffe eine reale
Gefahr darstellen.
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1 Introduction

Deep learning based on neural networks is ubiquitous nowadays and plays an increasingly
important economical role. A broad range of applications, e.g. image processing [Tea17],
speech recognition [Sch19], pattern recognition for medical diagnosis, autonomous driving
or text auto-completion [Che+19; Lam18] take advantage of deep learning techniques.
For all of these applications, individual training samples are supplied as inputs to the
deep learning algorithm which then trains and outputs a model that can be used for future
queries.

Neural networks are rapidly becoming more advanced, and thereby are able to solve
more complex problems with higher accuracy. This is accomplished by intensive research
progress accompanied by increasingly available (and affordable) computational power,
e.g. by utilization of GPUs [Che+14; RMN09] or dedicated hardware such as specialized
ASICs (Application-specific integrated circuits) like Google’s Tensor Processing Units
(TPUs) [Jou+17]. For increasingly complex tasks, huge amounts of data are necessary
during training, yielding models that are highly accurate, but also expensive to generate
and train.

It takes lots of inputs and training iterations to obtain a model with the desired accuracy.
This takes time and costs money to acquire or rent the required hardware as well as the
costs incurred by the power consumption. Training data might also not always be publicly
available – a suitable data set then needs to be bought from external suppliers. Furthermore,
the inputs used throughout the training phase may contain sensitive information, e.g.,
medical diagnostics for specific individuals, which can potentially be extracted from the
models [Zha+20], requiring good protection for Machine learning (ML) models. Both the
training samples as well as the parameters of the model that have been learned through
training should therefore be treated as sensitive data or intellectual property. When the
network has achieved the desired accuracy, it can be deployed to the target to run inference
tasks (e.g., classification or prediction queries).

Several Machine Learning as a Service (MLaaS) providers give query access to their pre-
trained models via their API over the internet. The customer typically pays for each query
that is sent to the cloud and receives the result for further computations. However, extra
care has to be taken in order to protect the models deployed on products handed to end-
users as attackers may attempt to steal the model to benefit from it while avoiding the
high training and query costs. This threat is real for MLaaS providers [Tra+16; WG18] and
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1 Introduction

Figure 1.1: The NCS 2.

companies selling machine learning enabled products alike.

On the other hand, modern machine learning accelerators become more and more efficient.
This allows for including chips optimized for running inference tasks directly into the
machine learning enabled product that is shipped to the end-user. Running inference on
edge devices instead of sending queries to remote servers has several benefits. First, data
can be used where it is created. This helps increasing the privacy of the classified data. Sec-
ond, less bandwidth is necessary to serve queries as inference accelerators are distributed
to the edge devices. Especially industries implementing machine learning features into
their products while producing thousands of products like the automotive industry or the
Internet-of-Things (IoT) might otherwise see the bandwidth to be a bottleneck.

Since the inference tasks typically are computationally expensive as well, low power
devices such as the Raspberry Pi might not be able to fulfill strict time constraints for
inference tasks. To fix this shortcoming, hardware accelerators can be used to increase
the throughput of neural network inferencing in these special low-power environments.
The model is loaded onto the accelerator where the inference task can be performed much
faster.

In order to allow more powerful machine learning to happen directly in IoT or edge devices,
special-purpose hardware accelerators are being deployed. These accelerators increase
throughput of neural network inference in such special low-power environments. One of
these low-power inferencing hardware accelerators is Intel’s Neural Compute Stick 2 (NCS
2) [Inta] that we analyze in this work. The NCS 2 is depicted in Figure 1.1.

The NCS 2 is a hardware accelerator for neural network inference tasks especially in low-
power, embedded environments. It is entirely powered via USB, therefore no external
power supply is needed. The Intel Movidius Myriad X Vision Processing Unit (VPU)
is built onto the stick. Possible use cases mentioned by the manufacturer include smart
cameras, drones and smart-home devices [Intb; Intc].

2



1.1 Contribution of this Thesis

1.1 Contribution of this Thesis

As all IoT devices, the NCS 2 enables physical access of an adversary. Therefore, physical
attacks such as Side-Channel Analysis (SCA) cannot be ignored.
Our aim is to investigate to what extent an attacker is able to exfiltrate possibly confidential
information regarding the currently deployed model on a NCS 2 through different variants
of SCA. We formulate two research questions that we answer throughout the thesis.

Research Question 1: Does the NCS 2 leak secret information about the internal structure of
the currently deployed model through side-channels?
To answer the first research question, we analyze different side-channels such as the USB
data communication, the power consumption, EM emanations and timing behaviour [Koc96;
KJJ99; QS01] of the device during model deployment and inference.

Research Question 2: Is it possible to reconstruct the entire model from side-channel leakages,
if there are any?
The second research question builds on top of the first research question. The attack
complexity increases since the leakage needs to be meaningful enough to recover not only
the structure but also single parameters of the model.

1.2 Thesis Structure

In Chapter 2, we give an introduction to both side-channel attacks and neural networks
as well as specially crafted hardware accelerators for the latter. Chapter 3 presents an
overview over the current state of the art about attacks against neural networks as well
as side-channel analysis of hardware devices that are running those. The first attack
that we present in Chapter 4 is accomplished by eavesdropping the USB communication
between the host and the NCS 2. Then in Chapter 5 we describe how observing the power
consumption of the NCS 2 enables an adversary to learn the model’s strucure. Finally, we
give a conclusion and propose ideas for future work including possible countermeasures
in Chapter 6.
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2 Background

This chapter first provides an introduction to deep neural networks and side-channel at-
tacks in general. Afterwards, we give an overview of neural network hardware accelerators
and describe how the OpenVINO (Open Visual Inference and Neural Optimization toolkit)
framework is being used to operate with the target device. Lastly, we introduce the target
device itself.

2.1 Neural Networks and Their Components

In this section we begin by describing simple neural networks and their components. The
idea of neural networks builds upon the concepts that McCulloch and Pitts [MP43] first
described back in 1943 already. Afterwards, we introduce several concepts that evolved
over time that modern neural networks build upon.
We refer to Schmidhuber’s thorough overview of the development of neural networks for
further reference [Sch15].

2.1.1 Introduction

Research of neural networks spreads into a variety of directions. Popular research directions
include the optimization of the learning process, by designing entirely new concepts,
finding optimal network layouts for existing concepts or optimizing learning strategies.
Other researchers focus on the explainability or privacy aspects of learning or try to improve
their tolerance against faulty inputs.
The first step is to train a network using training samples to fine-tune the parameters of the
network.
For the rest of this thesis however, we explicitly do not focus on the beforementioned
aspects since the device under test (DUT) we examine (NCS 2) is specifically crafted for
what is called inference. Therefore we assume that a network has already been trained on a
dataset, reached the desired accuracy and is ready for deployment. Thus we do not go into
detail about concepts such as overfitting, regularization, dropout etc. which are important in
the learning phase and just name them here shortly for sake of completeness.

Tensors In the domain of neural networks one often comes across the term tensor. A
tensor is a mathematical object that generalizes the concept of scalars, vectors and matrices
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2 Background

to higher-dimensional structures. The equivalent from a computer scientist’s perspective is
a multi-dimensional array. Throughout this section, we continue to use the terms vector
and matrix for sake of simplicity. When considering networks with higher-dimensional
inputs or internal structures, the corresponding tensor operations (tensor addition, tensor
product etc.) are meant instead. We don’t go more into detail since we are only interested
in reconstructing the network – not in understanding the actual computation.

2.1.2 Network Architecture

We describe neural networks using a top-to-bottom approach, starting with a high level
introduction and disassemble the introduced concepts into more detailed views of their
concepts.

Neural networks are organized in layers. Layers are classified into three categories: input
layers, output layers and hidden layers. The input layer describes the input to the network,
whereas the output layer represents the output of the network. All additional layers are
hidden layers. Hidden layers are located between the input and output layer. Several types
of layers exist – the most common types of layers, namely fully-connected layers and
convolutional layers, will be introduced in the upcoming paragraphs. Each layer has a set
of hyperparameters. Hyperparameters depend on the type of the layer. Depending on the
layer type and its hyperparameters, each layer consists of a quite large number of parameters.
These parameters are the values that are actually learned throughout training whereas the
hyperparameters are guessed or tried out beforehand. A network is fully described by its
structure (i.e. layers), their hyperparameters and their parameters.

2.1.3 Multi-Layer Perceptron

The simplest form of neural networks is the Multi-layer perceptron (MLP). MLPs consist of
an input and an output layer as well as at least one hidden layer.

MLPs are fully-connected networks, i.e., each neuron from one layer is connected to each
neuron from the next layer. Therefore the number of connections within the network (and
thus the number of parameters) rapidly increases for a larger number of layers as well as
larger inputs.

A simple, fully-connected MLP with four inputs, a hidden layer containing five neurons
and one output is depicted in Figure 2.1.

Each layer consists of a specific number of neurons. The number of neurons in the input
layer is given by the size of the input. Similarly, the number of neurons in the output
layer determines the number of outputs. A layer is fully-connected (also called dense) if each
neuron of the previous layer is connected to each neuron from the current layer. Values are

6
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Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.1: A Multi-layer perceptron with one hidden layer.

being propagated throughout the network, beginning with the input values.

For a fully-connected layer, the number of neurons is one of the hyperparameters of that
layer.

For example, consider a dataset that contains scans of handwritten digits, each being
normalized to a dimension of 28x28 pixels. A network trained on this data set therefore
starts with an input layer consisting of 28x28=784 neurons – one neuron for each pixel.
Since the aim is to classify the written digit, the network’s output layer consists of 10
neurons – one neuron for each digit. We will have a closer look on such a dataset in
Subsection 2.1.6.

Weights and Biases Each connection between two neurons within the network has a
weight. This weight determines how much impact the information that comes from the
source neuron should have for the target neuron. The value of a neuron is computed by
summing up all the incoming values multiplied by their corresponding weights.

Additionally, each neuron has a bias. The bias is added to the sum of weighted inputs and
adds more flexibility to the network. Because it implicitly adds another input dimension, it
allows a neuron to compute a result that is different from zero even if all inputs are zero.

The calculation of a single neuron’s output is illustrated in Figure 2.2.

Operations in a neural network consisting of fully-connected layers can therefore be
expressed as matrix-vector multiplications to compute the results of all neurons of a

7
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Inputs Weights Bias Output

x1 w1 b

x2 w2
∑

y

x3 w3

Figure 2.2: A single neuron with three inputs. The output value is x1w1 + x2w2 + x3w3 + b.

specific layer:

Y = Wx+ b where Y is the output vector,

W is the weight matrix,

x is the input vector and

b is the bias vector.

(2.1)

2.1.4 Activation Functions

To capture non-linear dependencies in the training data, non-linearity needs to be intro-
duced into the network – otherwise the network can only learn linear dependencies. Since
the calculation of a neuron is only an affine operation (or even a linear operation when
the bias is set to zero), the concept of neurons does not fulfill this property on its own. To
introduce non-linearity, an activation function is applied to the output of a neuron.

Different activation functions have been proposed and actively used in the context of neural
networks. We begin by explaining the three most popular activation functions sigmoid, tanh,
and ReLU (Rectified Linear Unit). These three activation functions have in common that
they operate on each element of the input vector independently. Afterwards, we define the
SoftMax activation function whose output value depends on the whole input vector.

The activation function that is being applied is considered as one of a layer’s hyperparame-
ters.

8



2.1 Neural Networks and Their Components

Sigmoid

The sigmoid activation function σ is illustrated in Figure 2.3a. Sigmoid is defined as:

σ(x) =
1

1 + exp(−x)
(2.2)

The output of σ is always in the range (0, 1).

Hyperbolic Tangent

The hyperbolic tangent tanh is depicted in Figure 2.3b. There are several ways to define
the hyperbolic tangent. One possible way is to define it via the sigmoid function:

tanh(x) = 2σ(2x)− 1 (2.3)

The output of tanh is always in the range (−1, 1).

ReLU

The ReLU activation function is shown in Figure 2.3c. ReLU is defined as:

ReLU(x) = max(0, x) (2.4)

If the input is smaller than zero it will be set to zero. The output of ReLU is always non-
negative, but in contrast to tanh and σ there is no upper bound. Due to its simplicity it
gained popularity since training times drastically decrease when this activation function is
being used.

SoftMax

The SoftMax activation function is a special activation function. It is often the last activation
function of a network. Its purpose is to normalize the output values to be within the range
[0, 1] and is defined as

σ(z)i =
exp(zi)∑K
j=1 exp(zj)

for i = 1, . . . ,K and z = (z1, . . . , zK) ∈ RK (2.5)

After applying softmax to an input vector, the elements of the output vector sum up to one,
thus the result fulfills the requirements of a probability distribution. SoftMax is usually
used after the last dense layer to obtain a distribution-like output as described beforehand.
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y = σ(x)
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(a) Sigmoid function
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(b) Tanh function

y = ReLU(x)
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(c) ReLU function

Figure 2.3: Popular activation functions in neural networks.

2.1.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are more advanced networks that contain convo-
lutional layers. The ideas behind CNNs date back into 1980 when Fukushima published
his paper about Neocognitron [Fuk80]. LeCun et al. further developed the concept in their
seminal papers [LeC+89; LBBH98].

CNNs contain several convolutional layers to extract the features (e.g., edges, shapes etc.)
of the input. The last layer(s) are then fully-connected layers that perform the actual
classification on the latent (hidden) representation generated by the convolutional layers.
Hyperparameters of convolutional layers are the kernel size, stride, padding, the activation
function and possibly even more.

Convolutional layers are advantageous when processing higher-dimensional data in which
MLPs would have too many connections. They make use of two important properties:
locality and spatial invariance. Spatial invariance means that the CNN recognizes features
regardless of their exact position within the input. Locality on the other hand described
the fact that especially for image recognition, it is the case that pixels are correlated to
pixels very close to them whereas they are usually not correlated to pixels that are far away.
Thus, in contrast to fully-connected feed-forward networks, CNNs have far less trainable
parameters since neurons that correspond to pixels far away are simply not connected,
making them easier to train and deploy for higher input dimensions.

Convolution Operation Convolution is computed by first element-wise multiplying the
input window and the convolution kernel. A convolution kernel (or filter, feature map) is
simply a matrix of weights that is being shifted across the input matrix during convolution.
Strictly speaking this operation is not a convolution, but a cross-correlation instead, since
for a convolution the kernel would be flipped beforehand. Afterwards, these values are
being summed up, yielding the final output value at the corresponding index of the output
matrix.

10
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(2.6)

An example for a convolution is given in Equation 2.6 where a 7 × 7 input matrix is
convolved using a 3× 3 kernel, yielding an output matrix of size 5× 5. When considering
a kernel that has the same size as the input with no padding and a stride value of 1,
this operation is equivalent to a fully-connected layer. Hence, convolutional layers are a
generalized version of fully-connected layers.

Stride As seen above, convolution results in a small dimensionality reduction. Sometimes,
a more aggressive dimensionality reduction is desired, for example when the input is too
large and we wish to operate on a lower resolution for performance reasons. In these cases,
increasing the stride helps. The stride is the step size during convolution. By default, the
stride is set to 1. Then during convolution, the kernel window is moved by one element
per step. By increasing the stride, the output’s dimension becomes smaller and the number
of convolutions decreases.

Padding When using convolution kernels with higher dimensions than 1×1, the resulting
output has a lower dimension than the input. This directly results in information loss
on the boundaries of the original input. The most often used technique to mitigate the
information loss is padding. When using padding, the input is augmented by adding
additional rows and columns consisting of zeros around the input matrix. Depending on
the size of the padding (and the size of the kernel), there will be less dimension-reduction,
no dimension-reduction, or the dimension even grows a bit.

Now that all popular techniques around convolution have been explained, we give a
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Figure 2.4: Application of 2x2 MaxPooling to a 4x4-matrix, resulting in an output of dimen-
sions 2x2. The input is tiled into 2x2 pools from which the maximum value is
taken as the result.

formula to easily compute the output dimensions after convolution:

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋ where

nh, nw input

kh, kw kernel

ph, pw padding

sh, sw stride

(2.7)

This formula applies to a 2D-convolution. For higher-dimensional convolution, the formula
needs to be adjusted accordingly.

Pooling

Pooling, especially MaxPooling is used to reduce the latent dimensions in hidden layers.
Given an internal representation of dimensions m×n, (i×j)-pooling reduces the dimensions
to (

⌊
m
i

⌋
×

⌊
n
j

⌋
) by considering i× j windows and (in the case of MaxPooling) picking the

maximum value within this window.

An example is given in Figure 2.4 where (2× 2)-maxpooling is applied to an input matrix
of dimensions 4× 4 yielding an output of dimensions 2× 2. The maximum values of each
window are highlighted. Pooling can also be combined with the beforementioned padding
and stride techniques to adjust the output dimensions.

12



2.2 Side-Channel Attacks

Figure 2.5: A few samples drawn randomly from the MNIST dataset. Some of them are
easy to read, others are ambiguous.

2.1.6 The MNIST Dataset

We describe the popular MNIST dataset and a corresponding neural network architecture
to achieve good accuracy results for it. The MNIST dataset1 [LBBH98] contains a total of
70.000 handwritten digits which are split into a training set consisting of 60.000 images and
a test set consisting of 10.000 images. Each digit is represented as a 28×28 pixels grayscale
image. Figure 2.5 shows a few samples randomly drawn from the dataset. MNIST is one
of the most popular datasets used in machine learning nowadays. It is well suited for
beginners due to its small sample size and an easily to achieve high accuracy even with
simple networks that take little training time.
We now give a short example of a simple CNN that has been trained on the MNIST dataset.
Figure 2.6 shows the general network layout. The network contains two convolutional
layers to extract the features, each followed by a MaxPooling layer to reduce the latent
dimensions.
After flattening the internal representation, two fully-connected layers perform the ac-
tual classification. The output is then fed into a SoftMax layer to obtain a normalized,
distribution-like output.

2.2 Side-Channel Attacks

Physical attacks are a well-known threat to cryptosystems especially if the adversary has
(but not necessary needs) physical access to the implementation. There exist two main

1More detailed information about MNIST and research results are available at http://yann.lecun.com/
exdb/mnist/
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Input
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3136
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Figure 2.6: A simple MNIST classifier. The lower part of each layer describes its dimen-
sions: Features × Width × Height. The input has one feature per pixel: its
grayscale value. Over time, the feature dimension grows, while the width and
height shrinks by combining convolutional and max-pooling layers with kernels
of corresponding size. Finally, the latent representation is flattened into one
dimension and two dense layers perform the actual classification. Softmax is
applied after the last dense layer to obtain a distribution-like output.

classes of attacks: active fault injection attacks and passive side-channel attacks. While fault
attacks manipulate the internal state of a cryptographic implementation, side-channel
attacks exploit the physical information given by the device on which the implementa-
tion of an algorithm is running. The physical information can be exemplified as timing
information [Koc96], cache behavior [TOS10; YF14], emitted sound [GST14], power con-
sumption [KJJ99], or electromagnetic emanation [GMO01]. In this work we focus on
side-channel analysis and in the following we focus on one of the main attacks: Simple
Power Analysis (SPA).

2.2.1 Timing Attacks

Timing attacks were first introduced by Kocher in 1996 [Koc96]. The leakage in this case is
the differing timing behavior, depending on which operations are executed. Often, different
operations take different amounts of time and an adversary can take advantage of this
fact. For example, consider the different activation functions described in Subsection 2.1.4.
Comparing the computation of tanh and ReLU, one observes that tanh is a lot more complex
than ReLU. Two expensive operations, namely the exponentation followed by a division
are needed to compute the result of the sigmoid function which in turn is used to compute
the result of tanh. On the other hand, for ReLU, depending on the sign returning zero or
the input value itself is sufficient. This results in different timing characteristics that might
leak information about the function that has been used.
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2.2.2 Simple Power/EM Analysis (SPA/SEMA)

SPA has been introduced by Kocher, Jaffe, and Jun [KJJ99]. The target’s power consumption
is measured during its operation. When targeting the EM emanations instead, this attack is
called SEMA. The idea of this attack is that different operations running on the DUT result
in a slightly differing power consumption/EM emanation. SPA can reveal information
about the current operation, e.g. a repeating pattern such as encryption rounds or even
sensitive information such as key material. One popular example for the success of SPA
is the key recovery of unprotected RSA implementations. The side-channel trace changes
with respect to the longer multiplication which implies the secret key bit is 1 or the faster
squaring which implies the secret key bit is 0 [Fou+06]. Since the power consumption
differs for those two cases, the adversary is able to distinguish the performed operation
and can directly infer the bit values of the private key.
The same example (neural network activation functions) that has been given in the context
of timing attacks holds for SPA as well. In fact, Takatoi et al. [TSSL20] even suggest to use
SEMA since it withstands attempts to make the execution time of all activation functions
constant.

2.2.3 Differential Power/EM Analysis (DPA/DEMA)

Differential Power Analysis (DPA) has been proposed by Kocher, Jaffe, and Jun [KJJ99]
and is another commonly used side-channel attack. It is a more complex attack and
usually requires more power/EM traces. Then, statistical methods are employed to exploit
dependencies between the side channel information and the processed data to learn about
secret values.
In most cases, the leakage imposed by the correlation of the power consumption and the
processing of internal data of the DUT is very small and hides within the background noise.
In many cases it is still possible to gain information about internal data structures (such as
a secret key) by applying DPA.
DPA is implemented by selecting an intermediate variable that depends on a secret variable
(such as secret key) and a known value (such as plaintext). Then, the adversary selects
a function that models the power trace such as Hamming weight [BCO04] or a single
bit [MOP07] to be used in the statistical analysis phase. Therefore, the adversary can model
the power consumption for each key candidate2.
The wrong key guesses result in wrong power models and thus the statistical analysis
results do not show any significant correlation peak. However the correct key which results
in the correct power model, and therefore the analysis results in an observable peak (if no

2The key space is small enough to process the analysis and generally it ranges from 21 to 216.
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(a) Correct key guess. (b) Wrong key guesses.

Figure 2.7: DPA against an unprotected AES implementation. A significant peak can be
observed between samples 500 and 600 for the correct key guess. The wrong
key guesses show no such peak between samples 500 and 600.

countermeasures are present).
One popular example when performing a DPA against AES is to target the output of
the S-box in the first round. We visualize a simple DPA against an unprotected AES
implementation in Figure 2.7. The upper plot shows the results for the correct key guess
where a significant peak can be observed. The lower plot shows all results for incorrect key
guesses. An attacker recovers one secret key byte at a time with this approach, hence the
attack has to be performed 16 times for AES-128 to recover the entire key.

2.3 Combining SCA and NN

In Sections 2.1 and 2.2, we introduced neural networks and SCA as distinct topics. More
recently, these two topics have been composed in a common context in (at least) two
different ways:

1. Improving SCA by using ML. The first combination can be seen as a continuation of
template attacks [CRR03] since the usage of neural networks provide several advan-
tages in modern SCA. The advantage of this approach is that numerous preprocessing
steps such as alignment of traces is not necessarily needed anymore. Instead, the
network learns how to deal with misalignments and corrects them automatically
during inference.

2. Exploiting ML by using SCA. For the second approach, SCA is utilized to recover
internal information of a ML model. In this case, analogously to recovering the secret
key of an encryption algorithm, the aim is to recover internal information of a ML
model, such as weights.
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We focus on the second approach in this thesis.

2.4 Neural Network Hardware Accelerators

Different types of hardware accelerators for neural network inference tasks exist. In this
section we describe different neural network hardware accelerators, namely our main
target NCS 2 as well as two of its competitors.

2.4.1 Intel Neural Compute Stick 2

The target device that we analyze is Intel’s Neural Compute Stick 2 (NCS 2, codename
MYRIAD), a rapid development and testing board. It is a neural network inferencing
hardware accelerator that is passively cooled via its casing and entirely powered via USB so
no external power supply is needed. It is run by a Myriad X VPU [Corb] that is clocked at
700MHz. The VPU has 16 Streaming Hybrid Architecture Vector Engine (SHAVE) cores as
well as 4GB memory together with an additional CMX (Connection MatriX) memory that is
shared between all cores. The Myriad X is also used in other products, e.g., DepthAI [Lux],
AAEON [AAE], or the OpenCV AI Kit [Ope]. Additionally, it is also available as a PCIe
compute module.
One important thing to note is that the NCS 2 operates on 16-bit floating point numbers
for performance reasons. Since training is usually done with 32-bit floating point numbers
the resulting models have to be converted from 32-bit to 16-bit floating point numbers. By
doing so, the exponent bits are reduced from 8 to 5 bits and the mantissa is reduced from
23 to 10 bits as illustrated in Figure 2.8.
An information loss is therefore unavoidable when converting the original model with
its 32-bit weights to the optimized model containing just 16-bit weights. However, even
though two bytes per number are lost, the accuracy of the model stays almost the same
because the impact of the last few digits on the resulting classification usually is rather
small. The NCS 2 automatically downsamples 32-bit inputs to 16-bit and upsamples 16-bit
results to 32-bit before sending them back to the host.
The performance of the predecessor of the Myriad X, the Myriad 2, was analyzed by
Rivas-Gomez et al. [Riv+18]. Also, it was used in DJI drones [Glo]. Antonini et al. [Ant+19]
compared the NCS2 and other accelerators that are designed to be used in edge devices
like the Google Coral or Nvidia Jetson Nano.

Operation Details

When attaching the stick to the host computer, it shows up as USB ID 03e7:2485 (Mo-
vidius Ltd., Movidius MyriadX), running at USB 2.0 speed (480 MB/s). The vendor
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Figure 2.8: Comparison of 16-bit and 32-bit IEEE 754 floating points. 32-bit IEEE 754 floats
use 8 exponent and 23 mantissa bits, whereas 16-bit IEEE 754 floats use only 5
exponent and 10 mantissa bits.

ID 03e7 belongs to Intel and 2485 is Intel’s product ID for the Myriad X. To run in-
ference tasks on the NCS 2, the device needs to be booted using a specific firmware.
This firmware is loaded automatically by the OpenVINO toolkit. It is located in the
directory inference-engine/temp/vpu/firmware/usb-ma2x8x/mvnc within the
openvino directory. After flashing the firmware, the stick “disconnects” and show up
again as 03e7:f63b (Intel Corporation, VSC Loopback Device, different product ID) and
now supports full USB 3.0 speed. When all inference tasks have finished and the script is
terminated, OpenVINO shuts down the stick and it returns to its USB 2.0 state.
The NCS 2 is capable of running several networks simulaneously. Additionally, OpenVINO
allows stacking several NCS 2 devices to improve performance.

Movidius Firmware The file usb-ma2x8x.mvcmd3 (approx. 2 MB) that is flashed to
the NCS 2 when waking it up from its idle state is a firmware file. Running strings

usb-ma2x8x.mvcmd gives hints that the firmware is based on RTEMS [Pro]:

status == RTEMS_SUCCESSFUL

Starting RTEMS Shell

/home/bmanciu/Work/MovidiusRTEMS-master/MovidiusRTEMS...

rtems-5.0.0 (MYRIAD2/w/FPU/ma2x8x)

2.4.2 Competing Edge Accelerators

Intel’s NCS 2 is not the only ML accelerator for edge devices. We found two competitors
that are built for similar tasks as the NCS 2: Google’s Coral [Goo] and Nvidia’s Jetson
Nano [NVI]. Bangash published a blogpost [Ban] where he compared the first generation
Intel Neural Compute Stick against the two competitors. Please note that there is a huge
performance improvement from the original Neural Compute Stick to the NCS 2.
The Google Coral is available both as a development board and as a dedicated ML co-
processor, making it similar to the NCS 2. The Jetson Nano by NVIDIA differs from the

3SHA256 sum: 87cac2fb3a750f490af583f0c9acc6700abe11ce1fb06fa04a55d1f4e324d5aa
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NCS 2 and Google’s Coral as it already ships as a whole board including flash storage and
peripheral access ports such as USB, HDMI etc.

2.5 The OpenVINO toolkit

The OpenVINO toolkit is an open-source deep learning framework by Intel for different
targets, such as CPUs, GPUs, Field-Programmable Gate Array (FPGA)s, or the NCS 2, as
well as heterogenous setups (e.g., CPU+GPU). In this thesis we focus on the NCS 2 as our
main target. OpenVINO consists of three parts:

• Model Optimizer (MO): the MO is a collection of scripts to convert and optimize
existing neural networks from a variety of different frameworks such as Tensor-
Flow [Mar+15], Caffe [Jia+14], MXNet [Che+15], Kaldi [Pov+11] to OpenVINO’s
internal IR. It also directly supports models in Open Neural Network eXchange
format (ONNX) [BLZ+19] format. We do not go into detail on how to convert a model
to IR since it is out of scope for this thesis.

• Inference Engine (IE): the IE is a set of libraries to load the converted network onto
the target device and do the actual inference. This is the part of OpenVINO that we
have the most to do with directly.

• nGraph: nGraph is the underlying framework that is developed and used by Intel
to enable framework-agnostic deep learning tasks (both training and inference) on
several hardware architectures [Cyp+18]). The IE uses nGraph internally.

The IR can either be modified through nGraph function calls (which is the official, supported
way) or through directly modifiying the resulting IR (consisting of a XML+BIN file pair).

2.5.1 Loading the IR onto the Target Device

After converting the original network to OpenVINO’s IR, the network can be loaded onto
the target, i.e. the NCS 2 by using the OpenVINO Inference Engine. The IE supports both
C++ and Python bindings – for our experiments, we stick to the Python bindings. We refer
the interested reader to Appendix B for sample code on how to deploy a model to the NCS
2.

Security The security section of the OpenVINO documentation [Cor21] is rather scarce
and only suggests to encrypt the model when transferring it between devices and to
decrypt it just before loading it to the target device. There is no option to explicitly load an
encrypted model or increase the security level in any way.
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1 <layer id="11" name="conv2/Conv2D/Transpose522_const" type="Const"
version="opset1">↪→

2 <data element_type="f16" offset="1728" shape="64,32,5,5" size="102400"/>
3 <output>
4 <port id="1" precision="FP16">
5 <dim>64</dim>
6 <dim>32</dim>
7 <dim>5</dim>
8 <dim>5</dim>
9 </port>

10 </output>
11 </layer>

Figure 2.9: Description of a convolution kernel for a model in OpenVINO IR.

The OpenVINO IR For our tests we use a model that is pre-trained and converted to
OpenVINO IR format. The OpenVINO IR consists of an XML file and a BIN file. The BIN
file contains the models weights as raw binary values. The XML file describes the structure
of the model, i.e. the layers and how they are connected as well as the hyperparameters
such as kernel size, and references the weights within the BIN file by their offset and length.
An example layer that references a convolution kernel in the BIN file is shown in Figure 2.9.

ONNX The ONNX format [BLZ+19] has been proposed as an versatile exchange format
of neural networks. Its specification is open and it is supported by a variety of companies.
OpenVINO directly supports neural networks in ONNX format without prior conversion
to its own IR format.

Converting the IR Hyodo is actively developing the tool openvino2tf [Hyo] to convert
models in IR to several other formats, including TensorFlow, ONNX and others. This
enables users of other frameworks to use the models as well.
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In this chapter we first explain different attack scenarios and attacker’s objectives in the
context of model recovery. We proceed by presenting a variety of existing attacks to recover
internals of neural network models (such as structure or parameters) through various
means. Finally, we highlight possible defenses proposed in the literature.
Different surveys especially tailored to attacks aiming at the recovery of neural network
models exist [IGGK19; CDGK21]. Isakov et al.’s extensive survey paper [IGGK19] covers a
broad range of attacks, from remotely conducted API attacks to invasive attacks against
neural network models. Recently, Chabanne et al. [CDGK21] released an up-to-date survey
of different side-channel attacks aiming to extract the architecture of neural network models,
including a list of possible countermeasures. Recovering the model’s structure already
greatly helps an adversary since different attacks allow to obtain a functionally equivalent
model when the structure is known.

3.1 Threat Model/Objectives

3.1.1 Threat Model

We assume the NCS 2 to be used in an IoT scenario where the NCS 2 is connected to some
low-power host (e.g., a Raspberry Pi). The host runs OpenVINO to convert and optimize
models for the NCS 2, program the NCS 2 with models, and run inference tasks on the
NCS 2. The attacker has physical access to the IoT setup. Therefore, she can perform
Man-in-the-Middle attacks against the USB connection1 and measure power consumption
and EM emanation of the NCS 2. From a software perspective, the attacker can trigger
inference tasks but may not execute any additional code. The inference model processed
by OpenVINO and loaded onto the NCS 2 is considered confidential intellectual property
that is unknown to the attacker. The attacker aims to learn the model.

3.1.2 Attacker’s Objectives

When attacking neural network models, different objectives are considered:

• Model extraction: extracting the architecture, i.e., the number and types of layers.

1e.g, using devices like the miniSniffer2 [bug]
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• Recovery of parameters: additionally, extract all the parameters such as weights and
biases.

• Input recovery: recovering inputs that have been used to initially train the model, or
generating inputs that yield to a specific behaviour.

A more recent, thorough survey of different architecture extraction attacks (and counter-
measures against them) is compiled by Chabanne et al. [CDGK21]. The authors focus
on architecture extraction attacks since due to the fact that if an adversary knows the
architecture, it is easier to also reconstruct the parameters. This is accomplishable through
more sophisticated attacks or by other deep learning methods. Jagielski et al. [Jag+20]
consider three different adversarial goals for model extraction:

1. Functionally Equivalent Extraction: According to Jagielski et al., this is the strongest
assumption, given only input-output pairs. Given a model M , the goal is to construct
a model M̂ such that for all inputs x it holds that M̂(x) = M(x) where M(x) is the
output of model M for a given input x. It does not consider specific constructs such
as dead-end neurons that do not contribute to the output.

2. Fidelity Extraction: For some goal similarity function S(p1, p2), the goal is to construct
a model M̂ that maximizes Pr[S(M̂(x),M(x))]. The authors give the label agreement
as an example for a similarity function. Fidelity extraction is significantly easier than
functionally equivalent extraction according to Jagielski et al. Note that to reach this
goal, the newly crafted model is required to also misclassify inputs that are incorrectly
classified in the original model.

3. Task Accuracy Extraction: The goal to achieve in this case is to match (or exceed)
the accuracy of the original model, i.e., maximizing Pr[M̂(x) = y(x)] for all inputs x
where y(x) is the real classification for x. Due to the relaxation that in this case the
model is allowed to exceed the accuracy of the original model, this is the easiest goal
to achieve out of the three goals.

3.1.3 Comparison to Block Ciphers

Carlini, Jagielski, and Mironov [CJM20] discuss that model extraction can be seen as the
cryptanalysis of a block-cipher. Instead of mapping plaintext to ciphertext using a keyed
function Ek, a neural network is a parameterized function fθ that maps inputs to outputs,
i.e., labels. They compare adaptive chosen-plaintext attacks with model extraction. Since
setting up a neural network usually does not involve any security considerations, they
argue that it should be even easier to perform their attack. According to their paper, there
are three main differences between classical cryptanalysis and model extraction.
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1. The main objective differs: cryptanalysis may be considered as successful even
without recovery of any key bits. This does not hold for model extraction where the
attack is only successful if values are recovered.

2. The input and output size of neural networks do not match the usual symmetric
encryption algorithms. The inputs are high-dimensional whereas the outputs are
low dimensional. The authors argue that it might be more precise to compare model
extraction with cryptanalysis of a MAC.

3. Neural networks usually process fixed- or floating-point numbers and operate using
the corresponding arithmetic whereas symmetric encryption usually makes use of
finite field integer arithmetic. This makes the attack of neural networks even easier
since a bit-perfect recovery of values isn’t necessary.

3.2 Attacks

Several works have already analyzed machine learning algorithms and the devices they
run on with respect to attacks requiring physical access. We first classify these attacks by
their approach. Then, for each attack class, we list and explain the related work, including
their results.

Power Attacks (Xiang et al.; Wei et al.; Maji, Banerjee, and Chandrakasan)

We found three publications related to power analysis in the context of neural networks.
Xiang et al. [Xia+19] discuss power side channel analysis to recover the internals of a Deep
Neural Network. By observing the power consumption while inference is performed using
different models, they obtain a power feature set consisting of mean, median and standard
deviation with respect to the power consumption for each model. The power feature set is
used to train a classifier. This classifier can then be used to identify which model has been
used for future power observations.
More recently, Maji, Banerjee, and Chandrakasan [MBC21] recover the model’s structure
and parameters through SPA and DPA on different microcontrollers.
Additionally, Wei et al. [Wei+18] succeed to recover input images of a trained CNN by using
power analysis against a FPGA-based hardware accelerator that executes the corresponding
model.

EM Attacks (Batina et al.; Chmielewski and Weissbart; Yu et al.; Takatoi et al.)

Batina et al. [BBJP19] show that a combination of timing and EM side-channel attacks
against hardware targets (Atmel Atmega328P and ARM Cortex-M3) to recover internals of
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neural network models are feasible. They were able to reconstruct the architecture including
the number of layers and their dimensions as well as several other hyperparameters (e.g.,
the activation functions) and even the weights of individual neurons, therefore succeed to
fully reverse-engineer the target model. Using DPA, they target the multiplication m = x ·w
where x is a known input and w is the secret weight to recover. Exactly recovering the value
is not required. Instead, they recover the weight up to a (previously chosen) precision,
which in their case is 0.01. They claim that this is the first generic, passive side-channel
attack to recover neural network models running on microcontrollers. This attack is one
example for a functionally equivalent extraction.
Chmielewski and Weissbart [CW21] achieved similar results for architecture extraction.
Instead of targeting general-purpose embedded devices, they focus on the Nvidia Jetson
Nano as the hardware target that ships with a GPU and is a dedicated embedded ML
accelerator.
Yu et al. [Yu+20] focus on binarized neural networks [Hub+16] which according to the
authors are often used on edge/IoT devices. Binarized neural networks differ from regular
neural networks in a way that both weights and outputs of the activation functions are
constrained to -1 or +1. They first extract the network architecture by SEMA and utilize
guessing heuristics based on timing SCA. Afterwards, they use different training sets to
train a model with the given structure with a Generative Adversarial Network (GAN)-like
approach. The resulting network achieves a very similar accuracy as the original network –
as high as approximately 96% in their tests.
Takatoi et al. [TSSL20] suggest to use SEMA to identify the activation functions as an
improvement over timing analysis as conducted in [BBJP19].

Timing Attacks (Duddu et al.)

Duddu et al. [DSRB18] show that timing attacks against neural network models are a
serious threat. The authors assume a black-box scenario, i.e., no internal information of the
model besides input and output dimensions are known. By feeding the measured execution
times for different model architectures as training samples to different regressors (such as
Decision Trees or Support Vector Machines), they obtain a classifier that is subsequently used
to predict the layer depth of the model. Afterwards, several models with fixed layer depth
but varying hyperparameters are trained using Reinforcement Learning. By limiting several
hyperparameters to well-established values (e.g., by limiting the kernel size to either 3
or 5), the search space is drastically reduced. Then, the model with highest accuracy is
being chosen. The accuracy of the resulting model is as close as 5% to the accuracy of the
original model. They propose to stack their attack with cache attacks to further improve
the accuracy.
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Cache Attacks (Hong et al.; Yan, Fletcher, and Torrellas; Liu and Srivastava)

Besides timing, power and EM analysis, adversaries may have more direct access to the
DUT. Cache attacks (applicable when the adversary can execute unprivileged code on the
same target) have been shown to be efficient to recover the architecture of a DNN.
Hong et al. [Hon+18] presented a cache side-channel attack (DeepRecon) to recover neural
network architectures, without actively querying the model. It is however required to run
DeepRecon the attack on the system that the model is running on. DeepRecon monitors ac-
cesses to the deep learning library (e.g., TensorFlow) that the victim model is using through
a cache side-channel technique called Flush+Reload and thereby is able to reconstruct the
network’s structure.
Yan, Fletcher, and Torrellas [YFT20] exploits the cache side-channel techniques Prime+Probe
as well as Flush+Reload to recover model’s structure using CacheTelepathy. Instead of tracing
the library functions, they focus on GEMM (generalized matrix multiplications) that are a
large component of neural networks.
Another attack called GANRED by Liu and Srivastava [LS20] employs a GAN in conjunction
with cache attacks to recover the structure of a model.

HERMES (Zhu et al.)

The HERMES attack by Zhu et al. [ZCZL21] is a novel attack to recover the internals of a
machine learning model, targeting the unencrypted PCIe communication between the host
CPU and GPU. They claim that this is the first black-box attack to steal the whole model.
This very powerful attack is able to recover the architecture and parameters of the model,
but mainly applies to high-end platforms with a powerful GPU.
By reverse-engineering both the used library (CUDA) and the PCIe communication, they
learn about the internals. The attack is split into an offline and an online phase. During
the offline phase, the adversary learns which commands, kernels, addresses etc. belong to
which layer type and builds a knowledge database out of it. During the online phase, the
sniffed PCIe traffic is analyzed. By utilizing the database from the offline phase, the original
network’s architecture, its hyperparameters and its parameters are reconstructed. Both
phases consist of a traffic processor for sorting out-of-order PCIe packets, an extraction
module to filter out commands that are of interest and a reconstruction module that is first
used to build up the knowledge database and later used for network reconstruction.

Membership Inference Attacks (Shokri et al.)

Another type of attack is the membership inference attack. In this scenario, an adversary’s
task is to determine whether a given input has been used to train a given model or not.
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3 Related Work

Shokri et al. present an attack [SSSS17] that works even in a remote black-box context, i.e.,
an adversary that only has access to the output of a model for a given input. They exploit
the fact that a model behaves differently, depending on whether an input has been used
as a training point or not. Based on the output distribution for a set of inputs, they train
new shadow models on the same platform (e.g., same cloud provider) that aim to match the
original model’s probability distribution. The final attack model aggregates results from
multiple shadow models and thereby learns to distinguish new inputs from inputs that have
been used to train the original model.

3.3 Countermeasures

Due to the effectiveness of these attacks on machine learning, countermeasures have
also been studied. Isakov et al. [IBCK18] point out timing side-channel countermea-
sures and propose power-efficient obfuscation methods. A non-exhaustive list of other
countermeasures proposed in the literature include detection mechanisms added to the net-
work [JSMA19], watermarking [Adi+18], homomorphic encryption [Dow+16] and garbled
circuits [RRK18]. Dubey, Cammarota, and Aysu [DCA20] first describe a DPA attack against
hardware inferencing. Afterwards, they propose mask-based countermeasures against first-
order DPA attacks. Hua et al. [HUZS20] introduce a memory protection scheme called MgX
for secure DNN hardware acceleration. Boemer et al. integrated homomorphic encryption
into nGraph, calling it nGraph-HE [BLCW19] and nGraph-HE2 [BCCW19] respectively.
While several countermeasures have been discussed, most only address specific attacks
and do not address the full range of threats that embedded machine learning engines face.
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4 USB Sniffing Attack

All experiments were conducted with the most recent OpenVINO version which at the
time of writing is 2021.4. We use Ubuntu Linux 18.04 and Python 3.7 on our host computer
since these are the officially supported versions by the most recent OpenVINO version.

We first describe our USB sniffing setup in Section 4.1. Then, we observe how the model
is transferred to the NCS 2 and show how to interpret this data in Section 4.2. Finally, in
Section 4.3 we show how to reconstruct the original OpenVINO IR from the results we
obtained before.

Threat Model The setup assumed for this section is shown in Figure 4.1. The attacker is
in a Man-in-the-Middle position between the host and the NCS 2, capable of capturing the
USB traffic between them. In addition, we allow the attacker the capability of triggering
the setup process (e.g., by power cycling the host or disconnecting and connecting the NCS
2) of the NCS 2 and running inference tasks.

4.1 Attack Setup

Setup of the NCS 2 with OpenVINO

When connecting the stick to a USB port on the host, the NCS 2 identifies as 03e7:2485
(Movidius Ltd., Movidius MyriadX) and registers as a USB 2.0 device. In order to en-
able inference tasks on the NCS 2, OpenVINO programs the Myriad X with a specific
firmware file1. The firmware is based on RTEMS [Pro]. After programming is done the
stick disconnects, boots the firmware, and reconnects again via USB 3.0 as 03e7:f63b
(Intel Corporation, VSC Loopback Device). The stick is now ready for receiving models to
run infer requests on.

Loading the IR to the NCS 2

When loading the model using the inference engine, the model is represented as a CNNNet-
work instance that builds upon nGraph in the memory of the host. nGraph then performs
several reordering, optimization and compilation steps – e.g., converting fully-connected

1filename usb-ma2x8x.mvcmd, approx. 2 MB
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Figure 4.1: MitM attack: The attacker installs a USB sniffer between host and NCS 2 to
capture the model while it gets programmed to the NCS 2.

layers to 2D-convolution layers, merging constant layers, or rearranging data, before
converting the network into a binary blob that is understood by the Myriad X VPU.
Afterwards, the binary blob is transferred to the NCS 2 in one burst transfer. The device
opens two communication channels per network, one for the input and one for the output.
Additionally, a watchdog thread periodically checks whether the stick still responds to
ping messages. The device then listens for infer requests targeting that specific network.
When an infer request arrives on the input channel, inferencing happens and results are
sent back via the corresponding output channel. These channels are not exposed to the
user explicitly but are rather used internally by OpenVINO. Due to the nature of those
channels, the stick can manage multiple networks in parallel and since each of them can
be addressed individually through their channels, the stick can perform inference on
multiple networks simultaneously. When requesting OpenVINO to shut down, the device
is rebooted, disconnects and reconnects in its USB 2.0 idle state again.

OpenVINO USB Communication Details

OpenVINO supports different log levels with LOG_NONE being the default log level. By
setting the log level to LOG_DEBUG, during device initialization a lot of debugging info
is displayed on the screen which helps to understand how the initialization process is
working. OpenVINO is built on top of two other libraries for communication, namely
NCAPI (low level NCS 2 API) and XLink (USB abstraction layer that builds upon libusb for
communication with the device).

4.2 Setup and Operation of the NCS 2 with OpenVINO

The attacker uses a hardware USB sniffer to realize the MitM position as depicted in
Figure 4.1 to capture the binary blob. An attacker with root privileges on the host can
also use tools like Wireshark [Wir] to capture the USB communication. On a linux system,
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Figure 4.2: Binary data structure used to send models to the NCS 2.

the USB sniffing module utilizes the kernel module usbmon. However, we found that due
to limitations of usbmon [boo], URBs (USB request blocks) larger than 2 MB cannot be
captured. This fact poses a serious limitation as the binary blobs describing the CNN
networks transferred to the NCS 2 easily grow beyond 2 MB in size. On a Windows host,
these limitations can be circumvented by using another software (such as USBlyzer [USB])
to sniff the USB packets. An attacker with access to the OpenVINO API on the host can
retrieve the binary file directly by calling the export function [Cora] of the executable
network which is meant for debugging purposes.

4.2.1 Analyzing the Binary Data Blob Headers

The binary data that is sent to the stick when uploading a network is easily distinguishable
from the status ping communication due to its larger packet size. We found the data to be
organized in different segments and containing two headers: a modified ELF header that
always contains the same data and a MV (movidius) header that partly depends on the
network and the version of OpenVINO. An overview of the structure of the binary data
is given in Figure 4.2. The MV header contains information about the number of stages
as well as the input and output size of the network but not their shapes. Afterwards, an
input and output section follows that describes the input and output layers of the network.
These sections contain information about the corresponding input/output layer’s name
that is going to be used later for inference requests and responses. Additionally encoded
is the location within the blob where the input/output shapes are stored. Then, a section
describing the stages of the network follows. The last part is a constant data section that
contains all the weights and biases which are referenced within the stage section. All the
shapes that are referenced throughout the previous sections can be found just at the end of
the constant data section. We still define it as a standalone section even though the starting
point is not explicitly stated in the MV header.

4.2.2 ELF Header

The communication starts with a static header that looks like a modified ELF header. This
header always contains the same values (for a fixed OpenVINO version). Table 4.1 shows
all fields contained in the ELF header as well as their default values set by OpenVINO.
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Table 4.1: ELF header.

Description Offset Type Value

e_ident 0 bytearray 0x7f, ’e’, ’l’, ’f’, 12 times 0x00

e_type 16 uint16 1

e_machine 18 uint16 2

e_version 20 uint32 2

e_entry 24 uint32 0

e_phoff 28 uint32 0

e_shoff 32 uint32 0

e_flags 36 uint32 0

e_ehsize 40 uint16 416 (header size in bits)

e_phentsize 42 uint16 0

e_phnum 44 uint16 0

e_shentsize 46 uint16 0

e_shnum 48 uint16 0

e_shstrndx 50 uint16 0

4.2.3 Movidius Bin Header

The Movidius Bin Header follows directly after the ELF Header. This header is more
interesting since it contains data that is actually dependent on the network, e.g. number
of inputs. As can be observed in Table 4.2, it contains information about the input size
and output size as well as offsets to four sections: the input section, the output section, the
stage section and the constant data section. The Movidius Bin Header is padded with zeros
until it is 64-byte aligned.

4.2.4 Input and Output Section

The input section precisely describes all the inputs of a model. Since OpenVINO currently
only supports one input, this structure is sent exactly once. All fields except the name field
have fixed lengths. The name field has a variable length; it is terminated by a zero-byte and
is always padded to a multiple of 16 bytes using additional zero bytes. The output section
looks exactly the same as the input section, except that it describes the outputs. Table 4.3
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shows the section’s fields.

4.2.5 Stage Section

The stage section (see Table 4.4) contains information about all the stages. Each layer of
the original network is being converted to one or more stages. Stages are separated by the
Stage border symbol which is defined as 0x7f83ff19 in the VPU plugin’s source code. This
bit pattern represents NaN when interpreted as a 32 bit IEEE 754 floating point number.
Additionally, when interpreted as a 32 bit integer (both signed and unsigned), it is a prime
number.

4.2.6 Data Section

The data section is implicitly split into two parts: constant data and constant shapes.
Besides that, the section is not further structured but contains only the raw data. All data
required by the model such as weights, biases etc. is written sequentially into the constant
data part. All layer shapes are added to the end of the data section afterwards. Other
sections reference the data by their offsets within this section. This section makes up by far
the largest part of the transmitted data.

4.3 Reconstructing the IR

To the best of our knowledge, OpenVINO does not support the conversion from the
binary format back to IR. This seems reasonable since not all transformations performed
by OpenVINO before creating the binary blob can be reverted. Admittedly, it is possible
to import the previously exported binary representation, but in this case the network can
only be executed on the specific target the binary representation was compiled for, i.e. the
NCS 2.

Due to the lack of official documentation for the data structures we gathered all information
from the source code for the VPU plugin combined with additional reverse-engineering.
For selected, smaller networks we manage to recover an IR of a model that is equivalent to
the original model in IR modulo non-revertible optimizations. This enables us to run the
extracted network on any other target supported by OpenVINO, i.e., CPU, GPU, or FPGA.

We begin by decoding the stage section to understand the shapes and connections of the
hidden layers in the model. Each stage is described by a type, dependent parameters, and
data. Most stages of interest come without any parameters or use default values. The
data is partitioned into several stage buffers. The stage buffers that are present for all stage
types are of great interest. Each stage has at least one input buffer and one output buffer
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but additional buffers are possible. E.g. for convolution layers, three additional buffers
are being used: for the kernel, the biases, and the additional scaling. The stage buffers
precisely describe the location and representation of the data that is being processed by the
corresponding stage. There are six different data locations: none, input (the infer request
data), output (the infer response data), blob (the const data section of the binary blob),
bss (buffer) and cmx (the on-chip memory that is shared between cores). In addition to
the data location, the data type (fp16 or fp32 for 16-bit or 32-bit float respectively) as well
as the shape and the data offset describing the exact location are given. Shapes are always
located in the blob location, indicated as constant shapes in Figure 4.2. 32-bit floats are only
being used in the Convert stages that downscale the input to 16-bit and upscale the output
to 32-bit – all other stages in our experiments used the data type fp16.

We observe that most stages of interest such as convolution and pooling are implemented
via the MyriadXHwOp stage type that is heavily parametrized. We therefore focus on
understanding the MyriadXHwOp stage type. The first MyriadXHwOp parameter is the
number of operations. Then, for each operation, an array of parameters follows, that states
whether the stage performs a convolution or a pooling, the corresponding kernel size,
padding strategy and size, stride, and whether a ReLU operation should follow. Since this
stage is hardware-accelerated, it can distribute workload to multiple cores, which allows
for offloading parts of the computation to different cores. Usually, each core performs
the same operations but with different offsets, which makes sense for the convolution
operation that moves the kernel over the input step by step. Since the computation of a
layer depends on the outputs of the previous layers, operations crossing layer boundaries
are performed sequentially.

At this point, we are able to fully reconstruct a model in IR from the binary data blob as
we know the layers, their types, shapes, connections, weights, and biases. An overview of
our reverse-engineering results is given in Table 4.5. But before evaluating the recovered
model, we give an example for the reconstruction steps to allow the interested reader to
reproduce our results more easily.

Example We give a short example for a subset of a very simple network that was trained
on the MNIST data set. We only highlight relevant buffer information for the first three
stages to give the reader an idea how data flow can be recovered. In Figure 4.3, the relevant
parts of the original hexdump are highlighted. This allows the reader to follow our example
more easily. Please note that the VPU uses little-endian representation for integers.

The network starts with a Convert (0x6f) stage (marked in red), using two buffers. We
skip over the first bytes of the stage until the first highlighted value which indicates that
the data type of buffer #0 is fp32 (0x03). The next highlighted values tell us that the
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00000140 78 00 00 00 6f 00 00 00 07 00 00 00 14 00 00 00 |x...o...........|
00000150 00 00 80 3f 00 00 00 00 00 00 00 00 01 00 00 00 |...?............|
00000160 03 00 00 00 43 00 00 00 02 00 00 00 03 00 00 00 |....C...........|
00000170 40 28 64 00 03 00 00 00 48 28 64 00 01 00 00 00 |@(d.....H(d.....|
00000180 00 00 00 00 40 0c 00 00 00 00 00 00 00 00 00 00 |....@...........|
00000190 43 00 00 00 02 00 00 00 03 00 00 00 40 28 64 00 |C...........@(d.|
000001a0 03 00 00 00 50 28 64 00 04 00 00 00 00 00 00 00 |....P(d.........|
000001b0 6f 00 00 00 19 ff 83 7f 60 00 00 00 13 00 00 00 |o.......`.......|
000001c0 00 00 00 00 04 00 00 00 00 00 00 00 21 43 00 00 |............!C..|
000001d0 04 00 00 00 03 00 00 00 78 28 64 00 03 00 00 00 |........x(d.....|
000001e0 88 28 64 00 04 00 00 00 00 00 00 00 00 00 00 00 |.(d.............|
000001f0 21 43 00 00 04 00 00 00 03 00 00 00 78 28 64 00 |!C..........x(d.|
00000200 03 00 00 00 98 28 64 00 05 00 00 00 00 f9 11 00 |.....(d.........|
00000210 13 00 00 00 19 ff 83 7f 2c 01 00 00 26 00 00 00 |........,...&...|
00000220 00 00 00 00 60 00 00 00 01 00 00 00 00 00 00 00 |....`...........|
00000230 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 |................|
00000240 04 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00 |................|
00000250 00 00 00 00 20 00 00 00 05 00 00 00 05 00 00 00 |.... ...........|
00000260 01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 |................|
00000270 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000280 00 00 00 00 05 00 00 00 00 00 00 00 21 43 00 00 |............!C..|
00000290 04 00 00 00 03 00 00 00 78 28 64 00 03 00 00 00 |........x(d.....|
000002a0 98 28 64 00 05 00 00 00 00 f9 11 00 00 00 00 00 |.(d.............|
000002b0 21 43 00 00 04 00 00 00 03 00 00 00 a8 28 64 00 |!C...........(d.|
000002c0 03 00 00 00 b8 28 64 00 03 00 00 00 80 00 00 00 |.....(d.........|
000002d0 00 00 00 00 03 00 00 00 01 00 00 00 03 00 00 00 |................|
000002e0 c8 28 64 00 03 00 00 00 cc 28 64 00 03 00 00 00 |.(d......(d.....|
000002f0 00 00 00 00 00 00 00 00 03 00 00 00 01 00 00 00 |................|
00000300 03 00 00 00 c8 28 64 00 03 00 00 00 d0 28 64 00 |.....(d......(d.|
00000310 03 00 00 00 40 00 00 00 00 00 00 00 21 43 00 00 |....@.......!C..|
00000320 04 00 00 00 03 00 00 00 d4 28 64 00 03 00 00 00 |.........(d.....|
00000330 e4 28 64 00 05 00 00 00 00 19 11 00 26 00 00 00 |.(d.........&...|

Figure 4.3: Hexdump excerpt of the binary blob sent to the NCS 2 to configure an MNIST
classifier. The dump shows the first three stages discussed in our example. The
relevant content that is discussed in our example is highlighted.

data shape is stored in the blob (0x03) at offset 0x00642840 and indicate that the actual
data is found at input (0x01) with offset 0x00. The data type of the output buffer is
fp16 (represented by 0x00) and the shape information is located at the same address
as for the input, indicating that there is no change. The output location is bss (0x04)
with offset 0x00, indicating that the result should be stored in a temporary buffer. Each
stage is terminated by the stage termination symbol 0x7f83ff19. From this it is easy to
reconstruct the first layer in our IR representation: It is of type Parameter (which is the
layer type for network inputs) with the shape that we just learned.

The second stage (marked in green) is a Copy stage (0x13). This stage copies data of type
fp16 from bss@0x0 (location of buffer #0) to cmx@0x11f900 (location of buffer #1), so
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the input information is stored in memory, accessible by all cores. We note however that
the shape has changed to (1,1,28,28) through inspection of blob@0x642878. Therefore we
reconstruct the corresponding stages that perform a reshape operation, namely a Const
layer that loads information regarding the new shape as well as a Reshape layer.

The third stage (colored in blue) describes a MyriadXHwOp operation (0x26) that is config-
ured to perform a convolution (0x00). We leave out the shapes to keep the example short.
The stage parameters describe the convolution more precisely, e.g., that padding should
be applied (0x01), the input comes via channel #0, output goes to channel #4, the kernel
is loaded via channel #1, biases flow in via channel #2 and scales are loaded via channel
#3. Moreover, the kernel size is 5x5, the stride is 1 and withReLU is set to 0x01 so that a
ReLU operation follows after the convolution. Then, channel information follows as previ-
ously shown for the other stages. Input data comes from cmx@0x11f900, weights from
blob@0x80, biases from blob@0x0, and scales from blob@0x40. Computed outputs are
stored to cmx@0x111900.

A convolution is represented by multiple layers in the IR XML: A Const layer to load the
convolution kernel, the actual Convolution layer, another Const layer to load the biases,
an Add layer to apply the biases and, in most cases, a ReLU layer following afterwards.
Since we learn the dimensions of the input, kernel, biases and output by observing the
buffer information, the layers are also easily reconstructable. For the Const layers, we
additionally reconstruct the weights by dumping the corresponding region from the blob
into the reconstructed BIN file and set the right offset and size parameters within the XML
file.

We keep track of the layers added to the XML file and insert the right connections between
them. Therefore, by observing values being read from blob, we can reconstruct weights,
shapes, etc. whereas observing values being read from and written to cmx allow us to
follow the data flow throughout the network.

Further Notes

OpenVINO internally computes fully-connected layers using 2D-convolution. The same
applies to 3D-convolution which is also implemented using several 2D-convolutions – those
computations are equivalent [21]. In these cases, the original network has a MatMul layer
whereas the reconstructed network has a Convolution layer. Therefore the reconstructed
network is not identical to the original network, but provides equivalent accuracy.

We refer to [Hyo] for further converting the IR back to other frameworks such as TensorFlow,
Caffe, ONNX and others, making the results obtained even more usable.
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Figure 4.4: The only input that results in a different classification. It is labelled as ‘9’ in the
MNIST data set. The original model’s prediction is ‘4’ (49.95%), followed by ‘9’
(48.41%). The reconstructed model’s prediction is ‘9’ (49.37%) followed by ‘4’
(48.97%).

4.3.1 Evaluation of Reconstructed Machine Learning Models

We conduct our experiments with a simple MNIST classifier model. The input is a 28x28
pixel grayscale image of the handwritten digit. The output is a vector containing ten entries
indicating the probability that the input image shows a certain digit.
We deploy the original model to the NCS 2 while observing the USB communication. We
reconstruct the USB blob from the corresponding packets and feed the blob to our recovery
script. The recovery script outputs both the model’s structure and its weights.
We then iterate over the MNIST training and test set (60000+10000 images), supply them
to the original model and record the outputs. The original model reaches an accuracy of
99.895% on the training set and 99.26% on the test set. We then deploy our reconstructed
model to the NCS 2 and repeat the experiment. We observe that we reach the exact same
accuracy of 99.895% on the training set and even a slightly increased 99.27% on the test set.
Thus, with a single exception, the reconstructed model makes exactly the same predictions
as the original model, i.e., they are (almost) functionally equivalent. The input that caused
a difference is depicted in Figure 4.4. We assume that the different classification results are
caused by rounding errors due to the low 16-bit floating point precision and the fact that
the given input is ambiguous.
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Table 4.2: Blob header.

Description Offset Type Value

magic_number 52 uint32 0x25ed

file_size 56 uint32 file size in bytes (including all headers)

major_version 60 uint32 6

minor_version 64 uint32 0

num_inputs 68 uint32 1

num_outputs 72 uint32 1

num_stages 76 uint32 depends on the model

input_size 80 uint32 inference input bytes (32 bit float)

output_size 84 uint32 inference output bytes (32 bit float)

batch_size 88 uint32 depends on the model

bss_mem_size 92 uint32

cmx_slices 96 uint32 depends on the model

shaves 100 uint32 depends on the model

has_hw_stage 104 uint32 boolean; depends on the model

has_shave_stage 108 uint32 boolean; depends on the model

has_dma_stage 112 uint32 boolean; depends on the model

input_section_offset 116 uint32

output_section_offset 120 uint32

stage_section_offset 124 uint32

const_data_section_offset 128 uint32
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Table 4.3: Input/Output section.

Description Type Comment

input_index/output_index uint32

buffer_offset uint32

name_length uint32

name bytearray padded to a multiple of 16 bytes

shape_type uint32

shape_code uint32

shape_size uint32

shape_dims_location uint32

shape_dims_offset uint32

shape_strides_location uint32

shape_strides_offset uint32

Table 4.4: Stage section.

Description Type Value

stage_length uint32 length of stage

stage_type uint32 first time

num_shaves uint32 number of shaves

params_pos uint32

stage_data bytearray depends on the stage

stage_type uint32 second time

split_symbol uint32 0x7f83ff19
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Table 4.5: Summary of the reverse-engineering results for the binary data blob configuring
an NCS 2.

Type Value Meaning

Buffer type

0x00000000 none

0x00000001 input

0x00000002 output

0x00000003 blob: constant data section

0x00000004 bss: temporal buffer

0x00000005 cmx: shared buffer

Data type
0x00000000 fp16

0x00000003 fp32

Stage type

0x00000013 Copy stage

0x00000026 MyriadXHwOp stage

0x0000006f Convert stage

Separators 0x7f83ff19 Stage separator
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5 Power Attack

In this chapter, we describe our experimental setup for power-based attacks in Section 5.1.
Afterwards, we evaluate the hardware side-channel based attacks in Section 5.2.

5.1 Power Attack Setup

We use a Digilent Analog Discovery 2 oscilloscope (+ a Digilent BNC adapter) with a 14
bit resolution and a maximum sample rate of 100 MS/s and a maximum bandwidth of 30
MHz. We attach a modified USB 3.0 expansion cable with an exposed power wire with an
additional resistor (1.1Ω) soldered in to measure the power consumption during operation
of the DUT. The first probe is attached right after the resistor (when seen from host to
DUT) and serves both as the power signal as well as the trigger for EM measurements. The
power signal is a good trigger since the power consumption of the NCS 2 in its idle state
is almost constant. A significant change can be observed during transmission of a model
or while performing inference tasks. The second probe is a Langer MFA-K 0,1-30 [EMV]
EM active probe that is placed onto the DUT. We amplify the EM probe’s signal using a
Mini-Circuits ZFL-1000LN amplifier. We removed the casing of the target to gain better
access to the board.

An overview of our setup is given in Figure 5.1. Figure 5.5 shows how we positioned the
EM probe.

5.1.1 Using the USB Connector as a Power Side-Channel

The power consumption of the NCS 2 can be measured by inserting a USB cable between
the USB port of our main working device (i.e., IoT device or workstation) and the NCS 2
and solder in a resistor at the USB VBUS wire. The VBUS wire is one of the four wires that
are present for all USB 2.0 ports. The other wires are D-, D+ and GND. Additional wires are
available on a USB 3.0 cable for high-speed throughput, still the VBUS wire serves as the
power supply. An undrilled USB extension cable is presented in Figure 5.2a. Figure 5.2b
shows the reassembled USB 3.0 cable that contains an additional resistor at the VBUS wire.
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Figure 5.1: Our experimental setup. Depicted are: DC power supply, oscilloscope, signal
amplifier, one EM probe, one power probe, the modified USB cable, the NCS 2,
the measurement table.

5.1.2 Scanning the Target

To find leakage points on the NCS 2, we utilized the measurement table at the “Lab for
secure hardware and software development” at the TH Lübeck [Lüb21]. The TH Lübeck
granted us access to the measurement table which is controllable via a python library
developed at TH Lübeck (schanpy) to enable precise, consistent movement of the DUT
below the EM probe to find leakage points. We preload the NCS 2 with a simple MNIST
classifier model and position the probe at the desired start point. Then the inference task is
being executed, EM emanations are measured and the table is moved by a small offset. The
process is repeated until the relevant chip area of the NCS 2 has entirely been scanned. We
decided to use a stepping size of 250 µm, resulting in 52× 120 = 6240 measurement points.
After scanning, the results are being visualized via a heatmap shown in Figure 5.3.
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5.2 Power Attack Results

(a) Undrilled USB 3.0 extension cable. (b) Reassembled USB 3.0 extension cable
with an additional 1.1 Ω resistor on the
power VBUS wire.

Figure 5.2: USB 3.0 extension cable.

Interpretation

The heatmap in Figure 5.3 shows the Signal-to-Noise Ratio (SNR) for each measurement
point where a lighter spot indicates a higher noise and a darker spot indicates lower noise.
For each measurement spot, we performed one inference using a simple MNIST classifier
and measure the power consumption as well as the EM emanation during inferencing.
The power measurements serve as a trigger whereas the EM measurements are saved
for further processing together with their physical board coordinates. First, we compute
the mean value µ and the standard deviation σ of the trace’s samples. Then, the SNR is
computed as µ/σ.

The power chip (TPS 65266) is highlighted in the middle picture and the Movidus Myriad
X chip is highlighted on the right picture by a green rectangle around each of them. Our
experiments show that measurements taken near this chip are too noisy and should be
avoided to obtain a clear signal. It is better to take a spot on the upper half of the stick
which then results in a signal that is easier identifiable. Other metrics such as variance
or the maximum sample value of each trace give similar results as the ones presented in
Figure 5.3.

5.2 Power Attack Results

In the following section we examine whether hardware side-channel attacks such as timing
attacks [Koc96] or simple power analysis [KJJ99] reveal secret information during the
inferencing process on the NCS 2.
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Figure 5.3: Left: SNR-heatmap of EM emanations. Middle: Top side containing the power
chip (TPS 65266). Right: Bottom side containing the Movidius Myriad X chip.
The image is flipped so that it matches the heatmap for better comparability.

5.2.1 Experimental Setup

The attack scenario for this section is shown in Figure 5.4. The attacker has physical access
to the NCS 2 and is capable of measuring either the power consumption or EM emanations
during operation.

5.2.2 Recovering the Model Structure

After queueing an inference request on the host, the OpenVINO library sends the input
data to the stick and the device initiates the computation. We again use a simple MNIST
classifier consisting of 2 convolutional layers for feature extraction, each followed by a
pooling layer. Two dense layers perform the classification. The input consists of 784
floating point numbers describing the grayscale values of the input image, the output
consists of 10 floating point numbers describing the probability that the input resembles
the corresponding digit. By only sending parts of the model to the stick, a differing
power consumption can be observed. Figure 5.6 shows several power traces as well as
the corresponding EM traces that have been recorded by sending subsets of the model.
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Figure 5.4: Power and EM attacks: The attacker measures voltage fluctuations in the supply
voltage for and EM emanations from the NCS 2 with an oscilloscope.

Figure 5.5: Positioning the Langer MFA-K 0,1-30 EM probe.

We use the peak (3) as a trigger. The upper trace has been recorded with a model that
only computes the two convolutions, without pooling applied to the second convolution.
The peak (1) occurs when computing the first convolution, peak (2) is caused by the first
pooling layer and peak (3) occurs due to the second convolution. When the NCS 2 sends
back the intermediate result, a pattern (4) is observed in the trace. When adding the second
pooling layer to the network, a small peak (5) is observed that is similar to (2). Since peak
(1) is smaller than peak (3), an adversary can conclude that the first convolution uses a
smaller kernel than the second convolution. A transpose operation follows after the second
pooling layer which is observable in the resulting power trace (6). In the next step, the first
dense layer is added. This layer has huge impact on the power trace (7). Finally, the second
dense layer (8) is added back to the network. Since the second dense layer is much smaller
than the first one, it is hardly visible in the trace. Still, a difference is visible by comparing
the position of the termination pattern (5) – which is shifted to the right and therefore not
included in the figure anymore.

Our observations show that even a single power trace leaks critical details about the model’s
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Figure 5.6: Comparison of power traces for different model stages. The upper plot shows
power traces while the lower plot contains EM measurements of the same
inference run.

structure. By observing the peaks, an adversary can recover the network’s structure and, to
some extent, estimate the layer’s dimensions.
Due to the fact that fully-connected layers are expressed as convolutions as well, we cannot
distinguish those types of layers. However this is not a problem since the outcomes of both
layer types are equivalent.
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6 Conclusions

6.1 Summary

In this thesis, we studied the vulnerability of the Intel NCS 2, a highly popular machine
learning accelerator for embedded IoT workloads with respect to attacks requiring physical
access. First, we familiarized ourselves with the device and investigated how the communi-
cation between it and the host is working. Then, we eavesdropped the USB communication.
Subsequently, we created a heatmap of EM emanations which pinpoints spots of interest on
the device. Lastly, we conducted further experiments to measure the power consumption
during inference.
We recall the research questions that we specified in the introduction:

Research Question 1: Does the NCS 2 leak secret information about the internal structure of
the currently deployed model through side-channels?
This research question can definitely be answered positively. We were successful in both
the USB sniffing attack scenario as well as the SCA attack scenario. In the USB attack
context, we were able to reconstruct the internal structure to an extent that allowed us to
recover a network representation that achieves (almost) the same results as the original
network. For this attack, not even a single inference request is needed. It is sufficient to
observe the USB communication when the model is being transferred to the NCS 2.
In the SCA attack context, we were able to clearly distinguish layer boundaries by observing
the power consumption and EM emanations of the DUT.
We note that the leakage is twofold: By capturing the USB traffic between the host and the
NCS 2 while transferring the model allows an adversary to reconstruct the model through
further reverse-engineering. By monitoring the power consumption or EM emanations of
the NCS 2 during inference, different layers are distinguishable and the model structure
can therefore be reconstructed by observing the patterns.
Even with a cheap oscilloscope, an attacker can learn the architecture of the model by
eye-balling a single power or EM trace that was collected while the device performed an
inference task.

Research Question 2: Is it possible to reconstruct the entire model from side-channel leakages,
if there are any?
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Unfortunately, the answer to our second research question is not as clear as it was for the
first research question. As previously shown, it is possible to reconstruct the entire model
by when observing the USB communication. Thus, for this kind of side-channel, the answer
is positive. However, applying statistical methods such as DPA to recover a single weight
from power or EM traces wasn’t successful yet. The reason for this remains unclear due to
time limitations.

6.2 Future Research Topics

We propose multiple future research directions here.

Parameter Recovery via DPA We propose to further investigate whether the power and
EM leakages are exploitable to obtain further details regarding the model’s parameters. To
do so, we suggest to start with a more detailed leakage assessment (e.g., using the t-test)
and then further analyze the corresponding leakage spots.

Multi-Model Deployment The NCS 2 is capable of running infer requests to multiple
models simultaneously. We did not investigate whether our power attack still works in this
scenario. We are confident however, that our USB attack still works in this case. Instead of
targeting the infer requests, we target the model transfer directly. Since OpenVINO inter-
nally uses channels, it is still easy to distinguish multiple models. Therefore, reconstructing
all models that have been transferred should be easily reconstructable.

Multi-Device Deployment It is also possible to stack multiple NCS 2 to share the work-
load between them. We only analyzed the single-device scenario and leave the multi-device
scenario for future work.

Custom Layers OpenVINO supports custom layers. User can implement their own func-
tionality by supplying OpenCL kernels suited to their needs. We did not investigate how a
custom implementation of different operations might behave. Implementing operations
via custom layers might defeat the approaches presented in this thesis in several ways:

• the power and timing characteristics may differ from the standard operations

• the custom layer could actively implement countermeasures by itself

Similar Devices Other devices (such as the Google Coral or the Nvidia Jetson Nano)
might also leak confidential information about the deployed model. Thus, we propose to
analyze physical attacks against them as well to establish better comparability of results.
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6.2 Future Research Topics

Countermeasures The nature of the attacks we presented is inherently different which
means that finding effective countermeasures is not trivial. Nevertheless, future work has
to find solutions to protect IoT ML accelerators against physical and logical attackers alike
while meeting power constraints and performance requirements. Countermeasures existing
today may not meet these requirements as secret sharing or homomorphic encryption still
come with huge overheads or performance losses.
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A USB Blob Headers

0000 7f 65 6c 66 00 00 00 00 00 00 00 00 00 00 00 00 .elf............

0010 01 00 02 00 02 00 00 00 00 00 00 00 00 00 00 00 ................

0020 00 00 00 00 00 00 00 00 a0 01 00 00 00 00 00 00 ........ .......

0030 00 00 00 00 ed 25 00 00 80 4a 64 00 06 00 00 00 ....í%...Jd.....

0040 00 00 00 00 01 00 00 00 01 00 00 00 0e 00 00 00 ................

0050 40 0c 00 00 28 00 00 00 01 00 00 00 80 18 00 00 @...(...........

0060 09 00 00 00 07 00 00 00 01 00 00 00 01 00 00 00 ................

0070 01 00 00 00 c0 00 00 00 00 01 00 00 40 01 00 00 ....À.......@...

0080 80 1f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

0090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00c0 00 00 00 00 00 00 00 00 10 00 00 00 69 6e 70 75 ............inpu

00d0 74 00 00 00 00 00 00 00 00 00 00 00 03 00 00 00 t...............

00e0 43 00 00 00 02 00 00 00 03 00 00 00 40 28 64 00 C...........@(d.

00f0 03 00 00 00 48 28 64 00 00 00 00 00 00 00 00 00 ....H(d.........

0100 00 00 00 00 00 00 00 00 10 00 00 00 6f 75 74 70 ............outp

0110 75 74 00 00 00 00 00 00 00 00 00 00 03 00 00 00 ut..............

0120 43 00 00 00 02 00 00 00 03 00 00 00 c4 2a 64 00 C...........Ä*d.

0130 03 00 00 00 dc 2a 64 00 00 00 00 00 00 00 00 00 ....Ü*d.........

0140 78 00 00 00 6f 00 00 00 07 00 00 00 14 00 00 00 x...o...........

0150 00 00 80 3f 00 00 00 00 00 00 00 00 01 00 00 00 ...?............

0160 03 00 00 00 43 00 00 00 02 00 00 00 03 00 00 00 ....C...........

0170 40 28 64 00 03 00 00 00 48 28 64 00 01 00 00 00 @(d.....H(d.....

0180 00 00 00 00 40 0c 00 00 00 00 00 00 00 00 00 00 ....@...........

0190 43 00 00 00 02 00 00 00 03 00 00 00 40 28 64 00 C...........@(d.

01a0 03 00 00 00 50 28 64 00 04 00 00 00 00 00 00 00 ....P(d.........

01b0 6f 00 00 00 19 ff 83 7f 60 00 00 00 13 00 00 00 o....ÿ..`.......
01c0 00 00 00 00 04 00 00 00 00 00 00 00 21 43 00 00 ............!C..

01d0 04 00 00 00 03 00 00 00 78 28 64 00 03 00 00 00 ........x(d.....

01e0 88 28 64 00 04 00 00 00 00 00 00 00 00 00 00 00 .(d.............

01f0 21 43 00 00 04 00 00 00 03 00 00 00 78 28 64 00 !C..........x(d.

Binary hex dump. Colors indicate: ELF header, MV header, Input section, Output section,
Stage section (partially).
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B Inference Engine Python Example Code

Before running the code, the OpenVINO environment needs to be set up properly. This is
accomplished by running the setupvars.sh (or setupvars.bat when using Windows)
shell script file that ships with OpenVINO.

1 from openvino.inference_engine import *
2 import tensorflow_datasets as tfds

3

4 # load the MNIST test set

5 mnist_test_ds = tfds.load('mnist', split='test')

6 inputs = list()

7 for img in mnist_test_ds:

8 inputs.append(img['image'].numpy().astype('float32')/255.0)

9

10 # initialize the inference engine

11 core = IECore()

12 # load model into memory

13 net = core.read_network('network.xml', 'network.bin')

14 # initialize the target, and transfer the model

15 exec_net = core.load_network(device_name = 'MYRIAD', network = net)

16

17 # define inputs: use first three images from the MNIST test set

18 my_inputs = [img.reshape(1, 784) for img in inputs[:3]]

19 for img in my_inputs:

20 # run the actual inference on the input

21 result = exec_net.infer({'input': img})

22 # print the results

23 print(result['output'])

Outputs:

[[0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]]

[[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

[[0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]]

The outputs indicate that the first three test images represent the digits 2, 0, and 4.
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Glossary

AES Advanced Encryption Standard. xv, 16

ASIC Application-specific integrated circuit. 1

BNC radiofrequency connector, named after its designers (Bayonet Neill Concelman). 39

CNN Convolutional neural network. 10, 13, 23, 29

CPU Central Processing Unit. 19, 31

DPA Differential Power Analysis. xv, 15, 16, 23, 24, 26, 46

DUT device under test. 5, 15, 25, 39, 40, 45

ELF Executable and Linked File. xiii, 29, 30

EM Electromagnetic. xi, xv, 3, 15, 21, 23, 25, 39–46

FPGA Field-Programmable Gate Array. 19, 23, 31

GAN Generative Adversarial Network. 24, 25

GPU Graphics Processing Unit. 1, 19, 24, 25, 31

IE Inference Engine. 19

IoT Internet-of-Things. 2, 3, 21, 24, 39, 45, 47

IR Intermediate Representation. xi, xv, 19, 20, 27, 31, 32, 34

ML Machine learning. 1, 16, 18, 24, 47

MLP Multi-layer perceptron. xv, 6, 7, 10

MNIST Modified National Institute of Standards and Technology, a popular handwritten
digits database used for machine learning. xv, 13, 14, 32, 35, 40–42

MO Model Optimizer. 19
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Glossary

MS Megasamples. 39

NCS 2 Neural Compute Stick 2. xii, xv, 2, 3, 5, 17–19, 21, 27–29, 31, 35, 38–43, 45, 46

ONNX Open Neural Network eXchange format. 19, 20, 34

OpenCL Open Computing Language, an open standard for parallel programming of
heterogenous systems. 46

OpenVINO Open Visual Inference and Neural Optimization toolkit. xii, xv, 5, 18–21, 27–31,
34, 42, 46, 51

ReLU Rectified Linear Unit. 8, 9, 14

RTEMS Real-Time Executive for Multiprocessor Systems. 18, 27

SCA Side-Channel Analysis. 3, 16, 24, 45

SEMA Simple Electromagnetic Analysis. 15, 24

SHAVE Streaming Hybrid Architecture Vector Engine. 17

SNR Signal-to-Noise Ratio. xv, 41, 42

SPA Simple Power Analysis. 14, 15, 23

TPU Tensor Processing Unit. 1

USB Universal Serial Bus. xv, 2, 3, 17–19, 21, 27–29, 35, 39–41, 45, 46

VPU Vision Processing Unit. 2, 17, 31, 32
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