
Garbled Circuits: From White-Box Cryptogra-
phy to Zero-Knowledge Proofs
Garbled Circuits: Von White-Box Cryptography zu
Zero-Knowledge Proofs

Masterarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Jacqueline Thaeter

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

mit Unterstützung von
Okan Seker, M.Sc.

Lübeck, den 27.09.2018

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur
unter Benutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, den 27.09.2018

Abstract

This thesis covers the topics of garbled circuits, white-box cryptography
and zero-knowledge proofs. We present multiple new approaches on how
touse garbled circuits inwhite-box cryptography. White-box cryptography
based on garbled circuits has the advantage of being universal, meaning it
can be applied to arbitrary circuits. One of the protocols proposed is used
for creating a new kind of zero-knowledge proofs. We designed a zero-
knowledge proof protocol that uses garbled circuits, but does not need any
oblivious transfer or commitment. Different variations of the protocol are
analyzed and compared to state-of-the-art protocols.

Zusammenfassung

Diese Arbeit beschäftigt sich mit den Themengebieten garbled circuits,
white-box cryptography und zero-knowledge Beweisen. Wir präsentieren
verschiedene neue Ansätze, wie sich garbled circuits in der white-box
cryptography verwenden lassen. Das Verwenden von garbled circuits in
einem white-box Kontext hat den Vorteil, dass die resultierenden Verfah-
ren universell sind, was bedeutet, dass sie mit beliebigen Schaltkreisen
verwendet werden können. Eines der präsentierten Protokolle wird von
uns verwendet um eine neue Art von zero-knowledge Beweisen zu er-
schaffen. Wir haben ein zero-knowledge Beweisprotokoll entworfen, dass
garbled circuits verwendet, jedoch weder oblivious transfer noch commit-
ment benötigt. Verschiedene Varianten dieses Protokolls werden analysiert
und mit aktuellen Protokollen verglichen.

Contents

1 Introduction 9

2 Preliminaries and Notations 11
2.1 Commitment . 11
2.2 Oblivious Transfer . 11

2.2.1 Committing Oblivious Transfer 13
2.3 Garbled Circuits . 14

2.3.1 Properties of Garbling Schemes 18
2.3.2 Improvements . 19

2.4 Zero-Knowledge Proofs . 23
2.4.1 Security Notions . 24

3 White-Box Cryptography 25
3.1 Applying Garbled Circuits to White-Box Cryptography 27
3.2 Simple White-Box Encryption Scheme 29

3.2.1 Security . 31
3.2.2 Computational and Communication Complexity 32

3.3 Modified White-Box Encryption Scheme 35
3.3.1 Security . 38
3.3.2 Computational and Communication Complexity 38

3.4 Two-Layer Scheme . 39

4 Zero-Knowledge Proofs 42
4.1 Existing Approaches . 42

4.1.1 JKO13 . 42
4.1.2 ZKBoo and ZKB++ . 48

4.2 ZKGC-nOT . 51
4.2.1 Security . 52
4.2.2 Applicable Garbled Circuit Improvements 55
4.2.3 Computational and Communication Complexity 55
4.2.4 Comparison to other Protocols 56

4.3 Protocol Variations . 57
4.3.1 Using Oblivious Transfer 57
4.3.2 Non-Interactive Zero-Knowledge Approach 58

5 Conclusion and Future Work 63

7

1 Introduction

Today, music, films and games are commonly consumed via streaming
platforms. Less and less media is distributed physically, and the amount
of media distributed over the internet constantly increases. This brings a
new challenge: How can content be provided without allowing the user to
extract the data? Ideally, a piece of software on the user’s hardware is used
to decrypt the data that was sent in an encrypted form. The user should
not be able to extract the data without making use of the software. This
way, access to the data can also be limited to specific data or to a limited
period of time. But how can such software be installed on a user’s device
and simultaneously be secured in a way that the user cannot extract secret
keys? This is the main issue of white-box cryptography.

Streaming is not the only application for white-box implementations. Li-
censed productivity software is another important use case. It is also
possible to create white-boxes that enable the user to apply a certain cryp-
tographic operation on self-chosen inputs. The key used for the cryp-
tographic operation is embedded in the white-box in such a way, that it
cannot be extracted by the user. This prevents the user from inverting
the cryptographic operation or using the key in another manner he is not
supposed to.

White-box implementations work by obfuscating the executed operation.
This is similar to garbled circuits, where the inputs to an operation are
obfuscated in order to do secure two party computation. Inspired by
this similarity, we constructed different protocols combining white-box
cryptography with garbled circuits. One of them, called simple white-
box encryption scheme (SWBES), enables a sender to transmit an encrypted
message to a receiver in a way that the receiver can decrypt the message,
but does not get any information about the ciphertext. This is an interesting
property that is not needed for data transfer, but opens the doors to another
field – zero-knowledge proofs.

Using the SWBES as a basis, we developed a zero-knowledge proof pro-
tocol using garbled circuits. We call it ZKGC-nOT, since unlike the only

9

other existing protocol using garbled circuits for zero-knowledge proofs
by Jawurek et al. [JKO13], it does not need any oblivious transfer. ZKGC-nOT
is a completely new approach to using garbled circuits for zero-knowledge
proofs, as there are many differences to the JKO13 protocol. It is also very
versatile and can be varied in different ways. We present a variant that
uses oblivious transfer to get other bonus properties and show how it can
be converted into a non-interactive zero-knowledge proof.

In Section 2 we introduce commitment, oblivious transfer, garbled circuits
and zero-knowledge proofs together with the corresponding notations so
we can use these techniques in the following sections. Next, in Section 3,
white-box cryptography is introduced. We present a single-use white-box
usinggarbled circuits alongwith theprotocols SWBES and MWBES. These pro-
tocols are analyzed thoroughly and an introduction to a two-layer scheme
is given. The SWBES protocol is the basis for our new zero-knowledge proof
protocol using garbled circuits, presented in Section 4. We analyze the
protocol, show some variants and compare it to related work. In Section 5
we draw our conclusion and present ideas for future work.

10

2 Preliminaries and Notations

In the following, some preliminaries including commitment, oblivious
transfer, garbled circuits and zero-knowledge proofs will be introduced
together with the corresponding notations used in this thesis. Oblivious
transfer is needed for the garbled circuits used in some protocols we dis-
cuss.

2.1 Commitment

The commitment protocol COM depicted in Figure 2.1 is a two-party protocol
between a committer and a receiver. In the firstmessage Commit, the commit-
ter commits himself to a specific value towards the receiver. In the second
message called Decommit, the committer reveals the value he committed
himself to to the receiver. A valid commitment protocol must guarantee,
that the receiver has no access to the committed value until he gets the
Decommitmessage. Further, the committer must not be able to change the
value he committed himself to when sending the secondmessage. COM can
be implemented by applying COT discussed below or by using a dedicated
protocol like the one proposed by Lindell in [Lin11].

Committer Receiver

COM − Commit
COM − Decommit

Figure 2.1: The commitment protocol COM

2.2 Oblivious Transfer

Oblivious transfer (OT) is a technique to send a message that is delivered
with probability of one half. The sender of the message does not know,

11

Sender Receiver

pick m0 ,m1 ∈ ZN

generate (N, e , d)

pick x0 , x1 ∈ Z∗N
N, e , x0 , x1

pick r ∈ Z∗N and b ∈ {0, 1}

q � (re + xb) mod N

q

r0 � (q − x0)d mod N

r1 � (q − x1)d mod N

m′0 � m0 + r0 mod N

m′1 � m1 + r1 mod N

m′0 ,m
′
1

mb � m′b − r mod N

Figure 2.2: The 1-2-OT protocol by Even, Goldreich and Lempel [EGL85] is
based on the RSA encryption scheme, with (N, e , d) being an
RSA key pair. m0 and m1 are the two messages to be sent, of
which the receiver gets one by choosing the index b.

whether it is delivered or not. In this thesis, wemake use of a variant called
1-out-of-2 oblivious transfer (1-2-OT). In this variant, two messages m0 ,m1 ∈
{0, 1}` of length ` are sent, and the receiver has to choosewhich one of them
is disclosed. The sender does not know, which message mb is delivered
and the receiver has no possibility to get any information about the other
message m1−b . The protocol consists of at least two messages: Choose
contains the receiver’s choice b and Transfer contains both messages m0
and m1 ofwhich only mb canbe readby the receiver. The followingprotocol
by Even, Goldreich and Lempel from 1985 [EGL85] is a simple example on
how 1-2-OT can be realized (for a visualization see Figure 2.2):

Let m0 ,m1 ∈ ZN be the two messages to be sent, and (N, e , d) an RSA

12

key-pair generated by the sender. In the first step, the sender sends N , e,
and some random values x0 , x1 ∈ Z∗N to the receiver. The receiver then
chooses a random number r ∈ Z∗N and a bit b ∈ {0, 1} that determines
which message he wants to receive. Now, the receiver responds with
q � (re +xb) mod N , which is the Choosemessage. From the perspective of
the sender, there are two possibilities for r: It is either r0 � (q−x0)d mod N
or r1 � (q−x1)d mod N . Since r serves as the key for the receiver to decrypt
the message, the sender encrypts one message with r0 and the other with
r1. Hence, the Transfer message contains m′0 � m0 + r0 mod N and
m′1 � m1 + r1 mod N . In the last step, the receiver decrypts the requested
message by computing mb � m′b − r mod N .

The protocolmeets the requirements of 1-2-OT because the receiver chooses
a bit b and encrypts it in form of q. Since there are two possibilities for
r with the same probability, the sender cannot know which ri is the right
one. Hence he gets no information about whichmessage is disclosed to the
receiver. On the other hand, it is difficult for the receiver to find the other
ri because he does not know d. Therefore the receiver has no possibility to
get both messages.

Note that this description differs from the original protocol. In the variant
described in this section, the receiver gets to choose whether to receive
m0 or m1. In the original variant by Even et al., the receiver does not get
to choose the message because the sender chooses which of the messages
to encrypt with r0 and which with r1. This results in the message that is
obtained by the receiver being chosen at random. We altered the original
protocol because for our purposes we need the receiver to be able to choose
the message.

This is just a basic example for 1-2-OT that teaches us how it is possible
to reach the unintuitive state that only one of two messages arrives and
the sender does not know which one. Most modern protocols are more
efficient and include commitment on the messages sent, as explained in
the next section.

2.2.1 Committing Oblivious Transfer

The committing oblivious transfer protocol COT, depicted in Figure 2.3, is an
extended variant of classical (1-2-)OT. Like in the standard protocol, the
sender has two messages m0 ,m1 ∈ {0, 1}` . The receiver chooses between

13

Sender Receiver

COT − Choose
COT − Transfer
COT − Open

Figure 2.3: The COT protocol consists of at least three messages. In the
Choosemessage, the receiver chooseswhich of twomessages m0
and m1 to receive in the Transfermessage. The Openmessage
is used to reveal the other message that has not been altered
since. Depending on the implementation, there may also be
more messages.

obtaining either m0 or m1 while he has no possibility to get the other one
and the sender does not learn which message the receiver chooses. What
makes COTdifferent is that subsequently, the sender can reveal m0 and m1 to
the receiver without being able to alter the messages in the meantime. The
messages performing these tasks are called Choose, Transfer and Open.
As the name implies, Choose contains the choice b of the receiver, that
cannot be extracted by the sender. Transfer contains the message mb and
Open contains both messages m0 and m1. There are several possibilities to
implement COT. Two examples can be found in Appendix A in [JKO13].

2.3 Garbled Circuits

The concept of garbled circuits is a common technique for secure two-
and multi-party computation. Introduced by Yao in 1986 [Yao86], garbled
circuits have been widely adopted for several tasks due to their generic
nature. Modern applications of garbled circuits include achieving secure
multi-party computationwith two-round protocols [GS18, BL18] and zero-
knowledge proofs [JKO13].

In secure two-party computation, two parties want to know the result of
a computation to which each of the parties knows a part of the input. At
the same time, both parties should not get any information about the other
party’s input besides the information they candeduce from their own input

14

Gb En
Ev

De
x

1k

c

y

C

d

e
X

Y

Figure 2.4: The dependencies between the components of a garbling
scheme. Inspired by [BHR12]. The color coding describes
membership of the algorithms. The blue parts are executed
by the garbler and the red parts by the evaluator.

and the output. To reach this goal, a circuit performing the computation
is used.

Let’s first take a look at the idea behind garbled circuits while introducing
the notation. For our definition of garbled circuits, we adapt the definition
of garbling schemes by Bellare, Hoang and Rogaway [BHR12]. Garbling
schemes are a generalizationof garbled circuits that have the samepurpose,
but do not have to be realized using circuits. In contrast to Bellare et al.,
we explicitly use circuits, which results in a slightly different notation.

Given a Boolean circuit c computing a function f : {0, 1}n → {0, 1}m , an
input x ∈ {0, 1}n and a unary security parameter k, the garbling scheme
G outputs y ∈ {0, 1}m while complying to several security requirements
discussed below.

In a first step, one party, called the garbler, modifies (garbles) c using the
probabilistic garbling algorithm Gb. Its output (C, e , d) � Gb(1k , c) consists
of a garbled circuit C, an encoding function e, and a decoding function d. The
functions e and d are easily invertible mappings from bits to labels. The
labels for these mappings are chosen at random from {0, 1}k to substitute
the inputs in a bitwise fashion. Note that d is not the inverse function of
e since e contains the information how to represent the input bits through
labels while d contains the mapping from output labels to output bits. The
process continues with the garbler executing the deterministic encoding
algorithm En, which transforms e and x into the garbled input X � En(e , x).
Now the garbled circuit C, the garbled input X and the decoding function
d are sent to the second party, called evaluator. Note that since the garbler
does not know the whole input, he sends both possibilities via 1-2-OT for

15

every bit that is part of the evaluators input. Since the evaluator does
not know how to invert the garbling of the inputs, he is unable to get
information about the garblers input. Next, the evaluator executes the
deterministic evaluation algorithm Ev, which takes C and X to compute the
garbled output Y � Ev(C,X). Finally, the evaluator uses the deterministic
decoding algorithm De to compute the final output y � De(d ,Y) out of d and
Y. An alternative possibility would be that the evaluator sends the garbled
output Y back to the garbler, who then executes the decoding algorithm.
In case both parties need the output, the party executing the decoding
can be prevented from cheating while sharing the output, through using
commitment. Altogether, G can be seen as a tuple G � (Gb, En, Ev, De). The
whole process is visualized in Figure 2.4. Note that none of the parties gets
information about the other party’s inputs: The garbler does not know
for which inputs the evaluator received the input labels, because he sent
themvia oblivious transfer. The evaluator cannot know the garblers inputs,
because he only sees the garbled version and does not know how to reverse
the garbling of the inputs.

Now that we have an overview of the basic idea, let’s concentrate on how
the garbling works. Let the input x consist of n bits xp with p ∈ {1, . . . , n}.
For every single input position p, there is a label l0

p for the bit 0 and an-
other label l1

p for the bit 1. In the following, we will refer to l0
p and l1

p
as a pair of labels. These labels are chosen randomly and independently
from each other from {0, 1}k . Now, the input can be represented through
{(p , lxp

p) | 0 < p ≤ n} which contains one label for each position. The
circuit is garbled gate by gate. Like the input bits, all wires between the
gates are represented through pairs of labels from {0, 1}k . So each gate’s
input are two input labels la and lb and the output is represented through
an output label lc . For each gate, there are four possible combinations of
input labels (l0

a , l
0
b), (l

0
a , l1

b), (l
1
a , l

0
b), (l

1
a , l1

b), each corresponding to a particu-
lar output label. To garble a gate, for each of these combinations the output
label is encrypted using the input labels as key. So for example for an AND
gate there would be the ciphertexts Encl0a ,l0b

(l0
c), Encl0a ,l1b

(l0
c), Encl1a ,l0b

(l0
c) and

Encl1a ,l1b
(l1

c). This approach ensures that the evaluator is able to decrypt
exactly one ciphertext per gate, obtaining the output label belonging to
the correct output. If it was possible to decrypt more than one ciphertext
per gate, the evaluator could gain information about the input. On top of
that, the evaluator couldmanipulate the outcomeof the evaluation through
choosingwhich output label to proceedwith. To encrypt the output labels,

16

a so-called key-derivation-function H : {0, 1}∗ → {0, 1}k is used. H is a pseu-
dorandom function that generates binary strings of length k given binary
seeds of arbitrary length. So | | being the concatenation of two strings and ⊕
being an XOR, an output label is encrypted by Encla ,lb (lc) � H(la | |lb)⊕ lc .

To evaluate the circuit, the evaluator iterates through all gates, decrypting
the right ciphertext for each gate using the gate’s input labels as key. When
the evaluation is complete, the evaluator knows the labels to all of the
output bits, but does not know, to which values they correspond.

Up to here, there is no difference between different types of gates. All 16
possible gates with two input bits and one output bit are garbled the same
way. Later on, some improvements of garbled circuits will be explained.
Some of these improvements use the different nature of the gate types to
improve the efficiency of their garbling. To prepare this, let’s take a look
at how different gates behave in garbled circuits: First of all, there is no
difference between garbling a gate and garbling its negation. AnANDgate
is the same as a NAND gate, an OR gate is the same as a NOR gate, and so
on. The only difference is that the values of the output labels are swapped.
Therefore, both gates are garbled the same way, but when continuing with
the next layer of gates, the output labels are used differently. Besides
AND, NAND, OR and NOR, there are four more uneven gates. All these
gates are garbled the same way: Three input label combinations encrypt
the same output label, while the last input label combination encrypts
the other output label. Because of this, there is no difference between
garbling different uneven gates, even using the improvements discussed
below. Even gates behave different to uneven gates. The important even
gates are XOR and XNOR. All other six even gates are trivial and will
not appear in any circuit. Like explained above, XOR behaves just like its
negation. From now on, to simplify the explanations, we will abstract and
explain everything using only AND, representing the uneven gates, and
XOR, representing itself and XNOR.

It is important to know that garbled circuits must not be used multiple
times with different inputs. If this is done, participants may have the
possibility to gain information about the other party’s input. Let there
be an AND gate with input wires a and b, with a being a part of the
garblers input. If the evaluation is done twice, once with l0

b and once with
l1
b , the evaluator is able to decrypt two ciphertexts instead of one. If both
ciphertexts reveal the same output label, the evaluator knows that a � 0.
If they reveal different output labels, it is clear that a � 1. XOR gates

17

are different: Evaluated with different labels for b, they will always give
different output labels, revealing no information about a. But since the
evaluator gets two different output labels, he can proceed with the next
gate the sameway until he gets to the next ANDgate. Themore differences
there are between the evaluations, the more information the evaluator can
get. But, since two evaluations with different inputs may already reveal
more than half of the garbler’s input (depending on the circuit), one should
always restrict garbled circuits to single use.

2.3.1 Properties of Garbling Schemes

There are several properties that garbling schemes may fulfill or not fulfill.
In the following, correctness, privacy, obliviousness, authenticity and ver-
ifiability will be introduced. Most of them are security notions, but there
is also another very fundamental property: the correctness.

For a garbling scheme to be correct, we require y � f (x), meaning that
De(d , Ev(C, En(e , x))) � f (x) with (C, e , d) � Gb(1k , c). So if all algorithms
are executed correctly, the output obtained is the correct output of the
function f with input x. Definitions can be found in [BHR12, JKO13,
FNO15, Zho16].

Further, a garbling scheme is called private if the evaluator obtaining
(C,X, d) is not able to learn anything about x other than what is revealed
by y and f . An exact definition can be found in [BHR12].

Another security notion is obliviousness. A garbling scheme is called obliv-
ious if from the garbled circuit C and the garbled input X nothing can be
deduced about the function f , the input x or the output y. This prop-
erty is similar to privacy, but neither of them implies the other. An exact
definition can be found in [BHR12].

If a garbling scheme fulfills authenticity, no set of output labels can be
found besides the correct one. This property is related to the correctness
property, but includes that the evaluator does not have to stick to the
protocol. Different definitions can be found in [BHR12, JKO13, FNO15].

The last property we present here is the verifiability. It states that if there
are multiple inputs with the same output, one cannot deduce from the
output labels which input led to the output. Hence the output labels leak
no information about the input [JKO13, FNO15].

18

2.3.2 Improvements

Although initially seen as a purely theoretical tool because of the high com-
munication and computational complexity, numerous improvements have
made garbled circuits the versatile and efficient technique we use today.
The most important early improvements are point-and-permute [BMR90],
row reduction [NPS99] and free-XOR [KS08] which reduce the number
of ciphertexts needed and/or evaluated per gate. Recently garbled cir-
cuits have been further improved by techniques called GRR2 [PSSW09],
fleXOR [KMR14] and half-gates [ZRE15]. For situations in which the cir-
cuit evaluator is allowed to know the plaintext input to the garbled cir-
cuit (privacy-free garbling, [FNO15]), the computational and communica-
tion overhead of garbled circuits has been further reduced [ZRE15]. An
overview of the improvements done is given in Table 2.1. Besides these
technical improvements, the conceptual improvements done by Bellare et
al. [BHR12] areworthmentioning. Instead of using garbled circuitsmerely
as a tool, the authors define the parts and properties of garbled circuits in
a mathematical, precise way.

The point-and-permute technique introduced by Beaver, Micali and Rog-
away [BMR90] helps the evaluator to determine which ciphertext to de-
crypt. In the standard garbled circuit protocol, the evaluator receives four
ciphertexts per gate, one of which he can decrypt. Beaver et al. used one
of the bits in each label to indicate which is the correct ciphertext so the
evaluator does not have to try multiple ones. This so-called selection bit or
permutation bit is not an additional bit, but just the bit at a fixed position in
all labels. It is generated like the rest of the label, so either from some input
labels to a gate (see further improvements) or at random for the circuit’s
input. In every pair of labels, one label must have the permutation bit 1
and the other one must have the permutation bit 0. For the circuits input,
this reduces the randomness of the label generation, in the following gen-
eration of the circuit this is done automatically (see further improvements).
So in a gatewith two inputwires, all four combinations of permutation bits
may occur. Note that the combination of input values and the combination
of permutation bits are independent from each other. Hence the evaluator
cannot deduce information about the input values from the permutation
bits. With this technique, the order in which the ciphertexts are sent can
be inferred from the combination of permutation bits in the input labels
used as key; for example the ciphertext with permutation bits 00 is sent
first, the one with 01 is sent second, and so on. This way, the evaluator

19

Table 2.1: Overview of improvements made to classical garbled circuits.
Inspired by tables 1 and 2 in [ZRE15]. H is a hash function used
by Gb and Ev. Thenumber ofH-calls indicates theperformance of
these algorithms. In fleXOR the sizes of XOR gates and number
of H-calls per XOR gate vary, depending on the structure of the
circuit c. Privacy free refers to privacy-free garbling situations.

size per gate H-calls per gate
garbler evaluator

XOR AND XOR AND XOR AND
classical gc
[Yao86] 4 4 4 4 4 4

point-and-permute
[BMR90] 4 4 4 4 1 1

row reduction
[NPS99] 3 3 4 4 1 1

free-XOR
[KS08] 0 3 0 4 0 1

fleXOR
[KMR14] {0, 1, 2} 2 {0, 2, 4} 4 {0, 1, 2} 1

half-gates
[ZRE15] 0 2 0 4 0 2

half-gates
(privacy free)
[ZRE15]

0 1 0 2 0 1

20

knows which ciphertext to decrypt by looking at the permutation bits of
the gates input labels.

The row reduction by Naor, Pinkas and Sumner [NPS99] reduces the num-
ber of ciphertexts needed per gate. They proposed to compute one of the
output-labels of each gate as a function of the inputs. Combined with the
point-and-permute technique, one could spare e.g. the first row which
could be the ciphertext with both zero permutation bits of each gate. In-
stead, the output label would be computed from the input labels by a
given function. This way, only three ciphertexts need to be created, which
reduces the size of the garbled circuit.

Using the free-XOR technique by Kolesnikov and Schneider [KS08] XOR
gates can be evaluated without encrypting or decrypting any ciphertext.
For this, a global offset R is needed. This is the offset between two labels
for the same wire, so one could xor R to one label to get the other label. If
this offset is the same for the whole circuit, this leads to a big advantage:
XOR gates can simply be computed by xoring the input labels. The result-
ing labels will have the offset R, because both input-label-pairs had this
offset. This technique is compatible to both point-and-permute and row
reduction.

The GRR2 technique by Pinkas et al. [PSSW09] uses polynomial interpo-
lation to spare one more ciphertext than standard row reduction. Hence
only two ciphertexts per AND gate are needed. Unfortunately, this is not
compatible with free-XOR, so that XOR gates also need two ciphertexts
per gate. Kolesnikov et al. found a trade-off between free-XOR and GRR2
which is called fleXOR [KMR14]. XORgates need up to two ciphertexts, but
in many cases only one or no ciphertext is needed. In exchange, GRR2 can
be used without limitation. The reason why free-XOR cannot be used with
GRR2 is that when using GRR2, not all label-pairs have the same offset.
Using the fleXOR technique, the number of needed ciphertexts depends
on how many label-pairs per gate have the same offset. When the offsets
of the input labels of an XOR gate are different, it uses a strategy to convert
the offset of the output labels into a third offset chosen by the garbler. If
this third offset is one of the offsets from the input, only one ciphertext
is needed. At all XOR gates where the offsets of the inputs are the same,
free-XOR can be used so no ciphertexts are needed.

Using the half-gates technique by Zahur, Rosulek and Evans [ZRE15], even
fewer ciphertexts are needed. Like with fleXOR, only two ciphertexts per

21

ANDgate are needed. Additionally, half-gates are fully compatible to free-
XOR, therefore no ciphertexts are needed for XOR gates. The name half-
gates comes from the idea to split AND gates in two halves: an evaluator
half-gate and a generator half-gate. A half-gate is an AND gate, with the
value of one of the inputwires being known to one of the participants. Due
to a clever splitting of the AND gate, the evaluator knows one input for
the evaluator half-gate and the garbler knows one input for the generator
half-gate. Thanks to this knowledge, each half-gate can be garbled using
only one ciphertext. In the evaluation process, the result of the AND
gate is computed by xoring the results of the half-gates. As a result, two
ciphertexts are needed for each AND gate.

When no privacy is needed because the evaluator is allowed to know all the
inputs, privacy-free garbling by Frederiksen, Nielsen and Orlandi [FNO15]
can be used. Although it seems like there is not much use for a garbled
circuit if the evaluator knows all the inputs, there are some use cases. For
example the evaluator can be prevented from manipulating a calculation
he has to do [JKO13]. We also found an encryption scheme in which
the evaluator is the sender and therefore knows all inputs (see MWBES in
Section 3.3). Frederiksen et al. found a way to let the evaluator use his
knowledge of the inputs to need fewer ciphertexts. In the standard case,
an AND gate with inputs a and b and output c has three ciphertexts
Encl0a ,l0b

(l0
c), Encl0a ,l1b

(l0
c), Encl1a ,l0b

(l0
c) that all encrypt the same output label. It

is sufficient to encrypt l0
c once using l0

a and once using l0
b , sparing one

ciphertext. Since the evaluator knows the values which the labels stand
for, he can pick the correct ciphertext to decrypt. The fourth ciphertext
Encl1a ,l1b

(l1
c) can be spared by choosing l1

c � H(l1
a | |l1

b). This leads to two
ciphertexts per AND gate and no ciphertexts for XOR gates. This is the
default version, compatible to free-XOR, listed inTable 2.1. In an alternative
version, another ciphertext can be spared, if free-XOR is not used. In this
case, l0

c can be chosen independently from l1
c . So when l0

c is chosen as
H(l0

a), only one ciphertext Encl0b
(l0

c) remains. Not using free-XOR, the XOR
gates are garbled using one ciphertext: When l0

c � l0
a ⊕ l0

b and l1
c � l0

a ⊕ l1
b ,

it suffices to send l0
a ⊕ l1

a ⊕ l0
b ⊕ l1

b as only ciphertext. If the evaluator has l1
a

and l1
b or l1

a and l0
b as input labels, he xors with the ciphertext after xoring

the input labels. Not using free-XOR leads to one ciphertext per AND gate
and one ciphertext per XOR gate. Whether or not it is of advantage to use
free-XOR depends on which gate appears more frequently in the circuit.

Zahur, Rosulek andEvans [ZRE15] foundaway to combine theprivacy-free

22

technique with half-gates. Since in the privacy-free model, the evaluator
knows all of the input values, ANDgates can be handled directly as evalua-
tor half-gates and do not have to be split. This results in a strategy that uses
only one ciphertext per AND gate and none for XOR gates. But, like the
privacy-free approach, this strategy may only be applied if the evaluator is
allowed to know all inputs. In most scenarios, this is not the case.

Altogether, to garble circuits the most space-saving way known today, the
half-gates technique in combinationwith free-XORandpoint-and-permute
should be used. In a scenario where privacy is not needed, one should use
the privacy-free variant of half-gates which is even more space-saving but
unfortunately is not compatible when privacy is needed.

2.4 Zero-Knowledge Proofs

Zero-knowledge proofs are designed to enable a prover to prove some
statement to a verifierwithout revealing any information about thewitness.
For example there might be a one-way function f for which the prover
knows a pair of input x̂ and output ŷ. He could then use a zero-knowledge
proof to prove that he knows an x̂, such that f (x̂) � ŷ, without revealing x̂
to the verifier.

Initially, both parties agree on a statement s to be proven. The role of the
verifier is to verify whether the prover possesses a valid witness w, for
example by sending challenges the prover has to respond to correctly. In
our example, the statement consists of f and ŷ, while the witness is the
input x̂.

Zero-knowledge proofs are often used for authentication. There is a public
one-way function f , which each participant has an input to: his private key.
The corresponding outputs (public keys) are stored in a public database
that cannot be manipulated. To authenticate oneself, one has to prove
knowing the private key corresponding to the public key stored in the
database. Another possibility would be that the prover owns a trapdoor
function to which he knows the secret key. To authenticate himself, he has
to provide the input corresponding to an output chosen by the verifier.
While the second scenario is simple to realize because the prover can
simply compute the inverse trapdoor function and respondwith the input,
it is more difficult to accomplish the first scenario. The problem is to make
sure the verifier does not get any information about the private key, because

23

otherwise he could authenticate himself as the prover. To overcome this
problem, zero-knowledge proofs can be used.

2.4.1 Security Notions

For a protocol to be a zero-knowledge proof, specific properties have to
be fulfilled. First, if the prover actually knows x̂, he should be able to
prove this knowledge to the verifier. The probability that he does not
succeed to convince the verifier should be negligible. This property is
called completeness.

Next, it is important that if the prover does not know x̂, he cannot convince
the verifier to accept. If soundness is fulfilled, the probability that a prover
not knowing x̂ convinces the verifier is negligible.

The last property needed is the zero-knowledge property, stating that the
participants do not obtain any information that cannot be deduced from
the statement to be proven besides the correctness of the statement. Since
the only information to be kept secret is the prover’s input x̂, it suffices
to prove that the verifier cannot get any information about x̂. This can be
done by showing the existence of a simulator S that knows ŷ but not x̂.
Additionally, S is allowed to query an oracle that samples challenges with
the same distribution as a verifier. If such a simulator is able to produce
an output that is indistinguishable from an honest prover’s output, the
verifier cannot learn anything about x̂ from the protocol.

24

3 White-Box Cryptography

White-Box cryptography was first introduced by Chow et al. in 2002
[CEJVO02]. Its idea is that an attacker is not limited to observe programs as
a black-box. Instead he has the ability to look into the system, try to decom-
pile it and to analyze its code. So the main goal of white-box cryptography
is to prevent such an attacker from extracting important information from
the program although he has full access to it.

An important use-case is software that gives users limited access to data.
Examples are streaming-platforms for music and video, gaming platforms
and licensed productivity software. All these should give the user access
to a particular amount of data, sometimes for a limited amount of time,
without letting him extract or copy the data. Because these programs
are installed on the users hardware to which he has unlimited access, an
attacker has so-called white-box access to them.

A white-box could also be an implementation of an encoding or decoding
algorithm with an embedded key. So whoever owns the white-box is
able to use it to encrypt or decrypt messages but not to extract the key.
Delerablée et al. defined the most important security notions for white-
box cryptography [DLPR13]:

As mentioned above, there is some information hidden in the white-box,
in many cases some kind of key, that can be used but not extracted by
the user. Since the main use of the white-box is to provide the usage of
this information, the most important security notion is to protect it against
an attacker. This security notion is called unbreakability. If unbreakability
cannot be granted, the white-box is useless.

Another important security notion that is related to unbreakability but a
bit weaker is the incompressibility. It should be given that an attacker is not
able to transform the white-box into a tinier version that takes less space
and is still able to provide the usage of the crucial information. If this is
not given, it is easier for an attacker to copy and share the white-box with
other individuals.

25

But even if these two notions are given, it is still possible to misuse the
white-box in another way: If the information guarded is the key to an en-
cryption algorithm performed by the white-box, an attackers goal could be
to transform the encryption algorithm into a decryption algorithmwithout
having to extract the key. Like this he could decrypt messages he only is
allowed to encrypt. The one-wayness demands that the functionality of the
white-box is not invertible, hence an attack as described above would not
be possible.

All in all, these security notions are useful because theyprevent the attacker
from using the white-box in another way than it is supposed to be used.
But still, they cannot prevent the attacker from simply making a copy of
the white-box and sharing it with other individuals. For this reason, there
exists a notion called traceability. From every output of the white-box, it
should be possible to determine the owner of the white-box. This can be
done by embedding some individual watermark into the white-box that
is applied to each output. So if an attacker shares data illegally and it
spreads over the internet, it should be possible to retrace the way back to
the attacker. Furthermore, multiple attackers that consolidate should not
be able to remove all traces through combination of their versions of the
data. At least one trace should always remain.

Additionally to the security notions presented by Delerablée et al., one
could require the white-box to be locked by password. So if the box is
stolen, it cannot be used unless the thief knows the password, too.

The main approach on how to realize white-boxes is using obfuscation. In
the paper in which Chow et al. first introduced white-box cryptography,
they present an AES implementation that is designed to be secure against
an attacker with white-box access. In 2004, Billet, Gilbert and Ech-Chatbi
proposed the BGE-attack that breaks this implementation [BGEC04]. The
implementation by Chow et al. makes use of lookup tables for different
parts of the algorithm. Through combination of those tables, it becomes
more andmore difficult to extract the embedded key, that is integrated into
one of the tables. By combining multiple small steps to fewer larger steps,
the execution of the algorithm is obfuscated. It is hard for the attacker to
separate the steps and reconstruct them one-by-one.

26

3.1 Applying Garbled Circuits to White-Box
Cryptography

Since the user of a white-box is not allowed to know the secret information
hidden in it, in most cases there is another party that constructed the
white-box. The use of a white-box may remind the keen reader of secure
two-party computation: Both parties have some input while the user is
not allowed to know the constructor’s input. So the constructor hides
his input in the white-box, which is used by the user to calculate the
output to some input. For a visualization see Figure 3.1. Like most white-
boxes, garbled circuits use obfuscation. Replacing each bit by a label, it is
nearly impossible for the evaluator to reconstruct the values of the bits to
understand the computation he is executing. The only differences are that
in white-box cryptography the constructor does not need the output and
may in some cases be allowed to know the users inputs.

Constructor User

(input k)

create WB[AESk]

WB[AESk]

WB[AESk](xi)

� EncAES
k (xi)

Figure 3.1: Example of a constructor providing a white-box to a user. The
constructor creates awhite-box for AES encryption and embeds
his key k into it. The user can then use the white-box to encrypt
messages xi . The white-box may be used multiple times, but
the user gets no information about the key k except what can
be deduced from the input-output-pairs.

Due to this resemblance, the idea arose to use garbled circuits for white-
box cryptography. In this scenario, the constructor is the garbler and the
user is the evaluator. The biggest problem is that garbled circuits may only
be used once. Meaning that, if the user of the white-box used it multiple
timeswith different inputs, it would be possible to calculate at least parts of
the secret hidden information, as described in Section 2.3. Fortunately, the

27

Constructor/Garbler User/Evaluator

(C, e , d) � Gb(1k , c)

C, d

choose x1 choose x2

X1 � En(e , x1)

X1

OT − Choose(x2)

OT − Transfer(e)

Y � Ev(C,X)

y � De(d ,Y)

Figure 3.2: Single-use white-box using a garbled circuit. At the end the
user gets the output y which is a function of the inputs x1 and
x2 without learning the creator’s input x1.

number of uses is controlled by the garbler who needs to send the garbled
inputs via 1-2-OT. As long as the garbler sends the input labels only once,
there is no possibility for the evaluator to get the hidden information. This
way, it is possible to create a single-use white-box using a garbled circuit.
In Figure 3.2, the protocol for this single-use white-box is presented. As
an alternative to this protocol, it is also possible to send C and d together
with X1. Only those parts of OT-Transfer(e) that contain the labels X2 can
be read by the receiver. If the creator is indeed allowed to know the user’s
input, the OT could be dropped such that the user simply sends x2 and the
creator responds with X2.

Another way to prevent the evaluator from evaluating the circuit multiple
times with different inputs would be to let the garbler choose all of the
inputs. This is the approach we are going to pursue further. It has less
of an interactive white-box, but is a way to send encrypted messages from
garbler to evaluator. We basically have the garbler choosing a circuit and all
inputs and then garbling it and sending it to the evaluator. The evaluator
has no influence onwhat he receives from the garbler but at the end he gets
to decrypt the output that is some message from the garbler that only the

28

owner of the white-box can decrypt. An advantage of such an encryption
scheme is that the garbled circuit may be sent before the garbler decides
which message to sent. This is of great value because the garbling is the
biggest part of the computational complexity and the garbled circuit is
the biggest part of the communication complexity. So when the garbler
decides which message to send, the rest of the protocol can be executed
very quickly because the majority of the work has been done in advance.
Also, there is no need for OT anymore, which saves a lot of resources.

3.2 Simple White-Box Encryption Scheme

The simple white-box encryption scheme (SWBES) visualized in figure 3.3
is an implementation of the approach explained above. First, the circuit c
and the security parameter k are chosen by one of the parties. It is more
practical to let the garbler choose, so the parameters do not have to be sent.
The circuit c should compute the decryption algorithm of a symmetric
encryption scheme E with a key z. This key can either be hard-coded
into the circuit, or be chosen later and be a part of the input. With this
information, the sender is already able to execute the garbling algorithm
Gb. Now he can send the garbled circuit C and the decoding function d
over to the receiver, although he did not yet choose the message to send.
When the sender has chosen a message, he encrypts it according to the
symmetric encryption scheme E with key z. The result is the input x
which contains either just the ciphertext, or both ciphertext and key if the
key is not hard-coded into the circuit. After garbling the input x using
the encoding function e, he sends the garbled input X to the receiver. The
receiver is now able to first evaluate the circuit C on the garbled input X
and then decode the garbled output Y using the decoding function d.

In this scenario, the sender can choose m and send X quite a while after
sending C and d. Alternatively X, C and d could be sent together if the
sender already knows which message to send. This has the disadvantage
that an third-party attacker has to eavesdrop only one message to be able
to compute m. Since all three parameters are needed to get m, splitting the
messages could make it harder for an attacker to overhear them all. Like in
a symmetric encryption scheme, it would seem useful to send C and d or
at least one of them over a different channel, if available a secure channel.
But while in a symmetric encryption scheme the key is used over and over
again, the circuit may only be used once. Hence it would not be worth it to

29

Sender/Garbler Receiver/Evaluator

choose c and k

(C, e , d) � Gb(1k , c)

C, d

choose m

x � EncEz (m)

X � En(e , x)

X

Y � Ev(C,X)

y � De(d ,Y)

Figure 3.3: Simple white-box encryption scheme (SWBES). In this visualiza-
tion, the key z is integrated into the circuit c. Alternatively
it could be a part of the input x which would then consist of
ciphertext and key. If the garbling scheme is correct and the
protocol is executed correctly, then y � m.

30

send onemessage over a secure channel, protecting just one other message
sent over a public channel. One could send multiple garbled circuits over
the secure channel to be able to send messages at a later point, but this
would be the same strategy as sending codebooks for one-time-pad over a
secure channel. But since in one-time-pad the keys are not longer than the
messages, SWBES has more overhead.

All in all, this simple white-box encryption scheme has some disadvan-
tages like the restriction to one-time use and the rather big communication
overhead. But it also has some important advantages like the fact that OT
is not necessary and that the receiver does not learn anything about the
ciphertext. These advantages make it possible to transform the SWBES into
a zero-knowledge proof protocol using garbled circuits (see Section 4.2).
This protocol is a whole new approach to zero-knowledge proofs, beside
other advantages making it possible to use garbled circuits without any
need of oblivious transfer or commitment.

3.2.1 Security

Since there is only unidirectional communication from sender to receiver,
there is no possibility for the sender to get any additional information. So
let’s take a look at what the receiver can learn. First of all, the receiver is not
able to influence the server because he does not send anything. Naturally,
he learns C, d and X and is able to compute Y and y � m. Additionally, he
is able to determine k from C or d and needs to know which gates of c are
even gates for the evaluation. But is it possible for him to get information
about e, E, z or x? Since he has some information about c, it could be
possible to determine E or at least make a good guess. Regarding the other
parameters, it is not possible to learn something about them if the garbling
scheme is private. Multiple execution of the protocol does not give any
advantage for the extraction of x because for each execution the circuit is
garbled anew.

Since the knowledge of C, d and X suffices to compute y, a third-party
attacker is able to obtain m if all messages are intercepted.

31

3.2.2 Computational and Communication Complexity

In the following, the computational complexity and communication com-
plexity of SWBES is analyzed. For this analysis, we use the best compatible
improvements, which are half-gates, free-xor and point-and-permute. In a
second analysis, we compare our results to using only the basic improve-
ments free-XOR and point-and-permute.

We choose f to be AES-128, because it is a sufficiently secure encryption
scheme often used to compare white-box schemes. Using another en-
cryption scheme than AES-128, the complexity will differ from the results
presented in this section. We use the data from [PSSW09], so the circuit
c that implements f has 33880 gates of which 11286 are uneven gates and
22594 are even gates.

The sender has to garble the circuit, encrypt the message and compute the
input labels. Let’s begin with the complexity of the garbling. First, the
offset R between each pair of labels is generated. Then, for each input bit
one label is created, resulting in 128 labels because f has 128 input bits.
The other 128 labels are computed xoring each of the first 128 labels to
R. Next, the gates are garbled one by one. For each uneven gate up to
six XORs are performed, and the hash function H is calculated four times.
Even gates are simpler since there are only two XOR operations computing
both output labels. Let XOR(k) be the time needed to compute an XOR on
k bit, and gen(k) be the time needed to generate a k bit label, and H(k) be
the time needed to compute the hash function H on k bit. Then the time
needed for the garbling is computed as:

T(Gb) �129 · gen(k) + 128 · XOR(k)
+ 11286 · (6 · XOR(k) + 4 · H(k))
+ 22594 · 2 · XOR(k)

�129 · gen(k)
+ (11286 · 4) · H(k)
+ (128 + 11286 · 6 + 22594 · 2) · XOR(k)

�129 · gen(k) + 45144 · H(k) + 113032 · XOR(k)

Additional to the garbling, the sender encrypts m using E and z. For the
encoding of the input, he only has to look up the 128 labels in e.

Let’s continue with the computational complexity on the evaluators side.
For the evaluation of the circuit, the evaluator also proceeds gate by gate.

32

Since free-XOR is used, there is only one XOR operation per even gate. For
all uneven gates, two half-gates are evaluated. Both half-gates include up
to one XOR and one execution of H. One additional XOR per uneven gate
is needed to combine the half-gates and compute the output. The time
needed for the evaluation is computed as:

T(Ev) �22594 · XOR(k) + 11286 · (2 · H(k) + 3 · XOR(k))
�(22594 + 11286 · 3) · XOR(k) + (11286 · 2) · H(k)
�56452 · XOR(k) + 22572 · H(k)

Additionally, the evaluator decodes the output labels which includes 128
lookups in d.

Next we analyze the communication complexity: The garbled circuit C
consists of 11286 uneven gates, each represented by two ciphertexts of
length k, resulting in 22572 · k bit. For the decoding, only one label per bit
needs to be sent, for example {l1

p | 0 < p ≤ 128}. By comparison with the
output labels, it can be determined whether the bit’s value is 1 (match) or 0
(mismatch). This results in 128 · k bits for d. Another 128 · k bits are needed
to send the input labels X. The overall communication complexity for one
execution of the protocol is 22828 · k bit which is about 2.79 · k KiB.

For comparison, we will compute the computational and communication
complexity again, using only the most basic improvements, namely free-
XOR and point-and-permute.

On the senders side, the only thing that changes is the complexity of the
garbling while the complexity of encryption and encoding stay the same.
Again, because we still use free-XOR, the offset R between each pair of
labels is generated. The 256 input labels are generated the same way, too.
Now for the garbling: To garble an uneven gate, the garbler generates
a pair of output labels by first generating one label and then xoring R
to it to compute the other one. Next, one ciphertext is created for each
input combination, encrypting the corresponding output label. For each
ciphertext, one XOR and one execution of H is needed. The even gates are
handled like above, so both output labels are computed by xoring the input

33

Table 3.1: Number of operations needed in SWBES using AES-128 as f , once
using the half-gates improvement together with free-XOR and
point-and-permute and once using only free-XOR and point-
and-permute. # generations denotes the number of generations
of labels of length k.

w/o half-gates with half-gates
garbling evaluation garbling evaluation

generations 11415 − 129 −
H-calls 45144 11286 45144 22572
XORs 101746 33880 113032 56452

labels. In this case, the time needed for the garbling is computed as:

T(Gb) �129 · gen(k) + 128 · XOR(k)
+ 11286 · (gen(k) + 5 · XOR(k) + 4 · H(k))
+ 22594 · 2 · XOR(k)

�(129 + 11286) · gen(k)
+ (11286 · 4) · H(k)
+ (128 + 11286 · 5 + 22594 · 2) · XOR(k)

�11415 · gen(k) + 45144 · H(k) + 101746 · XOR(k)

The receiver does the evaluation and the decoding of the output labels.
The decoding again consists of 128 lookups in d. For the evaluation of each
uneven gate, one ciphertext is decrypted by computing H on the input
labels and then xoring it to the ciphertext. Even gates are evaluated by
simply xoring the input labels. So the time needed for the evaluation is
computed as:

T(Ev) �22594 · XOR(k) + 11286 · (XOR(k) + H(k))
�(22594 + 11286) · XOR(k) + 11286 · H(k)
�33880 · XOR(k) + 11286 · H(k)

The communication complexity increases because four ciphertexts per un-
even gate are needed resulting in 45144 · k bit. The decoding function d
and the input labels x still need 128 · k bit each. This results in an overall
communication complexity of 45400 · k bit which is about 5.54 · k KiB.

Comparing the results of our analysis (see Table 3.1 for overview), it can
be observed that the computational complexity using half-gates is higher

34

than using only free-XOR and point-and-permute. For the garbling, the
number of XORs increases from 101745 to 113032. For the evaluation, the
number of XORs increases from 33880 to 56452 and the number of H-calls
doubles from 11286 to 22572. In exchange there are fewer generations of
random labels because all output labels of gates depend on their input
labels. At the same time, the communication complexity is nearly halved
and decreases from 45400 · k bit to 22828 · k bit. In summary, it can be
said that to achieve a lower communication complexity one has to accept
a higher computational complexity.

3.3 Modified White-Box Encryption Scheme

The modified white-box encryption scheme (MWBES) is a variant of the
simplewhite-box encryption schemewhere sender and receiver swap roles
so that the receiver garbles the circuit and the sender evaluates it. This
change of roles is inspired by the zero-knowledge protocol by Jawurek et
al. [JKO13] discussed in Section 4.1.1.

There are two approaches to MWBES. The first one, called MWBES1, is visual-
ized in Figure 3.4. Like in SWBES, c and k are chosen by one of the parties,
for example by the receiver. Letting the garbler choose, has the advantage
that the parameters do not have to be sent. In the first step, the receiver
garbles the circuit so he can send C to the sender. Now the sender chooses
the message m and encrypts it using a symmetric encryption scheme E
and a key z. For z, there are two possibilities. It is either hard-coded into
the circuit, or a part of the input x. If z is hard-coded into the circuit,
the receiver knows it because he is the garbler. If z is a part of the input,
it may be chosen by the sender and thus stay secret. In Figure 3.4, the
latter possibility is depicted. Since the sender does not know e, he gets the
corresponding garbled input X via 1-2-OT. Knowing C and X, he is able to
evaluate the circuit. Next the garbled output Y is sent to the receiver who
is able to decode it using d obtaining the message y � m.

In MWBES2, visualized in Figure 3.5, the circuit computes an encryption
instead of a decryption. In this case, the receiver chooses the key z and
embeds it into the circuit. The sender chooses themessage m, which serves
as input x. Then, he gets the labels via 1-2-OT and evaluates the circuit.
There is no encryption step needed, because the encryption is done in
the evaluation step. After the evaluation, there are two possibilities how

35

Sender/Evaluator Receiver/Garbler

choose c and k

(C, e , d) � Gb(1k , c)

C

choose m and z

x � EncEz (m)

1-2-OT(X)

Y � Ev(C,X)

Y

y � De(d ,Y)

Figure 3.4: Modified white-box encryption scheme (MWBES1). In this mod-
ified white-box encryption scheme, the circuit c computes the
decryption of an encryption scheme E. So when the sender
evaluates the circuit, he decrypts the ciphertext he encrypted
beforehand. If the garbling scheme is correct and the protocol
is executed correctly, then y � m.

36

Sender/Evaluator Receiver/Garbler

choose c, k and z

(C, e , d) � Gb(1k , c)

C

choose x � m

1-2-OT(X)

Y � Ev(C,X)

Y

y � De(d ,Y)

m′ � DecEz (y)

Figure 3.5: Modified white-box encryption scheme (MWBES2). Unlike in
MWBES1, in this modified white-box encryption scheme, the cir-
cuit c computes the encryption of an encryption scheme E. So
in this case y , m because y is the ciphertext to m. As an al-
ternative to the protocol presented here, the garbler could send
d together with C. In this case, the evaluator would decode Y
and send y.

to proceed. Either, if the receiver sent d together with C, to decode Y
and send y. Or to simply send Y without decoding it. Note that in this
variant y , m because y � EncEz (m). Depending on if the sender sent Y or
y, the receiver either decodes and decrypts or just decrypts the message
obtaining m. MWBES2 is a possibility to transform a symmetric encryption
scheme into a public key encryption scheme (PKES). The garbled circuit
is the public key and the key z is the private key. Like in other PKES, no
third party is able to read the message or deduce the private key, even if all
messages are intercepted. However, like in the standard SWBES the circuit
may only be used once.

Both versions of MWBES have another big advantage over SWBES: Since the
evaluator knows all of the inputs, privacy-free garbling can be used. Sum-
marized, there are four main differences between MWBES and SWBES:

37

1. Sender and receiver have swapped roles.

2. Messages are sent in both directions.

3. 1-2-OT is needed, increasing the number of messages

4. Privacy-free garbling can be used.

3.3.1 Security

Assume that in MWBES2, the receiver is the one executing the decoding.
Hence in both versions, the only information the sender gets from the
receiver is C and X from which he computes Y. Naturally, the sender
knows k and partially knows c since he needs to know which of the gates
are even gates to perform the evaluation. He does not get any additional
information about e, d or z if the garbling scheme used fulfills privacy. If
in MWBES2, the receiver sends d and the sender decodes the output labels,
this leads to the sender learning d but still learning nothing about e and
z.

If the garbling scheme used fulfills privacy, the key z cannot be deduced
from themessages sent. Therefore, a third-party attacker has no possibility
to decrypt themessage m, even if all messages are intercepted and y is sent
instead of Y. This is a major advantage of MWBES over SWBES.

3.3.2 Computational and Communication Complexity

In this section, we compare the complexity of MWBES to the complexity of
SWBES. On the one hand, computational and communication complexity
increase because of the 1-2-OT that is not needed in SWBES. How much
they increase depends on which 1-2-OT protocol is used. On the other
hand, privacy-free garbling can be used, which decreases computational
and communication complexity. Only one ciphertext per uneven gate is
needed, causing the garbled circuit C to be only half as big as the garbled
circuit in the SWBES. The number of XORs per uneven gate is reduced from
up to 6 to 3 for the garbling and from up to 3 to up to 1 for the evaluation.
The number of H-calls per uneven gate is reduced from 4 to 2 for the
garbling and from 2 to 1 for the evaluation. See also Table 3.2. Applied
to the analysis from Section 3.2.2, using AES-128 the total number of H-
calls for the garbling and the evaluation is reduced by 22572 and 11286

38

Table 3.2: Comparison of number of H-calls and XORs per uneven gate be-
tween SWBES and MWBES, separated into garbling and evaluation.

H-calls XORs
SWBES MWBES SWBES MWBES

garbling 4 2 {5, 6} 3
evaluation 2 1 {1, 2, 3} {0, 1}

respectively. At the same time, the total number of XORs for the garbling
is reduced by 22572 to 33858 and for the evaluation by up to 33858.

Summarizing, one can say that the communication complexity of MWBES is
clearly lower than the communication complexity of SWBES since halving
the size of the garbled circuit saves more space than the 1-2-OT adds. Con-
cerning the computational complexity, it depends on the 1-2-OT protocol
used whether MWBES is faster or slower than SWBES.

3.4 Two-Layer Scheme

A scheme with two layers of encryption can have multiple advantages
for white-box cryptography. An example can be found on a flyer of the
company inside secure [Sec]. The basic idea of this scheme is to have two
layers of encryption: The upper layer is decrypting the key that is used in
the lower layer for the actual encryption of data. This scheme is visualized
in Figure 3.6. While the key from the upper layer is fix and embedded in
the white-box (static key), the key from the lower layer is not fix and can be
changed (dynamic key). This has multiple advantages over a simple white-
box containing only one static key. First, the key used for the encryption
or decryption of the data can be changed without altering the white-box.
In a normal white-box, the key cannot be changed, so to use a new key a
newwhite-box has to be created around it. This leads to it being less grave
when a dynamic key gets extracted by an attacker and extends the lifespan
of the white-box. Another advantage is that the dynamic key never leaves
the white-box in its unencrypted form.

An important question of this scheme is how to obfuscate the white-box in
such a way that the static key cannot be extracted. One possibility is to use
a garbled circuit like we do in our single-use white-box in Section 3.1. The
secret key and the encrypted dynamic key are the inputs to the garbled

39

Static Key

Encrypted
Dynamic Key Key Decrypt

Unencrypted
Dynamic Key

Input Data Crypto Operation Output Data

White-Box

upper layer

lower layer

Figure 3.6: In the two-layer scheme, the upper layer decrypts an encrypted
dynamic key using a static key. In the lower layer, this unen-
crypted dynamic key is used to perform a crypto operation.
Reproduction of the chart from a flyer by the company inside
secure [Sec].

40

circuit, and the dynamic key is the output. Because all inputs to the
garbling function Gb are fix, the circuit does only have to be garbled once.
On top of that, only the label of the secret key has to be stored instead of
the secret key itself. When using another garbled circuit in the lower layer,
there even is the possibility to use the same labels. Like this, there never is
an unencrypted dynamic key.

This all sounds like a good idea, but the problem is that garbled circuits
may only be used once. If a garbled circuit is evaluated multiple times
with different evaluator’s inputs, the evaluator is able to get information
about the garbler’s input. So in this case, the evaluator can get information
about the static key by evaluating the garbled circuit in the upper layer
multiple times with different unencrypted dynamic keys. To prevent this,
the white-box has to be restricted to one specific input. The only way to
achieve this is to know the encrypted dynamic key beforehand and store its
labels together with those of the static key. This contradicts with the idea
of the dynamic key. If the unencrypted dynamic key (that is not dynamic
any more) is stored with the static key, one might just as well store the
unencrypted (not) dynamic key directly, reducing our two-layer scheme
to a standard white-box scheme. So unfortunately, there is no use for a
garbled circuit in the two-layer scheme.

41

4 Zero-Knowledge Proofs

The SWBES protocol from Section 3.2 does not allow the receiver to get
any information about the ciphertext x other than what can be inferred
from the plaintext y. This property is not necessary for the SWBES pro-
tocol, but comes in handy when transforming it into a protocol for zero-
knowledge proofs. In this section, we will introduce our garbled circuit
zero-knowledge proof protocol that is based on SWBES and follows a new
approach to zero-knowledge proofs.

4.1 Existing Approaches

Before we begin presenting our protocol, we first take a look at exist-
ing zero-knowledge proof protocols. As far as we know, the protocol by
Jawurek, Kerschbaum and Orlandi [JKO13] is the only existing protocol
for zero-knowledge proofs that uses garbled circuits. The ZKBoo proto-
col by Giacomelli, Madsen and Orlandi [GMO16] is another approach to
zero-knowledge proofs that has some advantages over the one by Jawurek,
Kerschbaum and Orlandi. In 2017, Chase et al. proposed ZKB++ which is
an improved version of ZKBoo [CDG+17].

4.1.1 JKO13

In 2013, Jawurek, Kerschbaum and Orlandi proposed a protocol for zero-
knowledge proofs using garbled circuits [JKO13]. Using this protocol, the
prover is able to prove owning some input x̂ that corresponds to a given
output ŷ regarding a specific one-way function f without revealing x̂, just
like in the example from section 2.4. To execute the protocol, a circuit
describing f is needed so that x is the input and y is the output. Note
that x and y are the actual in- and outputs that may differ from x̂ and ŷ.
The idea is that the verifier garbles the circuit and the prover evaluates it
using the labels to his input x to obtain the labels to the output y. Giving

42

these output labels to the verifier, he proves owning x: Since he has no
information about the mapping of the output labels, the only way to know
the output labels that correspond to y is to know x and correctly evaluate
the circuit. At the same time, the verifier cannot gain information about
x because he cannot get any information about which input labels were
used.

Now let’s take a closer look at the course of events visualized in Fig-
ure 4.1: In the first step, the verifier garbles the circuit computing (C, e , d) �
Gb(1k , c). Then COT is used to transfer the input labels to the prover. The
prover chooses the labels X corresponding to his secret input x. Now the
prover is able to evaluate the circuit by computing Y � Ev(C,X). Then
the output labels Y are sent to the verifier, so he can check whether they
correspond to ŷ. If everything is done according to the protocol and the
output labels correspond to ŷ, the verifier accepts.

Please note that this explanation does not exactly represent what happens
in their protocol. In the original protocol, the circuit does not only compute
f but also compares the result to ŷ. This way, the verifier has to check if the
output label corresponds to 1 instead of ŷ. But since there is nodifference in
security or performance between these approaches, we decided to explain
it the more intuitive way. Additionally, there is a little advantage in using
just f for the circuit, because the circuit for f can be reused and does not
have to be adjusted to fit ŷ.

So far, the verifier is able to manipulate the circuit to gain information
about the provers input. To prevent this, the verifier has to open the garbled
circuit, so the prover can check whether the circuit was manipulated. If
the circuit is indeed manipulated, he aborts the protocol with the result
that the verifier does not get any information about x. Before the circuit is
opened, the prover has to commit on the output label. This prevents the
prover from using the additional knowledge obtained by the opening of
the circuit to cheat pretending to own x̂.

By observing an opened circuit, one gets information about the nature of
the gates. Meaning that when an evaluator gets the opening of a garbled
circuit C, he can deduce the original circuit c. The opening does not reveal
the function f implemented by c. Therefore, if an evaluator wants to check
whether a given circuit C indeed describes a given function f , he should
already know the circuit c implementing this function. This way he can
compare the opened C to c and accept if they are equal. For protocols
using garbled circuits we conclude that one should only use circuits that

43

Table 4.1: Comparison of numbers of operations needed for two ap-
proaches to check an opened circuit. The half-gates improve-
ment is used in both cases. Numbers in parentheses are the
values without optimization.

garbling approach evaluation approach
XORs per even gate 2 2
H-calls per uneven gate 4 4 (8)
XORs per uneven gate 8 10 (14)

are either provided by a trusted third party or agreed upon by both parties
in advance.

There are multiple possibilities to open a circuit. The first one that comes
into mind is to send the mapping from labels to values for all labels used
in the circuit. This way, the prover can decrypt all ciphertexts and check
whether the gates are garbled correctly by comparing the type of the gates
with those in c. A much more efficient way is to only send e. After
evaluating the first layer of circuits using all the input labels from e, the
evaluator knows all input labels for the next layer. So evaluating layer by
layer, no additional information is needed.

An alternative way to check an opened circuit is to re-garble the circuit.
The encoding function e together with c is the only information needed
to garble the circuit, when the half-gates technique is used. Using other
garbling schemes, theremight bemore randomness involved, so thegarbler
has to send his seed together with e to open the circuit. In this variant, the
evaluator garbles the circuit anew and compares his result to C, accepting
in case of a match.

The communication complexity of both approaches can be improved by
only sending one label of each label pair and additionally sending the
offset R. Another possibility is to only send the seed that was used to
create R and the input labels. This improvements come with the trade-off
of a slightly higher computational complexity since the evaluator has to
generate e out of the labels and R or out of the seed.

To compare the computational complexity of the garbling approach and
the evaluation approach, we assume that the half-gates technique is used.
In Table 4.1 the comparison of the numbers of needed operations is sum-
marized. In both approaches, there are two XORs per even gate. For the

44

Prover/Evaluator Verifier/Garbler

(C, e , d) � Gb(1k , c)

C

COT − Choose(x)

COT − Transfer(e)

Y � Ev(C,X)

COM − Commit(Y)

COT − Open(e)

check C with c and e

COM − Decommit(Y)

compare y � De(d ,Y) to ŷ

Figure 4.1: The JKO13 protocol by Jawurek, Kerschbaum and Orlandi is a
zero-knowledge proof protocol using garbled circuits enabling
the prover to prove knowing an input x̂ without revealing it to
the verifier [JKO13].

uneven gates, there is a little difference: Using the garbling method, there
are 8 XORs and 4 H-calls per uneven gate. Using the evaluation method
there would be 14 XORs and 8 H-calls, but these numbers can be slightly
improved. When decrypting all four ciphertexts one after another, there
are some redundancies in the computation. By eliminating these redun-
dancies, the computational complexity can be reduced to 10 XORs and 4
H-calls per uneven gate. At the end, there is only a difference of 2 XORs
per uneven gate, letting the evaluationmethod be slightly more expensive.
Another difference is that for the garbling method, all generated cipher-
texts have to be compared to those in C, while for the evaluation method,
only the resulting decoding function has to be compared to the given d.
This advantage of the evaluation method compensates its disadvantage in
the number of XORs. All in all both variants have a similar computational
complexity and can both be used to check the opening of a circuit.

45

Security

In the following, we analyze the security of the JKO13 protocol by checking
whether the security notions for zero-knowledge proofs from Section 2.4.1
are fulfilled.

To fulfill completeness, the probability that an honest prover knowing x̂
fails proving this knowledge although the protocol was executed correctly
has to be negligible. This security notion is fulfilled if a correct garbling
scheme is used. The correctness of the garbling scheme guarantees that if
the prover uses x̂ as input, the output y equals ŷ. Since the verifier accepts
in case of a match between y and ŷ, the probability that an honest prover
knowing x̂ fails is 0.

The security notion of soundness requires the probability of a prover not
knowing x̂ to convince the verifier to be negligible. This security notion
can be fulfilled by choosing a garbling scheme that fulfills authenticity:
The authenticity property guarantees that an evaluator can only get the
set of output labels, that corresponds to the given input labels. Hence it is
not possible to obtain output labels Y that correspond to ŷ without using
input labels X that correspond to x̂ as input. The only way to obtain such
input labels in the 1-2-OT is to know x̂.

The last security notion to fulfill is the zero-knowledge property. It requires
the verifier not to be able to learn any information about the prover’s input
x that he cannot deduce from the statement to be proven. There are two
possibilities for the verifier to get such information: First, the 1-2-OT of the
input labels comes intomind since the labels transferred have to depend on
x. To prevent this, the COT protocol used has to be zero-knowledge itself.
The second possibility would be to manipulate the circuit in such a way
that the output gives more information on x than y. This is prevented by
the opening of the circuit: If the prover comes to the conclusion that the
circuit is manipulated, he aborts the protocol before sending Y.

The zero-knowledge property can be proven formally by showing the ex-
istence of a simulator S (see Section 2.4): To generate an output that is
indistinguishable from an output generated by an honest prover knowing
x̂, the simulator has to generate themessages COT-Choose, COM-Commit and
COM-Decommit. The COT-Choose message is the easiest of the three: Since
the COT protocol guarantees that the verifier does not get any information
about the prover’s input, the simulator can simply use a random input x′

46

to generate this message. It will in any case be indistinguishable from an
honest prover’s output. For the messages COM-Commit and COM-Decommit
to also be indistinguishable from an honest prover’s output, they both
have to use the same output labels Y′ that correspond to ŷ. Since there is
only one set of output labels Y corresponding to ŷ, the simulator has to use
Y′ � Y. In order to do so, S generates the opened circuit from the COT-Open
message that was sampled by the oracle. This way the simulator gets d
which allows him to compute the output labels Y. The knowledge of Y
enables S to generate the correct messages COM-Commit and COM-Decommit.
These messages are not distinguishable from an honest prover’s output,
because they are the same messages a prover knowing x̂ would generate.
When acting as explained above, a simulator S is able to generate a prover’s
output that is indistinguishable to a real prover’s output without knowing
x̂.

Cost Analysis

The JKO13 protocol is compatible to the half-gates improvement as well as
to its variant including privacy-free garbling. Therefore, only one cipher-
text and 3 H-calls per uneven gate are needed (see table 2.1). All in all, the
protocol is similar to the MWBES2. The verifier garbles the circuit and sends
C over to the evaluator. There is no encryption like in MWBES2, but the input
is also transferred via 1-2-OT. The second difference is that the oblivious
transfer needs to be committing to enable the garbler to open the circuit
later on in an additional step. Another additional step is the commitment
to the output labels Y that is done before the opening of the circuit. The
last difference is that the evaluator needs to check whether the circuit was
manipulated and the receiver checks whether y � ŷ.

The base of the computational complexity is the garbling and evaluation.
Due to the similarity to our protocols from Section 3, we are not going to re-
peat all of the analysis. How to compute the amount of operations needed
without using privacy-free garbling is presented in Section 3.2.2. The im-
provements through privacy-free garbling are pointed out in Section 3.3.2.
Another big part of the computational complexity is the checking of the
opened circuit since it results in a full evaluation or a re-garbling of the cir-
cuit. This takes up to 4 H-calls and 10 XOR operations per uneven gate and
2 XOR operations per even gate (see Table 4.1). Aside from that, there are
the committing oblivious transfer of the input labels and the commitment

47

to the output labels that carry weight. The computational complexity of
these depend on which protocols are chosen. The comparison of y and ŷ
is the least important part of the computational complexity.

Concerning the communication complexity, the garbled circuit C is the
largest information to be sent. Thanks to the usage of privacy-free garbling
it is only half the size compared to using standard half-gates. Only one
ciphertext of k bit per uneven gate is needed, to represent the garbled
circuit. Using AES-128 like in our analysis in section 3.2.2, its size would
be 11286 · k bit. The rest of the communication complexity depends on
which COT and COM protocols are used.

4.1.2 ZKBoo and ZKB++

The ZKBoo-Protocol was proposed by Giacomelli, Madsen and Orlandi
in [GMO16], and is based on the MPC-in-the-head approach by Ishai et
al. [IKOS07]. Similar to JKO13, the prover proves the knowledge of an input
x̂ corresponding to an output ŷ concerning a circuit c without revealing x̂.
A difference is that the prover does not garble the circuit, but uses a multi-
party-computation protocol (MPCP) to evaluate it. It is assumed, that the
circuit c is fix (Giacomelli et al. use SHA-1 or SHA-256) and there already
exists a decomposition into a three-party MPCP with certain properties.
This is a big advantage since the prover can directly begin by executing the
MPCP. For a visualization of the protocol, see Figure 4.2. There is no other
participant of the MPCP because all three parties pi with i ∈ {1, 2, 3} are
“in the prover’s head”, meaning that he simulates them. The input x to
the circuit is divided into three randomly chosen parts xi with i ∈ {1, 2, 3}
such that x � x1 ⊕ x2 ⊕ x3. Each party pi gets a part xi of the input and its
own random tape ri . All messages received by a party, as well as its input
xi and the random tape ri are documented in the party’s view vi . After
the execution of the MPCP, each party has knowledge of a part yi of the
computation’s output. If the protocol was executed correctly, all parties
being honest, y can be reconstructed from the yi .

After the simulation step, the prover commits himself to the views v1 , v2
and v3 and sends the output shares y1 , y2 and y3 to the verifier. The
verifier picks and sends two indices i and j which he wants to receive the
corresponding views to. So the prover reveals the views vi and v j that
were requested by the verifier. To check whether the MPCP was correctly
executed, the verifier checks whether the views are compatible to each

48

Prover Verifier

simulate MPCP

COM − Commit(v1 , v2 , v3)
y1 , y2 , y3

choose i , j ∈ {1, 2, 3}

i , j

COM − Decommit(vi , v j)

check views and outputs

Figure 4.2: The ZKBoo protocol by Giacomelli, Madsen and Orlandi is a
zero-knowledge proof protocol enabling the prover to prove
knowing an input x̂ without revealing it to the verifier [GMO16].

other and the parties acted according to the MPCP. If this is given and the
output combination of the yi equals ŷ, the verifier accepts.

In 2017, Chase et al. introduced the ZKB++ protocol [CDG+17] which is an
improvement of the ZKBoo protocol. The communication complexity of
ZKB++ is more than halved compared to ZKBoo, not affecting the compu-
tational complexity. This is done by using six different optimizations that
are designed to compress all messages sent as much as possible.

Security

To analyze the security of the protocol, we check for completeness, sound-
ness and the zero-knowledge property.

Completeness is given if theMPCPused is correct andused correctlywith x̂
as input. In this case, all views are compatible and the output reconstructed
from the yi is ŷ causing the verifier to accept with probability 1.

Next, we consider the security notion of soundness. There indeed is the
possibility for a prover to successfully manipulate the MPCP without be-
ing caught. Since the verifier only gets two of the views, he cannot check
whether one of these is incompatible with the third view. So if the prover
manipulated the MPCP resulting in two parties’ views being incompatible

49

with each other, the verifier can only convict the prover when choosing
the correct two views. The probability for this is 1/3, leaving a probability
of 2/3 that the prover successfully convinces the verifier to accept without
knowing x̂. For this reason, the protocol is executedmultiple times, reduc-
ing the probability that a cheating prover convinces the verifier in every
round. The probability that a prover not knowing x̂ convinces the verifier
in t rounds is (2/3)t . By changing t, the protocol can be scaled to different
needs.

The zero-knowledge property requests the verifier to have no possibility
to get information about the prover’s input x̂ that cannot be deduced from
the output y. To fulfill this, theMPCP used by Giacomelli et al. guarantees
that none of the three parties gets any information about the other parties’
inputs that cannot be deduced from the output. So for example p1 gets no
information about x2 and x3. This way, the verifier always lacks one of the
xi because he only gets two of the views. Since the xi are chosen at random
and all three have to be xored to obtain x, knowing two of them gives no
information about the input x. Therefore the ZKBoo protocol fulfills the
zero-knowledge property.

Comparison to JKO13

An advantage over JKO13 is that the ZKBoo protocol is a lot faster because
no oblivious transfer is needed. Unfortunately, there are no exact values,
because there are no comparable analyses of both protocols. But like stated
by Giacomelli et al., the oblivious transfers from JKO13 take already more
time than 137 executions of ZKBoo, ignoring the other parts of the protocol.
A single execution of ZKBoo also has a lower communication complexity
than JKO13. While the ZKBoo protocol has a proof size of 3320 Byte,
JKO13 has a proof size of 186880 Byte. But since it is possible for the prover
to successfully manipulate the MPCP, the protocol is repeated multiple
times to lower the probability for a successful manipulation. Repeating
the ZKBoo protocol more than 56 times, the proof size gets bigger than the
one of JKO13.

Unlike JKO13, ZKBoo can bemade non-interactive. There aremultiple pos-
sibilities to transform a sigma protocol like ZKBoo into a non-interactive
zero-knowledge protocol (NIZK protocol) [FS86, Unr15]. For an explana-
tion of sigma protocols see Section 4.3.2. This can be useful when being in
a network with much latency.

50

But all these advantages of ZKBoo over JKO13, do not make it a bad
idea to use garbled circuits for zero-knowledge proofs in general: In the
next section, we present a zero-knowledge protocol using garbles circuits
that does not need any oblivious transfer causing a huge advantage in
computational and communication complexity. Additionally, ZKGC-nOT is
a sigma protocol like ZKBoo and thus may be transformed into a NIZK
protocol.

4.2 ZKGC-nOT

In this section, we present a new and more efficient zero-knowledge proof
protocol using garbled circuits. Like in the protocols presented above,
in ZKGC-nOT the prover is able to prove ownership of some input x̂ that
corresponds to some output ŷ concerning a one-way function f . The
protocol is based on the SWBES presented in Section 3.2. The SWBES has the
property, that the evaluator is not able to get any information about the
garbler’s ciphertext. In this zero-knowledge protocol the garbler’s input is
not a ciphertext, but the secret information x̂.

Let’s take a look at the course of action illustrated in Figure 4.3. In the
first step, the prover garbles the circuit using the garbling function Gb.
Like explained in Section 4.1.1, the circuit c should be agreed upon in
advance or be provided by a trusted third party, to facilitate the validity
check of the opened circuit. In the next step, the prover sends the garbled
circuit C and the decryption function d to the verifier. Now, the verifier
chooses a decision bit b that is either “labels” or “open” and sends it to
the prover. Let’s assume the verifier chooses “labels”. This causes the
prover to compute the input labels X corresponding to his input x and
sending them to the verifier. With this knowledge, the evaluator is able
to evaluate the circuit and decode the output labels. In the last step, the
verifier compares the obtained output y to the ŷ from the statement to be
proven. In case of a match, the verifier accepts.

If the verifier chooses “open”, the prover sends e instead of X. Sending
the encryption function opens the circuit, enabling the verifier to check
whether C is a garbled version of c. This opening is needed to prevent the
prover from manipulating the circuit in such a way, that it always outputs
ŷ no matter the input. Like in the JKO13 it is possible to only send one
half of the labels together with R, or to just send the seed used to generate

51

the input labels instead of e to reduce the communication complexity. The
verifier accepts if no manipulation is detected.

The JKO13 protocol by Jawurek et al. also is a zero-knowledge proof
protocol using garbled circuits, but there are several differences: Unlike in
JKO13, in ZKGC-nOT the prover is the one who garbles the circuit. Because
the prover knows the encoding function e, he is able to directly send the
input labels X to the verifier without any need of oblivious transfer. This
saves a lot of space and time resources. Another difference is that the
evaluator does either receive the input labels X to evaluate the circuit, or
the encoding function e to check whether the circuit was garbled correctly.
In JKO13 both steps are needed. The origin of this difference lies in the
fact that in ZKGC-nOT, the circuit is not opened to prevent the verifier from
extracting x̂, but to achieve soundness. There also is no commitment
needed in ZKGC-nOT.

4.2.1 Security

To analyze the security of the protocol, we are going to check whether the
security notions presented in section 2.4.1 are fulfilled.

Completeness

To fulfill completeness, the garbling scheme used has to be correct. If the
prover knows x̂, he is able to use the encoding function e to determine the
corresponding labels X̂ after garbling the circuit. Evaluating the circuit
with X̂ as input, the verifier obtains Ŷ. In the last step, the verifier uses
the decoding function d mapping Ŷ to ŷ. Since the output matches ŷ, the
verifier accepts. Hence the probability of a prover knowing x̂ to success-
fully prove knowing x̂ when sticking to the protocol is 1, so completeness
is fulfilled.

Soundness

Assume the garbling scheme is correct and the circuit is garbled correctly.
In this case, a prover that does not know x̂ has no chance to construct an
input label X̂ that produces the correct output label Ŷ besides guessing,
since he would have to invert the one-way function to do so. The only

52

Prover/Garbler Verifier/Evaluator

(C, e , d) � Gb(1k , c)

C, d

choose b

b

— case b � “labels” —

X � En(e , x)

X

Y � Ev(C,X)

y � De(d ,Y)

check if y � ŷ

— case b � “open” —
e

check circuit

Figure 4.3: ZKGC-nOT. With help of the decision bit b, the verifier chooses
whether to get the input labels to verify the proof, or to let the
prover open the circuit so the verifier can check whether the
circuit was manipulated.

53

possibility for him to construct an input label that results in an output
label Ŷ when evaluating the circuit is to manipulate the circuit. So if
the verifier could check both whether the circuit is garbled correctly, and
whether the input labels produce a valid output, the prover would have
no chance to convince the verifier without knowing x̂. Since this is not the
case, there is a strategy for a malicious prover: He guesses the choice of the
verifier and then either manipulates the circuit (b � “labels”) or correctly
garbles the circuit (b � “open”). With this strategy, there is a fifty-percent
chance for the attacker to get away with his cheating.

As long as the prover is honest-but-curious or a covert attacker, he would
not dare trying to cheat. If the prover is a malicious attacker, cheating-
attempts could be uncovered with increasing probability by repeating the
protocol multiple times. The probability that a prover not knowing x̂
convinces the verifier in t rounds is (1/2)t .

Zero-Knowledge

In order to prove the zero-knowledge property of ZKGC-nOT, we show that
the verifier cannot learn anything about the input x that cannot be learned
from y. For this, we create a simulator S that has no information about
x̂ but is able to produce an output which is indistinguishable from the
output of a prover knowing x̂. While this is not achievable for a prover not
knowing x̂, it is for the simulator because he has the advantage of being
allowed to rewind the verifier. This means that S guesses the choice of the
verifier and acts depending on that guess, and later on is able to rewind
the verifier to try again if the guess was incorrect.

In the case b � “open”, the simulator would garble the circuit correctly.
This way, the messages containing C, d and e cannot be distinguished
from a prover’s output, because they have the same distribution (perfectly
indistinguishable).

In the case b � “labels”, the simulator would also begin with garbling the
circuit correctly. But after choosing random input labels X and feeding
them into the garbled circuit, the simulator manipulates d in a way that
the output labels map to the expected output ŷ. Therefore, d is the only
manipulated parameter and the input labels X and the circuit C are con-
structed just like a prover would construct them. While manipulating d,
the pairs of labels belonging to each bit are not altered. Only theirmapping

54

to zero and one may be swapped. This way, d stays compatible to the gar-
bled circuit C and nobody can distinguish it from a correctly generated d
(computationally indistinguishable). Hence, the simulator’s output cannot
be distinguished from a provers output and the zero-knowledge property
is fulfilled.

Anotherway to give reasons for the zero-knowledge property is to evaluate
what the verifier gets to know. He has the choice to get either (C, d , e), or
(C, d ,X). In the case b � “open”, he obtains (C, d , e) which contains no
information about x since x does not affect the garbling of the circuit. In the
case b � “labels”, he obtains (C, d ,X)which contains information about x
because X contains the labels for x. The security notion of obliviousness
discussed in Section 2.3.1 ensures that knowing a garbled circuit and some
input labels, one cannot deduce anything about the inputs or the outputs.
Zahur et al. proved in [ZRE15] that the half-gates improvement fulfills
obliviousness. Hence, if ZKGC-nOT is executed using half-gates, the verifier
does not get any information about the provers input.

Note that the only influence the verifier has on the course of the protocol
is the choice of b. Hence, we do not need to distinguish between honest,
covert and malicious verifier, since there are only two choices for b and
there is no strategy to pick it in a special way.

4.2.2 Applicable Garbled Circuit Improvements

ZKGC-nOT is compatible with the two-halves improvements suggested by
Zahur, Rosulek and Evans in [ZRE15]. However, unlike JKO13, ZKGC-nOT is
not compatiblewith the privacy-free improvement by Frederiksen, Nielsen
and Orlandi [FNO15]. This is because the evaluator has to know all of the
inputs for the improvement to be compatible. In ZKGC-nOT, this is not
possible because if the evaluator knew the secret inputs x, it would no
longer be a zero-knowledge proof.

4.2.3 Computational and Communication Complexity

In the case that the verifier chooses b � “labels”, the protocol’s compu-
tational complexity is the same as for SWBES. For a detailed analysis, see
Section 3.2.2. If the verifier chooses b � “open”, the evaluation of the
circuit and the decoding of the labels are replaced by the validity check

55

of the circuit. How this check can be done and what its complexity is, is
presented in Section 4.1.1. Both possible alternatives have a similar com-
putational complexity, which is higher than the complexity of the simple
evaluation since the whole circuit has to be checked, and not just one
possible evaluation.

Note that the garbling of the circuit and the encoding of the input can be
precomputed by the prover. So if for example, the zero-knowledge proof
is used for authentication, the prover can precompute multiple garbled
circuits in order to speed up a future authentication process.

The communication complexity of ZKGC-nOT is very similar to the one of
SWBES. In the case b � “open”, the communication complexity of the last
message is doubled because e contains all of the input labels instead of
only one set like X does. Additionally, in both cases the communication
complexity is increased by one bit to send the decision bit b.

4.2.4 Comparison to other Protocols

Compared to JKO13, ZKGC-nOT has some important advantages: It does
not need oblivious transfer or commitment, which has positive effects on
both computational and communication complexity. Also the security
primitives for commitment and oblivious transfer are not needed. The
swapping of the roles of garbler and evaluatormight be another advantage.
Since the prover is the garbler, he begins by garbling the circuit – in JKO13,
it is the other way round. If the verifier is a server getting requests by users
who want to authenticate themselves, it is much easier to perform a denial
of service attack if the server has to begin the protocol by garbling a circuit.
Unlike in JKO13, privacy free garbling cannot be used in ZKGC-nOT since
the evaluator is not allowed to know the garbler’s input. But since we do
not need oblivious transfer and commitment, the overall computational
complexity of ZKGC-nOT should still be lower. Another difference is, that
in ZKGC-nOT there is a possibility for a prover not knowing x̂ to convince
the verifier. Therefore it has to be executed multiple times to minimize
this risk. This problem does only occur if the prover might be malicious.
In a scenario with a covert attacker model, the prover would not dare to
cheat because he would be convicted with a probability of one half. An
additional advantage of ZKGC-nOT is that it is very versatile: Unlike JKO13 it
can be transformed into a non-interactive zero-knowledge proof protocol,

56

and adding oblivious transfer is an optional trade-off that provides other
advantages (see Section 4.3).

To compare ZKGC-nOT to ZKBoo and ZKB++ is rather difficult, since their
implementations are build around certain circuits for SHA-1 and SHA-
256. About the number of repetitions needed can be said that ZKGC-nOT
has to be repeated fewer times for the same security level, because the
probability for a prover not knowing x̂ to convince the verifier is smaller. In
numbers, for a probability of 2−40 there are 69 executions of ZKBoo needed
(because (2/3)69 ≈ 2−40), while only 40 executions of ZKGC-nOT are needed
((1/2)40 � 2−40). Another advantage of ZKGC-nOT is that it is compatible to
arbitrary circuits. On the downside, the proof size of ZKGC-nOT is larger
because the whole circuit needs to be sent and the bits are replaced with
labels instead of being sent directly.

ZKGC-nOTmight not be best one for use in practice known today, but it still
is a whole new approach to zero-knowledge using garbled circuits. Maybe
with some further research, this will open doors to new efficient ways to
do zero-knowledge proofs using garbled circuits. To give some inspiration
about how ZKGC-nOT may be varied, we show some variations in the next
section.

4.3 Protocol Variations

The original version of ZKGC-nOT does not need a trusted third party, com-
mitment or oblivious transfer. But as it is very flexible, it is possible to
include some of these aspects to get advantages the standard version does
not have. On the one hand, it is possible to prevent a malicious prover
to notice that he was caught cheating by using oblivious transfer. On the
other hand, there are multiple possibilities to transform ZKGC-nOT into a
non-interactive zero-knowledge protocol. Both approaches are presented
in this chapter.

4.3.1 Using Oblivious Transfer

It is possible to substitute the decision between obtaining the encoding
function e or the garbled input X by an application of oblivious transfer.
Using 1-2-OT, the verifier only obtains either e or X which guarantees the

57

privacy of x. To enable an 1-2-OT of e and X, X has to be concatenated to
random bits to align it to the same length as e. Furthermore, in contrast
to our protocol from above, the prover does not know whether the verifier
requests to see X or e. An overview of this alternative protocol is given in
Figure 4.4.

The benefit of using 1-2-OT in this context is that a dishonest prover does
not knowwhether he is going to be caught cheating before sending X or e.
An attacker could try to cheat and abort the protocol when detecting that
he did not successfully predict the decision bit in order to not be caught
cheating. The verifier would not detect the cheating attempt until e or X is
sent. The 1-2-OT variant prevents the attacker from aborting and restarting
because he does not get any information about the decision bit until it is
too late.

However, this comes at the cost of oblivious transfer, which increases
complexity and, depending on its implementation, may introduce new
security assumptions.

4.3.2 Non-Interactive Zero-Knowledge Approach

Recently, a number ofworks [Unr15, BSCTV17, BSCTV14, GGI+15] focused
on describing non-interactive zero-knowledge proofs (NIZK proofs). The
non-interactive variant for zero-knowledge proofswas introduced byBlum
et al. in 1988 [BFM88]. In exchange for the fact that prover and verifier
need to have a common random string, it is possible to reduce the commu-
nication to just one message from prover to verifier. This technique allows
zero-knowledge proofs to be used as signature schemes, which should not
rely on interaction to be practical. For authentication however, interaction
is fine as long as the total communication costs are low.

Nevertheless, it is easy to transform ZKGC-nOT into a non-interactive zero-
knowledge proof, which is done in this section. At first, we show that
ZKGC-nOT is a sigma protocol, which is needed for the most common trans-
formations intoNIZK-proofs by Fiat and Shamir [FS86] andUnruh [Unr15].
After that, we present our own approach to transform our protocol.

58

Prover/Garbler Verifier/Evaluator

(C, e , d) � Gb(1k , c)

C, d

X � En(e , x)

OT − Choose(b)

OT − Transfer(X, e)

— case b � “labels” —

Y � Ev(C,X)

y � De(d ,Y)

check if y � ŷ

— case b � “open” —

check circuit

Figure 4.4: OT-variant of ZKGC-nOT. The prover does not get to know b since
he sends both X and e via 1-2-OT. This way he does not know
whether he is caught cheating. If he knew b and it did not
match his expectation, he could abort the protocol and start it
anew.

59

Sigma Protocols

A sigma protocol is a special form of a prover-verifier protocol with exactly
three messages, namely commitment, challenge and response. According to a
sigma protocol, the prover sends a commitment message com derived from
a statement s and witness w. On arrival, the verifier randomly draws a
challenge ch from a fixed set of challenges and sends it to the prover. In the
next step, the prover takes ch, creates a response message resp and sends
it to the verifier. Finally, the verifier takes s , com, ch and resp, accepts if the
response is appropriate concerning the challenge, and rejects otherwise.

As in any zero-knowledge proof, a sigma protocol has the properties com-
pleteness and zero-knowledge as described in section 2.4.1. Further, the
property of special soundness which is a stricter variant of soundness is
needed. For special soundness, there must exist a polynomial-time algo-
rithm which is able to generate a valid witness w out of a statement s and
two accepted protocol runs (com, ch, resp), (com, ch′, resp′) for the same
commitment message com but two different challenges ch , ch′.

The original protocol depicted in Figure 4.3 is a sigma protocol. The com-
mitment consisting of the garbled circuit C and the decoding function d
is followed by the challenge b, which prompts the prover to respond with
either opening the circuit C by sending the input mapping e or by sending
the labels X for the input x. The witness w corresponds to the prover’s
secret input x and the statement s corresponds to the output y of the
circuit.

Because there are only twopossible challenges, special soundness is easy to
prove. Let’s assume that a polynomial-time algorithm is provided C, d , y
and X as well as e. By knowing e and X, the algorithm can easily calculate
the secret x by inverting e and applying it to X.

Non-interactive protocol

There are several ways to transform any generic sigma protocol into a
NIZK proof. The most relevant ones are the Fiat-Shamir transformation
[FS86] and the more recent construction by Dominique Unruh [Unr15],
which achieves security against quantum adversaries. In the following, we
explain our own approach transforming ZKGC-nOT into a NIZK proof.

60

The protocol begins with a trusted third party generating a black-box ran-
dom oracle O : {(C, d)} → {“labels”, “open”} × Hashes. After O is trans-
ferred to the prover and the verifier, the prover generates (C, e , d) as usual
and obtains b and a hash h ∈ Hashes by calling O(C, d). The oracle O in-
cludes an internal counter i, so the hash h depends on (C, d) and i which is
the number of previous calls to O. The prover then sends (C, d , b , h ,X) or
(C, d , b , h , e) (depending on b) to the verifier. The verifier checks whether
(b , h) � O(C, d) and X (or e) meets his expectations.

If the prover is malicious, he could try to call the oracle multiple times, to
get a challenge b matching his tuple (C, d)which was generated hoping for
a certain choice of b. The random oracle’s internal counter prevents this
behavior, because if O is queried multiple times, the hash is not the same
as the one the verifier obtains. Effectively, we limit the prover to a single
call of O.

61

Prover Trusted Party Verifier

O

(C, e , d) � Gb(1k , c)

(b , h) � O(C, d)

— case b � “labels” —

X � En(e , x)

(C, d , b , h ,X)

check if (b , h) � O(C, d)

Y � Ev(C,X)

y � De(d ,Y)

check if y � ŷ

— case b � “open” —

(C, d , b , h , e)

check if (b , h) � O(C, d)

check circuit

Figure 4.5: The non-interactive variant of our zero-knowledge protocol. To
achieve non-interactiveness, a trusted third party providing a
black-box random oracle O is needed.

62

5 Conclusion and Future Work

In this work, we analyzed different approaches on how to use garbled
circuits in a white-box scenario. We began by describing how garbled
circuits can be used as single-use white-boxes. Next, we introduced the
simple white-box encryption scheme SWBES and the modified white-box
encryption scheme MWBES, that can be used to transfer encrypted messages
froma sender to a receiver. In comparison, MWBES is the better choice to send
secret messages, because it is secure against an attacker eavesdropping on
the channel. Additionally, MWBES is compatible to privacy-free garbling,
causing the circuit to be only half as big as in SWBES. We also analyzed the
idea of a two-layer scheme for white-box cryptography. To have two layers
of encryption has several advantages for white-box cryptography, that
extend the life span of a white-box. Sadly, it is not compatible to garbled
circuits, since the restriction to single-use of garbled circuits contradicts
with the requirement to use different dynamic keys. Finding a way to
reuse garbled circuits would make the combination of these techniques
possible and support the development towards long-life white-boxes.

We designed the ZKGC-nOT protocol, which is a zero-knowledge proof
protocol using garbled circuits, based on SWBES. ZKGC-nOT is a whole new
way of using garbled circuits in zero-knowledge proofs. In itsmain variant,
it has multiple advantages over JKO13, and as there are other variants, it is
very versatile and can be adapted to different use cases. In a scenariowith a
covert attacker, ZKGC-nOT is superior to JKO13 concerning communication
and computational complexity.

63

Bibliography

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-
interactive zero-knowledge and its applications. In Proceedings
of the twentieth annual ACM symposium on Theory of computing,
pages 103–112. ACM, 1988.

[BGEC04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Crypt-
analysis of a white box aes implementation. In International
Workshop on Selected Areas in Cryptography, pages 227–240.
Springer, 2004.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foun-
dations of garbled circuits. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 784–
796. ACM, 2012.

[BL18] Fabrice Benhamouda andHuĳia Lin. k-roundmultiparty com-
putation from k-round oblivious transfer via garbled inter-
active circuits. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 500–532.
Springer, 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round
complexity of secure protocols. In Proceedings of the twenty-
second annual ACM symposium on Theory of computing, pages
503–513. ACM, 1990.

[BSCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Succinct non-interactive zero knowledge for a von neu-
mann architecture. InUSENIX Security Symposium, pages 781–
796, 2014.

[BSCTV17] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars
Virza. Scalable zero knowledge via cycles of elliptic curves.
Algorithmica, 79(4):1102–1160, 2017.

64

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Or-
landi, Sebastian Ramacher, Christian Rechberger, Daniel Sla-
manig, and Greg Zaverucha. Post-quantum zero-knowledge
and signatures from symmetric-key primitives. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1825–1842. ACM, 2017.

[CEJVO02] Stanley Chow, Philip Eisen, Harold Johnson, and Paul C
Van Oorschot. White-box cryptography and an aes imple-
mentation. In International Workshop on Selected Areas in Cryp-
tography, pages 250–270. Springer, 2002.

[DLPR13] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and
Matthieu Rivain. White-box security notions for symmetric
encryption schemes. In International Conference on Selected Ar-
eas in Cryptography, pages 247–264. Springer, 2013.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A ran-
domized protocol for signing contracts. Communications of the
ACM, 28(6):637–647, 1985.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio
Orlandi. Privacy-free garbled circuits with applications to ef-
ficient zero-knowledge. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages
191–219. Springer, 2015.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. InAdvances
in Cryptology—CRYPTO’86, pages 186–194. Springer, 1986.

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sa-
hai, and Adam Smith. Using fully homomorphic hybrid en-
cryption to minimize non-interative zero-knowledge proofs.
Journal of Cryptology, 28(4):820–843, 2015.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zk-
boo: Faster zero-knowledge for boolean circuits. In USENIX
Security Symposium, pages 1069–1083, 2016.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round mul-
tiparty secure computation from minimal assumptions. In
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 468–499. Springer, 2018.

65

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sa-
hai. Zero-knowledge from secure multiparty computation. In
Proceedings of the thirty-ninth annual ACM symposium on Theory
of computing, pages 21–30. ACM, 2007.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi.
Zero-knowledge using garbled circuits: how to prove non-
algebraic statements efficiently. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications secu-
rity, pages 955–966. ACM, 2013.

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek.
Flexor: Flexible garbling for xor gates that beats free-xor. In In-
ternational CryptologyConference, pages 440–457. Springer, 2014.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved gar-
bled circuit: Free xor gates and applications. In International
Colloquium on Automata, Languages, and Programming, pages
486–498. Springer, 2008.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable com-
mitments basedon theddhassumption. InAnnual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 446–466. Springer, 2011.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy pre-
serving auctions and mechanism design. In Proceedings of the
1stACMconference onElectronic commerce, pages 129–139.ACM,
1999.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P Smart, and
Stephen C Williams. Secure two-party computation is prac-
tical. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 250–267. Springer,
2009.

[Sec] Inside Secure. White-box software protection.
https://www.insidesecure.com/Products/Application-
Protection/Software-Protection/WhiteBox. Last accessed on
September 26, 2018.

[Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in
the quantum random oracle model. In Annual International

66

Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 755–784. Springer, 2015.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange se-
crets. In Foundations of Computer Science, 1986., 27th Annual
Symposium on, pages 162–167. IEEE, 1986.

[Zho16] Hongsheng Zhong. Secure and trusted partial white-box ver-
ification based on garbled circuits. Master’s thesis, McMaster
University Hamilton, 2016.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves
make a whole. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 220–250.
Springer, 2015.

67

	Introduction
	Preliminaries and Notations
	Commitment
	Oblivious Transfer
	Committing Oblivious Transfer

	Garbled Circuits
	Properties of Garbling Schemes
	Improvements

	Zero-Knowledge Proofs
	Security Notions

	White-Box Cryptography
	Applying Garbled Circuits to White-Box Cryptography
	Simple White-Box Encryption Scheme
	Security
	Computational and Communication Complexity

	Modified White-Box Encryption Scheme
	Security
	Computational and Communication Complexity

	Two-Layer Scheme

	Zero-Knowledge Proofs
	Existing Approaches
	JKO13
	ZKBoo and ZKB++

	ZKGC-nOT
	Security
	Applicable Garbled Circuit Improvements
	Computational and Communication Complexity
	Comparison to other Protocols

	Protocol Variations
	Using Oblivious Transfer
	Non-Interactive Zero-Knowledge Approach

	Conclusion and Future Work

