
Dawn of the Golden Auditor
Constructing a Subversion-Resilient IND-CCA-Secure Encryption
Scheme from Auditable Obfuscation

Dawn of the Golden Auditor
Konstruktion eines Subversions-Resilienten IND-CCA-Sicheren Verschlüs-
selungsverfahrens aus Auditable Obfuscation

Masterthesis

within the study courses of
IT-Security
at the University of Lübeck

handed in by
Jannik Westenfeld

issued and supervised by
Prof. Dr. Sebastian Berndt,
Prof. Dr. Thomas Eisenbarth

with the assistance of
M. Sc. Paula Arnold

Lübeck, February 21, 2025

Abstract

In recent years, Algorithm Substitution Attacks (ASAs) have become a hot topic of research
in the field of cryptography. First introduced by Young and Yung in the late 1990s as klep-
tography and later coined ASA by Bellare, Paterson and Rogaway, the concept was widely
deemed too artificial for real world considerations at first. However, revelations such as
the publications from Edward Snowden [BBG13] showed that ASAs are not only a realistic
attack vector, but could already be in use by malicious actors.
Cryptographic primitives, and especially encryption schemes, represent an attractive tar-
get for ASA exploitation. Attackers are able to circumvent breaking the schemes’ security
guarantees by introducing information-leaking side-channels into their implementations.
As cryptographic implementations tend to be quite complex, it often is infeasible to prove
that any particular implementation contains no subversion. Thus, a lot of research is con-
ducted on adapting constructions in such a way that any possibly existing subversion can
only be exploited if and only if this exploitation is also detectable. Such a construction is
then labeled subversion-resilient.
While a lot of cryptographic primitives, such as IND-CPA-secure encryption, PRFs and
signatures, have already been successfully adapted to resist ASAs, a subversion-resilient
construction for IND-CCA-secure encryption has been elusive so far.
In this work, we provide such a subversion-resilient construction for IND-CCA-secure
encryption from the novel concept of auditable obfuscation. Auditable obfuscation was
first introduced by Banerjee and Galbraith in 2023 to model defenses against malicious
modifications in obfuscation schemes. We analyze the model and show that auditable
obfuscation (AO) models an edge case of subversion-resilience., meaning that any au-
ditable obfuscation scheme is inherently subversion-resilient and provides a new basis
from which to source the property.
We further discuss a first application of this result, showing that we can leverage auditable
obfuscation to achieve subversion-resilient indistinguishability obfuscation (iO). Finally,
we use the results from Sahai and Waters [SW14] on the construction of IND-CCA-secure
encryption from iO and show that, by following its schemata using subversion-resilient
building blocks, we can propagate this property to the resulting IND-CCA secure encryp-
tion scheme.

iii

Zusammenfassung

In den letzten Jahren hat sich die Forschung zu Algorithm Substitution Attacks (ASAs)
deutlich intensiviert. Das Themengebiet wurde in den späten 1990er Jahren von Young
& Yung unter dem Begriff Kleptography begründet und später von Bellare, Paterson und
Rogaway als ASA wieder aufgegriffen. Auch wenn das Setting erst als zu künstlich für
reale Anwendungen angesehen wurde, so hat sich spätestens mit den Veröffentlichungen
von Edward Snowden [BBG13] herausgestellt, dass es nicht nur einen realistischen An-
griffsvektor darstellt, sondern womöglich bereits Anwendung findet.
Kryptographische Primitive, so wie Verschlüsselungsverfahren, stellen dabei ein beson-
ders attraktives Angriffsziel dar, da Angreifer durch ASA eingeführte Seitenkanäle ver-
wenden können um Sicherheitsgarantien der Verfahren zu umgehen. Da kryptographis-
che Primitive meist sehr komplex in ihren Implementierungen sind, ist es oft unmöglich
zu garantieren, dass eine spezifische Implementierung keine Subversion enthält. Forscher
legen somit ihren Fokus auf das Adaptieren von Konstruktionen, bei denen eine Subver-
sion nur dann ausnutzbar ist, wenn sie auch detektierbar ist. Solche Konstruktionen
werden dann auch als subversions-resilient bezeichnet.
Für viele kryptographische Primitive, unter anderem IND-CPA-sichere Verschlüsselun-
gen, PRFs und Signaturen, wurden schon subversions-resiliente Konstruktionen gefun-
den. Für IND-CCA-sichere Verschlüsselung konnte bisher jedoch noch kein Kandidat
konstruiert werden. In dieser Arbeit stellen wir solch eine subversions-resiliente Kon-
struktion für IND-CCA-sichere Verschlüsselung vor.
Unsere Konstruktion baut dabei auf dem neuartigen Konzept von Auditable Obfuscation
(AO) auf. Auditable Obfuscation wurde von Banerjee & Galbraith in 2023 eingeführt,
um Verteidigungsmaßnahmen gegen bösartige Obfuscation-Verfahren zu modellieren.
Wir analysieren AO unter diesem Aspekt und zeigen, dass Auditable Obfuscation einen
Randfall von Subversions-Resilienz darstellt. Komplexere subversions-resiliente Kon-
struktionen können somit auf AO aufbauen.
Wir diskutieren eine erste Anwendung, indem wir zeigen, dass man aus Auditable Ob-
fuscation subversions-resiliente Indistinguishability Obfuscation bauen kann. Konstruk-
tionen für IND-CCA-sichere Verschlüsselung aus Indistinguishability Obfuscation sind
seit längerem bekannt, unter anderem die Konstruktion von Sahai and Waters [SW14].
Wir nutzen diese Konstrukion und zeigen, dass unter Verwendung von subversions-
resilienten Bausteinen das resultierende Verschlüsselungsverfahren auch subversions-
resilient ist.

iv

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Jannik Westenfeld
Lübeck, 21. Februar 2025

v

Acknowledgements

Firstly, I would like to thank my advisor Sebastian Berndt, who not only made me aware
of this thesis topic, but also supported me extensively throughout my research and writing
phases. Secondly, I want to thank Paula Arnold and her invaluable comments throughout
our meetings. Without Sebastian and Paulas combined advisory, this thesis would not
have been written the way it is.
Further, I’d like to thank Thomas Eisenbarth for the possibility to realize this thesis as is,
as well as my family for providing an environment in which I was able to fully concentrate
on my work.
Lastly, I want to thank Eric Landthaler, Martin Weberpals and Timothy Imort for bouncing
off ideas as well as proofreading this thesis.

vii

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Related Works . 3

2 Preliminaries 5
2.1 Adversarial Setting . 5
2.2 Steganography, Algorithm Substitution Attacks & Subversion-Resilience . . 8

2.2.1 Steganography . 8
2.2.2 Algorithm Substitution Attacks . 11
2.2.3 Subversion-Resilience . 13

2.3 Obfuscation . 18
2.3.1 Indistinguishability Obfuscation . 21
2.3.2 Malicious & Auditable Obfuscation 23

2.4 Pseudorandomness & Encryption . 28
2.4.1 Pseudorandomness . 28
2.4.2 Encryption Schemes . 34

3 Technical Overview 37

4 Subversion-Resilient Auditable Obfuscation 43
4.1 Obfuscation Schemes as a Steganographic Channel 44
4.2 Malicious Obfuscation against Obfuscation as Steganography 45

4.2.1 Malicious Obfuscation implies Steganography 46
4.2.2 Steganography implies Malicious Obfuscation 50
4.2.3 Auditable Obfuscation is Subversion-Resilient 53

5 From Auditable Obfuscation to Subversion-Resilient Indistinguishability
Obfuscation 55
5.1 Auditable Obfuscation implies Indistinguishability Obfuscation 56
5.2 Subversion-Resilient Indistinguishability Obfuscation 61

6 Constructing Subversion-Resilient Puncturable Pseudorandom Functions 63
6.1 Pseudorandom Generators are Subversion-Resilient 64

ix

Contents

6.2 Constructing a Subversion-Resilient PRF . 66
6.2.1 The Goldreich-Goldwasser-Micali (GGM) Construction 66
6.2.2 GGM constructed PRFs are Subversion-Resilient 69

6.3 Subversion-Resilient Puncturable Pseudorandom Functions 71

7 Constructing a Subversion-Resilient, CCA-Secure Encryption Scheme 79
7.1 Construction Overview . 79
7.2 Subversion-Resilient, CCA-Secure Encryption 83

8 Conclusions 91
8.1 Summary . 91
8.2 Discussion and Future Works . 93

References 95

A From Indistinguishability Obfuscation to Auditable Obfuscation 1

B Efficient Encodings for puncturing-based Stegosystems 3

x

1 Introduction

While historically, cryptographic research was singularly focused on the security of hon-
est schemes, recent events, such as the Snowden revelations [BBG13], have shown that in
real applications the honesty of implementations cannot be safely assumed. Parts of an
implementation may have been swapped out against malicious counterfeits that subvert the
output, leaving a hidden side-channel to exfiltrate information. Nowadays, such attacks
are called Algorithm Substitution Attacks (ASA) [BPR14]. However, the attack scenario
can be retraced to the late 1990s, when it was first described under the term kleptogra-
phy [YY97].
ASAs generally work by mimicking the algorithm they subvert while adding some kind
of side-channel to the resulting output. As an example, an ASA on a RSA implementation
could work by modifying the probabilities with which any of its secret parameters p or q
are chosen. An external party could then break RSA’s security guarantees by only testing
high-probability primes for p and q.
As ASA allow for the construction of adversary-controlled side-channels, they are often
leveraged against secure algorithms to silently break security guarantees. As such, crypto-
graphic primitives, and especially encryption schemes, are prime targets for such attacks.
Additionally, due to the inherent complexity in most cryptographic primitives, it is often
infeasible to prove whether any implementation was subverted or not [BPR14].
Research has thus been concentrated on hardening constructions against subversions
rather than trying to prevent them [RTYZ17, AMV15, CMNV22]. The goal is to build
constructions that, even if parts of them are subverted, either render these subversions
detectable or, with overwhelming probability, unexploitable. Such constructions are then
called surveillance-resistant [BPR14] or, more commonly, subversion-resilient [AMV15].
For a lot of cryptographic primitives, subversion-resilient constructions already ex-
ist. Some examples include IND-CPA-secure encryption [RTYZ17], EUF-secure signa-
tures [AMV15, BBC24], MPC protocols [CMNV22] and PRFs [BBD+23]. However, there
have been no successful attempts at a subversion-resilient IND-CCA-secure encryption
scheme so far, neither for the symmetric nor public key scenario. IND-CCA-secure en-
cryption can be understood as the golden standard of encryption schemes. Thus, it is of
high interest to find a subversion-resilient construction for it. As standard constructions
seemingly yield no results, it may be necessary to try and tackle this problem from a
different direction.

1

1 Introduction

Auditable obfuscation (AO) is a comparatively new framework introduced in 2023 by
Banerjee and Galbraith [BG23]. AO describes defense mechanisms against malicious ob-
fuscation schemes. In real world applications, obfuscation schemes are mostly handled as
black-box algorithms provided by a third party. However, prior to the work of Banerjee
and Galbraith, this third party was generally assumed to be trustworthy, which may not
always be the case. Auditable obfuscation then tries to adapt the obfuscation scheme
in such a way that any code embedded by a malicious obfuscator is either detectable or
non-exploitable.
When comparing the descriptions of AO with defenses against ASA, it is clear to see
that, if not equivalent, both frameworks at least seem to handle similar ideas on different
domains. It therefore is not far-fetched to suppose that AO schemes may be subversion-
resilient, meaning subversion-resilient obfuscation could exist.
Constructing IND-CCA-secure encryption from obfuscation methods has been the topic
of research before [SW14], however mostly based on indistinguishability obfuscation
(iO). Assuming AO is subversion-resilient, there may be a way to leverage its frame-
work to construct subversion-resilient iO as well as subversion-resilient IND-CCA-secure
encryption.

1.1 Contributions

We build upon the work of Banerjee and Galbraith in [BG23] and combine it with the
findings of Berndt and Liśkiewicz from their 2017 paper "Algorithm Substitution Attacks
from a steganographic perspective" [BL17] to provide a new look onto auditable obfuscation
and its use cases. We do this by

• providing a succinct recap over auditable obfuscation in the Preliminaries,

• giving an intuition on the inverse problem to auditable obfuscation, i.e. malicious
obfuscation, and its relation to algorithm substitution attacks,

• looking at malicious obfuscation from a steganographic perspective,

• showing how we can leverage auditable obfuscation to realize subversion-resilient
indistinguishability obfuscation.

We further combine these results with the works of Sahai and Waters from their paper
"How to Use Indistinguishability Obfuscation" [SW14], as well as the work of Bemmann et al.
in [BBD+23], to construct a subversion-resilient IND-CCA-secure encryption scheme. We
do this by

2

1.2 Related Works

• providing a short introduction on how to achieve IND-CCA-secure encryption from
indistinguishability obfuscation via the Sahai and Waters constructions,

• showing that cryptographic PRGs are inherently subversion-resilient,

• proving that the Goldreich-Goldwasser-Micali construction for PRFs [GGM86] is
subversion-resilient,

• showing that subversion-resilient PPRFs, as necessitated by the Sahai and Waters
construction for IND-CCA-secure encryption, are achievable,

• constructing a subversion-resilient IND-CCA-secure encryption scheme by combin-
ing the prior results.

We conclude by giving a short outlook on possible future work.

1.2 Related Works

In this thesis, we mostly work in both the obfuscation and the subversion-resilience set-
ting. In this section, we discuss some related works from different fields of research.

Obfuscation

While obfuscation, and especially indistinguishability obfuscation, has been a hot topic
of research in recent years, this thesis deals with a special type of obfuscation, namely
auditable and subversion-resilient obfuscation. Auditable obfuscation has, to our knowl-
edge, not been used outside of its introduction in [BG23], but earlier variants of related
concepts like malicious obfuscation and verifiable obfuscation exist. Some examples are
the works of Canetti and Varia in [CV09] and Badrinarayanan et al. in [BGJS16].
Canetti and Varia were the first to argue that malleability of obfuscation schemes could
be used by a malicious party, laying the foundation for current research. The works of
Badrinarayanan et al. built upon the works of Canetti and Varia, combining their theo-
retical results with later research into verifiable functional encryption. Their main results
achieve defense mechanisms against destructive malicious behavior, auch as an adversary
trying to render a ciphertext c indecipherable for verifiable functional encryption. Addi-
tionally, they also show that verifiable obfuscation is closely related to verifiable functional
encryption in this specific context.
Further work was also done by Canetti et al. in [CCK+22], who, in addition to giving a
more refined notion of obfuscation verifiability, built a completely CCA-secure encryption
scheme from their notion of verifiable obfuscation. Similar to our work, they used the Sa-
hai and Waters construction from iO [SW14] to achieve IND-CCA-security. Their goal was

3

1 Introduction

to thereby extend the notions of non-malleability to further secure an encryption scheme
against semantic adversaries. However, for their results, Canetti et al. rely on honest sub-
procedures, making their results distinct from our works.
To our knowledge, there have been no previous attempts at linking auditable and verifi-
able obfuscation with subversion-resilience.

Algorithm Substitution Attacks and Subversion-Resilience

Similarly to obfuscation, algorithm substitution attacks and subversion-resilience have
been the focus of recent publications. As an example, Berndt and Liśkiewicz showed
in [BL17] that any black-box setting with enough entropy can be used to create ASAs.
Building on this, future research focused more on concrete constructions. Some examples
for specific cryptographic primitives include [CHY20], in which the authors construct
algorithm substitution attacks on key encapsulation mechanisms (KEMs), and [AP22],
where the authors construct ASA against receiver-focused cryptographic primitives.
For subversion-resilience, the research has been (mostly) split between two models,
cryptographic reverse firewalls and watchdogs. For cryptographic firewalls, some
of the achieved subversion-resilient cryptographic primitives include secure authenti-
cated key exchanges (AKE) [LCW+25], secure password-authenticated key exchanges
(PAKE) [CMMV25] and certain types of public key encryption [ZGL20, YLL+25]. How-
ever, none of the subversion-resilient encryption schemes have managed to achieve
IND-CCA-security, distinguishing their results from ours.
Similarly, using watchdogs, it has been shown that subversion-resilient public key en-
cryption [RTYZ17, BCJ21] and subversion-resilient authenticated encryption [BBD+23]
are possible. However, these results again only achieve IND-CPA-security rather than
IND-CCA-security. To our knowledge, there are no published works on subversion-
resilient IND-CCA-secure encryption schemes.

4

2 Preliminaries

Throughout this thesis, we need to deal with a variety of different cryptographic set-
tings: steganography, algorithm substitution attacks, obfuscation methods, pseudoran-
domness and encryption schemes. For most of these frameworks, notations and defini-
tions have vastly differed throughout literature. Hence, we use this chapter to give a basic
introduction into the primitives as we use them in this thesis. We also provide some con-
text to their definitions, depict their security games, if applicable, and state the notations
we will use from here onwards.
We start by providing a short introduction to the (computationally) adversarial setting and
its notation. We then continue with the steganographic setting and algorithm substitution
attacks, followed by a section on obfuscation. Lastly, we end the chapter with a section on
pseudorandomness and encryption schemes.
A succinct overview of all commonly used notations can be found in Table 2.11 at the end
of this chapter.

2.1 Adversarial Setting

When analyzing any kind of system, we need to set a general framework. For cryptogra-
phy, two major frameworks have evolved over the years: the (computationally) asymptotic
setting and the (computationally) concrete setting [KL14]. In the asymptotic setting, we as-
sume that we can describe adversaries as randomized polytime-bounded algorithms that
try to solve the problem of breaking any given cryptographic primitive Π. By polytime-
bounded, we mean that the running time of the adversary is bounded by some polyno-
mial evaluated on a security parameter λ. By showing that only an adversary running
exponentially in λ can effectively break Π, we can then derive a computational security
guarantee.
Contrary, in the concrete setting, we also describe adversaries as randomized algorithms,
but fix their allotted time of execution not to a polynomial, but to an exact value. Simi-
larly, we need to exactly describe the effectiveness of the adversaries as well. If no realistic
adversary can break Π in their allotted time, a certain level of computational security can
be derived based on the chosen parameters.
While the concrete setting is very useful for analyzing implementations in practice, it is
not well equipped for a more theoretical analysis. As such, we will stick with the asymp-

5

2 Preliminaries

totic adversarial setting throughout this thesis. We will now describe the basic notions
used in the asymptotic framework, following the definitions from [KL14].
When working in the asymptotic setting, one of the most important notions is that of
computational negligibility. We define a negligible function as follows.

Definition 2.1. Negligible Functions
A function f is negligible if for every polynomial p(·) there exists an N such that for all
integers n > N it holds that f(n) < 1

p(n) . We denote an arbitrary negligible function in
some security parameter λ with negl(λ).
For all negligible functions it further holds that:

1.
∑

poly(λ)

negl(λ) = negl(λ)

2.
∏
O(1)

poly(λ) · negl(λ) = negl(λ) .

Inversely, if for every polynomial p(·) there exists an N such that for all integers n > N

it holds that f(n) > 1− 1
p(n) , then f is overwhelming.

Generally, we use negligibility when dealing with success probabilities of adversaries. We
model adversaries A as probabilistic polytime (PPT) turing machines, whose work we
can describe with some polynomial poly(λ) in a security parameter λ. We then try and
upper-bound their advantage in a function that is negligible in the same security param-
eter. By the second property of a negligible function, A thus is unable to succeed with
overwhelming probability.
IfA is not able to succeed with overwhelming probability, we deem a cryptographic prim-
itive Π secure against that attacker. If Π is secure against all possible PPT adversaries, then
we deem that primitive computationally secure. We formalize this with the following def-
inition:

Definition 2.2. Computational Security
A cryptographic primitive Π is considered computationally secure for a security parame-
ter λ in a security game game, if for all PPT adversaries A against Π in game it holds that
their advantage Advgame

A,Π (λ) against game is at most negligible.
Formally, we require

∀A : Advgame
A,Π (1λ) ≤ negl(λ) .

6

2.1 Adversarial Setting

In both the description of negligibility and the definition of computational security, we
used the attacker’s advantage. However, we have not formally defined it so far. Generally,
we say that the advantage of an attacker against some primitive Π is how much better this
adversary is compared to the trivial attacker. Thus, we formally define the advantage as
follows:

Definition 2.3. Advantage
Given a cryptographic primitive Π with a relating security game game and an adver-
saryA, the advantage of this adversary is defined as the absolute difference between the
adversary’s success probability and the trivial success probability of a simulator against
game.
Formally, we write

Advgame
A,Π (1λ) =

∣∣∣Pr[gameA = 1]− Pr[SΠ(1λ)]
∣∣∣ ,

where SΠ(1λ) describes a simulator with black-box oracle access to Π.

As can be derived from the definition of computational security, in analyzing the security
of a primitive Π, we do not only want to bound the advantage of any individual adver-
sary, but of all possible polytime adversaries. One possibility would be to analyze each
adversary individually, but this is generally infeasible. Instead, we argue using the best
adversary, meaning theAwith the highest advantage. As an attack by this adversary con-
stitutes the worst case against Π, we can describe the security in relation to it. For ease in
notation, instead of defining a security notion, we define the concept of insecurity:

Definition 2.4. Insecurity
The insecurity of a cryptographic primitive Π is defined as the maximum advantage any
adversary can have against Π.
Formally, we write

InSecgame
Π (λ) = max

A
Advgame

A,Π (λ) .

This concludes all notations necessary for the adversarial setting. We now continue with
definitions and notations for the steganographic and substitution settings.

7

2 Preliminaries

2.2 Steganography, Algorithm Substitution Attacks &
Subversion-Resilience

In this thesis, we will make use of side-channels embedded into the output of differing
algorithms. The simplest case of this, secretly encoding some hidden message into some
public message, is commonly known as steganography. Analysis of such schemes is defined
in the steganographic setting [HvAL09]. In comparison, algorithm substitution attacks
swap out honest algorithms in implementations for a malicious counterpart. This sub-
verted algorithm is then used to facilitate a side-channel via which secrets can be leaked.
Their analysis is defined in the substitution setting [BPR14, DFP15].
While the two settings seem slightly different, it was shown that algorithm substitution
attacks equal steganography on a certain kind of channel [BL17]. As such, it is possible
to translate between the terminology of both settings without loss of precision. However,
while the definitions may map to each other, it is in specific circumstances more useful
to use one setting over the other, i.e. to simplify proofs. As such, we will introduce both
settings.
The use of steganography definitions will mostly be contained to Chapter 4, whereas the
nomenclature of ASAs, and especially subversion-resilience, will be used throughout the
entire thesis. As Chapter 4 follows a proof from [BL17] and its revised write-up in [Ber18]
closely, we deemed it valuable to keep our definitions close as well. The definitions in this
section are thus adapted from [Ber18] and mostly differ in symbolic notation.

2.2.1 Steganography

As mentioned above, in the steganographic setting, we handle the secret encoding of some
hidden messages into public messages. While we could define the encoding of singular
messages, it generally is assumed that we want to create a hidden communication channel.
Communication channels originate from the field of information theory. As such, for our
formal definition of channels, we will closely follow its definition.

Definition 2.5. Channel (C)
Given an alphabet Σ, a channel C is a function that maps an element h ∈ Σ∗, called the
channel history, and a number n ∈ N, called the document length, to a probability distri-
bution on Σn, called the channel distribution. The elements of C are called documents or
messages and are denoted by msg.
For a given history h and document length n the resulting channel distribution is de-
noted by Ch,n. We will omit n if it is clear from context.

8

2.2 Steganography, Algorithm Substitution Attacks & Subversion-Resilience

In defining channels, we used something called a channel history, which we only de-
scribed as an element of Σ∗. As some of our proofs rely on the construction of a valid
history, we will define it more formally.

Definition 2.6. Channel History
Given a channel C, the associated channel history hC is defined at a timestamp i ∈ N as a
stream of all messages set on C prior. For a given i, this means that

hC(i) = (msg0,msg1, . . . ,msgi−1) .

For timestamp 0, hC(0) is defined as the empty stream ∅.

With this, we formalized the underlying information theoretic principles of steganogra-
phy. While we did informally describe the goal of the steganographic setting, we have not
yet formalized an instantiation of the framework. A set of algorithms that tries to create a
steganographic channel and then use it is most commonly called a stegosystem (StS). We
formally define it as such:

Definition 2.7. Stegosystems (StS)
Let λ ∈ N be a security parameter and C a channel. A (secret-key) stegosystem StS is a
triple of PPTMs (StS.Gen,StS.Enc, StS.Dec), wherein

• StS.Gen is a key-generation algorithm taking the security parameter to produce its
output.

StS.Gen(1λ)→ ak ∈ {0, 1}n(λ)

• StS.Enc is an encoder algorithm taking a key ak, hidden message sm ∈ {0, 1}poly(λ),
history hC and some state information σ ∈ {0, 1}∗ to produce a single output doc-
ument m̃sg ∈ {0, 1}poly(λ), which encodes some part of sm, as well as an updated
state σ′.

StS.Enc(ak, sm, hC , σ)→ (m̃sg, σ′) ∈ {0, 1}poly(λ) × {0, 1}∗

• StS.Dec is a decoder algorithm taking a key ak and a stream of poly(λ) many docu-
ments (msg1, . . . ,msgpoly(λ)) to produce a recovered message sm′.

StS.Dec(ak, (msg1, . . . ,msgpoly(λ)))→ sm′ ∈ {0, 1}poly(λ)

9

2 Preliminaries

The security of a stegosystem is, similarly to other cryptographic primitives, defined via
cryptographic games. For this thesis, we will focus on the StS-CHA-σ game also known as
the stegosystem chosen-hiddentext-attack with state. A visual representation of this game
can be found in Figure 2.1.
The game is played by a warden W on a channel C, who needs to decide if there currently
is a stegosystem StS running on C or not. If the advantage of W in this game is, at most,
negligible for a given stegosystem StS, then StS is secure against that warden.

Stegosystem Chosen-Hiddentext-Attack with state Experiment

StS Game Warden W

ak← StS.Gen(1λ) (sm, h, σ, σW)←W.FindENC,CHAN(1λ)

b←$ {0, 1}

(sm, h, σ, σW)

oracle CH(sm, h, σ)

if b == 0 :

(msg, σ)← StS.EncC(ak, sm, h, σ)

else : msg← Ch,poly(λ)

(msg, σ)

b′ ←W.GuessENC,CHAN(1λ,msg, σ, σW)

b′

if b == b′ : W wins

oracle ENC(sm, h, σ)

1 : (msg, σ)← StS.EncC(ak, sm, h, σ)

2 : return (msg, σ)

oracle CHAN(h)

1 : msg← Ch,poly(λ)
2 : return msg

Figure 2.1: Depiction of the Stegosystem Chosen-Hiddentext-Attack with State Experi-
ment, abbreviated to StS-CHA-σ. A warden W tries to determine if channel
C contains a stegosystem StS. For this, they are given two oracles, ENC and
CHAN, that provide them examples of honest messages and messages with an
encoding. Using these oracles, W constructs a best-case for themselves, and
queries the challenge oracle CH accordingly. Depending on the output of CH,
the warden must then decide and wins if they guess correctly.

While security is an important metric for a stegosystem, it is not the only relevant property.
Another such property of the stegosystem is that the encoded message can be reliably

10

2.2 Steganography, Algorithm Substitution Attacks & Subversion-Resilience

decoded by the receiving party. Similarly to the insecurity of a cryptographic primitive,
for ease in notation, we define its opposite, the unreliability of a stegosystem StS. The
unreliability thus is defined via the worst-case encoding for StS. Its formal definition is as
follows:

Definition 2.8. Unreliability
Given a channel C and related stegosystem StS, the unreliability UnRelStS,C(λ) is defined
as the maximum probability of the decoder algorithm failing. Formally, we write:

UnRelStS,C(λ) = max
ak,sm,h

Pr
[
StS.Dec(ak,StS.EncC(ak, sm, h)) ̸= sm

]
where the probability is taken over the internal coin-flips of StS.Enc, StS.Dec and the
samples of C.

While we defined the unreliability for stegosystems only, we note that the idea behind it
can easily be adapted to other adversarial primitives. With all necessary definitions for
steganography introduced we move on to definitions for algorithm substitution attacks
and subversion-resilience.

2.2.2 Algorithm Substitution Attacks

As mentioned before, algorithm substitution attacks define attacks against algorithmic
implementations. An adversary A tries to introduce a subverted algorithm, the ASA, into
an implementation with the goal of creating a side-channel through which secrets can be
leaked. Originally, algorithm substitution attacks were known as kleptographic attacks,
first described by Young and Yung in [YY97]. However, until the Snowden revelations in
2013 [BBG13], they were mostly disregarded as theoretical in nature.
In response to the revelations, an adapted version of the kleptographic setting, the algo-
rithm substitution setting, was then constructed in [BPR14] and further refined in [DFP15].
The goal of the two works was to formalize security notions in a subversion setting, both
modeling the adversary’s, as well as the defender’s, goals. Both papers define algorithm
substitution attacks as a set of probabilistic polytime Turing machines (PPTMs) that work
against a cryptographic primitive Π such that the ASA mimics the output of Π while en-
coding some secret message sm in the outputs. The secret message can then be retrieved
from the output via an extraction algorithm.
The formal definition of an ASA over a symmetric encryption scheme SES is as follows:

11

2 Preliminaries

Definition 2.9. Algorithm Substitution Attack (ASA)
Let λ ∈ N be a security parameter and SES a symmetric encryption scheme.
An algorithm substitution attack ASA against SES then is a triple of PPTMs
(ASA.Gen,ASA.Enc,ASA.Ext), wherein

• ASA.Gen is a key-generation algorithm taking the security parameter to produce its
output

ASA.Gen(1λ)→ ak ∈ {0, 1}n(λ) .

• ASA.Enc is a subverted encryption algorithm taking an adversary key ak, secret mes-
sage sm ∈ {0, 1}poly(λ), encryption key k ∈ Supp

(
SES.Gen(1λ)

)
, encryption message

msg and a state σ to produce a ciphertext c ∈ {0, 1}poly(λ), which looks like an out-
put from SES while also encrypting parts of sm, and an updated state σ′

ASA.Enc(ak, sm, k,msg, σ)→ (c, σ′) ∈ {0, 1}poly(λ) × {0, 1}∗ .

• ASA.Ext is an extraction algorithm taking an adversary key ak and ℓ = poly(λ) ci-
phertexts (c1, . . . , cℓ) to produce a recovered message sm′

ASA.Ext(ak, (c1, . . . , cℓ))→ sm′ ∈ {0, 1}poly(λ) .

While we do give the definition of an ASA over a symmetric encryption scheme, we can
adapt the description to any cryptographic primitive Π. To adapt an ASA, we need to
model ASA.Enc not as a subverted encryption algorithm, but rather as a subverted version
of the output of Π. For uniform nomenclature, we decided to stick with the definition over
a SES.
The security of an ASA is defined by the undetectability of its subversion. We model this
security via a cryptographic game. In this thesis, we will use a chosen subversion setting
in which a watchdog is allowed to specify the secret message that the subversion should
embed via its introduced side-channel. If the advantage of the watchdog is negligible in
this setting, the ASA is deemed secure. A visual representation of this game can be found
in Figure 2.2.
Note the similarity between both the definition of ASA and StS, as well as their respective
security games. The two settings seemingly map between each other, with the decoder
algorithm of StS acting as the extraction algorithm in ASA and vice versa. This similarity
is, as mentioned before, no coincidence. Berndt and Liśkiewicz proved in [BL17] that

12

2.2 Steganography, Algorithm Substitution Attacks & Subversion-Resilience

Algorithm-Substitution-Attack-distinguishing (detection) Experiment

ASA Game Watchdog Wa

(sm, k,msg, σ, σWa)←Wa.FindENC(1λ)

(sm, k,msg, σ, σWa)

ak← ASA.Gen(1λ)

b←$ {0, 1}

oracle CH(sm, k,msg, σ)

if b == 0 :

(c, σ)← ASA.Enc(ak, sm, k,msg, σ)

else : c← SES.Enc(k,msg)

(c, σ)

b′ ←Wa.GuessENC(1λ, c, σ, σWa)

b′

if b == b′ : Wa wins

oracle ENC(sm, k, msg, σ)

1 : (c, σ)← ASA.Enc(ak, sm, k,msg, σ)

2 : return (c, σ)

Figure 2.2: Depiction of the Algorithm-Substitution-Attack-detection experiment, abbre-
viated to ASA-Dist. A watchdog Wa tries to determine whether the output of a
symmetric encryption scheme SES has been subverted or not. For this, they are
give an encryption oracle, providing them with example subversions. Wa then
uses this to create a best case distinguishing case, which they query on their
challenge oracle CH accordingly. Depending on the output of CH, the watch-
dog must then decide and wins if they guess correctly.

the two settings are equivalent when working on a channel C built over the input-output
behavior of a cryptographic primitive Π. If an implementation of Π could not be used for
an ASA, then a channel over Π can not contain a stegosystem StS.
We describe the formal requirements for such an implementation in the follow section.

2.2.3 Subversion-Resilience

As mentioned in the last section, when describing algorithm substitution attacks, we also
want to model implementations that defend against such attacks. The authors of [BPR14]

13

2 Preliminaries

constructed a property called surveillance-resistance to achieve this goal. However, the
property was improved on in [DFP15] under the new name of subversion-resistance, or
more commonly refereed to as subversion-resilience. A subversion-resilient algorithm is
modeled using watchdogs Wa that assess an implementation before it is used. We formally
define the property of subversion-resilience as follows:

Definition 2.10. Subversion-Resilience
An algorithm Π is subversion-resilient if and only if an algorithm substitution attack ASA

is detectable by a watchdog Wa, meaning

∀ASA ∃Wa : Pr
[
Wa.GuessENC(ASA.EncΠ(ak, sm, k,msg)) = 1

]
> negl(λ) ,

or the reliability of an undetectable algorithm substitution attack ASA against Π is at
most negligible

min
ak,sm,k,msg

Pr
[
ASA.Ext(ak,ASA.EncΠ(ak, sm, k,msg)) ̸= sm

]
> 1− negl(λ) .

Note that the definition of subversion-resilience corresponds to the security game in Fig-
ure 2.2, in which the watchdog Wa has a non-negligible advantage.
In the computational asymptotic setting of cryptography, we often rely on black-box
reductions of adversaries to show that constructions must be secure. Optimally, we
would want something similar for the subversion setting, showing that algorithms are
subversion-resilient even if the implementation acts as a black box. Sadly, this is not
possible. Russell et al. conjectured in [RTYZ16, RTYZ17] that black box defenses against
algorithm substitution attacks may be impossible and Berndt and Liśkiewicz proved it
in [BL17]. Any algorithm with sufficient entropy in its outputs is susceptible to stegano-
graphic attacks in a black-box setting. As ASAs model steganography over a certain type
of channel, this means that ASAs always remain possible in a black-box scenario.
As such, the best case scenario we can achieve is a non-black-box-variant of subversion-
resilience. The question then becomes how to define such a non-black-box framework.
There have been multiple successful attempts in recent years, each with their own ad-
vantages and setbacks. Some examples include cryptographic reverse firewalls [MSD15],
which act as a third party sanitizing messages via rerandomization, and self-guarding
schemes [FM18], which split off a non-subverted initialization phase. However, in this
thesis, we will focus on a third: the trusted amalgamation with split-program model.
First introduced in [RTYZ16] and refined in [RTYZ17], this type of model works by as-

14

2.2 Steganography, Algorithm Substitution Attacks & Subversion-Resilience

suming that we can split provided implementations of a program into subprocedures,
individually check these for subversions and then glue these securely together. As we will
leverage this two-part model for security proofs, we provide a formal definition for both
of them. We start with the split-program model.

Definition 2.11. Split-Program Model
Let Π be a randomized algorithm following specification Π̂. We assume now, that speci-
fication Π̂ can be described as a set of constantly many subprocedures (π̂1, . . . , π̂k).
When analyzing an implementation Π̃ of algorithm Π for subversions, this implementa-
tion must then be given by the adversary A as

Π̃ := (π̃1, . . . , π̃k) ,

with the watchdog Wa being allowed to individually check each implementation.

Note that the split-program model only allows for a constant amount of subprocedures.
This rules out that algorithms are broken down to a gate-by-gate level, meaning that sub-
procedures must be treated as simplified algorithms themselves. While a gate-by-gate
analysis could result in stronger security guarantees, any arguments would necessarily
rely on the security of the underlying hardware architecture. Additionally, working on a
gate-by-gate level allows for easier concealment of malicious bootstrapping and control
flow modifications. The result is, that an exponentially more complex notion of ’secure
combination’ is necessary in a gate-by-gate analysis than a subprocedure analysis. With
the split program model we thus keep this last layer of abstraction intact.
Additionally, note that the split programming model does not inherently handle how to
securely combine the subprocedures to a complete implementation. If we assume that
the combination step is not secured, then it is possible to use a strategy similar to return-
oriented programming [Sha07]. Each subprocedure on its own may be secure, but by
combining them in unintended ways as gadgets, it may be possible to construct a subver-
sion on the entire implementation.
The trusted amalgamation model addresses this exact issue by providing a secure amal-
gamation function Am, that is, by assumption, non-subverted. Using this amalgamation
function to combine subprocedures then results in an implementation that follows the
specifications control flows exactly. Similarly to the split-program model, we formally
define the framework.

15

2 Preliminaries

Definition 2.12. Trusted Amalgamation Model
Let Π be a randomized algorithm following specification Π̂ := (π̂1, . . . , π̂k) and further let
Π̃ := (π̃1, . . . , π̃k) be an implementation of Π. Assume now that Am(·) is a non-subverted,
deterministic function called the amalgamation function.
Then, Am works by taking a set of subprocedures and amalgamating them correspond-
ing to the algorithm’s specification Π̂. The amalgamated implementation is given as

Am(Π̃) := Am(Am(π̃1), . . . ,Am(π̃k)) ,

wherein each implementation π̃i may itself be an amalgamated implementation Ami(π̃i).

The usage of an amalgamation function in the trusted amalgamation model thus guar-
antees us that the combination of subprocedures does not introduce new subversions
into the implementation. This means, that if all subprocedures of an implementation are
subversion-resilient, then the amalgamation is subversion-resilient in the trusted amalga-
mation model.
For this model to work, we presume a trusted, non-subverted amalgamation function Am.
However, it may not be obvious for such a function to exist. To prevent any subversions,
we would at least want Am to contain as little complexity as possible. In the best case, Ams
only task should be to guarantee the control flow.
Luckily, there exist two constructions fulfilling this condition. One of these constructions
is described in [RTYZ17], while the other is described in [BCJ21]. Both amalgamation func-
tions only handle inputs and outputs of subroutines, only requiring the use of a secure xor
operation to do so. Whenever we use the trusted amalgamation model throughout this
thesis, we will presume the use of one of these two constructions.
While these two constructions for amalgamation functions are of low complexity, they
still rely on a trusted xor function. In general, most constructions will require the use of
a small set of trusted, non-cryptographic operations. As an example, [BBD+23] require
both trusted comparison and xor operations to achieve their results, arguing that both op-
erations are simple enough to be realized in hardware in a trusted manner. Since we use
a similar approach to [BBD+23] we will also assume both of these operations as trusted.
Additionally, we will also require a trusted concatenation function to argue the security of
our construction in Chapter 7. As a concatenation operation is of similar complexity to a
comparison or xor, we analogously argue its security.
With all necessary notions for subversion-resilience handled, we will heavily rely on two
more related statements throughout this thesis. For multiple steps of our constructions,

16

2.2 Steganography, Algorithm Substitution Attacks & Subversion-Resilience

we will need to argue that a watchdog exists for deterministic algorithms operating on
publicly known input distributions. While it seems obvious that a watchdog can simply
sample the input distribution and then test the implementation of the deterministic algo-
rithms on these inputs, a formal proof of this fact was given by Russel et al. in [RTYZ16].
For simplicity, we shall cite the lemma here for reference and refer to it when applicable
later.

Lemma 2.13 ([RTYZ16]).
Let Π be a randomized algorithm following specification Π̂ := (π̂1, . . . , π̂k). Consider an im-
plementation Π̃ := (π̃1, . . . , π̃k) of Π̂, where π1, . . . , πk are deterministic algorithms working
on randomized inputs. Let then, for each security parameter λ, X1

λ, . . . , X
k
λ be defined as their

respective public input distribution.
Now, if there exists a j ∈ [k] such that Pr[π̃j(x) ̸= π̂j(x) : x ←$ Xj

λ] = δ, then this can be
detected by a PPT offline watchdog with a probability of at least δ.

The second statement is a theorem first proposed by Andrew Yao in [Yao77]. The theo-
rem is colloquially known as Yao’s Principle and relates the performance of randomized
algorithms to deterministic algorithms. In general terms, it states that we can extract the
randomness from a probabilistic algorithm and provide it via the input. We provide a sim-
plified version of the theorem here, adapted from the modern write-ups on the theorem
in [AB09, Wig19].

Theorem 2.14 (Yao’s Principle (Simplified)).
When trying to find the optimal performance of a probabilistic protocol, rather than focusing on
the best probabilistic algorithm for a worst-case input, we arrive at the same result when focusing
on the best deterministic algorithm for an average-case input.

Yao’s Principle may seem unrelated at first sight, but we can use it to great effect when
working in the trusted amalgamation with split-program model. Explicitly, it guaran-
tees us that we can consider the randomness generation to be a separate subprocedure,
meaning that we can model all other subprocedures as deterministic algorithms working
on randomized inputs. Russel et al. additionally showed in [RTYZ16] that such a split
randomness generator can be constructed in the split-program model, even under sub-
version. This allows us to assume that, whenever we work in the trusted amalgamation
with split-program model, we can access a non-subverted source of good randomness.
We continue with definitions and notations for obfuscation schemes.

17

2 Preliminaries

2.3 Obfuscation

Next to steganography and algorithm substitution attacks, we will use obfuscation meth-
ods at multiple steps of our construction, namely throughout Chapters 4, 5 and 7. As such,
we want to formally define all necessary notation and highlight some of the characteristics
that apply when working with obfuscation schemes.
Obfuscation schemes, and program obfuscations in particular, were considered in paral-
lel to other classic cryptographic problems such as encryption and authentication. While
the other settings were able to achieve results in complexity-theory, such as the computa-
tionally asymptotic setting we are working within, there were no concrete results for the
existence of obfuscation scheme for quite a long time [BGI+01].
The goal of obfuscation schemes is to produce some way to make any arbitrary program
code illegeable to possible observers while keeping its functionality intact. Optimally, we
would thus want this obfuscated program to act as a black-box to any observer, only re-
taining the input-output behavior of the original program while providing no actual infor-
mation about its internal workings. We call such an obfuscation scheme a virtual black-
box obfuscator [BGI+01]. A formal definition of a virtual black-box obfuscation can be
found in Definition 2.15. Furthermore, the related security game formalizing the virtual
black-box property can be found in Figure 2.3.
We note that obfuscation schemes are generally defined via circuit representations of pro-
grams to counteract the inherent informality of describing programs in natural language.
In most works, circuits are denoted with a C [BGI+12, GR14, KMN+14], but as this no-
tation clashes with definitions in the steganographic setting used within this thesis, most
notably channels C, we decided to use the notion of programs P and their implementa-
tions I . Unless explicitly stated otherwise, implementations I can be considered equiva-
lent to the standard circuit definition.
The existence of virtual black-box obfuscation would allow for a wide variety of cryp-
tographic constructions. Barak et al. describe in [BGI+01] usecases for watermarking,
homomorphic encryption, random oracle models and translation from symmetric encryp-
tion schemes to public-key encryption. Sadly, however, virtual black-box obfuscation is
impossible for a vast amount of programs. This impossibility result is, again, traceable
to Barak et al. in [BGI+01], where the authors show that a virtual black-box obfuscation
scheme can trivially be broken by two functions Cα,β and Dα,β defined as

Cα,β(x) :=

β if x = α

0λ else
and Dα,β(C) :=

1 if C(α) = β

0 else
.

18

2.3 Obfuscation

Definition 2.15. Virtual Black-Box Obfuscation
Let λ ∈ N be the security parameter of the system andP = {Pλ} the set of all polynomial-
sized programs with parameterized input length n(λ). Further, let I = {Iλ} be a family
of implementations over the subset of programs Iλ ⊆ P and D = {Dλ} a distribution
ensemble over the implementations.
O then is a tuple of PPTMs (O.Gen,O.Obf) called a virtual black-box obfuscator if and
only if for every λ ∈ N and every I ∈ I it satisfies the following statements:

• Correctness

ϕ1 : (perfect correctness)
For any Boolean circuit implementation I ∈ I, the obfuscation given by O
must behave identically on every possible input.

∀I ∈ I, ∀x ∈ {0, 1}n(λ) : Pr
O

[
Ĩ(x) = I(x) | Ĩ ← O.Obf(I)

]
= 1

ϕ2 : (functionality preserving) [BGI+12, BV16]
For any Boolean circuit implementation I∈I, the obfuscation given by O must
behave identically over every possible input with overwhelming probability.

∀I ∈ I : Pr
O

[
∀x ∈ {0, 1}n(λ) : Ĩ(x) = I(x) | Ĩ ← O.Obf(I)

]
> 1− negl(λ)

ϕ3 : (weak functionality preserving) [KMN+14]
For any Boolean circuit implementation I∈I, the obfuscation given by O must
behave identically on each possible input with overwhelming probability.

∀I ∈ I, ∀x ∈ {0, 1}n(λ) : Pr
O

[
Ĩ(x) = I(x) | Ĩ ← O.Obf(I)

]
> 1− negl(λ)

• Polynomial Slowdown
There exists a polynomial q such that the running time of Ĩ = O.Obf(I) is bounded
by q(|I|), wherein |I| denotes the size of the implementation.

• Virtual Black-Box
For every (non-uniform) polynomial size adversary A, there exists a (non-uniform)
polynomial size simulator S with oracle access to I such that for every distribution
D ∈ D: ∣∣∣∣ Pr

I←D,O,A
[A(O.Obf(I)) = 1]− Pr

I←D,S

[
SI(1λ) = 1

]∣∣∣∣ ≤ negl(λ)

19

2 Preliminaries

Virtual-Black-Box-Obfuscation Left-or-Right Experiment

VBB Game Adversary A

b←$ {0, 1} (P0, P1)← A.FindOBF(1λ)

ok←$ O.Gen(1λ)

P0, P1

Ĩ ← O.Obf(ok, Pb)

Ĩ

b′ ← A.GuessOBF(1λ, Ĩ)

b′

if b == b′ : Awins

oracle OBF(I)

1 : Ĩ ← O.Obf(ok, I)
2 : return Ĩ

Figure 2.3: Depiction of the Virtual-Black-Box-Obfuscation Left-or-Right Experiment, ab-
breviated to VBB-Obf-LoR. An adversary A on the obfuscation scheme O
chooses two implementations while given oracle access to the obfuscation
method and queries O on them. The vbb game flips a random coin and, de-
pending on its output, either obfuscates the left or right program and returns
the result to A. Adversary A must then distinguish which of their two pro-
grams was obfuscated. They win if they guess correctly.

However, this proof breaks down for some restricted classes of functions. As an exam-
ple, [LPS04] and [BBC+14] showed that some types of point and evasive functions can be
obfuscated. Point functions are functions that evaluate at exactly one input value to 1 and
otherwise to 0, whereas evasive functions only return 1 with negligible probability on any
input. Further examples can be found in [HMLS07] and [HRSV11], which explicitly focus
on functions with use in cryptographic settings.
In conclusion, while arbitrary virtual black-box obfuscation is impossible, obfuscation in
itself is not something to completely disregard. We will discuss one of its most notorious
examples in the following section, indistinguishability obfuscation.

20

2.3 Obfuscation

2.3.1 Indistinguishability Obfuscation

Indistinguishability obfuscation (iO) describes a particular edge case in obfuscation
schemes. Instead of obfuscating a family of multiple functions, we now consider only
one singular function and the family of its implementations. Surprisingly, the impossibil-
ity proof for virtual black-box obfuscation from Barak et al. in [BGI+01] does not rule out
creating an obfuscation scheme on this family of implementations. One can intuit this fact
by considering the following trivial construction:
For a given program P , list all possible implementations I in ascending order of size.
When calling iO on any of these implementations I , simply return whichever implemen-
tation occupies the first position in the listing as its obfuscation. Evidently, the output
of iO then perfectly hides which implementation was used as its input while keeping the
functionality of the program intact.
Indistinguishability obfuscation is formally defined in the following.

Definition 2.16. Indistinguishability Obfuscation (iO)
Let λ ∈ N be the security parameter of the system andP = {Pλ} the set of all polynomial-
sized programs with parameterized input length n(λ). In addition, let I = {P} be a
family of implementations of the same program P ∈ P and D = {Dλ} a distribution
ensemble over the implementations.
iO then is a tuple of PPTMs (iO.Gen, iO.Obf) called an indistinguishability obfuscator if
and only if for every λ ∈ N and every I ∈ I it satisfies the following statements:

• Correctness

(see the correctness property of Definition 2.15)

• Polynomial Slowdown

(see the polynomial slowdown property of Definition 2.15)

• Indistinguishability
For every same-size pair of Boolean circuit implementations of P , the two obfus-
cation distributions produced by iO on input of either of the two circuits must be
computationally indistinguishable for any poly-time adversary A.

∀I0, I1 ∈ I, ∀A :

∣∣∣∣PriO
[A(iO.Obf(I0)) = 1]− Pr

iO
[A(iO.Obf(I1)) = 1]

∣∣∣∣ ≤ negl(λ)

The security game for an iO scheme is then defined via its indistinguishability property:

21

2 Preliminaries

We can construct a typical left-or-right experiment to achieve this. The adversary A is
allowed to choose any two different implementations I0, I1 of the program P to send to
the game. At the same time, the game flips a coin. Upon receiving the two implementa-
tions, the game chooses which implementation to obfuscate via the prior coin flip. The
obfuscated program is then sent back to the adversary, who needs to answer which of the
two implementations was obfuscated. A visual representation of this game can be found
in Figure 2.4.

Indistinguishability-Obfuscation Left-or-Right Experiment

Indist. Game Adversary A

b←$ {0, 1} (I0, I1)← A.FindOBF(1λ)

ok← iO.Gen(1λ)

I0, I1

Ĩ = iO.Obf(ok, Ib)

Ĩ

b′ ← A.GuessOBF(1λ, Ĩ)

b′

if b == b′ : Awins

oracle OBF(I)

1 : Ĩ ← iO.Obf(ok, I)
2 : return Ĩ

Figure 2.4: Depiction of the Indistinguishability-Obfuscation Left-or-Right Experiment,
abbreviated to iO-LoR. The game runs analogously to the VBB-Obf-LoR in
Figure 2.3, however, the chosen implementations I0 and I1 may only be of the
same program P defining the obfuscation scheme iO. The adversary A still
only wins if b′ = b.

While the existence of indistinguishability obfuscation was known since the results
of [BGI+01], for a couple years, no one knew how to effectively leverage iO. The ex-
istence of iO was thus only considered an interesting but not utilizable exception to the
impossibility results for virtual black-box obfuscation schemes [BGI+12, GR14].
However, iO turned out to be surprisingly versatile as Sahai and Waters were able to
show in [SW14]. Generally, iO only works for implementations of some fixed program
P . However, if we now construct an implementation that only implements P with over-

22

2.3 Obfuscation

whelming probability, we can still obfuscate this modified program with almost certainty.
This allows us, contrary to intuition, to leverage indistinguishability obfuscation as an
intermediary step in game hopping proofs.
Research since the original paper from Sahai and Waters has shown that most cryp-
tographic primitives can be constructed from iO. We refer to the works in [JLS21]
and [GJLS21] for more comprehensive lists of constructions.
Besides indistinguishability obfuscation, we will use two other types of obfuscation
throughout this thesis, namely malicious and auditable obfuscation. They will be the
focus of the next section.

2.3.2 Malicious & Auditable Obfuscation

Malicious and auditable obfuscation,MO and AO respectively, model a similar concept
to algorithm substitution attacks and subversion-resilience on obfuscation schemes. Ob-
fuscation, even though not cryptographically secure, is often used in real applications,
most commonly to prevent the reverse engineering of software. Due to the complexity
of obfuscation schemes, it is common practice to not implement individual obfuscation
schemes, but rather rely on third party tools.
However, in general, we can not assume any third party to be trustworthy. A bad actor
could program their obfuscator in such a way that any inserted program is modified in
some unintended way. This modification can range from small errors in some outputs up
to the embedding of malware that is executed alongside the original program [BG23]. We
call an obfuscation with such modifications a malicious obfuscation.
Malicious obfuscations have been a part of literature for a while, being referenced in works
such as [BGJS16]. However,MO often is only described in natural language and not for-
mally defined. A first formal definition for malicious obfuscation was given in [BG23]
by Banerjee and Galbraith. They build their definition for MO from a perspective of
correctness, stating that malicious obfuscation is foremost a violation of the correctness
guarantees of the underlying obfuscation scheme. We adopt this formal definition in Def-
inition 2.17.
The security of a malicious obfuscation scheme is defined as the inability of a distinguisher
to differentiate between a malicious and honest obfuscation. We model the modifications
made during the malicious obfuscation as a type of embedding done with some auxiliary
information aux. The strongest security setting for a malicious obfuscation scheme then
allows the distinguisher to specify what this embedding should entail.
A visual representation of this chosen-embedding game can be found in Figure 2.5. We de-
note the distinguisher as an auditor Au on the obfuscation scheme. The auditor is given an
embedding oracle and is allowed to provide the embedding used in the challenge via sm.

23

2 Preliminaries

Definition 2.17. Malicious Obfuscation (MO)
Let λ ∈ N be the security parameter of the system andP = {Pλ} the set of all polynomial-
sized programs with parameterized input length n(λ). Further, let O be an obfuscator
satisfying Definition 2.15 with correctness ϕi on the family of implementations I = {Iλ}
with Iλ ⊆ P and distribution ensemble D = {Dλ} over the implementations.
MO then is a tuple of PPTMs (MO.Gen,MO.Emb,MO.Trig) called a malicious obfus-
cator for the family I and distribution D if and only if on auxiliary input aux ∈ {0, 1}λ

it satisfies the following statements:

• Correctness violation
For any choice of aux,MO.Emb(1λ, aux, ·, ok) does not satisfy ϕi.

• Indistinguishability
For every probabilistic polytime distinguisher, also called auditor Au, the output
fromMO.Emb and O.Obf must be computationally indistinguishable.∣∣∣∣ Pr

aux,Au,MO

[
AuMO.Emb(1λ,aux,·,ok) = 1

]
− Pr

Au,O

[
AuO.Obf(1λ,·,ok) = 1

]∣∣∣∣ ≤ negl(λ)

We note the similarity of the game’s structure to the security games of stegosystems StS

and algorithm substitution attacks ASA. As mentioned before, malicious obfuscation can
be intuited as an algorithm substitution attack on an obfuscation schemeO. However, this
similarity in their respective security games hints at an even deeper relation. Precisely, we
will show that this intuition of similarity actually is an equivalence in Chapter 4.
With the problem of malicious obfuscation raised and its intuition as an algorithm substi-
tution attack on obfuscation schemes presented, the next step should be to try and find a
modeling that can be intuited as subversion-resilience on obfuscation schemes. In litera-
ture, first attempts at this were classified under the notion of verifiable obfuscation, such
as the model in [CV09]. However, these definitions do not fully protect against our defi-
nition of malicious obfuscation as a violation of correctness in their entirety.
Banerjee and Galbraith also realized this and proposed auditable obfuscation as a solu-
tion in [BG23]. Analogously to watchdogs in the ASA setting, they introduce an auditor
that looks at all outputs of an obfuscation scheme O and probes it for malicious embed-
dings. Note that, similar to watchdogs on algorithm substitution attacks, this auditor also
is unable to completely mitigate malicious obfuscations, only providing an upper bound
to their effectiveness in most cases.
The auditor works by rejecting any obfuscation containing malicious embeddings, which,

24

2.3 Obfuscation

Malicious-Obfuscation Chosen-Embedding-Attack with state Experiment

MO Game Auditor Au

(sm, ok, I, σ, σAu)← Au.FindEMB(1λ)

(sm, ok, I, σ, σAu)

aux←MO.Gen(1λ, sm)

b←$ {0, 1}

oracle CH(sm, ok, I, σ)

if b == 0 :

(Ĩ , σ)←MO.Emb(aux, ok, I, σ)

else : Ĩ ← O.Obf(ok, I)

(Ĩ , σ)

b′ ← Au.GuessEMB(1λ, Ĩ, σ, σAu)

b′

if b == b′ : Au wins

oracle EMB(sm, ok, I , σ)

1 : aux←MO.Gen(1λ, sm)

2 : (Ĩ , σ)←MO.Emb(aux, ok, I, σ)

3 : return (Ĩ , σ)

Figure 2.5: Depiction of the Malicious-Obfuscation Chosen-Embedding-Attack with state
Experiment, abbreviated to MO-CEA-σ. An auditor Au tries to determine
wether the output of an obfuscator O is malicious or not. For this, they are
given an embedding oracle providing them with malicious obfuscations. Au
uses them to create a best case scenario and queries their challenge oracle CH
accordingly. Depending on the output of CH, the auditor must then decide and
wins if they guess correctly.

as previously defined, modify the obfuscation’s correctness class while keeping its in-
distinguishability property intact. Only if no malicious embedding is found, meaning
any malicious obfuscation scheme on the obfuscator was unable to effectively modify the
correctness, does the auditor accept an obfuscation. An auditor-accepting obfuscation
scheme is thus described by the provable absence of any functional malicious obfusca-
tion scheme against it. We call such obfuscation schemes auditable or auditable obfuscation
schemes [BG23] and define them as follows:

25

2 Preliminaries

Definition 2.18. Auditable Obfuscation (AO)
Let λ ∈ N be the security parameter of the system andP = {Pλ} the set of all polynomial-
sized programs with parameterized input length n(λ). Further, let I = {Iλ} be a family
of implementations over the subset of programs Iλ ⊆ P and D = {Dλ} a distribution
ensemble over the implementations.
AO then is a tuple of PPTMs (AO.Gen,AO.Obf,AO.Verify) called an auditable obfusca-
tor if and only if for every λ ∈ N and every I ∈ I it satisfies the following statements:

• Correctness

(see the correctness property of Definition 2.15)

• Polynomial Slowdown

(see the polynomial slowdown property of Definition 2.15)

• Virtual Black-Box

(see the virtual black-box property of Definition 2.15)

• Verifiability
For every (Ĩ , ν)← AO.Obf(1λ, I), AO.Verify(1λ, I, Ĩ, ν)→ {0, 1}.

• Soundness
For every (non-uniform) polynomial size adversary A, if[

(Ĩ ′, ν)← A(1λ, I)
]
∧
[
1← AO.Verify(1λ, I, Ĩ ′, ν)

]
then Ĩ ′ satisfies ϕi.

Note that we switch the virtual black-box property of AO with the following indistin-
guishability property.

• VBB Indistinguishability
For any two implementations I0, I1, for every (non-uniform) polynomial size adversary
A, there exists a (non-uniform) polynomial size simulator S with either oracle access to
I0 or I1, such that the term .∣∣∣∣| PrAO[A(AO.Obf(I0)) = 1]− Pr

AO
[A(AO.Obf(I1)) = 1]| − |Pr

S
[SI0(1λ) = 1]− Pr

S
[SI1(1λ) = 1]|

∣∣∣∣
is upper bounded by a negligible term.

26

2.3 Obfuscation

In Chapter 5, we will show that an indistinguishability obfuscation scheme can be con-
structed from auditable obfuscation. However, compared to AO and virtual black-box
obfuscation, iO uses an indistinguishability property instead of a virtual black-box prop-
erty. The switch from the standard virtual black-box property to its vbb indistinguishabil-
ity property thereby maps better between the two settings.

Auditable-Obfuscation Adaptive-LoR-or-Forgeability-Attack Experiment

AO Game Adversary A

Ic ← AuAO(1
λ)

Ic

b←$ {0, 1} (I0, I1)← A.FindOBF,VER(1λ)

ok← AO.Gen(1λ)

(I0, I1)

if I0 == Ic or I1 == Ic :

abort

else : (Ĩ , ν)← AO.Obf(ok, Ib)

(Ĩ , ν)

(b′, (Ĩc
′
, ν′))← A.GuessOBF,VER(1λ, Ic, Ĩ, ν)

(b′, (Ĩc
′
, ν′))

if AO.Verify(1λ, Ic, Ĩc
′
, ν′) == 1

or b == b′ : Awins

oracle OBF(I)

1 : (Ĩ , ν)← AO.Obf(ok, I)
2 : return (Ĩ , ν)

oracle VER(I , Ĩ , ν)

1 : b← AO.Verify(1λ, I, Ĩ, ν)
2 : return b

Figure 2.6: Depiction of the Auditable-Obfuscation Adaptive-LoR-or-Forgeability-Attack
Experiment, abbreviated toAO-Adap-LRFA. An auditor Au chooses a challenge
element from the set I and sends it to an adversary A. That adversary may
then choose a pair of two different implementations as the elements of a left-or-
right game and query a secondary challenge from AO on them. AO auditably
obfuscates one element of the secondary challenge and returns the output to
A. Adversary A can now both forge an obfuscation for the first challenge and
try and distinguish the second challenge. If A wins either of those, they win
the entire game.

27

2 Preliminaries

The vbb indistinguishability can be traced back to Barak et al. in [BGI+01], where they
provide it besides the standard virtual black-box definition. However, while Barak et al.
note that the property appears to result in a slightly weaker notion of obfuscation, they
do not elaborate further on it. As we will show that even this, at worst, weaker notion
is sufficient for our purposes, we can directly infer that the stronger setting would also
suffice.
With this, we can handle the security game for auditable obfuscation. It is important to
note that we need to play two games at the same time, one for the vbb indistinguishability
and one for the soundness. We can combine these two games into an adaptive setting, in
which we give an adversary a challenge in both settings, only one of which they need to
succeed at to win the game. A visual representation of the game can be found in Figure 2.6.
This concludes the introduction of all necessary obfuscation preliminaries. We continue
with the last few definitions and notations regarding pseudorandomness and encryption.

2.4 Pseudorandomness & Encryption

The last two preliminary notions we need to introduce are the concept of pseudorandom-
ness and encryption schemes. We group these two concepts as they are both inherently
linked with the notion of randomness in cryptography. In most of the field, and especially
in encryption schemes, randomness is a necessity. For example, deterministic (stateless)
encryption schemes E can only provide provable security guarantees if they are executed
on one message exactly once [KL14]. For any encryption scheme E that we want to use
multiple times some method of making the encryption probabilistic is needed.
While theoretical settings allow us to presume a source of good randomness, real ap-
plications leave us unable to produce true random samples. As such, we need to find
something that is as close to the real thing as possible. This is where the notion of (cryp-
tographic) pseudorandomness comes into play. Note that, unless otherwise stated, we will
adapt definitions and security games throughout this section from [KL14].

2.4.1 Pseudorandomness

Pseudorandomness is generally defined over a series of efficient outputs that should
"look" random. More formally defined, we want (cryptographic) pseudorandomness to be
deterministically computable in polytime, but result in an output that is computationally
indistinguishable from true randomness. While non-cryptographic pseudorandomness
has been researched for decades, most constructions do not fulfill the strict requirements
for a cryptographic setting.
The first constructions usable in cryptographic proofs only came to be in the early 1980s

28

2.4 Pseudorandomness & Encryption

through the work of Blum and Micali in [BM84] and Yao in [Yao82]. Both constructions
leverage a short true random seed s as an input to a generating function G. Based on s,
the generator G then produces a long output of pseudorandom bits. We fittingly call such
a generator a pseudorandom (number) generator PRG.

Definition 2.19. Pseudorandom Generator (PRG)
Let λ be the security parameter. G then is a deterministic PPTM with inputs of size n(λ),
output size m >> n(λ) called a Pseudorandom Generator if and only if for every λ ∈ N
it satisfies the following statements:

• Computability
The output of G is, knowing some input s, efficiently computable by a deterministic
algorithm.

• Indistinguishability
The advantage of any PPT adversary A to distinguish the output of G from a uni-
form random distribution over {0, 1}m is only negligible, meaning:∣∣∣Pr

s
[A(G(s)) = 1]− Pr

r
[A(r) = 1]

∣∣∣ ≤ negl(λ)

The security of a PRG is then given by a security game over its indistinguishability prop-
erty. The game first flips a coin on wether to use the PRG G or true randomness. Af-
terwards, the adversary is sent an output v, which either is the result of the PRG on a
uniformly sampled seed s or uniformly randomly chosen. The setting is thereby depen-
dent on the result of the coin flip. Lastly, the adversary must answer whether the received
output was produced by G or just a random string. A visualization of the security game
for a PRG is provided in Figure 2.7.
While PRGs are a versatile primitive in cryptographic instructions, we can not describe
every use case with them. Pseudorandom generators allow us to produce random-like
output strings, but in some cases, we need a more generalized notion of a pseudorandom
function F . Such a pseudorandom function should be indistinguishable from a real ran-
dom function f , that, on each input x, uniformly samples some output y.
PRFs for use in cryptography were first formalized in [GGM86], where a PRF F is de-
fined as a keyed function, evaluated on inputs x. The key k then acts as the source of
randomness, similarly to the seed s for PRGs.

29

2 Preliminaries

Pseudorandom-Generator Real-or-Random Experiment

PRG Game Adversary A
b←$ {0, 1}
if b == 0 :

s←$ {0, 1}n(λ)

v ← G(s)

else : v ←$ {0, 1}m

v

b′ ← A.Guess(1λ, v)

b′

if b == b′ : Awins

Figure 2.7: Depiction of the Pseudorandom-Generator Real-or-Random Experiment, ab-
breviated to PRG-RoR. The game flips a coin and, depending on the result, ei-
ther samples a seed s and evaluates the PRG at s or samples a random string of
equal length. The output is sent to an adversaryA. Their goal is to distinguish
whether the output was produced by a PRG or not. IfA guesses correctly, they
win the game.

We formally define such a keyed PRF as follows:

Definition 2.20. Pseudorandom Function (PRF)
Let λ be the security parameter and n(λ) some length. F then is a deterministic PPTM,
taking a key k ∈ {0, 1}n(λ) as well as some value x ∈ {0, 1}n(λ) as inputs to produce an
output y ∈ {0, 1}n(λ). F is called a pseudorandom function if and only if for every λ ∈ N
it satisfies the following:

• Computability
The output of F is, knowing the inputs k and x, efficiently computable by a deter-
ministic algorithm.

• Indistinguishability
The advantage of any PPT adversary A to distinguish the output of F (k, ·) on any
input x from a uniform random distribution over {0, 1}m is only negligible, mean-
ing:

∀x ∈ {0, 1}n(λ) :

∣∣∣∣Prk [A(F (k, x)) = 1]− Pr
r
[A(r) = 1]

∣∣∣∣ ≤ negl(λ)

30

2.4 Pseudorandomness & Encryption

The security of the PRF is, again, given via its indistinguishability property. However, as
mentioned before, in this game, we do not distinguish a PRF from a random string but
rather a random function f . In further difference to the PRG game, we provide the ad-
versary A with an evaluation oracle, with which A can query the PRF F in a black-box
manner. A visualization for the security game of a PRF is provided in Figure 2.8.

Pseudorandom-Function Real-or-Random Experiment

PRF Game Adversary A

b←$ {0, 1} x← A.FindEval(1λ)
if b == 0 :

k←$ {0, 1}n(λ)

f ← F (k, ·)
else : f ← rand()

x

y ← f(x)

y

b′ ← A.GuessEval(1λ, y)

b′

if b == b′ : Awins

oracle Eval(x)

1 : y ← F (k, x)

2 : return y

Figure 2.8: Depiction of the Pseudorandom-Function Real-or-Random Experiment, abbre-
viated to PRF-RoR. An adversary A tries to distinguish whether the output of
the game is real, being the output of a pseudorandom function F , or truly ran-
dom. For this, they are allowed to query the game on a chosen input x. To
find x, A is allowed to query an evaluation oracle that provides them outputs
of F . The game either evaluates F on x or samples a random value depending
on a uniformly chosen bit and returns the output y afterwards. A must then
guess whether y is real or random. If the adversary guesses correctly, they win
the game.

In most of cryptography, when discussing pseudorandomness, we will either use a PRG, a
PRF or a combination of the two primitives. However, some constructions require another
slightly different notion of pseudorandomness. For some use case, it may be of benefit to

31

2 Preliminaries

allow a third party to execute most of a PRF but hide some secret positions. Informally,
we want to black out the results for some of the possible input values, but allow the rest
to be evaluated correctly.
The idea behind such a PRF is referred to as a puncturable pseudorandom function, ab-
breviated to PPRF. These functions were simultaneously proposed by [BGI14, BW13]
and [KPTZ13] as a type of constrained PRF that works by modifying the key of a PRF

in such a way that only parts of the PRF can be evaluated on them. Such punctured keys
are denoted with k{x}, where x corresponds to the punctured input value. Note that, for
simplicity, we write k{punc} if multiple values are punctured.
Similarly to PRGs and PRFs, we provide a formal definition for PPRFs:

Definition 2.21. Punctured Pseudorandom Function (PPRF)
Let λ be the security parameter and n(λ) some length. F then is a deterministic PPTM,
taking a key k ∈ {0, 1}n(λ) as well as some value x ∈ {0, 1}n(λ) as inputs to produce an
output y ∈ {0, 1}n(λ). F is called a puncturable pseudorandom function if and only if for
every λ ∈ N it satisfies the following:

• Computability
The output of F is, knowing the inputs k and x, efficiently computable by a deter-
ministic algorithm.

• Indistinguishability
The advantage of any PPT adversary A to distinguish the output of F (k, ·) on any
input x from a uniform random distribution over {0, 1}m is only negligible, mean-
ing:

∀x ∈ {0, 1}n(λ) :

∣∣∣∣Prk [A(F (k, x)) = 1]− Pr
r
[A(r) = 1]

∣∣∣∣ ≤ negl(λ)

• Puncturable Indistinguishability
The advantage of any PPT adversary A with access to punctured key k{punc},
where punc describes a set of puncturings, to distinguish the output of F at a punc-
tured position from a uniform random distribution over {0, 1}m is only negligible,
meaning:

∀x ∈ punc :

∣∣∣∣Prk [A(k{punc}, F (k, x)) = 1]− Pr
r
[A(k{punc}, r) = 1]

∣∣∣∣ ≤ negl(λ)

We can now define the security game for punctured PRFs. This time, however, we define

32

2.4 Pseudorandomness & Encryption

the security of the function over its puncturings rather than its indistinguishability. An ad-
versary A on a PPRF F should not be able to reconstruct a punctured output y = F (k, x),
even if they know F and a punctured key k{x}. The security game then works by allow-
ing the adversary to specify a challenge position to puncture. The PPRF is deemed secure
if, even in this scenario, the adversary’s advantage is negligible. A visualization for the
security game of a PPRF is provided in Figure 2.9.

Punctured-Pseudorandom-Function Chosen-Puncture-Attack Experiment

PPRF Game Adversary A

x∗ ← A.FindEval(1λ)

x∗

k←$ {0, 1}n(λ)

y∗ ← F (k, x∗)

f ← F (k{x∗}, ·)

(f, k{x∗})

y′ ← A.GuessEval(1λ, f, k{x∗})

y′

if y∗ == y′ : Awins

oracle Eval(x)

1 : y ← F (k, x)

2 : return y

Figure 2.9: Depiction of the Punctured-Pseudorandom-Function Chosen-Puncture-Attack
Experiment, abbreviated to PPRF-CPA. An adversaryA tries to forge a PRF on
a punctured point. For this, A is allowed to choose the puncturing position x∗

to their liking. The game, after receiving position x∗, evaluates PRF on it and
generates the punctured key k{x∗}. Afterwards, the game providesAwith the
PRF and k{x∗}. A now needs to force the punctured output. If they do so
correctly, they win the game.

While it may at first not be intuitive whether such types of pseudorandom functions exist,
it has been shown that the GGM construction for PRFs [GGM86] can easily be adapted to
this punctured setting [BGI14, BW13, KPTZ13].
With this, we have handled all necessary notions of pseudorandomness used throughout
this thesis. We continue with the definition of encryption schemes and their security.

33

2 Preliminaries

2.4.2 Encryption Schemes

The encryption scheme model is one of the most commonly known cryptographic primi-
tives, the secure communication between two parties. The encrypted messages should be
protected from unauthorized access and modifications. When talking about encryption
schemes, we generally distinguish between two types: private-key symmetric encryption
and public-key asymmetric encryption. Private-key symmetric encryption, as the name
implies, uses a shared private key k to encrypt and decrypt the traffic between the two
parties. Public-key asymmetric encryption on the other hand relies on a key pair (pk, sk)
for each party, consisting of a public key pk and secret key sk.
While we do indirectly use symmetric encryption throughout this thesis, we do not fo-
cus on it. As such, we omit a formal definition and refer the reader to the writeup on
symmetric encryption in [KL14]. Inversely, one of our main results is the construction of
a subversion-resilient IND-CCA-secure public-key encryption scheme in Chapter 7. As
such, we provide a formal definition of it.

Definition 2.22. Public Key Encryption Scheme (PKES/E)
Let λ ∈ N be a security parameter. A public-key encryption scheme E then is a triple of
PPTMs (E .Gen, E .Enc, E .Dec), wherein

• E .Gen is a key-generation algorithm taking the security parameter to produce a pair
of public and secret keys.

E .Gen(1λ)→ (pk, sk)

• E .Enc is an encryption algorithm that takes a public key pk and an encryption mes-
sage msg ∈ {0, 1}poly(λ) to produce a ciphertext c ∈ {0, 1}poly(λ).

E .Enc(pk,msg)→ c ∈ {0, 1}poly(λ)

• E .Dec is a decryption algorithm taking a secret key sk and ciphertext c to produce a
recovered message msg′.

E .Dec(sk, c)→ msg′ ∈ {0, 1}poly(λ)

The security of an encryption scheme, similarly to the other primitives we tackled so far,
is defined via security games. However, encryption differs slightly due to not having one
common notion of security. Depending on the assumed strength of the adversary, we

34

2.4 Pseudorandomness & Encryption

play different security games. The most common types of security notions are IND-CPA

security and IND-CCA security. In the IND-CPA setting, we restrict the adversary by
only providing them with an encryption oracle and no information about the decryption
function. In the IND-CCA setting, we additionally provide them with a decryption oracle.
Note that the IND-CCA setting implies a strictly stronger adversary than the IND-CPA

setting. Similar to symmetric encryption schemes, while we do mention IND-CPA security
multiple times throughout this thesis, we do not focus on it. We will thus also omit its
game visualization and refer the reader to its writeup in [KL14].
We do provide a visualization of the IND-CCA security game in Figure 2.10.

Indistinguishability Chosen-Ciphertext-Attack Experiment

IND Game Adversary A

b←$ {0, 1} (msg0,msg1)← A.Find
ENC,DEC(1λ)

(pk, sk)← Gen

(msg0,msg1)

c← Enc(pk,msgb)

pk, c

b′ ← A.GuessENC,DEC(1λ, pk, c)

b′

if or b == b′ : Awins

oracle ENC(msg)

1 : c← Enc(pk,msg)

2 : return c

oracle DEC(c)

1 : msg← Dec(sk, c)

2 : return msg

Figure 2.10: Depiction of the Public-Key Encryption-Scheme Indistinguishability-Chosen-
Ciphertext-Attack Experiment, abbreviated to PKES-IND-CCA. In the exper-
iment, an adversary A samples two messages msg0 and msg1 and sends them
to the game. The game flips a coin and encrypts the according message msgb.
The encryption c and the public key pk are sent to the adversary. The ad-
versary then needs to guess which message was encrypted. For this, A is
provided with both an encryption and decryption oracle. If A guesses cor-
rectly, they win the game.

With this we have covered all necessary preliminaries for our thesis. On the following
page, we conclude this chapter with a notation table (Figure 2.11). In the next chapter, we
further provide a short technical overview of our work.

35

2 Preliminaries

Name Notation Used in Chapters

Advantage Advgame
A,Π (λ) 2, 4, 6, 7

Adversary A 2, 4, 5, 6, 7
Cryptographic Primitive Π 2
Insecurity InSecgame

Π (λ) 2, 4, 6
Keys k, ak, ok, pk, sk 2, 4, 5, 6, 7
Negligible Function negl(λ) 2, 5, 6, 7
Polynomial Function poly(λ) 2, 4, 5, 6
Probabilistic Poly-Time PPT 2, 6
Security Parameter λ 2, 4, 5, 6, 7, A
Simulator S 2, 5

Channel C 2, 4, 6
Channel Message msg 2, 4
History h 2, 4
System State σ 2, 4
Secret Message sm 2, 4
Stegosystem StS 2, 4, 6
Unreliability UnRelA,Π(λ) 2, 4
Warden W 2, 4, 6

Algorithm Substitution Attack ASA 2, 4, 5, 7
Amalgamation Function Am 2, 7
Subroutine π 2, 7
Symmetric Encryption Scheme SES 2, 4
Watchdog Wa 2, 6, 7

Auditable Obfuscation Scheme AO 2, 4, 5, A
Auditor Au 2, 4, A
Auxiliary Information aux 2, 4
Correctness ϕi 2, 4, 5
Implementation (set) I (I) 2, 4, 5, A
Indistinguishability Obfuscation Scheme iO 2, 5, 6, 7, A
Malicious Obfuscation Scheme MO 2, 4, 5, A
Obfuscation Scheme O 2, 4, 5

Obfuscation Ĩ 2, 4, 5
Program (set) P (P) 2, 4, 5, A
Proof ν 2, 5

Pseudorandom Generator PRG (G) 2, 6, 7
Pseudorandom Function PRF (F) 2, 6
Punctured Pseudorandom Function PPRF (F) 2, 6, 7
Public Key Encryption Scheme PKES (E) 2, 7

Figure 2.11: Table of Notations

36

3 Technical Overview

The scope of this thesis deals with two topics: the first part pertains to auditable obfus-
cation and its relation to subversion-resilience. The second part deals with subversion-
resilient IND-CCA-secure encryption and how to achieve it.
In this chapter, we give a short technical overview of the thesis. We do this by presenting
a broad introduction to the two sections, stating related research questions and a rough
sketch of our results. We conclude the chapter with a visual representation of the thesis
structure in Figure 3.1.

Auditable Obfuscation and its Relation to Subversion-Resilience

Auditable obfuscation was introduced by Banerjee and Galbraith in [BG23]. They provide
a formal specification to verify and validate an obfuscation against a malicious obfuscator
as well as an example construction for an auditable obfuscation scheme. In the formal
specification of auditable obfuscation, the authors add a verifiability and soundness prop-
erty to the standard definition of obfuscation. These two properties can be modeled as a
verifying party, an auditor to the obfuscation scheme, leveraged as being able to observe
and detect malicious modifications and embeddings in an obfuscated program.
The setting proposed by them thus closely resembles the subversion-resilience setting
against algorithm substitution attacks. Analogously to the auditor modeling, subversion-
resilience allows for the detection of algorithmic substitutions via an observing party, for
which the term watchdog was coined by Russell et al. in [RTYZ16]. As auditable obfusca-
tion still is a comparatively novel concept, there exist no works investigating its connec-
tion to subversion-resilience.
The first part of this thesis thus focuses on this resemblance, analyzes the relation be-
tween the two concepts as well as whether it only is superficial, due to the modeling of
the problems, or the result of some underlying similarity. We pose this as our first research
question:

Research Question 1 (On Auditable Obfuscation and Subversion-Resilience).
Can we show a deeper relation between the concept of auditable obfuscation and
subversion-resilience?

37

3 Technical Overview

We positively answer this question in Chapter 4.
We will do so by showing that malicious obfuscation, the inverse concept to auditable
obfuscation, can be used to create a steganographic channel and vice versa, proving that
the two settings are equivalent. We then combine this finding with the results of Berndt
and Liśkiewicz [BL17], demonstrating that algorithm substitution attacks are similarly
equivalent to the steganographic setting. We can then conclude that the inverse concept
to algorithm substitution attacks, namely subversion-resilience, describes the same setting
as auditable obfuscation.

Subversion-Resilient IND-CCA-Secure Encryption from Auditable Obfuscation

As discussed in the introduction, we not only want to show that auditable obfuscation
is related to subversion-resilience, but also find a use case in which to successfully apply
our result. Subversion-resilient IND-CCA-secure encryption provides such an application.
While there are a multitude of ways to construct IND-CCA-secure encryption schemes,
most of them do not fulfill the strict definition of subversion-resilience [BBD+23]. In gen-
eral, no subversion-resilient construction for IND-CCA-secure asymmetric encryption has
been found so far, making it an interesting goal for groundbreaking research.
To leverage our results from the first section, especially the fact that auditable obfuscation
constitutes a subversion-resilient obfuscation scheme, we want to tackle IND-CCA-secure
encryption from this view. Thankfully, building IND-CCA-secure encryption schemes
from obfuscation has already been a research topic in recent years [SW14], mostly build-
ing up from the concept of indistinguishability obfuscation. The interesting further step
forward now is to analyze whether we can leverage our results in combination with exist-
ing construction methods to achieve subversion-resilient IND-CCA-secure encryption.
One such promising construction is described in the 2014 paper [SW14] in which the au-
thors, Sahai and Waters, leverage iO in combination with a secure PRG and punctured
PRFs to prove IND-CCA security. As the construction is of low complexity, only rely-
ing on existing "⊕" (Xor), "∥" (Concatenation) and "=" (Equal) operations beside the three
mentioned cryptographic primitives, it proves to be a useful template for adaptation to
subversion-resilience.
In this thesis, we will show that, given subversion-resilient cryptographic primitives, us-
ing the Sahai and Waters construction results in a subversion-resilient IND-CCA-secure
encryption scheme. For our result to hold, we will further assume the three operations
mentioned prior to be secure. A succinct reasoning for this can be found in the Prelimi-
naries Subsection 2.2.3.
This puts our focus on the three cryptographic primitives, iO, PRGs and PPRFs, for which
we still need to show that they can be constructed in a subversion-resilient way. In prepa-

38

ration, we formulate three further research questions.
For the first primitive, iO, we need to show that a subversion-resilient version of it exists.
As we have a subversion-resilient obfuscation scheme in AO, we need to show that we
can construct iO from AO. The resulting research question is:

Research Question 2 (On Subversion-Resilient Indistinguishability Obfuscation).
What is the relation between indistinguishability obfuscation and auditable obfuscation
and can we leverage it to construct subversion-resilient indistinguishability obfuscation?

We partially answer this research question in Chapter 5.
In detail, we will show that AO implies iO and that we can thus leverage it to construct
subversion-resilient indistinguishability obfuscation. For this, we will show that any valid
AO scheme also fulfills all properties of an iO scheme while keeping its verifiability and
soundness properties, which we can leverage for subversion-resilience.
The question if iO does or does not imply AO is not of relevance to our results. We
leave this part of the research question open for future works to tackle. We will, however,
provide a short discussion on it in the Appendix A.
For the second primitive, PRGs, the construction’s root of randomness, we need to analyze
if subversion-resilient constructions for it exist. Thus, we can formulate our next research
question:

Research Question 3 (Subversion-Resilient Pseudorandom Generators).
Can we construct subversion-resilient PRGs?

We can affirm this research question in Chapter 6.
We do so by showing that PRGs are inherently subversion-resilient by leveraging the re-
sults of [RTYZ16], namely Lemma 2.13, which allows us to show that any functional sub-
version of a PRG must also be detectable.
Lastly, for PPRFs, which we require to argue the security of our construction, we also need
to proved the existence of subversion-resilient constructions. This yields another simple,
yet significant research question:

Research Question 4 (Subversion-Resilient Punctured Pseudorandom Functions).
Can we construct subversion-resilient punctured PRFs?

39

3 Technical Overview

We answer the research question in Chapter 6.
In detail, we show that arbitrary punctured PRFs are not subversion-resilient, even if
the underlying PRF is subversion-resilient, as the puncturing itself can be leveraged as
a steganographic channel. However, we further show that using random puncturing,
wherein the used randomness is not subverted, in combination with an additional reran-
domization assumption fixes this problem and results in subversion-resilient punctured
PRFs. This result is of no hindrance to our goal, as the Sahai and Waters construction al-
ready necessitates the use of randomly punctured PRFs [SW14].
Combining the results from these three research questions shows that all building blocks
for the Sahai and Waters construction can be constructed subversion-resiliently. This
leaves only the connecting step as the last possible attack vector. We formulate this as
the final research question for this thesis:

Research Question 5 (On Subversion-Resilient IND-CCA-Secure Encryption).
Can we use the Sahai and Waters construction for CCA-secure encryption from indis-
tinguishability obfuscation to construct a subversion-resilient CCA-secure encryption
scheme?

We positively answer the research question in Chapter 7.
We do so by leveraging the trusted amalgamation with split-program model for construc-
tion, with which we can show that any successful subversion on the entire encryption
scheme must also subvert one of its subroutines. Combining this with the results from
the prior chapters then allows us to upper bound the advantage Advsub-res IND-CCA

A,E (λ) by a
negligible term. Additionally to this we will also need to prove IND-CCA security under
subversion. We do this via the standard game hopping proof of Sahai and Waters [SW14],
while sourcing the security from the subversion-resilience of its subroutines. Combining
both proofs then shows that IND-CCA-secure encryption under subversion is not only
possible, but also constructable.

40

Visualization

As an addition to the written technical overview of the following chapters, we want to
provide an additional visual representation of the construction. With this depiction, we
hope to give an additional intuition on the interaction between the different steps we make
throughout this thesis. The graphic can be found in Figure 3.1.
The leftmost part of the picture depicts the conceptional equivalence between ASA, StS
and MO, which we show in Chapter 4. From this equivalence, we get that AO, as the
inverse toMO, is subversion-resilient, which we mark through highlighting of its node.
From here on out, we visualize the results of Chapter 5 with the connection between the
AO and iO nodes and the results of Chapter 6 with the highlighting of the PRG node as
well as its connection to the PPRF node. Lastly, our results from Chapter 7 are depicted in
the cross-connection between the iO, PRG, PPRF and IND-CCA-Enc nodes. The Am node
at the center is used to depict that we use the amalgamation model within this construction
step.

ASA

StS

MO AO iO

PRG

PPRF

IND-CCA-Enc

constructs
equivalent
inverse

Am

Figure 3.1: Visualization of how the different primitives throughout this thesis interact
with each other. Primitives with green connections between them depict
equivalent concepts, whereas red connections describe inverse concepts. Blue
arrows are used to show that we can use the in-primitives to construct the
out-primitive. Highlighted nodes are the inherently subversion-resilient prim-
itives from which we source the property. As we will see in this thesis, any
depicted construction preserves the subversion-resilience property.

Additionally, at the start of Chapters 4 through 7, we will provide a separate copy of
Figure 3.1, highlighting which part of the construction is tackled in the respective chapter.
In this way, we want to help the reader intuit at a glance the focus of the thesis at the point
of reading.
We can now continue onward to the first research chapter, tackling subversion-resilient
auditable obfuscation.

41

4 Subversion-Resilient Auditable Obfuscation

ASA

StS

MO AO iO

PRG

PPRF

IND-CCA-EncAm

Auditable obfuscation is a novel concept introduced by Banerjee and Galbraith in [BG23].
The general idea behind the primitive is to validate that any given obfuscation does not dif-
fer from the underlying program. Stated differently, the primitive brings any generated
obfuscation under audit, only accepting obfuscations that do not change the underlying
program up to some correctness ϕi. Even if an individual obfuscator were to act mali-
ciously, as long as the underlying obfuscation scheme is auditable, then this malicious
behavior is either detected, or, with overwhelming probability, not exploitable.
As already stated in the technical overview, the setting thus closely resembles that of
subversion-resilience. Subversion-resilient algorithms are described as working as in-
tended even when subject to an algorithm substitution attack. Any existing subversion
must either be detectable by a watchdog or, with overwhelming probability, not reliable.
In this chapter, we focus on this resemblance and show that, beyond the similarity of the
settings, auditable obfuscation is just a subversion-resilient algorithm on the class of ob-
fuscation schemes. To prove this equivalence, we closely follow the results from Berndt
and Liśkiewicz in [BL17] and [Ber18].
Their work showed that algorithm substitution attacks and stegosystems describe the
same setting. They accomplished this by proving that a stegosystem StS on a specific
channel CSES, described by a symmetric encryption scheme SES, can be leveraged to cre-
ate an algorithm substitution attack ASA against the same SES and vice versa.
In this chapter, we will show that we can create a similar channel CO, described by an hon-
est obfuscation schemeO, and use it analogously. We will prove that a stegosystem StS on
this CO can be used to create a malicious obfuscation schemeMO over O and, similarly,

43

4 Subversion-Resilient Auditable Obfuscation

that we can leverage a malicious obfuscation schemeMO over O to create a stegosystem
StS on CO. By combining these two proofs, we will achieve the proof of equivalence men-
tioned above.
Firstly, we shall describe how to build channel CO.

4.1 Obfuscation Schemes as a Steganographic Channel

The channel CO should describe a steganographic channel that is produced over a series
of obfuscations. However, as our channel is described over O, the channel must not only
contain O’s outputs, but also its inputs. As such, CO must contain an obfuscation key ok,
a series of poly(λ) implementations I and, finally, a series of poly(λ) obfuscations Ĩ . Gen-
erally, we will define CO in such a way that it contains exactly one obfuscation for each
provided implementation, providing a one to one mapping between implementations Ii

and obfuscations Ĩi.
Now that we know what messages CO should contain, we need to discuss their order
within the channel. The first ordering one might think of would be to fix the first mes-
sage to the obfuscation key ok and then alternate between implementations Ii and their
obfuscations Ĩi. Formally, a complete history with ℓ = poly(λ) obfuscation calls for such a
channel would thus be

hCO(ℓ)(1, 2ℓ+ 1) = ok || I1 || Ĩ1 || I2 || Ĩ2 || . . . || Iℓ || Ĩℓ .

However, such a channel causes a problem for our analysis. As we want to use CO to
map between a stegosystem StS and malicious obfuscation scheme MO, we only want
the adversary in the steganographic setting to encode their messages into obfuscations.
Otherwise, the adversary could encode messages only in plain implementations, which
the adversary in the malicious obfuscation setting is never able to do.
Berndt and Liśkiewicz also ran into this exact problem when building their channel for
ASA in [BL17]. They fixed this problem by splitting the channel into three separate states,
an empty channel h = ∅, a channel containing a key k and some plaintexts msg1 to msgi as
well as a channel that contains a key k, all ℓ plaintexts msg1 to msgℓ and some ciphertexts c1
to ci. For the final state, they further fixed the distribution of the ciphertexts in dependence
on the provided key k and messages msg1 to msgℓ. This allows them to then force the
encoder in StS to only embed their sm in the ciphertexts.
We will now formally declare a similar channel description for CO.

44

4.2 Malicious Obfuscation against Obfuscation as Steganography

Let Oϕi
be an obfuscator sufficing correctness ϕi for the family of implementations I =

{Iλ}with Iλ ⊆ Pλ, wherePλ is the set of all programs with parameterized inputs in λ, that
takes some implementation I ∈ I as input and produces an output Ĩ = O.Obf(I, ok). Then
let MOϕi

be the malicious obfuscator scheme defined by O. For both schemes, we will
omit ϕi as long as it is not necessary for the argument being made. Further, let ℓ = poly(λ).
ForO, we define the channel CO(ℓ), with which we want to capture the possible actions of
MO. AsMO might be a piece of modular software used on programs from a third party,
we can fix the instance of O over whichMO is defined as well as the programs used. For
this, we enforce that the first ℓ+1 messages sent via CO(ℓ) must consist of the obfuscation
key as well as the programs to be obfuscated.
As such:

hCO(ℓ)(1, ℓ+ 1) = msg1 || msg2 || . . . || msgℓ+1 = ok || I1 || . . . || Iℓ

where ok←$ O.Gen(·) and Ii ←$ I.
After this fixing stage, the channel then consists of the obfuscations that may contain
malicious embeddings. However, as the obfuscations must be indistinguishable to non-
malicious obfuscations, we fix the distribution of obfuscations as follows:

hCO(ℓ)(ℓ+ 2, 2ℓ+ 1) = Ĩ1 || Ĩ2 || . . . || Ĩℓ
∼ O.Obf(I1, ok) || O.Obf(I2, ok) || . . . || O.Obf(Iℓ, ok)

Given a specific implementation Ii, the output Ĩi
′ ← MO.Emb(aux, Ii, ok) is defined

as looking like an honest obfuscation Ĩi ← O.Obf(Ii, ok) while breaking the correctness
class ϕi of O. We denote the property of looking similar by Ĩi

′ ∼ Ĩi and the difference
in correctness by Ĩi

′ ̸∼ϕi
Ĩi. While we do not use this notation directly, it represents the

underlying principle ofMO.Trig(aux, Ĩ) working as defined.
The entire channel CO is now defined by the histories and their respective distributions
above. Generally, we will say a history h follows the distribution of CO if each respective
position in h follows that position’s distribution.
With this, CO has been formally defined. We continue our proof in the next section, show-
ing that malicious obfuscation over an honest obfuscation scheme equals steganography.

4.2 Malicious Obfuscation against Obfuscation as Steganography

With C = CO established, we now have to prove that one can translate between a malicious
obfuscation scheme MO and stegosystem StS using C. We do so in three distinct steps:
Firstly, we prove that a given malicious obfuscation scheme over O implies a stegosys-

45

4 Subversion-Resilient Auditable Obfuscation

tem StS on CO of equal reliability. Secondly, we show the reverse, meaning that a given
stegosystem StS on CO implies a malicious obfuscation scheme MO over O. Lastly, we
combine the results of the first two steps to prove that an auditable obfuscation scheme
inherently is subversion-resilient.
The proofs for the first two parts will follow a similar structure. First, we provide a map-
ping between the respective PPTMs describing the primitives. We will then show that the
insecurity of the original scheme upperbounds the insecurity of the newly created scheme
while keeping the same unreliability. If we then assume the original scheme to be func-
tional, it directly follows that the second scheme must also be functional as well.
We start by showing that malicious obfuscation implies steganography.

4.2.1 Malicious Obfuscation implies Steganography

As discussed above, the first step in showing that auditable obfuscation schemes are
subversion-resilient will be presented in this subsection. We do so by showing that a func-
tional malicious obfuscation scheme implies steganography. We formalize this mapping
in the following theorem, proving it afterwards using the strategy outlined prior.

Theorem 4.1.
Assume Oϕi

to be an obfuscation scheme with correctness ϕi and letMOϕi
be a malicious ob-

fuscation scheme over O. Further, let ℓ = poly(λ). Then there exists a stegosystem StS on the
channel C := CO(ℓ) determined by O, such that

InSecsts-cha-σ
StS,C (λ) ≤ InSecmal-obf

MO,O (λ) and

UnRelStS,C(λ) = UnRelMO,O(λ) .

Proof. Let O be an obfuscation scheme over the family of implementations I = {Iλ} with
Iλ ⊆ Pλ and MO a malicious obfuscation scheme defined over O parameterized in λ.
Further, let ℓ = poly(λ) and let us assume that we can sample elements from I.
We will now construct the stegosystem StS on CO fromMO. For this, we need to show
how to construct the three PPTMs defining StS; StS.Gen, StS.Enc and StS.Dec.

StS.Gen
We first look at the generator function StS.Gen, which can simply be built by simulating
the MO generator function MO.Gen. We interpret its output aux as the message key
mk for the stegosystem.

46

4.2 Malicious Obfuscation against Obfuscation as Steganography

StS.Enc
For StS.Enc, we need to show that we can create a valid message history for CO while
also encoding some message sm. We assume that sm ∈ {0, 1}ℓ.
We will construct a valid history h for CO iteratively based on the history of messages
sent prior:

– If h = ∅, then CO forces a key ok ∼ O.Gen(·) as its next message msg1. The encryp-
tion function can simply sample such a random key ok by running the generation
algorithm of O and outputting it.

– If h = ok || I1 || I2 || . . . || Is with 0 ≤ s ≤ ℓ − 1, then channel CO forces an
implementation Ii ←$ I as its next message. As the family of implementations I
is public, StS.Enc can simply sample such a random implementation Ii as the next
message.

– If h = ok || I1 || I2 || . . . || Iℓ || Ĩ1 || . . . || Ĩs with 0 ≤ s ≤ ℓ − 1, then CO forces an
obfuscation Ĩs+1 = O.Obf(Is+1, ok) as its next message. By assumption, we know
thatMO is a functioning malicious obfuscator on O. As such, we know that

MO.Emb(aux, Ii, ok) ∼ O.Obf(Ii, ok) .

StS.Enc will now use this similarity to encode sm. In the current step s+1, sm[s+1]

is encoded by either simulating MO.Emb to send a 1 or O.Obf to send a 0. This
means StS.Enc generates the next message as

Ĩs+1 =

MO.Emb(mk, Is+1, ok) , if sm[s+ 1] = 1

O.Obf(Is+1, ok) , if sm[s+ 1] = 0 .

The resulting Ĩs+1 is then output as the next message.

Following these rules results in a valid channel history, while also encoding sm.

StS.Dec
Lastly, we need to construct StS.Dec that receives the message stream output

(msg1,msg2, . . . ,msg2ℓ+1)

from StS.Enc and tries to reconstruct sm. For this, we can use the trigger of the malicious
obfuscator, MO.Trig. When the trigger functionality is called as MO.Trig(aux, Ĩ), the
function tries to execute an embedding in the provided obfuscation Ĩ . If the provided
obfuscation contains a malicious embedding,MO.Trig outputs a 1, otherwise a 0. If we
provide more than one obfuscation, we assume thatMO.Trig is sequentially run on all

47

4 Subversion-Resilient Auditable Obfuscation

obfuscations.
As only the messages (msgℓ+2, . . . ,msg2ℓ+1) are allowed to contain malicious embed-
dings, StS.Dec can now use the output from MO.Trig(mk,msgℓ+2, . . . ,msg2ℓ+1) as its
recovery for sm∗.

With this, we have shown that all three PPTMs that define StS can be constructed from
MO. It remains to show that the unreliability and insecurity of the constructed stegosys-
tem StS suffice the theorem. We first analyze the security of the system by showing that a
warden can be used on StS to create an auditor againstMO.
Let W be a warden against StS on C = CO with maximal advantage, meaning

Advsts−cha−σW,StS,C (λ) = InSecsts−cha−σStS,C (λ) .

We will construct an auditor Au against the malicious obfuscation schemeMO with the
same advantage as W, meaning that

Advmal−obf
Au,MO,O(λ) = Advsts−cha−σW,StS,C (λ) .

This will prove that
InSecsts−cha−σStS,C (λ) ≤ InSecmal−obf

MO,O (λ) .

We construct the auditor Au as follows: When Au is run on input 1λ, they simulate the
warden W. As Au acts as the game to W, they need to answer all of the warden’s oracle
queries. W is given an encryption oracle Enc, a channel oracle C and a challenge oracle
CH. We need to prove that we can perfectly simulate all three of them.

W.Enc
Let us first look at the encryption oracle. Whenever W makes a query to W.Enc(sm, h, σ),
Au answers depending on the current state of h:

– If h = ∅, then Au returns ok←$ O.Gen(1λ).

– If h = ok || I1 || I2 || . . . || Is with 0 ≤ s ≤ ℓ− 1, a random implementation Ii ←$ I
is chosen and output by Au.

– If h = ok || I1 || I2 || . . . || Iℓ || Ĩ1 || . . . || Ĩs with 0 ≤ s ≤ ℓ − 1, Au looks at
sm[s + 1] and answers depending on its bit value. If the bit is 0, Au calculates
O.Obf(Is+1, ok) and returns it. Otherwise, the auditor calls its own embedding
oracle Au.Emb(Is+1, ok, σ) and returns its output.

This constitutes a perfect simulation of the encryption oracle, as the oracle simulation
exactly matches the defined behavior of our prior construction.

48

4.2 Malicious Obfuscation against Obfuscation as Steganography

W.C
Next we look at the channel oracle. Whenever W makes a query to C with a provided
history h, Au answers, again depending on the state of h:

– If h = ∅, then Au generates a key ok via the obfuscator’s generation function
O.Gen(1λ) and returns it.

– If h = ok || I1 || I2 || . . . || Is with 0 ≤ s ≤ ℓ − 1, then Au samples Ii ←$ I and
outputs it.

– If h = ok || I1 || I2 || . . . || Iℓ || Ĩ1 || . . . || Ĩs with 0 ≤ s ≤ ℓ − 1, Au evaluates
Ĩs+1 ← O.Obf(Is+1, ok) and returns Ĩs+1.

As the auditor’s simulation exactly follows the description of the channel distribution
C from Section 4.1, this constitutes a perfect simulation.

W.CH
Lastly, we handle the challenge oracle. Whenever warden W makes a query to its chal-
lenge oracle with CH(sm, h, σ), Au simulates the output as follows:

– If h = ∅, then Au simply samples ok←$ O.Gen(1λ) and returns it.

– If h = ok || I1 || I2 || . . . || Is with 0 ≤ s ≤ ℓ− 1, Au chooses a random implementa-
tion Ii ←$ I and returns it.

– If h = ok || I1 || I2 || . . . || Iℓ || Ĩ1 || . . . || Ĩs with 0 ≤ s ≤ ℓ − 1, then Au queries its
own challenge oracle Au.CH(sm, ok, Is+1, σ) and passes the result onto the channel.

If the auditor’s challenge is a non-malicious obfuscation, meaning Au.CH is identically
distributed toO.Obf, then the simulated warden challenge oracle is similarly identically
distributed to C. Thus, .

Pr[MO-CEA-Dist-σAu,MO,O(λ)⟨b = 0⟩ = 1] = Pr[StS-CHA-Dist-σW,StS,C(λ)⟨b = 0⟩ = 1] .

Correspondingly, if Au’s challenge is a malicious obfuscation, meaning Au.CH returns
MO.Emb, then Ws challenge oracle is identically distributed to its encryption oracle
StS.Enc. Thus, .

Pr[MO-CEA-Dist-σAu,MO,O(λ)⟨b = 1⟩ = 1] = Pr[StS-CHA-Dist-σW,StS,C(λ)⟨b = 1⟩ = 1] .

The oracle thus is perfectly simulated, meaning that Au can always win when W wins.
This further implies that the probabilities of success are equal in both the honest and
malicious case. We can now insert this into the definition of the respective game advan-

49

4 Subversion-Resilient Auditable Obfuscation

tages to show that

Advmal−obf
Au,MO,O(λ) = |Pr[MO-CEA-Dist-σAu,MO,O(λ) = 1]− 0.5|

= |Pr[SS-CHA-Dist-σW,StS,C(λ) = 1]− 0.5|

= Advsts−cha−σW,StS,C (λ) .

With this, we have demonstrated that we satisfy the stated security requirement of the
system, leaving the reliability of the stegosystem left to analyze.

StS.Dec works by testing position-wise whether the obfuscated implementation is mali-
cious or not. For a 0 in our message, we must not detect a non-malicious obfuscation as
malicious. For the extractor, this probability should be equal to the success probability of
MO. For a 1 in our message, we must detect a malicious obfuscation as malicious. For
the extractor, this probability should, again, be equal toMO’s probability of success.
The reliability of the entire StS scheme thus is equal to the success probability ofMO, or
inversely

UnRelStS,C(λ) = UnRelMO,O(λ) . □

We managed to show that a functioning malicious obfuscation scheme MO over O im-
plies the existence of a functional stegosystem StS on CO. We move on to the second step,
showing that a functional stegosystem StS on CO also implies the existence of a function-
ing malicious obfuscation schemeMO over O.

4.2.2 Steganography implies Malicious Obfuscation

Similarly to the last subsection, we want to prove that steganography on a certain type of
channel implies malicious obfuscation. For this, we show that a functional stegosystem
StS on CO can be leveraged to construct a malicious obfsucation scheme MO over O.
We formalize the statement in the following theorem and prove it afterwards using the
outlined strategy.

Theorem 4.2.
Assume Oϕi

to be an obfuscation scheme with correctness ϕi and let ℓ = poly(λ). Further, let
StS be a stegosystem on the channel C := CO(ℓ) determined by O. Then, there exists a malicious
obfuscation schemeMOϕi

over O such that

InSecmal-obf
MO,O (λ) ≤ InSecsts-cha-σ

StS,C (λ) and

UnRelMO,O(λ) = UnRelStS,C(λ) .

50

4.2 Malicious Obfuscation against Obfuscation as Steganography

Proof. Let O be an obfuscation scheme over the family of implementations I = {Iλ} with
Iλ ⊆ Pλ and let StS be a stegosystem on the channel C determined by O.
Further let ℓ = poly(λ).
We will now construct the malicious obfuscation schemeMO over O from StS. For this,
we need to show how to construct the three PPTMs defining MO: MO.Gen, MO.Emb

andMO.Trig.

MO.Gen
The generator algorithm can be constructed by simply simulating StS.Gen. We interpret
the resulting mk as our auxiliary information aux.

MO.Emb
The embedding function is provided some auxiliary information aux, an implementa-
tion I and an obfuscation key ok ∈ Supp(O.Gen(λ)) and produces an output Ĩ ′, which is
an obfuscation of I with some malicious embedding. When trying to recreateMO.Emb

with StS, we need to keep in mind that all steganographic functionality of StS is only
defined over C. As such, we need to create a valid history, such that StS.Enc can encode
a steganographic message sm.
StS.Enc is allowed to encode sm after the key to the underlying scheme O and all base-
implementations I1, . . . , Iℓ are fixed. To buildMO.Emb, we thus need StS to run on a
history h(ok, I) = ok∥ I ∥ I ∥ . . .∥ I that consists of the obfuscation key ok and ℓ copies
of implementation I . The algorithm StS.Enc then is allowed to execute and encode sm

into the obfuscations Ĩ1, . . . , Ĩℓ that occupy the messages msgℓ+2 to msg2ℓ+1 on C. We
can now return this series of obfuscations as output ofMO.Emb(aux, I, ok).

MO.Trig
For a given input series of obfuscations Ĩ1, . . . , Ĩℓ, we can simply run StS.Dec on it to
produce a recovered message sm′. If it holds that sm′ = sm, we return 1, else 0. With
this, we have shown that all three PPTMs defining MO can be constructed from a
stegosystem StS.

We have yet to show that the unreliability and insecurity of the constructed malicious
obfuscation schemeMO suffice the theorem. We first analyze the security of the scheme.
Let Au be an auditor againstMO on O with maximal advantage, meaning

Advmal−obf
Au,MO,O(λ) = InSecmal−obf

MO,O (λ) .

We now construct a warden W against the stegosystem StS on C = CO with the same

51

4 Subversion-Resilient Auditable Obfuscation

advantage as Au, meaning that

Advsts−cha−σW,StS,C (λ) = Advmal−obf
Au,MO,O(λ) .

This proves that .

InSecmal−obf
MO,O (λ) ≤ InSecsts−cha−σStS,C (λ) .

We construct the warden W as follows: When W is run on input 1λ, they simulate the
auditor Au. As W acts as the game to Au, they need to answer all of the auditor’s oracle
queries. Au is given an embedding oracle Emb and a challenge oracle CH. We need to
prove that we can perfectly simulate both.

Au.Emb
Whenever the auditor Au makes a query to the embedding oracle Au.Emb(I, ok, σ), war-
den W acts as follows: First, W builds the history h(ok, I) = ok∥ I ∥ . . .∥ I . Afterwards,
they choose an arbitrary value sm ∈ {0, 1}ℓ. With this, W then queries their own encryp-
tion oracle W.Enc(sm, h(ok, I), σ). The result is output to answer Au’s oracle request.
By design of theMO scheme above, this simulates the oracle’s expected outputs per-
fectly.

Au.CH
Whenever Au makes a query to their channel oracle with CH(I, ok, σ), W simulates
the result as follows: First, W builds the history h(ok, I) analogously to the procedure
above and chooses an arbitrary message sm. Then, it queries its own challenge oracle
W.CH(sm, h(ok, I), σ) and passes its output to Au.
If the warden’s challenge is a channel history with no encoded steganographic mes-
sage sm, meaning that W.CH is identically distributed to C, the challenge oracle of the
simulated auditor is similarly identically distributed to the output of O.Obf. Thus,

Pr[StS-CHA-Dist-σW,StS,C(λ)⟨b = 0⟩ = 1] = Pr[MO-CEA-Dist-σAu,MO,O(λ)⟨b = 0⟩ = 1] .

Correspondingly, if the warden’s challenge contains a steganographic message en-
crypted in the channel history, meaning that W.CH outputs the result of StS.Enc, then
Au’s challenge oracle is identically distributed toMO.Emb. Thus,

Pr[StS-CHA-Dist-σW,StS,C(λ)⟨b = 1⟩ = 1] = Pr[MO-CEA-Dist-σAu,MO,O(λ)⟨b = 1⟩ = 1] .

Using this result, we can gather that the oracle Au.CH is perfectly simulated, meaning
that W can always win when Au wins, proving that the success probabilities of both

52

4.2 Malicious Obfuscation against Obfuscation as Steganography

games are equivalent. We can now insert this into the respective game advantages,
yielding

Advss−cha−σW,StS,C (λ) = |Pr[SS-CHA-Dist-σW,StS,C(λ) = 1]− 0.5|

= |Pr[MO-CEA-Dist-σAu,MO,O(λ) = 1]− 0.5|

= Advmal−obf
Au,MO,O(λ) .

This proves that we satisfy the stated security requirement of the system. We now have
to prove that we also fulfill the reliability requirement.

However, as the output ofMO.Trig just calls StS.Dec and decides its return value based
on the result of the decryption, it must hold thatMO.Trig functions exactly when StS.Dec

works correctly. Thus, it follows that

UnRelMO,O(λ) = UnRelStS,C(λ) . □

We also managed to show that a functioning stegosystem StS on CO implies the existence
of a functional malicious obfuscator MO over O. However, we only managed to do so
under the assumption that a series of obfuscations is a valid output for an obfuscator O.
While it certainly is possible, that better encodings for sm would fix this assumption, we
argue that the assumption is sound. For example, each obfuscation Ĩi for an implementa-
tion I could correspond to an obfuscation for a distinct operating system. In this case, O
would provide an obfuscation for (up to) poly(λ) operating systems at once, which a user
would arguably consider a net positive instead of suspicious.
Finally, we need to combine the result of this subsection with the result of Subsection 4.2.1.

4.2.3 Auditable Obfuscation is Subversion-Resilient

We established that we can respectively translate between a functional malicious ob-
fuscator MO and a stegosystem StS using a channel CO that follows our definition in
Section 4.1. This was done to try and prove that auditable obfuscation, the inverse prob-
lem to malicious obfuscation, inherently is subversion-resilient.
As the inverse problem toMO, we defined AO as describing any malicious obfuscation
only being able to work with some negligible advantage, resulting in its reliability being
negligible. As we showed that we can upperbound the reliability of any stegosystem
StS with the reliability of a malicious obfuscator MO, this implies that there can be no
effective stegosystem over AO.
We shall now combine our results with the prior research of Berndt and Liśkiewicz
in [BL17] to formally prove the following statement:

53

4 Subversion-Resilient Auditable Obfuscation

Theorem 4.3 (Subversion-Resilient Auditable Obfuscation).
Any Auditable Obfuscation scheme AO inherently is subversion-resilient.

Proof. We proved both Theorem 4.1 and Theorem 4.2 in Section 4.2. The two theorems re-
spectively show that we can instantiate malicious obfuscationMO to create a stegosystem
StS and vice versa. Formally it thus holds that

MO ↔ StS .

As AO implies the absence of a functional malicious obfuscation scheme, it also implies
the absence of a reliable stegosystem. We combine this result with the findings of Berndt
and Liśkiewicz in [BL17, Ber18] showing that algorithm substitution attacks are equivalent
to stegosystems as well. Formally, it thus holds that

MO ↔ StS↔ ASA .

AO thus also implies the absence of a functional algorithm substitution attack. By the
same argument, the inverse implication holds true as well. AO and subversion-resilience
thus describe the same concept in different settings. □

With this, we managed to achieve our goal for this chapter, showing that auditable ob-
fuscation is subversion-resilient. While this proof alone constitutes an interesting result,
we also want to try providing a first application of it. For this, we will use the follow-
ing chapters to show that subversion-resilient auditable obfuscation allows us to achieve
subversion-resilient IND-CCA-secure encryption. This process begins in the next chapter
by showing how to create subversion-resilient indistinguishability obfuscation from AO.

54

5 From Auditable Obfuscation to Subversion-Resilient
Indistinguishability Obfuscation

ASA

StS

MO AO iO

PRG

PPRF

IND-CCA-EncAm

In the prior chapter, we analyzed auditable obfuscation (AO) and how it relates to
subversion-resilience. We showed that any valid AO scheme must inherently suffice
the definition of subversion-resilience due to its inverse problem, malicious obfuscation
(MO) being equivalent to a steganographic attack and thereby also equivalent to algo-
rithm substitution attacks (ASA). These and their countermeasure of subversion-resilience
have become a hot topic of research in recent years, largely due to some real world exam-
ples substantiating them as a realistic attack scenario [BPR14, DFP15].
The majority of ASA-related research focuses on cryptographic primitives, as they con-
stitute a prime target. However, most implementations of cryptographic primitives are
not inherently primed against algorithm substitution attacks due to their complexity.
As such, plenty of research has been focused on building subversion-resilient construc-
tions from the few primitives providing inherent subversion-resilience, such as unique
ciphertext encryption [BPR14, DFP15], unique signature schemes [AMV20], and weak-
PRFs [BBD+23, BBC24].
With auditable obfuscation, we have extended this small subsection of cryptographic
primitives by another entry. However, as AO still is a comparatively novel concept, it has
not undergone any rigorous scientific analysis, meaning its relation to other cryptographic
primitives being mostly unknown, limiting its current use. We therefore aim to relate AO
to a more well-understood cryptographic primitive.
We shall do so by showing that an auditable obfuscation scheme directly implies the exis-
tence of an indistinguishability obfuscation scheme. Furthermore, we will show that this

55

5 From Auditable Obfuscation to Subversion-Resilient Indistinguishability Obfuscation

construction even is subversion-resilient. Indistinguishability obfuscation (iO) has been
the focus of research for a while [BGI+01] and its relation to other cryptographic primi-
tives is well understood, allowing a subversion-resilient construction of it to be leveraged
in a multitude of ways. We will show one such application in Chapter 7, where we lever-
age this chapter’s results in constructing the first subversion-resilient IND-CCA-secure
encryption. In Section 8.2, we will further provide a short discussion on other possible
utilizations.

5.1 Auditable Obfuscation implies Indistinguishability Obfuscation

Auditable obfuscation describes a verifiable, sound obfuscation scheme on some family of
programs P and its implementations I. In general, P contains a multitude of programs,
but the set could be as small as a single program. The resulting obfuscation should then in-
distinguishably hide which implementation was used while still providing the user with
enough information to audit the scheme, verifying that some specified level of correct-
ness, ϕi, is upheld.
Indistinguishability obfuscation, on the other hand, describes an obfuscation scheme de-
fined for a single program P and its implementations IP . Its resulting obfuscation only
hides which implementation was originally entered into the scheme.
When comparing the two descriptions, one can come to the conclusion that auditable
obfuscation describes a more generalized scheme than indistinguishability obfuscation,
simply extending its input realm to cases of |P| > 1 and adding auditability. Vice versa,
indistinguishability obfuscation can be described as an auditable obfuscation scheme with
a reduced input realm |P| = 1 that additionally drops the soundness and verifiability
properties.
As we can describe iO by weakening or removing properties of AO, we seemingly can
instantiate an iO scheme from an AO scheme. We do so in the following theorem:

Theorem 5.1.
Let Pλ be the set of all programs with inputs parameterized in λ ∈ N.
If O is an auditable obfuscation scheme of correctness ϕi defined over a family of polynomial-size
program implementations I = {Iλ} with Iλ ⊆ Pλ, then O also is an indistinguishability obfus-
cation scheme of correctness ϕi defined over a family of polynomial-size program implementations
I ′ = {P} with P ∈ I.

56

5.1 Auditable Obfuscation implies Indistinguishability Obfuscation

Proof. Let O be a tuple of PPTMs sufficing the definition of an auditable obfuscation
scheme of correctness ϕi, defined over a family of polynomial-size program implemen-
tations I = {Iλ}with Iλ ⊆ Pλ.
We will now constructively show that for any choice of P ∈ I,O also is an indistinguisha-
bility obfuscation scheme over the family of polynomial-size program implementations
I ′ = {P}. To achieve this, we show how to construct I ′ from I, why I ′ must contain
all poly-sized implementations I of P , and that O possesses all properties of an indistin-
guishability obfuscator on I ′.
Firstly, we construct a subset I ′ from the family I that consists of all possible polynomial-
size implementations for some program P ∈ Iλ of the original family. We formally con-
struct I ′ ⊆ I as follows:

1. Choose any I ∈ I, add it to I ′ and define P as the program implemented by I .

2. Test every program I ′ ∈ I on whether it shows the same input-output behavior,
meaning that its output I ′(x) is equivalent to the output I(x) for all possible inputs x.
The test condition can formally be written as

∀x ∈ {0, 1}λ(n) : I ′(x) ≡ I(x) .

Add all I ′ that pass the test to I ′.

I ′ thus is a valid family of polynomial-sized implementations for the same program P ,
as each I ∈ I ′ has identical input-output behavior. Furthermore, I ′ must be exhaustive,
as every poly-sized implementation of P must have been included in I. Otherwise, we
could construct the following contradiction:
Given I ′, assume there is a polynomial-sized implementation Ĩ of P not contained in I ′.
This implies Ĩ was not contained in I, as it would otherwise have been added to I ′ during
step 2 of the prior construction. As I defines the domain of O and its VBB indistinguisha-
bility is only guaranteed for implementations from the obfuscator’s domain, this means
that O can not obfuscate Ĩ .
We now choose any I ∈ I ′ with I ̸= Ĩ . As both implementations are poly-sized, there
exists a transformation T of at most poly(λ) steps from Ĩ to I . To obfuscate Ĩ ,O could then
simply execute T (Ĩ) and obfuscate the resulting I afterwards, resulting in the mentioned
contradiction.
We have yet to show thatO qualifies as an indistinguishability obfuscation scheme of cor-
rectness ϕi on I ′, fulfilling the correctness, polynomial slowdown and indistinguishability
properties of an iO scheme. We do so in the following steps by showing that the auditable
obfuscation properties of O can be translated to the iO properties mentioned prior.

57

5 From Auditable Obfuscation to Subversion-Resilient Indistinguishability Obfuscation

Correctness
We differentiate between the three correctness properties ϕ1, ϕ2 and ϕ3 as specified in
the definitions for obfuscation schemes in Section 2.3. We show that the definition for
each property directly translates from auditable obfuscation to indistinguishability ob-
fuscation.

ϕ1 : (perfect correctness)
As O suffices the definition of an auditable obfuscation scheme of correctness ϕ1,
we know that

∀I ∈ I, ∀x ∈ {0, 1}n(λ) : Pr
O

[
Ĩ(x) = I(x) | Ĩ ← O.Obf(I)

]
= 1 .

As I ′ is a subset of I, it must also hold that

∀I ∈ I ′, ∀x ∈ {0, 1}n(λ) : Pr
O

[
Ĩ(x) = I(x) | Ĩ ← O.Obf(I)

]
= 1 ,

which exactly is the ϕ1 correctness of an indistinguishability obfuscation scheme
defined over I ′.

ϕ2 : (functionality preserving)
As O fulfills the definition of an auditable obfuscation scheme of correctness ϕ2,
we know that

∀I ∈ I : Pr
O

[
∀x ∈ {0, 1}n(λ) : Ĩ(x) = I(x) | Ĩ ← O.Obf(I)

]
> 1− negl(λ) .

As I ′ is a subset of I, it must also hold that

∀I ∈ I ′ : Pr
O

[
∀x ∈ {0, 1}n(λ) : Ĩ(x) = I(x) | Ĩ ← O.Obf(I)

]
> 1− negl(λ) ,

which precisely is the ϕ2 correctness of an indistinguishability obfuscation scheme
defined over I ′.

ϕ3 : (weak functionality preserving)
As O fulfills the definition of an auditable obfuscation scheme of correctness ϕ3,
we know that

∀I ∈ I, ∀x ∈ {0, 1}n(λ) : Pr
O

[
Ĩ(x) = I(x) | Ĩ ← O.Obf(I)

]
> 1− negl(λ) .

As I ′ is a subset of I, it must also hold that

∀I ∈ I ′, ∀x ∈ {0, 1}n(λ) : Pr
O

[
Ĩ(x) = I(x) | Ĩ ← O.Obf(I)

]
> 1− negl(λ) ,

58

5.1 Auditable Obfuscation implies Indistinguishability Obfuscation

which exactly is the ϕ3 correctness of an indistinguishability obfuscation scheme
defined over I ′.

The Obfuscator O of correctness ϕi thus possesses the correctness property ϕi of an
indistinguishability obfuscation scheme in all cases.

Polynomial Slowdown
From the definition of an auditable obfuscation scheme, we know that, due to its own
polynomial slowdown property, the running time ofO.Obf for an implementation I ∈ I
must be bounded by a polynomial q with q(|I|).
As I ′ ⊆ I, it thus also holds that for all I ∈ I ′, the runtime of O.Obf must be bounded
by a polynomial q with q(|I|) such that for all relevant implementations, O suffices the
polynomial slowdown property of an indistinguishability obfuscation scheme defined
over I ′.

Indistinguishability
We assumeO to be an auditable obfuscation scheme defined over I. ObfuscatorO thus
fulfills its VBB indistinguishability property as given in Section 2.3, meaning

∀I0, I1 ∈ I, ∀A ∃S :∣∣∣∣|PrO [A(O.Obf(I0)) = 1]− Pr
O
[A(O.Obf(I1)) = 1]| − |Pr

S
[SI0(1λ) = 1]− Pr

S
[SI1(1λ) = 1]|

∣∣∣∣
≤ negl(λ) .

As I ′ ⊆ I, we can deduce that

∀I0, I1 ∈ I ′,∀A ∃S :∣∣∣∣|PrO [A(O.Obf(I0)) = 1]− Pr
O
[A(O.Obf(I1)) = 1]| − |Pr

S
[SI0(1λ) = 1]− Pr

S
[SI1(1λ) = 1]|

∣∣∣∣
≤ negl(λ) .

Furthermore, as both I0 and I1 now implement the same program P defining I ′ we
know that

∀ x ∈ {0, 1}n(λ) : I0(x) ≡ I1(x) ,

from which we can further deduce that

∀I ∈ I ′ : Pr
S

[
SI(1λ) = 1

]
=

1

|I ′|
,

as the input-output behavior is identical for all implementations. Simulators, by defini-

59

5 From Auditable Obfuscation to Subversion-Resilient Indistinguishability Obfuscation

tion, only observe the input-output behavior via their assigned oracle. Based on these
two facts, there can be no simulator achieving a better result than uniformly guess-
ing which implementation was used, as such a simulator would imply differing input-
output behavior being witnessed.
In the VBB indistinguishability term we fix the implementations before the simulators.
We can then assume that any simulator in consideration is aware of this fixing and only
ever decides between the choices I0 and I1. We can thus can restate our deduction with
added quantifiers as

∀I0, I1 ∈ I ′,∀S : Pr
S

[
SI(1λ) = 1

∣∣I ← {I0, I1}] =
1

|{I0, I1}|
=

1

2
.

For any choice between two implementations from I ′, the probability of any simulator
choosing correctly thus is 1

2 .
In the VBB indistinguishability, the simulator is only existentially quantified. As we
quantified over all simulators in the equation above, we showed a strictly stronger
property, allowing us to use it without adding constraints. Inserting this result into
the VBB indistinguishability term defined over I ′ yields

∀I0, I1 ∈ I ′,∀A∃S :

∣∣∣∣|PrO [A(O.Obf(I0)) = 1]− Pr
O
[A(O.Obf(I1)) = 1]| −

∣∣∣∣12 − 1

2

∣∣∣∣∣∣∣∣
≤ negl(λ) .

Simplifying results in

∀I0, I1 ∈ I ′, ∀A :

∣∣∣∣PrO [A(O.Obf(I0)) = 1]− Pr
O
[A(O.Obf(I1)) = 1]

∣∣∣∣ ≤ negl(λ) .

As this term is equivalent to the indistinguishability property of an indistinguishability
obfuscation scheme defined over I ′, the obfuscator O fulfills the indistinguishability
property.

We have now proven that O possesses all necessary properties of an indistinguishability
obfuscation scheme of correctness ϕi defined over I ′ = {P}. As our choice of P was
arbitrary, this must hold true for any P ∈ I. □

From our proof it then follows that auditable obfuscation implies indistinguishability ob-
fuscation. However, we have not yet established that the inherent subversion-resilience
of AO is transferred. We investigate this in the following section.
Similarly, we have not yet discussed the inverse case of constructing anyAO scheme from
some iO scheme. While the general case with |P| > 1 doesn’t look promising, as indistin-

60

5.2 Subversion-Resilient Indistinguishability Obfuscation

guishability obfuscation is defined over exactly one program class with no security guar-
antees when its domain is expanded, we can not inherently dismiss the case for |P| = 1.
Analyzing this special case, however, is not as straightforward as it may seem. As such,
we do not investigate this case any further and discuss some of the difficulties in dealing
with it in Appendix A.

5.2 Subversion-Resilient Indistinguishability Obfuscation

In the last section, we showed that an existing auditable obfuscation scheme on some I
implies an existing indistinguishability obfuscation scheme for any program P as long as
P ∈ I. We have done so by proving that AO fulfills all properties of an iO scheme when
run on the extracted set of all implementations for a program P ∈ I.
As we did not modify or adapt our AO scheme beyond limiting its input realm, it seems
trivially correct that the resulting iO scheme inherits any additional properties the AO
scheme possessed. However, it might be that, in limiting the input realm, we removed
a prerequisite for some of these additional properties. For any property inheritance be-
yond what was shown in the proof of Theorem 5.1, we should thus still rigorously prove,
whether the property transfers correctly.
Most urgently, we are want to know whether we transferred the subversion-resilience of
the AO scheme to the iO scheme. By definition, we know that the subversion-resilience
of AO stems from its verifiability and soundness properties. For a proof by contradiction,
let us now assume that we have not transferred the subversion-resilience in limiting the
input realm, meaning that AO is not an auditable obfuscator on I ′. Using the following
lemma, we shall disprove this assumption and show that, similarly to hardcore-bit as-
sumptions [KL14], AO must be an auditable obfuscator on any (non-singleton) subset of
I. Note that the singleton case, meaning |I| = 1, can inherently never be defined for AO
and iO, as both obfuscation schemes have their respective indistinguishability properties
defined over at least two differing implementations in their implementation sets.

Lemma 5.2.
Let O be an auditable obfuscation scheme on I. Then, for any I ′ ⊆ I with |I ′| > 1, O also is an
auditable obfuscation scheme on I ′.

Proof. Choose I ′ arbitrarily from the set of all subsets of I that are at least of size two.
Assume that O is not an auditable obfuscation scheme on I ′, meaning that either its cor-
rectness, polynomial slowdown, indistinguishability, verifiability or soundness property

61

5 From Auditable Obfuscation to Subversion-Resilient Indistinguishability Obfuscation

must break when executing on I ′. However, by definition we know that an AO scheme’s
correctness, polynomial slowdown, indistinguishability, verifiability and soundness prop-
erties are all quantified over all implementations in I. All properties must be inherently
quantified over all implementations in I ′. The obfuscatorOmust thus also fulfill all prop-
erties of an auditable obfuscation scheme on I ′, resulting in a contradiction. □

Having shown that AO must be an auditable obfuscator on any (non-singleton) subset
of I, we can now achieve our original goal of proving that, using the construction from
Theorem 5.1, we transferred the subversion-resilience of theAO scheme to the constructed
iO scheme.

Corollary 5.3.
The iO scheme described by Theorem 5.1 is subversion-resilient.

Proof. Let O be the iO scheme described by Theorem 5.1.
The obfuscatorO thus is an auditable obfuscation scheme on I working on I ′ with I ′ ⊆ I.
By construction, I ′ consists of all polynomial-sized implementations of some program
P ∈ I. Trivially, |I ′| must thus be of at least size 2, as for each polynomial-sized im-
plementation I ∈ I ′ we can find a second polynomial-sized implementation Ĩ ∈ I ′ that
simply uses an additional NOP operation before its execution.
Following from Lemma 5.2, O must then be an auditable obfuscation scheme and, due to
Theorem 4.3, subversion-resilient. □

With this, the goal of this chapter has been achieved. We were able to relate auditable ob-
fuscation to indistinguishability obfuscation, demonstrating that a valid AO scheme can
be leveraged to construct a valid iO scheme. Furthermore, we were able to show that the
provided construction transfers the auditability ofAO to the resulting iO scheme, thereby
making it subversion-resilient.
In the next chapter, we shall discuss pseudorandom generators and pseudorandom func-
tions as well as their relation to subversion-resilience. Afterwards, we will combine the re-
sults of this chapter and the next in Chapter 7 to achieve subversion-resilient CCA-secure
encryption.

62

6 Constructing Subversion-Resilient Puncturable Pseudorandom
Functions

ASA

StS

MO AO iO

PRG

PPRF

IND-CCA-EncAm

In the last chapter, we discussed the relation between auditable obfuscation and indis-
tinguishability obfuscation and were able to show that we could leverage AO to achieve
subversion-resilient iO. With this, we not only provided a first use case example for our
results from Chapter 4, but the first subversion-resilient building block for our work in
Chapter 7 as well.
In Chapter 7, we will use the Sahai and Waters construction for CCA-secure encryption
from iO [SW14] to achieve subversion-resilient CCA-secure encryption. However, besides
iO, the construction method leverages pseudorandom generators (PRG) and puncturable
pseudorandom functions (PPRF) to achieve its security. As discussed in the technical
overview of Chapter 3, we need require of these primitives to be subversion-resilient as
well.
In this chapter, we will look at both the PRG and PPRF primitive. For PRGs, we will show
that any construction following the standard security game as depicted in Figure 2.7 in-
herently is subversion-resilient. On the other hand, we will show that PPRFs generally
are not subversion-resilient, even if their underlying PRF is, by demonstrating that adver-
sarial puncturing can be levied as a steganographic channel.
While we do show that subversion-resilient arbitrary-punctured PRFs are not achiev-
able, we conclude this chapter by showing that subversion-resilient randomly-punctured
PRFs do exist. As proof, we first build a subversion-resilient PRF using the Goldreich-
Goldwasser-Micali ([GGM86]) construction for PRFs from PRGs and then prove that, in

63

6 Constructing Subversion-Resilient Puncturable Pseudorandom Functions

fixed (pseudo-) randomly puncturing it, we do not break subversion-resilience.

6.1 Pseudorandom Generators are Subversion-Resilient

In most of modern computer science, cryptography in particular, randomness is a neces-
sity for achieving good results [KL14]. However, in real-world settings, we are unable to
produce true randomness, thus having to rely on something that comes as close to it as
possible. Algorithms producing such pseudorandomness are called (cryptographic) pseudo-
random generators (PRG).
In a cryptographic context, a PRG may either be a PPT algorithm that needs to be indistin-
guishable from randomness, even if started with a worst-case adversarial seed as input,
or a deterministic polytime algorithm indistinguishable on any uniformly chosen input.
Yao’s Principle then guarantees us that both settings are equivalent [Wig19, AB09]. An
informal statement of Yao’s Principle can be found in Theorem 2.14.
When comparing the two possible settings with regards to any cryptographic analysis,
the second setting seems easier to work with. As such, we will be using it throughout
this chapter. A more formal definition of PRGs as deterministic algorithms as well as the
associated cryptographic security game can be found in Section 2.4.
The construction of subversion-resilient IND-CCA-secure encryption in Chapter 7 heavily
relies on the use of a subversion-resilient PRG. This section tackles the existence of such
PRGs by proving the following Theorem 6.1, which states that any PRG fulfilling the secu-
rity game as depicted in Figure 2.7 inherently is subversion-resilient. We utilize a similar
argument as [BBD+23] in their proof of weak-PRFs being inherently subversion-resilient:
The adversary in both security games of weak-PRFs and PRGs does not provide any
input to the executing algorithm before having to answer in their respective real-or-
random game. This allows one to fix the input distribution and thus apply Lemma 2.13
from [RTYZ16] in the analysis. As a result, for any adversary with some advantage,
there is a watchdog of equal strength protecting against them, meaning that any working
subversion must also be detectable.

Theorem 6.1.
If G is a pseudorandom generator, then the trivial specification Ĝ = G is a pseudorandom gener-
ator under subversion.

Proof. Assume G is a PRG. As such, G is a deterministic PPTM over input realm {0, 1}n(λ).
In the standard PRG game (see Figure 2.7), the distribution XG

λ over the possible seeds

64

6.1 Pseudorandom Generators are Subversion-Resilient

in {0, 1}n(λ) is not known to the adversary A and could thus be arbitrary. In the trivial
implementation, however, we assume the input space to be uniformly distributed when
sampling s, such that we can publicly fix the input distribution XG

λ to be uniform. Fixing
and publishing of the input distribution provides the adversary A with additional infor-
mation, meaning it can only strengthen A.
By fixing XG

λ , G becomes a deterministic PPTM working on a public input distribution.
As such, we can apply Lemma 2.13 to its implementations. Let G̃ be a subverted imple-
mentation of G and Ĝ its specification. Then let Neqλ ⊆ {0, 1}λ(n) be the set of inputs at
which G̃ deviates from Ĝ, yielding

Neqλ =
{
s ∈ {0, 1}n(λ) | G̃(s) ̸= Ĝ(s)

}
.

Through Lemma 2.13, we now know that there exists a PPT offline watchdog with detec-
tion rate

δ = Pr
[
G̃(s) ̸= Ĝ(s) | s←$ XG

λ

]
=

|Neqλ|∣∣{0, 1}n(λ)∣∣
for the subverted implementation G̃.
The goal of the adversary A is to exploit a given subversion in G̃ without being de-
tected, meaning A plays against the subversion-resilience game. Any adversary in the
subversion-resilience game wins if and only if no corresponding watchdog with a non-
negligible detection rate exists. As such, forA to exploit the PRG implementation G̃ while
avoiding detection, they must fulfill

|Neqλ|∣∣{0, 1}n(λ)∣∣ ≤ negl(λ) .

Similarly, A can only win and subvert the PRG if and only if they cause any of the inputs
to deviate from their specification. Let this be the event hit. For any polynomial-time
adversary A, the resulting success probability is thus capped by

Advsub−prgA,PRG (λ) = #tries · Pr[hit] ≤ poly(λ) · |Neqλ|∣∣{0, 1}n(λ)∣∣ .

Combining both requirements now yields that

Advsub−prgA,PRG (λ) ≤ poly(λ) · |Neqλ|∣∣{0, 1}n(λ)∣∣ ≤ poly(λ) · negl(λ) = negl(λ) ,

meaning that there only is a negligible chance ofA successfully exploiting a subversion in
a given implementation G̃ of the specification Ĝ = G. □

65

6 Constructing Subversion-Resilient Puncturable Pseudorandom Functions

We showed that any PRG fulfilling its trivial specification of winning the security game
in Figure 2.7 with overwhelming probability is subversion-resilient. Thereby, we have
successfully demonstrated that we can subversion-resiliently create two of the three
primitives necessary for our construction.
The only primitive not addressed thus far are puncturable pseudorandom functions.
As PPRFs are a modification to standard PRFs, we need to construct a subversion-
resilient PRF as an intermediary step. While some constructions for subversion-resilient
PRFs [BBD+23] already exist, PPRFs are generally instantiated using the Goldreich-
Goldwasser-Micali construction, as the puncturing is well-defined in its structure [BGI14,
BW13, KPTZ13, SW14, HSW14]. Relying on known construction methods, we will use the
GGM construction as the base PRF in this thesis.
To our knowledge, there have been no publicized attempts to analyze the GGM construc-
tion with regards to subversion-resilience. We thus perform the analysis ourselves. In the
next section, we will use the results of this section to prove that the resulting PRF of the
GGM construction is subversion-resilient, given that its underlying PRG is subversion-
resilient as well.

6.2 Constructing a Subversion-Resilient PRF

Before analyzing PPRFs with regards to subversion-resilience, we first need to construct
a subversion-resilient PRF as their basis. As discussed in the last section, we use the
Goldreich-Goldwasser-Micali construction as our underlying PRF, as its puncturing is
well-understood.
We use this section to give a short introduction on the GGM construction, provide an intu-
ition on the resulting tree structure, and prove that the GGM construction is subversion-
resilient, given a subversion-resilient PRG is used.

6.2.1 The Goldreich-Goldwasser-Micali (GGM) Construction

The Goldreich-Goldwasser-Micali (GGM) construction was first established by Goldreich,
Goldwasser and Micali in [GGM86]. The construction was used as a first example that
fulfilled their formal definition of a secure pseudorandom function. As such, it is one of
the most commonly used constructions. However, as notations and nomenclature have
changed in the last few decades, instead of matching the original paper, we will match
our notation more closely to the write-up of the construction provided in [KL14].
As the general structure of GGM is relevant to our subversion analysis, we will provide
a quick overview of the construction and its functionality. For now, we will denote the
resulting PRF of the GGM construction with F .

66

6.2 Constructing a Subversion-Resilient PRF

The general idea behind the construction of F is as follows. At first, the construction is
provided some depth ℓ ∈ N and a pseudorandom generator G. The depth ℓ must be
fixed at construction time in poly(λ), while G must be keyed, meaning inputs advance the
internal stepping of Gs seed value. Further, G must produce outputs that are double the
length of the inputs, meaning G outputs values of length 2n(λ). Generator G can thus be
described with the following signature

G : {0, 1}n(λ) → {0, 1}2n(λ) .

Both of these parameters are used to construct a binary tree, also called the GGM-tree, of
depth ℓ, where in each internal node an instance of G is fixed. It must be noted that this
tree is only created implicitly at this point. For execution, each instance of G is only fixed
at runtime, meaning non-executed instances of G need not be stored. The leaves of the
resulting binary tree are used as the outputs of F .
Executing F now works as follows. First, an input x of length ℓ is provided, together with
a key k of length n(λ). Then, the instantiated G at the root of the constructed GGM-tree is
evaluated on k and produces an output y = k

(ε)
0 ∥k

(ε)
1 . As the next step, depending on the

most significant bit of x, the next internal node is chosen for execution. If x was a 0, then
the GGM-tree is traversed to the left child of root with k

(ε)
0 as its key k(0), otherwise the

GGM-tree is traversed to the right child of root with k
(ε)
1 as its key k(1).

From here on out, the execution continues analogously for all levels of the GGM-tree, in
each layer i checking the relevant bit x[i] from the input instead of the most significant bit.
After completely traversing the GGM-tree, the execution reaches one of the trees leaves.
This leaf contains the output from the last layer, meaning k(x), which, as mentioned before,
is used as the output of F .
Generally, we write F (ℓ) for any F with a fixed, known depth ℓ. The signature for F (ℓ)

then is
F (ℓ) : {0, 1}n(λ)︸ ︷︷ ︸

K

×{0, 1}ℓ︸ ︷︷ ︸
D

→ {0, 1}n(λ)︸ ︷︷ ︸
R

whereK is the domain of all valid keys,D the domain of all valid inputs andR the output
domain. We provide an example construction for a PRF using a GGM-tree in Figure 6.1.

67

6 Constructing Subversion-Resilient Puncturable Pseudorandom Functions

k

G(k(ε)) = k
(ε)
0 ∥k

(ε)
1

G(k(0)) = k
(0)
0 ∥k

(0)
1 G(k(1)) = k

(1)
0 ∥k

(1)
1

G(k(00)) = k
(00)
0 ∥k(00)1 G(k(01)) = k

(01)
0 ∥k(01)1 G(k(10)) = k

(10)
0 ∥k(10)1 G(k(11)) = k

(11)
0 ∥k(11)1

k(000) k(001) k(010) k(011) k(100) k(101) k(110) k(111)

k
(ε)
0 k

(ε)
1

k
(0)
0 k

(0)
1 k

(1)
0 k

(1)
1

F(3)(k, 010)

Figure 6.1: Visualization of the GGM-tree with depth ℓ = 3. The colored path displays the
evaluation path for the call to the construction with input x = 010 and key k.
The function returns the value k(010).

The last thing to look at regarding the GGM construction are its pseudorandomness guar-
antees. The pseudorandomness of the construction is formalized with the following The-
orem 6.2 due to [GGM86].

Theorem 6.2 ([GGM86]).
If G : {0, 1}n(λ) → {0, 1}2n(λ) is a pseudorandom generator, then the function F (ℓ) following
the prior outlined construction is pseudorandom.

The proof of the theorem relies on the pseudorandomness property of the underlying
pseudorandom generator. Each output at any layer is the output of a PRG on a key of its
input domain, meaning these outputs are not distinguishable from randomness. As the
leaves only contain outputs from the PRGs as well, it would then conclude that these must
also be pseudorandom. Otherwise, an attacker on the PRG scheme could be constructed,
that works by simulating the attacker against the GGM construction on F (1). A thorough
write-up on the proof of Theorem 6.2 can be found in [KL14].
With a firm grasp on the GGM construction we can now start with our subversion anal-
ysis. In the next section, we will show that we can leverage a subversion-resilient PRG
in combination with the treelike structure of GGM to prove the construction subversion-
resilient.

68

6.2 Constructing a Subversion-Resilient PRF

6.2.2 GGM constructed PRFs are Subversion-Resilient

We want to prove that the GGM construction results in a subversion-resilient PRF if the
underlying PRG is subversion-resilient. We formalize this statement in the following The-
orem 6.3.

Theorem 6.3.
Let F̂ (ℓ) be a PRF following the GGM-construction of depth ℓ using PRG G.
If G is a pseudorandom generator under subversion, then for each ℓ ∈ N, F̂ (ℓ) is pseudorandom
under subversion.

Proof. We will follow a proof by induction. First we will show that F̂ (1) is pseudorandom
under subversion. Afterwards, we will extrapolate the result to F̂ (ℓ) for each ℓ ∈ N.
Pseudorandom function F̂ (1) is given the inputs k, x with k ∈ {0, 1}n(λ) and x ∈ {0, 1}.
The output is derived by calling the pseudorandom generator G on k and then splicing the
output of G into two strings of length n(λ). If x is 0, then the first of the two strings, k(ε)0 ,
is returned, else the second, k(ε)1 .
As the output of F̂ (1) is simply a truncated version of the output of G it must hold that
any subversion in the output of F̂ (1) was already present in the output of G. Otherwise,
we could create an attacker on G by simulating an attacker on F̂ (1). Thus, any bound on
achievable subversions on G must also hold for F̂ (1).
As shown in Theorem 6.1, we can always construct a watchdog for G that simply samples
random keys as input, given the input distribution is public. As a pseudorandom function
must work for any key from its input distribution, we can leverage this and assume that
k is from a uniform distribution, meaning k ←$ {0, 1}n(λ).
Now let Neqλ be the set of inputs on which G̃ deviates from its specification. We then
know that the probability p = |Neqλ|

|{0,1}n(λ)| of an attacker hitting this set is negligible. We can

use this to build a watchdog for F̂ (1) that guarantees the correctness with overwhelming
probability.
Further, let ℓ ∈ N with ℓ > 1 be the height of the GGM construction. The PRF F̂ (ℓ) is thus
called with inputs k, x where k ∈ {0, 1}n(λ) and x ∈ {0, 1}ℓ. The first layer of the GGM
construction works analogous to F̂ (1) and each layer afterwards works by calling G with
a partial result from the layer before. Which partial result is used thereby depends on x,
specifically:

F̂ (i+1)(k, x) =

G
(
k
(x[0:i])
0

)
, if x[i+ 1] = 0

G
(
k
(x[0:i])
1

)
, if x[i+ 1] = 1

69

6 Constructing Subversion-Resilient Puncturable Pseudorandom Functions

Each layer thus only depends on the output from the layer beforehand.
A polytime adversary may now test polynomial combinations of k and x for a given imple-
mentation of F̂ (ℓ) to try and find a subversion. We assume that if any of the intermediary
evaluations of G in F̂ (ℓ) results in a subverted output of G that this subversion is persis-
tent from that point forward. If the subversion would not be persistent, then an adversary
would not see it, as we do not output intermediary results. Let the event that a subversion
was achieved in layer i now be denoted by hiti, then the statement can be written as

Pr [hiti| hiti−1] = 1 .

As such, for any output in F̂ (ℓ) the output is subverted, if and only if, the input of the
last layer is in Neqλ or the output of the prior layer was already subverted. For any single
evaluation on fixed x, k the probability of the output of F̂ (ℓ) being subverted is thus

Pr
[
hitℓ

]
= Pr

[
hitℓ

∣∣ hitℓ−1
]
· Pr

[
hitℓ−1

]
+ Pr

[
hitℓ

∣∣ hitℓ−1
]
· Pr

[
hitℓ−1

]
.

When F (ℓ−1) was not subverted, the last layer of F (ℓ) simply acts as an execution of the
underlying PRG G on a pseudorandom input. This setting is equivalen to that of Theo-
rem 6.1, thus we know that Pr

[
hitℓ

∣∣ hitℓ−1
]
= |Neqλ|
|{0,1}n(λ)| , which is negligible. As we also

assumed any subversion to be persistent, we can then write

Pr
[
hitℓ

]
= p · Pr

[
hitℓ−1

]
+ 1 · Pr

[
hitℓ−1

]
= negl(λ) · Pr

[
hitℓ−1

]
+ Pr

[
hitℓ−1

]
= negl(λ) + Pr

[
hitℓ−1

]
.

We can analyze the probability of F̂ (ℓ−1) and all following intermediary steps analogously
until F̂ (1) and substitute them into the term. Further, for F̂ (1) we have already shown the
probability of a subversion to be negligible. Thus we get that

Pr
[
hitℓ

]
= Pr

[
hit1

]
+

ℓ∑
i=2

negl(λ) = negl(λ) +
ℓ∑

i=2

negl(λ) = ℓ · negl(λ) .

Depth ℓ is by assumption fixed at construction time and at most in poly(λ), meaning that

Pr
[
hitℓ

]
≤ poly(λ) · negl(λ) = negl(λ) .

Any adversary may now test polynomial many combinations of k and x. We will model
this as the adversary being allowed to choose polynomial many k and for each k polyno-

70

6.3 Subversion-Resilient Puncturable Pseudorandom Functions

mial many x. From this we get that

Advsub−ggmA,PRF (λ) =
∑
k

∑
x

Pr[hitℓ] ≤ poly(λ) · poly(λ) · negl(λ) = negl(λ) .

The GGM construction for F̂ (ℓ) is thus pseudorandom under subversion. □

We were able to show that the GGM construction for PRFs from PRGs is subversion-
resilient, given a subversion-resilient PRG is used. With this, we now have all necessary
components to tackle puncturable PRFs.

6.3 Subversion-Resilient Puncturable Pseudorandom Functions

In the last section, we showed that the GGM construction provides a subversion-resilient
PRF, given a subversion-resilient PRG is used. As stated beforehand, most PPRFs are
adapted from PRFs, built using GGM. This is due to the inherent tree-like structure en-
countered within them, the GGM-tree. As each differing execution of a GGM-PRF corre-
sponds to a path through the GGM-tree, we can create a PPRF from it by simply truncating
subtrees containing the punctured leaves, meaning we do not allow these paths to be fol-
lowed to their conclusion [BGI14, BW13, KPTZ13]. So long as we do not leak any internal
states from a common ancestor of any of our truncations we then fulfill the formal defini-
tion of a PPRF. To visualize the puncturing process, we provide an example construction
in Figure 6.2.
We now want to analyze PPRFs under subversion, meaning an adversary tries to mali-
ciously modify the implementation in some way. As we know from [BL17, Ber18], the
subversion setting is equivalent to the steganographic setting on a certain type of chan-
nel. In the steganographic setting, the adversaries goal is to communicate some kind of
information to an external party without anyone noticing this communication. For our
analysis of PPRF the second setting seems more favorable to work with.
As a PPRF is always a modification to an underlying PRF, and we already know that
subversion-resilient PRFs do exist (see [BBD+23] and Section 6.2), we can simplify our
analysis by using such a subversion-resilient PRF as basis. We then only need to show,
that none of the modifications made when translating the construction to a PPRF created
new attack vectors.
Unfortunately, we can show that any adversary-provided input for puncturing can be
used to create a steganographic channel. We prove this with the following Lemma 6.4.

71

6 Constructing Subversion-Resilient Puncturable Pseudorandom Functions

k

G(k(ε)) = k
(ε)
0 ∥k

(ε)
1

G(k(0)) = k
(0)
0 ∥k

(0)
1 G(k(1)) = k

(1)
0 ∥k

(1)
1

G(k(00)) = k
(00)
0 ∥k(00)1 G(k(01)) = k

(01)
0 ∥k(01)1 G(k(10)) = k

(10)
0 ∥k(10)1 G(k(11)) = k

(11)
0 ∥k(11)1

k(000) k(001) k(010) k(011) k(100) k(101) k(110) k(111)

k
(ε)
0 k

(ε)
1

k
(0)
0 k

(0)
1 k

(1)
0 k

(1)
1

F(3)(k{punc}, x)

Figure 6.2: Visualization of a GGM-tree with depth ℓ = 3 that has been punctured at the
positions punc = {001, 100, 101}. Grayed out parts of the GGM-tree depict the
puncturing, meaning that these paths can not be evaluated using k{punc}. If
F (3) is called with x ∈ punc, instead of the correct outputs, we can assume that
the function either outputs ⊥ or silently returns. For x ̸∈ punc the function
outputs the non-punctured values, meaning F 3(k, x).

Lemma 6.4.
Let F be a punctured pseudorandom function with user-controlled puncture-positions punc based
on a PRF that is pseudorandom under subversion.
Then, F is not subversion-resilient.

Proof. Let F be a PPRF based on a subversion-resilient PRF and let A be the adversarial
user. We show constructively that F contains a steganographic channel, despite of the
subversion-resilience of PRF.
When F is instantiated, A is queried on which positions of F they want to puncture. Let
[y0, y1, . . . , y2ℓ] be all possible outputs of F , indexed by their associated input. If A wants
to send a 0, they choose an arbitrary yi with i ≡ 0 mod 2 and puncture it. Otherwise, if A
wants to send a 1, they choose an arbitrary yi with i ≡ 1 mod 2 and puncture it.
As the positions of puncturing must be encoded in the puncturing key k{punc}, where
punc is the set of all punctured positions, the encoded message can be extracted by simply
checking the above mentioned condition.
In the chosen hiddentext game for StS, as described by Figure 2.1, a warden W is allowed
to specify the message sent by A. Trivially, if A does not modify the message before em-

72

6.3 Subversion-Resilient Puncturable Pseudorandom Functions

bedding it, any warden has a non-negligible probability of detecting this encoding. They
achieve this by simply checking if there exists a common predicate between the punctur-
ing when their chosen message is a 1, or vice versa a 0.
Thus, let us now assume that A has access to a IND$-CPA-secure encryption function Enc.
A can now call Enc on the warden-controlled message msg and puncture depending on
the bit(s) of this encryption. The extraction works similarly identical, but must decode the
received cipher using the associated Dec function. See Figure 6.3 for a pseudocode exam-
ple of these two functions. As the encryption scheme is IND$-CPA-secure, the output of it

embedPunctureKey (hidden message msg, embedding key ak, PPRF F̂ (ℓ))

1 : punc← Enc(msg, ak)

2 : k← F̂ (ℓ).Gen(·)

3 : k{punc} ← F̂ (ℓ).Punc(k, punc)

4 : return k{punc}

extractPunctureEmbed (punctured key k{punc}, embedding key ak)

1 : punc← Extr(k{punc})
2 : msg∗ ← Dec(punc, ak)

3 : return msg∗

Figure 6.3: Malicious puncturing for a PPRF using the subversion-resilient PRF construc-
tion from Section 6.2. The construction uses GGM of depth ℓ and allows for a
user-specified puncturing of one element at its lowest level. An adversary can
now encode a 1-bit message via the point of puncture. As the punctured key
by necessity needs to contain the information, which position was punctured,
any party interacting with the PPRF and its punctured key can thus gain access
to the encoded message.

looks indistinguishable from randomness, meaning the resulting positions of puncturing
look random as well. Now, any warden that could still meaningfully distinguish between
these puncturings and random positions, must thus be able to break the encryption. The
best advantage of any AEnc must then be an upper bound on the advantage of W.
As such, it follows that

Advss−chaW,StS,CFpunc
(λ) ≤ InSecenc−cpaEnc (λ) .

However, as Enc is a secure encryption function, it further follows that

InSecenc−cpaEnc (λ) ≤ negl(λ) ,

73

6 Constructing Subversion-Resilient Puncturable Pseudorandom Functions

meaning that any warden on the constructed steganographic channel only has at most a
negligible advantage. This implies the existence of a subversion against F . □

We were able to create a steganographic channel using a PPRF from a subversion-resilient
PRF, as the steganographic channel did not depend on the outputs, but rather on which
positions were used in the puncturing. For the sake of conciseness, we limited ourselves
to a rather simple encoding. However, more complex constructions are able to send up
to 2ℓ possible messages in one encoding. We use Appendix B to cover some of these more
efficient methods an adversary could incorporate.
Even with the simple encoding and limited to one single puncture position we were still
able to describe a steganographic channel. From this, we can conclude that any PPRF with
user-controlled puncturing must be vulnerable to subversions.
However, this does not mean that all PPRFs can be subverted. Similar to other primitives,
we might be able to construct a subversion-resilient variant by removing the input from
users and substituting it with randomness. One such possible attempt would be to force
the positions for puncturing to be drawn by a subversion-resilient PRG. Thankfully, the
Sahai and Waters construction already calls for random puncturing in their proof [SW14],
meaning this additional constraint would have been necessary even if arbitrary punctur-
ing could work subversion-resiliently.
Sadly, as we will see, simply drawing the positions by random is not enough. The adver-
sary still has some leverage left, namely if they use any randomness or redraw it. This
technique is commonly known as rejection sampling [And96, Cac04, Ber18] and is used
quite often in the design of steganographic systems. In the following lemma, we show
how we can leverage it against our modification to construct a steganographic channel.

Lemma 6.5.
Let F be a punctured pseudorandom function based on a subversion-resilient PRF that has its
puncture-positions punc chosen by a PRG that is pseudorandom under subversion.
Then, F is not subversion-resilient if an adversary A can use rejection sampling.

Proof. Let F be a PPRF based on a subversion-resilient PRF that uses a subversion-resilient
PRG during initialization of its punctured positions. Further, let A be the adversarial
user. We show constructively that F contains a steganographic channel, despite of the
subversion-resilience of PRG and PRF.
When F is instantiated, the PRG is queried and produces some puncturing set punc. Be-
fore punc is used in the puncturing, A now intercepts punc and analyzes it. For this, A

74

6.3 Subversion-Resilient Puncturable Pseudorandom Functions

interprets the positions in punc as describing a repetition code mod2. More precisely, for
each position i in punc A tests if i ≡ 0 mod 2 or i ≡ 1 mod 2 and sums the results. If more
than half of the positions evaluate to a 0, then A interprets punc as a repetition codeword
for a 0. Vice versa, if more than half of the positions evaluate to a 1, thenA interprets punc
as a 1. If neither is the case, then punc is interpreted as an invalid codeword.
For a given, uniformly random position set punc of size m, we have the following proba-
bilities of occurrence

Pr
punc

[A interprets punc as a 0] =

⌈m
2
−1⌉∑

i=0

(
m
i

)
m∑
i=0

(
m
i

) =
2m−1 − (m

m/2)
2

2m
= p

Pr
punc

[A interprets punc as a 1] =

m∑
i=⌊m

2
+1⌋

(
m
i

)
m∑
i=0

(
m
i

) =
2m−1 − (m

m/2)
2

2m
= p

Pr
punc

[A interprets punc as invalid] =

(
m

m/2

)
m∑
i=0

(
m
i

) =

(
m

m/2

)
2m

,

where the randomness is taken over the choices of elements in punc. We note, that for odd
values of m the term

(
m

m/2

)
is not well-defined, as m

2 is not a whole number. In abuse of
notation, we define the output in this case as 0.
After the analysis of punc, A compares the currently encoded bit with the message they
want to send. With above stated probability p the set already encodes the message. In this
case, A simply continues the instantiation of F .
However, with inverse probability 1 − p, the set does not encode the correct message. In
this case, punc is dropped and a new random set is queried. Adversary A only fails if
they can not query a good set in poly-time, meaning each of their poly(λ) queries to the
subversion-resilient PRG must fail. As each draw is independent, we can describe the
probability of this case with the following term:

Pr
punc

[A fails] =
∏

poly(λ)

Pr
punc

[punci does not work for A]

=

2m−1 +
(m
m/2)
2

2m

poly(λ)

≈
(
1

2

)poly(λ)

=
1

2poly(λ)
= negl(λ) .

75

6 Constructing Subversion-Resilient Puncturable Pseudorandom Functions

We can now continue the analysis analogous to the proof of Lemma 6.4 by allowing A
to use a secure encryption scheme. From this, we get that there exists a steganographic
channel where any warden W only has at most a negligible advantage when trying to
detect it. This implies a subversion against F . □

We have shown that, even if an adversary is only allowed to use or refuse any choice of
puncture positions, they are still able to construct a stegosystem StS. While there may
be ways to fix the above construction by additional puncturing after punc is provided, it
would take exponential work to defend against all possible adversaries.
As we generally only consider computable defenses, meaning running in at most poly-time,
we must try a different strategy. One such possible strategy is, instead of fixing possible
bad choices for punc, to remove the adversaries means of obtaining them.
In our first two attempts, the adversary was either able to directly choose the puncturing
or indirectly choose it via rejection sampling. Preventing both would mean that we force
the adversary to comply with any choice of randomness we provide, or that any choice
they make gets overwritten by some further rerandomizing before usage. More concise,
we revoke the adversaries sampling rights. An example of this modified security game
using rerandomization can be seen in Figure 6.4.
We note, that this prerequisite could also be stated as a distribution requirement. Namely,
we would need not only any individual choice of a set punc to follow a subversion-resilient
distribution, but the distribution over all sets punc and their context itself to be subversion-
resilient as well.
For this even more restricted setting, we can now show the following theorem.

Theorem 6.6.
Let F be a punctured pseudorandom function based on a subversion-resilient PRF that has its
puncture-positions punc chosen by a PRG that is pseudorandom under subversion.
Then, F is subversion-resilient, if punc is fixed throughout the initialization of F or if punc gets
subversion-resiliently rerandomized right before use.

Proof. Let F be as described and A be the adversarial user. We handle both possible cases
of punc separately.

1. Let punc be fixed throughout the initialization of F . This means, that punc gets cho-
sen once by the subversion-resilient PRG and can not be changed until after it is
used in the puncturing of key k. As such, an adversary A can not rely on rejection
sampling, as this would change punc. Thus, A can only rely on luck.

76

6.3 Subversion-Resilient Puncturable Pseudorandom Functions

In each initialization of the PPRF one set punc is chosen. This set encodes the adver-

saries current bit with probability 2m−1−(
m

m/2)
2

2m . For a message with length poly(λ),
A would need poly(λ) consecutive sets to be chosen correctly. We can describe this
probability with the following term:

Pr
punc

[Awins] =
poly(λ)∏
i=0

2m−1 − (m
m/2)
2

2m

≤
poly(λ)∏
i=0

1

2

=
1

2

poly(λ)

=
1

2poly(λ)
= negl(λ)

This means, at best, A has a negligible probability of success. The PPRF must then
be subversion-resilient.

2. Let punc get subversion-resiliently rerandomized right before use. This must mean,
that any modification to punc via rejection sampling by A only impacts the reran-
domization step and not the puncturing itself.
The algorithm for rerandomization may be subversion-resilient by assumption,
however, the output will still encode the adversaries current bit with probability

2m−1−(
m

m/2)
2

2m .
The analysis of case 2 from this point forward is analogous to the analysis of case 1.
Thus, the resulting PPRF must be subversion-resilient as well.

The theorem follows from the results of cases 1 and 2. □

We proved that there exist a PPRF that is subversion-resilient, but only under the very
strict assumption that we can either force an adversary to use a specific generated ran-
domness or can successfully rerandomize under subversion. When considering these two
assumptions it is not clear if they are realistic or not. Thankfully, we can leverage prior
research from the fields of algorithm substitution attacks and steganography.
Rerandomization, as we use it in this thesis, is widely understood as one possible imple-
mentation of a cryptographic reverse firewall [BBD+23, MSD15, CMNV22, AMV15]. Re-
verse firewalls use rerandomization and similar tactics to break subversions in bad pseu-
dorandomness. While generally considered as a fix to maliciously generated pseudoran-
domness, its methods also help in our use-case, as the rerandomization voids the usability
of the adversaries rejection sampling.
Similarly, our assumption that we can fix set punc prior to execution, is a usage of self-

77

6 Constructing Subversion-Resilient Puncturable Pseudorandom Functions

guarding schemes [FM18]. Self guarding schemes assume a secure, non-subverted initial-
ization phase, in which we can commit to values that we want to use later. While not
as widely used as reverse firewalls, the existence of such schemes are considered a valid
assumption. As both cryptographic reverse firewalls and self-guarding schemes provide
some sound reasoning for our assumption, we consider our result as usable in more com-
plex constructions.
With this, we tackled all necessary primitives to achieve suvbersion-resilient IND-CCA

encryption. While we proved that arbitrary PPRFs can not be subversion-resilient we
were able to show that we can construct a subversion-resilient PPRF using a random
puncturing under strict assumptions. As mentioned before, the Sahai and Waters con-
struction builds upon random puncturing, meaning this assumption would have been
necessary either way. The additional assumptions of an existing cryptographic firewall
or self-guarding scheme implementation also do not conflict with any of the other used
assumptions. As such, the only thing left to do is to combine all our findings.

Punctured-Pseudo-Random-Function Random-Puncture-Attack Experiment

PPRF Game Adversary A

x∗ ← A.RejSampGen(1λ)

x∗

x̃∗ ← G(x∗)

sk ←$ {0, 1}n(λ)

y∗ ← F (sk, x̃∗)

f ← F (sk{x̃∗}, ·)

(f, sk{x̃∗})

y′ ← A.GuessEval(1λ, f, sk{x̃∗})

y′

if y∗ == y′ : Awins

oracle Eval(x)

1 : y ← F (sk, x)

2 : return y

oracle Gen(·)
1 : s←$ {0, 1}n(λ)

2 : return G(s)

Figure 6.4: A modified version of the PPRF security game from Figure 2.9. Instead of arbi-
trarily choosing the puncturings punc,A is only allowed to query a subversion-
resilient PRG G to choose punc. The game then, additionally, rerandomizes the
adversaries choice before using it to puncture F .

78

7 Constructing a Subversion-Resilient, CCA-Secure Encryption
Scheme

ASA

StS

MO AO iO

PRG

PPRF

IND-CCA-EncAm

Prior to this chapter, we proved thatAO schemes are subversion-resilient, that subversion-
resilient iO can be build from AO, that cryptographic PRGs are subversion-resilient and
that some PPRF schemes are subversion-resilient as well. In this chapter, we will combine
all these results to achieve subversion-resilient IND-CCA-secure encryption.
We will use the construction from Sahai and Waters [SW14] to build a IND-CCA-secure
encryption scheme E using only subversion-resilient primitives. By assuming a secure
amalgamation function Am in combination with the split programming model, we will
then show that E is subversion-resilient as well. We will do so by following the stan-
dard security proof of the construction. However, we will source the security from the
subversion-resilience of the constructions subprocedures instead of the standard security
assumptions.
Before diving into the subversion-analysis, we will thus provide a short overview of the
construction, as well as its security proof.

7.1 Construction Overview

Sahai and Waters provided with [SW14] the first successful attempt at leveraging indistin-
guishability obfuscation for cryptographic constructions. Prior to their paper, usage of iO
was considered, but not well understood [BGI+12, GR14]. Sahai and Waters realized that
the key for using indistinguishability obfuscation was to construct obfuscated programs
that behave with overwhelming probability identically. This introduces a negligible error

79

7 Constructing a Subversion-Resilient, CCA-Secure Encryption Scheme

factor where everything can break, but as a trade off provides an additional way to dis-
able adversary oracles. Using game hopping strategies as described in [BR06] it is then
possible to iteratively disable all adversary oracles until a game is reached where A can
only guess. If all intermediary steps between the original game and this optimal game
are negligibly close in their advantage, then the advantage in the original game must be
bound in the cumulative advantage gain of the game chain. Note, that for any constant
amount of negligibly close hops made, this cumulative advantage is bound by negl(λ).
The Sahai and Waters construction now uses the IND-CCA-security game as a starting
point and adds five intermediary hybrid games in the security proof. The challenge ele-
ment sent to the adversary is step-by-step modified until the challenge consists of pure
randomness and provides no information on the actual challenge element b ∈ {0, 1}.
However, before we can discuss this game hopping proof further, we first need to in-
troduce how exactly the construction from Sahai and Waters works.
The construction consists of three algorithms, an initialization algorithm Setup, an encryp-
tion algorithm Encrypt and a decryption algorithm Decrypt. The general idea behind the
construction is to initialize an obfuscation of a symmetric encryption scheme with hard-
coded keys which anyone can use as the public encryption. The symmetric encryption
thereby relies on the use of two punctured pseudorandom functions, which get run on the
secret keys, a provided message and some newly generated randomness. The underlying
symmetric encryption is described with the procedure CCA-PKE-Encrypt.

func Setup(1λ)

1 : k1 ← F1.Gen(1
λ)

2 : k2 ← F2.Gen(1
λ)

3 : sk = (k1, k2)

4 : pk← iO.Obf

CCA-PKE-Encrypt(msg, r)

1 : t← G(r)

2 : c1 = t

3 : c2 ← F1(k1, t)⊕msg

4 : c3 ← F2(k2, c1∥c2)
5 : return c = (c1, c2, c3)

5 : return (pk, sk)

func Encrypt(pk, msg)

1 : r ←$ {0, 1}λ

2 : c← pk(msg, r)

3 : return c

func Decrypt(sk, c)

1 : if c3 == F2(k2, c1∥c2) :

2 : msg′ ← F1(k1, c1)⊕ c2

3 : return msg′

4 : else return reject

Figure 7.1: The three functions of the Sahai and Waters construction for IND-CCA-secure
encryption from iO. Setup initializes the encryption scheme E , Encrypt is used
to encrypt messages and Decrypt is used to decrypt received ciphers.

Setup then works by generating the secret key sk as k1 and k2 for the PPRFs and construct-
ing the obfuscation of CCA-PKE-Encrypt, with k1 and k2 set as constants, as the public

80

7.1 Construction Overview

key pk. Encrypt works by generating some randomness r and then executing pk on it as
well as a 1-bit message msg. Finally, Decrypt works by first testing if the received cipher c
is sound and, depending on the result, either restores msg or rejects the cipher. We provide
pseudocode for the three functions in Figure 7.1.
With this, we can now continue with the discussion of the security proof. As stated be-
fore, Sahai and Water use 5 hybrid security games to transform the IND-CCA-security
game into a game where the adversary is provided no information. For each hybrid game
they show that the advantage of an adversary must be negligibly close to the prior step.
For any two consecutive hybrid games Hybi and Hybi+1, this means that∣∣∣AdvHybiA,E (λ)− Adv

Hybi+1

A,E (λ)
∣∣∣ ≤ negl(λ) .

We will provide a short description of the changes introduced in each hybrid game, as
well as an intuition on how Sahai and Waters prove that the hybrids are stepwise negligi-
bly close. A visual representation of the game hops can be found in Figure 7.2.

Hyb0 := IND-CCA

Hyb1

Hyb2 Hyb3

Hyb4

Hyb5 := Random-Challenge

t∗ ←$ {0, 1}2λ

reject c1 = t∗

queries

swap
CCA-PKE-Encrypt with CCA-PKE-Encrypt∗

F2(k2, t
∗∥0) := w0 ←$ {0, 1}λ

F2(k2, t
∗∥1) := w1 ←$ {0, 1}λ

c2 := z∗ ←$ {0, 1}

Figure 7.2: Visual representation of the changes between the hybrid games in the security
proof of the Sahai and Waters construction. The game hopping starts at Hyb0,
the standard IND-CCA-security game, and ends at Hyb5, where the adversary
A is provided a challenge that consists only of random elements and no in-
formation about the actual challenge bit b. Each hop adds at most negligible
advantage, meaning the advantage of A in the IND-CCA game is negligible.

The hybrid games start with Hyb0, which is simply the standard IND-CCA-security game,
as depicted in Figure 2.10. Note that the choice of msg0 and msg1 must always be 0 and 1,
as the construction only allows for 1-bit messages to be encrypted.
In hybrid game Hyb1 we change the choice of t∗, the output of the PRG G in CCA-PKE-
Encrypt when generating the challenge cipher c∗, to be real randomness instead of a pseu-
dorandomly generated value. In the standard IND-CCA game, the adversary A is gener-

81

7 Constructing a Subversion-Resilient, CCA-Secure Encryption Scheme

ally allowed to provide the seed r∗, which is used to generate t∗. With this hybrid game
we thus weaken the adversaries impact on the scheme. From the security of the pseudo-
random generator G we then get, that Hyb1 is negligibly close in advantage to the original
game.
For hybrid game Hyb2, we restrict the decryption oracle ofA. Any cipher generated by the
Sahai and Waters construction consists of three parts c1, c2 and c3. The value c1 is, thereby,
set to the used output of G. In the challenge c∗ the first value c∗1 is thus set to t∗. We do
not want the adversary to query ciphers that use the value of our challenge. For this, we
simply modify the decryption oracle to output ⊥ when it is queried with c1 = t∗ during
phase 1, meaning before A is given the challenge c∗. As the adversary is only allowed to
query their decryption oracle bound in some polynomial q(λ), they only notice this mod-
ification with a negligible probability. Thus the game is negligibly close to Hyb1.
The next hybrid game is Hyb3. In this hybrid, we use the properties of the used indis-
tinguishability obfuscator to swap CCA-PKE-Encrypt with CCA-PKE-Encrypt∗. The pseu-
docode of the modified procedure can be found in Figure 7.3. The modified procedure
only differs in the use of punctured keys for the used PPRF functions F1 and F2. How-
ever, as the punctured positions are based on t∗, which by modification in Hyb1 is a ran-
dom value, this means that the two functions only differ in their behavior if t∗ is in the
domain of G. This only happens with a negligible probability, meaning the input-output
behavior does not change with overwhelming probability. From the security of the iO
scheme it then follows that Hyb3 is negligibly close to Hyb2.

CCA-PKE-Encrypt(msg, r)

1 : t← G(r)

2 : c1 = t

3 : c2 ← F1(k1, t)⊕msg

4 : c3 ← F2(k2, c1∥c2)
5 : return c = (c1, c2, c3)

CCA-PKE-Encrypt∗(msg, r)

1 : t← G(r)

2 : c1 = t

3 : c2 ← F1(k1{t∗}, t)⊕msg

4 : c3 ← F2(k2{t∗∥0, t∗∥1}, c1∥c2)
5 : return c = (c1, c2, c3)

changes to

Figure 7.3: Highlighting of the differences between the procedures CCA-PKE-Encrypt and
CCA-PKE-Encrypt∗. The procedures only differ in the puncturings of keys k1
and k2.

In hybrid game Hyb4 we continue changing parts of the challenge c∗ with randomness.
The second part of the challenge c∗3 is replaced with a randomly chosen value, in place of
the original value F2(k2, c

∗
1∥c∗2) = F2(k2, t

∗∥c∗2). This modification is also made for the de-
cryption oracle of A. From the security of the PPRF F2 we then get that Hyb4 is negligibly
close to Hyb3.
Lastly, in hybrid game Hyb5, we further replace the value of c∗2 with a randomly chosen

82

7.2 Subversion-Resilient, CCA-Secure Encryption

z∗ ∈ {0, 1}. The security of the PPRF F1 guarantees us that Hyb5 is negligibly close in
advantage to Hyb4. Further, any challenge c∗ in Hyb5 only contains random values, mean-
ing no information on b is disclosed to A. It then follows that the advantage in hybrid
game Hyb5 must be 0, as A can do nothing but guess at random. When we now assume
the worst case advantage gain in each hybrid step, then each step adds negl(λ) to the cu-
mulative advantage. However, for the original IND-CCA game, we can then describe the
adversaries advantage with

AdvIND-CCA
A,E (λ) = Adv

Hyb0
A,E (λ)

≤ Adv
Hyb5
A,E (λ) +

4∑
i=0

∣∣∣AdvHybiA,E (λ)− Adv
Hybi+1

A,E (λ)
∣∣∣

≤ 0 + negl(λ) + negl(λ) + negl(λ) + negl(λ) + negl(λ)

= 5 · negl(λ) = negl(λ) .

As the adversary was chosen arbitrary it then follows that the insecurity of the encryp-
tion scheme in the IND-CCA game is also negligible, finishing the proof from Sahai and
Waters. For the subversion-analysis, we will need to reconstruct this proof from different
security guarantees. Sahai and Waters use the standard cryptographic security guaran-
tees, however, as we will work on possibly subverted primitives, we can not be sure that
standard security holds. Instead, we will need to source the security of the scheme from
the subversion-resilience of its parts.
To finalize our proof that the Sahai and Waters construction is an IND-CCA-secure encryp-
tion scheme under subversion, we will need to show two things. First, we will need to
show that each of the three algorithms composing the scheme is on their own subversion-
resilient. Afterwards, we will need to show that we still achieve IND-CCA-security, even
when we can only source our security from the subversion-resilience. For this, we will
work in the trusted amalgamation with split programming model, as the two models are
a tried and proven framework for realistic subversion-analysis.
We will prove both steps in the next section.

7.2 Subversion-Resilient, CCA-Secure Encryption

In this section we will construct the first subversion-resilient IND-CCA-secure encryption
scheme. As stated in the last section, there are two steps that we need to prove. First, we
need to show that all individual algorithms of the construction are subversion-resilient.
Afterwards, we then need to show that we do not break the security proof by sourcing the
security from the subversion-resilience of its parts rather than standard security assump-

83

7 Constructing a Subversion-Resilient, CCA-Secure Encryption Scheme

tions.
As mentioned before, throughout this section we will work exclusively in the trusted
amalgamation with split programming model. The trusted amalgamation model pro-
vides an amalgamation function Am, which we can leverage to force algorithms to follow
their specification. The amalgamation function Am can be understood as gluing together
blocks of code and forcing them to be executed in fixed order [RTYZ16, RTYZ17]. The
split programming model then provides an additional framework in which constructions
are allowed to be broken down into a fixed amount of subprocedures, which all can be
checked for subversions individually. Further, using trusted amalgamation and split pro-
gramming we can also guarantee a non-subverted source of good randomness, as Russel
et al. showed in [RTYZ16].
We can now start with the first of our two steps, showing that there exist subversion-
resilient variants for the three algorithms Setup, Encrypt and Decrypt of the Sahai and Wa-
ters construction. We start with the Setup construction.

Lemma 7.1.
Let iO be a subversion-resilient indistinguishability obfuscation scheme and F1, F2 be
subversion-resilient PPRF. Then algorithm Setup is subversion-resilient in the trusted amal-
gamation with split programming model.

Proof. Setup works by first calculating two keys for the PPRFs F1 and F2. By assumption,
F1 and F2 are subversion-resilient, thus each generation of a punctured key must also be
subversion-resilient. Otherwise, you could break the subversion-resilience of F1 and F2

by only using subverted keys. Combining the keys to sk is assumed a secure operation
and thus subversion-resilient as well.
Next, the public key is built by obfuscating the function CCA-PKE-Encrypt. As CCA-PKE-
Encrypt is structurally fixed before execution of Setup, and is only modified by adding the
two generated punctured keys, any subversion can only be introduced by the obfuscation
itself. However, as iO is assumed subversion-resilient, the resulting obfuscation pk must
be subversion-resilient as well.
Combining sk and pk is, again, done using an assumed secure operation. Any individual
operation is thus subversion-resilient. Further, using an amalgamation function Am in the
split programming model then guarantees us that these operations are executed in the
correct order.
It follows, that Setup is subversion-resilient. □

We have shown that there exists a subversion-resilient construction of Setup, assum-

84

7.2 Subversion-Resilient, CCA-Secure Encryption

ing subversion-resilient iO and PPRF exist. In Chapter 5 we showed how to construct
subversion-resilient iO and in Chapter 6 how to construct subversion-resilient PPRF,
meaning this construction is sound. We continue with the proof for Encrypt.

Lemma 7.2.
Let G be a subversion-resilient PRG, iO be a subversion-resilient indistinguishability obfuscation
scheme and F1, F2 be subversion-resilient PPRF. Assuming there exist secure concatenation and
xor operations, then algorithm Encrypt is subversion-resilient in the trusted amalgamation with
split programming model.

Proof. The algorithm Encrypt works by first sampling a random value r and then executing
pk on said randomness and a message msg. From the split programming model we know
that we can securely sample good randomness, so generating r is subversion-resilient. The
public key pk is a subversion-resilient obfuscation, meaning on execution its subversion-
resilience reduces to the subversion-resilience of the obfuscated program. In this case, this
is CCA-PKE-Encrypt.
CCA-PKE-Encrypt works by calling a pseudorandom generator G once on the provided
randomness r. Afterwards a ciphertext is constructed by using secure operations and
calling the two PPRFs F1 and F2. We know G,F1 and F2 to be subversion-resilient by as-
sumption, meaning the only attack vector against the result would be to maliciously mod-
ify the control flow of the program. However, as we work in the trusted amalgamation
model, we assume that the program is glued together, meaning when CCA-PKE-Encrypt is
called its control flow can not be changed.
The execution of pk to generate c is thus subversion-resilient. Using the trusted amalga-
mation function Am to fix the control flow of Encrypt itself then yields that Encrypt itself is
subversion-resilient as well. □

We have shown that there exists a subversion-resilient construction of Encrypt, assuming
subversion-resilient PRG, iO and PPRF. Note that subversion-resilient variants of these
three cryptographic primitives have been shown by us to exist in Chapters 5 and 6. Fur-
ther note that our proof heavily relies on us working in the amalgamation model. If we do
not guarantee a fixed control flow, then attacks like rejection sampling could easily break
any subversion-resilience guarantees.
As an example, the output c1 is directly sourced from a subversion-resilient PRG. An at-
tacker that is allowed to rejection sample on pk would then be able to construct a stegano-
graphic channel similar to the construction we showed in the proof of Lemma 6.5. Prior,

85

7 Constructing a Subversion-Resilient, CCA-Secure Encryption Scheme

we fixed the existence of this steganographic channel by rerandomizing the PRG output
before usage. Note that we are unable to do so in Encrypt without breaking the soundness
of the resulting ciphertext.
We end the first step by showing that the construction of Decrypt is subversion-resilient
under sound assumptions.

Lemma 7.3.
Let F1, F2 be subversion-resilient PPRF. Assuming there exist secure compare, concatenation
and xor operations, then algorithm Decrypt is subversion-resilient in the trusted amalgamation
with split programming model.

Proof. Decrypt works internally by only evaluating subversion-resilient PPRFs and using
assumed secure operations on their output. Each individual step is thus subversion-
resilient under our assumptions. Using an amalgamation function Am in the split pro-
gramming model then further guarantees us that these steps are executed once in the
correct order.
It follows then that Decrypt is subversion-resilient. □

We have shown that there exists a subversion-resilient construction of Decrypt, assuming
subversion-resilient PPRF. With this, we have shown that not only are there subversion-
resilient variants of all three algorithms used in the Sahai and Waters construction, but
they only rely on cryptographic primitives for which we have shown that subversion-
resilient constructions exist. With this, we finished the first of the two steps. It remains to
show that we can still leverage the subversion-resilience to achieve a negligible advantage
in the IND-CCA-security game. We will show just that in the following Theorem 7.4.

Theorem 7.4.
Let G be a subversion-resilient PRG, iO be a subversion-resilient indistinguishability obfusca-
tion scheme and F1, F2 be subversion-resilient PPRF. Assuming there exist secure compare,
concatenation and xor operations, then the Sahai and Waters construction for IND-CCA-secure
encryption is subversion-resilient in the trusted amalgamation with split programming model.

Proof. Let E = (Setup,Encrypt,Decrypt) describe the encryption scheme from the Sahai
and Waters construction. We want to show that E is IND-CCA-secure under subversion.
As we work in the subversion setting we assume all used algorithms and cryptographic

86

7.2 Subversion-Resilient, CCA-Secure Encryption

primitives to be subverted. As such, we can not source security guarantees directly from
standard assumptions, but rather need to source them from subversion-resilience instead.
Our goal is then to reconstruct the logic chain of the original IND-CCA-security proof with
our changed source of security.
When building a security proof from subversion-resilience we need to be sure that we only
use subversion-resilient building blocks. As we work in the trusted amalgamation with
split programming model, we are provided with a set of subroutines which were used
when building E . This set consists of the three algorithms Setup,Encrypt and Decrypt,
as well as the implementations of the cryptographic primitives used in the algorithms,
namely G, iO, F1 and F2. By assumptions, we know G, iO, F1 and F2 to be subversion-
resilient and from Lemma 7.1, 7.2 and 7.3 we know that the three algorithms building E
are under our assumptions subversion-resilient as well.
This means there exist watchdogs Wa for all subprocedures of E that either detect subver-
sions or guarantee that any subversion has only a negligible probability of being success-
fully exploited. To guarantee that we only use secure building blocks we can then build
a watchdog WaE for the encryption scheme E that executes the watchdogs for all of the
subprocedures. If any watchdog triggers, meaning they can not guarantee subversion-
resilience, WaE triggers as well and stops the execution of E immediately. Conversely, if
no watchdog detects a subversion, then WaE accepts the implementation and allows E to
continue. As we only execute E when none of the watchdogs fails, we then know that we
only work with subversion-resilient building blocks.
We can now reconstruct the original IND-CCA-security proof from Sahai and Waters in
the subversion setting. For this, we will show that the hybrid games Hybi and Hybi+1 are
still pairwise negligibly close for i ∈ {0, 1, 2, 3, 4} under subversion. Afterwards, we show
that the advantage of Hyb5, AdvHyb5A,E (λ), must still be 0 in the subversion setting. This then
proves IND-CCA-security under subversion.

Game Hop 1: Hyb0 to Hyb1
In the first game hop from Hybrid Hyb0 to Hyb1, the generation of t∗ is switched from a
subversion-resilient PRG G to a uniformly random sample. The value of t∗ is returned
as part of the challenge cipher, namely c∗1. Let us now assume that the two games are not
negligibly close, meaning there exists a distinguisher D with non-negligible advantage

AdvdistD,Hyb0,Hyb1
(λ) =

∣∣∣AdvHyb0A,E (λ)− AdvHyb1A,E (λ)
∣∣∣ .

The existence of D now directly imply a steganographic channel using G. An adversary
A sends either outputs of G for a 0 or randomness for a 1. The receiver is now able to
reconstruct the message using distinguisher D by simulating E . For a given challenge r,

87

7 Constructing a Subversion-Resilient, CCA-Secure Encryption Scheme

the receiver constructs c∗ with c∗1 = r and provides this as input to D. If r is the output
of G, the distinguisher outputs Hyb0, otherwise Hyb1, thereby breaking the subversion-
resilience of G. As we assume G to be subversion-resilient, our assumption must have
been wrong.
Thus, the hybrid games Hyb0 and Hyb1 must be negligibly close in advantage.

Game Hop 2: Hyb1 to Hyb2
In the second game hop from Hybrid Hyb1 to Hyb2 we only modify the decryption
oracle of A in phase 1, meaning before A receives c∗. We do not answer decryption
queries where c1 = c∗1. Note, thatA trivially detects such a modification in phase 2 after
receiving c∗. However, in phase 1 the adversary only detects this change, if and only if
they query the oracle exactly with c1 = c∗1. We allow any given adversary A to query
the decryption oracle q(λ) times, where q(λ) is some polynomial. Thus, A detects the
modification with probability q(λ)

2λ
= negl(λ).

The games must then be negligibly close in advantage.

Game Hop 3: Hyb2 to Hyb3
In the third game hop from Hybrid Hyb2 to Hyb3 we switch out the program obfuscation
of CCA-PKE-Encrypt against the obfuscation of CCA-PKE-Encrypt∗. The only difference
is that the new program has punctured out values in the used keys, namely t∗ for k1
and t∗∥0 and t∗∥1 for k2. Note that the two programs thus only differ in execution if the
generated value t is equal to t∗.
However, with overwhelming probability, the value t∗ is not part of the image of G, as G
only maps 2λ of the 22λ values t∗ could have been chosen from. This means that, with
almost certainty, the punctured values can never naturally occur in the obfuscation. It
follows then that, even though F1 and F2 are defined differently, with overwhelming
probability, the two programs behave identically. We are thus allowed to swap out the
two programs without violating the conditions for iO.
It remains to show that the two games are negligibly close in advantage. For that, let us
now assume the inverse, namely that there exists a distinguisher D with non-negligible
advantage

AdvdistD,Hyb2,Hyb3
(λ) =

∣∣∣AdvHyb2A,E (λ)− AdvHyb3A,E (λ)
∣∣∣ .

The existence of D now directly implies a steganographic channel using iO. An adver-
saryA uses either the obfuscation of CCA-PKE-Encrypt to send a 0 or CCA-PKE-Encrypt∗

to send a 1. The receiver is now able to reconstruct the message using distinguisher D
by simulating E . For a given challenge ch, the receiver simulates E and provides ch

as the challenge cipher to D. If ch is the output of CCA-PKE-Encrypt, the distinguisher
outputs Hyb2, otherwise Hyb3, thereby breaking the subversion-resilience of iO. As we

88

7.2 Subversion-Resilient, CCA-Secure Encryption

assume iO to be subversion-resilient, our assumption must have been wrong.
The two hybrid games must thus be negligibly close in advantage.

Game Hop 4: Hyb3 to Hyb4
In the fourth game hop from Hyb3 to Hyb4 we replace the evaluation of F2(k2, t

∗∥0) and
F2(k2, t

∗∥1) with randomly chosen values. Note that at this point t∗ is, following our
initial game hop from Hyb0 to Hyb1, chosen at random and thus outside of the attackers
control. Further note that one of these two values will be part of the challenge c∗, while
the other can only be part of a phase 2 oracle query.
Assume now that there exists a distinguisher with non-negligible advantage

AdvdistD,Hyb3,Hyb4
(λ) =

∣∣∣AdvHyb3A,E (λ)− AdvHyb4A,E (λ)
∣∣∣ .

The existence of D then directly implies a steganographic channel using F2. An adver-
saryA samples t∗ and sends it either in combination with r = F2(k2, t

∗∥b) to send a 0 or
r∗ ←$ {0, 1}λ to send a 1. The receiver is now able to reconstruct the message using dis-
tinguisher D by simulating E . When the receiver gets the two values they construct c∗

from it with c1 = t∗ and c3 = r and provide it as input to D. Depending on the input, D
either outputs Hyb3 or Hyb4, breaking the subversion-resilience of F2. As we assume F2

to be subversion-resilient, our assumption must have been wrong.
The games must thus be negligibly close in advantage.

Game Hop 5: Hyb4 to Hyb5
In the last game hop from Hyb4 to Hyb5 we swap the output of F1(k1, t

∗) ⊕ msg with a
random bit. With functionally the same argument as in the last game hop there can not
be a distinguisher D between Hyb4 and Hyb5, as this D would allow for a steganographic
channel using F1, breaking its subversion-resilience.
The games Hyb4 and Hyb5 must then, again, be negligibly close in advantage.

With this we showed that each two consequitive hybrid games are negligibly close to each
other. From this we get that we can bound the advantage of the IND-CCA game under
subversion with

Advsub-res IND-CCA
A,E (λ) = Adv

Hyb0
A,E (λ)

≤ Adv
Hyb5
A,E (λ) +

4∑
i=0

∣∣∣AdvHybiA,E (λ)− Adv
Hybi+1

A,E (λ)
∣∣∣

≤ Adv
Hyb5
A,E (λ) + 5 · negl(λ) .

Note now that Hyb5 provides a challenge element c∗ = (c∗1, c
∗
2, c
∗
3) = (t∗, z∗, w∗) with

89

7 Constructing a Subversion-Resilient, CCA-Secure Encryption Scheme

t∗ ←$ {0, 1}2λ, z∗ ←$ {0, 1} and w∗ ←$ {0, 1}λ. As each element in c∗ is sampled uni-
formly random, this means that the challenge cipher conveys no information about msg.
Further, as the split-programming model guarantees us a secure source of randomness,
we additionally know that none of the values contain a subversion. This means there can
be no adversary with advantage, meaning Adv

Hyb5
A,E (λ) = 0. It then follows that

Advsub-res IND-CCA
A,E (λ) ≤ Adv

Hyb5
A,E (λ) + 5 · negl(λ)

= 0 + 5 · negl(λ) = negl(λ) .

With this we have shown that the Sahai and Waters construction for IND-CCA-secure
encryption from iO is subversion-resilient under our assumptions. □

With this we finished the second step of our proof as well. With this we have shown that
the Sahai and Waters construction is not only constructable under subversion, but it keeps
its IND-CCA-security guarantees. With this, we have not only shown that IND-CCA-
security is achievable under subversion, but also achieved our goal of providing a first
construction for it. In the next chapter we conclude our findings and discuss some possible
future works.

90

8 Conclusions

Throughout this thesis, we have shown the first construction of subversion-resilient
IND-CCA-secure encryption as well as subversion-resilient constructions for the necessi-
tated cryptographic primitives. We use this chapter to summarize our results along the
research questions defined in Chapter 3. For each question, we state a fitting research an-
swer shortly describing the results we achieved. Afterwards, we discuss possible interests
of future research in this field.

8.1 Summary

In Chapter 3, we laid out the five research questions of interest to this thesis. For each of
them, we defined a goal to reach and provided a short paragraph describing our methods
to achieve said goal. In Research Question 1, we asked whether we can show a deeper
relation between auditable obfuscation and subversion-resilience. As stated beforehand,
we can now positively answer this question with our results from Chapter 4:

Research Answer 1 (On Auditable Obfuscation and Subversion-Resilience).
We have shown a deeper relation between auditable obfuscation and subversion-
resilience as auditable obfuscation is an edge-case of subversion-resilience, wherein ma-
licious obfuscation models algorithm substitution attacks against the program class of
obfuscation schemes.

Our proof heavily relies on the results from Berndt and Liśkiewicz in [BL17], adapting
their results of algorithm substitution attacks being equivalent to the steganographic set-
ting on a certain type of channel into the obfuscation setting.
Research Question 2 asked whether a relation between indistinguishability obfuscation
and AO and, if so, could be leveraged to construct subversion-resilient iO. We were able
to sufficiently analyze the relation between the two primitives and can thus answer the
question using our results from Chapter 5.

91

8 Conclusions

Research Answer 2 (On Subversion-Resilient Indistinguishability Obfuscation).
We have shown that indistinguishability obfuscation can be constructed from auditable
obfuscation while maintaining its auditability. By leveraging that the constructed iO
scheme is just auditable obfuscation acting on a subset of its domain, we were able to
prove that subversion-resilient indistinguishability obfuscation is achievable.

This result was mostly achieved through proof by construction, as we were able to lever-
age the inherent similarity between AO and iO definitions.
In Research Question 3, we asked if constructing subversion-resilient PRGs is possible. We
investigated this in Section 6.1 of Chapter 6 and can now answer as follows:

Research Answer 3 (Subversion-Resilient Pseudorandom Generators).
We demonstrated that subversion-resilient PRGs can be constructed. Furthermore, we
have shown that any PRG sufficing the standard cryptographic indistinguishability
game for PRGs inherently is subversion-resilient.

Our proof followed a similar idea as the works of Bemmann et al. in [BBD+23], realiz-
ing that the security game for PRGs is similar in construction to that of weak-PRFs. This
allowed us to adapt Bemmann et al.’s proof of weak-PRFs inherently being subversion-
resilient to PRGs. We further realized that their subversion-resilience proof of the Naor-
Reingold PRF construction from weak-PRFs [NR95] can similarly be adapted to show that
the GGM construction of PRFs from PRGs [GGM86] is subversion-resilient as well. We
proved this in Section 6.2.
As our penultimate goal, we asked about the possibility of constructing subversion-
resilient PPRFs in Research Question 4. We reply to this question with our results from
Section 6.3:

Research Answer 4 (Subversion-Resilient Punctured Pseudorandom Functions).
We have shown that subversion-resilient punctured PRFs are achievable, but only under
a strict set of assumptions. We have further proven that more relaxed assumptions al-
ways allow for an adversary to leverage the puncturing of the PPRF as a steganographic
channel.

92

8.2 Discussion and Future Works

We started the section on PPRFs using minimal limitations on the adversary and itera-
tively restricted them as long as we were still able to construct a steganographic channel.
While we were able to achieve subversion-resilient PPRFs in the end, we were only able
to do so under very strict assumptions.
Lastly, Research Question 5 asked whether we could use the Sahai and Waters construc-
tion to achieve a subversion-resilient IND-CCA-secure encryption scheme. We can posi-
tively answer this question using our results from Chapter 7.

Research Answer 5 (On Subversion-Resilient IND-CCA-Secure Encryption).
We have shown that the Sahai and Waters construction can be used to construct a
subversion-resilient IND-CCA-secure encryption scheme in the trusted amalgamation
with split programming model.

This was achieved leveraging the results of the prior chapters in combination with the
trusted amalgamation and split-program model. Our proof follows the original security
proof in [SW14], but uses subversion-resilience as its source for security.
We were thus able to positively answer all of our research questions, most of them ex-
haustively, even. In the next section, we discuss where future works can build upon our
results, as well as the few statements we left as open remarks.

8.2 Discussion and Future Works

Our results provide the groundwork for future research to build upon. We showed
that auditable obfuscation is subversion-resilient, AO implies subversion-resilient iO,
subversion-resilient PRG and subversion-resilient PPRF being achievable, and provided
the first subversion-resilient construction of IND-CCA-secure encryption. Each of these is
a firm point for future work to continue from.
While we did show that auditable obfuscation describes subversion-resilience over ob-
fuscation schemes, we did not further analyze the primitive. As stated multiple times
throughout this thesis, auditable obfuscation still is a rather new concept and should be
held up to scrutiny. As such, a deeper dive into auditable obfuscation and its soundness
as a cryptographic primitive could be of interest for future works.
For indistinguishability obfuscation, we see three main points of interest. The first, as
mentioned in Chapter 5, we can not completely dismiss that some special cases of iO
imply AO. We shortly discuss this in Appendix A, but see potential in further research.
Secondly, we only showed that subversion-resilient iO exists under assumption of AO.

93

8 Conclusions

There might be ways of constructing subversion-resilient iO from weaker assumptions.
Trying to find further constructions seems to be a promising avenue of future research
to us. Lastly, as iO is quite versatile in usage, the proof of subversion-resilient iO exist-
ing has created opportunities of proving a multitude of novel subversion-resilient con-
structions for other cryptographic primitives. Examples include the other constructions
from [SW14], such as universal deniable encryption, key encapsulation mechanisms and
non-interactive zero-knowledge proofs, or the construction of full-domain hashes from
iO in [HSW14]. More recently Coladangelo and Gunn [CG24] applied iO to quantum
problems; Wang et al. [WWZ25], used iO to build homomorphic witness encryption; and
Zhang et al. [ZHZ+24] employed iO to achieve self-bilinear maps.
Lastly, while we did show that subversion-resilient IND-CCA-secure encryption is pos-
sible, we only achieved such a scheme for 1-bit messages. Further research could be
focused on either improving our construction or building a more efficient subversion-
resilient IND-CCA-secure encryption scheme. The key encapsulation mechanisms (KEM)
of Sahai and Waters seem to be a promising option, as they can be extrapolated to create
an IND-CCA-secure encryption scheme for arbitrary long messages.

94

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-
resilient signature schemes. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15, page 364–375, New York,
NY, USA, 2015. Association for Computing Machinery.

[AMV20] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-
resilient signatures: Definitions, constructions and applications. Theoretical
Computer Science, 820:91–122, 2020.

[And96] Ross J. Anderson. Stretching the limits of steganography. In Proceedings of the
First International Workshop on Information Hiding, page 39–48, Berlin, Heidel-
berg, 1996. Springer-Verlag.

[AP22] Marcel Armour and Bertram Poettering. Algorithm substitution attacks
against receivers. International Journal of Information Security, 21(5):1027–1050,
Oct 2022.

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and
Amit Sahai. Obfuscation for evasive functions. In Yehuda Lindell, editor,
Theory of Cryptography, pages 26–51, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[BBC24] Pascal Bemmann, Sebastian Berndt, and Rongmao Chen. Subversion-resilient
signatures without random oracles. In Christina Pöpper and Lejla Batina, ed-
itors, Applied Cryptography and Network Security, pages 351–375, Cham, 2024.
Springer Nature Switzerland.

[BBD+23] Pascal Bemmann, Sebastian Berndt, Denis Diemert, Thomas Eisenbarth, and
Tibor Jager. Subversion-resilient authenticated encryption without random
oracles. In Mehdi Tibouchi and XiaoFeng Wang, editors, Applied Cryptography
and Network Security, pages 460–483, Cham, 2023. Springer Nature Switzer-
land.

95

References

[BBG13] James Ball, Julian Borger, and Glenn Greenwald. Revealed: how us and uk
spy agencies defeat internet privacy and security. The Guardian, Sep. 2013.

[BCJ21] Pascal Bemmann, Rongmao Chen, and Tibor Jager. Subversion-resilient pub-
lic key encryption with practical watchdogs. In Public-Key Cryptography –
PKC 2021: 24th IACR International Conference on Practice and Theory of Pub-
lic Key Cryptography, Virtual Event, May 10–13, 2021, Proceedings, Part I, page
627–658, Berlin, Heidelberg, 2021. Springer-Verlag.

[Ber14] Nick Berry. Impossible escape? https://datagenetics.com/blog/

december12014/index.html, Dec 2014.

[Ber18] Sebastian Berndt. New Results on Feasibilities and Limitations of Provable Secure
Steganography. Phd thesis, University of Lübeck, October 2018.

[BG23] Shalini Banerjee and Steven D. Galbraith. Auditable obfuscation. Cryptology
ePrint Archive, Paper 2023/1476, 2023.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, pages 1–18, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sa-
hai, Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating pro-
grams. J. ACM, 59(2), may 2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Proceedings of the 17th International Conference
on Public-Key Cryptography — PKC 2014 - Volume 8383, page 501–519, Berlin,
Heidelberg, 2014. Springer-Verlag.

[BGJS16] Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. Ver-
ifiable functional encryption. In Proceedings, Part II, of the 22nd International
Conference on Advances in Cryptology — ASIACRYPT 2016 - Volume 10032, page
557–587, Berlin, Heidelberg, 2016. Springer-Verlag.

[BL17] Sebastian Berndt and Maciej Liśkiewicz. Algorithm substitution attacks from
a steganographic perspective. CoRR, abs/1708.06199, 2017.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudorandom bits. SIAM Journal on Computing, 13(4):850–864,
1984.

96

https://datagenetics.com/blog/december12014/index.html
https://datagenetics.com/blog/december12014/index.html

References

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of sym-
metric encryption against mass surveillance. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014, pages 1–19, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and
a framework for code-based game-playing proofs. In Proceedings of the
24th Annual International Conference on The Theory and Applications of Crypto-
graphic Techniques, EUROCRYPT’06, page 409–426, Berlin, Heidelberg, 2006.
Springer-Verlag.

[BV16] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation:
From approximate to exact. In Eyal Kushilevitz and Tal Malkin, editors, The-
ory of Cryptography, pages 67–95, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In Kazue Sako and Palash Sarkar, editors, Advances in Cryp-
tology - ASIACRYPT 2013, pages 280–300, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[Cac04] Christian Cachin. An information-theoretic model for steganography. Infor-
mation and Computation, 192(1):41–56, 2004.

[CCK+22] Ran Canetti, Suvradip Chakraborty, Dakshita Khurana, Nishant Kumar, Ox-
ana Poburinnaya, and Manoj Prabhakaran. Coa-secure obfuscation and ap-
plications. In Advances in Cryptology – EUROCRYPT 2022: 41st Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, May 30 – June 3, 2022, Proceedings, Part I, page 731–758,
Berlin, Heidelberg, 2022. Springer-Verlag.

[CG24] Andrea Coladangelo and Sam Gunn. How to use quantum indistinguishabil-
ity obfuscation. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, STOC 2024, page 1003–1008, New York, NY, USA, 2024. Associa-
tion for Computing Machinery.

[CHY20] Rongmao Chen, Xinyi Huang, and Moti Yung. Subvert kem to break dem:
Practical algorithm-substitution attacks on public-key encryption. In Ad-
vances in Cryptology – ASIACRYPT 2020: 26th International Conference on the
Theory and Application of Cryptology and Information Security, Daejeon, South Ko-

97

References

rea, December 7–11, 2020, Proceedings, Part II, page 98–128, Berlin, Heidelberg,
2020. Springer-Verlag.

[CMMV25] Suvradip Chakraborty, Lorenzo Magliocco, Bernardo Magri, and Daniele
Venturi. Key exchange in the post-snowden era: Universally composable
subversion-resilient pake. In Kai-Min Chung and Yu Sasaki, editors, Advances
in Cryptology – ASIACRYPT 2024, pages 101–133, Singapore, 2025. Springer
Nature Singapore.

[CMNV22] Suvradip Chakraborty, Bernardo Magri, Jesper Buus Nielsen, and Daniele
Venturi. Universally composable subversion-resilient cryptography. In Ad-
vances in Cryptology – EUROCRYPT 2022: 41st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway,
May 30 – June 3, 2022, Proceedings, Part I, page 272–302, Berlin, Heidelberg,
2022. Springer-Verlag.

[CV09] Ran Canetti and Mayank Varia. Non-malleable obfuscation. In Proceedings of
the 6th Theory of Cryptography Conference on Theory of Cryptography, TCC ’09,
page 73–90, Berlin, Heidelberg, 2009. Springer-Verlag.

[DFP15] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cau-
tious approach to security against mass surveillance. In Gregor Leander, edi-
tor, Fast Software Encryption, pages 579–598, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[FM18] Marc Fischlin and Sogol Mazaheri. Self-guarding cryptographic protocols
against algorithm substitution attacks. In 2018 IEEE 31st Computer Security
Foundations Symposium (CSF), pages 76–90, 2018.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions, volume 33, page 792–807. Association for Computing Machinery,
New York, NY, USA, aug 1986.

[GJLS21] Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishabil-
ity obfuscation from simple-to-state hard problems: New assumptions, new
techniques, and simplification. In Advances in Cryptology – EUROCRYPT 2021:
40th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part III,
page 97–126, Berlin, Heidelberg, 2021. Springer-Verlag.

[GR14] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. J.
Cryptol., 27(3):480–505, jul 2014.

98

References

[HMLS07] Dennis Hofheinz, John Malone-Lee, and Martijn Stam. Obfuscation for cryp-
tographic purposes. In Proceedings of the 4th Conference on Theory of Cryptogra-
phy, TCC’07, page 214–232, Berlin, Heidelberg, 2007. Springer-Verlag.

[HRSV11] Susan Hohenberger, Guy N. Rothblum, Abhi Shelat, and Vinod Vaikun-
tanathan. Securely obfuscating re-encryption. J. Cryptol., 24(4):694–719, oct
2011.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random or-
acle: Full domain hash from indistinguishability obfuscation. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology – EURO-
CRYPT 2014, pages 201–220, Berlin, Heidelberg, 2014. Springer Berlin Hei-
delberg.

[HvAL09] Nicholas Hopper, Luis von Ahn, and John Langford. Provably secure
steganography. IEEE Transactions on Computers, 58(5):662–676, 2009.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2021, page 60–73, New
York, NY, USA, 2021. Association for Computing Machinery.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Sec-
ond Edition. Chapman & Hall/CRC, 2nd edition, 2014.

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon
Yogev. One-way functions and (im)perfect obfuscation. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science, pages 374–383, 2014.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, CCS ’13, page 669–684, New York, NY, USA, 2013. Association for
Computing Machinery.

[LCW+25] Jiahao Liu, Rongmao Chen, Yi Wang, Xincheng Tang, and Jinshu Su.
Subversion-resilient authenticated key exchange with reverse firewalls. In
Joseph K. Liu, Liqun Chen, Shi-Feng Sun, and Xiaoning Liu, editors, Prov-
able and Practical Security, pages 181–200, Singapore, 2025. Springer Nature
Singapore.

99

References

[LPS04] Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and
techniques for obfuscation. In Christian Cachin and Jan L. Camenisch, edi-
tors, Advances in Cryptology - EUROCRYPT 2004, pages 20–39, Berlin, Heidel-
berg, 2004. Springer Berlin Heidelberg.

[MSD15] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse fire-
walls. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015, pages 657–686, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[NR95] M. Naor and O. Reingold. Synthesizers and their application to the parallel
construction of pseudo-random functions. In Proceedings of IEEE 36th Annual
Foundations of Computer Science, pages 170–181, 1995.

[RTYZ16] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptog-
raphy: Clipping the power of kleptographic attacks. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016, pages
34–64, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[RTYZ17] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic
semantic security against a kleptographic adversary. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,
page 907–922, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[Sha07] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Sabrina De Capitani di Vimer-
cati and Paul Syverson, editors, Proceedings of CCS 2007, pages 552–61. ACM
Press, oct 2007.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In Proceedings of the Forty-Sixth Annual ACM
Symposium on Theory of Computing, STOC ’14, page 475–484, New York, NY,
USA, 2014. Association for Computing Machinery.

[Wig19] Avi Wigderson. Mathematics and Computation - A Theory Revolutionizing Tech-
nology and Science. Princeton University Press, Princeton, 2019.

[WWZ25] Yuzhu Wang, Xingbo Wang, and Mingwu Zhang. Homomorphic witness
encryption and its applications. International Journal of Network Management,
35(1):e2303, 2025. e2303 nem.2303.

100

References

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified mea-
sure of complexity. In 18th Annual Symposium on Foundations of Computer Sci-
ence (sfcs 1977), pages 222–227, 1977.

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. In 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982), pages 80–91, 1982.

[YLL+25] Xiaodong Yang, Xilai Luo, Zefan Liao, Wenjia Wang, Xiaoni Du, and Shudong
Li. A cp-abe-based access control scheme with cryptographic reverse firewall
for iov. Journal of Systems Architecture, 160:103331, 2025.

[YY97] Adam Young and Moti Yung. Kleptography: using cryptography against
cryptography. In Proceedings of the 16th Annual International Conference on The-
ory and Application of Cryptographic Techniques, EUROCRYPT’97, page 62–74,
Berlin, Heidelberg, 1997. Springer-Verlag.

[ZGL20] Yuyang Zhou, Jing Guo, and Fagen Li. Certificateless public key encryp-
tion with cryptographic reverse firewalls. Journal of Systems Architecture,
109:101754, 2020.

[ZHZ+24] Huang Zhang, Ting Huang, Fangguo Zhang, Baodian Wei, and Yusong Du.
Self-bilinear map from one way encoding system and io. Information, 15(1),
2024.

101

A From Indistinguishability Obfuscation to Auditable
Obfuscation

In Chapter 4.1, we showed that any auditable obfuscation scheme can be instantiated
in such a way that it also behaves as an indistinguishability obfuscation scheme for all
programs P ∈ Iλ. We did so by proving that simply running AO on implementations
for one singular P ∈ I constitutes a subversion-resilient indistinguishability obfuscation
scheme.
However, did not answer whether we could construct an AO scheme from iO. While this
does not seem to be the case at first glance, as we do not force the verifiability property in
iO, this is not argued as easily as one might think.
Let us provide an example case in which this argumentation seems to reach its limits. Let
iO be a secure indistinguishability obfuscator over a set of implementations I = {P} and
MO a malicious obfuscation scheme on iO. Let us now, without loss of generality, assume
that MO wants to embed two different triggers, depending on whether the underlying
implementation fulfills some kind of easily evaluated predicate P or not.
Next, consider two implementations I0, I1 ∈ I, where P[I0] = 0 and P[I1] = 1, in which
MO wants to embed different triggers. However, any embedding by MO can also be
understood as an honest obfuscation of a program that already possessed the introduced
trigger. As such,MO now technically constructs obfuscations of two different programs
that should be indistinguishable from the output of iO.
However, iO does not guarantee any indistinguishability for obfuscations of differ-
ing programs. This means that, at most, one of the results MO.Emb(aux, I0, ok) and
MO.Emb(aux, I1, ok) can generally be indistinguishable from normal outputs of iO. Oth-
erwise, iO could obfuscate more than one type of program, which we generally assume
to be false.
For this rather artificial example, we can now easily create an auditor Au that simply
samples two implementations, one that fulfills P and one that does not. If the auditor can
distinguish between the two obfuscation, the underlying scheme is malicious.
While we do not formally prove that this auditor Au has a non-negligible probability of
success, we do consider this example evident enough to not give a conclusive judgment
on the original statement. As such, we also consider it worthwhile to further investigate
whether indistinguishability obfuscation provides some inherent defenses against some
classes of malicious obfuscation.

1

B Efficient Encodings for puncturing-based Stegosystems

In Chapter 6.3 we showed how to use the puncturing of a PPRF to create a steganographic
channel. For our proof, we restricted ourselves to a simple 1-bit channel that either sends
a 0 or a 1 per each puncturing set. We also restricted ourselves to use only one punctur-
ing position per instantiation. However, in general, the described setting allows for an
arbitrary large set punc, meaning we can find exponentially better message encodings. We
will discuss four such possibilities in this appendix.

Efficiently Encoding Messages with Arbitrary Puncture-Sets at Fixed Depth

Let us assume that we have a user-defined puncturable PRF F that can be arbitrarily punc-
tured at depth ℓ. Layer ℓ consists of 2ℓ nodes, which can either be punctured or not. For
our original channel construction we only punctured one single node and took their posi-
tion i mod 2 as the resulting message. However, generally speaking, there is nothing that
stops us from puncturing more positions. We can then leverage this to achieve a trivial
encoding, where each position corresponds to a bit in the message, meaning we can send
up to 22

ℓ
messages.

For example, let us use ℓ = 3. This means there are 8 nodes which we can either puncture
or not. We can now send an arbitrary message msg ∈ {0, 1}8. The following Figure B.1
shows just such an encoding for msg = 01000110, the ASCII-Encoding of the letter "F".

G
(
k(000)

)
G
(
k(001)

)
G
(
k(010)

)
G
(
k(011)

)
G
(
k(100)

)
G
(
k(101)

)
G
(
k(110)

)
G
(
k(111)

)

G
(
k(000)

)
G
(
k(001)

)
G
(
k(010)

)
G
(
k(011)

)
G
(
k(100)

)
G
(
k(101)

)
G
(
k(110)

)
G
(
k(111)

)
F.Punc(k, ℓ, 01000110)

Figure B.1: Picture of layer ℓ = 3 for the GGM-tree of F before and after puncturing. The
version at the bottom of the picture shows an encoding of message 01000110,
where a 0 at position i correlates to a non-puncturing at position i and vice
versa, a 1 at position i corresponds to a puncturing at position i.

3

B Efficient Encodings for puncturing-based Stegosystems

A receiver can then restore the message by extracting the provided set punc from the punc-
tured key k{punc} and reconstructing the layer. Note that ℓ ∈ O(1). As such, ℓ will almost
certainly describe an inner layer of the construction, as the entire depth of the GGM-tree
may be polynomial, meaning the leaf layer is exponential in size. As we only consider
a polytime-receiver we thus need to guarantee that we do not reach a layer that would
result in exponential reconstruction work.

Efficiently Encoding Messages with 1-Puncturing-Per-Layer Puncture-Sets

Let us again assume that we have a user-defined puncturable PRF F that can be arbitrarily
punctured. However, let us now assume that we work in a setting where the above strat-
egy is known to the watchdog, meaning any puncture set with too many puncturings in
one layer gets flagged as malicious. This would only allow for sparse messages to be sent
using the prior encoding. Note, however, that this watchdog would not flag a puncture
set as malicious if it only contains at most one puncturing per layer, as such sets are sparse
on a per-layer basis.
Let us now assume that F has depth d ∈ poly(λ). We can now choose a random path
through the GGM-tree of F and additionally build the resulting copath for it. The copath
of a path W is defined as the set of sibling nodes for all nodes in W . Note, that for each
layer, except the root layer, there is exactly one node in the chosen path and exactly one
node in the related copath, meaning the size of the copath is d . We can now leverage this
copath to send up to 2d messages.
For example, let us now use d = 5. This means there are exactly 5 nodes in the copath
set. We can now send an arbitrary messages msg ∈ {0, 1}5. The Figure B.2 shows such an
encoding for msg = 10110. Note, that the GGM tree was pruned to simplify the figure.
The sender starts the channel by choosing a path and creating the copath set. Afterwards,
for each layer ℓ, the sender looks at bit ℓ of msg. If the relevant bit is a 1, then the node, and
all entries in its subtree, are punctured. Otherwise, the sender does nothing and continues
with the next layer.
A receiver can now reconstruct the message in the following way. First, the receiver recon-
structs set punc from the punctured key k{punc}. Then, the receiver finds the puncturing
with maximum depth, for our example in Figure B.2 this would be 1000 in layer 4. As
|punc| = d , the receiver is able to do this in polytime. Note, that finding this puncturing
fixes the random path up to the layer of the puncturing. Further note, as there is no punc-
ture on a deeper layer, that the end of msg is fixed to a 0-string.
With the path fixed, the receiver must then just check for each node in the path, if the
relative node in the copath was punctured or not. For each position, if the node was punc-
tured, the receiver reads a 1, else a 0. At most, this takes (d −1)2 = poly(λ) work, meaning

4

the receiver acts in polytime.

G
(
k(ϵ)

)

G
(
k(0)

)
G
(
k(1)

)

G
(
k(10)

)
G
(
k(11)

)

G
(
k(100)

)
G
(
k(101)

)

G
(
k(1000)

)
G
(
k(1001)

)

k(10010) k(10011)

G
(
k(ϵ)

)

G
(
k(0)

)
G
(
k(1)

)

G
(
k(10)

)
G
(
k(11)

)

G
(
k(100)

)
G
(
k(101)

)

G
(
k(1000)

)
G
(
k(1001)

)

k(10010) k(10011)

F.Punc(k, 10110)

Figure B.2: Picture of a pruned GGM-tree of F before and after puncturing. In the left tree,
orange nodes highlight the chosen path through F and red nodes highlight
the related copath. In the right tree, we encode message 10110 through the
puncturing of the copath.

Efficiently Encoding Messages with 1-Puncturing Puncture-Sets

Let us now assume that we have a user-defined puncturable PRF F that can only be punc-
tured once by the user. Restricting the user in this way makes the prior two encodings
impossible, but still keeps the inefficient 1-bit encoding. However, we can improve on
this.
Let us assume that we are allowed to puncture F at layer ℓ, with ℓ ∈ poly(λ). We can now
send up to 2ℓ messages with a trivial encoding. Suppose you are allowed to puncture F in
layer ℓ = 8. Layer 8 consists either of 28 = 256 interior nodes, each with their own subtree,
or 28 = 256 leaves. Either way, we will work on keys k(00000000) to k(11111111), evaluating G

on them or returning them as the output of F .
Let us now choose msg ∈ {0, 1}8 arbitrarily. Note that msg has the form b1b2b3b4b5b6b7b8,
meaning we can find the node working on k(msg) at position msg of layer 8. The sender
now punctures this node. The receiver can then reconstruct msg by simply extracting punc

from k{punc}, as punc = {msg}. Note that this is polytime, even if the puncturing happens
in the leaf layer of a PPRF with depth poly(λ).

5

B Efficient Encodings for puncturing-based Stegosystems

Efficiently Encoding Messages with 1-Modification Random Puncture-Sets

In this last section, let us now assume that we have a puncturable PRF F , as well as some
existing puncture set punc in fixed layer ℓ ∈ O(1). Further, lets assume that the user is
now only allowed to modify one position in punc, either adding or removing a puncture
position. Surprisingly, even this quite restrictive setting allows for an efficient encoding.
Precisely, we are able to encode 2ℓ different messages in layer ℓ. Note, that ℓ may not be
polynomial, as we would then have exponentially many nodes in layer ℓ.
We will follow an idea from the blog post [Ber14]. The article describes a prisoners prob-
lem, where two prisoners, henceforth named Alice and Bob, need to communicate via a
chessboard with a coin on each cell. At the beginning, a jailer randomly places the coins on
the board, meaning some amount of coins will show heads while the rest will show tails.
Afterwards, the jailer tells Alice one square χ on the board, which Bob needs to guess to
win. Alice is then allowed to flip any one coin on the board to tell Bob which square he
needs to guess. Only then is Bob allowed to look at the chessboard and choose a square
as his answer. If Bob chooses correctly, Alice and Bob are set free.
The winning strategy, as described in [Ber14], is to build a parity code over the coins. A
chessboard consists of an 8x8 grid of squares, meaning there are exactly 64, or 26, cells.
If we now enumerate the cells from 0 to 63, then we can group the cells into 6 sets. We
present a visual representation of this grouping in Figure B.3.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

Set 20

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

Set 21

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

Set 22

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

Set 23

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

Set 24

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

Set 25

Figure B.3: Parity-sets for the 8x8 grid of a chessboard. For each set the included elements
are highlighted.

6

Each set corresponds to a specific bit-position in the binary representation of a number
being set to 1. For example, 42 represented in binary is 101010, meaning it gets added to
the sets 21, 23 and 25. Each set then consists of all numbers between 0 and 63 that has the
sets respective bit set to 1.
For each set, we can build the xor over all the coins placed on its cells, counting tails as
a 0 and heads as a 1. We concatenate the resulting bits of the six sets to a 6-bit number
ρ. Notice that this construction means ρ ∈ {0, . . . , 63}. This value ρ is also called the nat-
ural parity of the board. Note now, that the jailers chosen square χ has a related binary
representation in {0, 1}6. Further, if you take the bitwise xor between ρ and χ, you get
another value in {0, 1}6. The bits of this result are set to 0 wherever the natural parity of
the corresponding set is equal to the one of χ and set to 1 where they differ. For example,
let ρ = 111001 and χ = 001011, then the result would be 110010, meaning the natural par-
ity ρ differs from χ in the sets 25, 24 and 21. By definition of our sets, there is exactly one
position on the board that can change this difference, namely the coin at position 110010,
or, in decimal, 50. By flipping this one coin, we can set the natural parity ρ equal to χ.
Note, that our result is dependent on the fact that the size of the chessboard is an exact
power of two and does not work otherwise. Further note, that the size of the set was the
only dependency we had.
We can now adapt this strategy to our puncturing set in layer ℓ. Layer ℓ consists of 2ℓ

nodes that are either punctured or not. If we now map our 2ℓ nodes to a 2⌈
ℓ
2
⌉ × 2⌊

ℓ
2
⌋

board with coins on each cell, showing heads if the position is in punc and showing tails
otherwise, then it is easy to see that we can use the same strategy to encode a message
msg ∈ {0, 1}ℓ. The sender simply sets χ = msg and then simulates Alice to modify punc

accordingly.
The receiver can then act as Bob to retrieve the message msg. The receiver thus runs in
polytime, as long as 2ℓ ∈ poly(λ).

7

	Introduction
	Contributions
	Related Works

	Preliminaries
	Adversarial Setting
	Steganography, Algorithm Substitution Attacks & Subversion-Resilience
	Steganography
	Algorithm Substitution Attacks
	Subversion-Resilience

	Obfuscation
	Indistinguishability Obfuscation
	Malicious & Auditable Obfuscation

	Pseudorandomness & Encryption
	Pseudorandomness
	Encryption Schemes

	Technical Overview
	Subversion-Resilient Auditable Obfuscation
	Obfuscation Schemes as a Steganographic Channel
	Malicious Obfuscation against Obfuscation as Steganography
	Malicious Obfuscation implies Steganography
	Steganography implies Malicious Obfuscation
	Auditable Obfuscation is Subversion-Resilient

	From Auditable Obfuscation to Subversion-Resilient Indistinguishability Obfuscation
	Auditable Obfuscation implies Indistinguishability Obfuscation
	Subversion-Resilient Indistinguishability Obfuscation

	Constructing Subversion-Resilient Puncturable Pseudorandom Functions
	Pseudorandom Generators are Subversion-Resilient
	Constructing a Subversion-Resilient PRF
	The Goldreich-Goldwasser-Micali (GGM) Construction
	GGM constructed PRFs are Subversion-Resilient

	Subversion-Resilient Puncturable Pseudorandom Functions

	Constructing a Subversion-Resilient, CCA-Secure Encryption Scheme
	Construction Overview
	Subversion-Resilient, CCA-Secure Encryption

	Conclusions
	Summary
	Discussion and Future Works

	References
	From Indistinguishability Obfuscation to Auditable Obfuscation
	Efficient Encodings for puncturing-based Stegosystems

