
Security analysis of hybrid Intel CPU/FPGA platforms using
IOMMUs against I/O attacks

Sicherheitsanalyse von hybriden Intel-CPU/FPGA-Plattformen mit
IOMMUs gegen E/A-Angriffe

Masterarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Christoph Jannik Peglow

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

Lübeck, den 30. Juli 2020

Abstract

This master thesis reviews the security of state-of-the-art hybrid platforms consisting of
Intel Xeon CPUs and Field Programmable Gate Arrays (FPGAs). These are now increas-
ingly found with cloud providers in „Infrastracture-as-a-Sevice“ models. Some Hardware
interconnects, such as PCIe or Thunderbolt, offer the connected peripheral devices Direct
Memory Access (DMA), which allows them to access arbitrary memory locations unmon-
itored. Input/Output Memory Management Units (IOMMUs) are a memory protection
mechanism used to to prevent peripherals from abusing Direct Memory Access (DMA)
to attack the CPU by adding an address translation layer. The IOMMU comes with addi-
tional translation caches to compensate for the negative performance impact of the added
abstraction layer. We have evaluated a hybrid system with an active IOMMU in terms
of its security against DMA attacks. Our investigations have shown that, in our threat
model, a DMA attack is still possible, but its practical relevance has to be reviewed further.
Furthermore, we tried to reverse engineer the I/O Translation Look aside Buffer (IOTLB),
one of the translation caches, but were not able to guess the correct mapping function yet.

Diese Masterarbeit untersucht die Sicherheit modernster Hybridplattformen, die aus Intel
Xeon CPUs und Field Programmable Gate Arrays (FPGAs) bestehen. Diese finden sich
nun zunehmend bei Cloud-Anbietern in „Infrastracture-as-a-Sevice“ Modellen. Einige
Verbindungsstandards, wie PCIe oder Thunderbolt, bieten den angeschlossenen Periph-
eriegeräten Direkten Speicherzugriff (DMA) an, der es diesen Geräten erlaubt unkon-
trolliert auf beliebige Speicheradressen zuzugreifen. Input/Output Memory Manage-
ment Units (IOMMUs) sind ein Speicherschutzmechanismus, der verwendet wird, um zu
verhindern, dass Peripheriegeräte DMA missbrauchen, um die CPU anzugreifen. Dies
geschieht durch das Hinzufügen einer zusätzlichen Adressübersetzung. Die IOMMU
verfügt über Übersetzungs-Caches, um die negativen Auswirkungen der Abstraktionss-
chicht auf die Leistung zu verringern. Wir haben ein Hybridsystem mit einer aktiven
IOMMU im Hinblick auf seine Sicherheit gegen DMA-Angriffe bewertet. Unsere Unter-
suchungen haben gezeigt, dass ein DMA-Angriff in unserem Bedrohungsmodell immer
noch möglich ist. Die praktische Relevanz des Angriffes muss allerdings noch weiter über-
prüft werden. Darüber hinaus haben wir versucht, den I/O Translation Look aside Buffer
(IOTLB), einen der Übersetzungs-Caches, zu analysieren, waren aber noch nicht in der
Lage, die korrekte Abbildungsfunktion zu erraten.

iii

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

Lübeck, 30. Juli 2020

v

Acknowledgements

First I would like to thank Prof. Dr. Thomas Eisenbarth from the Institute for IT-Security
at the University of Lübeck, without whose supervision this work would not have been
possible. I would also like to thank my personal supervisor, Thore Tiemann, for always
providing great advice and helping me to the best of his ability, especially during the
Corona pandemic. Last but not least, I would like to thank my proofreaders Leon, Malte,
Sophie and Thore for their many helpful comments.

vii

Contents

1 Introduction 1
1.1 Goal of this Master Thesis . 2
1.2 Threat Model . 3
1.3 State of Research . 4
1.4 Approach . 5

2 Background 7
2.1 Computer Architecture Background . 7

2.1.1 I/O Address Spaces . 8
2.2 Peripheral Component Interconnect . 9
2.3 Peripheral Component Interconnect Express 9

2.3.1 Mechanisms that impact PCIe Performance 10
2.4 Direct Memory Access . 11

2.4.1 Sequence of a third-party DMA transaction 13
2.5 DMA Attacks . 13
2.6 Memory Protection Mechanisms . 15

2.6.1 Intel Virtualization Technology for directed Input/Output 16
2.6.2 DMA remapping . 17

2.7 Caches . 21
2.7.1 Translation Look aside Buffer . 23

2.8 Our Hardware . 24

3 Implementing a DMA Attack 25
3.1 DMA Attack with IOMMU disabled . 25

3.1.1 Hardware Implementation . 25
3.1.2 Software Implementation . 26
3.1.3 Timing Measurements . 28

3.2 DMA Attack with IOMMU enabled . 31
3.2.1 Timing Measurements . 32

4 Reverse Engineering the IOTLB 37
4.1 First Test . 37

4.1.1 Results . 38

ix

Contents

4.2 Direct Mapping Hypothesis . 39
4.2.1 Results . 41

4.3 XOR Mapping Hypothesis . 44

5 Conclusions 47
5.1 Summary . 47
5.2 Discussion . 48
5.3 Future Work . 48

References 51

x

1 Introduction

Modern computers are a complex systems of interlocking hardware and software com-
ponents. Especially important for many application scenarios are Input/Output (I/O)
devices. These devices are used to process an input stream of data from the outside world
and/or produce an output stream of data to communicate with it. I/O devices can in-
tegrated in the system internally or connected as external devices through various inter-
faces (peripherals). A few examples of classical internal I/O devices are network adapters,
graphical processing units (GPUs) and field programmable arrays (FPGAs). Docking sta-
tions, projectors and even USB-C chargers are external devices.
To increase the performance of these devices, Direct Memory Access (DMA) allows them
to fully access system memory. This enables the CPU to not take part in data transac-
tions, between I/O devices and the main memory to keep working on other tasks. This,
however, requires trust in the I/O devices because DMA transactions are not monitored.
These devices even gain access to the operating system’s internal data structures, placing
the peripheral in the OS’s Trusted Computing Base (TCB).
Since the early 2000s, multiple connection standards on the markets have arisen that make
DMA available to external devices through FireWire, Thunderbolt 2 and now USB-C with
Thunderbolt 3. This led to an increase of interest in DMA attacks like [Dor], [BDK05]
and [Boi06], where the attackers were able to extract data from the victim’s computer or
executed privileged code through peripheral devices.
Having physical access to a system made these attacks easy to accomplish. And with
the ongoing digitization of the economy, education, health care and many other areas,
OS vendors and hardware producers acknowledged these threats and started developing
countermeasures against such DMA attacks. One of the countermeasures is the Input/Out-
put Memory Management Unit (IOMMU or I/O MMU). The goal of this countermeasure is
to assign memory regions to peripheral devices and prohibit them from accessing any-
where else. This prevents malicious devices from snooping in memory and modifying
other processes behavior. Something with a very similar functionality had already been
developed in Memory Management Units (MMUs), which implement an abstraction layer
for software applications. By translating the physical addresses (used by the hardware) of
the RAM to virtual addresses (used by software processes), the software is only aware of its
own reserved memory regions and can not access other applications memory.
IOMMUs are also used to assign I/O devices to virtual machines. Intel calls their imple-

1

1 Introduction

Figure 1.1: The IOMMU translates the I/O virtual addresses of memory requests to phys-
ical addresses and applies access control, similar to how the MMU translates
virtual addresses from processes. (Taken from [MRG+19]).

mentation to support the virtualization of platforms Intel Virtualization Technology (Intel
VT). A component of Intel VT is the IOMMU, called Intel Virtualization Technology for di-
rected I/O (Intel VT-d), which is used to isolate and restrict device access to the resources
assigned to that partition. This works in the same way as MMUs, just that the virtual
addresses (VAs) here are called I/O virtual addresses (IOVAs). The translation process from
IOVA to physical address (PA) is called DMA remapping and uses multiple levels of page
tables. A full table lookup of an IOVA to a PA is slow, which is why an I/O Translation
Lookaside Buffer (IOTLB) is used. This is a cache that stores recently translated address-
pairs. Gras et al. [GRBG18] have shown that cache side-channel protections are defeatable
by attacking the TLB of the MMU. As a result they were able to break multiple encryption
schemes and extract plain text messages from a VPN connection. This idea is not only in-
teresting because the authors were able to circumvent state-of-the-art memory protection
mechanisms, but also because there was previously the assumption that the TLB was in-
sufficiently reliable and too coarse-grained to work as an attack vector. We will investigate
whether this assessment is also wrong for the IOTLB.

1.1 Goal of this Master Thesis

The goal of this thesis is to review the security of current hybrid platforms of Intel Xeon
CPUs and FPGAs with enabled IOMMU. To validate this, we are going to verify the fol-
lowing theses:

• It is possible to implement a DMA attack, that leaks sensitive information or gives
the attacker full control over the victim system, using the FPGA.

• The IOTLB is a viable covert channel for cooperating parties.

• The I/O Translation Look aside Buffer can be used as a timing based side-channel
to attack other peripherals.

2

1.2 Threat Model

1.2 Threat Model

For our threat model we consider an Infrastructure-as-a-Service (IaaS) scenario that is
common on rented cloud servers, which offer the tenant accelerators like FPGAs [Ama],
[ECS]. These hybrid platforms of Intel Xeon CPUs and FPGAs have become increasingly
popular over the last years. To be economically efficient and have high resource utiliza-
tion, the service provider rents the same server to multiple customers so that their ap-
plications run in parallel, in their own virtual machines (VM). To isolate these VMs, a
VM monitor (VMM), also called hypervisor, is used to virtualize and schedule system
resources. Practice has shown, however, that this does not stop an attacker from extract-
ing information, since the virtualized hardware is based on shared physical components
like the RAM. This enables an attacker, that is capable to perform a DMA or cache side-
channel attack on that machine, to spy on the other processes. Furthermore a DMA attack
might also be able to manipulate program behavior by modifying the main memory. This
violates several security goals such as confidentiality and integrity of data that a service
provider should assure its customers.
The following criteria define our threat model:

1. It does not matter whether the FPGA is an external or internal device.

2. The FPGA has to be programmable by an authorized user and capable of send-
ing memory read and write requests through a DMA-capable interface, e.g. PCIe,
FireWire or Thunderbolt. Devices with only read access can also be used to attack a
system, but this limits the gains of an attack to extracting data and does not give the
ability to manipulate control flow or to gain full control over the system.

3. The user should only be able to execute unprivileged code on the connected CPU.

4. Users are not able to alter the OS, device driver, I/O controller or the functionality
of the FPGA in such a way that it is not usable by other users or that it imitates a
different device on the server as shown in [MRG+19]. In our case this is detectable
behavior, because the expected device disconnects and another new device connects
to the system if the peripheral is hot swappable. If it is not, this action would need a
server restart, which should not be possible to an unprivileged user and alarms the
service provider.

5. The attack should be transparent to the renter and other users.

3

1 Introduction

1.3 State of Research

DMA attacks from external peripherals have been possible since FireWire ports were build
into PCs and laptops. Some of the earlier attacks were presented in [Dor], [BDK05] and
[Boi06]. Later, attacks over PCI, PCIe and Thunderbolt were also discovered [AD10],
[BS12], [sr14]. Inspired by these attacks, generic open source DMA attack platforms like
SLOTSCREAMER [FC] [Fit] and PCILeech [Fri] have been developed. These platforms
can steal sensitive data, violate kernel security policies and even take full control of their
victim through various hardware interfaces and operating systems. A big downside of
these attacks and platforms is, however, that they require unrestricted access to system
memory. This means that they do not work when faced with memory protection mecha-
nisms, such as an IOMMU.

Over the last years, a few attacks with the capability of circumnavigating an IOMMU have
been presented. However, many of them take advantage of the early boot phase of the
computer where the IOMMU is not yet enabled or configured correctly. Many platforms
enable DMA at boot time, before the OS is loaded. As a result the IOMMU is not setup
when the attack strikes. Sang et al. [SELND10] proposed to manipulate the IOMMU page
tables, ACPI tables and configuration registers, but did not show working exploits. This
should have been possible however, as Wojtczuk et al. [WRT09] did show how to modify
the ACPI tables during boot one year earlier, tricking the OS into believing there was no
IOMMU present on the system. Morgan et al. [MEANK16], [MEANK18] then presented in
2018 a proof-of-concept, in which they exploited a vulnerability window during startup.
In this window, they wrote a malicious context table into the RAM and then overwrote
the OSs root table entry to point to their own malicious table. This resulted in the IOMMU
handling every DMA request by their device in pass through mode, which means every
access is granted.

In early 2019, Markettos et al. [MRG+19] presented Thunderclap, a novel hardware plat-
form based on an FPGA, able to attack systems with IOMMU protection. Their approach
was to attack the DMA interface between peripherals and device drivers, by abusing spa-
tial and temporal vulnerabilities in the memory pages allocated by the driver for DMA ac-
cess. Memory addresses are normally grouped into pages that can be reserved by a device
driver for its connected device. However, drivers were able to allocate memory that was
smaller than the smallest page size. Since the IOMMU mapping is page-granular, the pe-
ripheral always had access to the whole memory page. This resulted in a leakage of mem-
ory from other processes and even in kernel pointer exposure, which was abused to gain
access to a root shell on the victim’s system. Temporal vulnerabilities can appear when the
device driver unmaps memory but the translation-data is still cached in the IOTLB. For as

4

1.4 Approach

longs as the cache entry is not invalidated, the device can still access that memory page,
even when it is allocated to another process. The IOTLB invalidation process happens
asynchronously on modern system to increase performance.

PCIe, a high-speed serial connection used in almost all modern computers, supports Ad-
dress Translation Services (ATS). This feature comes with a severe security flaw by design
and has been briefly mentioned by [MRG+19] and [Kup18]. The purpose of this service
is for devices to be able to implement their own Translation Lookaside Buffer to bypass
IOMMU translation and relieve stress from the IOTLB. A malicious device can simply
set the necessary header bit for every memory request, implying that no address transla-
tion by the IOMMU is necessary. If this feature is enabled by the OS, an attacker can get
unrestricted access to memory, even with enabled IOMMU.

Another focus of our work lies on cache attacks. They are the most prominent side-channel
attack class and there are many different variants. Some examples are Flush+Reload [YF14],
Prime+Probe [OST06] and Evict+Time [OST06]. Cache attacks take advantage of the fact
that caches are shared between processes, even though the main memory is not, for isola-
tion reasons. As a result, cache side-channel protections have been deployed to the shared
CPU caches. These range from denying an attacker the ability to make precise timing
measurements or partitioning the caches’ sets [KPMR12] or ways [LGY+16].

Gras et al. [GRBG18] have shown how to defeat cache side-channels protections, such as
CAT and TSX and were able to reconstruct EdDSA and RSA keys with high probability.
They accomplished this by attacking the Translation Look aside Buffer (TLB) of the MMU,
which was not protected by state-of-the art-cache side-channel protections and still shared
by processes. To be able to carry out their attack, they reverse engineered the TLBs struc-
ture, i.e. the number of sets and ways, which are kept secret by Intel. They found out that,
for modern generations of Intel processors, different mapping algorithms were used for
the different levels of caches. After exploring how to monitor the cache line of the TLB,
they trained a classifier that distinguishes the accessed TLB sets through timings.

1.4 Approach

We will start by implementing a simple DMA attack, that works with a disabled IOMMU,
on our test platform to get an understanding of how to program the hardware and to see
if other memory protection mechanisms are in place. In the second step we will enable
the IOMMU and check whether our attack still works. We also take basic timing measure-
ments and compare them to measurements with a disabled IOMMU. From that we will be
able to derive the impact of the additional abstraction layer on the transaction time. This
knowledge is needed when we start analyzing the IOTLB. Then we will analyze whether

5

1 Introduction

the temporal and spatial vulnerabilities have been closed and if so, how. If the current
state of the IOMMU is still vulnerable to these security flaws, we will implement attacks
to abuse them and gain control over the victim’s system. However, we will not use PCIe
Address Translation Services to perform an attack.
After exploring the attack scenarios using, we want to focus on the IOTLB. We are going
to try to replicate the experiments done by Gras et al. [GRBG18] in the context of IOTLBs.
Since the functionality of TLBs and IOTLBs is basically the same, we hope that a very
similar mapping function from IOVA to cache set is used. If we are successful in reverse
engineering our IOTLB and creating multiple eviction sets, we want to build a covert
channel through which cooperating parties on the same machine can communicate. Lastly
we want to show that the IOTLB can be used as a coarse-grained side channel to attack
other peripherals.

6

2 Background

This chapter provides the necessary background needed to understand the approach in
the following chapters. First, we describe the Intel computer architecture, focusing on the
important components needed for DMA. Then we explain the basics of PCI and PCIe,
followed by an overview over DMA and how it has been abused in the past to attack
systems. After that we introduce Memory Protection Mechanisms and explain how In-
tel’s countermeasure against such DMA attacks, the Virtualization Technology for Directed
Input/Output, works. In the last part of that section we introduce translation caches. To
conclude this chapter we present the hardware we used in our experiments.

2.1 Computer Architecture Background

To understand the communication between CPUs and peripherals, it is important to grasp
the basics of modern computer architecture. The information in this section is taken from
Intel SGX Explained [CD16], unless specified otherwise.
The backbone of a modern computer is the motherboard. It connects all the resources of
a computer, beginning with the memory (RAM) and processors, as well as all kinds of
Input/Output devices (I/O devices or peripherals) like keyboard and mouse, display
adapters for monitors and network interface cards (NIC). These peripherals are used by
the CPU to communicate with the outside world. Internal communication takes place via
different bus systems. Most buses on the motherboard come together in a Platform Con-
troller Hub (PCH), also known as chipset or I/O Controller Hub. This companion chip is
an evolution of the former southbridge, while the former northbridge was mostly integrated
into the uncore region of the CPU, as seen in fig. 2.1 [Tur14].
The PCH houses the controllers for many interfaces like Universal Serial Bus (USB), Serial
ATA (SATA) and Peripheral Component Interconnect (PCI). For bus systems that are DMA
capable, part of their controller can be a Direct Memory Access Controller (DMAC) (see
section 2.4). The Intel 200 and Intel Z370 Series Chipset Families Datasheet, for example,
list a total of 4 DMA controllers for GSPI, I2C, UART and the Integrated Sensor Hub (ISP)
[Int17] [Int18]. The PCH is connected directly to the CPU via a point-to-point serial link,
known as Direct Media Interface (DMI). DMI is used as a high-speed bus to allow quick
data exchange between the CPU and the I/O devices connected to the PCH. PCI and PCI
Express (PCIe) will be introduced in section 2.2.

7

2 Background

CPU Die

Core 1 Core 2

Core 3 Core 4

L3 Cache

Memory ControllerDRAM

I/O ControllerPCIe Gen 3.0 devices

Platform Controller Hub

USB
Controller

USB ports

SATA
Controller

SATA Ports

Graphics Unit

DDR

PCIe

DMI

Figure 2.1: This figure is a simplified representation of the uncore region of an example
Intel CPU die and shows the connections between components. (Inspired by
[CD16, 17] and [Tur14])

.

2.1.1 I/O Address Spaces

This subsection describes the different I/O address spaces present in the Intel PC architec-
ture and how the CPU and I/O controllers interact with it. These are necessary for sharing
information between the processor and a peripheral since the information only needs to
be stored in the shared address space, as well as the configuration of I/O controllers.

Programmed I/O space

In the past, the CPU had to communicate with I/O controller registers through special
I/O instructions. These allow the processor to read and write to registers mapped into the
Programmed I/O space (PIO) [SND11]. With this, the CPU was able to configure peripheral
devices through that shared address space. Some devices still use this for backwards
compatibility.

8

2.2 Peripheral Component Interconnect

Memory Space

The memory space is an address space, where either main memory or I/O locations can
be mapped to. It is also called memory-mapped I/O (MMIO). These I/O locations can be
configuration registers of controllers or peripheral devices, as well as internal memory of
these peripherals. The CPU can access this address space like regular memory by sending
a memory request to the I/O controller. This request is then forwarded either as PCIe
or DMI to the respective controller. Furthermore, peripheral devices can also access the
mapped memory locations through DMA (see section 2.4). This is used by many I/O
devices, like ethernet adapters, graphics cards and FPGAs.
The configuration space, specific for PCI, PCI-X and PCI Express devices in the Intel PC
architecture, will be explained in the next section.

2.2 Peripheral Component Interconnect

Peripheral Component Interconnect is a bus mastering system. This means that the bus is
a broadcast network connecting multiple peripherals with an I/O controller. Since there
can only be one sender at a time on the network, a bus master has to be assigned. Only
the bus master is able to communicate over the bus and if another device wants to take
the role of master, the right has to be requested and only after receiving permission, the
device becomes the new master.
Every PCI compliant device has to have a configuration space that is accessible by system
configuration software at all times. This address space is divided into a predefined header
region and a device dependent one. The header consists of fields that uniquely identify the
device and allow the OS to generically control and configure the behavior of the device.
This is used, for example, to detect every connected PCI device at system startup through
a vendorID, a deviceID and a revisionID.

2.3 Peripheral Component Interconnect Express

Peripheral Component Interconnect Express on the other hand is a packet-based high-speed
serial point-to-point connection between every PCIe slot and the PCIe root complex. It
consists of several independent links or lanes between endpoints(x1, x2, x4, x8 and x16),
with every lane offering 8 GT/s (Giga Transactions per second) in the version 3.0 [PCI10].
Even though the architectures of PCI and PCIe are quite different, some of the core at-
tributes of PCI have been maintained and result in backwards compatibility. An exem-
plary topology of PCIe is shown in fig. 2.2.

9

2 Background

Figure 2.2: This shows an exemplary PCIe topology (taken from [PCI10, 41]).

There are three layers in total: physical, data link and transaction. The data link layer is
used for error correction, flow control and acknowledgments, while the transaction layer
turns user application data into transaction layer packets. Each of the layers adds its own
header to the packets, which results in varying overheads depending on the data size
[NAZ+18].
Over the last couple of years, the Root Complex (RC) was moved from the PCH to the
uncore region of the CPU die. This enables closer interaction between peripheral devices
connected through PCIe and the CPU caches. This resulted in the development of Direct
Cache Access (DCA), also known as Data-Direct I/O (DDIO) [KGA+20]. However, the
host controllers of other expansion slots like SATA, USB or M2 are still connected by PCIe
[MRG+19].

2.3.1 Mechanisms that impact PCIe Performance

In a few cases the physical address space seen by the CPU and an I/O device is not equiv-
alent, because the Root Complex can add an abstraction layer. The targeted address of
a memory request is first processed by the RC, resulting in the correct physical address.
Address translation can significantly increase the overhead of a memory request through
multiple memory accesses (page table walk). Translation caches are used to mitigate the
impact. These caches are very small, however, and need to hold translations for multiple

10

2.4 Direct Memory Access

peripherals. To alleviate some of the pressure off of the IOTLB, Address Translation Services
(ATS) [PCI09] were developed. These give ATS capable devices the opportunity to im-
plement their own translation look-aside buffer. Requests from such a device need to set
a specific bit in the PCIe transportation layer header of memory read and memory write
packets and are then passed through the root complex and not processed. This results in
lower overhead and better DMA latency.
The IOMMU (see section 2.6.1), a modern protection mechanism against I/O attacks that
translates I/O virtual addresses to physical addresses, is located between the host and
the root complex. It can impact the latency of PCIe transactions quite severely, as was
shown in [NAZ+18]. The IOTLB is part of the IOMMU and caches recently translated
addresses in order to compensate for the negative impact. Nevertheless, the latency now
depends not only on the state of the CPU caches, but also on the state of the IOTLB (see
section 2.6.2). However, requests with the ATS bit set are passed through the IOMMU
without going through the translation process [MRG+19]. Communication between pe-
ripherals, called peer-to-peer transactions, are also not affected by address translation,
because the communication does not pass through the IOMMU. For this kind of commu-
nication, the PCI MMIO address space is used instead of IOVAs [lin].

2.4 Direct Memory Access

In many applications the acquisition of data from peripheral devices has to be fast. The
three main transfer mechanisms for data acquisition are polling, interrupts and DMA
[Har94]. The first two mechanisms revolve around transferring the data between an I/O
device and the memory using the CPU. When polling data, the CPU repeatedly checks
for new data to arrive from the peripheral device. This prevents it from running other
parts of the main program and keeps the CPU busy. If interrupts are used, the CPU has
to configure an interrupt handler, which notifies the CPU when an I/O device has new
data. With this, the processor can work on other tasks and can interrupt work whenever
an interrupt is raised to move the data to a buffer for later processing. The polling data
transfer mechanism can occupy the CPU for especially long times, but there are also sce-
narios where interrupts do the same. This results in a slowdown for all processes running
on that machine. A basic example for CPU interaction is shown in fig. 2.3.
Direct Memory Access (DMA) was developed to reduce the amount of CPU cycles needed
to transfer data and to increase the data transfer rate. As the name suggests, peripheral
devices can get direct access to the systems main memory by taking control of the system
bus [CS15].

11

2 Background

Time

CPU interaction

(i) Polling (ii) Interrupt (iii) DMA

Figure 2.3: Shows how much CPU interaction is needed to move data between memory
locations depending on the used method.

There are two different variants:

1. Bus mastering (first party DMA)

2. Third-Party DMA

In a first-party DMA system, a peripheral has to bring its own DMA engine. After the
I/O device configures its engine, that engine requests the bus master role and initiates
the DMA transfer with the memory controller over the system bus [YZZ17]. When the
transfer is completed, the device can send an interrupt to the CPU to notify it about the
finished transfer. This notification is not necessary since the transfer is already done and
the peripheral can just give the bus master role back to the CPU. The transaction then
happened transparently from the processors point of view [Har94]. This is not compliant
behavior, but was used by DMA malware to secretly extract data [SB13].

Third-party DMA is realized by a dedicated piece of hardware called Direct Memory Access
Controller (DMAC). This device can be programmed by the CPU (slave mode) or an I/O
device (master mode) to perform a sequence of data transfers. These can occur directly
between memory locations [AAA19] or from a peripheral device to memory and vice
versa [Har94], [Anu16]. The DMAC is often part of the underlying bus systems controller,
which means it is closely connected to the CPU, as seen in fig. 2.1.

DMA results in a very low latency between the data acquisition device and the memory,
because the I/O device can initiate the data transfer as soon as the data chunk is acquired.
This also minimizes the storage needed on peripheral devices. One of the biggest advan-
tages of DMA is that there is almost no expenditure of CPU cycles, since the CPU only
has to configure the DMA controller to start and stop transmissions. Conventional data
transfer requires the CPU for a large part of the transfer, blocking the CPU from working
on other tasks. This becomes especially interesting for small computers and microproces-
sors, because of their low clock frequency [CS15]. Examples of common hardware inter-
faces that support DMA are Peripheral Component Interconnect (PCI/PCIe), FireWire (or
Firewire, i.LINK) and Thunderbolt [MRG+19].

12

2.5 DMA Attacks

2.4.1 Sequence of a third-party DMA transaction

Any device on the system bus can issue a DMA transaction [AD10]. The DMAC often
has multiple DMA channels for the different device slots on that bus system [Har94]. The
number of channels depends on the DMAC. Over these channels, a peripheral can trigger
a DMA transfer by sending a DMA request (DREQ). These work like interrupts and the
DMAC can prioritize the requests from different channels and generates the address and
control signals for the system bus [Int15].
If the CPU wants to transfer data from RAM to a peripheral device, it writes the starting
address and the length of the data block, as well as the transfer mode into the internal
registers of the DMAC. Then the mask bit of the corresponding DMA channel will be
cleared. This will notify the controller about the DREQ by the CPU. After receiving the
request, a Hold request (HRQ) will be send to the CPU to gain hold of the system bus.
The Processor grants the system bus with a Hold acknowledge (HLDA) signal. Now the
DMA transfer begins as the DMAC outputs the data address, a DMA acknowledgment
on the DMA channel of the requesting device and simultaneously pulsing memory-read
(MEMR) and I/O-write (IOW) signals [Int15]. Transfer will be initiated by the device
controller and the memory controller [Fal14]. The data will then be send over the system
bus without passing through the CPU or the DMAC.
A data transfer from an I/O device to memory works almost the same as the previously
mentioned process. Here, the signal is raised by the I/O device and the DMAC takes the
master role on the system bus. Again, a HRQ and HLDA have to be exchanged and then
the data addresses and control signals will be generated by the DMAC. However, instead
of MEMR and IOW, memory-write (MEMW) and I/O-read (IOR) will be sent [Int15].

2.5 DMA Attacks

With the increasing popularity of FireWire in the early 2000s, DMA attacks from external
devices became possible, because FireWire ports were present on the outside of the PC
case, which makes them easily reachable. Nowadays, Thunderbolt and USB-C are the
prevalent DMA capable connectors on the outside of the case. This fact in addition to the
unsupervised, full access to the host system memory gives an attacker the ability to plug
in a malicious DMA-enabled device into a victim’s computer and initiate a DMA transfer
from the main memory. The CPU ceases control of the system bus to the peripheral and
does not check if the requested memory addresses belong to memory regions that are rele-
vant to that device, or if they contain critical system code or data structures. This allows an
attacker to read and write arbitrary data from memory, bypassing security mechanisms of
the operating system and lock screens [For11], [AD10]. Thus, an attacker is given almost

13

2 Background

countless possibilities to compromise its victim, such as stealing data and cryptographic
keys, installing and running spyware, as well as modifying the (operating) system and
internal data to allow backdoors and other malware [SB13], [YZZ17].
Sang et al. [SND11] propose the classification of DMA attacks into (1) attacks that access
main memory and (2) peer-to-peer DMA attacks that access other peripheral’s internal
memory regions through memory mapped I/O (MMIO).
From the former category, an early DMA attack was presented by M. Dornseif at the Pac-
Sec 2004 in Japan [Dor]. He and his colleagues modified an iPod with the Linux distribu-
tion Knoppix and were able to extract data from the connected Mac’s memory. In another
demonstration, Dornseif showed how to alter the content of the monitor by manipulating
the framebuffer of the graphic controller via a FireWire connection [SND11]. This attack is
categorized as a peer-to-peer DMA attack, since the DMA targets another peripheral and
its memory.
There are open-source tools like PCILeech [Fri] that can successfully attack systems us-
ing DMA attacks through external USB3380 or FPGA hardware. PCILeech is capable of
accessing the RAM and the file system, as well as removing the login password require-
ment, executing code and spawning system shells. Currently supported target systems
are UEFI, Linux, FreeBSD, MacOS and Windows.
A recent attack was presented by Markettos et al. in early 2019 [MRG+19]. They devel-
oped an open source hardware platform, called Thunderclap, which is suitable for use
with internal PCIe slots and external Thunderbolt 2 and USB-C ports with Thunderbolt
3. All that was needed for their developed platform, disguised as a trustworthy device,
was to be connected to the victim’s PC. Doing this, they managed to circumvent the state-
of-the-art protection mechanism described in section 2.6.1. The authors found that the
IOMMU is disabled in almost all of the tested operating systems except MacOS. These
are Windows 7.1, 8.1, 10 Home/Pro/Enterprise, Ubuntu 16.04, Fedora 25, Red Hat En-
terprise Linux 7.1, FreeBSD 11 and TrueOS 10.3. Secondly, by imitating a fully functional
peripheral, all the systems were compromisable to spatial (see fig. 2.4) or temporal vulner-
abilities, even with IOMMU protection. All the found security vulnerabilities were severe
and some of them even allowed the authors to fully control their victim.

14

2.6 Memory Protection Mechanisms

Figure 2.4: Spatial vulnerabilities occur when the I/O buffer is smaller than the page size
and there lies other data in the same memory page such as (a) I/O buffer meta-
data, (b) free-list pointers or (c) other sensitive data (taken from [Kup18, 16])

2.6 Memory Protection Mechanisms

There are multiple ways for a platform to prevent DMA attacks. One example is the PCI
Bus Master Enable (BME) bit included in the PCI and PCIe specifications [PCI10, 589].
This bit controls whether a PCI Express Endpoint can issue a DMA transaction, but comes
with several limitations. First of all, the issuing device has to be a PCI or PCIe device, since
this is a feature of that specific bus system. Furthermore, the BME needs to be respected
by the peripheral device for it to work. But since the device may be malicious, it can
simply ignore that bit and continue the DMA transactions. The BME for a PCI root bridge
can be disabled to prevent this from happening, causing all connected devices to that
bridge to not be able to issue further memory and I/O read/write requests [YZZ17]. This
might be useful during the pre-boot phase, because the settings for BME are managed by
the BIOS/UEFI and no operating system interaction is required. However, that is not a
granular approach.
The access of memory by applications in user-mode is managed by an Memory Manage-
ment Unit (MMU) in modern operating systems. This prevents an application from ac-
cessing physical memory addresses directly and thus prevents processes from accessing
data that belongs to another application. This is realized by giving programs a range of
logical addresses, which are mapped to the physical addresses and are not known by the
application process.

15

2 Background

Manufacturers adapted this idea as a countermeasure against DMA attacks, that are called
Input-Output Memory Management Units (IOMMU). Intel’s implementation of an IOMMU
is called Virtualization Technology for directed Input/Output or Intel VT-d for short. AMD has
their own AMD I/O Virtualization Technology [Adv16] and ARM the ARM System Memory
Management Unit (ARM SMMU) [ARM16]. In this work we will only investigate Intel
VT-d.

2.6.1 Intel Virtualization Technology for directed Input/Output

The information in this section, including section 2.6.2, are all taken from the architecture specifi-
cation of the Intel VT-d [Int19b], unless specified otherwise.

The Intel Virtualization Technology for Directed Input/Output is part of the Intel Virtual-
ization Technology, which consists of components that support running multiple operating
systems and applications in independent virtualized partitions. To do this, it is necessary
to isolate and restrict the access of these VMs to the resources of the partition that man-
ages the device. It was later adapted to also prevent I/O devices from being able to access
the whole system memory, since a countermeasure for DMA attacks was needed and the
implementation of isolating VMs was also applicable to peripheral device isolation.
Intel VT-d provides I/O virtualization software with the following capabilities:

• I/O device assignment: enables the host system to adaptively assign I/O devices to
Virtual Machines and making execution of I/O operations possible.

• DMA remapping: is used to translate physical addresses to logical addresses for Di-
rect Memory Access from devices and vice versa.

• Interrupt posting: to support direct forwarding of virtual interrupts from devices and
external interrupt controllers to virtual processors.

• Reliability: for recording and reporting of DMA and interrupt errors to system soft-
ware that may otherwise corrupt memory or impact VM isolation.

The following sections will concentrate on DMA remapping and the translation process.

16

2.6 Memory Protection Mechanisms

2.6.2 DMA remapping

Domains are isolated environments in the platform, to which a subset of the physical
memory of the host is allocated. Every I/O device that has DMA will be assigned to at
least one domain, but can be flexibly switched to others by the OS. Isolation of a domain
is ensured by the DMA remapping hardware unit (DRHU), which is the part of the IOMMU
responsible for the address translation. It receives every DMA request to memory and
uses page tables to verify if the requested address is part of the domain of the requesting
device. If it is not, the DRHU blocks the request entirely. DMA remapping also allows the
host OS to allocate memory to I/O-devices that is not contiguous in the physical memory,
but appears cohesive to the devices [YZZ17]. The Intel VT-d architecture specification
allows DMA remapping to be done by software or hardware, but we have not seen or
read about a single software implementation while researching this topic. A hardware
module is simply faster than a software solution and access times to memory determine
how fast an I/O device can operate.
Besides Domain Isolation, DMA remapping is also used by the operating systems in other
ways, for example for OS Protection by implementing a DMA Protected Range (DPR) and
Protected Memory Regions (PMRs) [Int20]. The former is a region of contiguous physical
memory, ending right before the SMRAM segment and protected from all Direct Memory
Accesses. However, this is only used to protect specific data structures, since it is a fixed
memory range. The PMRs are two memory ranges of physical addresses that are also
protected from DMA and can be freely placed in memory. They are frequently used to
protect the page tables storing the address translation data. Nonetheless, PMRs can be
used without address translation.
These protection mechanisms allow the operating system to block DMA to memory con-
taining its critical code and data structures. This makes the OS more robust to incorrect
or malicious programming of devices. It also enables Feature Support for legacy devices,
which can only address 32-bit of memory and need to access memory above 4GB. For
this, DMA remapping allows the translation of 32-bit memory addresses to 64-bit, since
the I/O page-tables can remap the DMA request to high memory. And lastly, it is also
possible to share the virtual address space of application processes and I/O devices in a
Shared Virtual Memory scenario. This allows programs to use devices, such as graphics
processors or accelerators, to speed up data processing without overhead.

17

2 Background

DMA Request

The DMA remapping hardware unit splits incoming DMA requests into two categories:
Requests with and without process-address-space-identifier (PASID). The Requests-without-
PASID only submit the necessary information, such as type of access (read or write), tar-
geted DMA address and size, and a source-id identifying the originating device of the
transaction. This is implementation specific, since some I/O bus protocols have such
identifiers build into their protocol while others do not. PCI Express devices have this
feature integrated in the PCIe transaction layer header. The source-id is a 16 Byte value,
specifying the exact bus [15:8], device [7:3] and function [2:0] of the originating device.
Requests-with-PASID supply the same information, but on top also specify the targeted
process address space identifier and optional attributes such as Execute-Requested flag
and Privileged-Mode-Requested flag.

Address Translation

Understanding the address translation is crucial in finding attack vectors against the
IOMMU, as it is the main proctective component against DMA attacks.

The translation process of a DMA Request is split into two parts. First the DRHU has to
decode the domain the requesting peripheral belongs to and get its translation structure.
Then the requested address has to be translated to a physical address using the found
structure. For that a radix tree structure of different tables is used. Each of these table
entries contains the address of the next table, or the physical address in the last layer.

Since there are many possible combinations of DMA requests, the requested pagesize and
the amount of levels of page-tables used differs. We explain the scenario in this subsection
that is applicable to our later experiments. The interested reader is referred to the Intel
VT-d architecture specification for all the scenarios [Int19b, 30ff.]. First, we explain how
a PCIe device is mapped to its domain in legacy mode (fig. 2.5) and then show how the
requested memory address is mapped to a 4 KiB memory page (fig. 2.6).

To identify the domain of the requesting device, the source-id of the PCIe transaction is
used. Starting point for this identification is the so called Root-Table, whose address is
stored in the Root Table Address Register (RTADDR REG). The Root Table contains 256
entries for the number of possible PCI buses. It is indexed by the bus number of the
source-id field in the request. The identified entry contains the address to the Context-
Table of that specific bus. The Context-Table also contains 256 entries and is indexed
by the device and the function number of the source-id. The corresponding entry points
towards the second level page-table, which is the address translation structure for that

18

2.6 Memory Protection Mechanisms

Figure 2.5: This shows how a requesting device is mapped to its domain. (Taken from
[Int19b, 30])

specific domain. Multiple devices can be assigned to the same domain by simply pointing
to the same second-level page table from the context table. For Requests-with-PASID there
are two more levels of tables added after the context table.

The second level translates the 64-bit DMA address into a physical address pointing to-
wards an entry inside a 4KB, 2MB or 1GB big memory page, also called page frame. The
address is taken from the request and split into blocks, as seen in fig. 2.6. In our scenario,
we have a 4-level paging structure in which the bits 63:48 are not used. The next 9 bits
[47:39] are shifted by three to the left and added to the paging structure pointer from the
first translation step. This entry contains a physical address pointer to the next table. The
next 9 bits [38:30] are then shifted by three to the left and then added to the pointer. The
resulting address points to the next table’s entry and so on. With every table, the mapped
memory region gets smaller until a table entry with the page-size bit set to 1 is found. This
means that the physical address in that entry points to the beginning of the actual page
frame the peripheral wanted to access. To now find the specific requested page frame in
that page, the frame offset, i.e. the N unused bits [N − 1:0], are added to the page address
from the last translation table.

19

2 Background

I/O virtual addresOffset
47 39 38 30 29 21 20 12 11 0

Paging
Structure
Pointer PML4 Table

PML4
Entry

PDP Table

PDPT
Entry

Page Directory

PD
Entry

Page Table

PT
Entry

«3

+

«3

+

«3

+

«3

+ +

PA

Figure 2.6: This shows the Address translation structure for a 4 KiB memory page.

Access Rights

The access rights for a memory page, meaning if it can, for example, only be read or also
written, are also stored in these translation structures.

Translation faults can occur on two different reasons. Either the requested address has
no valid translation in this domain or there is a valid translation but the access rights for
that address prevent the access. To check these is also the job of the DMA remapping
hardware unit. The access rights to a page depend on the attributes of the request and the
rights specified by the paging-structure entries, that are accessed during the translation.
Protection flags in the paging structure always outweigh the fields set in the request. For
example a write request to a Write-Protect-Enabled (WPE) memory page will always be
prohibited, if not every paging-entry in the translation structure grants the exception for
this specific device.

Detailing all possible combinations of access types goes beyond the scope of this thesis. A
detailed explanation can be found in the Intel VT-d architecture specification [Int19b].

Caching of Translation Data

Repeatedly conducting the address translation (page table walk) results in a huge over-
head, because there are multiple memory accesses needed to find the necessary page
tables, which in turn increase the latency of DMA transactions. To speed up the trans-
lation process, DRHUs cache various translation data in a Context-Cache, PASID-cache,
Paging-structure Cache or I/O Translation Look-aside Buffer (IOTLB), depending on the ex-
act hardware support and configuration. The most interesting caching structure for us is
the IOTLB, as we want to use it to implement a covert channel and launch a timing based
side-channel attack through it. The IOTLB stores the mapping from a I/O virtual ad-

20

2.7 Caches

dress page number to a physical frame, together with additional information about access
rights.
It is important to note that the hardware does not ensure consistency between the cache
structures and the actual translation structures in main memory. This means that the op-
eration system has to invalidate cache entries on its own. It is fairly slow to invalidate a
cache entry every time the translation structure changes (so called strict mode). From a se-
curity standpoint this would be the best approach, however, it is not done for performance
reasons. Instead, the current Linux distributions have deferred mode activated by default,
meaning that TLBs are getting invalidated at specific events or after a timeout occurs. This
results in a timing window where invalid cache entries remain in the cache until the next
invalidation cycles starts.
The Intel VT-d Specification [Int19b] mentions additional functionality that can be im-
plemented for IOTLBs, such as also storing the source-id of the request that allocates an
entry. However, these are only optional functionalities that hardware manufacturers can
implement. The exact architecture of the IOTLB is thus dependent on the producer and
mostly kept secret. In the next section we explain the basic principles of caches and then
present the results of Gras et al. [GRBG18] in reverse engineering the TLB of the Memory
Protection Unit.

2.7 Caches

The CPU uses multiple levels of cache to keep copies of previously fetched items from
memory close to the cores in Static RAM (SRAM). Modern cache architectures use three
Levels to compromise between speed and size of the cache levels. The Level 1 cache is
split into an L1 instruction cache and an L1 data cache and the smallest of the three levels,
but has the fastest access time, because it is closest to the CPU. Thus, it is the highest level
cache. The Level 2 cache is shared for instruction and data fetches and larger than the L1
cache, but also slower. Every core has its own L1 and L2 cache. The L3 cache, also called
Last-Level-Cache (LLC), however, is shared between all the cores. It is the largest and
slowest, but plays an important role in cross-core access. Caches can be inclusive, which
means that the higher level cache is always a subset of the next lower level cache.
Whenever data from memory is requested, the CPU first checks, if the data is present in L1
cache. If this results in a cache miss the L2 and if necessary the L3 cache is checked. Only if
this third check also results in a cache miss will the data be fetched from main memory. If
the data was not cached, it will be stored in one of the cache levels to speed up reoccurring
requests.

21

2 Background

Memory

0xffff
0xfffe
0xfffd
0xfffc

...

0x0100
0x0011
0x0010
0x0001
0x0000

Cache
Way 1 Way 2

Cache Entry Set 6
Set 5
Set 4
Set 3
Set 2
Set 1

Figure 2.7: Shows an exemplary mapping between memory and a 2-way set-associative
cache.

A cache consists of sets and ways, as seen in fig. 2.7. Each block of memory is mapped to
a specific cache set, derived by a mapping function hashing the physical address of the
block. When a cache set is full and a new entry is fetched another entry has to be evicted.
This is done according to the replacement policy. Common strategies were Least-Recently-
Used (LRU) or First-In-First-Out (FIFO), but nowadays more complex policies are usually
used. The way, in which the address is stored, is the next free way or where the eviction
policy clears the next entry. Because the caches are much smaller than memory, multiple
lines of memory are mapped to the same cache set. There are three different kinds of
caches. A directly mapped cache has only 1 way. This results in every memory address
having one specific cache set where it can be stored. This makes these caches very easy
to implement, however, it reduces the efficiency of the cache as sets might be unused,
while others have to be swapped regularly. The opposite of a directly mapped cache is
a fully associative cache. This means that the cache has only 1 set but many ways. This
ensures maximum efficiency, as all cache entries are used. The disadvantage of this is
the high effort needed to find the correct entry, since many entries have to be checked.
The compromise between those two kinds is the set-associative cache. This is the most
widely distributed kind of caches. A cache with 4 ways and multiple sets is called 4-way
set-associative cache.

Caches are shared micro-architectural components between processes. They increase the
efficiency of those processes, but being shared violates process isolation on the micro-
architectural level [KGA+20]. Attackers exploit caches for timing based side-channel at-
tacks. An example is the Prime+Probe attack [VKM19]. Through creating eviction sets, i.e.
collecting a set of physical addresses, of size of at least the number of ways, that all map
to the same cache set, an attacker is able to bring cache sets into a controlled state. After

22

2.7 Caches

the victim’s process is executed, the attacker accesses their eviction set again and are able
to measure the timing differences and thus learn which cache sets were accessed by the
victim’s process.
There have been multiple ideas and implementations on how to protect caches against
side-channel attacks. One proposed way is partitioning the caches’ sets [KPMR12]. This
can be done entirely in software, because the mapping of a memory block to cache set
depends on the physical address of the block. The memory allocation subsystem of the
operating system can be used to allocate memory to processes in such a way that con-
currently running processes do not share cache sets. Another proposition is partitioning
the caches’ ways [LGY+16]. Most of the time there are less ways than sets, this is mostly
realized with two domains, one for processes with the need to be run securely and one
insecure domain. For this hardware support is needed, like Intel CAT.

2.7.1 Translation Look aside Buffer

Here we present the knowledge about the Translation Look aside Buffer. Since the IOTLB
performs the same functionality, but in a different context, we base some of our assump-
tions in the later parts on this knowledge.
For TLBs of the MMU there are only two levels. The L1 cache, just like in the CPU caches,
consists of a part for caching translations of code pages (L1 iTLB) and a part for data pages
(L1 dTLB). The L2 cache is shared for data and code translations (L2 sTLB) and bigger than
the L1 cache [GRBG18].
Common page sizes of memory are 4 KiB (i.e. 2p = 4096 → p = 12) and 2 MiB (p = 21)
for huge pages. The p-least significant bits of the physical and virtual addresses are the
same. This due to the fact that the physical frame, resulting from a very similar translation
structure as shown in fig. 2.6, is page aligned, i.e. its last p bits are zeroes. The page offset is
added to the physical frame number to point towards the accessed memory address inside
that frame [VKM19]. Larger memory pages use the TLB more efficiently, because they
require fewer entries for mapping the same amount of memory [LYG+15].

23

2 Background

2.8 Our Hardware

We used the existing hardware in the Institute for IT-Security as it meets the requirements
of our threat model. Our test system uses two Intel Xeon Silver 4114 Server CPUs of
the Skylake architecture, with 10 cores and 20 threads each. We have 640 KiB of L1, 10
MiB of L2 and 13 MiB of L3 cache, as well as 96 GB of RAM. This is installed on a Dell
PowerEdge R740 motherboard. We are running the linux kernel version 4.4.0-185-generic
on the Ubuntu Server 16.04.6 LTS distribution. This is due to the fact that we have version
2.1 of the Intel Acceleration Stack for Intel Xeon CPU installed, which does not run on newer
versions of Ubuntu. To synthesize our hardware designs we use Quartus Prime version
17.1.
The FPGA we are using as our malicious peripheral is an Intel Arria 10 GX 10AX115N2F40E2LG
FPGA in the form of a PCIe expansion card clocked at 200 MHz.

24

3 Implementing a DMA Attack

In this chapter we present our implementation of a DMA attack and the insights we gained
from taking multiple timing measurements.

3.1 DMA Attack with IOMMU disabled

First of all we wanted to check the statement of Markettos et al. [MRG+19] that the
IOMMU is disabled by default on current Ubuntu Server distributions. We checked this
on the Versions 16.04 LTS, 18.04 LTS and 20.04 LTS and found that the IOMMU is indeed
disabled by default. This makes every system with these versions installed a potential
victim to the most basic DMA attacks.
To check if other countermeasures against DMA attacks are available we kept the IOMMU
disabled and implemented a basic attack on our Intel Arria 10 FPGA using the Core Cache
Interface. (CCI-P) [Int19a]. CCI-P is a host interface bus intended for connecting an Ac-
celerator Functional Unit (AFU) to an FPGA Interface Unit (FIU). The FIU is a platform
interface layer, acting as a bridge between interfaces like PCIe, UPI and AFU-side inter-
faces such as CCI-P.
On the processor side, we used the OPAE C library [Cor] in our software to communicate
with our designed AFU. The library provides abstraction for Intel FPGA resources by
removing hardware and OS specific details and making them accessible from software
programs running on the host.

3.1.1 Hardware Implementation

We started with the Hello World tutorial sample from the Intel FPGA Basic Building
Blocks GitHub repository[GBAS], since it has almost everything that is needed to read
and write memory locations from the peripheral. The addresses have to be provided by
the software implementation presented in section 3.1.2. We expanded the functionality of
the hardware design by adding an MMIO register to control whether the AFU reads or
writes and also added a clock counter to measure the timing differences.
The AFU stays idle until an address is written into the predefined MMIO register. It then
starts the clock counter and, depending on the mode, sends a read or write request to the
address in main memory. The counter is stopped when a valid response to the request is
received.

25

3 Implementing a DMA Attack

1 ./writeToUnSharedMemory [time] [attack] [write/read] [debug]

Listing 3.1: Specification of how to start the experiment

The timing measurements done by our clock counter can be read from a third MMIO
register by the software implementation. We will discuss the first measurement results in
section 3.1.3.

3.1.2 Software Implementation

Our software implementation is a command line tool written in C, used to control the AFU
on the FPGA. We added command line parameters, that can be supplied when executing
the program. The command to run the program is shown in listing 3.1. If no parameters
are used, the default settings will be used with no output whatsoever.
The time parameter enables the timing measurement and printing the result to the com-
mand line. If omitted, access timings will not be measured. By using the attack parameter,
the program prepares a preallocated memory page for shared access with the accelerator
and then revokes the access rights from the accelerator again. Consequentially an un-
shared memory page will be accessed. This is already considered a DMA attack, as the
FPGA accesses a memory page through DMA he should not be able to access. Write and
read define what operation mode will be executed by the AFU; the default is read. And
last but not least, the debug parameter ensures that additional info, helpful for debugging,
is printed.
When the attack mode is not enabled, a proper data transfer will be initiated. That means
a memory page with the systems default page size (in our case 4 KiB) will be allocated
by the OPAE library and made non-swappable. Then the I/O virtual address for the
shared buffer will be retrieved. Because there is no activated IOMMU, the referenced
I/O address will be equivalent to the physical address of the buffer. This address is then
written into the MMIO register of the FPGA. To measure the latency of the transaction
on the software side, we use the time stamp counters rdtsc of the CPU, with one taken
just before the address is written into the MMIO space and one taken after the content in
memory changed. At last, the timing measurement from the FPGA is read.
There are a few changes with the attack mode enabled. We pre-allocate a memory page
for ourselves, map it into the virtual address space of the accelerator and get the IOVA.
Then we release the buffer from the FPGA to revoke its access rights on the memory. If we
don’t pre-allocate the memory page ourselves, but let the driver handle this, the memory
page will be freed and not be accessible by software anymore. Because we still want to
access it later from software, this can not happen. We shared the buffer with the FPGA

26

3.1 DMA Attack with IOMMU disabled

first, even though this is not necessary, so that we don’t write to any memory location,
which might lead to crashing the test platform.

After running the experiment, our expectations were confirmed by the results. We first an-
alyzed the results of the non-attack mode and came to the following conclusions: (1) we
can freely access our allocated memory page and (2) also access arbitrary other memory
pages. This applies to the read and write mode. The explanation behind the first observa-
tion is obvious, while the second becomes clear when realizing that there is no mapping
to domains or address translation, without an IOMMU. This means that no one performs
access control on which physical addresses are being accessed by which device.
In the attack mode we observed that (3) we can still access the memory page that we
unmapped from the FPGA’s address space at will. This is as we expected, because this is
just special case of the general observation (2).

To summarize the observations of our first experiments: apart from the IOMMU, there are
no additional memory protection mechanisms that prevent us from reading and writing
arbitrary memory locations from the FPGA. Furthermore, the FPGA can freely write and
read any memory location.

To adapt our attack to closer resemble the threat model mentioned in section 1.2, we build
another experiment with two software programs. One of these being the victim and the
other being an attacker. These processes need to be run concurrently on the same com-
puter. The victim allocates a memory page, prints out its physical address to the terminal
and monitors the content of the page for a couple of seconds. The attacker program uses
the physical address as an argument and writes it to the FPGAs MMIO like before.
The fact that our victim program gave us the exact physical address does not weaken the
attack, because an attacker can start by reading through the whole memory until she finds
the data that she is interested in. For our experiment we just wanted to make sure we
were accessing a memory address we had control over.
As mentioned before, these attacks were working as expected and nothing new, but they
gave us an understanding of the OPAE library, knowledge of how to develop and synthe-
size designs for FPGA and some timing measurements presented in the next subsection.

27

3 Implementing a DMA Attack

Table 3.1: Different measurements made by hardware and software on 1000 traces with
disabled IOMMU. Software measured reads are omitted, because a read trans-
action is not detected by software.

measured by mode avg. cycles min. max. standard deviation
Software proper write 3354.07 2372 4692 399.60
Software attack write 3289.66 2386 4672 402.97

Hardware proper write 42.22 41 43 0.84
Hardware attack write 42.22 41 43 0.86
Hardware proper read 170.21 153 194 12.00
Hardware attack read 170.77 154 195 11.93

3.1.3 Timing Measurements

To deduce whether measurements on software are relatable to measurements on hardware
or if they are too susceptible to noise, timing measurements were made. Furthermore, they
can add to our understanding of the performance impact of the IOMMU when comparing
them to measurements taken with an enabled IOMMU.

In the results of all experiments, presented in this chapter, values that deviate from the
average by more than 6 times the standard deviation are excluded from the analysis. These
are outliers that were not reproducible and only distorted the measurements. This led to
a loss of a maximum of 3 measured values, but usually none or only one was removed.

The measurements were taken on our test-server system with no other major processes
running to minimize the amount of noise. There are no measurements made by software
of read transactions. That’s because the software does not realize when it’s memory has
been read by the FPGA. This is also the reason why DMA attacks are not detected by a
victim’s process if only data is extracted. Modifications of an applications’ memory, on
the other hand, are detectable, but that is quite hard to do since a regular integrity check
would be needed to detect external changes in the programs memory.

The results of 1000 traces are presented in table 3.1. The average amount of cycles needed
for the various transactions is different depending on the measuring device. There are
multiple explanations for this. First, the software measurements are a lot higher than the
hardware measurements, since the CPU is clocked at a higher frequency than the FPGA.
The FPGA runs at 200 MHz, while the CPU is clocked at 2.2 GHz with 3.0 GHz turbo
frequency. This causes the software measurement to be 11 to 15 times higher. From the
point of view of the software the hardware measurements should average between 220
and 300 clock cycles long, which is not quite as fast as our measurements. There is quite
a bit of fluctuation in the software measurements however, which is shown by the fact
that the maximum recorded value is almost twice as high as the minimum. Whether this

28

3.1 DMA Attack with IOMMU disabled

can be derived from varying MMIO transaction times, other processes being scheduled
on the CPU or varying latencies caused by the memory controller is unclear. Another
possible cause for the timing issue might be interference from DDIO, which stores data
from memory write transactions directly into the LLC. This results in faster access from
the CPU compared to an access to memory. In general, it is difficult to detect, estimate and
measure all causes of interference.

The hardware measurements of write transactions, on the other hand, deviate by such a
small margin that this is basically negligible. This small deviation is due to the fact, that
the response to the write transaction does not come from the memory controller, but from
the FPGA Interface Unit when the signals have successfully been applied to the PCIe
bus and the actual memory hasn’t changed yet, as shown in fig. 3.1. This hypothesis is
supported by [NAZ+18], as the PCIe memory write transaction is a posted transaction,
which receives no acknowledgment of any kind from the memory controller. Since there
is only one AFU on the FPGA and the interface is idle when no requests are send, the
deviation between measurements is almost non-existent. Therefore these measurements
are not significant and will not be considered in the future.

The read transactions recorded by hardware are fairly close together with a standard de-
viation of 12 cycles. However, while going through our data, we noticed that a result of
170 cycles was basically never occurring. Instead, we had a lot of measurements around
160 cycles and then again around 185, so we displayed all our data in histograms, seen
in fig. 3.2. The measurements are split into two conglomerations. One reaches from 155
to 168 clock cycles and the other starts at 178 and goes until 194 clock cycles. The aver-
age value of 170 lies between these two peaks and does indeed occur very rarely in the
measurements itself. At first, we thought that this separation takes place because data is
sometimes stored in different levels of the CPU caches and sometimes in memory. After
allocating a buffer, we write a 0 into the least-significant byte, before sharing the IOVA
with the FPGA. This enables us to identify accurately when the DMA write transaction
modified the contents of the RAM. Furthermore, it results in this memory block being
cached in one of the CPU caches. The software then receives the results from cache when
accessing the buffer. With DDIO enabled the memory write transaction will write directly
into the Last-Level-Cache. This should result in the software noticing changes quicker
than changes in memory. But as an explanation this doesn’t make much sense, as we ac-
cess this page only once and then free it. Thus, every execution of the test should get its
results from a cached entry. Furthermore, we tested initializing the buffer only in write
mode, as this is not necessary in read mode and increasing the sample size to 10,000, but
the resulting histograms showed the same pattern. In the end we were not able to deduce
why this phenomenon takes place.

29

3 Implementing a DMA Attack

RAM CPU/Caches FPGA AFU
rdRequest/
wrRequest

rdResponse
from cache
rdResponse
from memory

wrResponse

CCI-P
PCIe

DDR

Figure 3.1: This figure shows the different components a transaction passes and where the
response is returned that is seen by the FPGA.

Figure 3.2: These histograms show the frequency of the measured access timings without
IOMMU interference.

30

3.2 DMA Attack with IOMMU enabled

3.2 DMA Attack with IOMMU enabled

We used the same components, as in section 3.1, after enabling the IOMMU and executed
our experiments again. Accessing memory outside our domain did not work anymore,
as we expected. To do that, the software has to generate or guess an I/O virtual address
and then share it with the FPGA. This address can not be translated by the translation
structures mentioned in section 2.6.2, if it does not actually belong to a memory frame
allocated to the device, resulting in a translation fault. Trying to access a physical address
directly does also not work. Not only that, but our server automatically reboots, when
we try to access a forged IOVA or PA. This behavior feels strange to us and the reason
for why it is happening is unclear, but it is reproducible almost 100% of the time. A non-
recoverable address translation fault typically requires the reset of the requesting device
[Int19b, 127ff.], but, to our knowledge, should not result in a host system reboot, as this
could be used as a Denial-of-Service (DoS) attack.

We tested for the spatial vulnerability explained in section 1.3. The driver allocates aligned
memory pages that were a multiple of 4 KiB in size. This means that the whole mapped
memory region is reserved for our process and no other process can store data in it. Al-
locating a memory page ourselves using mmap also resulted in aligned pages, where all
entries had been initialized to zeroes, to not leak previous contents. We tried using other
system calls to allocate smaller regions of memory, but the OPAE library declines pre-
allocated memory pages that are not a non-zero multiple of the system’s default page
size. We therefore concluded that the spatial vulnerabilities have been fixed, most likely
by enforcing alignment and certain sizes for memory pages in the OPAE library and the
underlying FPGA driver.

Using the same program as before, i.e. mapping a memory page into the I/O virtual
address space and then removing it again before accessing it for the first time, resulted
in a non-successful attack and most of the time a reboot. However, by modifying our
program to access the memory page once from the FPGA before unmapping it, we ensured
that the translation data was cached in the IOTLB. We were then able to keep accessing
the memory page, until the next IOTLB invalidation was done. This is due to the fact
that the IOMMU does not maintain consistency between the IOTLB and the page tables.
Instead, this responsibility was handed to the OS. The IOTLB entry did not get invalidated
immediately, because invalidations of IOTLB entries are expensive. When the IOMMU
runs in deferred mode, which is the default configuration for the Ubuntu distribution, the
OS queues pending invalidations and whenever the queue is full or a timeout occurs this
queue is processed. In strict mode the invalidation process is done immediately. We did not
find any information about the length of this time frame between scheduled invalidations.

31

3 Implementing a DMA Attack

Table 3.2: Measurements across 1000 traces with enabled IOMMU and addresses not be-
ing cached in the IOTLB previous to access. Attack measurements are missing,
because the attack does not work without cached addresses.

measured by mode avg. cycles min. max. standard deviation
Software proper write 4832.69 2810 8880 1292.15
Software attack write — — — —

Hardware proper read 310.84 212 581 108.13
Hardware attack read — — — —

This experiment shows that our system still has a temporal vulnerability and this has not
been fixed by operation system developers. A scenario where this might lead to data leak-
age is, when the OS quickly reuses a recently unmapped page for another process that
places sensitive data in it while the FPGA still has access to that page through the transla-
tion cache mapping. However, this might be difficult to abuse by an attacker because she
would need to know the IOVA to use the FPGA to access it. Probing for the address did
not work in our experiments, since every faulty access has resulted in a system reboot.

3.2.1 Timing Measurements

Table 3.2 and fig. 3.3 show our measurements over 1000 traces with an enabled IOMMU
and no caching of the address in the IOTLB previous to measuring the access timing. The
attack did not work in this scenario, which is why these spots are crossed out in the table
and not presented as histograms. The timings of write transactions measured on hardware
are not expressive, as mentioned before, and are therefore excluded.

Looking at the software measurements of memory write transactions, one can see that
these increased on average by almost 1500 cycles, compared to the previous values with-
out IOMMU shown in table 3.1. Although an increase was expected due to the additional
abstraction layer and the associated page walks, it is quite large at almost 50%. However,
if we look at the distribution of the measurements in fig. 3.3, we see that the first peak in
the measurements got shifted up by 800 cycles and the second peak moved from around
3750 to 4750. Both of them lost a bit in frequency though, with the addition of new smaller
peaks around 6300 and 7250, resulting in a much wider interval than before. This is also
reflected in the standard deviation, which is now 3-times larger than before. We think this
might be due to the required page walks and the state of the translation caches, that were
briefly mentioned in section 2.6.2. The IOTLB should not have influenced these measure-
ments, as the memory page was never accessed over its IOVA previous to the measured
access. It could only have been cached if the driver of the FPGA created an entry for that
page when mapping it into the I/O virtual address space. In our eyes this is unlikely.

32

3.2 DMA Attack with IOMMU enabled

Figure 3.3: Histogram of the measurements done with IOMMU but no address caching.

33

3 Implementing a DMA Attack

When comparing the measurements from hardware to the ones from software in fig. 3.3,
one can see a very similar pattern. Although the gap between peak 2 and 3 is wider in
the hardware measurement, there are still four agglomerations and the expected increase
in latency is clearly visible. The general increase seems to be around 65 clock cycles in
hardware, as the first two peaks contain the most common measurements.

If we compare the values from before enabling the IOMMU table 3.1 and after enabling it
and forcing address caching table 3.3, it is visible that the read measurements went back
closely to their former average values we measured without IOMMU, if not even a little
bit faster. This does not make sense because this would require for an IOTLB lookup and
the subsequent memory access to be faster than a sole memory access. Nevertheless, this
is also visible in fig. 3.4, but as the difference is so small, we assume this is an inaccuracy
in our measurements.
One very important insight from comparing the histograms with and without address
caching (fig. 3.3 & fig. 3.4) is the fact that accessing the IOVA once, before measuring the
latency, decreased the access time of the first two peaks from 225 and 265 clock cycles
to 158 and 180 respectively. This is the case, because the mapping of IOVA to PA has
been cached in the IOTLB through our previous access. According to our experiments
measured by the FPGA, this speeds up the translation process by 60 to 80 clock cycles.
Thus, the added layer of abstraction through the IOMMU is not noticeable for 4 KiB pages,
once the address mapping is cached when comparing it to the previous measurements
shown in table 3.1. The two peaks furthest to the right from fig. 3.3 were completely
removed by address caching. This supports our hypothesis that these were caused by
the other translation caches of the IOMMU. In a scenario where the address mapping is
already stored in the IOTLB, the state of these caches becomes obsolete.
However, there are still some inconsistencies we were not able to deduce. We did not
find out why there are still two distinct peaks in our hardware measurements with ad-
dress caching (fig. 3.4) and not only one. Although the software measurements suggest
this pattern, it seems to be more specific to read accesses, as previously patterns were
more distinguishable. One possible explanation might be that some of the read requests
are answered from the LLC, while the other ones require a fetch from main memory, as
shown in fig. 3.1. This pattern will not occur when the FPGA sends a write request as
that data is always written to memory or the LLC, if DDIO is supported. This somewhat
fits to the histograms of the software measured write transactions with address caching,
however, this is contradicted by the histograms of the write transactions without IOMMU
interference (fig. 3.2), where this pattern is also clearly visible.

34

3.2 DMA Attack with IOMMU enabled

Table 3.3: Measurements across 1000 traces with enabled IOMMU and addresses being
cached in the IOTLB previous to access.

measured by mode avg. cycles min. max. standard deviation
Software proper write 948.85 584 1632 136.25
Software attack write 981.37 512 1676 125.79

Hardware proper read 166.15 147 191 12.02
Hardware attack read 168.14 152 192 11.90

Figure 3.4: Histogram of the measurements done with IOMMU and forced address
caching.

35

4 Reverse Engineering the IOTLB

The combination of a stricter driver, a stricter library and an IOMMU greatly complicates
carrying out DMA attacks, as we have shown. However, the IOTLB brings a new side-
channel that was not available before. The analyzed timing behavior might be exploitable
to conduct a side-channel attack. Gras et al. [GRBG18] have shown that it is possible
to carry out a side-channel attack through the TLB of the MMU. In their work, they re-
verse engineered the mapping function and the size of the Translation Look aside Buffer.
Afterwards, they used their knowledge to build a timing-based side-channel attack on
encryption schemes such as EdDSA and RSA. We want to show that this is also possible
through the IOTLB.
The architecture of the TLB and the IOTLB is mostly kept secret by the hardware man-
ufacturers, but for a successful side-channel attack, this knowledge is crucial. Thus, we
started by running multiple tests to see when access timings would go up.

4.1 First Test

In out first test we wanted to see how many addresses are needed for access timings go
up. To measure this we build a simple AFU, that, on receiving an IOVA by our software
program, starts reading that memory line. As explained in section 3.1.3, only using the
memory read transaction makes sense here, as we do not get an acknowledge from the
memory controller for a completed memory write transaction. A software measured write
transaction is too prone to fluctuations.
Our software for the first experiment can take 0 or 3 parameters. The program is run with
the command shown in listing 4.1. If no parameters are supplied the default values 1, 128
and 1 are used. With this we get a default 4KiB memory page and an output formatted
as comma-separated values (CSV) that can be exported into a file to analyze in a spread-
sheet program. We took 128 pages as the default number of pages, because we have seen
changes in timings at a slightly lower number and this gives us a bit more data to analyze
which addresses are evicted.

37

4 Reverse Engineering the IOTLB

1 ./IOTLB_measurements [multiplier to page size, #pages, 1 = csv/0 = table output]

Listing 4.1: Specification of how to start the experiment

1 for (i = 0; i < num_of_pages; i++) {
2 iovaArray[i] = sharePage(accel_handle);
3

4 for (j = 0; j <= i; j++) {
5 clock_cntr = measureTime(accel_handle, iovaArray[j]);
6 printResult(iovaArray[j], clock_cntr);
7 }
8 }

Listing 4.2: Core logic of our first test program.

The core logic of our software program can be seen in listing 4.2. On startup, the program
allocates the first memory page and maps it into the FPGA’s virtual address space (line
2). Additionally, the IOVA is stored in an array, where all the addresses of this run will
be stored. Then in line 5 the address will be written into the MMIO space of the FPGA.
The FPGA then accesses the address and measures the timing. In line 6 the result will
be printed to the command line. The program resumes by allocating another memory
page (line 2) and then sending all previously stored addresses to the FPGA one by one,
followed by the latest address (line 5). This goes on until the specified amount of pages is
reached.

4.1.1 Results

The results are displayed in table 4.1. As one can see, the first time an address is added
it takes around 260 to 275 cycles to read from that memory page. This is expected be-
cause the address is not cached in the IOTLB yet. This coincides with our results from
section 3.2.1. Another important observation is that from address 119 onward every ac-
cess to these addresses is in the range of 255 to 275 clock cycles, which overlaps with the
uncached measurements. It should be noted that the access timings of address number 1
also increase from iteration 120 onward. Yet, this does not apply to address number 2 from
run 121 forward, as one might expect if a First-In-First-Out (FIFO) or Least-Recently-Used
(LRU) eviction strategy is used. Our experiment shows, that the first address is evicted
for address 118 and all further addresses are not getting cached in the IOTLB. This led us
to the conclusion that another eviction strategy is used and that the IOTLB can store 117
randomly taken IOVA addresses because this is reproducible over many runs.

38

4.2 Direct Mapping Hypothesis

Table 4.1: Excerpt from the measurements of the first two allocated addresses and the ad-
dresses at index 116-124. With every run a new address is added.

run
address

1 2 ... 116 117 118 119 120 121 122 123 124

117 176 179 ... 263
118 173 185 ... 176 274
119 175 180 ... 179 184 269
120 258 178 ... 181 182 186 273
121 261 178 ... 181 184 182 265 261
122 263 179 ... 176 179 183 266 263 271
123 259 177 ... 176 182 187 272 257 270 262
124 256 179 ... 175 182 187 263 260 274 265 261
125 263 176 ... 178 181 184 268 257 271 260 259 266
126 257 178 ... 177 180 185 272 259 266 259 255 256

After further inspection of the IOVAs sent to the FPGA, we realized that these are always
the same. Starting from the same I/O virtual address and decreasing with every page by
0x1000, i.e. 4096 in decimal notation, which is exactly the size of a 4 KiB page. In ret-
rospect, this makes sense because the IOMMU abstracts the physical hardware layer by
translating physical addresses into I/O virtual ones, creating the illusion of contiguous
memory pages. This contiguous memory is represented by ongoing IOVAs. This means
that the selected addresses were not as random as we first thought. It is also an expla-
nation for why the result of 117 cached IOTLB entries is so reproducible. This number,
however, is not very expressive as it does not necessarily relate to the wayness of the
cache, since the memory pages were selected (in theory) randomly, but in practice not as
much, and may not belong to the same cache set. That is why going forward, we tried to
reverse engineer the mapping function, that maps the IOVA to the actual cache set.

4.2 Direct Mapping Hypothesis

Gras et al. [GRBG18] discovered that there are different mappings for L1 and L2 TLBs in
Intel CPUs starting with the Skylake architecture. As we do not know if there are multi-
ple levels in the IOTLB and which mapping is used there, we tested both their presented
variants. The two general approaches are direct and XOR mapping. The first can be ex-
pressed as cache set = pageIOV A mod s, with s being the number of sets. XOR mapping
uses a subset of 2p bits ([12 + 2p:12]) from the IOVA and consecutively XORs two of them
together to receive a number consisting of p bits. This number is the cache set index of the
address and maps to one of the 2p sets. A more detailed explanation and our results are
given in section 4.3.

39

4 Reverse Engineering the IOTLB

Since we do not have access to performance counters regarding caches misses like the
authors of [GRBG18] had, we have a higher barrier of entrance to reverse engineer the
mapping function. Thus, we had to find a way to deduce the size of the IOTLB by only
sending valid read requests from user space. We have tried this by building an eviction set
for an arbitrary cache line for each of the reasonable combinations of sets s and ways w.
An eviction set is a set of IOVAs that map to the same cache set and is large enough to evict
every entry in that set. Vila et al. [VKM19] propose a test to determine if an eviction set
works. Their approach is accessing all the elements of the eviction set once and measuring
the time of each individual access. Then, they immediately do this again and compare the
measurements. The first iteration ensures that all the elements are cached, while during
the second iteration all the cache misses can be counted. If an eviction occurred during
the first iteration, it is shown by the access delay in the second round. That indicates
that the eviction set works, however, this does not mean that its size is minimal. The
problem of finding a minimal eviction set is equivalent to learning the wayness of a cache
[LYG+15]. By trying out all the sensible combinations of sets and ways one will find a
minimal eviction set eventually.
We tested all combinations of cache sizes up to 256 sets and 128 ways in our experiment.
We selected those boundaries because, according to Gras et al. [GRBG18], the L2 TLB of
Broadwell Xeon CPUs has 256 sets, which is the highest measured number by them. The
largest amount of ways, seen by the authors, has been 12 ways. We have seen the first
evictions in our previous experiment with 118 addresses, which is why we want to have
that spot in our measurements.
The core logic of our program can be seen in listing 4.3. This program is run with every
possible combination of sets and ways up to the boundaries mentioned above. The IOVA
of the allocated and mapped memory page in line 1 is the starting point for our eviction
set. Every other element of our set needs to map to the same set calculated in line 2. In
the while-loop, we keep allocating pages (line 5 & 6) and checking if the remainder, after
dividing the new address by the number of sets, equals the number we want for our set
(line 8). If it matches, we add that address to our set (line 9). This goes on until the
size of our eviction set reaches the number of ways we want to test for. After that, we
start measuring the access time of every address after each other (line 16) and print out
the result (line 17). This is not just done twice as Vila et al. [VKM19] suggest, but done
multiple times to reduce inaccuracies (line 14).

40

4.2 Direct Mapping Hypothesis

1 iovaArray[0] = sharePage(accel_handle, ptr); //returns an IOVA
2 set = iovaArray[0] % num_of_sets;
3

4 while (iovaArray[num_of_ways - 1] == 0) {
5 ptr = mmap(0, pagesize, PROTECTION, FLAGS_4K, -1, 0);
6 uint64_t tmp = sharePage(accel_handle, ptr);
7

8 if ((tmp % num_of_sets) == set) {
9 iovaArray[i] = tmp;

10 i++;
11 }
12 }
13

14 for (int j = 0; j < repetitions; j++) {
15 for (int i = 0; i < num_of_ways; i++) {
16 clock_cntr = measureTime(accel_handle, iovaArray[i]);
17 printResult(iovaArray[i], clock_cntr);
18 }
19 }

Listing 4.3: Core logic of our test program for direct mapping.

4.2.1 Results

If our hypothesis of direct mapping is true, we should be able to deduce the wayness
w of the cache from these access timings. The smallest eviction set, that reliably results
in the eviction of a cache line, shows us the number of ways because an eviction set,
that evicts exactly one of its own addresses, has w + 1 elements. The amount of sets can
be concluded by the number of sets anticipated when creating the working eviction set.
In case there are multiple eviction sets with the same amount of elements, the smallest
amount of anticipated sets is the correct one.
We ran our experiment with every address being accessed fifty times (line 14 in listing 4.3),
instead of just twice and exported our data again into csv-files. Every file contains the
measurements of one combination of sets and ways from the interval mentioned above.
To display the data in a heat map, we wrote a python script that goes through all the data
files and counts the amount of suspected evictions, i.e. measurements above 215 clock
cycles (evictions in these experiments are around 250 clock cycles), per iteration. This
resulted in fifty frequencies per file. We then picked the most common frequency per file
and stored it in a 2-dimensional array that is displayed as a heat map in fig. 4.1.
The outcome does not look as clear as our results from section 4.1.1, where we have reli-
ably seen 117 fast accesses. However, that threshold is still clearly visible in the heat map.
There is quite a bit of noise in the upper half of the heat map. The explanation is most
likely that the more address are selected, the higher is the probability of having at least
some addresses mapping to the same set.

41

4 Reverse Engineering the IOTLB

Figure 4.1: Heat map of the most common amount of evictions measured per combination
with direct mapping.

42

4.2 Direct Mapping Hypothesis

Since the divider for the set index calculation is higher the more sets are anticipated, the
addresses have more distance between them. This is the reason why the noise increase
towards the right side in the heat map.

To compare the data to our previous experiment, we have to look at what has changed
since then. First of all, our address selection follows the direct mapping hypothesis and
is not just the first w addresses we allocated. And secondly, our access pattern changed
from accessing address#1, then address#1 & address#2, then address#1, address#2 & ad-
dress#3, and so on, to accessing address#1 to address#128 and then starting again. The
different access patterns do not impact the measurements, as the same threshold exists as
before. We have seen in previous experiments that one access to an address is enough to
store the translation data in the IOTLB. The access pattern might change which addresses
are evicted at cache contention, if the eviction policy takes the frequency of access into
account. Nonetheless this should have no influence over the amount of fast accesses per
iteration, as we only counted the general amount of evictions and not which addresses
were evicted.

If our mapping hypothesis were correct, we could see multiple brighter colored lines run-
ning vertically down into the darker areas. This is due to the fact that we would have
built a minimal eviction set for an arbitrary cache line that evicted one of its own entries.
All the points in the same column of the graphic would also be eviction sets, but with
more elements the further up the point is on the y-axis. Thus, the higher the point, the
higher would be the number of evictions covered by this sent, resulting in a line running
from dark to light. The values in the surrounding columns would be wrongly assumed
set sizes. This means that we need on average more addresses to evict a cache line, as
these addresses are spread across different cache sets. Therefore, these areas would still
be darkly colored. This can only lead to one of two conclusions. Either our mapping
hypothesis must be wrong or the IOTLB is a cache with around 117 ways. In our eyes
this is very unlikely because a fully associative cache requires a lot more hardware than,
for example, set-associative caches with less ways but more sets. This is due to the fact
that multiple cache tags have to be checked at the same time to keep the latency of cache
accesses low and thus multiple tag-compare-module are needed. The effort needed for
implementing a 117 way seems too high to be actually considered by manufacturers.

This leaves us only with the theory that our prediction about the mapping function is
wrong.

43

4 Reverse Engineering the IOTLB

4.3 XOR Mapping Hypothesis

Going forward, we also tried the second mapping hypothesis mentioned by Gras et al.
[GRBG18]. The XOR-mapping is best explained with an example: our cache has 16 sets
(2p = 16 → p = 4) and maps 4KiB pages (2q = 4096 → q = 12). To map an address to
one of these 16 sets we need the 2p bits after the page offset from the IOVA [q + 2p− 1:q],
i.e. [19:12]. These bits will be XORed following the schematic below. The resulting 4 bit
set_index determines the cache set.

IOV A[19]⊕ IOV A[15] = set_index[3]

IOV A[18]⊕ IOV A[14] = set_index[2]

IOV A[17]⊕ IOV A[13] = set_index[1]

IOV A[16]⊕ IOV A[12] = set_index[0]

With this hypothesis there is a much smaller space of possible combinations than with
direct mapping. We can only address caches with set sizes that are a power of 2, because
p has to be an integer. Thus we only test all powers of 2 up to 256.
The results can be seen in fig. 4.2. The pattern in this heat map is similar pattern to the
previous one, where there is a clearly distinguishable increase in cache misses above 117
ways. Furthermore, the noise in the upper right hand corner is also there. The absence of
bright vertical lines in the data indicates that this is also not the correct mapping function
and the hardware manufacturers built something entirely different for the IOTLB.

44

4.3 XOR Mapping Hypothesis

Figure 4.2: Heat map of the most common amount of evictions measured per combination
with XOR mapping.

45

5 Conclusions

5.1 Summary

In chapter 3, we implemented a Direct Memory Access attack from an FPGA circumvent-
ing the IOMMU. We began measuring how long DMA read and write operations take
on our system. These measurements were made by two different platforms and with
an enabled and disabled IOMMU. The software’s readings show how long it takes from
sending the address to the FPGA to it changing the memory contents. On the hardware
it measures how long it takes from the arrival of the address to the receipt of the confir-
mation. Our conclusion is that read transactions are best recorded from the FPGA and
write transactions from the software. Furthermore, by comparing the measurements from
before and after enabling the IOMMU, we have shown that it impacts the latency of read
a transaction by ≈65 clock cycles, measured on the FPGA, and the latency of write trans-
action by ≈800 cycles, on the CPU. Additionally, we have proven that after accessing a
memory page once, the translation data is cached in the IOTLB. Even after unmapping,
this memory page can still be accessed by the FPGA, resulting in a successful DMA at-
tack. However, there is no significant difference in the timing measurements and their
distribution between a regular DMA transaction and our DMA attack.
Referring back to section 1.1, it has been shown that it is indeed possible to implement a
DMA attack on current hybrid platforms. Although this is only possible, because oper-
ating system developers consciously decided to keep this vulnerability for performance
reasons.
In chapter 4, we analyzed how many memory pages we need to allocate to force evictions
from the IOTLB. The measurements from chapter 3 were used to decide which accesses
have been evictions. The threshold lies around 117 addresses where we can reliably see the
amount of evictions increase. Using the direct and XOR mapping hypotheses, we build an
eviction set for each combination of sets and ways and measured their individual access
timings. The results show that we can not deduce the wayness or the amount of sets of
our cache. Thus, we failed in reverse engineering the IOTLB. Consequently, we were not
able to verify the other two theses mentioned in section 1.1.

47

5 Conclusions

5.2 Discussion

Operating systems trusted peripheral unconditionally for a very long time. This has
changed since the introduction of IOMMUs as memory protection mechanisms, but this
trust is deeply rooted in many operating systems and drivers. This makes it hard for
developers to change existing code to distrust peripherals. Even though they are mostly
disabled by default, IOMMUs are definitely a step in the right direction.

The DMA attack shown by us can leak at most as much memory as the page was pre-
viously large. Increasing the page size to huge pages or even a 1 GiB page would most
likely increase the practical relevance of the attack. However, this needs to be evaluated.

Many of the problems we had in the beginning of this thesis were caused by the FPGA
Interface Unit. It made designing hardware much simpler, but also severely limited our
options for implementing a DMA attack. This made us discard many ideas we had from
the start. A less strict threat model would have definitely allowed more room to explore
attacks through the PCIe protocol. Forging the source-id and using PCIe ATS are only
two options we considered when starting working on this thesis.

We have presented some of the published DMA attacks of the recent years and are happy
to see and read that many of them have been fixed. Thus we recommend anyone, using
a computer with external DMA-capable interfaces or internal programmable devices, to
enable their IOMMU. Furthermore, disabling PCIe Address Translation Services is also
advised, as this completely undermines the IOMMU protection.

5.3 Future Work

In the future, one would have to test how much practical relevance our shown DMA attack
has. We had a few runs where accessing the memory page was still possible for multiple
seconds after unmapping and then again runs where our server automatically rebooted.
The highest we tested were 20 seconds, but this should by no means be considered the
upper boundary, as we did not run the experiment many times due to the rebooting is-
sue. This issue should be examined in particular to make further experiments with DMA
attacks less time and nerve consuming.
Using an FPGA without an interface unit that abstracts the PCIe layer from the hardware
design is another thing to be considered. This enables an attacker to directly build PCIe
packets and thus find design flaws or implementation errors in the PCIe protocol. One
idea we had from the beginning was forging the source-id used in the first level address

48

5.3 Future Work

translation. However, we were not able to implement this, because we couldn’t modify
PCIe headers due to the Intel FIU. The reason for not removing the FIU were limitations
set by our threat model.

As we were not able to successfully reverse engineer the size of our cache, we propose
expanding the search for the mapping function. A rather simple approach would be to
continue increasing the number of sets tested with the XOR mapping. IOVAs have 48 bits,
minus the 12 bits for the 4KiB page offset, there still remain 36 bits. This results in 218 =

262144 possibly addressable sets. It is rather unlikely that this is the number of sets in our
cache, as this would mean the IOTLB is a directly mapped cache, but increasing the sets to
2048 or even further should be a good idea. Especially because this does not increase the
runtime of the experiment by much. We were not able to conduct this experiment before
the deadline. For the direct mapping, however, increasing the sets is much more time-
consuming, as going from anticipating 256 sets to 512 doubles the number of performed
tests. To speed this up, one might think about ignoring all the set sizes that are not a power
of 2.
Changing the order in which bits of the IOVA are XOR-ed is another approach we rec-
ommend, but there are many possible combinations. A possible solution to that would
be using huge pages. These use the 21-least significant bits of the I/O virtual address for
the page offset. This results in 9 bits less to take into account when guessing the mapping
function. Our system IOMMU also supports 1 GiB large pages, which use the 30-least
significant bits, resulting in 18 IOVA address bits to XOR. Nonetheless, the space of possi-
bilities is still very large.
When one is able to determine the size of the cache, another interesting thing to inves-
tigate is the replacement policy. Knowing the replacement policy gives an attacker the
ability to predict which cache line is being evicted next. This knowledge can help using
the IOTLB as a side-channel when attacking network interface cards (NICs), graphical
processing units (GPUs) or other peripheral devices. For that to work, one would need to
check whether cache contention between devices occurs. If that is the case, monitoring the
translation cache accesses of a NIC might result in leaking website access patterns or typ-
ing patterns during an SSH-connection. Likewise, attacking a GPU might also be possible
and give an attacker the possibility to predict screen content.
Another section of work is implementing the a covert channel for mutually cooperating
parties. These can communicate by accessing IOTLB sets, which results in higher latency
in the same set for the other party.
Basically any cache attack that works with page size-grained information can work.

49

References

[AAA19] Altaf Ahmed, Abdullah Aljumah, and Gulam Ahmad. Design and Imple-
mentation of a Direct Memory Access Controller for Embedded Applica-
tions. International Journal of Technology, 10:309, 04 2019.

[AD10] Damien Aumaitre and Christophe Devine. Subverting Windows 7 x64
Kernel with DMA attacks. http://conference.hackinthebox.

nl/hitbsecconf2010ams/materials/D2T2%20-%20Devine%

20&%20Aumaitre%20-%20Subverting%20Windows%207%20x64%

20Kernel%20with%20DMA%20Attacks.pdf, July 2010. Hack In The
Box Security Conference 2010 - Amsterdam (accessed 30.07.2020).

[Adv16] Advanced Micro Devices. AMD I/O Virtualization Technology (IOMMU) Spec-
ification, 3.00 edition, December 2016.

[Ama] Inc. Amazon.com. Amazon EC2 F1-Instances. https://aws.amazon.

com/de/ec2/instance-types/f1/. (accessed 26.07.2020).

[Anu16] Murali Anumothu. Design and Analysis of DMA Controller for System on
Chip based Applications. International Journal of VLSI and Embedded Systems-
IJVES, 07:1685–1690, 06 2016.

[ARM16] ARM Limited. ARM System Memory Management Unit Architecture Specifica-
tion, 2.0 edition, June 2016.

[BDK05] Michael Becher, Maximillian Dornseif, and Christian Klein. Firewire: all
your memory are belong to us. In Proceedings of CanSecWest, 01 2005.

[Boi06] Adam Boileau. Hit by a Bus: Physical Access Attacks with Firewire. In
Ruxcon 2006, May 2006.

[BS12] Rory Breuk and Albert Spruyt. Integrating DMA attacks in exploitation
frameworks. Technical report, University of Amsterdam, 2012.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX Explained. Cryptology
ePrint Archive, Report 2016/086, 2016. https://eprint.iacr.org/

2016/086.pdf (accessed 30.07.2020).

51

http://conference.hackinthebox.nl/hitbsecconf2010ams/materials/D2T2%20-%20Devine%20&%20Aumaitre%20-%20Subverting%20Windows%207%20x64%20Kernel%20with%20DMA%20Attacks.pdf
http://conference.hackinthebox.nl/hitbsecconf2010ams/materials/D2T2%20-%20Devine%20&%20Aumaitre%20-%20Subverting%20Windows%207%20x64%20Kernel%20with%20DMA%20Attacks.pdf
http://conference.hackinthebox.nl/hitbsecconf2010ams/materials/D2T2%20-%20Devine%20&%20Aumaitre%20-%20Subverting%20Windows%207%20x64%20Kernel%20with%20DMA%20Attacks.pdf
http://conference.hackinthebox.nl/hitbsecconf2010ams/materials/D2T2%20-%20Devine%20&%20Aumaitre%20-%20Subverting%20Windows%207%20x64%20Kernel%20with%20DMA%20Attacks.pdf
https://aws.amazon.com/de/ec2/instance-types/f1/
https://aws.amazon.com/de/ec2/instance-types/f1/
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf

References

[Cor] Intel Corporation. OPAE C Library Documentation. https://opae.

github.io/0.13.0/docs/install_guide/installation_guide.

html (accessed 21.07.2020).

[CS15] Vibhu Chinmay and Shubham Sachdeva. Review Paper: Design of basic
DMA Controller Using VHDL. 2015.

[Dor] Maximillian Dornseif. Owned by an iPod, November. PacSec 2004
Japan. https://web.archive.org/web/20071011191205/http:

//md.hudora.de/presentations/firewire/PacSec2004.pdf

(accessed 30.07.2020).

[ECS] Alibaba Cloud ECS. Deep Dive into Alibaba Cloud F3 FPGA as
a Service Instances. https://www.alibabacloud.com/blog/

deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_

594057. (accessed 26.07.2020).

[Fal14] Heiko Falk. Lecture slides in Grundlagen der Rechnerarchitektur - Ein-
/Ausgabe. Institut für Eingebettete Systeme/Echtzeitsysteme of the Uni-
versity Ulm, October 2014.

[FC] Joe FitzPatrick and Miles Crabill. Stupid PCIe Tricks - featuring NSA Play-
set: PCIe. https://milescrabill.com/files/playset-pcie.pdf.
(accessed 19.07.2020).

[Fit] Joe FitzPatrick. SLOTSCREAMER. https://github.com/

NSAPlayset/SLOTSCREAMER (accessed 10.12.2019).

[For11] Jeff Forristal. Hardware Involved Software Attacks. https:

//forristal.com/material/Forristal_Hardware_Involved_

Software_Attacks.pdf, December 2011. CanSecWest Vancouver 2012.

[Fri] Ulf Frisk. PCILeech. https://github.com/ufrisk/pcileech (ac-
cessed 10.12.2019).

[GBAS] Scott Gibbons, Jonathan Buie, Michael Adler, and Gabriel Southern. In-
tel FPGA Basic Building Blocks (BBB). https://github.com/OPAE/

intel-fpga-bbb/tree/master/samples/tutorial/01_hello_

world. (accessed 11.06.2020).

[GRBG18] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB At-

52

https://opae.github.io/0.13.0/docs/install_guide/installation_guide.html
https://opae.github.io/0.13.0/docs/install_guide/installation_guide.html
https://opae.github.io/0.13.0/docs/install_guide/installation_guide.html
https://web.archive.org/web/20071011191205/http://md.hudora.de/presentations/firewire/PacSec2004.pdf
https://web.archive.org/web/20071011191205/http://md.hudora.de/presentations/firewire/PacSec2004.pdf
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://www.alibabacloud.com/blog/deep-dive-into-alibaba-cloud-f3-fpga-as-a-service-instances_594057
https://milescrabill.com/files/playset-pcie.pdf
https://github.com/NSAPlayset/SLOTSCREAMER
https://github.com/NSAPlayset/SLOTSCREAMER
https://forristal.com/material/Forristal_Hardware_Involved_Software_Attacks.pdf
https://forristal.com/material/Forristal_Hardware_Involved_Software_Attacks.pdf
https://forristal.com/material/Forristal_Hardware_Involved_Software_Attacks.pdf
https://github.com/ufrisk/pcileech
https://github.com/OPAE/intel-fpga-bbb/tree/master/samples/tutorial/01_hello_world
https://github.com/OPAE/intel-fpga-bbb/tree/master/samples/tutorial/01_hello_world
https://github.com/OPAE/intel-fpga-bbb/tree/master/samples/tutorial/01_hello_world

References

tacks. In 27th USENIX Security Symposium, August 2018. Pwnie Award
Nomination for Most Innovative Research.

[Har94] Audrey F. Harvey. DMA Fundamentals on Various PC Platforms. 1994.

[Int15] Intel Corporation. 82C37A CMOS High Performance Programmable DMA Con-
troller Datasheet, 4.0 edition, October 2015.

[Int17] Intel Corporation. Intel® 200 (including X299) and Intel® Z370 Series Chipset
Families Platform Controller Hub (PCH) Datasheet - Volume 1 of 2, 003 edition,
October 2017.

[Int18] Intel Corporation. Intel® 200 (including X299) and Intel® Z370 Series Chipset
Families Platform Controller Hub (PCH) Datasheet - Volume 2 of 2, 006 edition,
February 2018.

[Int19a] Intel Corporation. Intel Acceleration Stack for Intel® Xeon® CPU with
FPGAs Core Cache Interface (CCI-P) Reference Manual, November 2019.
https://www.intel.com/content/dam/www/programmable/

us/en/pdfs/literature/manual/mnl-ias-ccip.pdf (accessed
21.07.2020).

[Int19b] Intel Corporation. Intel® Virtualization Technology for Directed I/O - Architec-
ture Specification, 3.1 edition, June 2019.

[Int20] Intel Corporation. Intel ® Trusted Execution Technology (Intel ® TXT), 016.1
edition, May 2020.

[KGA+20] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. NetCAT: Practical Cache Attacks from the Network.
In 41st IEEE Symposium on Security and Privacy (S&P’19), May 2020. Intel
Bounty Reward.

[KPMR12] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTHMEM:
System-level protection against cache-based side channel attacks in the
cloud. In 21st USENIX Security Symposium, pages 189–204, Bellevue, WA,
2012. USENIX.

[Kup18] Gil Kupfer. IOMMU-resistant DMA attacks. master thesis, Israel Institute of
Technology, 2018.

[LGY+16] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot
Heiser, and Ruby B. Lee. CATalyst: Defeating last-level cache side channel

53

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf

References

attacks in cloud computing. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 406–418, 2016.

[lin] Linux kernel documentation for intel iommu support. https://www.

kernel.org/doc/Documentation/Intel-IOMMU.txt. (accessed:
18.07.2020).

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-
Level Cache Side-Channel Attacks are Practical. In 36th IEEE Symposium on
Security and Privacy (S&P’15), pages 605–622, 2015.

[MEANK16] Benoît Morgan, Éric Alata, Vincent Nicomette, and Mohamed Kaâniche. By-
passing IOMMU Protection against I/O Attacks. In 7th Latin-American Sym-
posium on Dependable Computing (LADC), pages 145–150, 2016.

[MEANK18] Benoît Morgan, Éric Alata, Vincent Nicomette, and Mohamed Kaâniche.
IOMMU protection against I/O attacks: a vulnerability and a proof of con-
cept. In Journal of the Brazilian Computer Society, volume 24, 2018.

[MRG+19] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce,
Peter G. Neumann, Simon W. Moore, and Robert N. M. Watson. Thunder-
clap: Exploring Vulnerabilities in Operating System IOMMU Protection via
DMA from Untrustworthy Peripherals. In Proceedings of the Network and Dis-
tributed Systems Security Symposium (NDSS), February 2019.

[NAZ+18] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Ser-
gio López-Buedo, and Andrew W. Moore. Understanding pcie performance
for end host networking. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’18, page 327–341,
New York, NY, USA, 2018. Association for Computing Machinery.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and Coun-
termeasures: The Case of AES". In Topics in Cryptology – CT-RSA 2006, pages
1–20, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[PCI09] PCI-SIG ®. Address Translation Services, 1.1 edition, January 2009.

[PCI10] PCI-SIG ®. PCI Express® Base Specification, 3.0 edition, November 2010.

[SB13] Patrick Stewin and Iurii Bystrov. Understanding DMA Malware. In Pro-
ceedings of the 9th International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, DIMVA’12, pages 21–41, Berlin, Heidel-
berg, 2013. Springer-Verlag.

54

https://www.kernel.org/doc/Documentation/Intel-IOMMU.txt
https://www.kernel.org/doc/Documentation/Intel-IOMMU.txt

References

[SELND10] Fernand Lone Sang, Éric Lacombe, Vincent Nicomette, and Yves Deswarte.
Exploiting an I/OMMU vulnerability. In 5th International Conference on Ma-
licious and Unwanted Software, pages 7–14, 2010.

[SND11] Fernand Lone Sang, Vincent Nicomette, and Yves Deswarte. I/O Attacks
in Intel PC-based Architectures and Countermeasures. In 2011 First SysSec
Workshop, pages 19–26, July 2011.

[sr14] snare and rzn. Thunderbolts and Lightning - very, very frightening. https:
//www.youtube.com/watch?v=0FoVmBOdbhg, April 2014.

[Tur14] Jim Turley. Introduction to Intel® Architecture. Technical report, Intel Cor-
poration, 2014.

[VKM19] Pepe Vila, Boris Köpf, and José F. Morales. Theory and Practice of Finding
Eviction Sets. In 40th IEEE Symposium on Security and Privacy (S&P’19), pages
39–54, 2019.

[WRT09] Rafal Wojtczuk, Joanna Rutkowska, and Alexander Tereshkin. Another Way
to Circumvent Intel ® Trusted Execution Technology. December 2009.

[YF14] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution, low
noise, l3 cache side-channel attack. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 719–732, San Diego, CA, August 2014. USENIX
Association.

[YZZ17] Jiewen Yao, Vincent J. Zimmer, and Star Zeng. A Tour Beyond BIOS: Us-
ing IOMMU for DMA Protection in UEFI Firmware. Technical report, Intel
Corporation, 2017.

55

https://www.youtube.com/watch?v=0FoVmBOdbhg
https://www.youtube.com/watch?v=0FoVmBOdbhg

	Introduction
	Goal of this Master Thesis
	Threat Model
	State of Research
	Approach

	Background
	Computer Architecture Background
	I/O Address Spaces

	Peripheral Component Interconnect
	Peripheral Component Interconnect Express
	Mechanisms that impact PCIe Performance

	Direct Memory Access
	Sequence of a third-party DMA transaction

	DMA Attacks
	Memory Protection Mechanisms
	Intel Virtualization Technology for directed Input/Output
	DMA remapping

	Caches
	Translation Look aside Buffer

	Our Hardware

	Implementing a DMA Attack
	DMA Attack with IOMMU disabled
	Hardware Implementation
	Software Implementation
	Timing Measurements

	DMA Attack with IOMMU enabled
	Timing Measurements

	Reverse Engineering the IOTLB
	First Test
	Results

	Direct Mapping Hypothesis
	Results

	XOR Mapping Hypothesis

	Conclusions
	Summary
	Discussion
	Future Work

	References

