
Adapting Lattice-based Attacks to break Diffie-Hellman

Erweiterung von Lattice-Angriffen auf Diffie-Hellman

Masterarbeit

im Rahmen des Studiengangs
IT-Sicherheit
der Universität zu Lübeck

vorgelegt von
Jonah Heller

ausgegeben und betreut von
Dr. Sebastian Berndt

mit Unterstützung von
Thore Tiemann

Lübeck, den 9. Dezember 2022

Abstract

Lattices offer an extensive field of applications. One of which is developing new crypto-
graphic procedures that are post-quantum secure or to prove security properties. Another
application is to attack commonly used cryptographic protocols such as the Elliptic Curve
Digital Signature Algorithm (ECDSA). Lattice-based attacks often exploit side-channel in-
formation to obtain partial knowledge of secret values. With the recent development of
these attacks, the focus often lies on attacking ECDSA, while other protocols vulnerable
are not considered. Therefore, we focused on adapting recent advancements to attack the
Diffie-Hellman Key Exchange (DHKE).
Albrecht and Heninger showed that introducing non-linear knowledge, by including a
predicate, can solve instances believed to be unattainable. While this approach increased
the overall performance of the lattice-based attack on ECDSA, it does not apply to the
default attacker model of DHKE. Therefore, we adapted the model to a more realistic
scenario which enables to use of a partial-known-plaintext-attack to serve as a predicate
suitable for the advanced lattice attack. As DHKE deviates from ECDSA in several as-
pects, e.g., the needed number of samples, we investigated and showed that the benefit
of the ECDSA attack also applies to the DHKE attack. We also inspected the influence
of the predicate and the different bit-sizes of DHKE on the timing behavior. Finally, we
discussed possible mitigation and further advancements on the presented attack.

iii

Zusammenfassung

Gitterstrukturen bieten eine Vielzahl von Anwendungsmöglichkeiten. Zum einen kann
diese Struktur genutzt werden um neue kryptographische Verfahren, die sicher gegen
Quantencomputer sind, oder um Sicherheitseigenschaften zu beweisen. Ein weiteres An-
wendungsfeld von Gittern ist das Angreifen von kryptogaphischen Protokollen wie den
Elliptic Curve Digital Signature Algorithm (ECDSA). Gitterbasierte Angriffe nutzen dafür
häufig Information aus Seitenkanälen, um Teilinformationen über Werte, die einem An-
greifer unbekannt sind, zu erhalten. Neuste Entwicklungen in diesem Feld konzentrieren
sich hauptsächlich auf ECDSA, statt auch andere anfällige Systemen anzugreifen. Daher
adaptieren wir einige dieser Verfahren, um auch Diffie-Hellman Key Exchange (DHKE)
anzugreifen.
Albrecht und Heninger zeigten, dass das Einbinden von nicht linearem Wissen, mittels
eines Prädikates, Instanzen lösen konnte, die bis dahin als nicht lösbar galten. Während
dieser Ansatz die Performance von dem Angriff auf ECDSA erhöhte, ist das Prädikat nicht
direkt auf DHKE anwendbar. Deshalb erweitern wir das Standard-Angreifer-Modell,
sodass wir einen partial known plaintext Angriff nutzen, um das Prädikat zu erhalten.
Da sich DHKE und ECDSA zum Beispiel in der Dimension unterscheiden, haben wir
diesen und weitere Unterschiede untersucht und konnten zeigen, dass sich ähnliche Leis-
tungssteigerungen für DHKE im Vergleich zu ECDSA beobachten lassen. Außerdem
haben wir den Einfluss des Prädikats und die verschiedenen Bit-Größen von DHKE auf
ihr Zeitverhalten untersucht. Abschließend diskutieren wir mögliche Gegenmaßnahmen
sowie zusätzliche Erweiterungen für den betrachteten Angriff.

v

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, 9. Dezember 2022

vii

Acknowledgements

I would like to thank Sebastian and Thore for mentoring me during writing this thesis and
answering my questions. Thanks also to Anja and Daniel for helping me to elevate this
thesis into a readable state. Further thanks to my family and friends for their continuous
support. Finally, I want to thank my janitor, who gave his best to fix all the pipe ruptures
in my apartment as fast as possible.

ix

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Motivation . 2

2 Preliminaries 3
2.1 Elliptic Curve Digital Signature Algorithm (ECDSA) 3

2.1.1 Leakage . 4
2.2 Diffie-Hellman Key Exchange (DHKE) . 4

2.2.1 Security Considerations . 5
2.3 Lattices and Applications . 6
2.4 Lattice Problems . 7
2.5 Lattice Attacks . 8

2.5.1 Hidden Number Problem (HNP) . 10
2.5.2 HNP to CVP . 11
2.5.3 CVP to SVP . 12

2.6 Advanced Lattice Techniques . 16
2.6.1 Sieving . 16
2.6.2 Enumeration . 17
2.6.3 BKZ . 18

2.7 Advanced Lattice Attacks . 19
2.7.1 Lattice Attacks with Predicate . 19
2.7.2 Lattice Attacks with Hints . 20
2.7.3 Lattice Attacks by Guessing Bits . 21

3 Lattice-based Attack with Predicate on DHKE 23
3.1 Lattice Attack on Diffie-Hellman . 23

3.1.1 Lattice Attack on DHKE . 23
3.1.2 Construction of the Attack . 24

3.2 Lattice Attack on DHKE with Predicate . 28
3.2.1 Attacker Model . 29
3.2.2 Leakage . 30
3.2.3 Predicate . 30
3.2.4 Modes of Operation . 31

xi

Contents

3.3 Implementation . 32

4 Evaluation 35
4.1 Sample MSB Correlation . 35

4.1.1 Expectations . 35
4.1.2 Strategy . 36
4.1.3 Results . 36

4.2 Time Complexity . 39
4.2.1 Time Complexity of Lattice Reduction Techniques 40
4.2.2 Time Complexity with Different Bit-Sizes 42
4.2.3 Effect of the Predicate on Time Complexity 43

5 Discussion 45
5.1 Practicality of the Results . 45
5.2 Mitigations . 46

5.2.1 DHKE with Elliptic Curves . 46
5.2.2 DHKE with larger Bit-Sizes . 46
5.2.3 DHKE using Ephemeral Keys . 47

5.3 Discussion and Open Problems . 47
5.3.1 Including Errors . 47
5.3.2 Combining Predicates and Guessing 48

6 Conclusion 49

References 51

xii

1 Introduction

Lattices are mathematical structures which serve as foundation for cryptographic schemes
secure against quantum computers. They can also be used as a basic element to attack cer-
tain cryptographic schemes. When utilized to attack schemes it is combined with secret
information, which in most cases is supplied by leakage obtained using side-channel at-
tacks. The general concept for either building and breaking cryptographic system with
lattices are their hard problems. While such hard problems serve as security barriers for
newly developed post-quantum secure systems, they can be exploited to leverage com-
monly used systems. One post-quantum secure scheme that originates from this concept
is NTRU [HPS98], which was further developed and committed as a NIST post-quantum
cryptographic system candidate.
Applying lattices to attack systems has gained more attention over the last decade. But
recent advancements on lattice-based attacks mainly focused on the Elliptic Curve Digi-
tal Signature Algorithm (ECDSA), even though schemes such as the Diffie-Hellman Key
Exchange (DHKE) and RSA are also threatened by similar attacks. Therefore, this thesis
is focused on elaborating on how certain schemes such as ECDSA can be attacked using
lattices and which extensions are available. We give a step-by-step construction for the
basic lattice-attack on ECDSA and adapt it to the lattice attack on DHKE. As recent en-
hancements are focused on attacking ECDSA, we also study the applicability on DHKE.
The DHKE is widely used in communication to exchange a secret between two or more
parties. It has found application in a variety of protocols, which leads to many possibilities
for leakages through flaws in implementations. A use-case of DHKE is for TLS communi-
cation, where the shared secret is used for symmetric encrypted communication.
When comparing lattice attacks on ECDSA to DHKE one will find that lattice attacks are
more viable on ECDSA. Nevertheless, as DHKE is widely used, it must be considered
vulnerable by lattice attack adaptations as well. Therefore, this thesis applies recent adap-
tations to the DHKE scheme to show that these adaptations can be applied on different
schemes as well.

1.1 Related Work

The main adaptation used for this work is based on "On Bounded Distance Decoding with
Predicate: Breaking the ’Lattice Barrier’ for the Hidden Number Problem" [AH21], which

1

1 Introduction

introduced a new technique to solve even more difficult instances by adding a predicate
to the attack. With the introduction of this predicate, the attack can find correct solutions
in cases where previous methods could not have been applied. The predicate can include
even non-linear relations of parameters, as it only needs to be verified.
As [AH21] points out, there is also another approach to refine the lattice attack, by in-
cluding hints [DDGR20]. These hints are linear knowledge, which are embedded into
the lattice basis to increase the performance of the lattice attack. There are several key
differences between hints and predicates: hints can be used to embed more linear knowl-
edge into the lattice to enhance its results, while the predicate can add even non-linear
knowledge to the basic problem of lattice reduction. Another difference is the impact on
the attack results, as the predicate adaptation can solve even more difficult instances than
the hint adaptation. While the hints are embedded during construction of the lattice, the
predicate is only applied on solving the core problem of lattice reduction. The approach of
[AH21] cannot be used directly with simple lattice reduction algorithms, as the predicate
needs to be implemented in the solving process of the reduction.

1.2 Motivation

Adapting lattice-based attacks with the approach of [AH21] showed that even barriers
which were widely believed to be out of scope could be broken. As this adaptation was
only applied to ECDSA, where the introduction of a strong predicate is trivial, it raises
interest in other techniques resembling DHKE. Combining DHKE with a predicate in its
typical attacker model is not possible, as no additional knowledge is given. In a spe-
cific scenario, a predicate for DHKE can be introduced, and therefore the lattice attack
adaptations mentioned may be applied. Unlike ECDSA, DHKE builds on a completely
different context and might include different computational overhead regarding the pred-
icate. Therefore, this thesis focuses on testing this adaption to DHKE by evaluating the
core techniques of the implementation of [AH21]. Furthermore, we evaluate the impact of
the number of samples and the predicate on the time behavior of the solving algorithms.

2

2 Preliminaries

In this chapter, basic concepts are described, including lattices, their applications as well
as Elliptic Curve Digital Signature Algorithm (ECDSA) and Diffie-Hellman Key Exchange
(DHKE) and their lattice-based attacks. ECDSA and DHKE are the main cryptographic
schemes described and used in this thesis. Both schemes require multiple symbols for
their description and the construction of an attack. Therefore, the schemes may share
similar notation, but the symbols are always to be seen in the context of the considered
scheme.

There are various lattice-based attacks on systems like RSA [MH20], ECDSA [AFG+14,
MSEH20, AH21] and DHKE [BV96, MBA+21] focusing on recovering private values or
keys using linear combinations of the lattice basis. The core principle and its adaptations
are described further in this chapter. Lattice attacks often use knowledge about some
hidden or private values, which might be presented through leakage revealed by side-
channel attacks. This leakage can be as trivial as short timing differences in computation,
which might leak a few leading bits of a hidden value in computation. Several leaked bits
are often sufficient to recover the complete value or even other private values, as recent
side-channel attacks show [MSEH20, AFG+14].

We first explain the schemes ECDSA and DHKE as well as the mathematical lattice struc-
ture. The research on lattices introduces new hard problems, that are vulnerable to lattice
attacks themselves. Then we explain the construction of a basic lattice attack on ECDSA
by reducing different lattice problems to each other. Finally, we discuss advanced lattice
reduction techniques such as sieving and enumeration as well as advanced lattice-based
attacks.

2.1 Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a signature algorithm used to
sign data and verify signatures. The ECDSA parameters are standardized by NIST [oST13].
It uses an elliptic curve EC(Fq) over a finite field Fq and a generator point G of or-
der n. To compute a signature for message M , the private signing key d, the hash
digest h = hash(M) and a random nonce k are used to compute the pair (r, s) where r is

3

2 Preliminaries

the x-coordinate of R = (k ·G) and

s = k−1 · (h+ d · r) mod n. (2.1)

By using the public verification key Q = d ·G, the message M and the tuple (r, s), anyone
can verify the signature. For verification one needs the hash digest h, generator G, signa-
ture (r, s) and the public verification key Q to verify r = r′ where r′ is the x-coordinate of
R′ = (h · s−1) ·G+ (r · s−1) ·Q.

2.1.1 Leakage

Scalar multiplication with elliptic curve points is successive point additions over the ellip-
tic curve. These successive additions are computationally expensive compared to simple
multiplications in multiplicative groups. Therefore, the calculation of R is substantially
more expensive than calculating s. This significant difference makes measuring the tim-
ing behavior of the computation R feasible which results in leakage of the most significant
zero bits of k. Timing behavior is one key vulnerability for leakage through timing attacks
[MSEH20]. Another problem with extensive computation lies in power requirement re-
sulting in another possible side-channel [AFG+14] i.e. a power consumption side-channel.

In the specific case of signing using ECDSA, side-channel attacks can leak knowledge of
k through the computation of R. Timing leakage, for example, might reveal some of the
most significant bits of k, as the preferred non-constant time algorithms used to compute
R might terminate earlier if k is small. By recovering the nonce value k, the private signing
key can be recovered by rearranging Equation 2.1 for calculating s to d:

d = (s · k − h) · r−1 mod n

2.2 Diffie-Hellman Key Exchange (DHKE)

The Diffie-Hellman Key Exchange’s (DHKE) purpose is to securely share a secret between
two parties, here Alice and Bob. Each party chooses a secret value, which is used to com-
pute a public value shared with the other party. To compute the shared secret, each party
combines the public value of the respective other party with its private value. The shared
secret is often used to derive a symmetric encryption key for further secure communica-
tion between the two parties.

In our case, DHKE uses a prime number p and generator g for the multiplicative group Z∗
p,

that are publicly known. As Figure 2.1 shows, each party will choose a random private
value a, b respectively. These values are used to compute the public values A and B which

4

2.2 Diffie-Hellman Key Exchange (DHKE)

Alice Bob

Choose prime p, generator g for Z∗
p

a ∈ Z∗
p b ∈ Z∗

p

Send A = ga

Send B = gb

s = Ba s = Ab

Figure 2.1: Diffie-Hellman Key Exchange (DHKE) between two parties referred to as Alice
and Bob. Both parties will randomly sample a secret value. Dependent on the
use-case one party might want to reuse its private value multiple times.

are exchanged. Thus, the first party (Alice) can obtain the shared secret s = Ba = (gb)a =

g(a·b), while the second party (Bob) calculates s = Ab. As both calculations result in the
same value, the key exchange is complete.

In general, DHKE can be defined for any finite cyclic group, following the general steps
similar to the multiplicative group Z∗

p. Elliptic Curve Diffie-Hellman (ECDH), for exam-
ple, uses an elliptic curve with a generator point and is also commonly used in many
security protocols such as TLS. This work focuses on attacking DHKE over the multiplica-
tive group Z∗

p using lattice attacks. As of writing the applicability of lattice attacks on
ECDH is unknown.

2.2.1 Security Considerations

For any attacker, the only known values are p, g, A and B. One way to recover the shared
secret is to acquire one of the private values. If an attacker only has the value A respec-
tively to recover a, the discrete logarithm of A to g, i.e. dislogg(A) needs to be calculated.
To the best of our knowledge, it is unknown whether the discrete logarithm is hard or
efficiently computable disregarding the use of quantum computers [Sho94] and if it is the
only possible strategy to compute the private value a for a given public value A. To de-
scribe security for Diffie-Hellman on general cyclic groups, the Decisional Diffie-Hellman
(DDH) and Computational Diffie-Hellman (CDH) assumptions are defined as follows:

5

2 Preliminaries

Discrete
Logarithm CDH DDH

strong attacker weak attacker

Figure 2.2: Security for DHKE for general cyclic groups.

Definition 2.1 (Decisional Diffie-Hellman (DDH)). The DDH assumption asserts that
the probability distribution for the two tuples (ga, gb, ga·b) and (ga, gb, gc), with a, b, c cho-
sen randomly and independently from Zq, are computationally indistinguishable. If an
attack cannot distinguish the tuples in polynomial time, the assumptions hold.

Definition 2.2 (Computational Diffie-Hellman (CDH)). The CDH assumption expresses
that computing ga·b, given g, ga and gb with randomly chosen a, b ∈ Zq and randomly
chosen generator g, is computationally intractable. If an attack cannot compute ga·b in
polynomial time the assumption holds.

As Figure 2.2 displays, the security for DHKE over multiplicative groups Z∗
p is implied

by the discrete logarithm as the basic building block. If an attacker can solve the discrete
logarithm problem, the CDH can easily be calculated. The CDH assumption is stronger
than the DDH assumption, as any attacker solving the CDH can solve the DDH as well.
By solving only the DDH, it is not known whether an attacker can implicitly solve the
CDH.
There are algorithms, such as the Pohlig-Hellman algorithm [PH78], which can be used
to compute the discrete logarithm for relatively large prime numbers. To defend systems
against such algorithms, one must choose a safe and large prime number. A prime number
p is considered safe, if it fulfills p = 2 · p′ + 1, with p′ being prime as well. In current
standards for TLS, the DHKE is used with 2048-bit and 3072-bit large prime numbers p.

2.3 Lattices and Applications

Lattices are applicable in cryptography for either recovering secret values and breaking
cryptographic systems or for building cryptographic systems by exploiting properties
from hard problems in lattices.

Definition 2.3 (Lattice). The lattice Λ =
{∑d

i=1 aivi| ai ∈ Z
}

is a subgroup of Rd and is

defined as a set of linear independent vectors v1, . . . , vd with vi ∈ Rd′ where d′ ≥ d.

6

2.4 Lattice Problems

As related works using lattices often utilize the row representation for the lattice basis, all
following basis matrices will be given in row representation as well. Furthermore, norms
regarding lattices are denoted by || · || and should be interpreted always as euclidean. The
smallest ball centered at the origin of the lattice containing i linear independent vectors
has the radius of λi(Λ). Hence λ1(Λ) contains the shortest non-zero vector in Λ.
In lattice structures, solving certain problems is much more difficult than in Rd. Further-
more, the hardness of these problems is directly dependent on their dimension. If the
dimension is in a certain computational size, even hard lattice problems can be solved,
which brings the opportunity to attack certain cryptographic systems. As mentioned in
Section 2.1, there exist multiple attacks on ECDSA using lattice-based attacks to recover
the private signing key. There are also lattice-based attacks on DHKE [MBA+21] and RSA
[May03].
In the following, we provide the general problem definitions, which are further used for
the lattice construction of the attacks.

2.4 Lattice Problems

As lattices are only a subgroup of Rd, it introduces hard problems like the Shortest Vec-
tor Problem (SVP) or Closest Vector Problem (CVP). Both are used to either conceive a
problem, which is computationally infeasible to solve, or that can be exploited by solving
a feasible problem instance to recover secret values. In Section 2.5, we will discuss an
algorithm (Algorithm 1) used to solve the SVP problem. The runtime complexity of this
algorithm scales by the dimension of the lattice which directly relates to the feasibility of
problem instances.
The following problem definitions are based on [AH21] because our implementation is
based on their prior work. Therefore, definitions might vary from other literature.

Definition 2.4 (Closest Vector Problem (CVP)). Given a lattice Λ and a target vector
vtarget ∈ Rd, find the closest lattice point, e.g. an integer combination of lattice vectors
v1, . . . , vd that is the closest to vtarget.

Definition 2.5 (Shortest Vector Problem (SVP)). Given a lattice Λ find the shortest non-
zero vector v ∈ Λ.

As the SVP means to search for the shortest vector v ∈ Λ, it can be solved by orthogonal-
izing the basis B of Λ to B′. The orthogonal basis B′ then consists of the smallest possible
vectors, which are relatively orthogonal. Thus, B′ will contain a vector v with a norm of
||v|| = λ1(Λ). Because the norm of two distinct vectors of the lattice can be equal, and
λ1 ≤ λi for i ∈ 2, . . . , d, the SVP can have more than one solution.

7

2 Preliminaries

Definition 2.6 (α-Bounded Distance Decoding (BDDα)). The distance dist(v,Λ) de-
scribes the difference between a vector v and the closest lattice point of the lattice Λ. Given
a lattice Λ, the target vector t and some parameter α > 0 where dist(t,Λ) < α · λ1(Λ), find
the vector v ∈ Λ with distance to t is shortest of all v′ ∈ Λ. Thus the distance of t to Λ is
bounded by α and the radius of the smallest ball of Λ.

The definition of BDDα leads to a bound of α which determines that t must be close to
one point of Λ. As the SVP lattice problem described above does not necessarily have a
unique solution, the following definition provides a problem formulation with a unique
solution, which is essential to set up lattice-based attacks.

Definition 2.7 (γ-unique Shortest Vector Problem (uSVPγ)). Find the shortest vector
v ∈ Λ (c.f. Definition 2.5), where λ2(Λ) > γ · λ1(Λ).

Definition 2.7 states, that λ2 needs to be greater than Λ1 by the factor of γ and by
λ1 ≤ λ2 ≤ · · · ≤ λd there can be only one vector with radius λ1. Hence, one can find a
"unique" solution for uSVPγ . This offers the possibility to construct an instance for an
attack, where the unique solution reveals the recovered secret value.

2.5 Lattice Attacks

Lattice-based attacks mostly follow the principle of constructing a problem instance,
which is further reduced to a CVP instance, to then be solved using lattice reduction
algorithms. More precisely, one collects data and forms a Hidden Number Problem (HNP,
c.f. Definition 2.8) instance, which will be solved to find a private value or secret key.
The collected data will most likely consist of publicly known values as well as some
leaked partial knowledge of secret values. To solve the HNP, a reduction to a lattice-based
problem such as CVP or SVP is used. As the problem instance will most likely fulfill a
boundary for the target vector, the BDDα problem is used as a more specific version of the
CVP. By solving a BDDα instance, one will not receive the solution directly, as the solution
is presented as the difference between the target vector and the solution vector. Therefore,
one reduction step to the SVP or uSVPγ is appended to the procedure. Reducing onto the
SVP includes the solution vector in the lattice and the solution to the initial problem can
thus be found directly.

The reduction chain from Figure 2.3 may be seen as the standard procedure for lattice-
based attacks. The following sections will review all construction and reduction steps in
more detail using a lattice-based attack on ECDSA. Constructing the lattice for the lattice-
based attack on DHKE shares all those steps and optimizations as well.

8

2.5 Lattice Attacks

Collected
Data

HNP BDDα uSVPγ

Recovered
Values

Figure 2.3: Reduction steps from initially collected data up to the resulting recovered val-
ues.

Algorithm 1: LLL-Reduction
Input: Basis B for lattice Λ, where B = span(v0, . . . , vn)
Output: Reduced basis B′ for lattice Λ′

1 B∗ ← GramSchmidt({v0, . . . , vn}) = {v∗0, . . . , v∗n}
2 µi,j ←

vi·v∗j
v∗j ·v∗j

3 k ← 1
4 while k ≤ n do
5 for j ∈ {k − 1, . . . , 0} do
6 if |µk,j | > 1

2 then // Size reduction
7 vk ← vk − ⌊µk,j⌉ · vj
8 B∗ ← GramSchmidt({v0, . . . , vn}) = {v∗0, . . . , v∗n}
9 if v∗k · v∗k > (δ − µ2

k,k−1) · v∗k−1 · v∗k−1 then // Lovász condition

10 k ← k + 1
11 else
12 vk ← vk−1

13 k ← max(k − 1, 1)

14 return B

Solving SVP

To find the solution to the SVP, the lattice basis Λ has to be orthogonalized as commonly
done via the Gram–Schmidt process for Euclidean spaces (Rn) with scalar values in R. As
the Gram–Schmidt process is using a projection for scalar multiplication of vectors defined
on R, the resulting scalar values of the process can simply be rounded regarding Z. This
process has polynomial time complexity for dimension n = 2, but for dimensions greater
than n = 2, the process is believed to be hard. Reducing lattice basis matrices with a large
dimension for an optimal solution leads to exponential computation time. The adapta-
tion of the Gram–Schmidt process is called the Lenstra–Lenstra–Lovász (LLL) [AKLL82]
algorithm.

Algorithm 1 shows the general structure of the LLL algorithm, which includes two im-
portant parts: Size reduction and the Lovász condition. The size reduction can be seen in

9

2 Preliminaries

lines 5 and 6, which reduces the vector vk by each vj . The vector vk can only be reduced by
vj if |µk,j | > 1

2 holds. Furthermore, the Lovász condition in line 9 affects the reduction of
the vector vk. Hence, the vector vk is swapped to be reduced further if the reduction was
not sufficient. As one can see, the algorithm terminates if each vector fulfills the Lovász
condition. Therefore, the vectors are arranged according to their size. The parameter δ de-
fies the resulting precision of the algorithm and has to be within the interval of 1

4 to 1. If δ
is 1, the algorithm will find the optimal reduced lattice basis, but the algorithm might not
terminate in polynomial time. Any value for δ below 1 will result in polynomial execution
time. Commonly δ is set to 3

4 , so that the algorithm computes a solution in polynomial

time and the shortest vector b1 obtained by the algorithm fulfills |b1| ≤ 2
(n−1)

2 · λ1(Λ). If
the basis to be reduced is well constructed, one can reliably find the shortest vector.
Further techniques such as sieving and enumeration used to solve the SVP are described
in Section 2.6.

2.5.1 Hidden Number Problem (HNP)

The Hidden Number Problem (HNP) introduced by [BV96], is a suitable framework to
construct a lattice-based attack. In [BV96] the goal was to formulate a problem instance
created for specific information to the DHKE. As the HNP is the basic construction for
lattice-based attacks, various derivatives suit the specific problem set-up.

Definition 2.8 (Hidden Number Problem). Given prime p, length L ∈ N and n tuples
(ti, ai), find the secret α ∈ Fp, where for every tuple there exists a ki ∈ {1, . . . , L− 1} such
that ai + ki = (ti · α) mod p.

As Definition 2.8 shows, the HNP consists of n values ki, which are relatively small com-
pared to L. The property of small values of ki will later be used to find the solution by
solving its SVP instance. One can construct a lattice so that there exists a vector containing
all values for ki in the lattice. Because the values for ki are small, the norm of their vector
is small as well. With this property, the short vector can be found by solving the SVP.

ECDSA as HNP

For lattice attacks, small values are needed because we construct an HNP instance ex-
ploiting these small values. As discussed in Section 2.1 the nonce parameter k of ECDSA
is vulnerable to side-channel attacks, which might lead to leakage of most significant bits.
Most side-channel attacks leak data by measuring computation time differences, which
results in leaked 0 bits as the most significant bits. Thus, the unknown bits of k result in a
smaller value, making lattice attacks feasible. To build the lattice-based attack, signatures

10

2.5 Lattice Attacks

originating from short nonces need to be collected. The signatures then are used to build
equations to construct an HNP instance.
With known signatures, the attacker has the tuple (r, s), the message m and its hash h. To
build the HNP instance one needs to construct equations as described in Definition 2.8:

s ≡ k−1 · (h+ d · r) mod n (2.2)

k ≡ s−1 · h+ s−1 · d · r mod n

−s−1 · h+ k ≡ s−1 · r · d mod n. (2.3)

The color code used in the equations above highlight known values (blue) and unknown
values (red).
Given the description for ECDSA in Equation 2.2, one can rearrange it to Equation 2.3. If
we label Equation 2.3 with the Labels 2.4, we will receive the equation form of the basic
HNP (see Definition 2.8):

ai + k ≡ ti · α mod n

ai = −s−1
i · hi, ti = s−1

i · ri, α = d. (2.4)

Note that one can use multiple equations as Definition 2.8 states. As multiple equations
are needed to solve instances with fewer known bits, we further define one equation with
its related knowledge as samples. Considering ECDSA, one sample consists of the hash
value hi for the data to sign as well as the related signature tuple (ri, si).

2.5.2 HNP to CVP

In this section, the general idea of the transformation from an HNP instance to a CVP
instance is described.
As the vector v ∈ Λ is closest to the target vector vtarget, the basis of the lattice can be
constructed, to exploit the fact that the difference between v and vtarget is small. Therefore,
the small values ki from the HNP instance should be the difference between both vectors.
The value of α is not known, so the values ti should be included in the lattice basis. Thus,
the values for ai are used as the target vector. By solving the CVP instance the vector
v′ = (t1, . . . , tm, 1

n) ·α may be computed and as the target vector is vtarget = (a1, . . . , am, x),
the resulting difference is vdiff = (k1, . . . , km, αn − x), with x ∈ R. Since the values k is
relatively small, the probability that v′ is selected as the solution is high.

11

2 Preliminaries

As Boneh and Venkatesan described in [BV96], a hidden number instance can be embed-
ded into the lattice

Λ =

n 0 0 . . . 0 0

0 n 0 . . . 0 0
...

...
0 0 0 . . . n 0

t1 t2 t3 . . . tm
1
n

which conveniently contains the vector

v′ =
(
t1 · α mod n, . . . , tm · α mod n,

α

n

)
,

given by the linear combination:

vlc = (x1, . . . , xn, α) ,

with x1, . . . , xn ∈ Z as xi · n ≡ 0 mod n. With high probability, v′ is closest to

vtarget = (a1, . . . , am, 0) ,

and their difference vdiff = v′ − vtarget = (k1, . . . , km, αn) reveals all unknown values for k.
Thus, this embedding solves the HNP instance, as any value ki can be used to compute

α = (ai + ki) · t−1
i mod p.

2.5.3 CVP to SVP

Because solving the SVP outputs the shortest vector of the lattice basis Λ, it is our goal to
include the vector vk = (k1, . . . , km, 2

L·α
n , 2L). We can construct a basis, with vk ∈ Λ, by

embedding the target vector in the lattice to ensure that there exists a linear combination
resulting in vk. The values for ki are small by definition. Therefore, the vector vk should
also be relatively small and is a good candidate as an element of the orthogonalized basis.

Using Kannan’s embedding [Kan87], the CVP instance can be converted to an SVP in-

12

2.5 Lattice Attacks

stance. We simply add the target vector of the CVP instance into Λ:

Λ′ =

n 0 0 . . . 0 0 0

0 n 0 . . . 0 0 0
...

...
0 0 0 . . . n 0 0

t1 t2 t3 . . . tm
2L

n 0

a1 a2 a3 . . . am 0 2L

This lattice contains the vector

vsol =
(
k1, . . . , km, 2L · α

n
,−2L

)
,

which is constructed by the linear combination:

vlc = (x1, . . . , xn, α,−1),

where xi ∈ Z. Hence, the vector vsol will be short regarding its norm , as

||vsol|| ≤
√
m+ 2 · 2L.

With the linear combination and the lattice matrix the solution vector solving the HNP
can be found, according to Equation 2.3. Therefore, we will simply rearrange Equation 2.3
with the Labeling 2.4 to Equation 2.5:

ai + ki − ti · α ≡ 0 mod n. (2.5)

The linear combination vlc then results in vsol because xi · n ≡ 0 mod n. For any ki one can
compute the rearranged Equation 2.3 with

n · xi + ti · α− ai · 1 ≡ ti · α− ai mod n

ti · α− ai ≡ ki mod n.

The vector vsol will then hold the unknown values for k, which can be used to recover d.
As we use the CVP to solve this instance, we have to make sure that the lattice does not
contain any shorter vectors other than vsol.

13

2 Preliminaries

In this construction as is, the vector vsol will not be the shortest, as Λ′ also contains the
vector v2L = (0, . . . , 0, 2L, 0). The vector v2L is in the lattice due to the linear combination
vlc′ = (−t1, · · · ,−tm, n, 0). Thus, the lattice needs to be adapted by rearranging Equa-
tion 2.3.

Construction without α

In previous constructions, the value α was applied to the lattice to recover the values for
ki. As all ki are concerning the same α, one simply can eliminate this variable from the
construction. If one has recovered ki the value d = α also can be recovered. The following
construction is analogous to [ACPS09].

By combining Equations 2.5, the value α can be simply eliminated. Therefore, one then
selects one of the m distinct equations. The selected equation is labeled with an index of 0
and the rest is labeled with indices i = 1, . . . ,m− 1:

ai + ki ≡ ti · α mod n

(ai + ki) · t−1
i ≡ α mod n

(ai + ki) · t−1
i ≡ (a0 + k0) · t−1

0 mod n

ai + ki ≡ t−1
0 · ti · a0 + k0 · t−1

0 · ti mod n

ai − ti · t−1
0 · a0 + ki ≡ ti · t−1

0 · k0 mod n. (2.6)

One ends up with m − 1 equations in the form of Equation 2.6. With the labeling of
a′i = ai − ti · t−1

0 · a0 and t′i = ti · t−1
0 one again obtains the structure of the HNP with

a′i + ki ≡ t′i · k0 mod n.

Therefore, the α value for the HNP instance is no longer d, but the nonce value k0.

To recover all values for ki we need to change the value of 2L

n of Λ′ to 1. With this change
and the new values t′i and a′i, we construct the lattice

Λ′′ =

n 0 0 . . . 0 0 0

0 n 0 . . . 0 0 0
...

...
0 0 0 . . . n 0 0

t′1 t′2 t′3 . . . t′m−1 1 0

a′1 a′2 a′3 . . . a′m−1 0 2L

.

This lattice will contain the vector vsol = (k1, . . . , km−1, k0,−2L), which can be constructed

14

2.5 Lattice Attacks

using the linear combination vlc = (x1, . . . , xm−1, k0,−1).
By replacing 2L

n with 1 one does not only filter the value of k0, but also prevent Λ′′ from
containing any non-trivial vector of the form (0, . . . , 0, ∗, 0). When choosing a linear com-
bination similar to vlc′ the result is the trivial vector v0 = (0, . . . , 0), which cannot be a
basis vector, as it is not linear independent of any other vector of Rn. Thus, the shortest
vector in Λ′′ is expected to be vsol.

1-Bit Reduction

In [NS03], the authors present another improvement to the construction of the lattice. This
improvement reduces the target values of the target vector by 1 bit, without needing any
further information for the HNP instance.

Considering ECDSA, where the values of the target vector are given by the values of ki
with ki < 2L, one also knows that every ki ≥ 0. This simple fact gives the opportunity to
shift the target vector by 2L−1. Shifting the target vector by that amount will guarantee,
that ki ∈ [−2L−1, 2L−1] instead of ki ∈ [0, 2L]. This reduces the norm of the target vector
from ||vtarget|| ≤

√
m+ 2 · 2L to ||vtarget,1−bit|| ≤

√
m+ 2 · 2L−1. To adapt Λ′′ with that

improvement, only one value needs to be updated, which results in

Λ′′
1−bit =

n 0 0 . . . 0 0 0

0 n 0 . . . 0 0 0
...

...
0 0 0 . . . n 0 0

t′1 t′2 t′3 . . . t′m−1 1 0

a′1 a′2 a′3 . . . a′m−1 0 2L−1

.

Note that reducing the norm of the target vector results in a better performance as de-
scribed in [NS03], but will also change the target vector slightly. The new resulting target
vector

vtarget,1−bit = (k1 − 2L−1, . . . , km−1 − 2L−1, k0 − 2L−1, 2L−1)

is shifted by exactly 2L−1 and needs to be lifted again to obtain the real results for ki.

Solving SVP

To solve the SVP instance, one can use the LLL algorithm, as it orthogonalizes the lattice
basis. By definition, the orthogonalized basis will consist of short and nearly orthogonal
vectors. As the vector vk is short, the probability is high that the orthogonalized basis
contains this vector.

15

2 Preliminaries

More advanced strategies such as lattice enumeration and lattice sieving are discussed in
the next Section 2.6.

2.6 Advanced Lattice Techniques

There are more advanced techniques to find a certain shortest vector in a lattice than only
using the previously mentioned LLL algorithm. As LLL orthogonalizes the basis of the
lattice, it will most certainly find the shortest vector. If the target vector is not the shortest
vector and is only slightly longer than the shortest basis vector, more advanced techniques
are needed. Another problem might be that the algorithm does not find a basis containing
the shortest vector. In that case, a search algorithm is needed, which takes an orthogonal-
ized basis and tries to find vectors of the lattice fulfilling the target.

In the following chapter, we will adapt DHKE to the strategies and implementation of
[AH21]. The former work includes two main search algorithms, namely sieving and enu-
meration.

2.6.1 Sieving

Sieving as proposed in [AKS01] and its adaptations [MV10, BGJ15, Laa16, BDGL16,
HK17], takes a set of lattice vectors L ⊂ Λ and searches for a combination of those vectors
to find a short vector. The general idea is to take exponentially many vectors of the lattice
and combine k vectors by taking their sums or differences at a time to obtain a shorter
vector. An algorithm taking k vectors at a time is called k-sieve. Figure 2.4 shows this
procedure with n steps. As the figure describes, the sieve technique generates a set of
vectors V1 for a given lattice Λ. Then this set is used with a k-sieve to generate a new set
of vectors V2, which holds fewer vectors than V1. Each new vector in V2 is shorter than
the vectors of V1. This procedure is repeated n times to reduce the number of vectors,
while also decreasing the lengths of the vectors. Thereby, after n steps, the resulting set of
vectors is significantly smaller and all vectors of this set are substantially shorter than the
vectors before. To make sure that each round reduces the set of vectors to shorter vectors,
a radius Ri can be defined for round i to bind the vectors to be accepted, because each
vector in the reduced set must fulfill the radius boundary for the specific round. Note that
this procedure does not find the shortest vector but a set of arguably short vectors within
a radius of Rn. This is to find a solution that is known to be in radius R but is not the
shortest vector of the lattice.

16

2.6 Advanced Lattice Techniques

Lattice Λ V1 = {v1, . . . , vm}

k-sieve

V2, |V2| < |V1|

k-sieve

...

k-sieve

Vn, |Vn| < |Vn−1|v ∈ Vn, v short

Sieving

sample V1 ⊂rand Λ

retrieve short vectors

Figure 2.4: Sieving procedure, using a set of initial vectors, which are combined with a
k−sieve, to create smaller sets of shorter vectors.

2.6.2 Enumeration

Enumeration proposed in [Poh81] and adapted as in [Kan83, FP85, SE91, MW15, ABF+20]
searches for a short vector in radius R by combining basis vectors. As there exists a vector
v in the lattice Λ, which is arguably short in comparison to other vectors of Λ, there also
exists a linear combination of the basis vectors of Λ, which results in v. To find this linear
combination, one could search this combination with an exhaustive search.

Lattice enumeration algorithms exploit projections of vectors to find shorter vectors as our
goal is to find a certain short vector. By searching a projection Πi(v) for the i-th basis vec-
tor with ||Πi(v)||2 ≤ R2, a projection will never result in a longer vector. This projection
is lifted to the next projection Πi−1(v) with the constraint ||Πi−1(v)||2 ≤ R2. Thereby, the
problem is abstracted to a linear problem of finding a scalar value ui to shorten the result-
ing vector for the i-th lattice basis vector of Λ at a time. As there are multiple candidates
for each scalar value, the general exhaustive search can be visualized as a tree search as
shown in Figure 2.5. Every tree layer introduces the next scalar value, up to the leaf nodes,
where the resulting vector v∗d−1 is a non-trivial linear combination of all basis vectors of Λ.
The resulting vector is therefore relatively short as the projection constraints will reduce
the length of the vector.

To enhance this procedure one can establish a pruning technique, which will cut off all

17

2 Preliminaries

v∗0 v∗0

. . .

v∗1 . . . v∗1 v∗1 . . . v∗1

...

v∗d−2

v∗d−1
. . . v∗d−1

...

v∗d−2

v∗d−1
. . . v∗d−1

. . .

Scalar Values

ud−1

ud−2

...

u0

Enumeration

Figure 2.5: The general procedure of lattice enumeration. Utilizes a tree search, for finding
the scalar values generating short vectors regarding a given radius R.

"irrelevant" subtrees. A subtree is considered "irrelevant" whenever the result does not
fulfill the projection constraints. Thereby, a subtree is cut off if there is no scalar value for
a candidate to fulfill the constraint. This pruning technique yields better performance for
a "good" radius R. The radius R should be considered suitable if it is close to the norm of
the shortest vector.

2.6.3 BKZ

Another approach to creating more performance-oriented solving algorithms for SVP is
the BKZ algorithm [Sch87, SE91]. In general, the BKZ algorithm utilizes either lattice
sieving or enumeration, which are used to solve a smaller block of the complete lattice
basis of Λ.
The algorithm starts with the set of basis vectors b0, . . . , bβ of Λ, where β is the block
size parameter of the BKZ algorithm. For this block, the lattice sieving or enumeration is
used to find projections for the given vectors. Next, the block is shifted, hence the next
basis vectors are included in the block and the lattice sieving and enumeration are used
again. This continues until the block reaches the last basis vector of Λ. The consequential

18

2.7 Advanced Lattice Attacks

projections of all basis vectors yield a new reduced basis, which is used to repeat the
whole process. We call this loop a tour, where in general a small constant number of
tours is enough to reduce the basis to a point where more tours would lead to small or no
changes. Note that this technique is not polynomial in time complexity anymore.

2.7 Advanced Lattice Attacks

As lattice-based attacks became more popular, the lattice-based attacks discussed were
optimized. On the one hand, computational power is less of a problem today than two
decades ago, when the first lattice-based attacks on cryptographic systems were pub-
lished. With more computational power one can break even harder instances with larger
matrix dimensions. On the other hand, the "barrier" of those attacks seems to be unrea-
sonable to break as lattice attacks often could not surpass certain parameters. Therefore,
new attacks were developed to strengthen the attacks even more. One of which is [AH21],
where their advancements not only strengthen lattice-based attacks on ECDSA but also
broke the mentioned lattice barrier.

2.7.1 Lattice Attacks with Predicate

Albrecht and Heninger introduced a solution to the former "lattice barrier" in [AH21]. In
many cases, lattice-based attacks could not surpass a certain amount of known bits for
successful attacks and therefore literature designated a "lattice barrier". This barrier was
believed to be unsurpassable by lattice-based attacks. Prior works such as LadderLeak
([ANT+20]) showed that even partial knowledge of the most significant bit is enough
to recover the private key d of ECDSA, whereas lattice-based attacks were bounded by
needing more than four bits. By adding a predicate to the solving phase of the SVP, one can
achieve better performance with fewer bits needed than previously thought. As [AH21]
points out, by adding the non-linear knowledge of the ECDSA private key concerning the
known public key, any solution found by solving the lattice problem can be checked for
correctness. This enables the lattice-based attack to find a solution even if the target vector
containing the solutions to the HNP is not the shortest vector of the lattice. All previous
works are bounded by the fact that the attack is only possible if the shortest vector contains
the solution to the HNP.
In their work, Albrecht and Heninger adapted existing implementations with a predicate
version, which is the foundation for this work. They mainly focused on lattice sieving
and lattice enumeration as these techniques can search through multiple vectors fulfilling
given boundaries. These boundaries are given by the norm of the target vector, which in
their setting can be larger than the shortest vector of the lattice. While simple approaches

19

2 Preliminaries

BDD

DBDD1
. . . DBDDn

uSVP
Lattice

Reduction

Embedding Hints

Figure 2.6: General procedure of lattice attacks using hints. For more detail see the orig-
inal procedure of [DDGR20]. The reduced lattice problem Distorted Bounded
Distance Decoding (DBDD), is a BDD problem, in which the smallest ball is
changed to an ellipsoid.

such as the LLL algorithm can be used to find the shortest vector, they cannot search
from this point on for larger vectors. Lattice sieving and enumeration on the other hand
are search algorithms, which can find multiple candidates for a given target norm. By
checking each candidate using the predicate, the correct solution can still be found.

2.7.2 Lattice Attacks with Hints

Another approach to strengthen lattice attacks is the adaptation of [DDGR20], which in-
troduces "hints" as additional knowledge to be embedded into the lattice. In their work,
the authors mentioned four types of hints: perfect hints, modular hints, approximate hints
and short vector hints. Each of these types of hints provides some information about the
lattice basis, whether it is the intersection with a hyperplane or the orthogonal projection
of a vector v of the lattice. In general, this approach constructs a lattice by embedding the
hints into a given lattice and solves the newly generated lattice with the usual techniques
described earlier. As Figure 2.6 shows, the original problem is given as a BDD instance,
which gives a lattice Λ. Assume, that one is given several hints h1, . . . , hn, which are then
embedded one after another into the lattice. The resulting lattice Λhn is then transformed
into an SVP lattice Λ′, which can be solved using any lattice reduction presented above.
As stated in [AH21] their performance gains are higher than the performance gains given
by including "hints". Furthermore, it is easier to create a predicate than to collect usable
knowledge representable as hints because the predicate is often given directly by the pro-
tocol or further usage of exchanged data.

20

2.7 Advanced Lattice Attacks

2.7.3 Lattice Attacks by Guessing Bits

Another approach to breaking the "lattice barrier", and generally improve the parameters,
was published in [SETA22], where the authors guess more bits at the cost of solving ex-
ponentially many instances. Thereby they introduce multiple strategies for guessing bits:
Guessing bits of the secret key and guessing bits of nonces. In both cases, one needs to
solve an exponential number of lattice instances, from which only a few instances might
result in the correct recovered nonces and thus the private key in case of an attack on
ECDSA. By increasing the number of samples the method of guessing bits for the nonces
has a non-negligible overhead. The overhead is exponential in the number of nonces and
the number of bits guessed for each nonce. All these possible combinations need to be
brute-forced to find the correct solution to the initial problem. This approach leads to a
similar result as [AH21] by solving instances that could not be solved previously.

21

3 Lattice-based Attack with Predicate on DHKE

In this chapter we discuss, how to construct a lattice attack on DHKE as well as the general
attacker model and our adaptions to the attacker model to obtain a predicate, which is
used for advanced lattice-based attacks. Finally, we present our implementation which
we built to evaluate the advanced lattice attacks on DHKE.

3.1 Lattice Attack on Diffie-Hellman

As discussed in Section 2.2, DHKE is used to share a secret between two parties. While this
key exchange is widely used in many protocols, there exist also multiple attacks to break
its security. By raising its security parameter to bit sizes of 3072, modern systems became
secure against attackers as is. One attack on DHKE is a lattice-based attack on the HNP
[BV96]. In this section, we discuss a lattice-based attack in its simplest and smallest di-
mension up to an upscaled and general version used for any known most significant bits.
In its basic version, the lattice-based attack cannot be adapted to be used with the predi-
cate version of [AH21]. We thus discuss a modified attack scenario to make it compatible.
Although [AH21] stated that the predicate extension of lattice-based attacks can show sim-
ilar results for any other lattice-based attack compatible with predicates, this result might
vary for different setups. Therefore, the used framework of [AH21] was adapted to the
presented predicate version of DHKE and the used modes of operation are presented in
this section as well.

3.1.1 Lattice Attack on DHKE

As previously discussed in Section 2.1 on ECDSA, lattice attacks exploit side-channel in-
formation, which leads to short values in a crucial part of the protocol. Hence, we first
discuss an attacker model applicable to DHKE.

Attack Model on DHKE (Lattice Attacks)

The attacker model for the following lattice attack on DHKE builds upon three cru-
cial properties. The first of which is the reuse of one private value of one party (Bob)
[MBA+21], which can be represented by a server reusing its key b for multiple key ex-
changes. The second property is relatively trivial, as the attacker just needs to interact

23

3 Lattice-based Attack with Predicate on DHKE

with Bob so that multiple exchanges between the attacker and Bob can be made. Finally,
side-channel information for a crucial value of the protocol is needed. The value which
should leak bits is the shared secret of which the first l bits must be known for the attack.

If the above-mentioned properties are guaranteed, the attack focuses on recovering the
complete shared secret between Alice and Bob. The attack tries to recover the initial shared
secret of Alice and Bob and also all shared secrets created by the attacker with Bob. As
the attacker uses a public value, which is a combination of the public value of Alice and
a randomly generated private value, he cannot calculate the shared secret himself. The
additional shared secrets the attacker instantiated by using the public value as described
have no other use than to recover the initial shared secret between Alice and Bob.

3.1.2 Construction of the Attack

In the following the construction of the lattice-based attack on DHKE is discussed. We
explain, how to construct the lattice in the case of only a single sample, and extend this
construction to a more general scenario.

Procedure for Simple Cases with one Sample (m = 1)

As Figure 3.1 shows, the scheme uses the public value of Alice to compute Ra and gain
a resulting shared secret sr = ga·b · gr·b = s · gr·b. The resulting shared secret is always a
multiplication with the initial shared secret and thus one can use the lattice attack to solve
for the multipliers. In general, this procedure can be repeated for multiple r values, which
generates more samples for the lattice attack. The most significant l bits k = MSBl(sr) of
the values sr have to be known as well as the most significant values for s. We call the
combination of the value r and k a "sample" as it yields additional information to break
the initial shared secret s.

By collecting a sample as shown in Figure 3.1, one can construct equations similar to the
ECDSA lattice-based attack. The following construction of the lattice base is based on
[MH20]. As the shared secret sr is a multiple of the initial shared secret s, one obtains the

24

3.1 Lattice Attack on Diffie-Hellman

Eve (Attacker) Bob

Given p, g,

A = ga and B = gb

r ∈random Z∗
p

Send Ra = ga · gr = ga+r

Send B = gb

sr = unknown sr = Rb
a = ga·b · gr·b

Figure 3.1: Attack structure for lattice-based attack.

following equalities:

k = MSBl(s)

kr = MSBl(sr)

t = Br

s = k + q (3.1)

sr = kr + qr

s · t = kr + qr mod p (3.2)

q − t−1 · qr + k − t−1 · kr ≡ 0 mod p (3.3)

By combining Equation 3.1 and Equation 3.2, one can construct Equation 3.3. Relabeling
Equation 3.3 with u = k−t−1 ·kr and h = −t−1, one obtains a lattice to solve for the values
q and qr:

Λm=1 =

p 0 0

h 1 0

u 0 2L

 ,

with 2L > max({q, qr}). Thereby Λm=1 contains the vector vsol = (q, qr, 2
L), which can be

represented using the linear combination vlc = (q, qr, 1) and Λm=1.

25

3 Lattice-based Attack with Predicate on DHKE

Procedure for General Case (m ≥ 1)

As mentioned before, the procedure can be adapted to use multiple samples. The authors
of [MH20] present an example with m = 1 and state, that it can be adapted to m > 1. In
the following, we use this adaption and show that it does not directly work for m > 1,
but needs to follow the construction we presented in Chapter 2 by constructing an HNP
instance.

Adapting to the simple case, one needs to use multiple different values for r in the de-
scribed attack scheme and collect the corresponding values ki for all ri used. With m

of those samples one might think to adapt Equation 3.3 to obtain m equations with i ∈
1, . . . ,m:

r1, . . . , rm

k0, . . . , km

t1, . . . , tm

s0, . . . , sm

ti = Bri mod p

si = ki + qi

q0 − qi · t−1
i + k0 − ki · t−1

i ≡ 0 mod p. (3.4)

Thereby s0 is the shared secret of Alice and Bob. With the relabeling and the equations of
the form of Equation 3.4, one can obtain a lattice matrix of dimension m+ 2×m+ 2:

Λ′
m =

p 0 . . . 0 0 0

0 p . . . 0 0 0
...

...
0 0 . . . p 0 0

h1 h2 . . . hm 1 0

u1 u2 . . . um 0 2L

,

with hi = −t−1
i and ui = k0 − ki · t−1

i . At this point, this lattice is not suitable to recover q0
as it contains the vector

v′sol =
(
∗, . . . , ∗, q0, 2L

)
,

which is given by the linear combination of vlc = (∗, . . . , ∗, q0, 1). This solution vector
might not be short, since every ∗ can be larger than 2L even though it contains the value
q0, which is needed to recover the initial shared secret. The solution vector should look

26

3.1 Lattice Attack on Diffie-Hellman

like
vsol =

(
q1, . . . , qm, q0, 2

L
)

as it contains every unknown value qi and is relatively short due to qi < 2L.

To solve this problem and construct a new lattice containing vsol, the equations and lattice
matrix need to be adapted. By multiplying Equation 3.4 with ti one can change the first m
values of the target vector to solve for corresponding values of qi instead of an undefined
value ∗.

−qi + q0 · ti − ki + k0 · ti ≡ 0 mod p (3.5)

u′i = −ki + k0 · ti
h′i = ti

Note that the value ti is multiplied by k0 in Equation 3.5. Thereby the value ki is not
multiplied by any value, so the equation can be rearranged to qi ≡ q0 ·ti−ki+k0 ·ti mod p.
With this construction, the target vector will include the values for qi in addition to q0. By
updating the matrix of the lattice to this change with

Λm =

p 0 . . . 0 0 0

0 p . . . 0 0 0
...

...
0 0 . . . p 0 0

h′1 h′2 . . . h′m 1 0

u′1 u′2 . . . u′m 0 2L

one finally can recover the solution vector vsol = (q1, . . . , qm, q0, 2

L). This vector can be
constructed using the linear combination vlc = (x1, . . . , xm, q0, 1) with xi ∈ Z and Λm and
should be relatively short. By applying the algorithms discussed earlier, the SVP instance
can be solved and all values qi recovered.

Example

In the following an example is given to highlight the difference between both lattice struc-
ture and target vectors.

Given the above defined lattice basis Λ′ and Λ, consider ui and u′i, as well as the values
hi and h′i. Choosing any i ∈ {1, . . . ,m}, one will get the following equations using the

27

3 Lattice-based Attack with Predicate on DHKE

previously discussed solution vectors v′sol and vsol:

∗ · p± q0 · t−1
i ±

(
k0 − ki · t−1

i

)
≡ 0 mod p (3.6)

qi · p± q0 · ti − ki + k0 · ti ≡ 0 mod p (3.7)

Here Equation 3.6 was obtained by applying v′sol with Λ′
m (ui, hi), whereas Equation 3.7

was obtained with vsol and Λm (u′i, h
′
i). Note that in Equation 3.7 one fulfills this equation

only if the i-th value of the solution vector contains qi, as q0 · ti + k0 · ti = s0 · ti and
can be rearranged using qi + ki = si = s0 · ti to qi = q0 · ti + k0 · ti − ki. Applying
this procedure analogous to Equation 3.6, the i-th value of the solution vector will most
certainly be a different group element than qi. The i-th value ∗ of v′sol needs to fulfill
∗ ≡ ±q0 · t−1

i ± (k0 − ki · t−1
i) mod p.

Consideration of the Values in the Lattice Matrix

As the values in the lattice matrix Λm, might be unclear, each value is explained shortly. By
inspecting the example above, one might see the dependencies of the values p, hi and ui.
The example shows the dependencies of the values hi and ui as they cancel out if one
finds the correct values for qi and q0. Furthermore, hi and ui are the known values of
Equation 3.5. As the lattice cannot handle direct group arithmetic, the value p in each
column adapts to this problem, since any multiplication with p converts values in Z∗

p to Z.
Another important fact about the values p in the diagonal sub-matrix of the whole lattice
matrix is the linear independent filtering for the value of qi for i ∈ {1, . . . ,m}. To find the
value for q0, the equation was built such that q0 is combined with all values hi and can
be filtered by adding 1 to the second last row-vector. Finally, the value of 2L is chosen to
meet the norm of the solution vector, as we have qi < 2L by assumption.

Note that the additional 1-bit extension discussed for ECDSA can be applied to Λm as
well.

3.2 Lattice Attack on DHKE with Predicate

As seen in recent results regarding lattice attacks on ECDSA, introducing a predicate to
the lattice attack gained better performance overall. Therefore, it is interesting to discover
whether the discussed attack on DHKE shows similar behavior. A key difference between
the attack on ECDSA and the attack on DHKE is the general lack of additional knowledge
to check a solution candidate for correctness. As ECDSA recovers the secret signing key,
the relation between the public and private keys can be used to check a recovered key
for correctness. On the other hand, one only recovers the shared secret in DHKE, which

28

3.2 Lattice Attack on DHKE with Predicate

Parameter
Generation

DHKE Alice
and Bob

Key
Derivation

shared secret
s

Attack Scheme

public parameters:
A,B, g, p predicateleakage

r←$Z∗
p

gr ·A

DHKE
with Bob

Key
Derivation

Lattice Attack

leakage

predicate

Construct Λ

Recover s

Figure 3.2: Lattice-based attack on DHKE with the predicate.

cannot be checked for correctness using any other given information of the protocol the
attacker has access to. To check the correctness of the shared secret and to recompute
the shared secret for the predicate, one private value is needed. As stated in the security
description for DHKE (Section 2.2.1), an attack needs to compute the discrete logarithm to
recover a secret value. Recovering a private value to check a recovered shared secret is not
applicable as the predicate would solve the general problem by itself. Therefore, another
strategy to check a solution candidate for correctness is needed. By widening the attacker
model to include more usable knowledge for the predicate, a reasonable predicate can be
formed, which is described in more detail in the next section.

3.2.1 Attacker Model

The new attacker model adapts the model described in Section 3.1.1. Additionally to the
described model, the shared secret is used in further algorithms, which are also known to
the attacker. In Figure 3.2 we give a brief overview of which parts of the DHKE protocol
give information to the attacker and how the attacker adapts it to create a lattice-based
attack. In general, the shared secret is used to derive an encryption key to encrypt certain
data m. As protocols in general need to agree on algorithms used later on, the attacker
also knows the used encryption and key derivation algorithm.

This means that the attacker recovered the most significant bits of the shared secret s as
well as a ciphertext c, the key derivation algorithm H , the encryption algorithm Enc(m, k)

and the decryption algorithm Dec(c, k). The message m is encrypted to ciphertext c using

29

3 Lattice-based Attack with Predicate on DHKE

shared secret s as follows:

k = H(s) (3.8)

c = Enc(m, k) (3.9)

In modern protocols such as TLS, the messages sent between two parties are encrypted us-
ing a block cipher such as AES, which encrypts and decrypts the message symmetrically.
As both parties need the same symmetric key, they first need to come to an agreement on
one. To solve this problem a key exchange is used, which in our case is handled using
DHKE. As the shared secret might be too large for the symmetric encryption key, it is of-
ten combined with a key derivation function to generate a key of suitable length for the
encryption algorithm.

Protocols like TLS use a combination of symmetric encryption algorithms with a key
derivation function. Therefore our new attack model should be compatible with many
real-world applications, as one just needs to set the correct algorithms. Concrete algo-
rithms used for our testing purposes will be described in Section 3.3.

3.2.2 Leakage

We already discussed how leakage is obtained in the ECDSA scheme. By adapting the
same methods, one could leak information about the private values a and b, as the com-
putation of ga uses a similar procedure, compared to the successive point addition in
ECDSA. While this seems to be applicable for the described lattice attack on DHKE, it is
not, as the attacker model described in Section 3.1.1 uses leakage of the shared secret and
not the private value of any party. Therefore we cannot use leakage obtainable from the
core protocol but need to leak information of s through further usage of the shared secret.

In [MBA+21] the authors found a side-channel attack on TLS, which leaks the most sig-
nificant bits of the shared secret by measuring the timing behavior of the further used key
derivation algorithm. Figure 3.2 shows that the leakage needed for the presented lattice
attack does not come from the core protocol but through the used key derivation. This is
one central key difference to the lattice-based attack on ECDSA, as their leakage can be
received by signing data, which is the core algorithm.

3.2.3 Predicate

The new attacker model allows the attacker to check a shared secret for correctness, as it
can be used to decrypt the captured ciphertext c. If the attack can decrypt the ciphertext
successfully by using the shared secret and the appropriate key derivation function, the

30

3.2 Lattice Attack on DHKE with Predicate

shared secret is recovered correctly. The probability of finding a shared secret that results
in a collision of the key derivation function and therefore decrypts the ciphertext success-
fully is very small, as the key derivation function is built to minimize the probability of
two different inputs resulting in the same output.

To decide whether the decryption was successful, there are two possibilities. One is that
the decryption algorithm supports integrity checks of the message, causing the decryp-
tion to fail with an error, whenever the ciphertext is not decrypted with the correct key.
The second solution is less concrete, as in this approach the decryption will not fail using
a wrong key, but rather output an arbitrary byte sequence. In this case, one has to check
whether the byte sequence is the correct plaintext, for example, readable text. As many al-
gorithms encrypt a specific header, which is a certain publicly known byte sequence at the
beginning of the message, it can be checked whether the correct header was decrypted.
This leads to a performance advantage, as it is sufficient to decrypt the first blocks of
the ciphertext to check for the header bytes. In most cases, block ciphers will decrypt
all successive blocks if one has the correct key and initialization data the first block. As
encryption and decryption using AES are highly optimized in modern hardware, the per-
formance difference is not as concerning as one might think. Additionally, larger bit-sizes
for DHKE, for example, 3072-bit, are more costly than the optimized AES instructions. To
decrypt only a constant number of blocks of the ciphertext guarantees only an advantage
in performance with some algorithms and if the ciphertext is arguably large in comparison
to the constant number of blocks for the encrypted header.

3.2.4 Modes of Operation

With a predicate suitable for DHKE, its performance gain by including the predicate can
finally be measured. As the framework of [AH21] used different methods to adapt the lat-
tice attack with the predicate, we discuss the different algorithms used in the framework
and describe the different modes, which we will use for the DHKE adaptation as well.

To compare the addition of the predicate, we use the standard implementation of LLL of
SageMath [The22] as a baseline and test it against every operation mode available in the
framework of [AH21].

LLL

The SageMath framework supports a wide range of cryptographic algorithms. It also
supports state-of-the-art implementations for lattice reduction such as the LLL algorithm.
Therefore, this implementation is used to create a performance baseline in terms of pa-
rameter sizes and time.

31

3 Lattice-based Attack with Predicate on DHKE

Enumeration

The framework created in [AH21] supplies multiple usable algorithms for lattice reduc-
tion with predicates. As we previously discussed, lattice enumeration and sieving are key
algorithms used for lattice reduction. Therefore, the framework implements both tech-
niques with a predicate adaptation. In the case of lattice enumeration with a predicate,
previous implementations may be adapted with predicates relatively easily. As the enu-
meration finds vectors within a given radius R, those vectors are candidates to solve the
HNP instance. If a candidate is found, it can be checked with the defined predicate. Oth-
erwise, the exhaustive search will be continued to find new candidates.

Sieving

The sieving implementation also provides the opportunity to include a predicate in the
procedure. In the sieving procedure, sets of vectors are reduced using k-sieves to create a
new set of shorter vectors. If one of the new vectors is at any point within radius R, one
can additionally check whether this vector is a possible solution to our lattice problem by
testing with the predicate. Therefore, sieving, as well as enumeration, are used for our
testing, as they both can be adapted with a predicate.

Enumeration and Sieving with BKZ

Finally, the framework of [AH21] supports an additional mode for sieving and enumer-
ation, where these modes are combined with the BKZ algorithm. In this case, a BKZ
reduced basis can be checked for containing short vectors in the given bound. If a short
vector is found, it is further checked using the predicate.

Automated Selection

The last mode used for evaluation and implemented by the framework is an automated
selection. This selection consists of the enumeration and sieving technique as well as
their combination with BKZ. By some given boundaries for the target norm and Gaussian
Heuristic of the lattice, this mode decides which technique to use. It is also the default
mode for the framework which is another reason why we included this mode.

3.3 Implementation

As discussed above, our implementation utilizes the framework of [AH21] as well as all
described modes of operation: enumeration and sieving with predicate as well as enumer-
ation and sieving using BKZ and the predicate. In general, our implementation is heavily

32

3.3 Implementation

inspired by the structure of the ECDSA version of [AH21], as it includes the generation of
samples and instances as well as benchmarking and solving functions.

Thereby, our implementation is capable of generating instances as well as solving them.
It also supports benchmarking modes for a set of instances to compare different solving
algorithms on the same inputs. In the following, the generation of samples and parameters
for the generation and running of the attack are described in more detail.

Sample Generation

As for extensive testing, multiple test instances with a large set of different parameters are
needed. Our implementation supplies a generation of instances. The DHKE lattice-based
attack recovers a shared secret by collecting samples. Therefore, the implementation can
generate an instance with a given number of samples to a previously generated initial
shared secret. First, one needs to set the bit size used to generate a safe prime number. As
the generator for multiplicative groups is often set to 2, our implementation uses this value
as default. Note that we can set the generator to 2 because we use safe prime numbers.
The generated instance can be stored in a file to be reused for different testing setups. At
this point all values, public and private, are stored, so the instance can be used for multiple
parameters (for example the number of leaked bits).

Generation Parameters

In general, our implementation supports multiple settings for the main parameters. First,
the bit size of the DHKE protocol can be set, which influences the resulting prime number.
One has to either set a static prime number matching the bit size or let our implementation
generate a safe prime number with an appropriate bit size. Next, the number of samples
m needs to be set, which generates m random private values r1, . . . , rm to calculate the
shared secrets regarding the attack scheme of Figure 3.1. By generating the samples the
shared secrets are used to encrypt a default message M , which can be changed. The en-
crypted message later is used to evaluate the predicate.

As the bit size might vary from benchmark to benchmark, the shared secrets are not used
directly for encryption. We follow the principle of the attacker model described in Sec-
tion 3.2.1. Therefore, we utilize a hash function to get a constant key length for encryption
and decryption. Our framework uses the SHA256 hash function, as it should be sufficient
for the generated instances. For encryption, we use AES in CBC mode, as it is a common
mode of operation. To keep the structure simple, the plaintext used for encryption stays
the same, as it should make no difference in leakage because each plaintext is encrypted
using a different key regarding the hash function. Note that the aforementioned imple-

33

3 Lattice-based Attack with Predicate on DHKE

mentation details could be exchanged easily for any other hash and encryption algorithms
as well as different plaintexts and ciphertexts to be adaptable to other distinct real-world
attacks. The attack assumes that hashing and encryption algorithms are computationally
secure and not the weakest link of the attacked protocol.

Running an Attack

To run an attack an instance is used with multiple extra parameters, providing the number
of used samples and the number of leaked most significant bits of each shared secret. Us-
ing default modes, the implementation forms the lattice matrix out of all given values and
performs the selected attack as described in Section 3.1.1. The implementation supports
all described modes of operation as the framework of [AH21] as well as the LLL mode as
a reference implementation.

34

4 Evaluation

In this section, we evaluate lattice attacks on DHKE using predicates. Thereby we are
using the LLL integration of SageMath as well as the previously discussed framework of
[AH21].
The SageMath framework provides fast implementations for many cryptographic calcula-
tions. Thus, the included LLL algorithm is highly optimized. We use our implementation
to create instances to benchmark the different techniques and modes of operations and
to examine if the results of previous works attacking ECDSA are applicable to DHKE as
well.
We tested multiple parameters of the lattice attack to display the relation between lattice
dimension (related to the number of samples), the number of known most significant bits,
time complexity and bit size of the protocol.

4.1 Sample MSB Correlation

In this section, we evaluate the correlation between the number of samples and the num-
ber of most significant bits to attack DHKE. Accordingly, we discuss different settings for
the overall bit-size of the DHKE protocol: 128, 256 and 512-bit. While commonly used bit-
sizes for DHKE are 2048-bit and 3072-bit, we focused on lower bit-sizes to test for larger
numbers of samples and to find the relation between the different bit-sizes, which also
indicate the performance for larger bit-sizes. Additionally, there are problems with the
framework of [AH21], because their implementation seems to have issues with bit-sizes
above 521-bit, which is the maximum number of bits for ECDSA they tested with. When
using the framework with larger bit-sizes, the solving algorithm terminates with errors.
We assume that this issue is fixable, but it was out of the scope of this work to correct this
issue. For evaluation, we will first explain the expectations, which are based on [AH21],
and then discuss our strategy to benchmark the different settings.

4.1.1 Expectations

Our expectations are formed based on the results from [AH21] as they were able to attack
ECDSA instances with fewer bits by introducing the predicate. The authors proposed
that their technique should apply to all kinds of lattice attacks with usable predicates. We
discussed our new attempt to introduce a predicate to the DHKE lattice attack, which

35

4 Evaluation

should be applicable, as its performance overhead is negligible. Therefore, we should
observe that the techniques such as enumeration and sieving combined with the predicate
will solve parameters that were not solvable with standard techniques like LLL.

4.1.2 Strategy

To find the correlation between the number of samples and leaked bits, we need to test
different settings for these parameters. When comparing these different settings, one dis-
covers that more samples are needed when there are fewer known bits. For this reason, we
first generate an instance with a high number of samples, so that the number of samples
can be increased gradually.
Algorithm 2 shows how we find the minimum number of samples needed to recover the
shared secret for a given number of leaked bits. It will try to solve each number of leaked
bits in the range of minmsbs to maxmsbs. The function Solve uses the specified algorithm
(ALG, which is one of the described modes of operation from Section 3.2.4), the generated
instance, number of leaked bits and number of samples. Algorithm 2 increases the number
of samples up to the point where the instance can be solved. Note that the algorithm starts
with a higher number of leaked bits, which is decreased, while the number of samples is
increased. This helps to reduce the time needed to benchmark the settings. It is very
unlikely that an instance with fewer leaked bits is solvable with fewer samples than the
same setting with more leaked bits. Hence, we imply that the number of samples is more
likely to increase with fewer leaked bits. If one is given more samples than the minimum
discovered by our algorithm, the instance should be solvable, as more samples will only
decrease the norm of the shortest vector relative to the lattice.

4.1.3 Results

Hereafter, Algorithm 2 is used to benchmark the different bit-sizes starting with 128-bit.
The following plots compare the different techniques discussed in Section 3.2.4.

Bit-Size of 128-bit

Figure 4.1 shows that the predicate techniques perform slightly better than the LLL al-
gorithm. The expectation discussed above implies that standard techniques such as LLL
meet a barrier at a certain point, which can be surpassed using the predicate approach.
Evaluating the range from 3 leaked bits to 6 leaked bits, one can see that the number of re-
quired samples increases faster when using the LLL algorithm compared to the predicate
techniques. The predicate techniques enum_pred and sive_pred, which are the predi-
cate techniques without BKZ, show the best performance. They may even solve instances

36

4.1 Sample MSB Correlation

Algorithm 2: Sample-MSB-Correlation Benchmark
Input: Algorithm ALG, number of samples: (maxsamp, minsamp) and number of

leaked bits: (maxmsbs, minmsbs).
Output: Benchmark results, i.e. mapping of least amount of samples needed to

recover a secret for a given number of leaked bits.
1 I = GenerateInstance(maxsamp)
2 samples = minsamp

3 for i ∈ {maxmsbs, . . . ,minmsbs} do
4 do
5 solved, solution = Solve(I,ALG, samples, i)
6 if not solved then
7 samples = samples + 1
8 else
9 AddResult(samples, i, solution)

10 while samples ≤ maxsamp and not solved

with 3 known bits, which is not possible for the other approaches. Another observation
is the reduced number of samples needed, as enum_pred and sive_pred could solve
instances with the same number of samples but fewer known bits compared to the LLL
algorithm or the other techniques of the framework of [AH21].

Note that all techniques grow exponentially in the number of samples. This also affects
the time needed to solve an instance, as the matrix dimension is related to this number of
samples. A Larger matrix dimensions always results in more computational effort. Thus,
one can expect similar behavior when correlating computational time and the number of
samples.

Bit-Size of 256-bit

In the following, we review the same experiment but with a bit-size of 256-bit. With a
higher bit-size there are two main properties: One is that the calculations on the values
are getting more costly as all values generally double in size for 256-bit compared to 128-
bit. This property is further evaluated in Section 4.2.2. The second property is the number
of bits needed to successfully recover secrets. Our results show that the higher bit-size
increases the minimum number of most significant bits needed. This can also be seen
when comparing Figure 4.2 with Figure 4.1. Figure 4.2 shows that about 60 samples are
needed to solve an instance with 6 leaked most significant bits. On the other hand, about
60 samples can solve instances with only 3 to 4 bits leaked on 128-bit.

In general, the behavior of the techniques seems to be similar to 128-bit, as the same
predicate techniques outperform the LLL algorithm and other variants. The techniques

37

4 Evaluation

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25

nu
m

be
r

of
 s

am
pl

es

number of leaked MSBs

LLL
bkz-enum
bkz-sieve

enum_pred
sieve_pred
auto_select

Correlation of samples and leaked MSBs (128-bit)

Figure 4.1: Resulting correlation between the number of samples and the number of
known most significant bits. The DHKE scheme used for this plot uses a 128-
bit prime number and the generator g = 2.

enum_pred and sieve_pred both show that the predicate addition helps to solve in-
stances with fewer samples than the LLL algorithm and the other variants. But this en-
hancement comes with a higher cost in time complexity.

Bit-Size of 512-bit

Finally, the bit-size is set to 512-bit. As this is the highest bit-size used for this evaluation,
it is the bit-size that is nearest to commonly used bit-sizes for DHKE. In Figure 4.3, one can
see that the expectations are met as well because the exponential growth of enum_pred
and sive_pred is lower than the exponential growth of the LLL algorithm.

We displayed all three bit-sizes to show the correlation between the number of samples
and the number of known most significant bits. At this point, one can see that more
samples are needed to solve instances with the same number of leaked bits when the bit-
size increases. Using a constant amount of samples one can also expect to double the

38

4.2 Time Complexity

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25

nu
m

be
r

of
 s

am
pl

es

number of leaked MSBs

LLL
bkz-enum
bkz-sieve

enum_pred
sieve_pred
auto_select

Correlation of samples and leaked MSBs (256-bit)

Figure 4.2: Resulting correlation between the number of samples and the number of
known most significant bits. The DHKE scheme used for this plot uses a 256-
bit prime number and the generator g = 2.

number of leaked bits to recover a shared secret if the bit size is twice as large.

4.2 Time Complexity

In Section 4.1 we discovered that the number of samples needed increases exponentially
with fewer bits. Increasing the number of samples also directly influences the matrix di-
mension of the lattice, which is to be reduced. Lattice reduction algorithms typically scale
with the dimension of the matrix. Therefore, the number of samples has a high impact on
the practicality of the lattice attack. In this section, we compare the time needed by the
different evaluated techniques with each other as well as the differences for higher bit-
sizes. The evaluation is based around Figure 4.4, which includes the time measurements
we made for the different bit-sizes, as well as the differences between the techniques.

39

4 Evaluation

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35

nu
m

be
r

of
 s

am
pl

es

number of leaked MSBs

LLL
bkz-enum
bkz-sieve

enum_pred
sieve_pred
auto_select

Correlation of samples and leaked MSBs (512-bit)

Figure 4.3: Resulting correlation between the number of samples and the number of
known most significant bits. The DHKE scheme used for this plot uses a 512-
bit prime number and the generator g = 2.

4.2.1 Time Complexity of Lattice Reduction Techniques

As was previously discussed lattice reduction techniques are dependent on the matrix
dimension, which is related to the number of samples. The plots in Figure 4.4 shows
the number of samples concerning the time in seconds needed for the reduction. They
range from 10 to 44 samples but differ in the time needed as they scale differently with the
number of samples. To measure the time, the current time is taken before the reduction
algorithm is started and after the algorithm is finished. This provides the needed time for
running the algorithm.
Beginning with the LLL algorithm one can see a non-linear tendency for a bit-size of 512-
bit. The lower bit-sizes seem to behave generally linear up to 35 samples. Comparing this
behavior to bkz-enum and bkz-sieve, one can see that the BKZ techniques have a lin-
ear tendency as well as a higher gradient. When compared to LLL, sieving and enumer-
ation (bkz-enum and bkz-sieve) need more time with the same number of samples.
On the other hand, both enum_pred as well as sieve_pred show a non-linear trend
for even the lower bit-sizes. Consequently, the gradients of bkz-enum and bkz-sieve

40

4.2 Time Complexity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 15 20 25 30 35 40 45

se
co

n
d

s
[s

]

number of samples

128-bit
256-bit
512-bit

LLL

 1

 2

 3

 4

 5

 6

 7

 8

 10 15 20 25 30 35 40 45

se
co

n
d

s
[s

]

number of samples

128-bit
256-bit
512-bit

auto_select

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 15 20 25 30 35 40 45

se
co

n
d

s
[s

]

number of samples

128-bit
256-bit
512-bit

bkz-enum

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 15 20 25 30 35 40 45

se
co

n
d

s
[s

]

number of samples

128-bit
256-bit
512-bit

bkz-sieve

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40 45

se
co

n
d

s
[s

]

number of samples

128-bit
256-bit
512-bit

enum_pred

 0

 0.5

 1

 1.5

 2

 2.5

 10 15 20 25 30 35 40 45

se
co

n
d

s
[s

]

number of samples

128-bit
256-bit
512-bit

sieve_pred

Figure 4.4: Time to number of sample relation of each technique.

barely change and are surpassed by enum_pred and sieve_pred at a higher number
of samples as both enumeration and sieving grow in a non-linear way. Note that the
sieve_pred technique shows a consistent time behavior up to 37 samples. After this
point, the growth appears to be shifted by a constant amount. In general, this technique
had the most outliers when tested, which might be since sieving is dependent on random-
ness. Lastly, the technique auto_select seems to be the slowest for a small number
of samples. But, as already stated for the BKZ techniques, auto_select runs faster

41

4 Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 15 20 25 30 35 40 45 50

se
co

n
d

s
[s

]

number of samples

128-bit
256-bit
512-bit

1024-bit
2048-bit

LLL

Figure 4.5: Timing behavior for the LLL algorithm for different bit-sizes.

on larger numbers of samples than enum_pred and sieve_pred, as the computational
time rises linearly. This linear tendency does at least hold for the parameter sizes we
tested. Note that auto_select almost always selects the BKZ techniques, which result
in similar running times.

As the LLL algorithm runtime seems to grow exponentially in the number of samples, we
tested larger numbers of samples and even larger bit-size in Figure 4.5. When comparing
this to the other plots, one can clearly see that the execution time grows exponentially,
especially for larger bit-sizes.

4.2.2 Time Complexity with Different Bit-Sizes

Previously, we evaluated the time behavior of the different techniques. But as DHKE is
commonly used with larger bit sizes, it is necessary to investigate the impact of the bit size
on the running time. Therefore we compare the bit-sizes of 128 to 512 for each technique.

While one can see that an increase in bit-size almost always results in more time needed,
it differentiates between the techniques. Whereas the impact of larger bit-sizes seems to
be constant in the BKZ techniques, the behavior for LLL, enum_pred and sieve_pred

42

4.2 Time Complexity

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70

n
u
m

b
e
r

o
f

ca
lc

u
la

te
d

 p
re

d
ic

a
te

s

number of samples

Number of calculated predicates per number of samples

Figure 4.6: The Number of computed predicates to the number of samples for enum_pred
with a bit-size of 256-bit. The green box plots included at least one successfully
recovered shared secret, while the red box plots consist of only failed recover-
ies.

differs, since they seem to be impacted at least by a linear factor.
To more precisely evaluate this tendency Figure 4.5 shows larger bit-sizes. Here, one can
see that the exponential growth continues for larger bit sizes. For our tested range, it
appears that the impact of the bit-size is at most linear.

4.2.3 Effect of the Predicate on Time Complexity

The advanced techniques utilizing the predicate have another factor that could potentially
increase their running time: the time complexity of evaluating a predicate. We previously
discussed that our procedure performs relatively well. One could even reduce the com-
putational overhead to a constant whenever executing an attack with partial knowledge
about the plain text that involves a constant number of encrypted blocks. It was also men-
tioned that theoretically this overhead can be reduced using efficient AES instructions.
Therefore the overhead can be considered constant.
Figure 4.6 shows the relation of the number of computed predicates for an instance with

43

4 Evaluation

certain numbers of samples. In this figure, we include both the results of failed attempts
(red) of solving a specific instance as well as instances that could be solved (green). The
results shown in the figure resemble a run of Algorithm 2, but with the adaption of also
collecting the results from failed solving attempts. One can see, for up to 38 samples some
instances finished successfully while using the predicate only once. This is because the
predicate techniques use a form of standard lattice reduction and start with an already
reduced basis, also visible when comparing Figure 4.1 to Figure 4.3. In these figures, all
techniques perform similarly to each other up to a certain point. Up to this point, the
techniques using the predicate will recover the correct shared secret without even using
advanced techniques such as sieving and enumeration. When inspecting Figure 4.6, one
can see that no instance could be solved using the predicate only once if the number of
samples is above 38. The instance with more than 38 samples was only solvable using
the predicate multiple times. Another observation is the linearity of the number of used
predicates. While the maximum number of computed predicates rises linearly, the mini-
mum number of calculated samples rises linearly with a smaller gradient. Therefore the
expected range of how often the predicate is verified increases.
Our results conclude that the number of predicates grows in a linear fashion with the
number of samples, whereas the computation time grows exponentially in the number of
samples. Therefore even computationally expensive predicates are feasible for this lattice
attack adaptation.

44

5 Discussion

In this chapter, we scrutinize the practicality of the DHKE lattice attack and discuss mit-
igations to counteract these attacks. Finally, we consider possible advancements to the
evaluated attack as well as conspicuous features that we have noticed.

5.1 Practicality of the Results

Our evaluation shows that the general concept of lattice attacks with predicates applies
to DHKE. The improvements of the attacks show similar results as in previous works on
ECDSA [AH21], as parameters out of scope for previous techniques could be solved. That
said, there is a significant problem with the efficiency of the lattice attack on DHKE, which
comes into place for larger bit-sizes.
The number of samples needed to solve an instance with a constant number of leaked bits
increases with the bit-size. Therefore, in commonly used settings of bit-sizes above 2048-
bit, the number of leaked bits that are necessary to successfully solve the secret is very
large. For small bit-sizes we can break parameters with 3-4 leaked bits per sample and
large amounts of collected data. When considering larger bit-sizes, one would easily need
about 20 to 40-bits leaked per sample, which should be difficult to obtain in most cases by
simply collecting enough data points. The attack becomes practically interesting if these
conditions are met.
The second problem is the increased number of samples one needs for fewer bits leaked.
This directly affects the time performance, which increases exponentially as well. To break
instances with a high number of samples, large data sets would be needed to supply
enough samples as well as computationally powerful systems to handle lattices of larger
dimensions. The data collection in some cases of lattice-based attacks in ECDSA such
as TPM-Fail [MSEH20] exceeded more than 40000 handshakes. If one compares that to
DHKE in a realistic scenario, where a leakage of 20 most significant bits is needed, a much
higher amount of key exchanges is needed compared to the number of handshakes in the
case of ECDSA. We discussed that leakage in the case of DHKE often results in leaking the
most significant zero bits. Therefore, one needs to make at least 220 key exchanges, to in-
crease the chance that at least one exchange results in a shared secret with 20 leading zero
bit. Even if the side-channel has a perfect leakage of the 20 most significant bits, one only
obtains a single sample by 220 key exchanges. The overall number of key exchanges nec-

45

5 Discussion

essary for successfully launching the described attack is relatively high when compared
to similar attacks on ECDSA as mentioned before.
Considering the described problem, the practicality of this lattice attack seems to be lim-
ited. But while this lattice attack has its disadvantages, many implementations and servers
still fulfill some of the needed properties, such as the reuse of private values [MBA+21].

5.2 Mitigations

Lattice-based attacks on any cryptographic system are a threat. In the case of ECDSA and
DHKE, these attacks are practical if the leakage is high enough. Without any leakage,
they could be ignored, since up to now no lattice-based attack exists that does not rely
on leakage. But, as hardware and implementations become more complex, the underly-
ing cryptographic systems are more vulnerable to side-channel attacks. We discussed the
existence of multiple side-channel attacks, which are capable of collecting enough infor-
mation through given leakage to recover signing keys or shared secrets. In the following
section, we discuss potential mitigations and additions to the DHKE.

5.2.1 DHKE with Elliptic Curves

We discuss in Section 2.2 an alternative key exchange technique called ECDH. By using
ECDH instead of DHKE, one could mitigate the attack we evaluate in this work. The
DHKE attack exploits the fact that one can combine one party’s public value with their
private value, which results in finishing the key exchange in a multiplication of gr·b and
ga·b. By turning the multiplication into an HNP instance, one can solve this multiplication
for ga·b. When comparing DHKE to ECDH, one will observe that we can completely fol-
low the attack scheme described in Section 3.1.1. The key difference between DHKE and
ECDH is the group it operates on. Combining gr·b and ga·b in the ECDH scheme is not a
multiplication in Z∗

p but an addition between two elliptic curve points, as ga·b relates to
point P = (a + b) · G with generator point G. Point addition on elliptic curves cannot be
rearranged to a multiplication solvable by a lattice-based attack as far as we know. Com-
paring it to ECDSA, one can see that the approach for ECDSA is similar to DHKE, as the
given information and searched data can be rearranged to a multiplication solvable by
lattice construction. This also is a reason why it is not known whether ECDSA is secure.
Note that we do not know whether there is a variant of lattice attack applicable to ECDH.

5.2.2 DHKE with larger Bit-Sizes

Using a key exchange that is secure against the lattice-based attack we mentioned is a vi-
able solution. But there are systems that highly rely on DHKE and do not support chang-

46

5.3 Discussion and Open Problems

ing the underlying scheme.

Our results showed that the leakage needed to successfully recover a shared secret needs
to be relatively large. Over ten leaked most significant bits are needed for bit-sizes
above 1024-bit. Commonly used protocols such as TLS are using a bit-size of 2048 and
3072 [KMN19]. With the scaling of the bit-size one needs a high number of leaked bits
as well as a higher number of samples fulfilling the leakage. Therefore, DHKE can be
considered to be secure against the presented lattice attack if the bit-size is appropriate
(greater than 2048-bit) and if the leakage is less than 20-bit and underlying a bit-size of
2048.

5.2.3 DHKE using Ephemeral Keys

With powerful hardware, one can always increase the security parameters or bit-sizes of
the used techniques. But there are low-power devices that could be limited to a smaller
bit-size. In this case, the private parameter of each party should renew their private and
public parameters after a constant number of usages. That property conflicts with our
defined attack model for the attack on DHKE, as the model, demands the reuse of one
party’s value. However, if we limit the number of reuse to more than once, the attacker
model continues to function. The problem with a small constant number of reuses is
that the leakage is unlikely to result in enough samples, which are usable for the lattice-
based attack. When the side-channel attack reveals 10% of usable samples for several key
exchanges, one needs to collect at least 100 data points to ensure that there are 10 usable
samples. Thus, one could try to set the constant for renewing the values to less than the
number of samples needed for a specific leakage of a fixed number of bits. Thereby, an
attacker would not be able to collect enough samples in the first place, which would make
attacking the system impossible.

5.3 Discussion and Open Problems

In this section, we want to point out some ideas for future work. We further discuss their
potential.

5.3.1 Including Errors

Collecting samples can often result in samples containing errors. These errors could be
either wrong numbers of leaked zero bits or, in general, faulty leaked bits. Therefore,
recent literature [AH21, MBA+21] often included error handling to get an overview of the
error resistance of the lattice attacks.

47

5 Discussion

We discovered that one could use the error resistance to some degree by simply taking a
sample and creating two new samples, each one with an additional bit to "create" more
samples. With this addition, one could simply solve an instance with a given fixed number
of samples and enlarge the number of samples by guessing bits for the sample. While
this approach does have scaling issues, as it is exponentially expanding the dimension
of the matrix, for certain parameter settings, we were able to solve instances that were
not solvable with fewer initial samples. At this point, we do not know whether this can
be applied to different settings or if it is a coincidence that occurred during our testing.
Reducing the minimal number of samples for some settings can be interesting for specific
scenarios. Thus, it would be interesting to investigate this behavior in more detail in future
work.

5.3.2 Combining Predicates and Guessing

In Section 2.7 we discuss different advanced lattice attacks to which we further added
the predicate. One experiment we consider to be interesting was combining guessing
bits and apply the predicate. As our results showed, the predicate techniques can solve
instances with fewer samples. The previous work of [SETA22] shows that one could guess
bits for the nonce which are comparable to our so-called "samples". For this purpose,
one could start guessing more bits of our samples while also using a predicate, to reduce
the minimum number of leaked bits for certain bit-sizes. As both advancements were
applicable to ECDSA as well, this combination technique could yield interesting results.

Bruteforce with Parallelization

While the predicate technique already increases the time needed to solve one instance, the
combination with guessing bits will be very costly. Guessing bits on the other hand adds
exponential many instances which need to be solved. Therefore, one can parallelize it to
reduce the time cost to a minimum.

48

6 Conclusion

We have seen the potential of adapting recent advancements of lattice attacks to DHKE.
We first explained the construction of lattice attacks from a given protocol and how to
embed it into a lattice problem, which is then solved by a lattice reduction technique. We
first showed in fine granular steps how a lattice attack on ECDSA can be built and which
improvements exist. To gain a more precise overview, we discussed advanced lattice re-
duction techniques, such as sieving and enumeration and recent advanced lattice attacks
to provide an overview of the state-of-the-art techniques and how one can construct a lat-
tice attack. With this knowledge, we repeated the same procedure to the lattice attack on
DHKE, our main protocol to be investigated.
DHKE in its standard attacker model is not suitable for the lattice attack with a predicate
which is why we introduced a new attacker scenario for DHKE. The new scenario enabled
us to use the predicate on DHKE with the various techniques out of the framework of
[AH21]. We also showed that the lattice attack on DHKE behaves similarly to the attack
on ECDSA, as comparable performance gains were observed.
In our evaluation, we showed that the attack advancements on DHKE lead to a similar
performance gain as presented in recent works on ECDSA. We then discussed whether
this applies to common bit-sizes, as DHKE uses larger bit-sizes than ECDSA. By compar-
ing the performance of different bit-sizes, one can see that the impact of enlarging the
bit-size impacts the performance, meaning that attacking DHKE with lattice attacks is
harder than attacking ECDSA, as more bits must be leaked. Finally, we discussed how to
mitigate the lattice-based attack on DHKE and presented possible advancements for the
attack, which could be investigated in future work.

49

References

[ABF+20] Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien
Stehlé, and Weiqiang Wen. Faster enumeration-based lattice reduction: Root
hermite factor kˆ(1/(2k)) in time kˆ(k/8 + o(k)). IACR Cryptol. ePrint Arch.,
page 707, 2020.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-
tographic primitives and circular-secure encryption based on hard learning
problems. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, 29th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Science, pages
595–618. Springer, 2009.

[AFG+14] Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard, Jean-Gabriel Kammerer,
Mehdi Tibouchi, and Jean-Christophe Zapalowicz. GLV/GLS decomposition,
power analysis, and attacks on ECDSA signatures with single-bit nonce bias.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Pro-
ceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages 262–
281. Springer, 2014.

[AH21] Martin R. Albrecht and Nadia Heninger. On bounded distance decoding with
predicate: Breaking the "lattice barrier" for the hidden number problem. In
Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology
- EUROCRYPT 2021 - 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021,
Proceedings, Part I, volume 12696 of Lecture Notes in Computer Science, pages
528–558. Springer, 2021.

[AKLL82] H. W. Lenstra Jr. A. K. Lenstra and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen 261, (366–389), 1982.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the short-
est lattice vector problem. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis

51

References

Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 601–610. ACM, 2001.

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. Ladderleak: Breaking ECDSA with less than one bit of
nonce leakage. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vi-
gna, editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security, Virtual Event, USA, November 9-13, 2020, pages 225–242. ACM,
2020.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New direc-
tions in nearest neighbor searching with applications to lattice sieving. In
Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, Jan-
uary 10-12, 2016, pages 10–24. SIAM, 2016.

[BGJ15] Anja Becker, Nicolas Gama, and Antoine Joux. Speeding-up lattice sieving
without increasing the memory, using sub-quadratic nearest neighbor search.
IACR Cryptol. ePrint Arch., page 522, 2015.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most
significant bits of secret keys in diffie-hellman and related schemes. In Neal
Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,
Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 129–142.
Springer, 1996.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Daniele
Micciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Bar-
bara, CA, USA, August 17-21, 2020, Proceedings, Part II, volume 12171 of Lecture
Notes in Computer Science, pages 329–358. Springer, 2020.

[FP85] Ulrich Fincke and Michael E. Pohst. Improved methods for calculating vectors
of short length in a lattice. Mathematics of Computation, 1985.

[HK17] Gottfried Herold and Elena Kirshanova. Improved algorithms for the approx-
imate k-list problem in euclidean norm. In Serge Fehr, editor, Public-Key Cryp-
tography - PKC 2017 - 20th IACR International Conference on Practice and Theory

52

References

in Public-Key Cryptography, Amsterdam, The Netherlands, March 28-31, 2017, Pro-
ceedings, Part I, volume 10174 of Lecture Notes in Computer Science, pages 16–40.
Springer, 2017.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory,
Third International Symposium, ANTS-III, Portland, Oregon, USA, June 21-25,
1998, Proceedings, volume 1423 of Lecture Notes in Computer Science, pages 267–
288. Springer, 1998.

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In David S. Johnson, Ronald Fagin, Michael L. Fredman,
David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou,
Ronald L. Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors, Proceedings of the
15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983, Boston,
Massachusetts, USA, pages 193–206. ACM, 1983.

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming.
Math. Oper. Res., 12(3):415–440, 1987.

[KMN19] David Cooper (NIST) Kerry McKay (NIST). Guidelines for the selection, con-
figuration, and use of transport layer security (tls) implementations. Technical
Report Federal Information Processing Standards Publications (FIPS PUBS)
140-2, Change Notice 2 December 03, 2002, U.S. Department of Commerce,
Washington, D.C., 2019.

[Laa16] Thijs Laarhoven. Search problems in cryptography: from fingerprinting to lattice
sieving. PhD thesis, Mathematics and Computer Science, February 2016. Proef-
schrift.

[May03] Alexander May. New rsa vulnerabilities using lattice reduction methods, 2003.

[MBA+21] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky, Jo-
hannes Mittmann, and Jörg Schwenk. Raccoon attack: Finding and exploit-
ing most-significant-bit-oracles in TLS-DH(E). In Michael Bailey and Rachel
Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, pages 213–230. USENIX Association, 2021.

[MH20] Gabrielle De Micheli and Nadia Heninger. Recovering cryptographic keys
from partial information, by example. IACR Cryptol. ePrint Arch., page 1506,
2020.

53

References

[MSEH20] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. TPM-
FAIL: TPM meets timing and lattice attacks. In Srdjan Capkun and Franziska
Roesner, editors, 29th USENIX Security Symposium, USENIX Security 2020, Au-
gust 12-14, 2020, pages 2057–2073. USENIX Association, 2020.

[MV10] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algo-
rithms for the shortest vector problem. In Moses Charikar, editor, Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, pages 1468–1480. SIAM, 2010.

[MW15] Daniele Micciancio and Michael Walter. Fast lattice point enumeration with
minimal overhead. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 276–294. SIAM, 2015.

[NS03] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the elliptic curve
digital signature algorithm with partially known nonces. Des. Codes Cryptogr.,
30(2):201–217, 2003.

[oST13] National Institute of Standards and Technology. Digital signature standard
(dss). Technical Report Federal Information Processing Standards Publications
(FIPS PUBS) 140-2, Change Notice 2 December 03, 2002, U.S. Department of
Commerce, Washington, D.C., 2013.

[PH78] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms
overgf(p)and its cryptographic significance (corresp.). IEEE Transactions on
Information Theory, 24(1):106–110, 1978.

[Poh81] Michael Pohst. On the computation of lattice vectors of minimal length, suc-
cessive minima and reduced bases with applications. SIGSAM Bull., 15(1):37–
44, 1981.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theor. Comput. Sci., 53:201–224, 1987.

[SE91] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems. In Lothar Budach, edi-
tor, Fundamentals of Computation Theory, 8th International Symposium, FCT ’91,
Gosen, Germany, September 9-13, 1991, Proceedings, volume 529 of Lecture Notes
in Computer Science, pages 68–85. Springer, 1991.

54

References

[SETA22] Chao Sun, Thomas Espitau, Mehdi Tibouchi, and Masayuki Abe. Guessing
bits: Improved lattice attacks on (EC)DSA with nonce leakage. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2022(1):391–413, 2022.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In 35th Annual Symposium on Foundations of Computer Science, Santa
Fe, New Mexico, USA, 20-22 November 1994, pages 124–134. IEEE Computer
Society, 1994.

[The22] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.5), 2022. https://www.sagemath.org.

55

	Introduction
	Related Work
	Motivation

	Preliminaries
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Leakage

	Diffie-Hellman Key Exchange (DHKE)
	Security Considerations

	Lattices and Applications
	Lattice Problems
	Lattice Attacks
	Hidden Number Problem (HNP)
	HNP to CVP
	CVP to SVP

	Advanced Lattice Techniques
	Sieving
	Enumeration
	BKZ

	Advanced Lattice Attacks
	Lattice Attacks with Predicate
	Lattice Attacks with Hints
	Lattice Attacks by Guessing Bits

	Lattice-based Attack with Predicate on DHKE
	Lattice Attack on Diffie-Hellman
	Lattice Attack on DHKE
	Construction of the Attack

	Lattice Attack on DHKE with Predicate
	Attacker Model
	Leakage
	Predicate
	Modes of Operation

	Implementation

	Evaluation
	Sample MSB Correlation
	Expectations
	Strategy
	Results

	Time Complexity
	Time Complexity of Lattice Reduction Techniques
	Time Complexity with Different Bit-Sizes
	Effect of the Predicate on Time Complexity

	Discussion
	Practicality of the Results
	Mitigations
	DHKE with Elliptic Curves
	DHKE with larger Bit-Sizes
	DHKE using Ephemeral Keys

	Discussion and Open Problems
	Including Errors
	Combining Predicates and Guessing

	Conclusion
	References

