
Built on Sand: Exploiting Rowhammer for a Universal Forgery
Attack Against the Post-Quantum Signature Scheme SPHINCS+

Auf Sand gebaut: Ausnutzung von Rowhammer für einen Universal-
Forgery-Angriff auf das Post-Quantum-Signaturschema SPHINCS+

Masterarbeit

im Rahmen des Studiengangs
IT-Sicherheit
der Universität zu Lübeck

vorgelegt von
Jeremy Boy

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

mit Unterstützung von
Luca Wilke, M. Sc.

Lübeck, den 20. Juni 2025

Abstract

Modern computing systems increasingly rely on layered defenses – employing crypto-
graphic algorithms, operating system isolation, and hardware hardening – to guarantee
authenticity, integrity, and confidentiality in the presence of sophisticated adversaries.
However, as the densities of integrated circuits increase, new ways to subvert these de-
fenses by exploiting physical characteristics of the hardware itself are made possible. One
particular example is the Rowhammer bug: by repeatedly accessing specific rows in a
DRAM chip, an attacker can induce bit flips in adjacent rows. Exploiting this bug is not
straightforward, as many layers of the target system need to be considered, including the
operating system, the memory controller, and the DRAM chip itself.
Besides hardware bugs, the security of cryptographic systems is also under scrutiny by
quantum computing. Many cryptographic algorithms are based on the hardness of math-
ematical problems that can be solved efficiently by quantum computers, such as factoring
large integers or computing discrete logarithms. Therefore, the cryptographic community
is shifting towards developing post-quantum cryptographic algorithms that provide se-
curity guarantees against known quantum attacks.
In this thesis, we investigate the security of hash-based post-quantum signature scheme
SPHINCS+ against Rowhammer-based fault attacks. We introduce SWAGE, a novel end-to-
end framework for Rowhammer attacks, and use it to demonstrate that the Rowhammer
bug can be exploited to conduct a universal forgery attack against SPHINCS+. To the best
of our knowledge, this is the first work that demonstrates a practical Rowhammer attack
against SPHINCS+.

iii

Zusammenfassung

Moderne Computersysteme verlassen sich zunehmend auf mehrschichtige Verteidi-
gungsmechanismen, welche kryptographische Algorithmen, Betriebssystemisolierung
und Hardwaresicherung einsetzen, um Authentizität, Integrität und Vertraulichkeit in
Anwesenheit hochentwickelter Angreifer zu gewährleisten. Mit zunehmender Dichte
integrierter Schaltkreise werden jedoch immer neue Wege gefunden, diese Verteidigungs-
maßnahmen durch Ausnutzung physikalischer Eigenschaften der Hardware zu unter-
laufen. Ein besonderes Beispiel ist der Rowhammer-Bug: Durch wiederholten Zugriff auf
bestimmte Zeilen in einem DRAM-Chip kann ein Angreifer Werte in benachbarten Zeilen
verändern. Das Ausnutzen dieses Fehlers ist allerdings nicht einfach, da viele Schichten
des Zielsystems berücksichtigt werden müssen, einschließlich des Betriebssystems, des
Speichercontrollers und des DRAM-Chips selbst.
Neben Hardware-Fehlern wird die Sicherheit kryptographischer Systeme auch durch
Quantencomputing auf den Prüfstand gestellt. Viele kryptographische Verfahren beruhen
auf der Schwere mathematischer Probleme, die jedoch von Quantencomputern effizient
gelöst werden können, wie zum Beispiel die Faktorisierung großer Zahlen oder die
Berechnung diskreter Logarithmen. Daher konzentriert sich die kryptographische Gemein-
schaft zunehmend auf die Entwicklung kryptographischer Post-Quantum-Algorithmen,
welche Sicherheitsgarantien gegen bekannte Quantenangriffe bieten.
In dieser Arbeit untersuchen wir die Sicherheit von SPHINCS+, einem Hash-basierten
Post-Quantum-Signaturverfahren, gegen Rowhammer-basierte Fehlerinjektionsangriffe.
Wir stellen SWAGE vor, ein neuartiges End-to-End-Framework für Rowhammer-Angriffe.
Mithilfe von SWAGE zeigen wir die praktische Durchführbakeit von Rowhammer-basierten
Angriffen gegen SPHINCS+ und demonstrieren einen Universal-Forgery-Angriff. Nach
unserem besten Wissen ist dies die erste Arbeit, die einen praktischen Rowhammer-
Angriff gegen SPHINCS+ demonstriert.

v

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, 20. Juni 2025

vii

Acknowledgements

Firstly, I would like to thank my advisor, Thomas Eisenbarth, for his support and guid-
ance throughout this project. His expertise in cryptography and hardware security was
invaluable, and his ability to connect me with the right people significantly contributed
to the progress of this work. I am also deeply grateful to Luca Wilke, who, despite the
demands of concluding his dissertation and work-related travel, generously took the time
to assist me and offer thoughtful advice. Special thanks go to Antoon Purnal for his vital
assistance and clear explanations, particularly regarding fault attacks against SPHINCS+.
I would also like to express my gratitude to Paula Arnold and Anna Pätschke for their
careful proofreading of this thesis and their extensive feedback, which greatly improved
the quality of this work. Finally, I want to thank Pajam Pauls and Tim Gellersen for the
insightful late night discussions, Jan Wichelmann for taking work off my shoulders dur-
ing the final stages of this project, and all my colleagues and friends at the Institute for IT
Security for providing a productive and stimulating work environment.

ix

Contents

1 Introduction 1
1.1 Background . 2
1.2 Contributions . 3
1.3 Structure of this Thesis . 3

2 Preliminaries 5
2.1 Notation . 5
2.2 Dynamic Random Access Memory and the Rowhammer Bug 5

2.2.1 Dynamic Random Access Memory . 6
2.2.2 Virtual Memory . 8
2.2.3 Fault Attacks . 11
2.2.4 The Rowhammer Bug . 13

2.3 The SPHINCS+ Digital Signature Scheme . 17
2.3.1 Motivating Examples for Hash-Based Signature Schemes 19
2.3.2 Overview of the SPHINCS+ Signature Scheme 22
2.3.3 Functions and Definitions . 23
2.3.4 Winternitz One-Time Signature Scheme+ 28
2.3.5 Extended Merkle Signature Scheme 32
2.3.6 The SPHINCS+ Hypertree . 35
2.3.7 Forest Of Random Subsets . 38
2.3.8 SPHINCS+ Interface . 38
2.3.9 Parameter Sets . 40
2.3.10 Differences between SPHINCS+ and SLH-DSA 41

2.4 Grafting Tree Attack . 42
2.4.1 Attack Overview . 43
2.4.2 Identifying WOTS+ Collisions . 44
2.4.3 Tree Grafting . 45

3 SWAGE: An End-to-End Framework for Rowhammer Attacks 49
3.1 The DRAM INSPECTOR Module . 50

3.1.1 The DRAMA Attack . 50
3.1.2 Graph-Based Bank Bit Detection Scheme 51

xi

Contents

3.2 The ALLOCATOR Module . 51
3.2.1 Let The Kernel Handle It: Huge Pages 52
3.2.2 First Generation Attacks: The pagemap Interface 53
3.2.3 Attacks Using the Buddy Allocator: pagetypeinfo and buddyinfo 53
3.2.4 Exploiting Microarchitectural Leakage: The SPOILER Attack 55

3.3 The HAMMERER Module . 57
3.4 The VICTIM Module . 59

3.4.1 Page Injection . 60
3.4.2 Target Analysis . 61

4 A Rowhammer-Based Universal Forgery Attack Against SPHINCS+ 65
4.1 Threat Model and Experimental Setup . 65
4.2 Offline Phase . 66

4.2.1 Reverse-Engineering the Physical Memory Layout 67
4.2.2 Finding Reproducible Memory Access Patterns 68
4.2.3 Fault Analysis of the SPHINCS+ Reference Implementation 72

4.3 Online Phase . 77
4.3.1 Allocating Contiguous Memory Blocks 77
4.3.2 Profiling Memory for Reproducible Bit Flips 78
4.3.3 Page Injection Attack . 78
4.3.4 Collecting Signatures . 79

4.4 Grafting Phase . 80
4.4.1 Identifying WOTS+ Key Collisions . 80
4.4.2 Tree Grafting . 80

5 Conclusions 83
5.1 Related Work . 83
5.2 Discussion and Open Problems . 84

References 87

xii

1 Introduction

Sophisticated attacks against computing systems have become increasingly prevalent,
with adversaries leveraging both software vulnerabilities and hardware characteristics
to compromise security. These attacks can range from exploiting bugs in operating sys-
tems and applications to manipulating the physical properties of hardware components.
To tackle these threats, modern computing systems employ layered defenses, which in-
clude cryptographic algorithms, operating system isolation, and hardware hardening
techniques. These defenses are designed to guarantee authenticity, integrity, and confi-
dentiality in the presence of sophisticated adversaries. At the same time, manufacturers
pack more and more transistors into a single chip, leading to increased density of in-
tegrated circuits. This trend, while beneficial for performance, efficiency, and cost, also
opens up new avenues for attacks that exploit the physical characteristics of hardware it-
self. One particular example is the Rowhammer bug: by repeatedly accessing (hammering)
specific rows in Dynamic Random Access Memory (DRAM), an unprivileged attacker can
induce bit flips in adjacent (inaccessible) memory rows, effectively bypassing software
and hardware protections and compromising security assumptions. Since its discovery in
2014 [Kim et al., 2014], the Rowhammer bug has grown from a reliability issue to a lasting
practical threat against widely deployed systems – undermining everything from priv-
ilege separation in operating systems to cryptographic key material stored in hardware
enclaves.

At the same time that the Rowhammer bug became a growing interest for security
researchers, the cryptographic community has also shifted towards designing crypto-
graphic primitives secure against quantum attackers. Hash-based signature schemes have
emerged as a leading candidate for post-quantum secure signatures. Most notably, the
SPHINCS+ signature scheme [Bernstein et al., 2019, Aumasson et al., 2022] has been stan-
dardized by NIST in 2024 as Stateless Hash-Based Digital Signature Algorithm (SLH-DSA)
[NIST, 2024] as part of the post-quantum cryptography standardization process. How-
ever, while SPHINCS+ is designed to withstand quantum-based attackers, it is also highly
susceptible to fault attacks, where an adversary injects faults to manipulate the execu-
tion flow of cryptographic operations. To date, there has been no publicly documented,
end-to-end demonstration of Rowhammer attacks against SPHINCS+. Closing this gap is
critical: if post-quantum schemes can be broken by practical fault attacks, they might be
rendered ineffective in practice.

1

1 Introduction

A primary barrier in mounting a realistic Rowhammer-based attack is the lack of robust,
publicly available tooling that automates the low-level steps required in the pipeline to a
successful attack. Many existing prototypes are academic proof-of-concepts or only solve a
particular step in this pipeline. Without a systematic framework to orchestrate real-world
fault attacks, researchers and defenders alike are in the dark about the feasibility of new
attacks or countermeasures. In this thesis, we address that tooling gap by introducing
SWAGE, a novel, modular end-to-end framework that automates reverse-engineering the
physical DRAM address mapping, employs techniques to allocate physically contiguous
memory required for an attack, and aids in finding susceptible memory regions in a vic-
tim program. By packaging every step needed for a real-world Rowhammer attack, we not
only demonstrate the first Rowhammer-based fault attack against the SPHINCS+ signa-
ture scheme, but also provide a foundation for future research to design countermeasures
and novel attacks.

1.1 Background

The Rowhammer effect was first discussed by [Kim et al., 2014]. The authors showed that
by repeatedly and quickly accessing rows in a DRAM module, they could induce bit flips
in adjacent rows. This new class of hardware bug was coined as memory disturbance errors.
Rowhammer attacks were first believed to be mostly a reliability issue, as a real world ex-
ploit appeared to be hard to achieve. Just a few months later, [Seaborn and Dullien, 2015]
showed that the Rowhammer effect can be practically exploited to gain kernel privileges.

Many researchers have shown that the Rowhammer effect can be exploited in real-world
scenarios, and many attack vectors have been discovered. For example, [Gruss et al., 2016]
show that the Rowhammer effect can be exploited in JavaScript to break out of the browser
sandbox. This is a significant discovery, as previous Rowhammer attacks relied on native
code execution and access to low-level memory interfaces.

Since then, manufacturers implemented several mechanisms coined under the umbrella
term Target Row Refresh (TRR) to mitigate Rowhammer attacks in DDR4 modules. TRR is
a black box mechanism that heuristically refreshes the charge in suspected target rows.
For some time, it was believed that TRR would conclusively mitigate Rowhammer at-
tacks, even though researchers discovered that bit flips are still present in some DDR4
modules [Gruss et al., 2018, Lipp et al., 2020]. However, [Frigo et al., 2020] demystifies
TRR and present TRRESPASS, a fuzzing-based tool to find TRR-aware access patterns that
enables Rowhammer attacks against 13 of 42 tested DRAM modules by all major man-
ufacturers. In [Jattke et al., 2022], BLACKSMITH is introduced, filling the gaps left behind
by TRRESPASS, presenting a scalable fuzzer for non-uniform Rowhammer access patterns.

2

1.2 Contributions

BLACKSMITH fuzzes memory access patterns in the frequency domain, enabling the use
of non-uniform hammering patterns to circumvent sophisticated TRR mechanism. This
approach enables rowhammer-induced bit flips in all the 40 tested DRAM modules.
Regarding the security of post-quantum signature scheme SPHINCS+, the susceptibility
to fault attacks has been well studied. In [Castelnovi et al., 2018], the grafting tree attack is
introduced, a fault attack against SPHINCS (the predecessor of SPHINCS+) that allows an
attacker a universal forgery attack against the scheme. In the same year, [Genêt et al., 2018]
presented a practical fault injection attack against SPHINCS, demonstrating that the
scheme is vulnerable to fault attacks. While both works discuss the feasibility of the graft-
ing tree attack against SPHINCS+, only [Genêt, 2023] presents a practical attack against
SPHINCS+.

1.2 Contributions

This thesis makes the following contributions to the fields of fault attacks and post-
quantum cryptography:

SWAGE, a Modular End-to-End Framework For Rowhammer Attacks. SWAGE unifies
the steps required to carry out end-to-end Rowhammer attacks under real world
threat models. It provides an easy and well-documented API such that new attack
vectors can be easily integrated into the code base.

First Rowhammer Attack Against SPHINCS+. While the susceptibility of SPHINCS+ to
fault attacks is well studied, a discussion of the feasibility of Rowhammer-based
attacks against the scheme was still missing. We close this gap by using SWAGE to
orchestrate a Rowhammer attack against SPHINCS+ on a modern system employing
Rowhammer countermeasures, such as TRR and OS-based access restrictions.

Taken together, this thesis underlines the necessity of robust, extensible tooling to close
the gap between theory and practice for sophisticated Rowhammer attacks, as well as the
need for robust countermeasures against hardware-based attacks. We employ SWAGE as a
high-quality research artifact in the study of hardware-based attacks.

1.3 Structure of this Thesis

This document is structured as follows:

Chapter 2: Preliminaries We start the discussion by giving a background on the top-
ics covered in this thesis. This chapter establishes the technical foundation required

3

1 Introduction

for our end-to-end attack. After introducing required notation, the necessary back-
ground on DRAM architecture, virtual memory management, and fault attacks, with
a focus on Rowhammer attacks is given (Section 2.2). In Section 2.3, the components
of the hash-based post-quantum signature scheme SPHINCS+– Winternitz One-Time
Signature Scheme+ (WOTS+), eXtended Merkle Signature Scheme (XMSS), Forest of Ran-
dom Subsets (FORS), and the SPHINCS+ hypertree – are introduced. The prelimi-
naries are concluded by Section 2.4 with a discussion of the grafting tree attack, a
well-studied fault attack against SPHINCS+.

Chapter 3: SWAGE: An End-to-End Framework for Rowhammer Attacks We present
SWAGE, a modular toolkit integrating the building blocks required to conduct an
end-to-end Rowhammer attack. This chapter introduces the components of SWAGE

and how they interact with each other. Each section discusses strategies to ad-
dress different challenges of conducting Rowhammer attacks in practice. Section 3.1
introduces the DRAMINSPECTOR module and details our methodology for reverse-
engineering undocumented physical row mapping functions. In Section 3.2, tech-
niques for allocating contiguous memory regions suitable for Rowhammer attacks
are presented. Section 3.3 describes how SWAGE employs fuzzing techniques from
related work to craft and profile access patterns to induce reliable bit flips. The
chapter concludes with Section 3.4, where we present the VICTIM module, which
provides an API to interact with a victim process and inject faults into it. The VICTIM

module also provides a set of tools to analyze the target program and a page injector
to deterministically place attacker-controlled pages into the victim’s address space.

Chapter 4: A Rowhammer-Based Universal Forgery Attack Against SPHINCS+ We
evaluate SWAGE by conducting a Rowhammer-based universal forgery attack
against SPHINCS+. The attack is split into three phases. During the offline phase
(Section 4.2), the attacker uses a replicated target system to prepare for the online
phase of the attack, which is presented in Section 4.3. After successfully conducting
the attack, the evaluation is concluded in Section 4.4 with a grafting phase, where
the collected faulted signatures are post-processed and the universal forgery at-
tack is performed. The evaluation shows that the Rowhammer attack is effective in
practice, allowing the attacker to forge signatures against SPHINCS+.

Chapter 5: Conclusions The thesis concludes with a summary of the discoveries and
contributions made throughout this work, an overview of related work (Section 5.1),
and an outlook on open problems for future research (Section 5.2).

4

2 Preliminaries

In this chapter, a background on the topics relevant to this thesis is provided. We first
introduce some notation used throughout this thesis. In Section 2.2, an overview of the
physical memory architecture of DRAM and how it is managed by CPUs is given. We
discuss how DRAM is organized into banks, rows, and columns, and how the memory
controller manages these components in Section 2.2.1. We then introduce virtual memory,
and compare different strategies for managing memory in a multitasking operating sys-
tem in Section 2.2.2. In Section 2.2.3, we discuss fault attacks, a class of practical attacks
that exploit physical properties of a target system. We then introduce the Rowhammer bug
in Section 2.2.4, a software-based fault attack that exploits disturbance errors in DRAM.
Finally, we introduce the components of SPHINCS+ in Section 2.3 and discuss the grafting
tree fault attack against SPHINCS+.

2.1 Notation

We denote bytes to be elements of B = {0, 1, . . . , 255}. For k ∈ N, the set of all byte
strings of length k is written as Bk, and the set of all finite byte strings is denoted by B∗ =⋃

i∈N0
Bi. We denote hash functions by H : B∗ → Bℓ, mapping byte strings of arbitrary

length to fixed-length outputs of ℓ bytes. In cryptographic contexts, we denote the security
parameter by n. Sampling a value v from a set V uniformly at random is denoted by
v ←$ V .
If X is a byte string of length n, we denote the i-th byte of X by X[i] for i ∈ {0, 1, . . . , n−1}.
If X is an array of m n byte strings, we denote the i-th n byte element of X by X[i] for
i ∈ {0, 1, . . . ,m − 1}, and X is represented as a byte string X[0]∥X[1]∥ . . . ∥X[m − 1] of
length m · n. A slice of a byte string X from index i (inclusive) to index j (exclusive) is
denoted by X[i : j] = X[i]∥X[i+ 1]∥ . . . ∥X[j − 1], where i < j.

2.2 Dynamic Random Access Memory and the Rowhammer Bug

In this section, we provide an overview of DRAM’s architecture and explore how its inher-
ent design characteristics can be exploited through fault attacks. We begin by outlining the
fundamental principles of DRAM operation, including its organization into banks, rows,
and columns, and discuss how timing and electrical interference can lead to faults. This

5

2 Preliminaries

word line

bit line

Figure 2.1: Structure of a DRAM cell. It consists of a transistor (top) and a capacitor (bot-
tom left), connected to a word line and a bit line.

background sets the stage for a deeper examination of fault attacks, where the Rowham-
mer bug is used to induce errors deliberately, potentially compromising system integrity
and security.

2.2.1 Dynamic Random Access Memory

Computers need memory to store data. Nowadays (and for the past several decades),
memory is usually implemented using Dynamic Random Access Memory (DRAM). It con-
sists of an array of DRAM cells, each containing a capacitor holding an electric charge
representing the logical value of a bit (Figure 2.1).

Each storage cell consists of a transistor and a capacitor. The transistor controls the flow
of current into the capacitor. The transistor’s gate is connected to the word line, while the
source and drain are connected to the capacitor and the bit line, respectively. The word line
is used to select the row to read or store a value in, while the bit line is used to read or
write the value stored in the capacitor. The capacitor is charged with the current on the bit
line (if the bit line is high) or discharged onto the bit line (if the bit line is low) once the
capacitor’s connection to the bit line is closed by the transistor.

Since computers require gigabytes (or even terabytes) of memory, it is necessary to or-
ganize memory cells in a smart way. Therefore, DRAM modules organize memory in
banks, which are arrays of rows and columns (Figure 2.2). Each row contains 65 536 columns,
which amount to 8 KiB. To read a requested row, the DRAM array performs the following
sequence of operations. First, the sense amplifiers are disconnected. Then, the bit lines are
precharged to exactly equal voltage between low and high states. The precharge circuit is
disabled, and the word line for the selected row is set to high. This connects the cells’ stor-
age capacitors to their corresponding bit lines. The capacitors then transfer their charge
from their bit line (if the stored value is 1) or to the bit line (if the stored value is 0). This

6

2.2 Dynamic Random Access Memory and the Rowhammer Bug

Sense Amplifier

Row (word line)

Column (bit line)

DRAM cell

Row Buffer

Figure 2.2: Structure of a 4x4 DRAM array.

causes the voltage on the bit line to drop or rise, respectively. The change in voltage is
detected by the sense amplifiers, which amplify the signal and store it in the row buffer.

Memory should be stable under read operations, i.e., reading a bit should not change its
value. For a DRAM cell, this does not intuitively hold. "Reading" the logical value of a ca-
pacitor consumes its charge. Therefore, and to increase the performance of repeated read
operations, each memory bank contains a row buffer, holding the value of the most recently
accessed row. The row buffer is realized using Static Random Access Memory (SRAM). In
contrast to DRAM, where the logical value of a bit is represented by the charge of a capac-
itor, SRAM consists of only transistors in a circuit resembling a flip-flop circuit. SRAM is
much faster than DRAM, but also more expensive.

In theory, a perfect capacitor in a DRAM cell should never lose its charge. In practice, how-
ever, this is not the case. Electronic components are not perfect, and capacitors leak their
charge over time. Therefore, the charge in a DRAM cell has to be refreshed periodically.
The DDR4 JEDEC standard [JEDEC, 2012] specifies that a DRAM cell has to be refreshed
every tREF = 64ms (the refresh window) to ensure that the charge in the capacitor is not
lost during normal operation temperatures (0 ◦C to 85 ◦C). The refresh operation is issued
automatically by the memory controller with an Auto-Refresh (AREF) command. An AREF
command refreshes a number r of rows in every bank at once. The interval between two
refresh operations is called tREFI . Nominally, it can be calculated as

tREFI =
tREF · r

R
,

where R is the number of rows per bank. The JEDEC standard for DDR4 SDRAM also
specifies that a refresh command has to be issued at least every tREFI = 7.8µs (the re-

7

2 Preliminaries

fresh cycle) for all memory densities under normal operation temperatures [JEDEC, 2012].
Therefore, the number of rows refreshed per bank by a single AREF command depends
on the number of rows per bank and can be calculated as

r =

⌈
tREFI

tREF
R

⌉
=

⌈
7.8µs
64ms

R

⌉
=

⌈
1

8192
R

⌉
.

The Rowhammer bug, introduced in Section 2.2.4, exploits the fact that DRAM cells can
be disturbed by repeated access to neighboring rows. As refresh operations reset this ef-
fort, it is important for the attacker to understand the timing of refresh operations. When
refreshing a row, the memory controller locks the row buffer and waits for the refresh
operation to complete. Therefore, the refresh window tREF of a DRAM module can be
experimentally determined by repeatedly reading a fixed row and measuring the time it
takes for the memory controller to serve the read request. This causes the read request to
be delayed by the time it takes to refresh the row.
In the next section, we discuss how memory is managed in multitasking operating sys-
tems. The concept of virtual memory is introduced, which allows processes to have their
own address space and enables the operating system to manage memory more flexibly.

2.2.2 Virtual Memory

In multitasking operating systems, processes have to share all the available resources in-
cluding memory. But how should the operating system manage the physical memory be-
tween processes? Following the keep it simple approach, the operating system might choose
to let processes access memory directly. But this approach has several significant prob-
lems. For one, programs have to be aware of other programs’ memory layouts. Therefore,
programs have to be recompiled for every system they run on, and for every combination
of programs they are co-located with. Additionally, processes can access other processes’
memory, which poses a severe security risk. As we can see, this approach is not feasible.
Another idea is to split physical memory in sections, where each process has its own sec-
tion of memory. This approach enables the operating system to isolate processes from
each other by crashing a process when it tries to access memory outside its section. But
this approach comes its own problems. Firstly, this does not consider that programs have
different (and changing) memory requirements. This approach also limits the number of
processes that can be run simultaneously, as the operating system has to reserve mem-
ory for each process. Finally, this approach does not allow processes to be larger than the
physical memory.
A much more successful approach, and the one used in modern operating systems, is to
provide an abstraction of memory to programs. This abstraction is called virtual memory

8

2.2 Dynamic Random Access Memory and the Rowhammer Bug

Virtual address space

Environ

Stack

Heap

Data

Text

High address

Low address

Physical address space

Page allocated to this process other processes not allocated

Figure 2.3: Virtual memory and virtual-to-physical address mapping of a C program.

(Figure 2.3). With virtual memory, each program has its own full address space. The oper-
ating system works in tandem with the Memory Management Unit (MMU) to map virtual
addresses to physical addresses needed to interact with the memory subsystem. This ap-
proach has several advantages: Virtual memory is fully transparent, and programs do not
have to be aware of other programs’ memory layouts. Because of that, programs do not
have to be adapted for different configurations. Virtual memory also allows process iso-
lation, i.e., a process cannot access another process’ memory. Additionally, memory con-
tents can be moved from one memory location to another, updating the virtual-to-physical
mapping accordingly, or even swapped to disk. Finally, processes can request more mem-
ory than physically available, and the operating system can swap out parts of the memory
to disk.

Virtual memory is implemented with hardware support. The MMU is part of the CPU
and translates virtual to physical addresses. This translation is performed with page-
granularity where virtual memory is split into pages and the MMU translates each page
individually. Therefore, the lower bits of the virtual and physical addresses are the same.
The most common page size is 4KiB, hence 12 bit of equal address suffixes, but other sizes
are also possible. For example, the x86-64 architecture supports 2MiB and 1GiB pages, so-

9

2 Preliminaries

called huge pages. The MMU maintains a page table for each process, which contains the
mapping between virtual and physical addresses. It is the operating system’s responsibil-
ity to manage the page tables in the MMU and change page tables on context switches.
Consider as an example the following simple program:

Listing 2.1: An example program demonstrating virtual memory

1 int main(void) {

2 int *x = malloc(sizeof(int));

3 *x = 42;

4 printf("x=%p\n", x);

5 printf("*x=%d\n", *x);

6 return 0;

7 }

This program allocates memory for an integer x, and writes the value 42 to it. Then, it
prints the virtual address and the value of x. The output of this program is as follows:

Listing 2.2: Output of the program from Listing 2.1

1 $./test

2 x=0x5555555592a0

3 *x=42

Hence, 0x5555555592a0 is the virtual address of x. To find the physical address back-
ing this virtual address, we have to consult its corresponding page table entry. The page
table entry of x can be found in the /proc/<pid>/pagemap file provided by the Linux
kernel’s procfs interface. This file contains the mapping for each page in the process’ ad-
dress space. The following function reads the physical address of a virtual address using
the pagemap:

Listing 2.3: Function to read the physical address of a virtual address using pagemap

1 #define PAGEMAP_ENTRY 8 // Size of each entry in /proc/self/pagemap

2 #define PAGE_SHIFT 12 // 2**12 = 4096 (page size)

3 #define PAGE_SIZE (1UL << PAGE_SHIFT)

4 uint64_t virt_to_phys(uintptr_t va) {

5 int fd = open("/proc/self/pagemap", O_RDONLY);

6 uintptr_t page_idx = va / PAGE_SIZE;

7 off_t offset = page_idx * PAGEMAP_ENTRY;

8 lseek(fd, offset, SEEK_SET);

9 uint64_t entry;

10 read(fd, &entry, PAGEMAP_ENTRY);

11 close(fd);

12 uint64_t pfn = entry & ((1ULL << 55) - 1);

13 return (pfn * PAGE_SIZE) + (va % PAGE_SIZE);

14 }

10

2.2 Dynamic Random Access Memory and the Rowhammer Bug

The pagemap follows the UNIX paradigm of everything is a file. First, the pagemap file is
opened, and the index of the page containing the virtual address is calculated. Then, the
file is sought to the correct position, and the entry is read. The entry contains, together
with some meta information, the Page Frame Number (PFN) of the page, which makes up
the lowest 55 bits of the entry.
After a virtual address has been translated to a physical address, it is then mapped to
a physical location in DRAM. This mapping is done by a CPU-specific function subject
to change between CPU generations. While the mapping function used to be publicly
documented for Intel CPUs, it became undocumented in recent years, as it is considered
an implementation detail.
Previous works introduced tools to reverse-engineer this now undocumented mapping
function [Pessl et al., 2016, Xiao et al., 2016]. The timing side channel primitive in Algo-
rithm 1 can be used to reverse-engineer the physical memory layout. The algorithm mea-
sures the time it takes to sequentially access a pair of memory addresses. If the timing is
above a given threshold, the addresses were resolved to the same bank. This timing side
channel is due to the row buffer conflict, which occurs when row r2 is requested while
another row r1 is open in the same bank. To load r2 into the row buffer, r1 has to be closed
and written back to the DRAM array, which takes longer than a non-conflicting access.

Algorithm 1: Row buffer conflict timing side channel
Input: Memory addresses r1 and r2, timing threshold τ
Output: True, if r1 and r2 are in the same bank, false otherwise

1 Load r1
2 t0 ← now()
3 Load r2
4 ∆t ← now() - t0
5 return ∆t > τ

In the next section, we introduce fault attacks, a class of practical attacks that exploit phys-
ical properties of a system. While fault attacks cover a broad range of attacks, we focus on
the Rowhammer bug in Section 2.2.4. The Rowhammer bug is a software-based fault at-
tack that exploits disturbance errors in DRAM.

2.2.3 Fault Attacks

Fault attacks are a class of practical attacks that exploit physical properties of a system.
This family of attacks usually assumes a stronger attacker model than the standard cryp-
tographic model. In the standard model, the attacker either has access to the input and
output of a cryptographic algorithm (a so-called Chosen Plaintext Attack) or has access to

11

2 Preliminaries

a decryption oracle (a Chosen Ciphertext Attack). In fault attack threat models, the attacker
can also influence the execution of the algorithm by stressing the device the algorithm
is executed on. This stress can be applied in various ways, such as by applying electro-
magnetic interference, laser light, voltage glitches, or introducing disturbance in memory.
Combined fault and leakage attacks strengthen the threat model by allowing the attacker
to also observe the system for side-channel information such as power consumption or
electromagnetic radiation while injecting faults into the system.
Different kinds of fault attacks have been used to attack different aspects of a system, a sur-
vey on relevant fault attacks against cryptographic schemes is given in [Baksi et al., 2022].
For example, fault injection can be used to bypass authentication mechanisms or to ex-
tract secret keys from cryptographic algorithms. As an introductory example, consider the
simple authentication function in Listing 2.4. The function is_authenticated checks
whether the system is in an authenticated state, for example by reaching out to an authen-
tication server or checking the validity of a login session. It returns 1 if the current session
is authenticated, and 0 otherwise. The function show_confidential_data stores the
return value of is_authenticated in auth and grants access to confidential data if
auth is non-zero. If an attacker can change the value of auth from a zero to a non-zero
value between the call to is_authenticated and the following check, they can gain
access to the confidential data without being authenticated.

Listing 2.4: Example of a simple authentication function

1 extern int is_authenticated(void);

2 int show_confidential_data(void) {

3 int auth = is_authenticated();

4 // ...more code that might take some time

5 if (auth) {

6 // grant access to confidential data

7 } else {

8 // deny access

9 }

10 }

This simple example not only illustrates the concept of fault attacks, but is also taken from
real life. Constructions like the one in Listing 2.4 are often found in real-world systems,
such as older versions of sudo or other system tools executed with elevated privileges.
Those tools are regular targets for fault attacks, as they can be exploited to gain root priv-
ileges on a target system [Gruss et al., 2018, Adiletta et al., 2024], opening the door to fur-
ther attacks on the system.
A simple code-based workaround for this problem is to compare auth to the value 1 in-
stead of checking its truthiness. This makes it harder for an attacker to exploit the function,

12

2.2 Dynamic Random Access Memory and the Rowhammer Bug

Victim

Aggressor

Victim

Victim

Aggressor

(a) Single-sided

Victim

Aggressor

Victim

Aggressor

Victim

(b) Double-sided

Victim

Aggressor

Victim

(c) One-location

Figure 2.4: Standard Rowhammer access patterns. Aggressor rows are colored in red , vic-
tim rows are colored in blue . The aggressor rows are in physical proximity to
the target rows. For double-sided patterns, victim rows between two aggres-
sors are more likely to flip due to additional disturbance.

as they would have to change auth from zero to exactly one instead of any non-zero value.
However, this is not a general solution to the problem, as it only hardens the attack surface,
but does not eliminate it. Instead, countermeasures against fault attacks usually involve
redundancy, such as using multiple independent implementations of the same algorithm
and comparing their results. Only recently, countermeasures against combined fault and
leakage attacks have been considered (e.g. [Berndt et al., 2023, Arnold et al., 2024]). They
generally rely on masking schemes that split the secret data into multiple shares, making
it harder for an attacker to extract the secret data by injecting faults or observing side-
channel information.

In the following, we focus on a specific type of fault attack exploiting the Rowhammer
bug, a software-induced fault attack that exploits disturbance errors in DRAM by repeat-
edly accessing so-called aggressor rows. The electromagnetic interference caused by the
repeated accesses can cause nearby transistors to lose their charge, which leads to bit flips
in the so-called victim rows.

2.2.4 The Rowhammer Bug

In the last decades, the capacity of DRAM modules has increased significantly, primarily
by reducing the size of the individual memory cells and increasing the density of memory

13

2 Preliminaries

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

...

Victim

Aggressor

Victim

Aggressor

Victim

...

Time

Figure 2.5: Double-sided access pattern

layouts. This trend, while essential for performance and cost-efficiency, led to a new class
of errors, called disturbance errors. Disturbance errors occur when repeated or prolonged
activation of DRAM rows causes capacitors to leak charge into adjacent memory rows,
leading to unintended bit flips [Kim et al., 2014].

The Rowhammer bug, the first and most discussed memory disturbance error, works by
repeatedly reading one or multiple aggressor rows. If repeated access to aggressors causes
sufficient disturbance during a given refresh cycle, bit flips in victim rows in proximity to an
aggressor row can be induced.

The Rowhammer bug was first disclosed to the scientific community by demonstrat-
ing that repeatedly and quickly accessing (or hammering) rows in a DRAM module
could induce bit flips in adjacent rows [Kim et al., 2014]. Although the Rowhammer
bug was initially dismissed as a reliability issue, it was quickly recognized as a potential
security threat. In 2015, researchers showed that the Rowhammer effect can be prac-
tically exploited to gain kernel privileges [Seaborn and Dullien, 2015]. Since then, the
Rowhammer bug has been used in various attacks. Noteworthy examples are ROWHAM-
MER.JS [Gruss et al., 2016], which uses the Rowhammer bug to break out of the browser
sandbox, NETHAMMER [Lipp et al., 2020], a remote Rowhammer attack over the net-
work, the FPGA-supported JACKHAMMER [Weissman et al., 2020] attack, and RAMBLEED

[Kwong et al., 2020], which uses the Rowhammer bug to leak sensitive information from
memory.

At a technical level, the Rowhammer bug exploits the row buffer management of DRAM
modules. When a row is accessed, its contents are transferred into the row buffer, a small
SRAM cache that holds the most recently accessed row in a bank. Subsequent access to a

14

2.2 Dynamic Random Access Memory and the Rowhammer Bug

different row in the same bank forces the memory controller to write back the contents of
the row buffer to the DRAM array before loading the new row. This flushing and reloading
of the row buffer causes a lot of electrical activity in the memory module, which can lead
to disturbance errors in adjacent rows.
Early Rowhammer attacks used simple single-sided, double-sided, or even one-location access
patterns, i.e., accessing one (or both) rows physically adjacent to the target row in quick
succession (Figure 2.4). While double-sided access patterns are usually more effective due
to the increased electrical activity, one-location hammering patterns – where only a single
row is hammered – can under some circumstances be highly effective, because they allow
a higher number of row activations per refresh cycle. Following the initial presentation
of practical Rowhammer attacks, manufacturers implemented various countermeasures
to mitigate Rowhammer attacks. Those countermeasures against Rowhammer attacks in-
clude:

• Target Row Refresh (TRR), a vendor-specific black box mechanism that tracks mem-
ory accesses and issues refresh commands for suspected target rows by identifying
unusual access patterns. This preemptive refresh causes simple Rowhammer attacks
to fail, as the charge in the target row is restored before sufficient disturbance for a
bit flip can be induced.

• Increasing refresh rate tREFI of DRAM modules [Kim et al., 2014]. This approach is
effective by limiting the number of row actions per refresh cycle, but leads to in-
creased power consumption and reduced performance due to the increased number
of refresh commands.

• Implementing hardware-supported Error-Correcting Codes (ECC) to detect and cor-
rect bit flips [Seaborn and Dullien, 2015, Gruss et al., 2018]. However, this signifi-
cantly increases the cost of DRAM modules. Additionally, ECC is not always ef-
fective against Rowhammer attacks [Cojocar et al., 2019] or might enable different
attack vectors, e.g., timing-based attacks [Kwong et al., 2020].

• OS-level mitigations, such as guard rows enclosing memory pages holding sensitive
data [van der Veen et al., 2018, Konoth et al., 2018]. While preventing Rowhammer
attacks where aggressor and victim rows are not physically adjacent, this approach
triples memory overhead and leads to significant performance degradation. Addi-
tionally, some Rowhammer attacks bypass guard rows by using aggressor rows that
are not directly adjacent to the victim row [Jattke et al., 2022, Kogler et al., 2022].

However, all of these countermeasures have individual limitations, are not universally
applicable, or are not effective against all Rowhammer attacks. For example, TRRES-

15

2 Preliminaries

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Aggressor

Victim

Aggressor

Victim

...

Victim

Aggressor

Victim

Aggressor

Victim

...

Time

Figure 2.6: Many-sided access pattern in TRRESPASS. The figure shows a time series of
memory accesses to aggressors rows (red). Victim rows are marked in blue .
This memory access pattern overwhelms some TRR mechanism by accessing
two pairs of aggressor rows, serving as a dummy reads for each other.

16

2.3 The SPHINCS+ Digital Signature Scheme

PASS [Frigo et al., 2020] circumvents TRR by augmenting many-sided access patterns with
dummy reads (Figure 2.6). The dummy accesses are used to overwhelm the TRR mecha-
nism, which is only able to track a limited number of rows and activations at once. In the
practical evaluation, TRRESPASS successfully finds access patterns inducing bit flips in 13
of the 40 tested DDR4 memory modules, demonstrating that TRR is not effective against
all Rowhammer attacks.
The Rowhammer bug is also not limited to a specific type of CPU architecture. In 2024,
a Rowhammer attack against AMD Zen-based CPUs was presented, reverse-engineering
non-linear address mapping functions and presenting the first Rowhammer attack against
DDR5 modules [Jattke et al., 2024]. Together, these developments demonstrate that de-
spite industry efforts, Rowhammer remains an active and evolving threat to memory in-
tegrity and system security.

2.3 The SPHINCS+ Digital Signature Scheme

Digital Signatures are an important tool to guarantee authenticity and integrity of mes-
sages. In general, a digital signature algorithm consists of the following three algorithms:

• Key generation algorithm KGen: Generates a key pair (sk, pk), where sk is the secret
key used by the signing party and pk is the public key used to verify a given message.

• Signing algorithm Sign: Takes a message m and the secret key sk and outputs a sig-
nature σ.

• Verification algorithm Vf: Given a signature σ, a message m, and a public key pk,
outputs “1” (or true) if the signature matches the message and “0” (false) other-
wise.

We distinguish the security of a digital signature scheme against the following basic at-
tacker models:

• Key-Only Attack: The attacker only knows the public key pk.

• Known Signature Attack: The attacker knows the public key pk and has a seen a set of
signature/message pairs.

• Chosen Message Attack: The attacker knows the public key pk and can choose mes-
sages to be signed.

While a chosen message attack appears to be a very strong model, it is very common
in practice. For example, a Trusted Platform Module (TPM) exposes a signing interface

17

2 Preliminaries

tpm2_sign that allows the user to sign arbitrary messages using a key pair stored in
the TPM. In this scenario, the TPM acts as a signing oracle for the user, identical to the
chosen message attack.
We also distinguish several levels of success for an adversary against a digital signature
scheme:

• Existential Forgery: The attacker is able to forge a valid signature of one message, not
necessarily of their choice.

• Universal Forgery: The attacker is able to forge signatures for any message of their
choice.

• Total Break: The attacker is able to recover the secret key from the public key and the
algorithm’s public parameters.

Clearly, different applications require different levels of security. Sometimes, it may be
sufficient to ensure that the attacker can only forge signatures for unimportant messages,
e.g., in scenarios where the format of valid messages is enforced by another protocol. In
other cases, e.g., when the signing party is a notary or a software distributor, it may be
necessary to ensure that the attacker cannot forge signatures for any message. In the for-
mer case, existential forgery might still be acceptable while universal forgery is not, while
for the latter case, existential forgery poses a serious threat.
Many digital signature algorithms have been proposed. Some of the most prominent
examples are the Rivest-Shamir-Adleman Algorithm (RSA), the Digital Signature Algorithm
(DSA), and the Elliptic Curve Digital Signature Algorithm (ECDSA). While the security of
RSA is based on the RSA problem, which is at most as hard as the integer factorization
problem, DSA and ECDSA are based on the discrete logarithm problem. All of these prob-
lems are assumed to be hard, i.e., there is no known efficient non-quantum algorithm to
solve them. With quantum computers, however, these problems can be solved efficiently
using Shor’s algorithm [Shor, 1994]. This is an example of a total break of the signature
scheme in a key-only attack as the attacker can recover the secret key sk knowing only the
public key pk and the algorithm’s public parameters.
To ensure cryptographic security in a post-quantum world, the National Institute of Stan-
dards and Technology (NIST) has started the Post-Quantum Cryptography (PQC) standardiza-
tion process to find cryptographic algorithms that are secure against quantum attackers.
Since 2017, many algorithms have been proposed, several have been selected as final-
ists, and few have been standardized for different purposes. The algorithms proposed
are based on different mathematical problems, such as lattice-based cryptography, code-
based cryptography, multivariate polynomial cryptography, and hash-based cryptogra-
phy. Hash-based signature algorithms are a particularly interesting field as their security

18

2.3 The SPHINCS+ Digital Signature Scheme

is based solely on the hardness of hash functions. Since hash functions are used in many
cryptographic protocols, and are presumably not breakable by quantum attackers, hash-
based signatures are a promising candidate for post-quantum cryptography.
In the following sections, we introduce SPHINCS+, a stateless hash-based signature
scheme standardized in 2024 as SLH-DSA. We then introduce SPHINCS+ by first giv-
ing an overview of the scheme (Section 2.3.2), followed by a detailed description of the
scheme’s components (Sections 2.3.3 to 2.3.8). To conclude the introduction of SPHINCS+,
an overview of the proposed parameter sets is given in Section 2.3.9 and differences be-
tween SPHINCS+ and the standardized SLH-DSA are discussed in Section 2.3.10. Since
SPHINCS+ is a complex scheme, we first introduce a simple hash-based signature scheme
in Section 2.3.1 to build up the necessary knowledge.

2.3.1 Motivating Examples for Hash-Based Signature Schemes

To motivate the concept of hash-based signature schemes, we take a closer look at a list of
example schemes. The schemes introduced in this section build onto each other, starting
with a simple scheme that signs an empty message and ending with a signature scheme
that can sign arbitrary messages. The schemes introduced in this section were used as
introductory examples in [Lange, 2021].
Let us first consider a simple hash-based signature scheme where a participant wants
to sign an empty message. The scheme assumes the existence of secure hash functions. A
secure hash function is defined as follows:

Definition 2.1 (Secure hash function [Easttom, 2022]). Let H : B∗ → Bn be a hash func-
tion. We call H a secure hash function if it satisfies the following properties:

• Preimage resistance: Given h ∈ Bn, it is computationally infeasible to find x ∈ B∗ such
that H(x) = h.

• Weak collision resistance: Given x ∈ B∗, it is computationally infeasible to find x′ ∈ B∗

such that x′ ̸= x and H(x) = H(x′).

• Collision resistance: It is computationally infeasible to find two distinct messages
x, y ∈ B∗ such that H(x) = H(y).

Given a secure hash function H, the scheme SIGN-EMPTY consists of three algorithms
KGen, Sign, and Vf.
The key generator in Algorithm 2 generates a key pair (sk, pk). It does so by first sampling
a random value sk as the secret key. The public key pk is then obtained by applying H to
sk.

19

2 Preliminaries

Algorithm 2: Key generator KGen for SIGN-EMPTY

Output: Key pair (sk, pk)
1 sk ←$ {0, 1}n
2 pk← H(sk)
3 return (sk, pk)

Algorithm 3: Signing algorithm Sign for SIGN-EMPTY

Input: Message m, secret key sk
Output: Signed message σ

1 assert m = ε
2 return σ ← sk

The signing algorithm in Algorithm 3 takes as input a message m and the secret key sk.
After checking that m is indeed the empty string, it reveals sk as the signature σ.

The verification algorithm in Algorithm 4 takes as input a signature σ and the public key
pk. It checks that pk is indeed the hash of σ. If this is the case, the algorithm returns the
empty string, which is the message that was originally signed.

This signature scheme is secure for signing a single empty message if H is a secure hash
function: In order for an attacker to sign an (empty) message, they have to find a collision
for pk under H . This is hard, as H satisfies preimage resistance by definition of secure hash
functions.

In the big picture, this signature scheme can be seen as a commitment pk to the secret key
sk. When signing the message, the signing party reveals their secret sk, and the verifier can
check that the public key is indeed the hash of the secret key. This is a one-time scheme:
the secret key sk can only be used to sign one message, and after a message was signed,
the secret key has to be discarded, i.e., once the commitment to pk has been revealed, it
cannot be hidden again.

While the utility of the SIGN-EMPTY signature scheme might be disputable, it shows how
a hash-based signature scheme can be constructed. The SIGN-EMPTY scheme can also be

Algorithm 4: Verification algorithm Vf for SIGN-EMPTY

Input: Signed message σ, public key pk
Output: True if signature is valid, false otherwise

1 if pk = H(σ) then
2 return true

3 else return false
4

20

2.3 The SPHINCS+ Digital Signature Scheme

used as a subroutine to sign a one-bit message. For the one-bit signature scheme SIGN-BIT,
we represent zero and one with respective commitments to keys sk0 and sk1.

Algorithm 5: Key generator KGen for SIGN-BIT

Output: Key pair (sk, pk)
1 (sk0, pk0)← KGenSIGN-EMPTY(n)
2 (sk1, pk1)← KGenSIGN-EMPTY(n)
3 sk← (sk0, sk1)
4 pk← (pk0, pk1)
5 return (sk, pk)

Algorithm 6: Signing algorithm Sign for SIGN-BIT

Input: Message m, secret key sk = (sk0, sk1)
Output: Signed message sm = (σ,m)

1 assert 0 ≤ m ≤ 1
2 if m = 0 then
3 return (0, SignSIGN-EMPTY(sk0))

4 else return (1, SignSIGN-EMPTY(sk1))

Algorithm 7: Verification algorithm Vf for SIGN-BIT

Input: Signed message sm = (σ,m), public key pk = (pk0, pk1)
Output: True if signature is valid, false otherwise

1 assert 0 ≤ m ≤ 1
2 if m = 0 then
3 return VfSIGN-EMPTY((0, pk0))

4 else return VfSIGN-EMPTY((1, pk1))

The key generator in Algorithm 5 generates two key pairs (sk0, pk0) and (sk1, pk1) using
the SIGN-EMPTY scheme. The keys sk and pk are concatenations of the respective keys for
zero and one. To sign a message, the signing algorithm in Algorithm 6 takes as input a
message m and the secret key sk. It then delegates the signing to the SIGN-EMPTY scheme,
choosing the appropriate signing key depending on the value of m. Similarly, to verify a
signed message, the verification algorithm in Algorithm 7 delegates the verification to the
SIGN-EMPTY scheme.
It can be seen that the SIGN-BIT scheme is secure for signing a single message due to the
security of the SIGN-EMPTY scheme. It can even be used twice without compromising
authenticity: once for message 0 and once for message 1.
We can now use the SIGN-BIT scheme as a building block to sign longer messages of length

21

2 Preliminaries

k in a SIGN-k-BIT scheme. For that, the key generator has to generate 2k key pairs, two for
each bit of the message. The signing algorithm then signs each bit of the message using
the SIGN-BIT scheme. With this construction, we can sign messages of arbitrary but fixed
length. The SIGN-k-BIT scheme is a one-time signature scheme. It is secure for one-shot
signing if the SIGN-BIT scheme is secure.

If the signature scheme was used multiple times, the following chosen signature attack
on the SIGN-k-BIT scheme would be possible. For a key (sk, pk), we denote its key pairs
corresponding to bit i ∈ [1, k] of the message by (ski, pki). We further denote the signing
key corresponding to zero or one with sk0i and sk1i , respectively. In the following existen-
tial forgery attack, we see that the attacker can execute an existential forgery attack after
sending two queries to the signing oracle.

Example 2.2 (Existential Forgery). When signing messages m0 = 010 and m1 = 100 using
the SIGN-3-BIT scheme, the signing party reveals secret keys sk03, sk

1
3, sk

0
2, sk

1
2, and sk01. An

attacker can now combine sk13, sk
1
2 and sk01 to forge a valid signature for m′ = 110.

In practice, many hash-based signature schemes are also one-time or few-time signature
schemes, i.e., they can only be used to sign one or few messages without revealing the
secret key. Therefore, these hash-based signature schemes have to generate many key pairs
and maintain a state about the already used keys or find some other mechanism to evade
attacks without the need to keep track of used keys. In the next sections, we introduce
the SPHINCS+ signature scheme and see how it uses a hypertree structure to maintain
exponentially many signing keys in a stateless fashion.

2.3.2 Overview of the SPHINCS+ Signature Scheme

The SPHINCS+ signature scheme, first submitted to the NIST post-quantum standardiza-
tion process in [Bernstein et al., 2017] and published in [Bernstein et al., 2019], is a state-
less hash-based signature scheme standardized in 2024 as SLH-DSA [NIST, 2024]. It is
constructed using other hash-based signature schemes as components: (1) the few-time
signature scheme FORS, and (2) a hypertree structure XMSS acting as a many-time signa-
ture scheme. In an XMSS tree, a number of hash-based one-time signature scheme WOTS+

instances are managed.

In principle, a SPHINCS+ key pair consists of exponentially many FORS key pairs. The
FORS scheme is used to sign messages, gradually losing security until a key pair has to be
discarded. However, as managing exponentially many keys is infeasible, SPHINCS+ uses
a hypertree structure to maintain signing keys in a stateless fashion. By using a random-
ized addressing scheme, SPHINCS+ locates the FORS key pair and the authentication path

22

2.3 The SPHINCS+ Digital Signature Scheme

to use for a given message. A SPHINCS+ signature then consists of a FORS signature and
a hypertree authentication path.

Figure 2.7 shows the signing process of SPHINCS+. After a path randomization value R

is generated, the message m is hashed to a message digest md and split into k chunks
mdi signed using randomized FORS instances, producing the FORS signatures σF

i . Those
signatures are then authenticated using their associated FORS trees, resulting in a FORS
signature σF = (σF

0 , . . . , σ
F
k−1, auth(σ

F
0), . . . , auth(σ

F
k−1). The SPHINCS+ scheme then de-

rives the FORS root key pkF from σF and md. After signing the message, the SPHINCS+

enters the hypertree structure at layer l = 0, signing the FORS root key pkF , generating a
WOTS+ signature σW

0 . The WOTS+ instance used for signing is then authenticated using
its corresponding XMSS tree, emitting the XMSS authentication path auth(σW

0). Subse-
quently, the XMSS root pkX1 is signed using a WOTS+ instance at the next layer to produce
a WOTS+ signature σW

1 . This process is repeated d times until it reaches the root of the
hypertree, resulting in the full signature

σ = (R,md, σF , σW
0 , auth(σW

0), . . . , σW
d−1, auth(σ

W
d−1)).

In the next sections, the components of SPHINCS+ are introduced in more detail. We
first introduce needed functions and definitions in Section 2.3.3, will then introduce the
WOTS+ (Section 2.3.4) and XMSS (Section 2.3.5) schemes, and finally bring them together
by introducing the SPHINCS+ hypertree in Section 2.3.6. Subsequently, after a brief in-
troduction of the FORS scheme in Section 2.3.7, the SPHINCS+ interface is introduced
in Section 2.3.8. Finally, we discuss the proposed parameter sets in Section 2.3.9 and the
differences between SPHINCS+ and SLH-DSA in Section 2.3.10. Most algorithms and
definitions introduced below are taken from the SLH-DSA standardization document
[NIST, 2024], except for the treehash algorithm (Algorithm 15), which is taken from
the SPHINCS+ specification document [Aumasson et al., 2022].

2.3.3 Functions and Definitions

The SPHINCS+ signature scheme comes with a set of functions, definitions, and an ad-
dress structure ADRS used throughout the scheme. This section introduces the core cryp-
tographic primitives and definitions that are integral to the scheme’s construction. We
start by introducing the hash functions and pseudorandom functions used in SPHINCS+

and summarizing their parameters and outputs. We then introduce helper functions used
in the algorithms. Concluding, the address structure ADRS is discussed, which is used to
uniquely key the hash functions and pseudorandom functions.

23

2 Preliminaries

FORS

σF
0

md0

auth(σF
0)

pkF0

. . . FORS

σF
k−1

mdk−1

auth(σF
k−1)

pkFk−1

pkF

WOTS+ σW
0

XMSS

pkX0

auth(pkW0)

WOTS+

WOTS+ σW
1

XMSS

pkX1

auth(pkW1)

WOTS+

. . .

WOTS+ σW
d−1

XMSS

PK.root

auth(pkWd−1)

WOTS+

l = FORS

l = 0

l = 1

l = d− 1

Figure 2.7: Overall SPHINCS+ structure. Solid lines denote signing, dashed lines denote
authentication, and dotted lines denote outputs in the hypertree.

24

2.3 The SPHINCS+ Digital Signature Scheme

Table 2.1: Hash functions and pseudorandom functions used in SPHINCS+

Function Parameters Input Output

PRFmsg (SK.prf, opt_rand) ∈ Bn × Bn m ∈ B∗ R ∈ Bn

Generates a randomization value R for a message m.

Hmsg (R,PK.seed,PK.root) ∈ Bn × Bn × Bn m ∈ B∗ R ∈ Bn

Generates a message digest md for a message m to be signed.

PRF (PK.seed,ADRS) ∈ Bn × B32 SK.seed ∈ Bn s ∈ Bn

Generates secret values used in WOTS+ and FORS.

Tℓ (PK.seed,ADRS) ∈ Bn × B32 m1 ∈ Bℓn y ∈ Bn

Hash function that maps an ℓn-byte message to an n-byte message.

H (PK.seed,ADRS) ∈ Bn × B32 m2 ∈ B2n y ∈ Bn

Special case of Tℓ that takes messages of lengths 2n.

F (PK.seed,ADRS) ∈ Bn × B32 x ∈ Bn y ∈ Bn

A hash function that takes an n-byte input and produces an n-byte output.

Hash Functions and Pseudorandom Functions

The SPHINCS+ signature scheme uses six functions throughout its components: PRFmsg,
Hmsg, PRF, Tℓ, H, and F. All of these functions are implemented using hash functions or
Extensible Output Functions (XOFs) such as SHA-2 or SHAKE. Table 2.1 summarizes the
hash functions and pseudorandom functions used in SPHINCS+. The ADRS structure is
used to key the hash (pseudorandom, resp.) functions.

Helper Functions

The SPHINCS+ signature scheme uses three helper functions in its algorithms. The func-
tion pair toInt and toByte converts a sequence of bytes to an integer and vice versa.
They are used to converting byte strings from hash digests to integers and back, repre-
senting a byte string as an integer in big-endian format.

Algorithm 8: toInt(X, n)
Input: n-byte string X .
Output: Integer value of X .

1 total ← 0
2 for i← 0 to n− 1 do
3 total ← 256 · total + X[i]

4 return total

25

2 Preliminaries

Algorithm 9: toByte(x, n)
Input: Integer x, string length n.
Output: n-byte string S containing the big-endian representation of x.

1 total ← x
2 for i← 0 to n− 1 do
3 S[n− 1− i]← total mod 256 // least significant 8 bits of total
4 total ← total ≫ 8 // shift right by 8 bits

5 return S

The function base_2b represents a sequence of bytes as a sequence of base-2b blocks. It
is used to convert a byte string into an array of integers, where each integer represents a
block of b bits.

Algorithm 10: base_2b(X, b, out_len)

Input: Byte string X of length at least ⌈ out_len·b
8 ⌉, integer b, output length out_len.

Output: Array baseb of length out_len, with each element in [0, . . . , 2b − 1].

1 in ← 0
2 bits ← 0
3 total ← 0
4 for out ← 0 to out_len− 1 do
5 while bits < b do
6 total ← (total ≪ 8) +X[in] // append next byte
7 in ← in + 1
8 bits ← bits + 8

9 bits ← bits − b // consume b bits

10 baseb[out]←
(
total ≫ bits

)
mod 2b // extract top b bits

11 return baseb

Addresses

Four of the functions described in Table 2.1 take an address ADRS as an additional param-
eter. ADRS is a 32-byte public value used in SPHINCS+ to store addressing information
for use in the signing and verification algorithms. It is used to key into hash functions and
pseudorandom functions, where each call to the function takes a unique address. In the
case of PRF, this allows the generation of a vast amount of different secret values from
a single SK.seed. There are five different types of addresses used in SPHINCS+: two for
WOTS+, one for XMSS, and two for FORS. We omit the FORS addresses here, as FORS is
not the focus of this work.

26

2.3 The SPHINCS+ Digital Signature Scheme

layer address 4 bytes

tree address 12 bytes

type 4 bytes

... 12 bytes

Figure 2.8: Structure of an ADRS.

layer address

tree address

type = 0 (WOTS_HASH)
key pair address 4 bytes

chain address 4 bytes
hash address 4 bytes

Figure 2.9: WOTS+ hash address.

layer address

tree address

type = 1 (WOTS_PK)
key pair address 4 bytes

padding = 0

Figure 2.10: WOTS+ pk compression address.

All ADRS types hold a layer address, a tree address, and a type identifier (Figure 2.8). The
layer address and tree address identify the current layer of the hypertree and the current
tree address. The type identifier is used to specify the type of the address.

Figure 2.9 shows the WOTS+ address with the type identifier WOTS_HASH (type = 0). It
is used to key the chaining hash function during signature generation and verification.
In addition to the layer address, the type address, and the identifier, it also contains the
key pair address, the chain address, and the hash address. The key pair address identifies
the key pair in the WOTS+ signing procedure. The chain address identifies the current
the chain of the WOTS+ instance. The hash address identifies the current step in the hash
chain.

Figure 2.10 shows the WOTS+ public key compression address with the type identifier
WOTS_PK (type = 1). It is used to key the hash function during public key compression,
the last step in a WOTS+ chain. It is structurally similar to a WOTS+ hash address, but it
uses a different type identifier and has the last two words set to zero.

Figure 2.11 shows the XMSS address with the type identifier TREE (type = 2), which is used
during the XMSS authentication path computation. The first word after the type identifier
is set to zero, and the current height and index in the tree are stored in the next two words.

27

2 Preliminaries

layer address

tree address

type = 2 (TREE)
padding = 0 4 bytes
tree height 4 bytes
tree index 4 bytes

Figure 2.11: XMSS tree address.

layer address

tree address

type = 5 (WOTS_PRF)
key pair address 4 bytes

chain address 4 bytes
hash address = 0 4 bytes

Figure 2.12: WOTS+ key generation address.

The WOTS+ key generation address in Figure 2.12 with the type identifier WOTS_PRF
(type = 5) is used to key the hash function during WOTS+ key generation. It is similar to
the WOTS+ hash address, but has the hash address set to zero.

An address exposes several methods to access and manipulate its components. If X is a
component of ADRS, then ADRS.getX() returns the value of X, and ADRS.setX(v) sets
the value of X to v. For example, ADRS.getLayerAddress() returns the layer address, and
ADRS.setLayerAddress(l) sets the layer address to l. One exception is the address type:
the type of ADRS is set using ADRS.setTypeAndClear(t), which also sets every word after
the type identifier to zero.

2.3.4 Winternitz One-Time Signature Scheme+

The Winternitz One-Time Signature Scheme+ (WOTS+) is a hash-based one-time signature
scheme. It is based on the original WOTS scheme [Merkle, 1990] and was adapted for use
with SPHINCS+. Signing a message using WOTS+ involves applying a hash function to
the secret key a message-dependent number of times.

A WOTS+ instance is parameterized by:

• n: The security parameter that defines the output length of the hash function F, the
length of messages to be signed, the length of secret key components, and the length
of public key components.

• lgw: The block size, i.e., the number of bits encoded by each hash chain.

The security parameter n is defined to be one of 16, 24, or 32 bytes, while the block size lgw

is fixed to 4 for all parameter sets (see Table 2.2). Additionally, the following parameters
are derived from the security parameter and the block size:

28

2.3 The SPHINCS+ Digital Signature Scheme

w = 2lgw The length of each hash chain

ℓ1 =

⌈
8n

lgw

⌉
The number of lgw bit message blocks

ℓ2 =

⌊
log2((w − 1)ℓ1)

lgw

⌋
+ 1 The number of lgw bit blocks in the checksum

ℓ = ℓ1 + ℓ2 The total number of lgw bit blocks to be signed

For example, for a security parameter n = 32 and block size lgw = 4, we have w = 16,
ℓ1 = 64, ℓ2 = 3, and ℓ = 67.
A WOTS+ secret key consists of ℓ secret key components si ∈ Bn for 1 ≤ i ≤ ℓ. Each of
these secret key components corresponds to the start of a hash chain with w steps. All the
secret key components are derived from a single secret key seed SK.seed ∈ Bn using a
pseudorandom function PRF.
To sign a message m ∈ B∗, the message is first split into ℓ1 lgw-bit blocks (b1, . . . , bℓ1). The
message is then padded with a checksum c that is computed as c =

∑ℓ1
i=1w − 1 − bi. The

checksum c is then, similarly to m, split into ℓ2 lgw-bit blocks (bℓ1+1, . . . , bℓ). The signature
σ then consists of ℓ components σi ∈ Bn for 1 ≤ i ≤ ℓ, where bi corresponds to the number
of applications F to an initial state derived from the secret key si.
WOTS+ utilizes two helper functions: setting b = lgw, the function base_2b (Algo-
rithm 10) is used to convert the message and checksum into base-2lgw blocks. The function
chain (Algorithm 11) applies F to its n-byte input s many times, updating the ADRS
accordingly.

Algorithm 11: chain(X , i, s, PK.seed, ADRS)
Input: Input string X , start index i, number of steps s, public seed PK.seed, address

ADRS.
Output: Value of F iterated s times on X .

1 tmp← X
2 for j ← i to i+ s− 1 do
3 ADRS.setHashAddress(j)
4 tmp← F

(
PK.seed,ADRS, tmp

)

5 return tmp

Algorithm 12 shows the key generation algorithm wots_pkGen for WOTS+. The public
key pk is generated from both the secret SK.seed and the public PK.seed from SPHINCS+.
The algorithm first applies the pseudorandom function PRF to SK.seed at the address

29

2 Preliminaries

ADRS to generate the secret key components si. Afterwards, the algorithm applies chain
to each si to generate the public key components pki. Finally, the public key pk is generated
by compressing the public key components using the function Tℓ.

Algorithm 12: wots_pkGen(SK.seed, PK.seed, ADRS)
Input: Secret seed SK.seed, public seed PK.seed, address ADRS.
Output: WOTS+ public key pk.

1 skADRS← ADRS // copy address to create sk address
2 skADRS.setTypeAndClear(WOTS_PRF)
3 skADRS.setKeyPairAddress(ADRS.getKeyPairAddress())
4 for i← 0 to ℓ− 1 do
5 skADRS.setChainAddress(i)
6 sk← PRF

(
PK.seed, SK.seed, skADRS

)
// chain i secret value

7 ADRS.setChainAddress(i)
8 tmp[i]← chain

(
sk, 0, w − 1, PK.seed, ADRS

)
// chain i public value

9 wotspkADRS← ADRS // copy address to create WOTS+ pk address
10 wotspkADRS.setTypeAndClear(WOTS_PK)
11 wotspkADRS.setKeyPairAddress

(
ADRS.getKeyPairAddress()

)

12 pk← Tℓ

(
PK.seed, wotspkADRS, tmp

)
// compress public key

13 return pk

Algorithm 13 shows the signing algorithm wots_sign for WOTS+. It takes a message M ,
a secret seed SK.seed, a public seed PK.seed, and an address ADRS as input. The algo-
rithm first converts the message M to a base-w representation msg = (m1,m2, . . . ,mℓ1). It
then computes a checksum csum based on the message. The checksum is then converted
to a base-w representation as well and appended to the message. The algorithm then com-
putes the chain secret key values si using the pseudorandom function PRF on the seeds
SK.seed and PK.seed, and the address ADRS. Afterwards, chain is called to apply F mi

times to chain si to compute the signature value σW
i for each chain.

Algorithm 14 shows the public key generation algorithm wots_pkFromSig for WOTS+.
It serves as the verification algorithm for WOTS+ signatures, taking a WOTS+ signature
σW , a message M , a public seed PK.seed, and an address ADRS as input. Similarly to
the signing algorithm, the message M is converted to its base-w representation msg and a
checksum csum is computed. The checksum is then appended to the message. The algo-
rithm then completes the chain computation by applying chain to each signature compo-
nent σW

i , stored in tmp[i]. Concluding, the public key pksig is generated by compressing
the public key components. If the signature is valid, the extracted public key pksig will
match the public key of the signing party.
If the underlying hash function is secure, then the WOTS+ signature scheme is secure for
one-time signing. In SPHINCS+, WOTS+ is used as a building block for the many-time

30

2.3 The SPHINCS+ Digital Signature Scheme

Algorithm 13: wots_sign(M , SK.seed, PK.seed, ADRS)
Input: Message M , secret seed SK.seed, public seed PK.seed, address ADRS.
Output: WOTS+ signature σW = (σW

0 , . . . , σW
ℓ−1).

1 csum← 0
2 msg← base_2b

(
M, lgw, ℓ1

)
// convert message to base w

3 for i← 0 to ℓ1 − 1 do
4 csum← csum+ w − 1−msg[i]

5 csum← csum≪
(
(8− ((ℓ2 · lgw) mod 8)) mod 8

)
// for lgw = 4, left shift

by 4

6 msg← msg ∥base_2b
(
toByte

(
csum,

⌈
ℓ2·lgw

8

⌉)
, lgw, ℓ2

)
// append checksum

in base w
7 skADRS← ADRS // copy address to create key-generation key

address
8 skADRS.setTypeAndClear(WOTS_PRF)
9 skADRS.setKeyPairAddress

(
ADRS.getKeyPairAddress()

)

10 for i← 0 to ℓ− 1 do
11 skADRS.setChainAddress(i)
12 sk← PRF

(
PK.seed, SK.seed, skADRS

)
// compute chain i secret

value
13 ADRS.setChainAddress(i)
14 σW

i ← chain
(
sk, 0, msg[i], PK.seed, ADRS

)
// compute chain i

signature value

15 return σW

31

2 Preliminaries

Algorithm 14: wots_pkFromSig(σW , M , PK.seed, ADRS)

Input: WOTS+ signature σW , message M , public seed PK.seed, address ADRS.
Output: WOTS+ public key pksig derived from σW .

1 csum ← 0
2 msg ← base_2b

(
M, lgw, ℓ1

)
// convert message to base w

3 for i← 0 to ℓ1 − 1 do
4 csum ← csum + w − 1−msg [i] // compute checksum

5 csum ← csum ≪
((
8− ((ℓ2 · lgw) mod 8)

)
mod 8

)
// for lgw = 4, left shift

by 4

6 msg ← msg ∥base_2b
(
toByte

(
csum,

⌈
ℓ2·lgw

8

⌉)
, lgw, ℓ2

)
// append checksum

in base w
7 for i← 0 to ℓ− 1 do
8 ADRS.setChainAddress(i)
9 tmp[i]← chain

(
σW
i , msg [i], w − 1−msg [i], PK.seed, ADRS

)

10 wotspkADRS ← ADRS // copy address for WOTS+ public key
11 wotspkADRS .setTypeAndClear(WOTS_PK)
12 pksig ← Tℓ

(
PK.seed, wotspkADRS , tmp

)

13 return pksig

signature scheme XMSS. We go into more detail in the next section, where we first start
by introducing the XMSS scheme and then explain how to use it to generate authentication
paths for WOTS+ instances during the signing process.

2.3.5 Extended Merkle Signature Scheme

For everyday use, a one-time signature scheme such as WOTS+ is not practical. To con-
struct a many-time signature scheme from a one-time signature scheme, it is necessary to
manage multiple one-time keys and ensure that each key is used to sign at most one dis-
tinct message. Stateful signature schemes keep book of the used keys and ensure that each
key is used only once. Stateless signature schemes have to eliminate the need of keeping
track of the used keys. Instead, the latter rely on the use of an exponentially large number
of keys, making key reuse highly unlikely. However, the signing party has to convince
the verifier that the key used to sign a message is actually derived from their secret key.
In SPHINCS+, this is achieved by managing one-time keys in a tree structure, generating
authentication paths for WOTS+ keys using an XMSS tree.

XMSS is a hash-based signature system based on Merkle trees. A Merkle tree is a binary
tree where each leaf is labelled with the hash of an associated cryptographic key’s public
key. In the case of XMSS, WOTS+ public keys are used as the leaves of the tree. Each parent

32

2.3 The SPHINCS+ Digital Signature Scheme

pkX = h1234,5678 = H(h12,34|h56,78)

h12,34 = H(h1,2|h3,4)

h1,2 = H(h1|h2)

h1 = H(pkW1) h2

h3,4

h3 h4

h56,78

h5,6

h5 h6

h7,8

h7 h8

Figure 2.13: A Merkle tree of height 3 with 23 = 8 leaves. The leave hi represents the hash
of a WOTS+ key pkWi . A parent node hi,j represents the hash of the concatena-
tion of its children hi, hj . The final hash is denoted as the root node pkX and
represents the public key of the scheme. The nodes forming the authentica-
tion path auth(pkW1) are highlighted with blue rectangles.

node is labelled with the hash of the concatenation of the hashes of its children. The root
node of the tree is called the public key of the scheme. Using a Merkle tree of height h′, 2h

′

key pairs can be managed and authenticated (see Figure 2.13).
XMSS uses the treehash1 function (Algorithm 15) to compute the nodes of a Merkle
tree starting from its leaves. It takes as input a secret seed, a start index, a target height,
a public seed, and an address structure ADRS. The algorithm computes the target height
node of the tree by iteratively applying the WOTS+ key generation algorithm to the leaves
and then hashing the resulting public keys up to the root.
Algorithm 16 shows the signing algorithm xmss_sign for XMSS. It takes a message M ,
a secret seed SK.seed, an index idx, a public seed PK.seed, and an address ADRS as
input. The idx is the index of the WOTS+ key to be used for signing M , i.e., the leaf index
in the Merkle tree. The algorithm first computes the authentication path corresponding
to idx. It then produces the signature σW by signing the message M using the WOTS+

signing algorithm wots_sign with the secret seed SK.seed, the public seed PK.seed, and
the address ADRS. The resulting signature σX is then constructed by concatenating the
WOTS+ signature σW and the authentication path AUTH .
The function xmss_pkFromSig (Algorithm 17) computes the root node of an XMSS tree
given a signature σX consisting of an authentication path, a message M , a public seed,
and an address. It serves as the verification algorithm for XMSS signatures. It first extracts

1The treehash algorithm from the SPHINCS+ submission [Aumasson et al., 2022] is functionally equiva-
lent to the xmss_node algorithm presented in the SLH-DSA standardization document [NIST, 2024], but
is implemented iteratively instead of recursively. Since the iterative version better reflects the reference
implementation of the SPHINCS+ submission, we use it throughout this thesis.

33

2 Preliminaries

Algorithm 15: treehash(SK.seed, s, z, PK.seed, ADRS)
Input: Secret seed SK.seed, start index s, target height z, public seed PK.seed,

address ADRS
Output: n-byte root node

1 if s mod 2z ̸= 0 then
2 return −1
3 for i← 0 to 2z − 1 do
4 ADRS.setType(WOTS_HASH)
5 ADRS.setKeyPairAddress(s+ i)
6 node ← wots_pkGen(SK.seed,PK.seed,ADRS)
7 ADRS.setType(TREE)
8 ADRS.setTreeHeight(1)
9 ADRS.setTreeIndex(s+ i)

10 while height(top of Stack) = height(node) do
11 ADRS.setTreeIndex

(
(ADRS.getTreeIndex− 1)/2

)

12 node ← H
(
PK.seed, ADRS, (Stack .pop() ∥node)

)

13 ADRS.setTreeHeight
(
ADRS.getTreeHeight+ 1

)

14 Stack .push(node)

15 return Stack .pop()

Algorithm 16: xmss_sign(M , SK.seed, idx, PK.seed, ADRS)
Input: n-byte message M , secret seed SK.seed, index idx, public seed PK.seed,

address ADRS.
Output: XMSS signature σX = (σW ∥AUTH).

1 for j ← 0 to h′ − 1 do
2 k ←

⌊
idx/2j

⌋
⊕ 1

3 AUTH [j]← treehash
(
SK.seed, k, j, PK.seed, ADRS

)

4 ADRS.setTypeAndClear(WOTS_HASH)
5 ADRS.setKeyPairAddress(idx)
6 σW ← wots_sign

(
M, SK.seed, PK.seed, ADRS

)

7 σX ← σW ∥AUTH
8 return σX

34

2.3 The SPHINCS+ Digital Signature Scheme

the WOTS+ public key from the key pair at leaf index idx using the signature σW . Then, it
computes the root node of the XMSS tree using the extracted WOTS+ public key and the
authentication path AUTH .

Algorithm 17: xmss_pkFromSig(idx, σX , M , PK.seed, ADRS)

Input: Index idx, XMSS signature σX = (σW ∥AUTH), n-byte message M , public
seed PK.seed, address ADRS.

Output: n-byte root value node[0].
1 ADRS.setTypeAndClear(WOTS_HASH) // compute WOTS+ public key

from signature
2 ADRS.setKeyPairAddress(idx)
3 σW ← σX .getWOTSSig() // extract WOTS+ signature
4 AUTH ← σX .getXMSSAUTH() // extract authentication path
5 node[0]← wots_pkFromSig

(
σW , M, PK.seed, ADRS

)
// WOTS+ public key

6 ADRS.setTypeAndClear(TREE) // compute root from WOTS+ pk and
AUTH

7 ADRS.setTreeIndex(idx)
8 for k ← 0 to h′ − 1 do
9 ADRS.setTreeHeight(k + 1)

10 if
⌊
idx/2k

⌋
is even then

11 ADRS.setTreeIndex
(
ADRS.getTreeIndex()/2

)

12 node[1]← H
(
PK.seed, ADRS, node[0] ∥AUTH [k]

)

13 else
14 ADRS.setTreeIndex

(
(ADRS.getTreeIndex()− 1)/2

)

15 node[1]← H
(
PK.seed, ADRS, AUTH [k] ∥node[0]

)

16 node[0]← node[1]

17 return node[0]

2.3.6 The SPHINCS+ Hypertree

SPHINCS+ requires up to 268 WOTS+ keys for authenticating FORS signatures. Managing
this many keys in a single XMSS tree is impractical, as the number of hash operations
required to compute a signature would be too high. Instead, SPHINCS+ uses a hypertree
structure. A hypertree is a tree structure where each node is a tree. The SPHINCS+ hyper-
tree consists of d layers, with nodes being XMSS trees of height h′. Hence, the total height
of the SPHINCS+ hypertree is h = d · h′. The root node of the top layer is the public key
of the scheme PK.root. The leaves of each layer are WOTS+ public keys, and are used to
sign a tree on the next layer. This way, only one XMSS tree has to be computed per layer
during signing.

35

2 Preliminaries

The function ht_sign (Algorithm 18) shows the signing algorithm for the hypertree. It
takes a message M , a secret seed SK.seed, a public seed PK.seed, a tree index idxtree, and a
leaf index idxleaf as input. It first calls xmss_sign to sign the message M , producing a sig-
nature σX containing a WOTS+ signature and an authentication path. Afterwards, the root
node of the XMSS tree at layer 0 used for signing is computed using xmss_pkFromSig.
The algorithm then iterates over the remaining layers of the hypertree, signing the root
node of the previous layer using xmss_sign and appending the resulting signature to
the hypertree signature σHT . Once the top layer is reached, the hypertree signature σHT

contains the WOTS+ signatures and authentication paths for all layers of the hypertree.

Algorithm 18: ht_sign(M , SK.seed, PK.seed, idxtree, idxleaf)
Input: Message M , secret seed SK.seed, public seed PK.seed, tree index idxtree, leaf

index idxleaf.
Output: Hypertree signature σHT .

1 ADRS← toByte(0, 32) // initialize address to 32-byte zero
2 ADRS.setTreeAddress(idxtree)
3 σX ← xmss_sign

(
M, SK.seed, idxleaf, PK.seed, ADRS

)

4 σHT ← σX

5 pkX ← xmss_pkFromSig
(
idxleaf, σ

X , M, PK.seed, ADRS
)

6 for j ← 1 to d− 1 do
7 idxleaf ← idxtree mod 2h

′
// h′ least significant bits of idxtree

8 idxtree ← idxtree ≫ h′ // remove h′ least significant bits
9 ADRS.setLayerAddress(j)

10 ADRS.setTreeAddress(idxtree)

11 σX ← xmss_sign
(
pkX , SK.seed, idxleaf, PK.seed, ADRS

)

12 σHT ← σHT ∥σX

13 if j < d− 1 then
14 pkX ← xmss_pkFromSig

(
idxleaf, σ

X , PK.seed, ADRS
)
// compute

next root

15 return σHT

The function ht_verify (Algorithm 19) verifies a hypertree signature σHT . It takes a
message M , a signature σHT , a public seed PK.seed, a tree index idxtree, a leaf index idxleaf,
and the hypertree public key PK.root as input. It starts by extracting the first WOTS+ sig-
nature from the hypertree signature σHT and computes the root node of the XMSS tree at
layer 0 using xmss_pkFromSig. Then, it iterates over the remaining layers of the hyper-
tree, extracting the WOTS+ signatures and authentication paths from σHT and computing
the root node of each layer using xmss_pkFromSig. Finally, it compares the computed
root node with the hypertree public key PK.root and returns true if they match, or false
otherwise.

36

2.3 The SPHINCS+ Digital Signature Scheme

Algorithm 19: ht_verify(M , σHT , PK.seed, idxtree, idxleaf, PK.root)

Input: Message M , signature σHT , public seed PK.seed, tree index idxtree, leaf
index idxleaf, HT public key PK.root.

Output: Boolean (validity of σHT).
1 ADRS← toByte(0, 32)
2 ADRS.setTreeAddress(idxtree)
3 σX ← σHT .getXMSSSignature(0) // σHT [0 : (h′ + ℓ) · n)]
4 node ← xmss_pkFromSig

(
idxleaf, σ

X , M, PK.seed, ADRS
)
// compute first

root
5 for j ← 1 to d− 1 do
6 idxleaf ← idxtree mod 2h

′
// h′ least significant bits of idxtree

7 idxtree ← idxtree ≫ h′ // remove h′ least significant bits
8 ADRS.setLayerAddress(j)
9 ADRS.setTreeAddress(idxtree)

10 σX ← σHT .getXMSSSignature(j) // extract j-th XMSS signature
11 node ← xmss_pkFromSig

(
idxleaf, σ

X , node, PK.seed, ADRS
)
// compute

next root

12 if node = PK.root then
13 return true
14 else
15 return false

37

2 Preliminaries

2.3.7 Forest Of Random Subsets

Forest of Random Subsets (FORS) is a hash-based few-time signature scheme that is used to
sign the hash digest of the actual message in SPHINCS+. While a WOTS+ key can only be
used once, FORS keys can be used multiple but overall few times. FORS uses a number of
XMSS trees, a combination which is then called a forest, at addresses specified by ADRS
to sign a message digest. The signature process is similar to XMSS, and the FORS public
key is the hash of the concatenation of the public keys of the XMSS trees used in the forest.
The FORS signature scheme is parameterized by the number of XMSS trees k in the forest
and the total number of leaves 2a.
Similarly to the WOTS+ scheme, FORS defines three functions fors_keygen, fors_sign,
and fors_pkFromSig to generate keys, sign messages, and extract a public key from a
signature. We omit details about the FORS signature scheme here, as it is not the focus
of the attack presented in this thesis, and we refer the reader to the NIST standardization
document [NIST, 2024] for a detailed description of the FORS scheme.

2.3.8 SPHINCS+ Interface

SPHINCS+ exposes three functions to the user: a key generation function, a signing function,
and a verification function.
Algorithm 20 shows the key generation algorithm sphincsp_keygen for SPHINCS+. It
takes a secret SK.seed, a PRF key SK.prf, and a public PK.seed as input. It generates the
public key for the top-level XMSS tree by calling treehash with the secret seed, a zero
index, the height h′, the public seed, and an address ADRS.

Algorithm 20: sphincsp_keygen(SK.seed, SK.prf, PK.seed)
Input: Secret seed SK.seed, PRF key SK.prf, public seed PK.seed.
Output: SPHINCS+ key pair (SK ,PK).

1 ADRS← toByte(0, 32) // generate pk for top-level XMSS tree
2 ADRS.setLayerAddress(d− 1)
3 PK.root← treehash

(
SK.seed, 0, h′, PK.seed, ADRS

)

4 return
(
(SK.seed, SK.prf, PK.seed, PK.root), (PK.seed, PK.root)

)

The function sphincsp_sign (Algorithm 21) shows the signing algorithm for SPHINCS+.
It takes a message M , a private key SK = (SK.seed, SK.prf, PK.seed, PK.root), and an
optional additional randomness addrnd as input. The algorithm first generates a ran-
domizer R using the pseudorandom function PRF on the PRF key SK.prf, the additional
randomness addrnd, and the message M . It then computes a message digest using the
hash function Hmsg on the randomizer R, the public PK.seed, the public key PK.root, and

38

2.3 The SPHINCS+ Digital Signature Scheme

the message M . The digest is split into three parts: the first ⌈k · a/8⌉ bytes are used as
the message digest, the next ⌈(h− h/d)/8⌉ bytes are used as the tree index, and the last
⌈h/(8d)⌉ bytes are used as the leaf index.

Algorithm 21: sphincsp_sign(M , SK , addrnd)
Input: Message M , private key SK = (SK.seed, SK.prf, PK.seed, PK.root),

(optional) additional randomness addrnd .
Output: SLH-DSA signature σ.

1 ADRS← toByte(0, 32) // initialize address to 32-byte zero
2 opt_rand ← addrnd // subst. opt_rand ← PK.seed for deterministic

variant
3 R← PRFmsg

(
SK.prf, opt_rand , M

)
// generate randomizer

4 σ ← R // initialize signature with R
5 digest ← Hmsg

(
R, PK.seed, PK.root, M

)
// compute message digest

6 md ← first
⌈
k·a
8

⌉
bytes of digest

7 tmp_idxtree ← next
⌈
h−h/d

8

⌉
bytes of digest

8 tmp_idxleaf ← next
⌈

h
8d

⌉
bytes of digest

9 idxtree ← toInt
(
tmp_idxtree,

⌈
h−h/d

8

⌉)
mod 2h−h/d // tree index

10 idxleaf ← toInt
(
tmp_idxleaf,

⌈
h
8d

⌉)
mod 2h/d // leaf index

11 ADRS.setTreeAddress(idxtree)
12 ADRS.setTypeAndClear(FORS_TREE)
13 ADRS.setKeyPairAddress(idxleaf)
14 σF ← fors_sign

(
md , SK.seed, PK.seed, ADRS

)
// sign using FORS

15 σ ← σ ∥σF // append FORS signature

16 pkF ← fors_pkFromSig
(
σF , md , PK.seed, ADRS

)
// derive FORS public

key

17 σHT ← ht_sign
(
pkF , SK.seed, PK.seed, idxtree, idxleaf

)
// sign using

hypertree
18 σ ← σ ∥σHT // append HT signature
19 return σ

Algorithm 22 shows sphincsp_verify, the verification function for SPHINCS+ signa-
tures. It takes a message M , a signature σ, and a public key PK = (PK.seed, PK.root)
as input. The algorithm first splits the signature into the randomizer R, the FORS signa-
ture σF , and the hypertree signature σHT . It then computes the message digest using the
hash function Hmsg on R, PK.seed, PK.root, and M . Similarly to the signing algorithm,
the digest is split into three parts: the message digest, the tree index, and the leaf index.
Then, using the FORS signature, the public key for the FORS forest is computed using the
function fors_pkFromSig. Finally, the hypertree signature is verified using the func-
tion ht_verify, which checks, using the authentication path from the signature, if the

39

2 Preliminaries

computed root node matches the public key PK.root.

Algorithm 22: sphincsp_verify(M , σ, PK = (PK.seed, PK.root))
Input: Message M , signature σ, public key PK = (PK.seed, PK.root).
Output: Boolean expressing the validity of σ.

1 if |σ| ̸=
(
1 + k(1 + a) + h+ d · ℓ

)
· n then

2 return false

3 ADRS← toByte(0, 32) // initialize address to 32-byte zero
4 R← σ.getR() // extract R (first n bytes of σ)
5 σF ← σ.getSIG_FORS() // extract FORS signature (n-byte blocks

[n : (1 + k(1 + a)) · n])
6 σHT ← σ.getSIG_HT() // extract HT signature (remaining bytes)
7 digest ← Hmsg

(
R, PK.seed, PK.root, M

)
// compute message digest

8 md← first
⌈
k·a
8

⌉
bytes of digest

9 tmp_idxtree ← next
⌈
h−h/d

8

⌉
bytes of digest

10 tmp_idxleaf ← next
⌈

h
8d

⌉
bytes of digest

11 idxtree ← toInt
(
tmp_idxtree, ⌊(h− h/d)/8⌋

)
mod 2h−h/d // tree index

12 idxleaf ← toInt
(
tmp_idxleaf, ⌊h/(8d)⌋

)
mod 2h/d // leaf index

13 ADRS.setTreeAddress(idxtree) // set tree address for FORS
14 ADRS.setTypeAndClear(FORS_TREE) // select FORS tree type and

clear other fields
15 ADRS.setKeyPairAddress(idxleaf) // set key-pair (leaf) address

16 pkF ← fors_pkFromSig
(
σF , md , PK.seed, ADRS

)
// compute FORS

public key

17 return ht_verify
(
pkF , σHT , PK.seed, idxtree, idxleaf, PK.root

)
// verify

hypertree signature

2.3.9 Parameter Sets

SPHINCS+ defines several parameter sets for different hash function families and secu-
rity levels. The original SPHINCS+ submission proposes 36 parameter sets which fall into
two categories: fast and small. While the former is optimized for signing speed, the latter
is optimized for signature size. The categories are further divided into simple and robust
variants. While the simple variants apply the hash functions once to the concatenation of
parameters and inputs, the robust parameter sets are designed to be more secure against
attacks in the random oracle model by first hashing the parameters and subsequently
XOR-ing the inputs with the parameter digest before hashing again. Each combination
of category and variant can be used with SHA2 [NIST, 2015a], SHAKE [NIST, 2015b], or

40

2.3 The SPHINCS+ Digital Signature Scheme

Haraka [Kölbl et al., 2016] as the hash function. Thus, for each hash function, 12 parameter
sets are proposed.
However, not all parameter sets are approved by NIST. Table 2.2 of the approved pa-
rameter sets shows that only the simple variants of the SHA2 and SHAKE parameter sets
were approved, while the Haraka parameter sets were not approved at all. In this work,
we focus on the SHAKE-256s parameter set, which satisfies the highest security level of
5. Other parameter sets are only used to compare the performance of the attack against
other parameter sets.
The specification defines the following parameters:

• n: the security parameter in bytes.

• h: the height of the hypertree. This determines the number of FORS key pairs avail-
able for signing, hence the probability that a FORS key pair is reused.

• d: the number of XMSS tree layers in the hypertree. It is purely a performance trade-
off parameter and must divide h without remainder.

• h′: the depth of an XMSS tree. This can be computed as h′ = h
d , but is included in the

parameter set for clarity.

• a, k: the security level of a FORS instance. A FORS forest consists of 2a leaves, which
are split into k trees. There is a performance trade-off between a and k, as a smaller
value for a generally leads to smaller and faster signatures, but increase the signature
size for a given security level.

• lgw: the 2-logarithm of the Winternitz Parameter w. It determines the number of bits
that can be signed with a single WOTS+ chain.

• m: the output length of Hmsg in bytes.

2.3.10 Differences between SPHINCS+ and SLH-DSA

SPHINCS+ has been first submitted to NIST’s PQC standardization process in 2017
[Bernstein et al., 2017]. The SPHINCS+ specification version 3.0 was later submitted to
the third round of the NIST PQC standardization process in 2020. The specification was
revised to version 3.1 [Aumasson et al., 2022] and standardized as SLH-DSA in 2024
[NIST, 2024]. Specification version 3.1 revision introduced several minor changes:

• Two new address types were introduced: WOTS_PRF and FORS_PRF. Those are
used to derive the WOTS+ and FORS initial secrets from the secret key seed.

41

2 Preliminaries

Table 2.2: Parameter sets for SLH-DSA

Name n h d h′ a k lgw m
Security
category

pk
(bytes)

sig
(bytes)

SHA2-128s
SHAKE-128s

16 63 7 9 12 14 4 30 1 32 7856

SHA2-128f
SHAKE-128f

16 66 22 3 6 33 4 34 1 32 17088

SHA2-192s
SHAKE-192s

24 63 7 9 14 17 4 39 3 48 16224

SHA2-192f
SHAKE-192f

24 66 22 3 8 33 4 42 3 48 35664

SHA2-256s
SHAKE-256s

32 64 8 8 14 22 4 47 5 64 29792

SHA2-256f
SHAKE-256f

32 68 17 4 9 35 4 49 5 64 49856

• PK.seed was added as an input to PRF to mitigate multi-key attacks.

• For the category 3 and 5 SHA2 parameter sets, SHA-256 was replaced by SHA-512
in Hmsg, PRFmsg, H, and Tℓ.

• For all SHA2 parameter sets, the randomizer R and PK.seed were added as inputs
when computing Hmsg to mitigate second preimage attacks.

The SLH-DSA specification also differs from the revised submission version 3.1 in the
method for extracting bits from the message digest while signing with the FORS scheme.
Additionally, some minor bugs in the pseudocode of wots_sign and wots_pkFromSig

were fixed in the SLH-DSA specification. The standard only approves the use of 12 of
the 36 proposed parameter sets. Most notably, the Haraka-based parameter sets and the
robust variants are not approved.

2.4 Grafting Tree Attack

The grafting tree attack is a fault attack on the SPHINCS and SPHINCS+ signature schemes
first described in [Castelnovi et al., 2018]. In this section, we give an overview of the attack
and analyze its complexity. We first give an overview of the attack, and then analyze the
complexity of each step in detail. We assume that, in addition to faulted SPHINCS+ sig-
natures, the attacker can also obtain valid signatures σ from a SPHINCS+ signing oracle.

42

2.4 Grafting Tree Attack

. . .

WOTS+ σW
l∗

XMSS

p̂k
X

l∗

auth(pkWl∗)

WOTS+

E

WOTS+ σ̂W
l∗+1

XMSS

pkXl∗+1

auth(pkWl∗+1)

WOTS+

(a) Faulting the XMSS computation.

. . .

WOTS+ σ̃W
l∗

XMSS

p̃k
X
l∗

auth(p̃k
W
l∗)

WOTS+

WOTS+ σ̃W
l∗+1

XMSS

pkXl∗+1

auth(pkWl∗+1)

WOTS+

(b) Grafting an XMSS tree.

Figure 2.14: Grafting tree attack on SPHINCS+ [Genêt, 2023].

While this is not strictly necessary for the attack, it simplifies the analysis. For an analysis
of the attack without the availability of valid signatures, we refer to [Genêt, 2023].

2.4.1 Attack Overview

We will now provide an overview of the attack, before describing the individual steps in
the following subsections. Figure 2.14 illustrates the grafting tree attack on SPHINCS+.
Recall that during the computation of an XMSS tree at layer l∗, the treehash function
computes the tree’s root node pkXl∗ by iteratively applying a hash function to the tree’s
nodes, emitting an authentication path auth(pkWl∗) on the way. The attacker then injects
faults into one of these hash function calls, leading to a faulted root node p̂k

X

l∗ . This value
is subsequently signed using a WOTS+ instance at layer l∗ + 1, producing a WOTS+ sig-
nature σ̂W

l∗+1. After the signing procedure is completed, the attacker then collects a faulted
signature

σ̂ = (R, σF , σW
0 , auth(pkW0), . . . , σW

l∗ , auth(pk
W
l∗), σ̂

W
l∗+1, auth(pk

W
l∗+1), . . .).

If at least two different WOTS+ signatures for the same WOTS+ instance at layer l∗ +1 are
encountered, we call the WOTS+ instance compromised, and we call the number of WOTS+

signatures collected for this instance the number of WOTS+ collisions. The attacker repeats
the fault injection until a sufficient number of WOTS+ collisions is collected, having even
more collisions reduces the complexity of the attack.

43

2 Preliminaries

In order to mount the attack, the attacker has to identify WOTS+ collisions from the col-
lected signatures. For that, they first extract all WOTS+ signatures from the collected sig-
natures, grouping them by their ADRS. Then, they find compromised WOTS+ instances
by finding addresses mapping to at least two different WOTS+ signatures. The attacker
can then use a compromised WOTS+ instance to sign a grafted XMSS tree with public key
p̃k

X
l∗ . However, they can only sign messages that are compatible with the compromised

WOTS+ instance.
Recall that when signing a message m in WOTS+, the message and its checksum are first
split into ℓ blocks of size w bits. Each block mi is then signed using the chain function,
applying a hash function F a number of mi times to an initial chain secret si, producing
the chain signature σ(i). A WOTS+ signature σW then consists of the chain signatures σ(i)

for each chain 0 ≤ i < ℓ, and we call the mi − 1 preimages of σ(i) under F the WOTS+

secret values of chain i. If the attacker now acquires two different signatures (σW , σ̂W) for
a given WOTS+ instance, they can combine the signatures of chain 0 ≤ i < ℓ to acquire
the exposed WOTS+ secret values θ̂i = min

{
σ(i), σ̂(i)

}
. If more than two signatures for a

given WOTS+ instance are available, the attacker can keep combining the chain signatures
to expose more WOTS+ secret values. We call the compromised WOTS+ instance with the
most exposed WOTS+ secret values the targeted WOTS+ instance. Now, the attacker simply
needs to graft a compatible XMSS root p̃k

X
l∗ for all the exposed WOTS+ secret values θ̂i,

corresponding to message blocks m̂i.: Find a p̃k
X
l∗ such that all message and checksum

blocks r̃i of p̃k
X
l∗ satisfy r̃i ≥ m̂i for all 0 ≤ i < ℓ. The grafted XMSS tree is then signed

using the chain function with the exposed WOTS+ secret values θ̂i. This tree can be used
to sign arbitrary messages, constituting the universal forgery against SPHINCS+.
In the following, we analyze the steps of the grafting tree attack on SPHINCS+ signatures.
We start with the identification of WOTS+ collisions in Section 2.4.2. Subsequently, we
analyze the complexity of the grafting step in Section 2.4.3. We see that the total complexity
of the attack is dominated by the complexity of the grafting step, and that the attack is
feasible with just a few WOTS+ collision.

2.4.2 Identifying WOTS+ Collisions

In this step, the attacker identifies WOTS+ collisions from the collected signatures. First,
the WOTS+ signatures are extracted from the collected signatures and grouped by ADRS.
Then, the attacker identifies addresses that map to at least two different WOTS+ signa-
tures. Subsequently, the attacker calculates the exposed WOTS+ secret values for each
ADRS. Let (σW , σ̂W) be the valid and a faulted WOTS+ signatures for the same WOTS+

instance at ADRS, and let mi be the message chunk corresponding to the message signed
by σW in chain i. The attacker identifies WOTS+ secret values in σ̂W = (σ̂(0), . . . , σ̂(ℓ−1))

44

2.4 Grafting Tree Attack

using the following exhaustive search [Genêt, 2023]:

1. For each σ̂(i) ∈ σ̂: find 1 ≤ k < mi such that

chain
(
σ̂(i), k, w − 1− k,PK.seed,ADRS

)
= pi.

2. If such k exists, then σ̂(i) exposes the WOTS+ secret values k, . . . ,mi− 1 of chain i. If
no k leads to a match, the WOTS+ signature is discarded.

Complexity. Extracting the WOTS+ signatures σ̂W from a SPHINCS+ signature faulted at
hypertree layer l∗ ≤ d − 1 requires running a truncated SPHINCS+ signature verification
with l∗ layers. This amounts to an average number of hash function calls of:

2 + k(a+ 1)︸ ︷︷ ︸
FORS verification

+ l∗(ℓ · (w − 1)/2 + 1 + h′)︸ ︷︷ ︸
HT verification up to layer l∗

.

Additionally, assuming that the secret values σ̂(i) are distributed uniformly in the com-
promised keys, identifying the WOTS+ secret values requires an average number of hash
function calls of

ℓ ·
(

w−1∑

x=0

1

w
(w − 1− x)

)
= ℓ · w − 1

2
.

For the SHAKE-256s parameter set with target layer l∗ = 7, this results in an average of
211.85 + 28.97 ≈ 4200 hash function calls.

2.4.3 Tree Grafting

After identifying the WOTS+ secret values, the attacker performs the grafting tree attack.
In this step, the attacker tries to find an XMSS public key that can be signed using the
targeted WOTS+ instance. This involves an exhaustive search for a secret ŜK.seed that
produces an XMSS public key p̂k

X
. However, only a limited number of XMSS trees can

be signed, as the attacker can only sign messages that are compatible with the exposed
chain secrets. Let (θ̂0, θ̂1, . . . , θ̂ℓ−1) be the exposed secret elements of the targeted WOTS+

instance, corresponding to message chunks (m̂0, m̂1, . . . , m̂ℓ−1). The algorithm to find a
suitable XMSS tree is described in [Genêt, 2023] and works as follows:

1. Draw ŜK.seed uniformly at random.

2. Create a new XMSS tree with public key p̃k
X

from the secret ŜK.seed.

3. Split p̃k
X

and its WOTS+ checksum into chunks (r̃0, . . . , r̃ℓ−1) of size w bits.

45

2 Preliminaries

4. If r̃i ≥ m̂i for all 0 ≤ i < ℓ, return the grafted ŜK.seed. Repeat from step 1 otherwise.

Complexity. The complexity of the grafting tree attack depends on the number of exposed
WOTS+ secret values in the targeted WOTS+ instance as well as on the target layer l∗. The
computation of the root node of an XMSS tree using treehash requires the computation
of 2h

′
WOTS+ public keys, each of which requires the computation of ℓ + ℓ · (w − 1) + 1

hash function calls. Additionally, the tree walk, i.e, calculating the inner nodes of the tree
from its leaves needs

∑h′
i=1 2

i−1 hash function calls to compute the root node of the XMSS
tree. This amounts to a total complexity of the treehash function of

C(treehash) = 2h
′

(ℓ+ ℓ · (w − 1) + 1)︸ ︷︷ ︸
WOTS+ public key generation

+

h′∑

i=1

2i−1

︸ ︷︷ ︸
Tree walk

= 2h
′
(ℓ · w + 2)− 1. (2.1)

The probability that a random ŜK.seed leads to a suitable XMSS tree is given by the prob-
ability that all r̂i are greater than or equal to the corresponding m̂i. Assuming that the
attacker collects M > 1 different signatures for the targeted WOTS+ instance and the ex-
posed chain elements x are distributed uniformly, the probability of a grafting attempt to
be successful is given by [Genêt, 2023] as:

P(Grafting) ≤ 1

wℓ

(
w−1∑

x=0

(
1−

(
w − 1− x

w

)M
))ℓ

≈ e−
ℓ

M+1 +O(1). (2.2)

The grafting tree attack constitutes a Bernoulli experiment, where each sampled tree is
a Bernoulli trial with success probability P(Grafting). We can therefore estimate the ex-
pected number of trees sampled until a signable tree is found by taking the inverse of the
success probability:

E(Sampled Trees) =
1

P(Grafting)
≥ wℓ

(
w−1∑

x=0

(
1−

(
w − 1− x

w

)M
))−ℓ

.

Since each trial requires a number of hash computations given by Equation (2.1), this
amounts to an expected attack complexity of

C(Grafting) = C(treehash) · E(Sampled Trees)

≥
(
2h

′
(ℓ · w + 2)− 1

)
· wℓ

(
w−1∑

x=0

(
1−

(
w − 1− x

w

)M
))−ℓ

.

Plugging in the parameters of the different parameter sets introduced in Section 2.3.9

46

2.4 Grafting Tree Attack

Table 2.3: Average complexity of tree grafting. The table shows the complexity of the
XMSS tree grafting step for the different parameter sets.

M = 2 4 6 8 10 16 32

SHAKE-128s 236.34 227.55 224.22 222.48 221.41 219.81 218.58

SHAKE-128f 230.34 221.55 218.22 216.48 215.41 213.81 212.58

SHAKE-192s 245.21 232.39 227.54 225.01 223.46 221.12 219.33

SHAKE-192f 239.21 226.39 221.54 219.01 217.46 215.12 213.33

SHAKE-256s 252.92 236.09 229.72 226.39 224.35 221.28 218.93

SHAKE-256f 248.92 232.09 225.72 222.39 220.35 217.28 214.93

and different values of M , we obtain the average expected complexities for the graft-
ing tree attack shown in Table 2.3. Note that the complexity mostly matches those from
[Genêt, 2023], except for the SHAKE-128s and SHAKE-192s parameter sets due to out-
dated parameters used in the original paper. The table shows that the attack is feasible if
the attacker can collect a sufficient number of faulty signatures even for the most secure
parameter sets.

47

3 SWAGE: An End-to-End Framework for Rowhammer Attacks

Conducting Rowhammer attacks in practice is challenging. As the attack interacts with
different aspects of the target system, many moving parts need to be considered. Many
tools have been proposed to facilitate Rowhammer attacks, but they often cover only a
specific aspect of the attack, such as finding reproducible hammering patterns or reverse-
engineering the physical memory layout. Most of the time, these tools are tightly coupled
to their software design of the practical evaluation that is presented, making it difficult
to reuse them in an end-to-end Rowhammer attack. Until now, a modular framework
that covers all aspects of a Rowhammer attack while being easy to use and extend has
been missing. In this chapter, we aim to close this gap by introducing SWAGE, a novel
modular end-to-end framework for Rowhammer attacks. To contextualize the use case of
SWAGE, a standard Rowhammer threat model is assumed, where the attacker has user-
level access to a target system running a recent Linux kernel version and can execute
arbitrary code – such as SWAGE – with user permissions. The attacker also has root access
to a replicated target system during the offline phase, which is used to reverse-engineer
the physical memory layout of the target system and find reproducible hammering pat-
terns. Within this realistic and widely accepted threat landscape, we introduce a set of
tools bundled with SWAGE that can be used either independently or as integrated compo-
nents of a broader Rowhammer attack framework. SWAGE is implemented in Rust, C, and
Python, and is designed to be modular and extensible. We provide SWAGE as an open-
source project2 and invite the community to contribute to its development.

Figure 3.1 shows the flowchart of a Rowhammer attack using SWAGE. The attack starts
with the DRAM INSPECTOR (Section 3.1), which is used to reverse-engineer the physical
memory layout of the target system. The physical memory layout is then used by the
ALLOCATOR module (Section 3.2) to find contiguous memory regions that can be used for
Rowhammer attacks. The HAMMERER module (Section 3.3) is used to find reproducible
memory access patterns that induce bit flips in the target memory module. Lastly, the
VICTIM module (Section 3.4) provides an API to implement victim-specific code to interact
with the target program, e.g., to check the success of the attack.

2https://git.uni-luebeck.de/its/research-projects/rowhammer/swage

49

https://git.uni-luebeck.de/its/research-projects/rowhammer/swage

3 SWAGE: An End-to-End Framework for Rowhammer Attacks

DRAM Inspector
(Section 3.1)

NO-DRAMA

Allocator
(Section 3.2)

PROCFS
HUGEPAGE

SPOILER

Hammerer
(Section 3.3)

BLACKSMITH

DEVMEM

Victim
(Section 3.4)

Page Injector
(Section 3.4.1)

Process
Section 3.4.2

Address mapping

Memory

Controls

Launches

Injects

Communicates

Profiling

Figure 3.1: Flowchart showing the steps of a Rowhammer attack using SWAGE.

3.1 The DRAM INSPECTOR Module

SWAGE includes a DRAM INSPECTOR module that provides information about the physi-
cal memory layout of the target system. As discussed in Section 2.2.2, the operating system
provides an abstraction of the physical memory layout to user applications using virtual
addresses. Similarly, the memory controller abstracts physical memory to the operating
system. Two rows with consecutive physical addresses are not necessarily physically ad-
jacent in the memory module. To determine the address of a row in physical memory, the
memory controller applies a memory mapping function to the physical address. This func-
tion is specific to any given CPU generation and usually not disclosed by manufacturers.
However, there exist side channel attacks that can be used to reverse-engineer the physical
memory layout. In the next section, we discuss DRAMA, a tool that uses a timing-based
side channel to reverse-engineer the physical memory layout, as well as a graph-based
bit detection scheme introduced in [Xiao et al., 2016] that can be used to determine the
physical mapping function.

3.1.1 The DRAMA Attack

In 2016, Pessl et al. introduced DRAMA, a tool that uses the bank conflict timing side chan-
nel to reverse-engineer the physical memory layout [Pessl et al., 2016]. As we have seen in
Section 2.2.1, memory is organized in banks, and each bank contains multiple rows. When

50

3.2 The ALLOCATOR Module

a row is accessed, the content of the requested row is loaded into the bank’s row buffer.
If another row in the same bank is accessed while the row buffer contains the content of
another row, the memory controller has to write back the content of the row buffer to the-
DRAM array before loading the new row. The write-back-then-read sequence takes longer
than a regular access and can be measured using a timing side channel. DRAMA uses this
timing side channel to measure the time it takes to access a pair of memory addresses. If
the measured time above a given threshold, the rows are in the same bank. Otherwise,
they are in different banks. After sampling a sufficient number of pairs of memory ad-
dresses, DRAMA can determine the physical mapping function by solving a system of
linear equations.

3.1.2 Graph-Based Bank Bit Detection Scheme

In [Xiao et al., 2016], a graph-based bit detection scheme is introduced. It uses the same
primitive as DRAMA, measuring the time it takes to access pairs of memory addresses.
However, the graph-based bit detection scheme does not require a system of linear equa-
tions to be solved, but instead builds a graph where nodes represent bits of memory ad-
dresses and edges represent high-latency timing measurements between pairs of bits. Us-
ing the graph, the scheme determines the physical mapping function by identifying sub-
graphs representing combinations of bits involved in determining a bit of the row, column,
and bank functions.

SWAGE incorporates NO-DRAMA [Wilke, 2023], combining techniques introduced in
DRAMA and the graph-based bit detection scheme by Xiao et al. NO-DRAMA generates
output describing the physical mapping function in a machine-readable format, which is
parsed by SWAGE to provide information about the physical memory layout of the target
system. The struct DRAMAddr represents a DRAM address as a tuple of bank, row, and
column, providing blanket implementations for pointers and integer types to allow easy
conversion between physical and DRAM addresses.

3.2 The ALLOCATOR Module

In order to conduct a practical Rowhammer attack, the attacker needs to allocate con-
tiguous memory for the physical addressing function to work properly. The ALLOCA-
TOR module in SWAGE provides several options for the allocation of contiguous memory
blocks suitable for Rowhammer attacks. The ALLOCATOR module provides a unified in-
terface for allocating contiguous memory blocks, which can be used in both the offline
phase and the online phase of an attack.

51

3 SWAGE: An End-to-End Framework for Rowhammer Attacks

Listing 3.1: The ConsecAlloc trait and related structs in SWAGE.

1 trait ConsecAllocator {

2 fn block_size(&self) -> usize;

3 fn alloc_consec_blocks(&mut self, size: usize) -> Result<ConsecBlocks>;

4 }

5 struct ConsecBlocks {

6 pub blocks: Vec<Memory>

7 }

8 struct Memory {

9 pub ptr: *mut u8,

10 pub len: usize

11 }

Central to the ALLOCATOR module is the trait ConsecAllocator (Listing 3.1), which
provides an interface for allocating contiguous memory blocks. The block_size()

method returns the size of the contiguous memory blocks that can be allocated, while the
alloc_consec_blocks() method allocates a number of contiguous memory blocks
of the given size, so-called split blocks. Implementations of the ConsecAllocator trait
must guarantee that the memory blocks returned by alloc_consec_blocks() are
physically contiguous, i.e., each block is backed by a single contiguous physical memory
region of size block_size().

SWAGE comes with several implementations of the ConsecAllocator trait, each using a
different strategy to allocate contiguous memory blocks. In the following subsections, we
introduce allocation strategies implemented in SWAGE. In Section 3.2.1, we introduce huge
pages, a mechanism provided by the OS to allocate large chunks of physically contiguous
memory. Then, in Section 3.2.2, we discuss the pagemap interface, which can be used to
find contiguous memory for users with root privileges. We discuss the pagetypeinfo
and buddyinfo interfaces in Section 3.2.3, which can be used to find contiguous mem-
ory using the buddy allocator. Finally, in Section 3.2.4, we introduce the SPOILER attack,
which uses a timing-based side channel to find contiguous memory. The SPOILER attack
is experimentally determined to be the most reliable method to find contiguous memory
without root level access, but still has some limitations and false positives. We discuss
these limitations and how to mitigate them.

3.2.1 Let The Kernel Handle It: Huge Pages

The Linux kernel provides huge pages, a mechanism to allocate large chunks of physically
contiguous memory. Huge pages are up to one gigabyte in size and are used to reduce
the overhead of page table management. However, huge pages are mostly used in high-
performance computing, e.g., for large in-memory databases, and need to be enabled in

52

3.2 The ALLOCATOR Module

the kernel configuration by the system administrator. Therefore, while huge pages can be
used in the offline phase of an attack to find Rowhammer access patterns, they can not be
assumed to be available on the target system.

Thus, the HUGEPAGE allocator implemented in SWAGE can be used in the offline phase of
an attack to examine the reproducibility of Rowhammer access patterns.

3.2.2 First Generation Attacks: The pagemap Interface

Early attacks used the Linux kernel’s /proc/PID/pagemap ProcFS interface to find
memory suitable for a Rowhammer attack [Seaborn and Dullien, 2015]. This file provides
the mapping between virtual and physical addresses for the process with process ID
PID. In 2015, as a response to Rowhammer attacks exploiting the pagemap interface,
the Linux kernel developers changed the interface to only be accessible to the root user
[Shutemov, 2015].

While not usable during the online phase on the target system, SWAGE implements a PFN

allocator that uses the /proc/PID/pagemap interface to find contiguous memory in a
large buffer. The PFN allocator is the most reliable one, as it has no false positives, but
requires root privileges. It is therefore a handy tool for the offline phase of an attack, for
quick iterations of experiments, and for debugging.

3.2.3 Attacks Using the Buddy Allocator: pagetypeinfo and buddyinfo

Whenever a user process allocates memory, the kernel has to find a number of free mem-
ory pages to satisfy the request. Managing a simple list of free 4 KiB pages would be space
inefficient: Assuming a system with only 32 GiB RAM, this would require a list of 8 000 000
entries. Additionally, some applications might have specific requirements for memory al-
location, e.g., legacy drivers that require memory to be allocated in lower memory regions
or kernel code requiring unmovable pages. Therefore, the kernel uses more sophisticated
data structures to manage free memory.

The buddy allocator is a memory management algorithm in the Linux kernel. It manages
physical memory blocks of 4 KiB to 4 MiB in size. At system start up, the buddy allocator
divides the memory into blocks of 4 MiB. When a process requests memory, the buddy
allocator finds the smallest available block that can satisfy the request. If no block of the
requested size is available, the buddy allocator splits a larger block into two smaller buddy
blocks, and serves the request using one (or both) of the buddies. When a block is freed,
the buddy allocator merges it with its buddy block if it is also free.

The buddy allocator maintains lists of free blocks of different sizes, called orders. The size
of a memory block of order i is 2i pages, i.e., a block of order 0 is 4 KiB, while a block of

53

3 SWAGE: An End-to-End Framework for Rowhammer Attacks

the highest order 10 is 4 MiB. It also groups the blocks by three categories node, zone, and
migration type:

Node The physical memory node in a Non-Uniform Memory Access (NUMA) system.

Zone The memory zone a page belongs to: DMA (the lowest 24 MiB of memory), DMA32
(the lowest 4 GiB of memory), or Normal (4 GiB and above).

Migration Type The type of memory page, e.g., movable (can be moved by the kernel),
unmovable (cannot be moved), or reclaimable (cache pages that can be dropped or
reloaded).

The ProcFS interface /proc/pagetypeinfo provides detailed information about the
state of the buddy allocator, and can be used as a side channel disclosing whether a mem-
ory allocation was served from a contiguous block of memory [Kwong et al., 2020]. The
pagetypeinfo interface provides information about the number of free memory blocks
of orders 0 to 10, grouped by node, zones, and migration type.
During regular system operations, /proc/pagetypeinfo can be used by system oper-
ators to debug allocator issues and adapt software to compensate for fragmentation, e.g.,
by changing the size of memory pools. In an attack scenario, however, it can also be used
to find contiguous memory. For that, an attacker observes the change in available blocks
using /proc/pagetypeinfo while allocating a 4 MiB block of memory. If the number
of available blocks of order 10 decreases by 1 and all other available block orders remain
untouched, the attacker can assume that the allocation was served from a contiguous 4
MiB block of memory. However, this interface was made unavailable to non-privileged
users in 2019 due to unrelated performance considerations [Hocko, 2019].
The /proc/buddyinfo interface, on the other hand, provides coarse-grained informa-
tion about the number of available memory blocks of each order, and is still available
to non-privileged users. Unlike /proc/pagetypeinfo, /proc/buddyinfo does not
group the blocks by node, zones, and migration type; instead, it reports only the cumu-
lative number of free blocks for each order. It can still be used to find contiguous mem-
ory, but is less precise than /proc/pagetypeinfo, as draining of lower order blocks is
harder to detect, leading to a higher false-positive rate. While these can be mitigated by
testing a candidate memory region for consistency with the reverse-engineered physical
address mapping, using /proc/buddyinfo as a side channel is still less reliable than em-
ploying microarchitectural side channels. Nevertheless, it has been used as an alternative
to /proc/pagetypeinfo in Rowhammer attacks [Tobah et al., 2022].
SWAGE still implements a BUDDYINFO allocator, which uses the /proc/buddyinfo in-
terface to find contiguous memory, but since the BUDDYINFO allocator shows a high

54

3.2 The ALLOCATOR Module

Virtual Memory

Physical Memory

V0 V1 V2 V3 . . . V257 V258 V259 V260

P117 P212 P42 P261 P3

physically contiguous 1 MiB block (true positive)

Figure 3.2: A single 1 MiB-aligned window (green) inside a larger buffer is backed by one
contiguous 1 MiB physical block, which SPOILER correctly identifies using the
load hazard timing side channel. Each square denotes a 4 KiB page.

false-positive rate due to the unreliability in finding locked pages, its use in end-to-end
Rowhammer attacks is not recommended.

3.2.4 Exploiting Microarchitectural Leakage: The SPOILER Attack

The SPOILER attack [Islam et al., 2019] exploits pipeline hazards causing load stalls in
the CPU to determine a prefix of the physical address of a memory location. Modern
CPUs employ speculative loads and load forwarding to improve memory performance, ex-
ecuting load instructions speculatively before related store instructions. When a load
leaves the instruction pipeline while a store to a potentially overlapping address is
still buffered, the core must decide whether it is safe to forward data from the store
buffer or whether the load must wait until the stores retire. The comparison between the
speculative-load address and the buffered-store addresses is performed in several stages
of increasing accuracy, i.e., the processor first checks only a subset of the physical-address
bits (typically the page offset and the next 8 bits, giving a 1 MB aliasing window). If these
partial bits match, the pipeline conservatively stalls the load for a few cycles until a full
physical-address comparison has been completed. SPOILER creates long chains of stores
followed by a timed load and looks for exactly these stalls: a prolonged latency reveals that
the load’s physical address shares the same 1 MB region as one of the preceding stores. By
sweeping through virtual pages and measuring the resulting timing patterns, an unpriv-
ileged attacker can recover the 12-bit page offset plus up to 8 additional physical-address
bits. This aliasing knowledge accelerates Rowhammer attacks by providing a primitive to
find contiguous memory regions.
In SWAGE, we use the technique presented in SPOILER to find contiguous memory blocks
of up to 4MiB in size (Figure 3.2). However, there are some limitations to the SPOILER

attack that we first need to address, and which we solve by combining the SPOILER prim-
itive with the physical address mapping reverse-engineered in Section 3.1:

55

3 SWAGE: An End-to-End Framework for Rowhammer Attacks

Virtual Memory

Physical Memory

V0 V1 V2 V3 . . . V257 V258 V259 V260

P117 P212 P43 P128 . . . P5 P412 P261 P3

scattered 4 KiB pages (false positive)

Figure 3.3: False positive: only the outer pages (green) share the 1 MiB alias; interior

pages (yellow) reside in unrelated physical frames, yet SPOILER still flags the
whole region as contiguous. Each square denotes a 4 KiB page.

(1) Granularity. SPOILER only finds contiguous memory blocks of 1 MiB. Depending on
the concrete physical address mapping function, it may be necessary to find larger
contiguous memory blocks, or at least find a set of memory blocks that is consistent
with the physical address mapping function. We can solve this problem by using the
SPOILER primitive to find a number of contiguous 1 MiB memory blocks, and then
using the row buffer conflict timing side channel in Algorithm 1 to check whether
the memory blocks are consistent with the physical address mapping function. This
enhances the SPOILER primitive to find larger contiguous memory blocks of up to
4 MiB in size.

(2) Alignment. The high-latency pattern arises whenever the attack encounters a load-
store pair sharing a physical page offset; the hit need not be aligned to 1 MiB
boundaries. This means that the SPOILER attack may find a 1 MiB block, but the
block may have an offset δ between virtual and physical addresses. One way to
solve this problem is to use a 2 MiB Transparent Huge Page (THP) for the load in-
struction, which is guaranteed to have appropriate alignment. It is reasonable to
assume that THP are available on the target system, as they are enabled by default
in modern Linux kernels. However, the SPOILER attack can also be used without
THP: After finding a 1 MiB block candidate, we can use the row buffer conflict tim-
ing side channel in Algorithm 1 to check whether the candidate is consistent with
the physical address mapping function after applying an offset 0 ≤ δ ≤ 2MiB to the
virtual address. If we find a δ that is consistent with the physical address mapping
function, we can assume that the 1 MiB block candidate is valid.

(3) False positives. Two 4 KiB pages that merely sit on the same 1 MiB aliasing produce
the same timing peak as a truly contiguous 1 MiB region (Figure 3.3). We tackle this
problem by performing a row buffer conflict check on the candidate memory region.

56

3.3 The HAMMERER Module

If the timing check is consistent with the physical address mapping function, i.e., if
we observe timing peaks where we expect them, we find that the candidate memory
region is actually backed by a contiguous 1 MiB physical page block.

SWAGE implements a SPOILER allocator including the means to overcome the limitations
of the primitive, allowing for the allocation of contiguous 4 MiB memory blocks. As shown
experimentally in Section 4.3.1, we find that SPOILER is a powerful tool and more reliable
alternative to attacks using the ProcFS interfaces.

3.3 The HAMMERER Module

The HAMMERER module is the core of SWAGE and provides the functionality to hammer a
reproducible memory access pattern and to interact with the victim process. The module
is designed to be used in conjunction with the ALLOCATOR module, which provides con-
tiguous memory blocks suitable for Rowhammer attacks, and the VICTIM module, which
provides an API to interact with a victim process.

Listing 3.2: Hammering trait and related types in the HAMMERER module.

1 trait Hammering {

2 fn hammer(&self, victim: &mut dyn HammerVictim)

3 -> Result<HammerResult, HammerVictimError>;

4 }

5 struct HammerResult {

6 pub attempt: u32,

7 pub victim_result: VictimResult,

8 }

9 enum VictimResult {

10 BitFlips(Vec<BitFlip>), // Non-empty list of bit flips

11 String(String), // a string returned by the victim process

12 // ...other results that may be returned by the victim

13 }

14 enum HammerVictimError {

15 NoFlips,

16 IoError(std::io::Error), // I/O error when interacting with the victim

17 // ...other errors that may occur during hammering

18 }

Listing 3.2 shows the Hammering trait and related types. The trait defines a simple API to
implement custom hammering strategies, consisting of only a single method hammer that
takes a mutable reference to a victim object and returns a HammerResult.
SWAGE comes with built-in support for BLACKSMITH [Jattke et al., 2022], a fuzzing-based
software suite to find reproducible hammering patterns. Under the hood, it just-in-time

57

3 SWAGE: An End-to-End Framework for Rowhammer Attacks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Phase

Frequency Amplitude

Aggressor Pair

Aggressor

Victim

Aggressor

Victim

...

Victim

Aggressor

Victim

Aggressor

Victim

...

Time

Figure 3.4: Non-uniform access pattern in BLACKSMITH. The figure shows a time series of
memory accesses to aggressors rows (red). Victim rows are marked in blue .
This memory access pattern overwhelms many TRR mechanisms by accessing
aggressor rows in a non-uniform manner that is hard to predict.

58

3.4 The VICTIM Module

compiles the access pattern and aggressor mapping found in a BLACKSMITH fuzzing run
into an assembly function that can be executed on the target system. Figure 3.4 shows
how BLACKSMITH generates non-uniform access patterns by randomizing three domains:
How often an aggressor row is activated (frequency), the time between the start of the
hammering pattern and the first activation of an aggressor row (phase), and how often an
aggressor row is activated back-to-back (amplitude). BLACKSMITH empirically shows that
non-uniform access patterns are effective in bypassing TRR in all 40 tested DDR4 memory
modules. While the original BLACKSMITH suite uses huge pages for fuzzing reproducible
hammering patterns, SWAGE uses the abstraction provided by the ALLOCATOR module,
adapting the hammering pattern to contiguous memory blocks of arbitrary size. SWAGE

also incorporates a profiling step in the hammering phase to verify the reproducibility of
the hammering pattern under real-world conditions, such as split blocks provided by the
ALLOCATOR module. For testing and debugging, the HAMMERER module also provides a
DEVMEM hammerer that manipulates bits in memory directly.

The simple API defined by the Hammering trait allows easy implementation of other ham-
mering strategies such as TRRESPASS [Frigo et al., 2020] or ROWPRESS [Luo et al., 2024].
In conjunction with SWAGE’s allocator module, the HAMMERER module can be used to
find reproducible memory access patterns on contiguous memory blocks suitable for an
end-to-end Rowhammer attack.

3.4 The VICTIM Module

The VICTIM module provides an API to interact with and control a victim process. Imple-
mentations in this module serve two main purposes: First, they encapsulate the interaction
with the victim process, such as synchronization with the hammering process and gather-
ing results from the victim process after hammering. Second, they handle page injection,
ensuring that an attacker-controlled target page is injected into the victim’s address space
before hammering.

Listing 3.3: HammerVictim trait in the VICTIM module.

1 trait HammerVictim {

2 fn start(&mut self) -> Result<(), HammerVictimError>;

3 fn init(&mut self);

4 fn check(&mut self) -> Result<VictimResult, HammerVictimError>;

5 fn stop(&mut self);

6 }

Listing 3.3 shows the HammerVictim trait, which defines the interface for a victim pro-
cess. It consists of the following four methods:

59

3 SWAGE: An End-to-End Framework for Rowhammer Attacks

start() starts the victim process, potentially conducting the page injection attack.

init() initializes the victim before a hammering round. This method allows the victim
to prepare for the hammering phase, e.g., synchronize the victim process with the
hammering process. After init() returns, the victim is ready to be hammered.

check() checks whether a hammering round was successful. This method is called af-
ter hammering and returns a VictimResult (Listing 3.2) if the hammering was
successful. Determining the success of the hammering is victim-specific and usually
involves communicating with the victim process, such as reading from its standard
output or a TCP socket.

stop() stops the victim process. This method is called after the hammering is done to
clean up the victim process.

SWAGE comes with a number of built-in victim implementations, such as MemCheck,
which checks for bit flips in a target memory region, and SphincsPlus, which commu-
nicates with a SPHINCS+ signing server to collect signatures and check for faults, writing
them to a file for later analysis. However, the HammerVictim trait is designed to be ex-
tensible, allowing users to implement their own victim processes. For example, a custom
victim component could interact with a deep neural network, injecting a backdoor into
the model [Tol et al., 2023], or interact with an FPGA to directly test the robustness of
hardware countermeasures against Rowhammer attacks [Weissman et al., 2020].

3.4.1 Page Injection

Page injection describes techniques that aim to manipulate a victim process and the OS
allocator so that the bits the attacker knows how to flip land exactly inside a security-
critical data object in the victim process. Depending on the target program, this can be a
pointer, a data structure, or a byte array containing key material. Page injection is a crucial
step in a Rowhammer attack and is therefore bundled by SWAGE in the VICTIM module.

Listing 3.4: PageInjector trait in the VICTIM module.

1 trait PageInjector<T> {

2 fn inject(&mut self) -> Result<T, std::io::Error>;

3 }

Listing 3.4 shows the PageInjector trait. It defines a single method inject(), which
injects a target page into the victim’s address space and returns a generic type T. The
generic type allows the page injector to return a victim-specific object, such as a pointer

60

3.4 The VICTIM Module

to the injected page, a status code indicating the success of the injection, or a socket to
communicate with the launched victim process.
Several page injection techniques have been proposed. Most notably, an optimization in
the Linux kernel for fast page allocation can be exploited to inject a target page into a
victim process [Adiletta et al., 2024]. When a process allocates a page, the buddy allocator
searches for an order-0 page in the free list. If no order-0 page is available, it will search for
a larger page in the free list and split it into smaller pages. This operation requires a global
lock on the free list, which is expensive. Therefore, the Linux kernel maintains a per-core
free list for order-0 pages. When a process releases a page, it is added to the per-core free
list of the CPU core that released it. When another process on the same core subsequently
allocates a page, the buddy allocator will serve the page from the per-core free list. This
behavior can be exploited to inject a target page into a victim process co-located on the
attacker’s core. SWAGE implements a BuddyPageInjector, which launches a victim
process, injects a target page into the victim’s address space, and returns a Child object
to communicate with the launched victim process on success.
A recent novel page injection technique, RUBICON [Bölcskei et al., 2025], uses a combi-
nation of page injection and eviction strategies to implement a cross-CPU page injection
attack. While RUBICON is not implemented in SWAGE yet, the framework provides an API
to easily implement such techniques for cross-CPU threat models.
Page injection is a highly victim-specific attack and depends on the target program’s mem-
ory layout and access patterns. SWAGE therefore ships with a set of tools to analyze a target
program to find the number of bait pages required to successfully inject a target page at a
required memory location, e.g., at a specific position in the stack. In an end-to-end attack,
the results of this offline analysis can be used to determine parameters for a page injection
attack.

3.4.2 Target Analysis

Before running the Rowhammer attack, the target program has to be investigated to
find susceptible memory regions. However, finding memory regions that are suitable for
Rowhammer attacks is a non-trivial task, as it involves knowledge about the protocol to be
attacked, the memory layout of the program implementing the protocol, and interaction
with the operating system.
One way to find suitable memory regions is via static analysis of the target program. While
this approach is easy to implement, it can also become tedious and error-prone, as rele-
vant target programs usually contain many variables and data structures. Also, the mem-
ory layout, cache eviction, and timing behavior of a program are not directly visible in
the source code and can change between different function calls, environments, and com-

61

3 SWAGE: An End-to-End Framework for Rowhammer Attacks

piler versions or optimization levels. Another way of finding suitable memory regions is
using dynamic analysis. Dynamic analysis is usually performed by running the target pro-
gram in a controlled environment and intercepting its memory accesses. This approach is
more flexible and allows us to find suitable memory regions automatically. However, the
reverse-mapping of memory accesses to the source code is also not trivial. Different com-
piler versions, optimization levels, and architectures can lead to different memory layouts.
Additionally, combining dynamic analysis with instrumentation of the target program can
change access patterns, rendering the results of the analysis invalid.
SWAGE provides a set of tools to analyze a target program and find suitable memory re-
gions for Rowhammer attacks, combining static and dynamic analysis techniques. We
distinguish between two dimensions of suitability:

Spatial suitability Rowhammer attacks on modern DDR4 memory modules usually flip
up to two bits in a given victim row. However, the page offset of the bit flip can-
not be selected arbitrarily and is sometimes limited by the physical properties of the
DRAM cells. While some rows only flip bits at a specific offset, others contain mul-
tiple susceptible cells. Additionally, some flippy cells are susceptible to bidirectional
bit flips, while others only flip in one direction. To ensure availability, we might
even want to only flip specific row offsets in a specific direction, because rogue bit
flips in a hammering pattern can lead to unintended side effects such as application
crashes or even kernel panics. Therefore, we need to find a memory region that is
large enough to cover the required row offset. This can be done by analyzing the
source code of the target program and looking for large data structures that are used
in the program, as well as dynamic analysis at runtime.

Temporal suitability Finding temporally suitable memory regions is usually more chal-
lenging. The target must remain in memory for a sufficiently long time to allow the
Rowhammer attack to be effective. This rules out short-lived data structures kept
in cache or registers. The target should also not be accessed too frequently, as this
would lead to premature refreshes of the target row. Analyzing the target program’s
memory access patterns is crucial to find suitable memory regions. While this can
also be done by analyzing the source code, it is usually more effective using instru-
mentation and dynamic analysis.

Combining a manual static analysis of a target program with dynamic analysis while in-
corporating low-footprint instrumentation is a promising approach to find suitable attack
targets. To keep the instrumentation footprint minimal while still capturing the observa-
tions we need for Rowhammer profiling, SWAGE includes a lightweight C helper library
MEMUTILS. It can be loaded dynamically into the target program or linked statically. The

62

3.4 The VICTIM Module

library exposes a handful of primitives used to instrument the target program and debug
a Rowhammer attack. It provides the following primitives to do so:

get_physical_address() translates a virtual address to a physical address using the
/proc/self/pagemap interface. This yields a 48-bit DRAM address. Knowing the
physical address of a variable is important for Rowhammer profiling, and allows the
attacker to find the spatial suitability of an attack candidate in the offline phase.

measure_access() and the FLUSH macro are a pair of assembly helpers: The function
measure_access wraps a configurable number of loads between two rdtscp in-
structions, while FLUSH evicts a given cache line with a single clflush instruction.
The latency histogram we obtain lets us tell stable DRAM residency from cache hits
and prefetch noise, mapping to temporal suitability. Those functions are also useful
for measuring the latency of memory accesses in general, and can be used to debug
cache-related issues with the Rowhammer attack.

get_stack_offset() parses /proc/self/maps to locate the stack region of the cur-
rent process, then converts a virtual address into a page offset within that region. The
region page offset is useful for target programs with numerous stack allocations, as
it allows the attacker to identify the stack offset of a target variable. The stack offset
can be used to configure the number of bait pages required for the page injection
attack (Section 3.4.1).

MEMUTILS_PRINT_OFFSET bundles the above in a single printf statement for conve-
nience. It prints the physical address of a given virtual memory address, the stack
offset, and the latency of a memory access in machine-readable format. By instru-
menting the target program with this macro, the attacker can easily collect execu-
tion traces of the target program and analyze them later with tooling provided by
SWAGE.

mtrr_* helpers configure the Memory Type Range Registers (MTRRs) of the CPU. MTRRs
can be used to control the cacheability of memory pages. There are two MTRR helper
functions: mtrr_set_cacheability() sets the cacheability of a given memory
region to MTRR_UNCACHEABLE, while the mtrr_set_default() function sets the
default cacheability of all memory regions to MTRR_WRBACK. This function family is
useful for debugging cache-related issues with the Rowhammer attack.

63

4 A Rowhammer-Based Universal Forgery Attack Against
SPHINCS+

In this chapter, we evaluate SWAGE by conducting an end-to-end universal forgery attack
against the SPHINCS+ signature scheme on a real-world target system.
After introducing the threat model and experimental setup in Section 4.1, we first dis-
cuss the offline phase of the attack in Section 4.2. The attacker starts the offline phase by
reverse-engineering the physical memory layout of the target system, using NO-DRAMA

to reverse-engineer the physical memory layout in Section 4.2.1. Using this layout, the at-
tacker uses the BLACKSMITH fuzzing site to find reproducible access patterns. Afterwards,
in Section 4.2.3, the SWAGE profiling tools are used to find suitable memory regions in the
target program.
In the online phase discussed in Section 4.3, the attacker first allocates contiguous mem-
ory blocks for the attack (Section 4.3.1). They then profile the allocated memory for repro-
ducible bit flips in a target page at suitable page offsets in Section 4.3.2. After finding a
reproducible bit flip, the attacker performs a page injection attack to inject the target page
into the victim’s address space in Section 4.3.3. The attacker then collects signatures from
the victim process in Section 4.3.4.
Finally, in Section 4.4, the collected signatures are analyzed in a post-processing phase
to find reused one-time signature keys and the grafting tree attack is performed. This
final part of the evaluation demonstrates the practicality of fault attacks exploiting the
Rowhammer bug against SPHINCS+, showing the necessity of countermeasures against
Rowhammer attacks in cryptographic implementations.

4.1 Threat Model and Experimental Setup

We assume a standard Rowhammer threat model where the attacker has user-level access
to the target system. The attacker is assumed to be CPU co-located with a victim process
on the target system. They can execute arbitrary code with user permissions – including
SWAGE – but cannot acquire root access to the target system. During the offline phase, they
also have root access to a replicated target system. The target system provides accurate
timers, such as the rdtscp instruction, to measure memory access latencies for timing
side channels. The victim program is a server started by the attacker that accepts input via
standard input and outputs results to standard output. The target system is a system with

65

4 A Rowhammer-Based Universal Forgery Attack Against SPHINCS+

recent DDR4 memory modules with employed hardware Rowhammer countermeasures
(TRR). It is assumed that Address Space Layout Randomization (ASLR) is disabled on the
target system, as previous works have studied the effect of ASLR on Rowhammer attacks
[Amer et al., 2024], and it was shown that ASLR can be bypassed with little engineering
efforts [Adiletta et al., 2024].

During the online phase, the attacker’s goal is to inject a target page into the victim’s ad-
dress space and hammer the target page to induce bit flips during the victim’s execution.
Based on the output of the victim process, the success of an attack is determined by a
custom victim module implemented by the attacker.

After the online phase, the attacker analyzes the collected signatures and conducts the
grafting tree attack. For this attack, the attacker has access to a machine with hardware-
accelerated cryptographic hash primitives, such as a recent CPU supporting the AVX2

instruction set or a CUDA-enabled GPU.

Experimental Setup: The experiments in this evaluation are conducted on a machine
equipped with an Intel i5-6400 CPU and a single G.Skill AEGIS 16 GB DDR4-2133 DIMM,
running Ubuntu 20.04.3 with Linux kernel version 6.8.12-generic with default settings.
The machine runs the SPHINCS+ submission v3.1 reference C implementation from the
NIST submission package. A small signing server based on this reference implementation
is provided that accepts signing requests via standard input and outputs signatures to
standard output. The server is compiled to run the SPHINCS+ signature scheme with ran-
domization enabled and parameters SHAKE-256s at the highest security level 5. For the
grafting phase of the attack, a machine with an AMD EPYC 7763 CPU with 64 cores and
120 GiB of RAM is used. The machine is running Ubuntu 22.04.4 LTS with Linux kernel
version 5.19.0-generic.

4.2 Offline Phase

In the offline phase, the attacker has root access to a replicated target system. To mount
the attack, the attacker first needs to reverse-engineer the physical memory layout (Sec-
tion 4.2.1) of the target system using NO-DRAMA. Using the knowledge gained, they then
use BLACKSMITH to find a reproducible memory access pattern in Section 4.2.2. We show
that the attacker can reproduce the access pattern using SWAGE’s profiling module by
using the block splitting technique. Block splitting allows the attacker to split the aggres-
sor mapping of an access pattern into smaller memory blocks, abstaining from the use of
huge pages. To conclude the offline phase, a fault analysis of the SPHINCS+ reference im-
plementation is performed in Section 4.2.3 using the MEMUTILS tools provided in SWAGE

to find suitable memory regions for the Rowhammer attack.

66

4.2 Offline Phase

180 200 220 240 260 280 300 320

Access time [ns]

100

101

102

103

104

N
um

be
r

of
ca

se
s

(l
og

sc
al

e)

Figure 4.1: Log-scale histogram of NO-DRAMA access times measured over 105 random
address pairs. The x-axis indicates access latency in nanoseconds, and the y-
axis shows the count of address pairs on a logarithmic scale. The bimodal shape
reflects two timing regimes: the lower-latency peak corresponds to inter-bank
accesses, while the higher-latency peak corresponds to intra-bank accesses.

4.2.1 Reverse-Engineering the Physical Memory Layout

For the Rowhammer attack, the attacker needs to know the physical memory layout of our
target system. The physical memory layout is determined by the mapping of physical ad-
dress to memory banks, rows, and columns. The attacker reverse-engineers this mapping
using NO-DRAMA.

Figure 4.1 shows the results of the timing-based side channel used in NO-DRAMA for 105

randomly chosen pairs of memory addresses on the target system. We can clearly see that
the access time follows a bimodal distribution. The group with the fast timing contains
pairs of addresses that are in different banks, while the group with the slow timing con-
tains pairs of addresses that are in the same bank. The access time is significantly higher
for pairs of addresses in the same bank, indicating that the memory controller has to write

67

4 A Rowhammer-Based Universal Forgery Attack Against SPHINCS+

. . . 12 13 14 15 16 17 18 19 20 21 22 . . .

bank bit 0 ⊕

bank bit 1

⊕bank bit 2

⊕bank bit 3

⊕

bank bit 4

Figure 4.2: DRAM bank-selection mapping for the target system. Bank bit 0 is taken di-
rectly from physical bit 13, while bank bits 1-4 are computed as the XOR (⊕) of
bit pairs (b14⊕ b18, b15⊕ b19, b16⊕ b20, and b17⊕ b21), respectively. Dots indicate
omitted neighboring physical address bits.

back the content of the row buffer to the DRAM array before loading the new row.

The attacker uses these timing measurements to determine the physical mapping function
by solving a system of linear equations using NO-DRAMA. Figure 4.2 shows the reverse-
engineered bank mapping function for the target system. The row mapping function for
the target system is simple: the row index is determined by physical bits 18 to bit 29.
Similarly, the column index is determined by physical bits 0 to 12.

In another experiment, the physical-to-DRAM mapping is verified on the target system
by checking the timing of pairs of addresses with same or different bank indices. For
two addresses with the same bank index, the access time is significantly higher than for
two addresses with different bank indices. As it shows no significant outlier behavior, the
mapping function is most likely correct. In conclusion, the attacker successfully reverse-
engineered the physical memory layout of the target system using NO-DRAMA. They use
this physical memory layout in the next step to find a reproducible memory access pattern.

4.2.2 Finding Reproducible Memory Access Patterns

After reverse-engineering the physical memory layout, the attacker searches for repro-
ducible memory access patterns. For the target system at hand, experiments show that a
multi-sided access pattern as generated by TRRESPASS is not sufficient to induce bit flips.
However, the BLACKSMITH fuzzing suite is able to find reproducible non-uniform access
patterns. Figure 4.3 shows the reproducible access patterns found by an eight-hour run

68

4.2 Offline Phase

0 50 100 150 200 250 300 350 400 450 500 550 600

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76

Time

R
ow

In
de

x

Figure 4.3: Reproducible BLACKSMITH access pattern found during an eight-hour fuzzing
run. Each red rectangle marks an aggressor-row access, plotted by access se-
quence (x-axis) and logical row index (y-axis). Logical indices are translated to
physical rows via the aggressor mapping. The horizontal blue band highlights
the victim row.

69

4 A Rowhammer-Based Universal Forgery Attack Against SPHINCS+

Table 4.1: Results of an eight hour fuzzing run of BLACKSMITH. The table shows properties
of the aggressor access patterns, their respective aggressor mappings, and the bit
flips observed during the fuzzing run.

Pattern Activations Refresh
Intervals

Mapping
Identifier

Bank Min Row Max Row #Flips

A 304 4 1 21 662 821 1

B 624 8 1 0 1486 1635 1
2 2 400 478 1

C 624 8 1 18 2061 2220 2

D 624 8 1 11 2827 2986 1
2 13 2944 3102 0
3 17 756 914 0

E 304 4 1 31 780 938 1
2 1 1340 1489 0

F 304 4 1 30 455 614 2
2 2 1157 1315 0

G 312 4 1 27 1177 1315 1
2 29 2345 2504 0
3 31 1289 1427 0

H 312 4 1 23 684 842 1

of BLACKSMITH. The fuzzer differentiates between an aggressor access pattern and the ad-
dress mapping. The aggressor access pattern is the sequence of accesses to logical aggressor
indices that are used to induce bit flips, and the aggressor mapping is the mapping of a
logical aggressor index to a DRAM address (bank, row, column).

Table 4.1 presents the hammering patterns found in an eight-hour fuzzing session. During
this period, BLACKSMITH identified eight distinct access patterns reliably triggering bit
flips. The reproducibility experiment in Table 4.2 indicate that these patterns vary in how
consistently they induce bit flips during a sweeping run – a scenario where an aggressor
mapping shifts across rows within the same bank. Such reproducibility serves as a strong
proxy for how broadly an access pattern might be usable in a real-world attack scenario.

After the fuzzing run, BLACKSMITH exports the access patterns and aggressor mappings
in a machine-readable format. SWAGE comes with an importer that can read these pat-
terns and mappings and employs a just-in-time compiler to convert them into an assem-
bly function that can be executed on the target system. Reproducing the pattern-mapping
pairs with SWAGE yields the same bit flips observed during the fuzzing run with simi-

70

4.2 Offline Phase

Table 4.2: Reproducibility results of BLACKSMITH using the best aggressor mapping per
access pattern. Each candidate was tested over 10 rounds, each allowing up to
1000 pattern repetitions or terminating early upon the first encountered bit flip.

Candidate Bitflips Retries Time (s)

Avg. Max Avg. Max Avg. Max Total

A1 1.3 2 1.4 4 1.22 3.54 12.20
B1 0.0 0 1000.0 1000 901.10 901.45 9011.03
C1 0.0 0 1000.0 1000 883.49 885.65 8834.95
D1 2.1 6 8.9 26 7.93 23.13 79.26
E1 1.1 2 271.6 780 236.13 678.13 2361.32
F1 0.2 1 863.9 1000 774.79 896.88 7747.86
G1 1.0 1 23.7 51 20.23 43.53 202.30
H1 1.1 2 10.8 34 9.52 29.97 95.19

lar reproducibility scores, confirming the effectiveness of the access pattern. Among all
tested patterns, access pattern G with aggressor mapping 1 demonstrated the highest
reproducibility. We call this pattern-mapping pair G1 and will use it for the subsequent
stages of the attack.

In this stage of the attack, BLACKSMITH can utilize huge pages during the fuzzing phase.
However, as discussed above, this approach is impractical for the online phase, where the
attacker has to deallocate their target page and inject it into the victim’s address space. Af-
ter identifying reproducible access patterns and aggressor mappings with BLACKSMITH,
the attacker therefore adjusts his memory allocation strategy to use block splitting. Specif-
ically, they divide the huge page into 4 MiB chunks and allocate corresponding 4 MiB
memory regions – using SPOILER or similar techniques described in Section 3.2 – on the
target system. This allows the attacker to map all aggressors within each chunk to their re-
spective 4 MiB memory blocks, facilitating effective exploitation during the online phase.
However, as the number of allocatable 4 MiB blocks is limited, the aggressor mapping
fuzzer is adjusted to only generate mappings covering a portion of the available address
space, e.g., 40 MiB of the 1 GiB memory available. For G1, this results in a total of ten 4 MiB
chunks, each containing a subset of the aggressors. The reproducibility experiment con-
firms that G1 remains effective even when applied to these smaller memory blocks.

In a last offline reproducibility experiment, the attacker deallocates the target page before
initiating the hammering process, and then allocates it in a dummy process. This dummy
process reserves a large stack-based array, fills it with a predetermined value, and then
reads the array to verify whether the contents of the target page match the expected value
before rewriting the array. This approach mimics the online phase of the attack, where a

71

4 A Rowhammer-Based Universal Forgery Attack Against SPHINCS+

victim process is anticipated to interact with the target page. The results of this experiment
demonstrate that G1 maintains the reproducibility outlined in Table 4.2, underscoring its
resilience to page walks, page table flushes, and other memory management operations
carried out by the operating system.
Concluding the offline phase, the attacker has successfully identified a reproducible access
pattern and aggressor mapping that can be used to induce bit flips in the target page. In
the next section, the SPHINCS+ reference implementation is analyzed to find a spatially
and temporally suitable memory region for the online phase of the attack.

4.2.3 Fault Analysis of the SPHINCS+ Reference Implementation

In [Castelnovi et al., 2018], the grafting tree fault attack on SPHINCS, the predecessor of
SPHINCS+, is introduced, exploiting faults in the Merkle tree computation. Later ex-
perimental studies successfully demonstrate this attack on the official reference code
[Genêt et al., 2018] and adapt the attack to SPHINCS+ [Genêt, 2023]; however, they rely
on clock glitching on embedded devices running a truncated SPHINCS+ implementation.
Contrasting, a Rowhammer attack operates via carefully crafted DRAM access patterns
to induce bit flips, representing a fundamentally different fault model and attack surface.
For example, clock glitching attacks can be used to reproducibly cause instruction skips,
while Rowhammer attacks can only flip bits in (uncached) memory, limiting the attack
surface. On the other hand, Rowhammer attacks can be mounted on commodity hard-
ware without specialized hardware support, making them more accessible for practical
attacks. In this section, we analyze the SPHINCS+ reference implementation to pinpoint
memory regions most susceptible to a Rowhammer-based Merkle tree fault injection.
The SPHINCS+ reference implementation is written in C and provides a NIST-specified
API for key generation, signing, and verification. We combine static and dynamic analysis
methods to find suitable memory regions for the Rowhammer attack. As discussed in
Section 3.4.2, we distinguish between two dimensions of suitability: spatial and temporal
suitability.
To find spatially suitable memory regions, we map attack vectors introduced in prior
works to the SPHINCS+ reference implementation. Subsequently, the DEVMEM hammerer
in SWAGE is used to experimentally verify the spatial suitability. The DEVMEM hammerer
allows us to simulate the Rowhammer attack by flipping bits in a given physical memory
page and flushing the target page from the cache, effectively eliminating the constraints
imposed by temporal suitability.
Finding temporally suitable memory regions is more challenging. For example, CPU-
specific caching behavior leads to changes in the interaction between CPU and DRAM,
which can have a significant impact on the success rate of a Rowhammer attack. In the

72

4.2 Offline Phase

worst case, a CPU with large caches might always keep the target in cache, which would
render the Rowhammer attack ineffective. Therefore, to verify temporal suitability, we
combine static analysis with the MEMUTILS library shipped with SWAGE to instrument
the SPHINCS+ reference implementation and collect memory access traces for spatially
suitable memory regions. The traces show the memory access patterns of the SPHINCS+

reference implementation as well as potential cache-related issues by measuring the la-
tency of memory accesses. By examining these traces – specifically the timing of individ-
ual accesses – we can observe the SPHINCS+ implementation’s memory-access patterns
and identify any cache-related anomalies that might affect Rowhammer exploitability.
In the next subsection, we take a closer look at the Merkle tree computation in the
SPHINCS+ reference implementation and analyze how it can be exploited in a Rowham-
mer attack. We focus on the treehashx1 function, which computes the root node of a
Merkle tree, and show that the stack variable can be used as a spatially and temporally
suitable target.

Fault Attack Against the Merkle Tree Computation in SPHINCS+

In the hypertree phase of the SPHINCS+ signature generation, treehash (Algorithm 15)
computes the root node of the Merkle tree identified by an address ADRS and a secret
SK.seed. In the C reference implementation, the treehash algorithm is implemented as
a function treehashx1 in file utilsx1.c. It takes as input the secret and public seed,
the start index, the target height, and the ADRS of the tree. The function computes the root
node of the Merkle tree bottom up, starting at the left-most WOTS+ node and working its
way up to the root. While walking up the tree, it uses a stack to store the nodes that are
currently being processed.
To find a candidate with spatial suitability, we analyze the implementation of treehash
in the SPHINCS+ reference implementation. During the tree hash walk of a subtree of
height z, the stack never holds more than one node at each level 0, 1, . . . , z−1. Concretely,
each time a node of height i is generated or combined, it is either immediately merged
with another node at height i (if one exists on the stack), or it is pushed to the stack. Since
there are only z possible heights below the root, the stack can grow to at most z nodes. In
the reference C implementation, this is realized by allocating uint8_t stack[z * n] where
n is the hash-output length, i.e., the security parameter, in bytes.
While signing and hence calculating the root node of an XMSS tree, treehash is called
with s = 0 and z = h′, where h′ is the height of the tree. For the SHAKE-128f parameter
set with n = 16B and h′ = 3, the stack can hold up to h′ · n = 48B of data. However,
for the SHAKE-256s parameter set, with n = 32B and h′ = 8, stack has a capacity
256 B. This makes stack a spatially suitable target for a Rowhammer attack, as it covers

73

4 A Rowhammer-Based Universal Forgery Attack Against SPHINCS+

a reasonable portion of an 8 KiB target row, especially so for the SHAKE-256s parameter
sets. The higher security levels of SPHINCS+ increase the size of the stack and thus the
attack surface for a Rowhammer attack.

For the temporal suitability of the stack variable, we assume the signing party currently
executes treehash to compute the public key pkX of an XMSS tree at penultimate layer
d − 1, and just started iteration i > 0 of the outer loop, and stack is not empty. The
algorithm calls the wots_pkGen function to compute the WOTS public key for the current
index s + i. To compute the WOTS+ public key from the secret seed, the chaining hash
function F is called repeatedly. For example, with SHAKE-256s parameter set, a WOTS+

instance consists of ℓ = ℓ1 + ℓ2 hash chains with ℓ1 =
⌈

8n
lgw

⌉
= 64 message chains and ℓ2 =⌊

log2(ℓ1·(w−1))
lgw

⌋
= 3 checksum chains. For comparison, using the SHAKE-128f parameter

set, the WOTS+ instance consists of ℓ1 = 32 message chains and ℓ2 = 3 checksum chains.
Each chain consists of w = 16 steps, where each step requires a hash computation. After all
chains are completed, the WOTS+ public key is computed by concatenating the results of
the message and checksum chains and applying the hash function Tℓ to the concatenated
result. Therefore, to compute the WOTS+ public key from the secret seed with the SHAKE-
256s parameter set, a total of

ℓ+ ℓ · (w − 1) + 1 = 67 + 67 · 15 + 1 = 1071

hash function calls are required (resp. 561 hash function calls for SHAKE-128f). This gives
an attacker a sufficiently large time frame to flip a bit in stack, which currently stores an
intermediate node of the XMSS tree. Practical experiments on the target system with the
SHAKE-256s parameter set show that the contents of stack are not held in cache. Again,
the higher security levels of SPHINCS+ increase the number of hash function calls and
thus increase the attack surface for a Rowhammer attack.

In the treehashx1 function, stack is allocated as a z · n B array on the stack. The at-
tacker wants to place stack in a target page and therefore performs a page injection at-
tack. To mount this attack, the attacker first analyzes the memory access patterns of the
treehashx1 function to find the spatial and temporal characteristics of stack in the tar-
get program by instrumenting it using the MEMUTILS toolchain. Even though the instru-
mentation adds some overhead due to increased I/O operations, it allows the attacker to
collect detailed memory access traces and is a first step towards finding a suitable memory
region for the Rowhammer attack.

Figure 4.4 shows the access pattern for the stack array in the treehashx1 function. The
figure shows all write and read operations during each layer in a XMSS tree signing pro-
cess. The stack array is accessed in a highly predictive manner. While lower offsets in the

74

4.2 Offline Phase

0 77 154 230 307 384 460 537 613

Time (million cycles since start)

0x600

0x620

0x640

0x660

0x680

0x6a0

0x6c0

0x6e0

0x6ff

P
ag

e
O

ff
se

t
(h

ex
)

XMSS TreeHash Stack Access Pattern

Figure 4.4: Access patterns for stack in the treehashx1 function in the SPHINCS+ ref-
erence implementation. The figure shows all accesses to the stack array dur-
ing generation of a XMSS public key. Write accesses are shown in red , read
accesses in blue .

array are written to and read from frequently, the higher offsets are only written to and
read from once per layer. This corresponds to the implementation of the stack in Algo-
rithm 15, where it is used to store intermediate nodes of the Merkle tree. Additionally, the
distance between write and read accesses to higher offsets in the stack array is relatively
large. This gives the attacker a significant time window to flip a bit between offsets 0x6e0
and 0x700, which corresponds to the last 32 B of the stack array.

Concluding, stack appears to be a spatially and temporally suitable target for a Rowham-
mer attack. In the next section, we discuss how the attacker ensures that the stack vari-
able is allocated on a flippable victim page and how to inject the page into the victim’s
address space.

Page Injection Attack Against The SPHINCS+ Reference Implementation

After identifying the stack array as a suitable target for a Rowhammer attack, the at-
tacker needs to ensure that it is allocated on a victim page with desirable flippiness char-
acteristics. To achieve this, they need to perform a page injection attack, where the operat-
ing system’s allocator state is manipulated to ensure that the stack array is placed on an
attacker-controlled page.

As described in Section 3.4.1, the OS maintains a CPU-local list of recently freed pages,

75

4 A Rowhammer-Based Universal Forgery Attack Against SPHINCS+

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Bait Pages

Pathname / Offset
- / -
[stack] / 31
[stack] / 32
ld-linux-x86-64.so.2 / 0

ld-linux-x86-64.so.2 / 1
libc.so.6 / 0
libc.so.6 / 1

libc.so.6 / 2
libc.so.6 / 3
sphincs+ / 0

Figure 4.5: Heatmap of bait allocations.

which is used to serve page allocation requests. This mechanism can be exploited for a
page injection attack by examining the allocation behavior of a target program and push-
ing a specific number of bait pages into the CPU-local free list before releasing the target
page. When the victim process allocates a page, they end up with the target page mapped
into their memory space after exhausting the bait pages. SWAGE provides an experiment
to analyze the allocation behavior of a target program and to find the number of bait pages
required to reproducibly inject a target page. It implements the following algorithm:

1. Allocate a 4 KiB target page and many bait pages.

2. Determine the physical address of the target page.

3. Release k bait pages followed by the target page.

4. Start the victim process.

5. Find the target page in the page map of the victim process, and return the region
and page offset the target page was placed in.

Figure 4.5 shows a heatmap of the page injection experiment for the SPHINCS+ reference
implementation. The heatmap shows the number of bait pages required to inject a tar-
get page at a specific memory region in the SPHINCS+ reference implementation. Note
that some regions appear twice in the heatmap. This is due to access restrictions imposed
by the operating system, mapping system libraries twice with differing access rights. For
example, deallocating nine bait pages before the target page allows the attacker to inject
the target page as the second-to-last page in the stack (region offset 31) of the SPHINCS+

reference implementation. Dynamic analysis using MEMUTILS shows that the stack ar-
ray is allocated with region offset 32 on the stack, which corresponds to one bait page.
Repeating the experiment shows consistent results, with the target page being injected at

76

4.3 Online Phase

the expected location, concluding that the attacker can reliably place the stack array in
an attacker-controlled page.
Thus, we have shown that an attacker can use the tools provided by SWAGE to find a
suitable memory region for a Rowhammer attack against the SPHINCS+ reference im-
plementation. Next up, the online phase of the attack is evaluated, where the attacker
collects signatures from the SPHINCS+ reference implementation and subsequently ana-
lyzes them to perform the grafting tree attack.

4.3 Online Phase

With the information gathered in the offline phase, the attacker now proceeds with the
online phase of the attack. In the online phase, the attacker’s goal is to inject a target page
into the victim’s address space and hammer the target page to induce bit flips during the
victim’s execution. The online phase consists of the following steps:

1. Allocate contiguous memory blocks for the attack (Section 4.3.1).

2. Profile the allocated memory for reproducible bit flips in a target page at suitable
page offsets (Section 4.3.2).

3. Perform a page injection attack to inject the page into the victim’s address space
(Section 4.3.3).

4. Collect output from the victim process for post-attack analysis (Section 4.3.4).

After the online phase, the attacker analyzes the collected signatures to determine the
number of reused one-time signatures and conduct a grafting tree attack for a universal
forgery attack.

4.3.1 Allocating Contiguous Memory Blocks

In the offline phase, the attacker has full control over a replicated target system. In the
online phase, however, the attacker is co-located with the victim and is only assumed to
have user-level access to the target system. Therefore, the attacker cannot configure huge
pages or otherwise instruct the kernel to allocate contiguous memory blocks. To overcome
this limitation, the ALLOCATOR module in SWAGE is used to allocate contiguous memory
blocks on the target system. The module implements the SPOILER allocator discussed in
Section 3.2.4, which allows an attacker to allocate contiguous memory blocks of 4 MiB in
size. Experiments on the target system show that the SPOILER allocator deterministically
allocates contiguous memory blocks, given the optimizations discussed in Section 3.2.4

77

4 A Rowhammer-Based Universal Forgery Attack Against SPHINCS+

and the system having higher-order memory blocks available. Most notably, it signifi-
cantly outperforms the BuddyInfo allocator, which shows probabilistic characteristics
due to the noise introduced by co-located processes.

4.3.2 Profiling Memory for Reproducible Bit Flips

After allocating contiguous memory blocks, the attacker can now profile the memory for
reproducible bit flips. The profiling is done by hammering the recently allocated memory
blocks with SWAGE’s profiler in the HAMMERER module. The attacker uses the profiler
to identify memory regions that exhibit reproducible bit flips. In Section 4.2, the attacker
has learned that a reproducible bit flip between page offsets 0x6e0 and 0x700 is optimal
to perform a universal forgery attack, as this range covers the topmost 32 B of the stack
array in the SPHINCS+ reference implementation. Assuming that reproducibly flippable
bits are distributed uniformly across 4 KiB pages, the attacker can expect to find a bit flip
in this region with a probability of

P(Profiling) =
0x700− 0x6e0

0x1000
=

32

4096
=

1

128
.

The attacker can therefore expect to find a bit flip in this region after profiling 128 pages.
Recalling the memory layout of C programs introduced in Figure 2.3, we note that the
environment variables are stored before the stack. This behavior can be exploited to speed
up the profiling by defining a number of environment variables before launching the tar-
get program, shifting the stack down by the size of the injected environment variables.
While this approach is tangential to the attack and a little stretch to the threat model, it
allows the attacker to significantly increase the performance of the profiling step, as the
attacker can manipulate the program’s memory layout instead of having to find a bit flip
at a suitable page offset.

4.3.3 Page Injection Attack

Once a reproducible bit flip at a suitable page offset was found, the page injection attack,
the penultimate step of the online phase, can be performed. The page injection attack uses
the allocation information gathered during the offline phase to inject the target page into
a delicately crafted location in the victim’s memory space. For the attack on the stack

array in the SPHINCS+ reference implementation, the attacker aims to inject the target
page into the stack of the victim process at offset 31. For this, according to the threat model
introduced in Section 4.1, it is assumed that the attacker is able to start the signing server
process on the target machine. SWAGE provides a page injection module that allows the
attacker to deterministically inject a target page into the victim’s address space. Practical

78

4.3 Online Phase

0

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

60
00
0

70
00
0

80
00
0

90
00
0

10
00
00

Total SPHINCS+ Signatures

0

500

1000

1500

2000

C
um

ul
at

iv
e

Fa
ul

ty
Si

gn
at

ur
es

Cumulative Faulty SPHINCS+ Signatures by Total Signature Count

Figure 4.6: Number of non-verifiable signatures collected. The X-axis shows the number
of signatures collected, while the Y-axis shows the number of non-verifiable
signatures.

experiments show that the page injection attack is successful in 99 out of 100 cases. In
case the page injection fails (most likely due to noise caused by allocations from different
processes on the same CPU), the attacker restarts the online phase and tries again. Once
the page injection is successful, the attacker proceeds to collect signatures from the signing
server.

4.3.4 Collecting Signatures

The final step of the online phase is to collect signatures from the signing server. The
signatures are collected by reading the victim’s standard output and stored in a file for
later analysis. The signing server is configured to run the SPHINCS+ signature scheme
with randomization enabled and parameters SHAKE-256s at the highest security level 5.
The server accepts signing requests via standard input and outputs signatures to standard
output, allowing for synchronization between the attacker process and the signing server.
On the target machine, signing a message using the reference implementation takes about
2.6 seconds, which is sufficient to collect numerous signatures in a reasonable time frame.

Figure 4.6 shows the number of non-verifiable signatures collected during the 72-hour on-
line phase. The X-axis shows the number of signatures collected, while the Y-axis shows
the number of non-verifiable signatures. In this experiment, 2355 non-verifiable signatures
were observed – around 2.35% of the total 100 297 signatures (5.6 GiB) collected from the

79

4 A Rowhammer-Based Universal Forgery Attack Against SPHINCS+

signing server. While the number of non-verifiable signatures is a first indicator for the
success of the attack, not all successful faults lead to a non-verifiable signature, as a fault
may also affect the computation of the authentication path, leading to a verifiable signa-
ture that still compromises a WOTS+ key. However, the number of non-verifiable signa-
tures is a still a useful indicator for the number of bit flips induced in the target memory
region. In the grafting phase of the attack, the attacker analyzes the signatures to find
reused one-time WOTS+ keys, which is covered in the next section.

4.4 Grafting Phase

After the online phase, the attacker analyzes the collected signatures to perform the graft-
ing tree attack. In the attack presented in this thesis, the target layer is fixed to the penul-
timate layer l∗ = 7 for the SHAKE-256s parameter set, as this layer is the most likely to
have key collisions. As discussed in Section 2.4, the attack consists of several steps, which
we describe in the following.

4.4.1 Identifying WOTS+ Key Collisions

In this step, WOTS+ signatures are extracted from the collected full signatures and colli-
sions are identified, applying the method described in Section 2.4.2. Figure 4.7 shows the
maximum number of WOTS+ key collisions observed during the online phase, as a func-
tion of the number of signatures collected. Similarly to the faulty signatures, we observe
an increase in the number of key collisions as the number of signatures increases. The
maximum number of key collisions is a good indicator for the complexity of the grafting
tree attack, as it serves as a proxy for the number of exposed WOTS+ secrets.

4.4.2 Tree Grafting

In the tree grafting step (introduced in Section 2.4), the attacker randomly samples XMSS
trees until they find one that is signable using a compromised WOTS+ instance. Equa-
tion (2.1) estimates the complexity of the grafting tree attack, and Equation (2.2) estimates
the probability that a randomly sampled XMSS tree is signable using a compromised
WOTS+ instance with M uniformly distributed collisions.

Practical experiments with the signatures collected during the online phase show that
the attack complexity matches the theoretical estimates in Table 2.3, showing that the at-
tacker can successfully graft a tree after collecting a few colliding WOTS+ signatures. For
a WOTS+ instance with M = 4 collisions, the attacker can expect to find a signable XMSS
tree after sampling about 235.8 trees with the collisions encountered during the practi-

80

4.4 Grafting Phase

0 20000 40000 60000 80000 100000

Total SPHINCS+ Signatures

0

1

2

3

4

M
ax

im
um

N
um

be
r

of
W

O
TS

+
C

ol
lis

io
ns

Maximum Number of WOTS+ Collisions by Total Signature Count

Figure 4.7: Maximum number of WOTS+ key collisions observed as a function of the num-
ber of signatures collected. The X-axis shows the number of signatures col-
lected, while the Y-axis shows the number of key collisions.

cal attack. This closely matches the theoretical estimate of 236.09 in Table 2.3. On the ma-
chine used for the grafting phase, sampling a single XMSS tree takes about 62.5 ms, or
153 125 000 cycles at 2.45 GHz. With 128 threads available, the attacker can therefore ex-
pect to successfully graft a tree after about 416 days of continuous sampling.

While this is a time-consuming task, we note that the attack can be significantly acceler-
ated through the use of hardware acceleration. For example, [Saarinen, 2024] introduces
SLOTH, an FPGA-based hardware accelerator for SPHINCS+, reducing the time to sample
a single XMSS tree to 274 943 cycles. The authors implement the proposed accelerator on a
Xilinx VCU118 FPGA board running at 250 MHz, where sampling a single XMSS tree thus
only takes about 1.1 ms. [Wang et al., 2023] introduce GPU-based hardware acceleration
for XMSS, achieving up to 0.426 ms per tree on an NVIDIA RTX 3090 GPU by employ-
ing multi-key parallelism, i.e., sampling multiple trees in parallel. The follow-up work
[Wang et al., 2025] further improves the performance of the GPU implementation and in-
troduces a GPU-based hardware accelerator for SPHINCS+. However, the latter does not
provide performance measurements for the parameter set used in this evaluation. Using
the relatively modest hardware setup used in [Wang et al., 2023], the grafting attack could
be accelerated to about 360 days. However, when employing state-of-the-art hardware
accelerators, such as a cluster of NVIDIA RTX 5090 or NVIDIA H200 GPUs, the time to
graft a tree could be reduced to a few days or even hours, depending on the number of
WOTS+ key collisions and cores available. We leave the exact performance evaluation of

81

4 A Rowhammer-Based Universal Forgery Attack Against SPHINCS+

the grafting phase using hardware accelerators and the analysis of Rowhammer attacks
against a broader range of parameter sets for future work.
Concluding, the feasibility of a Rowhammer-based grafting tree attack against SPHINCS+,
as demonstrated in this evaluation, highlights the severe impact of practical fault at-
tacks on the hash-based signature scheme. By exploiting even a few key collisions in-
duced through targeted bit flips, an attacker can achieve a universal forgery with rela-
tively modest resources, especially considering high-performance hardware accelerators
like GPUs. This underscores the need for robust fault attack countermeasures in both
hardware and software implementations of cryptographic schemes. Without such pro-
tections, even mathematically secure algorithms remain vulnerable in real-world deploy-
ments, making the implementation of fault detection and mitigation strategies critical for
maintaining the integrity and trustworthiness of digital signatures.

82

5 Conclusions

This thesis presents SWAGE, a comprehensive framework for performing Rowhammer
attacks on real-world systems. SWAGE provides a user-friendly programming interface for
performing Rowhammer attacks, allowing users to focus on the attack logic rather than
the underlying hardware and operating system details. The framework is designed to be
flexible and extensible, allowing users to easily adapt it to their specific needs. We release
SWAGE as an open-source project, making it available for researchers and practitioners to
use and extend. To our knowledge, SWAGE is the first fully open-source modular end-to-
end framework for Rowhammer attacks, providing a complete and extensible solution for
performing attacks on real-world systems.
SWAGE is evaluated by performing an end-to-end Rowhammer attack against the post-
quantum signature scheme SPHINCS+. The attack is demonstrated to be feasible and
highly effective in practice, allowing an attacker to conduct a universal forgery attack
against SPHINCS+ by flipping bits in the signature generation process. This is, to the
best of our knowledge, the first practical demonstration of a Rowhammer attack against
SPHINCS+ on a real-world system.

5.1 Related Work

The grafting tree attack was first described by [Castelnovi et al., 2018] who focussed on a
theoretical analysis of the attack and its computational feasibility. A practical implementa-
tion of the grafting tree attack against SPHINCS was then presented by [Genêt et al., 2018].
Both of the aforementioned works discuss the susceptibility of SPHINCS+ to the same
fault attack, but do not show it in practice. This is made up for in [Genêt, 2023], where
a theoretical analysis of the grafting tree attack against SPHINCS+ and potential counter-
measures are discussed and a practical implementation of the attack is presented, showing
the feasibility of the attack against SPHINCS+. However, the practical works do not con-
sider Rowhammer as a potential fault injection method, but focus on an embedded target
system in a hardware-supported clock glitching attack.
Rowhammer attacks have also been demonstrated against other post-quantum crypto-
graphic schemes. In [Amer et al., 2024], the authors present Rowhammer-based end-to-
end key recovery attacks against the post-quantum key encapsulation mechanisms BIKE
and CRYSTALS-Kyber (ML-KEM) as well as the lattice-based post-quantum signature

83

5 Conclusions

scheme CRYSTALS-Dilithium (ML-DSA). The authors demonstrate that Rowhammer at-
tacks can be used to recover secret keys from these schemes, highlighting the need for ro-
bust countermeasures against hardware-based attacks in post-quantum cryptography. In
[Haidar et al., 2025], the authors present a Rowhammer-based key recovery attack against
post-quantum signature scheme Falcon requiring only a single bit flip.

A comprehensive Rowhammer simulation framework is presented in [Tatar et al., 2018].
The authors introduce HAMMERTIME, a framework that simulates Rowhammer attacks
and provides estimates on the number of expected hammering experiments required to
flip a bit in a given page offsets range. However, while HAMMERTIME comes with several
useful of tools for profiling and simulating Rowhammer attacks, it does not provide an
end-to-end solution for performing Rowhammer attacks on real-world systems.

Regarding fault analysis tools, [Liang et al., 2025] introduce ACHILLES, a formal frame-
work for fault analysis of signature schemes. The authors present a systematic approach
to fault analysis by separating the fault model from the cryptographic algorithm. They
do so by introducing a generalized signature scheme G-SIGN that categorizes signature
scheme parameters into public parameters (pp) and secret parameters (sp). G-SIGN then
uses signing oracles OSign and OFSign to generate valid and faulty signatures, respec-
tively. The faults are injected according to a fault model applied to public or secret parame-
ters. The faulty signatures are then post-processed using Differential Fault Analysis (DFA)
and Signature Correction Analysis (SCA) to recover the secret key of the signature scheme.
The authors demonstrate the feasibility of their framework by applying it to six different
signature schemes, including post-quantum signature scheme ML-DSA. However, while
ACHILLES appears to be a powerful tool for systematic fault analysis, its applicability to
fault attacks against SPHINCS+ is questionable, as it only considers key recovery attacks
and not universal forgery attacks. Another notable work is RAINBOW [Looss, 2022], which
aims to automate fault analysis by emulating the target program using the UNICORN CPU
emulator framework [Unicorn, 2015]. The authors present a framework that allows users
to specify fault injection parameters and automatically inject faults into the target pro-
gram.

5.2 Discussion and Open Problems

The results of this thesis introduce SWAGE and demonstrate the feasibility of Rowhammer
attacks against post-quantum signature schemes, using the example of SPHINCS+. While
the attack is demonstrated to be effective in practice, there are still some open problems
and challenges that need to be addressed in future work. This thesis only covers the ref-
erence implementation of SPHINCS+ without hardware acceleration such as AVX2. Em-

84

5.2 Discussion and Open Problems

ploying hardware acceleration and parallelization techniques can significantly increase
the performance of the signature generation process, which in turn might decrease the ef-
fectiveness of the Rowhammer attack. Future work could investigate the impact of hard-
ware acceleration on the feasibility of Rowhammer attacks against SPHINCS+ and other
post-quantum signature schemes. Additionally, only the SPHINCS+ reference implemen-
tation is considered in this thesis. Recently, OpenSSL v3.5 was released [OpenSSL, 2025],
which adds support for SLH-DSA. Future work might focus on evaluating the feasibility
of Rowhammer attacks against the SLH-DSA implementation in OpenSSL and against a
broader range of different parameter sets.
The post-processing phase of the attack against SPHINCS+ does currently not implement
FPGA or GPU-based hardware acceleration techniques, which could significantly speed
up the grafting tree attack. Thus, it would be interesting to implement hardware accelera-
tion techniques for the grafting tree attack, such as the ones presented in [Wang et al., 2023,
Saarinen, 2024, Wang et al., 2025].
Furthermore, the presented attack currently assumes a CPU co-located attacker for the
page injection. A recent work [Bölcskei et al., 2025] has shown that page injection attacks
can be also performed in a cross-CPU manner, allowing an attacker to inject faults into
a victim process running on a different CPU core. This opens up new threat models for
Rowhammer attacks. An open question would be to reproduce the page injection attack
in a cross-CPU setting, potentially extending the attack to a wider range of systems.
Currently, binary analysis and instrumentation of the target process are performed man-
ually. This workflow could be automated to enhance flexibility and usability. However,
while RAINBOW [Looss, 2022] already supports memory access interception for fault
simulation, this functionality incurs significant overhead due to its implementation in a
Python wrapper around the UNICORN emulator. Integrating with RAINBOW may offer
a promising path toward a high-performance framework for instrumentation and fault
analysis.

85

References

[Adiletta et al., 2024] Adiletta, A. J., Tol, M. C., Doröz, Y., and Sunar, B. (2024). Mayhem:
Targeted Corruption of Register and Stack Variables. In Proceedings of the 19th ACM Asia
Conference on Computer and Communications Security, ASIA CCS 2024, Singapore, July 1-5,
2024. ACM. https://dl.acm.org/doi/10.1145/3634737.3637638.

[Amer et al., 2024] Amer, S., Wang, Y., Kippen, H., Dang, T., Genkin, D., Kwong,
A., Nelson, A., and Yerukhimovich, A. (2024). PQ-Hammer: End-to-End Key
Recovery Attacks on Post-Quantum Cryptography Using Rowhammer. In 2025
IEEE Symposium on Security and Privacy (SP), pages 3308–3323. IEEE Computer So-
ciety. https://www.computer.org/csdl/proceedings-article/sp/2025/

223600a048/21B7QQRP39e.

[Arnold et al., 2024] Arnold, P., Berndt, S., Eisenbarth, T., and Orlt, M. (2024). Polynomial
sharings on two secrets: Buy one, get one free. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2024(3):671–706. https://doi.org/10.46586/tches.
v2024.i3.671-706.

[Aumasson et al., 2022] Aumasson, J.-P., Bernstein, D. J., Beullens, W., Dobraunig, C.,
Eichlseder, M., Fluhrer, S., Gazdag, S.-L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange,
T., Lauridsen, M. M., Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J., and
Schwabe, P. (2022). SPHINCS+ Submission to the NIST post-quantum project, v.3.1.
https://sphincs.org/data/sphincs+-r3.1-specification.pdf.

[Baksi et al., 2022] Baksi, A., Bhasin, S., Breier, J., Jap, D., and Saha, D. (2022). A Survey on
Fault Attacks on Symmetric Key Cryptosystems. ACM Comput. Surv., 55(4):86:1–86:34.
https://dl.acm.org/doi/10.1145/3530054.

[Berndt et al., 2023] Berndt, S., Eisenbarth, T., Faust, S., Gourjon, M., Orlt, M., and
Seker, O. (2023). Combined Fault and Leakage Resilience: Composability, Construc-
tions and Compiler. In Advances in Cryptology – CRYPTO 2023, pages 377–409,
Cham. Springer Nature Switzerland. https://link.springer.com/chapter/

10.1007/978-3-031-38548-3_13.

[Bernstein et al., 2017] Bernstein, D. J., Dobrauig, Christoph, Eichlseder, M., Fluhrer, S.,
Gazdag, S.-L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., Lauridsen, M. M.,

87

https://dl.acm.org/doi/10.1145/3634737.3637638
https://www.computer.org/csdl/proceedings-article/sp/2025/223600a048/21B7QQRP39e
https://www.computer.org/csdl/proceedings-article/sp/2025/223600a048/21B7QQRP39e
https://doi.org/10.46586/tches.v2024.i3.671-706
https://doi.org/10.46586/tches.v2024.i3.671-706
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://dl.acm.org/doi/10.1145/3530054
https://link.springer.com/chapter/10.1007/978-3-031-38548-3_13
https://link.springer.com/chapter/10.1007/978-3-031-38548-3_13

References

Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J., and Schwabe, P. (2017).
SPHINCS+ Submission to the NIST post-quantum project. https://sphincs.org/
data/sphincs+-specification.pdf.

[Bernstein et al., 2019] Bernstein, D. J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld,
J., and Schwabe, P. (2019). The SPHINCS+ Signature Framework. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019, pages 2129–2146. ACM. https://dl.acm.org/

doi/10.1145/3319535.3363229.

[Bölcskei et al., 2025] Bölcskei, M., Jattke, P., Wikner, J., and Razavi, K. (2025). Rubi-
con: Precise Microarchitectural Attacks with Page-Granular Massaging. In EuroS&P.
https://comsec-files.ethz.ch/papers/rubicon_eurosp25.pdf.

[Castelnovi et al., 2018] Castelnovi, L., Martinelli, A., and Prest, T. (2018). Grafting Trees:
A Fault Attack Against the SPHINCS Framework. In Post-Quantum Cryptography, vol-
ume 10786, pages 165–184. Springer International Publishing, Cham. https://link.
springer.com/10.1007/978-3-319-79063-3_8.

[Cojocar et al., 2019] Cojocar, L., Razavi, K., Giuffrida, C., and Bos, H. (2019). Exploit-
ing Correcting Codes: On the Effectiveness of ECC Memory Against Rowhammer At-
tacks. In 2019 IEEE Symposium on Security and Privacy (SP), pages 55–71. https:

//ieeexplore.ieee.org/document/8835222.

[Easttom, 2022] Easttom, C. (2022). Cryptographic Hashes. In Modern Cryptography: Ap-
plied Mathematics for Encryption and Information Security, pages 213–231. Springer Inter-
national Publishing, Cham. https://doi.org/10.1007/978-3-031-12304-7_

9.

[Frigo et al., 2020] Frigo, P., Vannacc, E., Hassan, H., Der Veen, V. V., Mutlu, O., Giuffrida,
C., Bos, H., and Razavi, K. (2020). TRRespass: Exploiting the Many Sides of Target Row
Refresh. In 2020 IEEE Symposium on Security and Privacy (SP), pages 747–762, San Fran-
cisco, CA, USA. IEEE. https://ieeexplore.ieee.org/document/9152631/.

[Genêt, 2023] Genêt, A. (2023). On Protecting SPHINCS+ Against Fault Attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 80–114. https:

//tches.iacr.org/index.php/TCHES/article/view/10278.

[Genêt et al., 2018] Genêt, A., Kannwischer, M. J., Pelletier, H., and McLauchlan, A. (2018).
Practical Fault Injection Attacks on SPHINCS. IACR Cryptol. ePrint Arch., page 674.
https://eprint.iacr.org/2018/674.

88

https://sphincs.org/data/sphincs+-specification.pdf
https://sphincs.org/data/sphincs+-specification.pdf
https://dl.acm.org/doi/10.1145/3319535.3363229
https://dl.acm.org/doi/10.1145/3319535.3363229
https://comsec-files.ethz.ch/papers/rubicon_eurosp25.pdf
https://link.springer.com/10.1007/978-3-319-79063-3_8
https://link.springer.com/10.1007/978-3-319-79063-3_8
https://ieeexplore.ieee.org/document/8835222
https://ieeexplore.ieee.org/document/8835222
https://doi.org/10.1007/978-3-031-12304-7_9
https://doi.org/10.1007/978-3-031-12304-7_9
https://ieeexplore.ieee.org/document/9152631/
https://tches.iacr.org/index.php/TCHES/article/view/10278
https://tches.iacr.org/index.php/TCHES/article/view/10278
https://eprint.iacr.org/2018/674

References

[Gruss et al., 2018] Gruss, D., Lipp, M., Schwarz, M., Genkin, D., Juffinger, J., O’Connell,
S., Schoechl, W., and Yarom, Y. (2018). Another Flip in the Wall of Rowhammer De-
fenses. In 2018 IEEE Symposium on Security and Privacy (SP), pages 245–261. https:

//ieeexplore.ieee.org/document/8418607.

[Gruss et al., 2016] Gruss, D., Maurice, C., and Mangard, S. (2016). Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript. In Detection of Intrusions
and Malware, and Vulnerability Assessment - 13th International Conference, DIMVA
2016, San Sebastián, Spain, July 7-8, 2016, Proceedings, volume 9721 of Lecture
Notes in Computer Science, pages 300–321. Springer. https://doi.org/10.1007/

978-3-319-40667-1_15.

[Haidar et al., 2025] Haidar, C. A., Payet, Q., and Tibouchi, M. (2025). Crowhammer:
Full Key Recovery Attack on Falcon with a Single Rowhammer Bit Flip. https:

//eprint.iacr.org/2025/1042.

[Hocko, 2019] Hocko, M. (2019). [PATCH 1/2] mm, vmstat: Hide /proc/pagetypeinfo
from normal users. https://web.archive.org/web/20220711162355/https:
//lore.kernel.org/all/20191025072610.18526-2-mhocko@kernel.org/

T/.

[Islam et al., 2019] Islam, S., Moghimi, A., Bruhns, I., Krebbel, M., Gülmezoglu, B., Eisen-
barth, T., and Sunar, B. (2019). SPOILER: Speculative Load Hazards Boost Rowham-
mer and Cache Attacks. In 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, pages 621–637. USENIX Association. https:
//www.usenix.org/conference/usenixsecurity19/presentation/islam.

[Jattke et al., 2022] Jattke, P., Van Der Veen, V., Frigo, P., Gunter, S., and Razavi, K. (2022).
Blacksmith: Scalable rowhammering in the frequency domain. In 2022 IEEE Sympo-
sium on Security and Privacy (SP), pages 716–734. IEEE. https://ieeexplore.ieee.
org/abstract/document/9833772/.

[Jattke et al., 2024] Jattke, P., Wipfli, M., Solt, F., Marazzi, M., Bölcskei, M., and Razavi,
K. (2024). ZenHammer: Rowhammer Attacks on AMD Zen-based Platforms. In
33rd USENIX Security Symposium, USENIX Security 2024, Philadelphia, PA, USA, Au-
gust 14-16, 2024. USENIX Association. https://www.usenix.org/conference/

usenixsecurity24/presentation/jattke.

[JEDEC, 2012] JEDEC (2012). JESD79-4: DDR4 SDRAM Standard. https://www.

jedec.org/sites/default/files/docs/JESD79-4.pdf.

89

https://ieeexplore.ieee.org/document/8418607
https://ieeexplore.ieee.org/document/8418607
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://eprint.iacr.org/2025/1042
https://eprint.iacr.org/2025/1042
https://web.archive.org/web/20220711162355/https://lore.kernel.org/all/20191025072610.18526-2-mhocko@kernel.org/T/
https://web.archive.org/web/20220711162355/https://lore.kernel.org/all/20191025072610.18526-2-mhocko@kernel.org/T/
https://web.archive.org/web/20220711162355/https://lore.kernel.org/all/20191025072610.18526-2-mhocko@kernel.org/T/
https://www.usenix.org/conference/usenixsecurity19/presentation/islam
https://www.usenix.org/conference/usenixsecurity19/presentation/islam
https://ieeexplore.ieee.org/abstract/document/9833772/
https://ieeexplore.ieee.org/abstract/document/9833772/
https://www.usenix.org/conference/usenixsecurity24/presentation/jattke
https://www.usenix.org/conference/usenixsecurity24/presentation/jattke
https://www.jedec.org/sites/default/files/docs/JESD79-4.pdf
https://www.jedec.org/sites/default/files/docs/JESD79-4.pdf

References

[Kim et al., 2014] Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D., Wilkerson, C.,
Lai, K., and Mutlu, O. (2014). Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors. In 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pages 361–372. https://ieeexplore.
ieee.org/document/6853210.

[Kogler et al., 2022] Kogler, A., Juffinger, J., Qazi, S., Kim, Y., Lipp, M., Boichat, N.,
Shiu, E., Nissler, M., and Gruss, D. (2022). Half-Double: Hammering From the
Next Row Over. In 31st USENIX Security Symposium (USENIX Security 22), pages
3807–3824. https://www.usenix.org/conference/usenixsecurity22/

presentation/kogler-half-double.

[Kölbl et al., 2016] Kölbl, S., Lauridsen, M. M., Mendel, F., and Rechberger, C. (2016).
Haraka v2 – Efficient Short-Input Hashing for Post-Quantum Applications. IACR
Transactions on Symmetric Cryptology, pages 1–29. https://tosc.iacr.org/index.
php/ToSC/article/view/563.

[Konoth et al., 2018] Konoth, R. K., Oliverio, M., Tatar, A., Andriesse, D., Bos, H., Giuf-
frida, C., and Razavi, K. (2018). ZebRAM: Comprehensive and Compatible Software
Protection Against Rowhammer Attacks. In 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18), pages 697–710. https://www.usenix.

org/conference/osdi18/presentation/konoth.

[Kwong et al., 2020] Kwong, A., Genkin, D., Gruss, D., and Yarom, Y. (2020). RAM-
Bleed: Reading Bits in Memory Without Accessing Them. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 695–711, San Francisco, CA, USA. IEEE. https:

//ieeexplore.ieee.org/document/9152687/.

[Lange, 2021] Lange, T. (2021). Hash-based Signatures. https://hyperelliptic.

org/tanja/teaching/pqcrypto21/slides/hash-mm-1.pdf.

[Liang et al., 2025] Liang, J., Zhang, Z., Zhang, X., Shen, Q., Gao, Y., Yuan, X., Xue, H.,
Wu, P., and Wu, Z. (2025). Achilles: A Formal Framework of Leaking Secrets from
Signature Schemes via Rowhammer. 34th USENIX security symposium, USENIX Security
25, Seattle, WA, USA, August 13-15, 2025. https://www.usenix.org/conference/
usenixsecurity25/presentation/liang-achilles.

[Lipp et al., 2020] Lipp, M., Schwarz, M., Raab, L., Lamster, L., Aga, M. T., Maurice, C.,
and Gruss, D. (2020). Nethammer: Inducing Rowhammer Faults through Network Re-
quests. In 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW),
pages 710–719. https://ieeexplore.ieee.org/document/9229701.

90

https://ieeexplore.ieee.org/document/6853210
https://ieeexplore.ieee.org/document/6853210
https://www.usenix.org/conference/usenixsecurity22/presentation/kogler-half-double
https://www.usenix.org/conference/usenixsecurity22/presentation/kogler-half-double
https://tosc.iacr.org/index.php/ToSC/article/view/563
https://tosc.iacr.org/index.php/ToSC/article/view/563
https://www.usenix.org/conference/osdi18/presentation/konoth
https://www.usenix.org/conference/osdi18/presentation/konoth
https://ieeexplore.ieee.org/document/9152687/
https://ieeexplore.ieee.org/document/9152687/
https://hyperelliptic.org/tanja/teaching/pqcrypto21/slides/hash-mm-1.pdf
https://hyperelliptic.org/tanja/teaching/pqcrypto21/slides/hash-mm-1.pdf
https://www.usenix.org/conference/usenixsecurity25/presentation/liang-achilles
https://www.usenix.org/conference/usenixsecurity25/presentation/liang-achilles
https://ieeexplore.ieee.org/document/9229701

References

[Looss, 2022] Looss, A. (2022). Integrating Fault Injection In Development Workflows.
https://www.ledger.com/blog/fault-injection-simulation.

[Luo et al., 2024] Luo, H., Olgun, A., Yağlıkçı, A. G., Tuğrul, Y. C., Rhyner, S., Cavlak,
M. B., Lindegger, J., Sadrosadati, M., and Mutlu, O. (2024). RowPress: Amplifying Read
Disturbance in Modern DRAM Chips. http://arxiv.org/abs/2306.17061.

[Merkle, 1990] Merkle, R. C. (1990). A Certified Digital Signature. In Advances in Cryp-
tology — CRYPTO’ 89 Proceedings, pages 218–238, New York, NY. Springer. https:

//link.springer.com/chapter/10.1007/0-387-34805-0_21.

[NIST, 2015a] NIST (2015a). Secure Hash Standard. Technical Report NIST FIPS 180-
4, NIST, Washington, D.C. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.180-4.pdf.

[NIST, 2015b] NIST (2015b). SHA-3 standard : Permutation-Based Hash and Extendable-
Output Functions. Technical Report NIST 202, National Institute of Standards and Tech-
nology (U.S.), Washington, D.C. https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.202.pdf.

[NIST, 2024] NIST (2024). Stateless Hash-Based Digital Signature Standard. Technical Re-
port NIST FIPS 205, National Institute of Standards and Technology (U.S.), Washington,
D.C. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf.

[OpenSSL, 2025] OpenSSL (2025). OpenSSL 3.5 Final Release - Live | OpenSSL
Library. https://web.archive.org/web/20250522090203/https://

openssl-library.org/post/2025-04-08-openssl-35-final-release/.

[Pessl et al., 2016] Pessl, P., Gruss, D., Maurice, C., Schwarz, M., and Mangard, S.
(2016). DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016,
pages 565–581. USENIX Association. https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/pessl.

[Saarinen, 2024] Saarinen, M.-J. O. (2024). Accelerating SLH-DSA by Two Orders of Mag-
nitude with a Single Hash Unit. In Advances in Cryptology - CRYPTO 2024 - 44th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceed-
ings, Part I, volume 14920 of Lecture Notes in Computer Science, pages 276–304. Springer.
https://doi.org/10.1007/978-3-031-68376-3_9.

91

https://www.ledger.com/blog/fault-injection-simulation
http://arxiv.org/abs/2306.17061
https://link.springer.com/chapter/10.1007/0-387-34805-0_21
https://link.springer.com/chapter/10.1007/0-387-34805-0_21
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf
https://web.archive.org/web/20250522090203/https://openssl-library.org/post/2025-04-08-openssl-35-final-release/
https://web.archive.org/web/20250522090203/https://openssl-library.org/post/2025-04-08-openssl-35-final-release/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://doi.org/10.1007/978-3-031-68376-3_9

References

[Seaborn and Dullien, 2015] Seaborn, M. and Dullien, T. (2015). Project
Zero: Exploiting the DRAM Rowhammer Bug to Gain Kernel Priv-
ileges. https://googleprojectzero.blogspot.com/2015/03/

exploiting-dram-rowhammer-bug-to-gain.html.

[Shor, 1994] Shor, P. (1994). Algorithms for Quantum Computation: Discrete Logarithms
and Factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science,
pages 124–134, Santa Fe, NM, USA. IEEE Comput. Soc. Press. http://ieeexplore.
ieee.org/document/365700/.

[Shutemov, 2015] Shutemov, K. A. (2015). [RFC, PATCH] pagemap: Do Not Leak Phys-
ical Addresses to Non-Privileged Userspace. https://lore.kernel.org/all/

1425935472-17949-1-git-send-email-kirill@shutemov.name/.

[Tatar et al., 2018] Tatar, A., Giuffrida, C., Bos, H., and Razavi, K. (2018). Defeating Soft-
ware Mitigations Against Rowhammer: A Surgical Precision Hammer. In Research in
Attacks, Intrusions, and Defenses, pages 47–66, Cham. Springer International Publishing.
https://link.springer.com/chapter/10.1007/978-3-030-00470-5_3.

[Tobah et al., 2022] Tobah, Y., Kwong, A., Kang, I., Genkin, D., and Shin, K. G. (2022).
SpecHammer: Combining Spectre and Rowhammer for New Speculative Attacks. In
2022 IEEE Symposium on Security and Privacy (SP), pages 681–698, San Francisco, CA,
USA. IEEE. https://ieeexplore.ieee.org/document/9833802/.

[Tol et al., 2023] Tol, M. C., Islam, S., Adiletta, A. J., Sunar, B., and Zhang, Z. (2023). Don’t
Knock! Rowhammer at the Backdoor of DNN Models. In 53rd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Network, DSN 2023, Porto, Portugal, June
27-30, 2023, pages 109–122. IEEE. https://ieeexplore.ieee.org/document/

10202628/.

[Unicorn, 2015] Unicorn (2015). Unicorn – The Ultimate CPU Emulator. https://www.
unicorn-engine.org/.

[van der Veen et al., 2018] van der Veen, V., Lindorfer, M., Fratantonio, Y., Pillai, H. P.,
Vigna, G., Kruegel, C., Bos, H., and Razavi, K. (2018). GuardION: Practical Mitigation
of DMA-Based Rowhammer Attacks on ARM. In Detection of Intrusions and Malware,
and Vulnerability Assessment - 15th International Conference, DIMVA 2018, Saclay, France,
June 28-29, 2018, Proceedings, volume 10885 of Lecture Notes in Computer Science, pages
92–113. Springer. https://doi.org/10.1007/978-3-319-93411-2_5.

92

https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://ieeexplore.ieee.org/document/365700/
http://ieeexplore.ieee.org/document/365700/
https://lore.kernel.org/all/1425935472-17949-1-git-send-email-kirill@shutemov.name/
https://lore.kernel.org/all/1425935472-17949-1-git-send-email-kirill@shutemov.name/
https://link.springer.com/chapter/10.1007/978-3-030-00470-5_3
https://ieeexplore.ieee.org/document/9833802/
https://ieeexplore.ieee.org/document/10202628/
https://ieeexplore.ieee.org/document/10202628/
https://www.unicorn-engine.org/
https://www.unicorn-engine.org/
https://doi.org/10.1007/978-3-319-93411-2_5

References

[Wang et al., 2023] Wang, Z., Dong, X., Chen, H., and Kang, Y. (2023). Efficient GPU Im-
plementations of Post-Quantum Signature XMSS. IEEE Trans. Parallel Distributed Syst.,
34(3):938–954. https://ieeexplore.ieee.org/document/10004747.

[Wang et al., 2025] Wang, Z., Dong, X., Chen, H., Kang, Y., and Wang, Q. (2025). CUSPX:
Efficient GPU Implementations of Post-Quantum Signature SPHINCS+. IEEE Trans.
Computers, 74(1):15–28. https://ieeexplore.ieee.org/document/10677363.

[Weissman et al., 2020] Weissman, Z., Tiemann, T., Moghimi, D., Custodio, E., Eisenbarth,
T., and Sunar, B. (2020). JackHammer: Efficient Rowhammer on Heterogeneous FPGA-
CPU Platforms. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):169–195. https:

//doi.org/10.13154/tches.v2020.i3.169-195.

[Wilke, 2023] Wilke, L. (2023). Institut für IT Sicherheit / research-projects /
Rowhammer / no-drama · GitLab. https://git.uni-luebeck.de/its/

research-projects/rowhammer/no-drama.

[Xiao et al., 2016] Xiao, Y., Zhang, X., Zhang, Y., and Teodorescu, R. (2016). One Bit
Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation. In
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016, pages 19–35. USENIX Association. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/xiao.

93

https://ieeexplore.ieee.org/document/10004747
https://ieeexplore.ieee.org/document/10677363
https://doi.org/10.13154/tches.v2020.i3.169-195
https://doi.org/10.13154/tches.v2020.i3.169-195
https://git.uni-luebeck.de/its/research-projects/rowhammer/no-drama
https://git.uni-luebeck.de/its/research-projects/rowhammer/no-drama
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/xiao

	Introduction
	Background
	Contributions
	Structure of this Thesis

	Preliminaries
	Notation
	Dynamic Random Access Memory and the Rowhammer Bug
	Dynamic Random Access Memory
	Virtual Memory
	Fault Attacks
	The Rowhammer Bug

	The SPHINCS+ Digital Signature Scheme
	Motivating Examples for Hash-Based Signature Schemes
	Overview of the SPHINCS+ Signature Scheme
	Functions and Definitions
	Winternitz One-Time Signature Scheme+
	Extended Merkle Signature Scheme
	The SPHINCS+ Hypertree
	Forest Of Random Subsets
	SPHINCS+ Interface
	Parameter Sets
	Differences between SPHINCS+ and SLH-DSA

	Grafting Tree Attack
	Attack Overview
	Identifying WOTS+ Collisions
	Tree Grafting

	Swage: An End-to-End Framework for Rowhammer Attacks
	The DRAM Inspector Module
	The Drama Attack
	Graph-Based Bank Bit Detection Scheme

	The Allocator Module
	Let The Kernel Handle It: Huge Pages
	First Generation Attacks: The pagemap Interface
	Attacks Using the Buddy Allocator: pagetypeinfo and buddyinfo
	Exploiting Microarchitectural Leakage: The Spoiler Attack

	The Hammerer Module
	The Victim Module
	Page Injection
	Target Analysis

	A Rowhammer-Based Universal Forgery Attack Against SPHINCS+
	Threat Model and Experimental Setup
	Offline Phase
	Reverse-Engineering the Physical Memory Layout
	Finding Reproducible Memory Access Patterns
	Fault Analysis of the SPHINCS+ Reference Implementation

	Online Phase
	Allocating Contiguous Memory Blocks
	Profiling Memory for Reproducible Bit Flips
	Page Injection Attack
	Collecting Signatures

	Grafting Phase
	Identifying WOTS+ Key Collisions
	Tree Grafting

	Conclusions
	Related Work
	Discussion and Open Problems

	References

