
Sprint: Secure and Fast Outsourced Machine Learning

Sprint: Sicheres und Schnelles Auslagern von Maschinellem Lernen

Masterarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Jonas Sebastian Sander

ausgegeben und betreut von
Prof. Dr.-Ing Thomas Eisenbarth

mit Unterstützung von
Ida Bruns,
Dr. rer. nat. Sebastian Berndt und
Prof. Dr. Esfandiar Mohammadi

Lübeck, den 22. September 2021

Abstract

Machine learning solutions are moving faster and faster into more and more parts of our
society. Cloud providers such as Amazon Web Services, Microsoft Azure, and the Google
Cloud Platform, driven by huge profit potentials, aggressively expand their Machine-
Learning-as-a-Service offerings. There is a risk that data security and privacy increasingly
fall behind.
We investigate the current state of secure outsourcing of ML workloads to the cloud, con-
centrating on deep convolutional neural networks. We find that the most common and
performant mixed SMPC approaches based on homomorphic encryption, secret sharing,
and garbled circuits underly a communication overhead that grows linearly in the depth
of the neural network. We present Sprint, a scheme for fast and secure outsourcing of
ML workloads to the cloud. Sprint is based purely on arithmetic garbled circuits, needs
only a single communication round per inference step regardless of the depth of the neu-
ral network, and requires compared to recent schemes, a 22 times smaller communication
volume for ResNet32.

iii

Kurzfassung

Lösungen des Maschinellen Lernens erhalten immer schneller in immer weitere Teile un-
serer Gesellschaft Einzug. Cloud Provider wie Amazon Web Services, Microsoft Azure
und die Google Cloud Platform bauen, getrieben durch immense Gewinnpotentiale, ag-
gressiv ihre Machine-Learning-as-a-Service Angebote aus. Es besteht die Gefahr, dass
Datensicherheit und Privatsphäre zunehmend ins Hintertreffen geraten.
Wir untersuchen den aktuellen Stand des sicheren Auslagerns von ML Workloads in die
Cloud und konzentrieren uns insbesondere auf tiefe Neuronale Faltungsnetze. Dabei
stellen wir fest, dass die verbreitetsten und performantesten gemischten SMPC Ansätze
basierend auf Techniken der Homomorphen Verschlüsselung, Secret Sharing und Garbled
Circuits einem in der Tiefe des Neuronalen Netzes linear wachsenden Kommunikations-
Overhead unterliegen. Wir präsentieren Sprint, ein Framework zum schnellen und
sicheren auslagern von ML Workloads in die Cloud. Sprint basiert auf einem reinen
Arithmetischen Garbled Circuit Ansatz, benötigt unabhängig von der Tiefe des Neu-
ronalen Netzes nur eine einzige Kommunikationsrunde pro Inferenz-Schritt und besitzt
im Vergleich zu aktuellen Schemes ein 22-mal kleineres Kommunikationsvolumen für
ResNet32.

v

Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, 22. September 2021

vii

Acknowledgements

An dieser Stelle möchte ich mich zur aller erst bei meinen Eltern und meinen beiden
kleinen Geschwistern bedanken. Danke, dass Ihr immer für mich da seid und mir in
den paar Frust-Phasen des Studiums mit Rat und Ablenkung zur Seite standet. Das viel-
leicht wichtigste meines Studiums sind meine Kommilitonen. Ihr seid die Besten und ich
möchte mich bei Euch für die unvergessliche Zeit und die vielen schönen und lustigen
Erinnerungen bedanken.
Auch die Mitarbeiter des ITS haben mir immer das Gefühl gegeben, willkommen zu sein.
Egal, wen ich um Rat gefragt habe, ich bin immer auf Hilfsbereitschaft gestoßen. Beson-
ders möchte ich mich bei Prof. Eisenbarth und Prof. Mohammadi für die Möglichkeit
bedanken, eine Masterarbeit mit meinen Lieblingsthemen des Studiums schreiben zu kön-
nen. Danke Ida für deine Geduld bei der Betreuung meiner Arbeit und den vielen Tipps
und Hinweisen zu meinen Texten. Auch möchte ich mich bei Sebastian für die Hilfe bei
den Crypto Themen und dem Knobeln an den Half Gates bedanken. Danke Florian für die
Hilfestellung bei meinen ersten praktischen Gehversuchen mit Intel SGX. Thanks, Okan,
for the discussions about the half gates!

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Path . 1
1.3 Organization . 3

2 Background 5
2.1 Machine Learning . 5

2.1.1 Linear Regression . 5
2.1.2 Logistic Regression . 5
2.1.3 Artificial Neuronal Networks . 6

2.2 Secure Multiple-Party Computation and Outsourced Machine Learning . . 8
2.2.1 Ideal/Real Simulation Paradigm . 9
2.2.2 Attacker Models . 10

2.3 Garbled Circuits . 11
2.3.1 Oblivious Transfer . 11
2.3.2 Garbled Circuit Protocol . 11

2.4 Garbled Circuit Optimizations . 13
2.4.1 Point-and-Permute . 14
2.4.2 Garbled Row-Reduction 3 . 14
2.4.3 Free-XOR . 14
2.4.4 Half Gates . 15

2.5 Trusted Execution Environments . 16
2.6 Graphical Processing Units . 18

2.6.1 Memory Spaces . 18
2.6.2 General-Purpose Computing . 20

3 Related Work 23
3.1 Slalom . 23
3.2 SecureML . 24
3.3 Oblivious Neuronal Networks via MiniONN Transformations 25
3.4 Faster CryptoNets . 26
3.5 Delphi . 27

xi

Contents

4 Garbling Techniques for Sprint 29
4.1 Garbling Gadgets for Arithmetic Circuits . 29
4.2 Garbled Neuronal Networks . 30

4.2.1 Half-Gate Generalization . 31
4.2.2 Mixed-Modulus Half-Gate . 32
4.2.3 Mixed-Radix Addition . 32
4.2.4 Approximated Garbled Sign . 33
4.2.5 Fancy-Garbling . 35

4.3 Efficient Garbling with Random Permutations via Fixed-Key AES 36

5 Sprint: Secure and Fast Outsourced Machine Learning 37
5.1 Residue Level . 37
5.2 CRT Level . 40
5.3 ANN Level . 40
5.4 Security . 41
5.5 Implementation . 41
5.6 GPGPU Specifics . 42

6 Performance and Accuracy Evaluation 43
6.1 CRT Representation and the Quantization Constant 43
6.2 Searching Mixed-Radix Bases and the Approximated Sign Function 44
6.3 Computational Workload in Comparison . 45
6.4 Online-Communication in Comparison . 47
6.5 Feature Set in Comparison . 48

7 Conclusion & Outlook 51
7.1 Summary . 51
7.2 Outlook . 52
7.3 Future Work . 53

References 55

Appendix 65

xii

Nomenclature

Abbreviations

OML Outsourced Machine Learning

GC Garbled Circuit

HG Half Gate

HE Homomorphic Encryption

SS Secret Sharing

ANN Artificial Neuronal Network

TEE Trusted Execution Environment

FPU Fast Processing Unit

MRS Mixed-Radix System

CPM Composite Primorial Modulus

CRT Chinese Remainder Theorem

Letters and Symbols

⊕ Logical XOR

J Error

L Loss

x(i) i-th sample of a dataset

X{i} i-th batch of a dataset

a[i] ANN-Activations of layer i

sgn Sign function

ReLU Rectified Linear Unit function

skba Secret key for value b on wire a

ENsk(C) Encrypt C using sk

xiii

1 Introduction

1.1 Motivation

The recent progress of machine learning (ML) with its many technical and practical inno-
vations crosses almost all industries and government institutions while getting more and
more applied to security and privacy sensitive domains like healthcare, law enforcement,
finance, public administration, logistics, and many more. A large part of these applica-
tions require substantial computational resources and while cloud providers push their
Machine-Learning-as-a-Service (MLaaS) offerings, the complexity of the hardware and
software stacks is continually growing and exposes an expanding surface for potential
attackers. A rapidly growing need for methods and techniques for secure and privacy-
preserving outsourcing of ML applications arises, which moreover meets a political and
legal necessity through the General Data Protection Regulation (GDPR) of the European
Union and related laws worldwide. In this thesis, we introduce the cryptographic meth-
ods used, summarize the current developments in outsourced ML (OML) and research
optimization approaches for OML, to further reduce the computational performance gap
to conventional ML schemes.

1.2 Research Path

In recent years, artificial neuronal networks (ANNs) have proven to be highly flexible in
their application and dominate large areas of the ML landscape. As this class of learn-
ing algorithms is highly computational intense, it is especially urgent to develop suitable
OML methods. This thesis focuses on the secure outsourcing of ANNs.

We find that Tramèr and Boneh’s scheme Slalom [TB19] (see also 3.1), which leverages a
trusted execution environment (TEE) and outsources linear workloads to a fast processing
unit (FPU) - a hardware accelerator faster than the CPU, is the most promising approach
for secure and efficient outsourcing of ANNs. As Slalom’s main weakness, we identified
the significant communication overhead in the online phase, where after each layer of
the outsourced ANN, the TEE and FPU communicate. The communication is necessary
because the typical activation functions of ANNs are not homomorphic. The past has
shown that in practice, particularly deep neural networks often deliver the best results
and therefore incur a high communication overhead in Slalom. This thesis raises the re-

1

1 Introduction

search question of how the communication between the layers can be reduced or avoided
entirely.

Our research path starts in the area of mixed-SMPC OML-approaches for ANNs, which
combine secret-sharing (SS), homomorphic encryption (HE), and garbled circuit (GC)
based techniques. While HE and SS are efficient regarding linear operations, the non-
linear activation functions of ANNs lead to large overheads. Therefore, a typical ap-
proach computes the linear components via HE or SS and the activation functions via
GCs [CL01, BOP06, OPB07, BFL+11, MZ17, LJLA17, RWT+18, MR18, MLS+20]. Unfor-
tunately, all these approaches have a linear number of communication rounds in the
depth of the ANN, and we were not able to switch between SMPC techniques without
communicating between ANN-layers1.

Following a line of work about OML purely based on GCs [SS08, RRK18, RSC+19], we
switched the perspective and considered the Slalom setting of a TEE with a co-located
FPU from this view. In particular, we follow the work of Marshall Ball et al. on highly
optimized arithmetic GCs [BMR16] and ANN-specific GC optimizations [BCM+19]. In
this way, the Slalom becomes a Sprint. The idea is to garble the whole ANN within the
TEE and to accelerate the evaluation of the GC, respectively the ANN-inference, on the
FPU. Thus, no communication between the layers of the ANN is needed. During the
offline phase, the GC is transferred to the FPU. During the online, phase only the garbled
input is sent to the FPU, and the garbled inference result from the FPU to the TEE.

We started by implementing our scheme in abstraction layers on the CPU, planning to
port it to the GPU afterward. Unfortunately, with the CPU implementation finished, the
time of the thesis was well advanced2. The bases for the mixed-radix system (MRS) deter-
mined to be performant by Ball et al. [BCM+19] were not usable, so we had to implement
our own search. Becoming familiar with Nvidia GPUs’ and Intel SGXs’ hardware charac-
teristics, CUDA programming, the GPU and SGX drivers, and CUDA tools on Linux took
considerably more time than planned. In order to develop an efficient and highly parallel
graphical processing units (GPU) port of garbled ANNs, a new circuit representation is
needed that exposes the parallelism of the gates within the gadgets and ANN layers and
takes the memory, cache, and computation properties of the GPU into account. Therefore,
we were unfortunately not able to complete the whole GPU port until the submission of
the thesis. At the end of this thesis, it is not yet possible to make a concrete evaluation of
our scheme Sprint as a whole. However, we show that our current implementation is com-

1In particular, we have explored the possibilities of SS-based OML approaches such as the GMW protocol
and Beaver triples (see chapter 7.3).

2Implementing arithmetic GC schemes is an error-prone task since all intermediate values of their computa-
tions are properly encrypted, randomly permuted, and frequently switch between representations, which
massively increase debugging times.

2

1.3 Organization

petitive and that Sprint clearly outperforms recent schemes in terms of the communication
overhead in the online phase.

1.3 Organization

We start by introducing the necessary background knowledge. First, we introduce the
basic concept of ANNs via linear and logistic regression in section 2.1. Then we give a
short introduction to the field of secure multi-party computation, including its relation to
OML in section 2.2 and explain in a functional way how the GC protocol works in sec-
tion 2.3. Next, we introduce the practically most relevant optimizations for conventional
binary GCs in section 2.4, including point-and-permute, garbled row-reduction 3, free-
xor, and half gates. Finally, we briefly introduce the principles of TEEs, particularly Intel
SGX in section 2.5 and CUDA-enabled GPUs including the concept of general-purpose
computing on graphics processing units (GPGPU) in section 2.6. After introducing the
background knowledge, we summarize a selection of important works on OML and eval-
uate them, especially concerning their performance in the online phase in chapter 3.
Based on the binary GCs and their optimizations, we introduce the garbling techniques
for Sprint in chapter 4. We start by introducing the garbling gadgets for mixed-modulus
arithmetic GCs in section 4.1, including free addition, free multiplication by a public con-
stant, and a unary projection gate for arbitrary functions. Further, we describe in detail
cryptographic and ANN specific optimizations for arithmetic GCs in section 4.2. In par-
ticular, these optimizations are used for accelerated sign and ReLU activation functions
and, starting from the ReLU function, for max-pooling. The necessary gates include a
half-gate generalization for arithmetic GCs, mixed-modulus half gates, mixed-radix ad-
dition, and an approximated sign gadget. We then discuss the use of fixed-key AES as a
computational-wise optimization in section 4.3.
Afterward, we present our OML approach Sprint step by step along its three abstraction
levels, outline our CPU implementation and discuss details of a GPU implementation in
chapter 5. Finally, we present the result of the CPU implementation, including discussions
about various performance-accuracy tradeoffs, Sprint’s online communication overhead,
and feature set in chapter 6. In the end, we summarize and present an outlook and ideas
for future work in chapter 7.

3

2 Background

2.1 Machine Learning

In this section, we introduce the inner workings of ANNs as a generalization of Linear Re-
gression (LiR) and Logistic Regression (LoR). We end the chapter with a complete description
of the inference and training of a small example ANN.

2.1.1 Linear Regression

LiR is used in predictive modeling to learn the linear relation between m samples Xm×n,
or more specifically their n features, and a single continuous explanatory variable ym of a
given dataset (see figure 2.1a).3 We leverage the bias-trick and introduce a weight w0 and
a constant input x1:n,0 = 1 to hide the bias inside the weight matrix wn+1. One option to
learn the parameterswn+1 of the model fw(x(i)) = ŷ(i) =

∑n
j=1 x

(i)
j wj is to perform gradient

descent4 on the mean squared error5 J(y, ŷ) = 1
m

∑m
i=1 L(y

(i), ŷ(i)), withL(y(i), ŷ(i)) = 1
2(y

(i)−
ŷ(i))2. Gradient descent iteratively updates the model weights with respect to the loss on
the training data. Each iteration consists of one update step w = w − l · ∇wJ = w −
l
mX

T (Xw − y), with l being the learning rate to control the process’s convergence speed.
In practice, it is common to use stochastic gradient descent (SGD), where the weights are
updated in each iteration with respect to a random subset of the training set, called mini-
batch. If the batch size is greater than one, the algorithm is called mini-batch SGD, which
allows leveraging the vectorization capabilities of modern FPUs and speeds up training
times.

2.1.2 Logistic Regression

LoR is a classification algorithm, which models the probability that a given sample relates
to a specific class and outputs a discrete class value (see figure 2.1b).6 To limit the pre-
diction value between zero and one, meaning the sample is member of the positive or

3We focus on simple LiR with only one explanatory variable.
4It is also possible to find the optimal parameters for LiR in just one step, leveraging the so-called normal

equations.
5The mean squared error can be derived via maximum likelihood estimation of w, assuming the errors per

sample being independently gaussian distributed [Mur12].
6We focus on binary classification (y ∈ {0, 1}).

5

2 Background

−2 −1 0 1 2

X

−150

−100

−50

0

50

100

y

Linear Regression (a)

0.0 0.2 0.4 0.6 0.8 1.0

X

0.0

0.2

0.4

0.6

0.8

1.0

y

Logistic Regression (b)

Figure 2.1: Training progress of a LiR and a LoR in the context of example datasets. (a)
The LiR was trained over 100 epochs with a learning rate l = 0.01. The model
parameters are plotted after initialization, 50 and 100 epochs. (b) The LoR was
trained over 200 epochs with l = 0.5, and parameters are plotted after ini-
tialization, 100 and 200 epochs. The dotted line shows the final classification
border.

negative class, the output of the linear model fw is passed through the logistic activation
function σ(x) = 1

1+e−x ; gw(x(i)) = ŷ(i) = σ(fw(x
(i))). The final classification is then per-

formed using a threshold, typically 0.5. To learn the parameters w, one can again use
gradient descent. In case of LoR therefore the binary cross-entropy7 J(y, ŷ) = 1

m

∑m
i=1 L,

with L(y(i), ŷ(i)) = −(y(i) log ŷ(i) + (1 − y(i)) log (1− ŷ(i))), is used. This leads to a similar
update step of gradient descent, as in LiR: w = w − l · ∇wJ = w − l

mX
T (σ(Xw)− y).8

2.1.3 Artificial Neuronal Networks

Artificial neural networks (ANN) can be considered as a powerful generalization of LoR.
They consist of layers of so-called neurons (see figure 2.2 for a small example), where each
of the n[i] neurons a[i]j of layer i computes a LoR on the outputs of all neurons of the pre-
vious layer i − 1: a[i] = σ(W [i]a[i−1] + b[i]), with a[0] = X being the input. Note that the
bias-trick can also be applied to the training of ANNs, but we omit it here for clarity. Com-
puting this step from the input to the output layer is also referenced as forward-propagation
and is the only computation needed to perform predictions using a trained ANN. For a
mini-batch X{i} of size B and the example ANN, forward-propagation is performed via
the operations on the right side of figure 2.2. As one can see, the matrix shapes do not

7The binary cross-entropy can be derived via maximum likelihood estimation of w, assuming the samples
being independently generated from a Bernoulli distribution [Mur12].

8It is also possible to find useful parameters for LoR, with many fewer iterations, using Fisher’s scoring. If
n is not too large, this approach converges faster than SGD.

6

2.1 Machine Learning

X
{i}
1

X
{i}
2

X
{i}
3

a
[1]
1

a
[1]
2

a
[1]
3

a
[2]
1

a
[2]
2

a
[3]
1 → ŷ

W [1] W [2] W [3]b[1] b[2] b[3]

Data
batch i

Input
layer

Hidden
layer

Output
layer z[1] =W [1] ·X{i} + b[1], a[1] = σ(z[1])

z[2] =W [2] · a[1] + b[2], a[2] = σ(z[2])

z[3] =W [3] · a[2] + b[3], a[3] = σ(z[3])

(3, B) = (3, 3) · (3, B) + (3, 1)

(2, B) = (2, 3) · (3, B) + (2, 1)

(1, B) = (1, 2) · (2, B) + (1, 1)

Figure 2.2: Architecture and calculations of example ANN. The left side shows the ar-
chitecture of the example ANN consisting of three fully connected layers. It
expects input samples with three features (x1, x2, x3)

T and outputs a binary
verdict ŷ. The right side shows the calculations for inference as well as the cor-
responding matrix dimensions.

match when B > 1. To allow B > 1 for training and prediction, in practical ML, a tech-
nique called broadcasting is used that efficiently "broadcasts" operations such as addition
over matrices so that their shapes match [HMvdW+20]. In the case of the bias, broadcast-
ing would simulate a matrix of the form (3, B) that repeats the original bias vector b times
along the second axis and results in a valid matrix addition.

ANNs are usually trained with mini-batch SGD or related optimizers, such as Adam
[KB15]. Here we focus on mini-batch SGD with the binary cross entropy as error func-
tion. To be able to update the weights W [i] =W [i]− l∇W [i]J , and biases b[i] = b[i]− l∇b[i]J ,
we have to propagate the error from the output layer via backward-propagation to layer i,
resulting in ∂L

∂W [i] =
∂L
z[i]
·a[i−1]T , with a[0] = X{i}, and ∂L

∂b[i]
= ∂L

z[i]
. For the example ANN, the

weight updates are as follows (for simplicity matrices are shown without the mini-batch
indices, � note the element-wise multiplication)

∂L

∂z[3]
= a[3] − y

∂J

∂W [3]
=

1

B
� ∂L

∂z[3]
· a[2]T

∂L

∂z[2]
=W [3]T · ∂L

∂z[3]
· σ′(a[2])

∂J

∂W [2]
=

1

B
� ∂L

∂z[2]
· a[1]T

∂L

∂z[1]
=W [2]T · ∂L

∂z[2]
· σ′(a[1])

∂J

∂W [3]
=

1

B
� ∂L

∂z[1]
·XT

(1, B) = (1, B)− (1, B)

(1, 2) = (1, 1)� (1, B) · (B, 2)

(2, B) = (2, 1) · (1, B)� (2, B)

(2, 3) = (1, 1)� (2, B) · (B, 3)

(3, B) = (3, 2) · (2, B)� (3, B)

(3, 3) = (1, 1)� (3, B) · (B, 3).

7

2 Background

Before training, the biases are usually initialized to zero, while the weights are set using
the glorot initialization W [i] ∼

√
n1−i (for sigmoid activation) to address the problem of

exploding or vanishing gradients [GB10]. In addition to the sigmoid function, a variety of
other activations functions exist. Very widely used is the rectified linear unit, short ReLU
function f(x) = max(0, x), because it can significantly accelerate the training in practice
[KO11].

In addition to the fully connected layers described above, a large and dynamic ecosystem
of additional layers and model architectures has evolved for a wide range of use cases
such as image or natural language processing. While, in the first place, the algorithmic
and hardware developments of recent years have made the rapid development in the
field of deep learning possible, a selection of powerful frameworks such as TensorFlow
[AAB+15] (with Keras [C+15]), PyTorch [PGM+19] and JAX [BFH+18] was developed by
the open-source community and drive today’s deep learning progress. Due to their auto-
diff modules and performance optimizations, these frameworks enable particularly deep
and complex networks to be implemented and trained with minimal effort. For training
the models of our experiments, we use TensorFlow and Keras.

2.2 Secure Multiple-Party Computation and Outsourced Machine Learning

In this section, we introduce the field of secure multi-party computation (SMPC) and its
relationship to OML. OML is strongly related to the cryptographic area of SMPC9, which
deals with a setting of two or more parties who jointly compute a given function without
revealing their inputs to each other to ensure privacy while guaranteeing the correctness of
the computed results. In contrast to classical cryptography, which often considers attack-
ers from outside, SMPC always considers one or more parties involved in the collective
computation of the given function to be malicious or at least curious about others’ private
inputs. In this way, the extensively studied and large SMPC research field provides a good
theoretical foundation for considering ML outsourcing. Indeed, many SMPC techniques
and, in particular, the SMPC attacker models are used to develop OML schemes.

If we neglect the massive computational resource requirements of ML, along with the need
for specialized hardware and the increasing importance of side-channel resistance, OML
can be viewed as a specialized form of the typical SMPC setting. Specially, because in
contrast to SMPC, OML often additionally requires a predefined distribution of the com-
putational workload among the participants. In our case, a client with limited computing
capabilities in possession of some data would like to outsource expensive ANN-inference

9SMPC is also often called SFE: Secure Function Evaluation.

8

2.2 Secure Multiple-Party Computation and Outsourced Machine Learning

to a server without the server learning anything about the data inputs and possible also
demand integrity protection over the computed function to prevent undetected cheating
from a malicious server. Obviously, for OML, many different constellations of parties and
security objectives are plausible, and we consider further examples in chapter 3.
Whereas many different settings for ML outsourcing schemes are thinkable and practi-
cally useful, besides the feasibility question, the protocols’ efficiency is crucial. There are
many surprising SMPC solutions for different settings that have been presented over the
years, but many of these theoretically elegant solutions are by far not efficient enough to
be of practical use. These efficiency difficulties are further amplified by the additional re-
quirements in the OML setting and must be considered in the development and analysis
of appropriate schemes.

2.2.1 Ideal/Real Simulation Paradigm

Before we model the capabilities of a potential attacker in the next section, we first define
what properties a protocol must satisfy to be considered secure. Hazay et al. [HL10] list
the following essential properties, which can be used to cover many if not all multi-party
computation tasks and, in this way, also OML:

• Privacy: No party should be able to learn more than its outputs from the jointly
computed function10.

• Correctness: The output of each party is correct, meaning the function evaluation can
not be tampered from an attacker.

• Independence of Inputs: Corrupted parties choose the input independent of the input
of honest parties.

• Guaranteed Output Delivery: Corrupted parties should not be able to intercept the
outputs of honest parties.

• Fairness: Corrupted parties get their outputs only when the honest parties get their
outputs as well.

While the above list gives a good idea about the rough requirements for an SMPC scheme,
it does not provide a security definition. The modern formalization, the Ideal/Real Simu-
lation Paradigm, was introduced (not in that terminology) by Goldwasser [GM84] and is

10That the jointly computed output does not reveal more information than intended is not considered in the
SMPC definition and must be ensured separately. In the case of non-trivial functions such as machine
learning models, corresponding privacy guarantees can be ensured via the framework of differential pri-
vacy [Dwo08, ACG+16].

9

2 Background

derived via a mental experiment in which an ideal function evaluation via a trusted third
party (TTP) is considered. This party performs the computations that should otherwise
be computed using the SMPC protocol distributed over all participants. For this purpose,
the SMPC protocol participants send their inputs via secure channels to the third party,
which in turn performs the necessary computations and sends the appropriate outputs to
the corresponding parties.
Obviously, this protocol meets all the security requirements described above, but in the
real function-evaluation does not exist a TTP. The simulation paradigm states that a real
protocol is secure if no attacker can do more damage in the real function evaluation than in
the ideal function evaluation. In other words, a secure protocol should simulate the ideal
function evaluation (same input/output distributions). If an attacker can now successfully
execute an attack in the real setting, this attacker is also successful in the ideal setting.
However, we know that no attacks are possible in the ideal setting and can conclude that
the real function evaluation must also be secure. In many settings, as in ours, where half
or more of the participants are dishonest, we often can not achieve the output guarantee
and fairness requirements and relax the security definition by dropping them.

2.2.2 Attacker Models

To truly comprehend the security achieved by a protocol (or carry out rigorous proofs),
it is important to model, in addition to the security requirements, the capabilities of a
potential attacker. It must be determined whether benign parties can become dishonest
adaptive during protocol execution, known as adaptive corruption, or whether they are
fixed before the protocol starts, known as static corruption. In the OML settings discussed
below, we consider only static distributions of dishonest parties and neglect the adaptive
case.
It must also be determined whether a dishonest party can deviate from the protocol or
not. Therefore one distinguishes between semi-honest and malicious attackers11. The former
attacker is weaker and follows the protocol, but receives all internal information from all
corrupted parties and tries to learn private information from benign parties. The malicious
attacker, on the other hand, can arbitrarily deviate from the protocol to undermine the
security requirements of the protocol, and efficiently achieving security in this setting is
often much more difficult.
It is natural to question the usefulness of the semi-honest model. One might think, what
is the benefit of a security model that requires a potential attacker to be honest and fol-
low the protocol. On the one hand, this model ensures that there are no unintentional

11Semi-honest attackers are also called honest-but-curious or passive and malicious attackers are also called
active or byzantine.

10

2.3 Garbled Circuits

information leaks among honest parties. On the other hand, there are protocols, such as
the garbled circuits presented later, for which conversions to the malicious model exist
[GMW87, LP07], and the semi-honest model often provides a good stepping stone for
such developments.
Last, we also need to model the computational capabilities of the potential attacker. There-
fore, we distinguish between the information-theoretic model (also known as unconditional
or statistical security), in which the attacker has unlimited computational resources and
all parties communicate via perfect private channels, and the computational model, in which
the attacker performs computations in polynomial time and the classical cryptographic as-
sumptions hold. The following discussions refer exclusively to the computational model.

2.3 Garbled Circuits

Before we get to the optimizations for GCs, we introduce the Oblivious Transfer and the
most basic form of the GC protocol in this chapter.

2.3.1 Oblivious Transfer

Rabin’s Oblivious Transfer (OT) is a protocol between two parties, the sender and the re-
ceiver [Rab05]. The sender transfers two bits to the receiver, and the receiver learns only
one of them with a probability of 1/2. The other bit becomes oblivious, meaning the re-
ceiver can not infer it from the protocol transcript. Besides, the sender cannot recognize
which bit the receiver has learned. The 1-out-of-2 Oblivious Transfer (1-2 OT) [EGL82] be-
haves the same way, except that the receiver can choose which of the bits he wants to
learn. Indeed, Claude Crépeau [Cré87] has shown that both variants are equivalent. Naor
and Pinkas [NP99] have shown that the 1-2 OT generalizes efficiently to a 1-n OT. In the
large and well-studied SMPC field, the Oblivious Transfer has established itself as one of
the most important primitives and plays a central role in the protocols presented below.

2.3.2 Garbled Circuit Protocol

Garbled circuits (GC) were introduced by Andrew Yao [Yao86] and allow SMPC compu-
tations of binary circuits in the two party setting under a semi-honest attacker. Figure 2.3
schematically shows the garbled circuit protocol procedure between a garbler Alice and an
evaluator Bob. Here, the public circuit C should be computed under Alice’s private inputs
x1 to xn and Bob’s private inputs y1 to yn.
In the first step, Alice encrypts the circuit C and her inputs x1 to xn with her secret key12

12The keys used to encrypt wire values of GCs are often also referred to as labels.

11

2 Background

Garbler Alice
A(x1, . . . , xn)

C̃ = CEnsk(C)

∀i ∈ [n] : x̃i = IEni
sk(xi)

∀i ∈ [n] : ỹ0i = IEni
sk(0)

∀i ∈ [n] : ỹ1i = IEni
sk(1)

ỹ0i , ỹ
1
i

C(x, y)

Boolean Circuit
C(x1, . . . , xn, y1, . . . , yn)

C̃, x̃1, . . . , x̃n

∀i ∈ [n] execute

1-2-OT

Evaluator Bob
B(y1, . . . , yn)

yi ∈ {0, 1}
ỹyii

De(C̃, x̃1, . . . , ỹn)

Figure 2.3: High-level procedure of the garbled circuit protocol.

sk and sends them to Bob. Then she encrypts all possible inputs from Bob and transfers
the inputs Bob requested to Bob using n-times the 1-out-of-2 oblivious transfer. Bob can
now evaluate the circuit under the garbled inputs using the evaluation function and sends
the result to Alice.

Figure 2.4 shows an example of how the garbling process on circuits works. Every logic
gate gets two secret keys sk0 and sk1 per input, which correspond to the input of the 0 and
1-bit. Based on the gate’s function, the encryption is then performed such that if the eval-
uator decrypts a gate with its known keys, it receives as output the key that corresponds
to the function of the gate. For example, in the case of the first NAND gate at the top
left in figure 2.4, the evaluator should only receive the key sk05 if he knows the keys sk11
and sk12 . In addition to the garbled gates, the garbled circuit contains an output translation
table that assigns the keys at the output of the last gate in the circuit to their bit values.
With this table, the evaluator can translate the output keys into their corresponding bit
values when evaluating a circuit. The garbling of the inputs runs accordingly and for the
circuit from figure 2.4, for example, the following encoding would be a valid garbling:
IEnsk(1, 1, 0, 0) = (sk11, sk

1
2, sk

0
3, sk

0
4).

The evaluator should only learn the correct key per wire to protect the garbler’s inputs,
and the protocol achieves this via the oblivious transfer. Besides, the evaluator should not
be able to distinguish between the keys for the 0 and 1-bit. For this reason, a garbled circuit
can only be used with one garbled input combination. Besides, the encryptions per gate
must be shuffled. A canonical ordering as in figure 2.4 would expose the key-bit-mapping.
To allow the evaluator to still choose the right encryption for its keys from each gate’s

12

2.4 Garbled Circuit Optimizations

x̃1 = sk01 ∨ sk11

ỹ1 = sk02 ∨ sk12
x̃2 = sk03 ∨ sk13

ỹ2 = sk04 ∨ sk14

sk05, sk
1
5

sk06, sk
1
6

sk07, sk
1
7

Ensk01
(Ensk02

(sk15))

Ensk01
(Ensk12

(sk15))

Ensk11
(Ensk02

(sk15))

Ensk11
(Ensk12

(sk05))

Figure 2.4: Example of garbling a small circuit of NAND gates.

Table 2.1: GC optimizations with two-input gates. Size is the number of ciphertexts
needed per garbled gate (times k bits, with k being the security parameter). The
number of ciphertexts per XOR-gate in fleXOR are dependent on the environ-
ment in the circuit. H is a key-derivation function (see also 4.3). Table is taken
from [ZRE15].

Optimization
Size per Gate

Calls to H per Gate
Generator Evaluator

XOR AND XOR AND XOR AND
Classical [Yao86] 4 4 4 4 4 4
Point-and-Permute [BMR90] 4 4 4 4 1 1
Free-XOR [KS08] 0 4 0 4 0 1
GRR3 [NPS99] + Free-XOR 0 3 0 4 0 1
GRR2 [PSSW09] 2 2 4 4 1 1
fleXOR [KMR14] {0,1,2} 2 {0,2,4} 4 {0,1,2} 1
Half Gates [ZRE15] 0 2 0 4 0 2
Garbled Gadgets [BMR16] 2 2 3 3 1 1

shuffled ciphertexts, it must be possible for the evaluator to detect the wrong ciphertexts.
Such an extension of ciphers is easily possible. For example, one can concatenate the
plaintext with a random string before encrypting and publishing it with the ciphers.

GCs are very well studied, improved since their introduction, and besides the simple pro-
tocol described here, they have found many different applications, including previously
presented OML schemes. For more details and a formal description of GCs see [BHR12].

2.4 Garbled Circuit Optimizations

Possible optimizations for GCs focus on the size, the computational complexity, and the
hardness assumptions taken to give appropriate security guarantees. As described below
and shown in table 2.1, most efforts in recent years have focused on optimizing the size of
GCs to reduce the communication complexity between the garbler and the evaluator.

13

2 Background

sk01 ‖ 1, sk11 ‖ 0

sk02 ‖ 0, sk12 ‖ 1

sk03 ‖ 0, sk13 ‖ 1
Ensk11

(Ensk02
(sk03 ‖ 0))

Ensk11
(Ensk12

(sk13 ‖ 1))
Ensk01

(Ensk02
(sk03 ‖ 0))

Ensk01
(Ensk12

(sk03 ‖ 0))

Figure 2.5: Garbling with point-and-permute optimization.

2.4.1 Point-and-Permute

In the classical garbling scheme, in the worst case, the evaluator has to decrypt all four ci-
phertexts per gate to obtain the correct output label. By introducing the point-and-permute
optimization in 1990, Beaver et al. [BMR90] reduce the number of necessary decryptions
to one ciphertext per gate. To do this, point-and-permute appends a pointer pair (pi, pi)

with pi ∈r {0, 1} to each key pair (sk0i ‖ pi, sk1i ‖ pi) and sorts the ciphertexts of the gate in
descending order based on the pointer bits13 (see figure 2.5 for an example). This creates
a canonical ordering of the ciphertexts that allows the evaluator to determine the correct
gate output with only one decryption without learning any additional information about
the input.

2.4.2 Garbled Row-Reduction 3

In 1999, Naor et al. [NPS99] presented the garbled row reduction 3 (GRR3) optimization,
which reduces the number of necessary ciphertexts per gate to three. In the classical GC
scheme, the keys ki are randomly generated, whereas GRR3 introduces for the first ci-
phertext per gate (e.g., sk03 ‖ 1 in figure 2.5) the condition: sk03 = (ENsk11

(ENsk02
(0k+1)))−1.

The garbler chooses sk03 such that the corresponding ciphertext equals 0k+1. When the
evaluator receives an input with a pointer to the first ciphertext, it can conclude that the
plaintext must be the zero-string 0k+1. Therefore, only the last three ciphertexts per gate
must be transferred to the evaluator.

2.4.3 Free-XOR

Free-XOR was introduced by Kolesnikov and Schneider [KS08] and allows the evaluation
of GCs without having to perform cryptographic operations or to transmit ciphertexts
for XOR gates14. For this the garbler chooses sk0i randomly and sk1i = sk0i ⊕ R, with
R ∈r {0, 1}k being a circuit-wide constant. Besides, he sets the output key sk03 = sk01 ⊕ sk02
(see figure 2.6 for an overview). Now the output of an XOR gate is the XOR of the two

13These bits often also called color bits.
14The use of Free-XOR is restricted by a patent [KS13].

14

2.4 Garbled Circuit Optimizations

sk01,

sk11︷ ︸︸ ︷
sk01 ⊕R

sk02, sk
0
2 ⊕R︸ ︷︷ ︸
sk12

sk03︷ ︸︸ ︷
sk01 ⊕ sk02,

sk13︷ ︸︸ ︷
sk03 ⊕R

Figure 2.6: Garbling with Free-XOR optimization.

input keys:

sk01 ⊕ sk02 = sk03

sk01 ⊕ sk12 = sk01 ⊕ (sk02 ⊕R) = (sk01 ⊕ sk02)⊕R = sk03 ⊕R = sk13

sk11 ⊕ sk02 = (sk01 ⊕R)⊕ sk02 = (sk01 ⊕ sk02)⊕R = sk03 ⊕R = sk13

sk11 ⊕ sk12 = (sk01 ⊕R)⊕ (sk02 ⊕R) = (sk01 ⊕ sk02)⊕ (R⊕R) = sk01 ⊕ sk02 = sk03

Note that Free-XOR introduces a new optimization criterion for GCs. In a circuit con-
sisting of AND, NOT and XOR gates, the number of AND gates should be minimized to
obtain an efficient function representation15.

2.4.4 Half Gates

Garbled row reduction 2 is an efficient optimization for AND gates needing just two cipher-
texts per gate, while Free-XOR allows garbling XOR gates without a single ciphertext.
Both optimizations are not compatible with each other. Leveraging Free-XOR and the
GRR3 approach, the Half Gates (HG) optimization introduced by Zahur et al. in 2015
[ZRE15] accomplish to garble AND gates with only two ciphertexts per gate, while XOR
gates remain free16. The optimization divides an AND gate into two HGs with two ci-
phertexts each. Then GRR3 allows to remove one ciphertext per HG.

The application of an HG is shown in figure 2.7. Note that additionally, GRR3 must be
applied per HG, such that only two ciphertexts are necessary to garble the whole AND
gate. The core idea of the HG optimization is to reformulate the AND operation such that

15NOT gates are free by incorporating them trough inverted wire-label semantics into their neighboring AND
and OR gates.

16During the thesis, a new optimization was published which beats the HG optimization’s lower bound for
communication complexity at the price of a higher computational cost [RR21]. In this optimization, only
1.5k + 5 (with k being the security parameter) bits are needed for garbling an AND gate. If and to what
extent this optimization applies to our use case is an interesting question for future work.

15

2 Background

one input is known for each HG:

a ∧ b = a ∧ (b⊕ r ⊕ r)
= (a ∧ r)︸ ︷︷ ︸

Garbler Half Gate

⊕ (a ∧ (b⊕ r))︸ ︷︷ ︸
Evaluator Half Gate

In this reformulation r is a bit randomly chosen by the garbler. For efficiency, one of the
point-and-permute bits can be used. In the following, r is the point-and-permute bit of
sk02 . Due to the reformulation, the garbler knows one input of the garbler HG (r), and the
evaluator knows one input of the evaluator HG (b⊕ r) - the point-and-permute bit of skb2.

This way, the semantics of the garbler HG simplify to an unary gate. If r is false, the
output is false, and if r is true, the output is a. The ciphertexts of the HG are computed
accordingly (see table of the garbler HG in figure 2.7).

Garbling the evaluator HG is more involved in the sense that if b ⊕ r is true the evalua-
tor must be able to introduce the truth value a to the HG output. Therefore the garbler
sends two ciphertexts ENsk02⊕R(sk

0
2) and ENsk02

(sk02 ⊕ sk01) if r = 1 or ENsk02
(sk02) and

ENsk02⊕R(sk
0
2 ⊕ sk01) if r = 0.

The evaluator selects the ciphertexts to be decrypted from the two HGs based on r⊕b (see
bottom of figure 2.7). If r ⊕ b = 1, the evaluator XORes the output of the evaluator HG
with ska0 . Finally, the AND gate result is obtained by XORing (via Free-XOR) the two HG
outputs.

2.5 Trusted Execution Environments

TEEs such as Intel Software Guard Extensions (SGX)[MAB+13, CD16, Int21], AMD Secure
Encrypted Virtualization (SEV) [Kap16], Sanctum [CLD16], and ARM TrustZone [PS19]
allow programs, containers, or whole VMs to be executed securely in hardware-sealed
enclaves. The hardware isolates the enclave from all other programs on the host, regardless
of the privilege level or CPU mode, so it is protected even from a compromised operating
system.

The key feature of TEEs besides the enclave isolation is attestation, a process that guaran-
tees that a specific enclave, specific in the sense of the code and data it contains, has been
deployed on a specific system. One distinguishes between local and remote attestation.
With local attestation, two enclaves on the same host authenticate each other. In remote
attestation, an enclave authenticates itself to a remote third party. This makes TEEs par-
ticularly attractive for use in the typical cloud computing offerings like MLaaS. The cloud
provider creates an enclave to which the cloud customer establishes a secure connection
and authenticates the enclave via remote attestation.

16

2.5 Trusted Execution Environments

Garbler
Half Gate

Garbler Alice

HG r = 1 r = 0

I ENsk02⊕R(sk
0
1 ⊕ aR) ENsk02

(sk01)

II ENsk02
(sk01 ⊕ aR) ENsk02⊕R(sk

0
1)

Evaluator Bob

r ⊕ b = 1

Decrypt II

r ⊕ b = 0

Decrypt I

r = 0

sk02 ⊕R

r = 1

sk02

sk01 sk01 ⊕ aR

r = 0

sk02

r = 1

sk02 ⊕R

sk01 sk01 ⊕ aR

Evaluator
Half Gate

r = 1 r = 0

ENsk02⊕R(sk
0
2) ENsk02

(sk02)

ENsk02
(sk02 ⊕ sk01) ENsk02⊕R(sk

0
2 ⊕ sk01)

r ⊕ b = 1

Decrypt II

r ⊕ b = 0

Decrypt I

r = 0

sk02 ⊕R

r = 1

sk02

sk02 ⊕ sk01

r = 0

sk02

r = 1

sk02 ⊕R

sk02

⊕ label of a

sk02 ⊕ sk01 ⊕ sk01 = sk02

sk02 ⊕ sk01 ⊕ sk01 ⊕R = sk02 ⊕R

Case distinction

DEA(..) = B A B

Evaluator: XOR output labels of both Half Gates

Figure 2.7: The Half Gate optimization procedure. a and b are the truth values on the
input wires of the AND gate. r is the point-and-permute bit of sk02 . To achieve
full efficiency, the HGs must be reduced with GRR3, and the XOR of the HG
outputs must be performed via Free-XOR.

17

2 Background

Like Slalom, we use Intel SGX over AMD SEV to minimize the trusted computing base.
SGX applications must be divided by the developer into a trusted and untrusted com-
ponent. The trusted component runs inside the enclave and communicates with the un-
trusted part outside the enclave through an interface defined by the developer. The trusted
part of the application and the communication between the two components should be
kept small to reduce the potential attack surface and improve performance.
After Intel SGX was introduced in Intel Core CPUs in 2015, Intel’s current CPU lineup
only supports it in 3rd Gen Intel Xeon Scalable server CPUs. While SGX-enabled CPUs in
the past only supported 128MB of Processor Reserved Memory (PRM), the current Scalable
Xeon CPUs can instantiate enclaves up to 1TB in size. This postpones the paging overhead
that occurs when the available memory is exceeded. SGX’s enclave memory is encrypted,
and a memory management engine decrypts data before loading it into registers.
While SGX provides good protection against typical software-based attacks, its design
basically does not consider hardware-based side-channel attacks. Over the years, the re-
search community has demonstrated a variety of different side-channel attacks on SGX
[BMD+17, GESM17, LSG+17, WCP+17, SCNS16]. However, these hardware-based attacks
are usually much more demanding than typical software vulnerabilities. Therefore, SGX,
combined with traditional software-based efforts, can significantly raise the bar for suc-
cessful attacks.

2.6 Graphical Processing Units

Today, graphical processing units (GPUs) are mainly sold by Intel, AMD, and Nvidia and
were initially designed for rendering real-time 3D graphics. While central processing units
(CPUs) enable accelerated sequential execution through branch prediction, speculative
execution, and large caches, GPUs are designed for massively parallel execution of many
similar operations. This concept is also known as single-instruction-multiple-data (SIMD).
One operation is applied to multiple data elements simultaneously. In the context of
Nvidia’s compute unified device architecture (CUDA) [NBGS08, HP17], it is often also re-
ferred to as single-instruction-multiple-thread (SIMT). The omission of complex control
flow mechanisms and large caches saves chip space and allows thousands of SIMT cores
per GPU. Therefore, GPUs offer significantly larger instruction throughput and memory
bandwidth compared to CPUs.

2.6.1 Memory Spaces

From now on, we will look in particular at CUDA-enabled Nvidia GPUs with the so-called
CUDA cores. Each GPU has multiple streaming multiprocessors (SMs) with multiple CUDA

18

2.6 Graphical Processing Units

Device Memory

global, local, constant,
texture and surface memory

L2 Cache

SM
Texture Cache

Constant Cache
Shared Memory

Registers

SM
Texture Cache

Constant Cache
Shared Memory

Registers

Figure 2.8: Memory hierarchy of CUDA-enabled Nvidia GPUs.

cores. In general, appropriate memory access patterns are the most critical component for
the performance of CUDA applications. Therefore, Nvidia’s memory hierarchy (see figure
2.8) offers different memory spaces for various access patterns. The global memory resides
in the device memory, which is large but underlies high latency. It is read- and writeable
by all threads above all SMs and persistent across kernel launches. A kernel is a top-level
device function launched by the host and executed by multiple CUDA threads in parallel.
In order to achieve the highest possible throughput, the alignment of the data and the
compute capability (CC) of the GPU must be taken into account in addition to the access
pattern when selecting the appropriate memory space (for details, see [Nvi21]). Each GPU
has a CC that describes its software and hardware features.

The local memory also resides in the device memory and is local to the thread that declares
it. Furthermore, the constant memory is located in the device memory and is cached SM-
wise. Constant memory is read-only within kernels, but the host can write data with
the CUDA runtime API. The last memory space in the device memory is the texture and
surface memory, which is also cached SM-wise. This memory space, or rather its cache, is
in particular characterized by spatial 2D-locality.

The shared memory is fast on-chip read- and write-memory located in each SM. It is much
faster than global and local memory and has much higher bandwidth. To achieve high
bandwidth, the shared memory is divided into banks. To prevent bank conflicts, the re-
quests must be scheduled according to the CC of the GPU. For more Nvidia GPU-specific
memory features and optimizations, as well as instruction throughput optimizations, see
[Nvi21].

19

2 Background

Grid
Block

Thread

Warp
Scheduler

SM

Warp
CUDA
Core

Figure 2.9: Execution model of CUDA-enabled Nvidia GPUs.

2.6.2 General-Purpose Computing

When GPUs are used beyond their original purpose of rendering computer graphics, it
is called general-purpose computing on graphics processing units (GPGPU). The beginnings
of GPGPU were to outsource parallelizable workloads from the CPU to the GPU using
graphical primitives. The CUDA toolkit17 makes it possible to process data without need-
ing a graphical representation via high-performance computing primitives, which are op-
timized for the Nvidia GPU architecture.

In the typical CUDA workflow, the host generates data. Next, the host copies the data to
the device and starts the kernel functions that process the data in parallel with multiple
CUDA threads. Usually, one thread processes one data element via one CUDA core. Each
thread has a unique identifier for memory-addressing and program flow control. Once
the parallelized execution is finished, the results are copied back to the host. Next to
explicit functions for host-device data transfers, CUDA also supports the concept of unified
memory. Unified memory introduces the same view of the memory for the CPU and the
GPU and always migrates the data to the processor that needs it.

In CUDA’s execution model (see figure 2.9), threads are grouped into so-called blocks,
and blocks are grouped into so-called grids. All blocks in a grid have the same number
of threads, and blocks and grids can have up to three dimensions. This partitioning of
threads into blocks and grids must be defined by the host when a kernel is started. Threads
from the same block share resources such as shared memory and can synchronize and
communicate.

CUDA assigns each block to an SM. If there are more blocks than SMs, the remaining
blocks must wait. Each block is executed in so-called warps of 32 threads. All threads
in a warp are executed simultaneously on one SM. The execution context (register val-
ues, shared memory, and caches) of a warp remains on the SM for the whole lifetime

17A popular open-source alternative to CUDA is OpenCL [SGS10].

20

2.6 Graphical Processing Units

of the warp. Therefore the warp scheduler can cost-effectively switch between warps to
hide memory latency. When the executions of all threads of a block are finished, the SM
becomes free, and CUDA schedules a new block until all blocks of the grid have been
executed.
Since all threads in a warp share the same program counter, so-called warp convergence
arises when threads have different program flows, e.g., due to an if condition. In warp
convergence, threads with different program flows are executed sequentially and there-
fore reduce parallelism and throughput. Besides avoiding warp convergence, the so-
called occupancy is an essential indicator for utilizing the available CUDA cores. The oc-
cupancy is the ratio of active warps to the maximum number of warps that the device
supports. Generally, the higher the occupancy, the higher the utilization of the SMs and
the higher the throughput. CUDA contains an API for calculating the block size for a
maximum occupancy for a given kernel.
Besides the CUDA cores, the current Nvidia GPU generations contain Tensor cores, which
are particularly useful for accelerating linear algebra workloads. To what extent these
special cores can be leveraged for accelerated evaluation of our garbled gates and gadgets
is an interesting question for future work [Nvi21].

21

3 Related Work

Here we summarize important and recent work on OML from a high-level perspective
and focus on their key performance aspects regarding the online phase. For each scheme
we give an overview, a security analysis, a description of the used methods, and point
out the limitations. The input-privacy and model-privacy terms used in the following
descriptions refer to privacy in the SMPC setting. Note that without further precautions,
an attacker can exploit the prediction services as black box oracles. This enables him to
perform model extraction attacks [CJM20, PMG+17, TZJ+16] to extract model parameters
and model inversion [FLJ+14, FJR15] or membership inference attacks [SSSS17, LBW+18,
NSH19] to learn training data points or their features. As protection against such attacks,
the server could limit possible requests or use the differential privacy framework. These
countermeasures are not considered in the OML setting discussed here.

3.1 Slalom

Slalom18 is an OML scheme introduced in 2019 by Tramèr and Boneh [TB19] for veri-
fied and private inference on ANNs (with fully connected layers, convolutions, separable
convolutions, pooling layers, residual blocks, and activation functions). The scheme is de-
signed for the one-server setting, where the server must feature a CPU with a TEE and an
FPU. The one-server setting corresponds to the typical MLaaS case where a remote client
wants to outsource expensive ML computations to the cloud. Several schemes for this
case which leverage TEEs have been introduced [OSF+16, TGS+18, HSS+18, HZG+18,
LLP+19, ZHC+20]. However, Slalom takes a step further and outsources the expensive
linear operations of ANN inference from the TEE to an FPU to improve trough-output.
To further increase the performance, the protocol is divided into an offline and an online
phase. In the offline phase, parts of the integrity check for the computations outsourced
to the FPU are pre-computed. If input-privacy with respect to the FPU is required, mask-
ing and unmasking bits can also be pre-computed. Slalom’s techniques for outsourcing
matrix multiplications to an FPU can be easily applied to other ML algorithms.

Security. Slalom is secure in the malicious attacker model in terms of the integrity of the
computations and optionally the confidentiality of the inputs under the assumption that

18The name comes from how the TEE and FPU exchange messages for each layer.

23

3 Related Work

the security of the TEE cannot be broken. Also, a commit-and-prove scheme can be used
to ensure model-privacy concerning the remote client.

Methods. To verify the matrix multiplications outsourced to the FPU, Slalom uses
Freivald’s algorithm [Fre77]. Thereby Slalom repeatedly reuses the same random vec-
tor for the same input samples to minimize the memory usage in the TEE. To achieve
optional input-privacy, Slalom uses a simple stream cipher that additively masks all in-
put bits. Compared to the integrity-only approach, the stream encryption generates a
significant overhead.

Limitations. Since Slalom requires communication between the TEE and FPU after each
layer of the ANN, the communication overhead increases with the depth of the ANN. As
described by the authors, if Intel SGX is used, the framework is rendered useless at matrix
dimensions greater than 4096 due to SGX’s DRAM limitation. This limitation drops with
the new Intel Xeon Scalable processors, as already described in section 2.5. Compared to
purely cryptographic solutions, the use of TEEs widens the surface for possible attacks.

3.2 SecureML

SecureML is a 2017 OML scheme by Mohassel and Zhang [MZ17] that allows inference
and training (including adaptive learning rate decay and early stopping) on LiR, LoR,
and ANNs. The scheme is designed within the two-server model. Here, the data owners
distribute their private data to two untrusted but non-colluding servers. These two servers
then train the desired model using 2-party SMPC techniques. The protocol is divided into
an offline phase, in which multiplication triples are generated, and an online phase for
training or inference. Next to SecureML exist a more recent variant called ABY3 [MR18]
which works in the three-server model. Patra et al. [PSSY20] optimize the ABY framework
used in SecureML and achieve a significant speedup.

Security. SecureML is secure in the semi-honest attacker model under the assumption
that the attacker can corrupt any subset of clients, but at most one server. If the clients
should be included in the pre-computation of the multiplication triples to accelerate the
offline phase, the attacker model changes such that the clients cannot collude with a server.
Secure means that the inputs of all data providers remain confidential during and after the
computation.

Methods. SecureML replaces the SMPC unfriendly activation functions sigmoid and
softmax with more efficient and ML-friendly approximations to speed up inference and

24

3.3 Oblivious Neuronal Networks via MiniONN Transformations

learning. While all computations are performed under arithmetic sharing, SecureML uses
GCs to speed up the computation of the activation functions. To compute the GCs starting
from an arithmetic sharing, SecureML uses a technique from the ABY framework [DSZ15]
that allows efficient switching between arithmetic and Yao sharing. For further speedup,
SecureML uses vectorization techniques and applies the same multiplication triplets to
the same inputs in each epoch.

Limitations. All benchmarks in the publication were performed at Amazon Web Ser-
vices. In a LAN scenario, both servers were positioned in the same region and in a WAN
scenario in different regions. The runtimes of these two scenarios differ considerably. To
what extent the LAN setting is realistic is certainly questionable. Once the two servers for
SecureML are rented from the same cloud provider and no further security measures are
implemented, the assumption that these two servers will not collude is extremely strong
or even unrealistic. Even though the authors argue that there are scenarios in which ge-
ographically separated servers provide a high-speed link, this assumption greatly limits
the scheme’s practical utility. In addition, the evaluated ANN is very small (2 hidden lay-
ers with 128 neurons each) and larger ANNs would result in a huge overhead, making the
framework practically unusable.

3.3 Oblivious Neuronal Networks via MiniONN Transformations

MiniONN19 is an approach for secure inference on ANNs in the one-server setting (with
convolutions, dropout, dropconnect, batch normalization, ReLU, leaky ReLU, maxout,
tanh, sigmoid, max, and mean pooling) and was introduced by Liu et al. in 2017 [LJLA17].
The protocol consists of an offline phase for the pre-computation of dot-product triples
(similar to beaver triples; see also section 7.3) and an online phase for prediction.

Security. The framework is secure in the semi-honest attacker model under the assump-
tion that either the client or the server is corrupted. It ensures input-privacy w.r.t. the
server and model-privacy w.r.t. the client (and calls this property obliviousness).

Methods. Utilizing the pre-computed dot-product triples, the server computes the con-
volution, dropout, dropconnect, and batch normalization layers (all are commonly imple-
mented solely with matrix operations) without additional communication, so that both
parties hold valid secret shares after the computation. To compute the activation functions

19The name means minimizing the overhead for oblivious neuronal network transformations and is inspired
by a well-known animation movie.

25

3 Related Work

and max pooling layers, the framework uses GCs and the ABY framework to efficiently
switch between arithmetic and Yao sharing. To compute smooth activation functions such
as sigmoid, instead of using high-dimensional polynomials that require many SMPC un-
friendly multiplications, the framework uses interval-wise approximations with multiple
low-degree polynomials. For efficient pre-computation of the dot-product triples, a simi-
lar technique as commonly used for pre-computation of Beaver Triples is used.

Limitations. Compared to SecureML, the framework is also practical for deeper net-
works, but compared to Slalom, it does not support FPUs. The evaluation shows that
deeper ANNs with seven activation layers or more lead to a large overhead. The authors
point out that the prediction accuracy can also increase with increasing model complexity,
but saturates above a certain complexity level. They propose an accuracy-overhead trade-
off by considering the number of activation functions used. This tradeoff allows to design
deeper models obliviously, but beyond a certain model depth even this approach reaches
its limit.

3.4 Faster CryptoNets

Faster CryptoNets [CBL+18] is a scheme for encrypted inference in the one-server setting.
According to the authors Chou et al., it is based on the typical MLaaS setting in which
users send inputs to a third-party provider that offers a prediction service on its machine
learning models. The scheme supports convolution and fully connected layers, as well
as activation functions (ReLU, square, Swish, softplus), scaled average pooling, and batch
normalization.

Security. The scheme is secure in the malicious attacker model and protects the confi-
dentiality of inputs. The authors refer to this property as oblivious inference.

Methods. The methodology of the scheme follows the two previously proposed Cryp-
toNets [GDL+16, XBF+14] approaches and uses leveled homomorphic encryption (LHE)
[RAD+78] to perform ANN-inference over encrypted inputs. Following the requirements
of ANN-inference, the encryption scheme supports additive and multiplicative homomor-
phisms. Since the available arithmetic operations prevent typical activation functions,
they leverage efficient quantized polynomial approximations. To reduce the number of
expensive multiplications, they prune and quantize the ANN.
The practicable multiplicative depth of the LHE scheme limits the ANN to three layers us-
ing activation functions. The authors suggest leveraging transfer learning [Ben12, HS06]

26

3.5 Delphi

and computing the inference on the pre-trained layers on the client and the inference on
the fine-tuned layers encrypted on the server. They call this approach delegated feature
extraction (DFE). To also enable fine-tuning on the client part, they proposed to leverage
differential private stochastic gradient descent and improve the accuracy of their scheme
noticeably.

Limitations. The approximated and quantized activation functions approximate the
original activation functions best in the interval [-1,1]. Outside this interval, more signif-
icant errors occur. The authors suggest using batch normalization before the activation
functions to normalize the inputs to zero mean and unit variance. This works well ac-
cording to the authors’ experiments but limits the model architecture space.
Compared to Slalom, inference times are orders of magnitude slower. The scheme scales
relatively poorly, and the DFE approach is interesting but contradicts the MLaaS setting
if the goal is to outsource expensive ANN-inference workloads. The authors propose a
medical smartphone application as a use case for their system. Whether this is practicable
for an inference step with message sizes of several hundred GBs to TBs is questionable.

3.5 Delphi

Delphi [MLS+20] is an OML scheme for outsourced ANN-inference based on the tech-
niques of Gazelle [JVC18], which leverages LHE for linear and GCs for non-linear ANN
layers. It works in the typical MLaaS setting in which a user sends his private input to
the prediction API of a cloud provider, which classifies this input using its private ANN
model.

Security. Delphi is secure in the two-party semi-honest setting, where an adversary cor-
rupts one party. A corrupted client can only learn the output of the inference and the
architecture of the ANN. The Planner (see methods) used to replace ReLU activations
with approximations leads in an l-layer ANN to a maximal leakage of l-bit training data
concerning the client. The authors consider this leakage to be negligible considering the
amount of data processed in an ANN. To mitigate this leakage, the authors propose to
leverage DP training methods. The server is not able to learn anything about the private
inputs of the client.

Methods. Delphi is a mixed-SMPC approach with an offline and an online phase. Com-
pared to Gazelle, Delphi reduces the cost of the linear layers by moving the expensive
LHE computations via additive SS to the offline phase. Using a planner based on neural

27

3 Related Work

network architecture search [EMH19, WRP19], Delphi replaces suitable ReLU activation
functions with approximations while retaining non-approximated ReLUs relevant for ac-
curacy (performance-accuracy tradeoff). Subsequently, hyperparameter optimization is
used for the new architecture. Delphi computes ReLU activations via GCs (OT in the of-
fline phase) and ReLU approximations with quadratic polynomials via Beaver Triples (see
section 7.3) (precomputed with linear HE in the offline phase). Delphi utilizes standard
GPU libraries for the acceleration of linear layers.

Limitations. The use of non-standard activation functions complicates training and lim-
its the space of possible model architectures. The neural network architecture search leads
to a significant training overhead. ANNs cannot always be re-trained, for example, the
training data may no longer be available, or the training cost may be too high.

28

4 Garbling Techniques for Sprint

In this chapter, we introduce the garbling techniques for Sprint based on the binary GCs
an their optimizations introduced in section 2.3 and section 2.4.

4.1 Garbling Gadgets for Arithmetic Circuits

Implementing arithmetic operations via conventional binary GCs is expensive, especially
compared to other SMPC approaches like secret-sharing-based SMPC. Ball, Malkin, and
Rosulek [BMR16] introduced garbling gadgets for efficient garbling of arithmetic circuits
over large finite fields. Considering our use case, their gadgets allow, in particular, free
addition (mod m), free multiplication with a constant (mod m), and efficient projection
gates for arbitrary unary functions (mod m). Starting from Free-XOR, Ball et al. consider
wire-labels as vectors of components from Zm. The encoding of a value x ∈ Zm is given
through skx = sk0 + xRm, with Rm being a circuit-wide constant vector of random el-
ements from Zm

20. The construction considers wires with different moduli, called mixed
moduli circuits, and leverages different offsets Rm for each module m - but wires of one
modulus always share the same offset value. Point-and-permute generalizes by using an
element from Zm instead of a single bit and choosing 1 ∈ Zm as the point-and-permute
component of Rm.
A mixed modulus circuit consists of an acyclic structure of wires together with their mod-
uli and gates constructed as follows (we limit the description to gates relevant for our use
case):

• Addition (x+ y) mod m (unbounded fan-in with equal modulus):
skx1 + sky2 ≡ (sk01 + sk02) + (x+ y)Rm mod m.

• Multiplication by a public constant xc mod m (unary gate):
c · skx ≡ c · sk0 + cxRm mod m with c being coprime to modulus m (needed for
technical reasons in the security proof, see also [BMR16]).

• Unary projection gate for arbitrary functions ϕ : Zm → Zn:
A garbled projection gate consists of m ciphertexts of the form Enskx(sk

ϕ(x)). Lever-
aging GRR3, one ciphertext can be removed.

20This Free-XOR generalization together with the free addition gate was shown before, e.g. in [MPS15].

29

4 Garbling Techniques for Sprint

While the first two gate types are free, the projection gate is not practical for larger moduli
m. BMR, therefore, propose to use a composite primal modulus (CPM) Pk = 2 · 3 · . . . · pk, the
product of the first k primes and to leverage the Chinese remainder theorem to represent
the wire values in a residue representation21:

JxKcrt = ([x]2, [x]3, . . . , [x]pk), where [x]m represents x mod m.

From the circuit perspective, every value of a conventional wire is now represented by
a bundle of wires, with each of the wires in a bundle applying one factor of the CPM.
BMR show how to transfer various operations efficiently into the domain of the residue
representation. We will return to the residue representation in the next section and show
operations that capitalize on it. At this point, we are only interested in how the addition
and multiplication operations described above remain free:

• Addition mod m:

JxKcrt + JyKcrt = ([x]2, [x]3, . . . , [x]pk) + ([y]2, [y]3, . . . , [y]pk)

= ([x]2 + [y]2, [x]3 + [y]3, . . . , [x]pk + [y]pk)

= Jx+ yKcrt

• Multiplication by a public constant c mod m: cJxKcrt = (c[x]2, c[x]3, . . . , c[x]pk), for
c 6= 0. For c = 0, BMR include one global (the same for each modulus) zero-wire to
represent the zero-product.

4.2 Garbled Neuronal Networks

By introducing new cryptographic and ANN specific GC optimizations in an also imple-
mentation-wise heavily tweaked library called fancy-garbling, Ball et al. demonstrate the
practicability of garbled neuronal network inference [BCM+19]. Via a new mixed-modulus
multiplication gate and a fast approximated sign function, their optimizations especially target

• the ReLU activation function (ReLU(x) = sgn(x) · x),

• and the max-pooling operation (max(x, y) = x+ ReLU(y − x)).

Here, we describe the GC optimizations, followed by a brief description of fancy-garbling’s
implementation-level optimizations.

21Leveraging CRT-representations for optimizations in GCs was proposed before, e.g. in [AIK11].

30

4.2 Garbled Neuronal Networks

4.2.1 Half-Gate Generalization

Starting from the BMR scheme for arithmetic circuits, Ball et al. [BCM+19] introduce a
mixed-modulus multiplication gate by generalizing the HG optimization for AND gates
in binary GCs. Before we describe the mixed-modulus HG, we introduce the HG general-
ization of Malkin et al. [MPS15].

As in the BMR scheme, the wire-labels are vectors consisting of elements from Zp, and
the wire-label encoding of x is given by sk0 + xR. Also, the free addition mod p gate
and the point-and-permute generalization are the same. Like in the HG optimization, we
denote the point-and-permute value of sk02 as r, and the point-and-permute value of sky2
is given by (y + r) mod p. Similar to the HG optimization, the key idea is to reformulate
the multiplication such that the garbler and the evaluator each know one input to the
generalized HGs:

x · y ≡ x · (y + r − r) ≡ (x · (y + r)︸ ︷︷ ︸
Evaluator HG

− x · r︸︷︷︸
Garbler HG

) mod p

Since r is the point-and-permute value of the zero-label of the y-wire, the garbler knows
r at garbling time, and the evaluator learns y + r at evaluation time. That way, the gar-
bler HG can be garbled using an unary projection gate (x 7→ rx) with p − 1 ciphertexts.
Concretely, the garbler selects a random zero-label sk03 for the garbler HG and performs
encryptions for all possible input values x ∈ Zp:

Ensk01+xR(sk
0
3 + xrR)

For the evaluator HG, the garbler selects a random zero-label sk04 and performs encryp-
tions for all possible input values (y + r) ∈ Zp (results in p− 1 ciphertexts):

ENsk02+(y+r)R(sk
0
4 − (y + r) · sk01)

The evaluator knows the labels of both inputs and decrypts two of the above ciphers
accordingly (leveraging point-and-permute). Knowing y + r and sk01 + xR, he can induce
the semantics of the input x into the output of the evaluator HG (similar to the evaluator
HG in the binary domain):

sk04 − (y + r)sk01 + (y + r)(sk01 + xR) = sk04 + (y + r)xR

Considering sk03 − sk04 as the zero-label of the generalized HG, the product-output can be

31

4 Garbling Techniques for Sprint

derived via a single free subtraction:

sk04 + (y + r)xR− (sk03 + xrR) = sk04 − sk03 + yxR

4.2.2 Mixed-Modulus Half-Gate

To leverage the generalized HG for the ReLU activation function, we must cast the sgn(x)-
bit via a projection gate to a value from Zpi . Garbling a cast operation Zq → Zpi (with q = 2

in our use case), results in q − 1 ciphertexts. Together with the generalized HG, garbling
the multiplication sgn(x) ·x, results in (q− 1)+ (2p− 2) ciphertexts. By introducing a new
mixed modulus HG, Ball et al. [BCM+19] show how the multiplication of two wire-values
x ∈ Zpi and y ∈ Zq with different moduli can be garbled with roughly q+p−1 ciphertexts.
The garbling process of the garbler HG remains unchanged, except that we chose r ∈
Zpi to be the color-value of the zero-label of x, respectively the color-value of sk01 (this
slightly differs from Ball et al., who introduce a new random value called "virtual wire").
To encrypt the evaluator HG, the garbler uses an input-label sk02 + yR′, with sk02 being a
vector of Zq-elements and an offset value R′ ∈ Zq. Instead of p−1 ciphertexts, the garbled
evaluator HG results now in q − 1 ciphertexts. Since y ∈ Zq, also the corresponding color-
value is from Zq. To leverage the same trick as above and split the multiplication into two
HGs with one known input each (namely the color-value of the associated wire), we have
to preserve the known input a = y+ r (with a ∈ Zp) of the evaluator HG. Therefore Ball et
al. propose to leverage a single projection gate of q− 1 really short ciphertexts, encrypting
a for all possible y. In the case of the multiplication sgn(x) · x, we are able to pack these
short ciphertexts in 128-Bit, the length of a "usual" ciphertext. Hence, the total cost of a
mixed-modulus HG is q + p − 1. More concretely, garbling the evaluator HG results for
every possible y ∈ Zq in the following ciphertexts:

ENsk02+yR′(sk
0
4 − (r + y) · sk01)

ENsk02+yR′(r + y)

4.2.3 Mixed-Radix Addition

For use in the approximated garbled sign function (see below), Ball et al. [BCM+19]
introduced a fast mixed-radix addition. Consider the summation of k = 3 values repre-
sented in mixed-radix representation ZDn

∼= (Zd1× . . .×Zdn) (associated with the integers
{0, . . . , Dn − 1 = (

∏
i di) − 1} and d1 being the most significant digit). The operation

proceeds from the least to the most significant digit as follows:

1. Compute the sum s = x + y + z + cini , where x, y, z are the values of the Zdi-wires,

32

4.2 Garbled Neuronal Networks

respectively the digits of the summands in mixed-radix representation and cini the
carry-input. For the least significant digit with cini = 0, leverage Dn circuit-wide
constant zero-wires, one for each possible wire modulus.

2. Cast x, y, z, cini using four projection gates to Z3di+cmaxi −1, where cmaxi describes the
maximal possible value of cini .

3. Add all input values mod 3di + cmaxi − 1.

4. Compute the carry-out (the carry-in of the next digit) cout =
⌊
x+y+z+cini

di

⌋
using an

unary gate. Note that the carry-out modulus must match the modulus of the next
digit’s sum computation in step 1.

Leveraging the addition gadget of the BMR scheme, both additions are free. The cast oper-
ations via projection gates cost 4(di− 1) and the unary gate in the last step (3di + cmaxi − 2)

ciphertexts per digit Zdi . This procedure generalizes to arbitrary many summands.

Since the sign function requires just the most significant digit of the sum, we do not need
the final carry-out. The costs for computing the most significant digit of a k summands
mixed-radix addition are as follows. For all but the most significant digit, the cast oper-
ation (step 2) costs k(d − 1) + cmaxi ciphertexts. The carry-out (step 4) is computed via an
unary gate resulting in k(d− 1) + cmaxi ciphertexts. The additions in steps 1 and 3 are free.
Thus, the overall cost is bound by:[

2k
n∑

i=2

(di − 1) + 2
n∑

i=2

cmax
i

]
≤

[
2k

n∑
i=2

(di − 1) + 2n(k − 1)

]

4.2.4 Approximated Garbled Sign

The garbled sign function sgn : ZPk
→ {0, 1} of Ball et al. [BCM+19] expects ZPk

-values
and interprets the first half of the ring as negative and the other half as positive numbers:

sgn(x) =

0 if x < Pk/2

1 if x ≥ Pk/2

The concept of the construction22 is based on the Chinese remainder theorem, which de-
scribes the reconstruction of the value x ∈ Pk from its residue representation JxKcrt =

22This general approach also appears in earlier works like [HP94].

33

4 Garbling Techniques for Sprint

(x1, . . . , xk):

x ≡
k∑

i=1

A−1i ·Ai · xi mod Pk, with Ai =
Pk

pi

≡
k∑

i=1

αi · xi mod Pk

For some integer q, we can write:[
x = q · Pk +

k∑
i=1

αixi

]

⇐⇒
[
x

Pk
= q +

n∑
i=1

αixi
Pk

]

=⇒
[

fractional part of
x

Pk
= fractional part of

n∑
i=1

αixi
Pk

]

Hence, the sign function can be computed just regarding the fractional part of the last
summand:

sgn(x) = 1 ⇐⇒ x ≥ Pk/2

⇐⇒ x

Pk
≥ 1/2

⇐⇒ fractional part of
n∑

i=1

αixi
Pk
≥ 1/2

This concept leads to the computation of the sign operation:

1. Compute αixi/Pk for all residues xi and round to 1/M , withM being a discretization
level. This fixed-point approximation d/M can be represented as Zm-wire value (as
described later, M is represented in the mixed-radix system using a bundle of wires
instead of a single Zm-wire). d can be pre-computed as lookup table.

2. Add all numerators of the fixed-point approximation mod M (approximation of the
fractional part of

∑n
i=1 αixi/Pk).

3. Compare the result to M/2.

The value d/M approximates αixi/Pk within an error margin of 1/2M . Therefore, the
error of a k term sum is limited by k/2M , and if k/2M < 1/Pk, the sign computation is
correct. This means M > kPk/2 guarantees correct results. But note, that smaller values

34

4.2 Garbled Neuronal Networks

of M improve the computational efficiency and can also be correct. Ball et al. [BCM+19]
(see figure 1 in their publication) performed an exhaustive search for k ≤ 11 primes for
three different approaches of choosing M and its mixed-radix representation. Compared
to the exact BMR sign gadget, their approach is slightly more efficient for k ≤ 11.
The above sign function becomes interesting in use cases, such as ANNs, where full cor-
rectness is not required. In these situations, M can be seen as a trade-off parameter be-
tween the function precision and the garbling cost. Ball et al. [BCM+19] (see figure 2 in
their publication) showed that even a minimal loss in precision could lead to significant
efficiency enhancements.
Now, we describe the garbled sign function for values represented in a mixed-radix rep-
resentation Zm1 × . . .× Zmt , with

∏t
i=1mi =M :

1. Approximate xi by d ∈ ZM using t projection gates per prime pi and one for each
digit mi of the mixed-radix representation. This results in t

∑k
i=1(pi− 1) ciphertexts.

2. Add all k values represented in mixed-radix representation, using the mixed-radix
addition from above. The summation results in maximal 2k

∑t
i=2(mi− 1)+ (k− 1)2

ciphertexts.

3. Compare the sum against M/2 by checking whether the most significant digit is
greater or equal to m1/2. The comparison is made via a single projection gate re-
sulting in m1 − 1 ciphertexts. To reduce the comparison to the most significant digit
requires m1 to be even.

To balance the garbling cost across the three steps, Ball et al. [BCM+19] suggest to chose
M = m1 · . . . · mt, with m1 being relatively large (larger than 50) and m2, . . . ,mt being
relatively small.

4.2.5 Fancy-Garbling

Since GCs representing ANNs are very large, potentially larger than the memory avail-
able, fancy-garbling implements circuit-streaming. The garbler and the evaluator form a
pipeline and immediately execute computations on the level of addition, multiplication,
and projection gates without buffering. Besides, fancy-garbling parallelizes the GC eval-
uation using an additional postman thread (the technique is not described in detail, but
multiple threads compute one ANN layer). All values of the ANN are encoded in CRT
representation and with the minimal number of prime residues necessary to preserve the
accuracy of the ANN.
In the case of public weights, the scalar multiplication of input values with the weights is
free using the BMR scheme. In the case of private weights, the scalar multiplication is per-

35

4 Garbling Techniques for Sprint

formed via projection gates, resulting in di−1 ciphertexts. Fancy-garbling is implemented
in Rust and available as open source23.

4.3 Efficient Garbling with Random Permutations via Fixed-Key AES

Most optimizations described so far focus on the communication complexity of GC-based
protocols. A line of work also introduces computational improvements for the circuit gar-
bling and evaluation [NPS99, LPS08, HEKM11, KSS12]. The state-of-the-art was presented
by Bellare et al. [BHKR13]. They propose to encrypt the wire-labels using a cryptographic
permutation instantiated by fixed-key AESc, with c being a fixed and public key. By in-
stantiating AES with a fixed key, the scheme must perform just a single key-derivation
for the whole circuit compared to one key-derivation per label in [KSS12]. While skip-
ping the key-derivation heavily improves computation times, it comes at the cost of intro-
ducing non-standard assumptions about AES to enable a security-proof in the random-
permutation model (for a further discussion see [GLNP15, GKWY20]).
At the same time, Bellare et al. [BHKR13] presented JustGarble, an implementation of
a highly optimized general-purpose garbling tool. To instantiate the fixed-key AES ap-
proach described above, they used hardware-accelerated AES NI instructions together
with SEE4 to access 128-bit registers for label manipulation. In this implementation, us-
ing the permutation instead of a block cipher, namely AES256 as in [KSS12], leads to
a 2.5-fold improvement during evaluation time and a 3-fold improvement during gar-
bling time. Using the permutation instead of a cryptographic hash function (SHA1 as in
[HEKM11]) leads to a 6.7-times improvement in the evaluation and a 10-times improve-
ment during garbling.
While the speedup introduced by using the permutation is significant, JustGarble demon-
strates the importance of common implementation-level optimizations and a sleek circuit
representation - using indices and arrays instead of objects. Even in the disadvantageous
case of circuits larger than the cache size, JustGarble achieves a 70-times speedup against
[KSS12].

23https://github.com/GaloisInc/fancy-garbling

36

5 Sprint: Secure and Fast Outsourced Machine Learning

This chapter describes our approach Sprint for the one server setting (the same as in Slalom
[TB19]) based on the work of Ball et al. [BMR16, BCM+19] introduced in sections 4.1
and 4.2. The description also mentions outsourcing the GC evaluation to a GPU, while
the implementation does not include this feature. Our system allows a data owner to
outsource secure ANN-inference to a remote server controlled by a third party. Therefore,
we garble the ANN within a TEE on the remote server and outsource the evaluation or
the actual inference step to a co-located FPU. To keep the size of the projection gates of our
garbled ANN in practical dimensions, we follow the approach of Ball et al. and transfer
the inputs into the CRT space. In the following, we describe the garbling procedure step
by step from the perspective of the individual residues of the CRT representation, the CRT
encoded inputs, and the ANN operations. We stick to the notation introduced earlier and
avoid repetitive descriptions. Finally, we describe our CPU-based implementation and
the challenges of outsourcing the GC evaluation to a GPU.

5.1 Residue Level

We initialize the garbling procedure (see algorithm 1) by creating random offset vectors
Rmi for all possible wire-modulim1, . . . ,mk in our circuit. The last component of the offset
vector serves as the color value and is a constant one. For all circuit inputs, we create
random input wire labels with matching modulus. Again, the last component serves as
a color value but now is chosen randomly to hide the input semantics in the point-and-
permute manner. The number of components of our labels results from the corresponding
wire modulus, such that each wire label contributes 128 bits of entropy to the AES-based
fixed-key permutation.

Algorithm 1: Initialize
Result: Rm1

, . . . , Rmk
, sk01, . . . , sk

0
n

1 for all k possible wire-moduli mi do
2 c←

⌊
128

log2 mi

⌋
// Number of components per label

3 Rmi

r←− Zc−1
mi
‖1 // Last label-component serves as color value

4 for all n circuit inputs i with modulus m do
5 sk0i

r←− Zc
m

37

5 Sprint: Secure and Fast Outsourced Machine Learning

The garbling process (see algorithm 2) follows the topology of the ANN from the input-
to the output layer. The garbling of the individual gate types proceeds analogously to the
method of Ball et al. introduced in section 4.1. The garbling results include the ciphertexts
of the projection gates and the zero-input wire labels sk0 of all gates. While the ciphertexts
are transferred to the FPU for the GC evaluation, the zero-input wire labels stay inside the
TEE and are required to generate the decoding information and encode the inputs.

Algorithm 2: Garble

Result: C̃, sk0i for all gate ids
1 for all gates in circuit-wise topological order with output id i do
2 m← input-modulus of the gate
3 n← output-modulus of the gate
4 J ← indices of all gate inputs
5 switch gate type do

// Gate operations are performed component-wise
6 case addition do
7 sk0i ←

∑
j∈J sk

0
j mod m

8 case multiplication-by-constant w do
9 sk0i ← w · sk0J0

mod m

10 case unary projection gate with functionality ϕ : Zm 7→ Zn do
11 r ← last component of Rm

12 sk0i ← 0
13 for all possible input values 0 ≤ x < m do
14 Cr+x ← EN(sk0J0

+ x ·Rm mod m)⊕ (sk0i + ϕ(x) ·Rn mod n)

15 Ci ← {C0, . . . , Cm−1}

16 C̃ = {Ci | for all projection gates with output-id i}

We generate the decoding information (see algorithm 3) for all circuit outputs and possible
circuit output values based on the zero-wire label inputs of the circuit output gates. The
initialization, the garbling of the ANN, and the generation of the decoding information
are performed offline.

Algorithm 3: Generate Decoding Information

Result: D̃
1 for all circuit-output ids i do
2 m←wire modulus of i
3 for all possible output values 0 ≤ x < m do
4 Di

x ← EN(sk0i + x ·Rm)

5 Di ← {Di
0, . . . , D

i
m−1}

6 D̃ = {Di | for all circuit-output-ids i}

The online phase starts as soon as an input for the ANN arrives in the TEE. First, Sprint

38

5.1 Residue Level

encodes the inputs (see algorithm 4) using the zero-input wire labels of the circuit inputs
and transfers them to the FPU. The FPU evaluates the garbled inputs on the circuit (see

Algorithm 4: Encode Inputs

Result: X̃
1 for all circuit-input ids i and input values x with modulus m do
2 Xi ← sk0i + x ·Rm

3 X̃ ← {Xi | for all circuit input ids i}

algorithm 5) already obtained during the offline phase. The evaluation also runs in the
same way as described in section 4.1. After the evaluation is complete, the FPU sends the
garbled outputs back to the TEE. In the final step of the inference, the TEE decodes the

Algorithm 5: Evaluate

Result: Ỹ
1 for all gates in circuit-wise topological order with output ids i do
2 n← output-modulus of the gate
3 J ← indices of all gate inputs
4 switch gate type do
5 case addition do
6 ski ←

∑
j∈J Xj mod n

7 case multiplication-by-constant w do
8 ski ← w ·XJ0 mod n

9 case unary projection gate do
10 r ← last component of XJ0

11 ski ← Ci
r ⊕ EN(XJ0)

12 Ỹ ← {ski | for circuit-output ids i}

garbled outputs (see algorithm 6) and sends them back to the data owner over a secure
channel.

Algorithm 6: Decode Outputs
Result: Y

1 for all circuit-outputs ids i do
2 n←modulus of the circuit-output
3 for all possible output values 0 ≤ y < n do
4 if EN(ski) = Di

x then
5 yi ← x

6 Y ← {yi | for all circuit-output ids i}

39

5 Sprint: Secure and Fast Outsourced Machine Learning

5.2 CRT Level

The CRT level perspective on Sprint is straightforward and mainly described in section 4.1.
Essentially, we transition all inputs to their CRT representation and proceed for each
residue as described in the previous section. When the data owner receives the garbled
outputs, he converts the CRT representation to its initial form using the Chinese remainder
theorem. To prevent overflows, we choose the minimum CPM for the CRT representation
that can represent all values in the circuit.

5.3 ANN Level

While most ML algorithms use decimal arithmetics, the most common SMPC and OML
protocols and thus the GCs in Sprint operate over integers. Therefore, we quantize the
weights, biases, and inputs via division by a small quantisation constant and rounding to
the nearest integer. Subsequently, we map all positive integers, including the zero, to the
lower half of the finite ring ZPk

encoding our inputs. We map all negative numbers to
the second half of the ring. For example, the inputs-sequence 〈0, 1, . . . , 4,−5,−4, . . . ,−1〉
would be mapped to 〈0, 1, . . . , 9〉 for Pk = 10.

Based on the CRT level, Sprint leverages the approximated garbled sign gadget of Ball
et al. to garble the sign and ReLU activation functions. Moreover, as shown in section 4.2,
the ReLU function can be used to garble a max-pooling layer. To maintain the encapsula-
tion of the abstraction levels, Sprint garbles these operations with inputs over all residual
classes of the CRT representation in separate GCs. During the evaluation, Sprint interrupts
when such an operation occurs, transfers the output from the residue level to the GC of
the operation, and transfers the operations’s output back to the residue level. To correctly
represent the semantic of our encoding in the sign function, we modify the final compar-
ison of the sum x of the mixed-radix addition with the most significant mixed-radix base
m1

sign(x) =

1 if x < m1
2

0 else.

Besides these ANN-specific gadgets, which cannot be garbled at the CRT level due to their
non-linearity, Sprint can implement operations such as vector-matrix multiplication at the
CRT level, for example, to abstract them at the ANN level as a dense layer. Using the
bias trick, the dense layer and the convolution operation can be implemented as a garbled
matrix multiplication on the ANN level.

40

5.4 Security

5.4 Security

Sprint can operate in two modes. In the more efficient variant, the ANN weights are
public, and their multiplication by the input is free. In this mode, Sprint is secure in the
honest-but-curious attacker model and protects the confidentiality of the input and the
result of the inference. The confidentiality of the input follows directly from the oblivious
property of GCs [BMR16]. Given the GC and garbled inputs, an attacker is unable to learn
anything about the plain input. Moreover, without the decoding information, nothing can
be learned about the plain output.
In the second mode, the weights are secret and are modeled with projection gates24. In
this mode, Sprint, like Slalom, is secure in the malicious attacker model and protects the
confidentiality of the inputs as well as outputs and the integrity of the computations. Un-
like the typical GC protocol that proceeds between a garbler and an evaluator, which both
contribute inputs, in our case, only the garbler introduces inputs to the computation. An
attack in which the garbler reveals the inputs of the evaluator through a manipulated cir-
cuit is therefore not relevant. Together with the oblivious property of GCs follows the
confidentiality of the inputs. The integrity of the computations follows directly from the
authenticity property of GCs [BMR16]. An attacker cannot generate a manipulated gar-
bled output whose decoding yields a valid plain output given the GC and garbled inputs.

5.5 Implementation

For the implementation of Sprint, we follow JustGarble (see section 4.3) and use hardware-
accelerated AES NI instructions. We use arrays and indices exclusively instead of objects
to avoid the associated administrative overhead and fully implement Sprint in pure C.
For high-quality randomness in the wire label generation, we use Intel’s Digital Random
Number Generator (DRNG). We implemented Sprint in the three abstraction levels de-
scribed above to facilitate maintenance, extension, and debugging. For the determination
of the maximal intermediate value in the inference process and further debugging pur-
poses, we implemented a non-garbled Sprint version. We use JSON to transfer the ANN
architecture, including the weights, biases, shapes, layer-types, and activation functions
from the TensorFlow model to Sprint.
To send the wire labels made of Zp elements to the AES-based fixed-key permutation,
they have to be packed into 128-bit strings. Like Ball et al. [BMR16], we use the Horner
method for packing. Therefore, we add component by component each value of the label

24Note that it is also possible to model the private weights using garbled inputs, but at a higher cost. Com-
pared to the p − 1 ciphertexts per projection gate, in this case a multiplication with 2p − 2 ciphertexts is
needed [BCM+19].

41

5 Sprint: Secure and Fast Outsourced Machine Learning

to the packed representation and multiply for each component by the wire modulus. For
unpacking, we implemented the optimized method of Ball et al. [BMR16] based on a
lookup table. However, for CRT representations of our sizes (pk ≤ 15), we did not see any
improvement over the naive approach of dividing stepwise for each wire-label with the
wire modulus. Therefore, we choose the naive unpacking method for Sprint.

5.6 GPGPU Specifics

Efficient memory management is typically one of the most critical requirements for effi-
cient GPGPU applications. The arithmetic circuits in Sprint are neither strictly hierarchical
nor uniform due to the global circuit wires and the modulus-based adaptive label length.
This makes memory coalescing difficult since the labels of the gates executed in paral-
lel are not necessarily consecutively arranged in the global memory. To what extent this
affects the instruction throughput of a GPU port has to be evaluated.
In general, arithmetic garbled circuits are not suitable for the evaluation on CUDA-
enabled GPUs since they do fit not into the concept of single-instruction-multiple-data
and the parallel evaluation of different gates causes warp convergence. ANNs or CNNs
typically have homogeneous layers consisting of many similar operations. Therefore,
the particular case of garbled ANNs with their layered structure of homogeneous gates
and layer-wise data dependencies fits CUDA’s execution model. To schedule the gates
accordingly, the garbled ANN should be represented by a circuit with suitable layer in-
formation. Depending on the size of the garbled ANN and the utilization of the GPU,
batch-wise inference can be realized by evaluating multiple circuits in parallel.
While current CPUs provide the AES NI instruction set for hardware-accelerated AES, no
comparable primitives exist on NVIDIA GPUs. A series of works investigates software op-
timized implementations of AES on GPUs [LPK16, WC19, NAI17, MCXS17]. These works
focus on the parallel processing of multiple plaintext- or ciphertext blocks. However, in
our use case as a fixed-key permutation in an arithmetic GC, we only require the encryp-
tion of a single label or plaintext block per gate. Using the above software-optimized AES
implementations warp-wise could be an approach to still benefit from their optimizations.

42

6 Performance and Accuracy Evaluation

In this chapter, we evaluate our implementation and compare it with the work of Ball et
al. [BCM+19]25. We run our experiments on a machine with an Intel Core i7-11700 CPU
and a base clock of 2.5GHz. We train our ANNs using TensorFlow [AAB+15] with Keras
[C+15] on the MNIST dataset [Den12]. This dataset consists of 70.000 black and white
images of handwritten digits from zero to nine. 60.000 images serve as training data, and
10.000 images serve as test data. Each image is represented by 28× 28 integer pixel values
from the range [0,255].
We trained all models over ten epochs using the Adam Optimizer [KB15], and the loss
function Sparse Categorical Crossentropy. We quantize all weights and biases by dividing
by a quantization constant α reported below and then rounding to the nearest integer value.
For future comparisons, we document the number of clock cycles besides the pure runtime
in seconds. Otherwise, fair comparisons using different hardware are not possible.

6.1 CRT Representation and the Quantization Constant

To transfer a trained ANN into its GC representation, its weights and biases must be quan-
tized to integer values. Depending on the size of the target representation, some learned
information will be lost, and the predictive power of the ANN will suffer. The smaller the
target representation of the ANN becomes, the more the range of the intermediate val-
ues computed during the inference (see also figure 6.1 and table 6.1) decreases. As this
range decreases, a smaller CPM can be chosen and the inference computation becomes
lighter. In this way, the quantization constant forms a trade-off between a garbled ANN’s
performance and prediction capability.
We evaluate the influence of the quantization constant on Model-A, a simple ANN con-
sisting of a single dense layer with ten neurons. As shown in table 6.1, three CPMs, P6,
P7, and P8 can be considered for garbling Model-A. The most accurate model is obtained
by α = 10.0 and P7. Compared to the plain Model-A with an accuracy of 92.82%, the gar-
bled Model-A loses less than 2% accuracy. Larger quantization constants and CPMs do
not promise higher accuracy. The performance of the model can only be increased with a
quantization constant of 1.7. In this way, the offline phase and the online phase are accel-

25Note that the authors also evaluated their implementation on a single CPU without an oblivious transfer
and corresponding communication.

43

6 Performance and Accuracy Evaluation

P6 P7 P8

Composite primorial modulus Px

104

105

106

107

M
ax

im
al

va
lu

e

1.0

α = 1.7 2.0

10.0

100.0

Values representable in CRT
representation
Value range in ANN per
quantization constant

Figure 6.1: Relation between the quantization constant α and the CPM of the CRT repre-
sentation leveraged in the garbled Model-A.

Table 6.1: Influence of the quantization value and CPM on the performance and accuracy
of garbled Model-A. The reported values are means regarding the MNIST test
set with a relative standard derivation below 2%.

Quantization constant 1.0 1.7 2.0 10.0 100.0
Size of value range 14.812 28.817 34.060 175.897 1.785.814
CPM P6 P6 P7 P7 P8

Clock cycles
offline 1.216E+05 1.214E+05 1.333E+05 1.333E+05 1.449E+05
online 2.108E+04 2.110E+04 2.307E+04 2.310E+04 2.500E+04

Runtime (s)
offline 0.122 0.121 0.133 0.133 0.145
online 0.021 0.021 0.023 0.023 0.025

Acc. after encoding 48.61% 71.30% 80.52% 90.11% 90.02%
Garbled acc. 46.45% 71.32% 80.50% 90.88% 90.02%

erated by about 9%. However, this speedup costs about 20% accuracy. If the quantization
does not divide by a quantization constant, the model’s accuracy suffers even more, and
a speedup cannot be achieved since the CPM Pk does not fall below k = 6. The significant
impact that the new parameters α and the CPM already have on the performance and ac-
curacy of a small garbled ANN emphasizes their importance and demonstrates the need
for careful consideration for garbling larger and deeper ANNs.

6.2 Searching Mixed-Radix Bases and the Approximated Sign Function

Ball et al. [BCM+19] present MRS-bases for the approximated sign computation for the
CPMs P4 to P11 for different correctness levels (above 99% accuracy). In our evaluation,
we could not reproduce these correctness levels for the presented MRS bases. For exam-

44

6.3 Computational Workload in Comparison

Table 6.2: Accuracy of the garbled Model-B for different input layer sizes and mixed-radix
bases. The reported values are means regarding the MNIST test set with a rela-
tive standard derivation below 2%.

Model Model-B30 Model-B100
MRS Bases {292, 8 } {78, 7, 5, 4 } {292, 8 } {78, 7, 5, 4 }
Size of value range 2.044.579 ∈ [P8] 2.401.846 ∈ [P8]

Clock cycles
offline 2.811E+05 2.821E+05 7.017E+05 7.076E+05
online 7.531E+04 7.633E+04 2.472E+05 2.502E+05

Runtime (s)
offline 0.281 0.282 0.702 0.708
online 0.075 0.076 0.247 0.250

Acc. after encoding 95.92% 97.05%
Garbled acc. 89.77% 32.71% 93.65% 42.00%

ple, the MRS bases {78, 7, 5, 4} for P8 have correctness of over 99.99%, according to Ball
et al., whereas we could only observe correctness of 98.20%. All other bases presented for
P8 performed even worse. Therefore, we implemented our own search. The search space
is relatively large, so we restricted our search range relatively strongly. Nevertheless, we
were able to find better bases, e.g. {292, 8}. These bases achieve correctness of 99.43%.

We have garbled Model-Bx with two dense layers and with the bases of Ball et al. and
ours. The first layer has x neurons with ReLU activations, and the second layer has ten
neurons. As shown in table 6.2, even small changes in the accuracy of the approximation
of the sign function have an enormous impact on the accuracy of a garbled ANN. While
we obtain an accuracy loss of ~5% respectively ~3% with our bases compared to the ac-
curacy after encoding, the bases of Ball et al. led to a total failure with accuracy drops of
well over 50%. In addition, our smaller bases achieve a slight performance advantage.

We are confident that we can further improve the accuracy of our garbled ANNs with the
extension of the search space for MRS bases. To handle this search space, we propose to
parallelize the search and port it to the GPU. In addition, it might be interesting to search
for MRS bases that perform particularly well for the input domains that are relevant to us.
As shown in figure 6.2, the errors of the approximated sign function occur highly locally
restricted in the range of the input. In addition, it could be interesting to include besides
the accuracy the optimization goal of the performance and to search for small bases.

6.3 Computational Workload in Comparison

Next, we garble MNIST Model A of Ball et al. to compare the computational workload
with fancy-garbling. This comparison is possible despite the differences because neither
our evaluation nor the evaluation of fancy-garbling considers the communication over-

45

6 Performance and Accuracy Evaluation

0.0 0.2 0.4 0.6 0.8 1.0

Input value ∈ [P8] ×107

0

1

2

3

4

5

6
N

um
be

r
of

er
ro

rs

×104

Our {292, 8}
Ball et al. {78, 7, 5, 4}

Figure 6.2: Error distribution of the approximated sign function by input range and se-
lected MRS-bases for CPM P8. Light gray bars show the performance of our
chosen MRS-bases, and dark gray bars show the performance of the best MRS-
bases from Ball et al. [BCM+19] evaluated by the target function of our MRS-
bases search.

head of the schemes and is completely executed on one CPU. MNIST Model A consists of
three dense layers with 128, 128, and 10 neurons. The neurons of the first two layers use
ReLU activations.

As shown in table 6.3, the whole fancy-garbling scheme runs about 16-17 times faster than
our scheme. However, we must consider that fancy-garbling distributes the scheme over
eight cores (presumably 16 threads), executes garbling and evaluation in parallel, eval-
uates on a significantly higher clocked CPU (2.5GHz vs. 3.5GHz), and does not encode
structural information into the circuit26. We estimate that we evaluate a similar number
of gates per thread. Thus the computational workload as expected barely differs. Our
CPU implementation can also be parallelized well on the CPU due to the abstraction lay-
ers if we evaluate all gates per CRT residue in one thread. Presumably, we can achieve a
speedup similar to fancy-garbling for a CPU-only implementation.

Furthermore, as shown in Table 6.3, the now comparatively low accuracy achieved by our
MRS bases leads to a significant accuracy drop for this ANN. The two consecutive layers
with ReLU activations require a more accurate sign approximation. We can expand the
search space for our MRS bases here as well, which is a promising approach to reaching
the same accuracy as Ball et al.

26Fancy-garbling can garble and evaluate gates in parallel and does not require any structure information
about the circuit since it streams the circuit gate-wise. Streaming is not possible in our scheme due to our
division into an offline and online phase.

46

6.4 Online-Communication in Comparison

Table 6.3: Comparison of the computational workload and the accuracy of our approach
with Ball et al. Note that this comparison neglects the communication costs. The
reported values are means regarding the MNIST test set with a relative standard
derivation below 1%. Blank values (-) are unknown.

Approach Our (single-thread) Ball et al. [BCM+19] (multi-thread)
Size of value range 8.960.678 ∈ [P8] − ∈ [P8]

Clock cycles
offline 1.289E+06 -
online 3.748E+05 -

Runtime (s)
offline 1.289 -
online 0.375 -
total (1.664) (0.1)

Approx. sgn acc. 99.43% ≥ 99.99%
Acc. after encoding 97.23% -
Garbled acc. 86.31% 95.70%

Table 6.4: Comparison of Sprint’s communication volume (CV) and communication
rounds (CRs) in the online phase with recent OML schemes for deep CNNs.
ResNet32 is trained on CIFAR-100, and all other CNNs are trained on the Im-
ageNet dataset from 2012. The scheme authors have documented entries with
asterisks, and all other entries were calculated based on the scheme descriptions.

Scheme Sprint Slalom [TB19] Delphi [MLS+20] MiniONN [LJLA17]
Measure CV CRs CV CRs CV CRs CV
VGG16 20.8MB 1 >50MB* 17 - 17 -
ResNet32 50.8kB 1 1.16MB 31 60MB* 31 -
ResNet50 20.8MB 1 36.9MB 50 - 50 -
ResNet101 20.8MB 1 57.8MB 101 - 101 -
ResNet152 20.8MB 1 62.6MB 152 - 152 789.2GB*

6.4 Online-Communication in Comparison

In the this step, we evaluate the communication overhead in the online phase of our
scheme when evaluating deep CNNs (VGG16 [SZ15] and ResNet [HZRS16]) and compare
with recent schemes for outsourced ANN inference. All CNNs were trained with the Im-
ageNet dataset [DDS+09] except ResNet32 which was trained with CIFAR-100 [KH+09].
We compare both the communication volume (CV) and the number of communication
rounds (CR). In the case of Sprint and Slalom [TB19], we consider the communication be-
tween the client and the TEE and between the TEE and the FPU. In the case of Delphi
[MLS+20] and MiniONN [LJLA17], we consider the communication between the client
and the server.

As shown in table 6.4, our scheme dominates this comparison with significantly smaller

47

6 Performance and Accuracy Evaluation

Table 6.5: Comparison of Sprint’s features with recent OML schemes. The comparison
considers ANNs with more than 32 layers to be deep. Pure activation func-
tions are not modified to be suitable for SMPC techniques. Off-the-shelf models
are conventionally trained models without special tuning for the OML setting.
Model privacy refers to the weights and biases of the model.

Scheme

TEE
FPU

D
eep

A
N

N
s

Pure
activation

fun.

O
ff-the-shelf m

odels
C

onstant C
Rs

C
onstant C

V

M
alicious security

M
odel privacy

Sprint G# G# G# G#
Slalom [TB19] # - - G#
SecureML [MZ17] - - - - - - -
MiniONN [LJLA17] - - # - - - -
CryptoNets [CBL+18] - - - G# G# -
Delphi [MLS+20] - # - G# - - -

 Full, G# Optional, # Limited, − No support

CVs and requires only a single CR regardless of the number of non-linear layers in the
ANN. MiniONN is not competitive due to its huge CV. In the case of Delphi, as in the
case of Slalom, the number of CRs grow linearly in the number of non-linear layers of the
outsourced ANN. For linear layers, both schemes do not require CRs. Sprint has a CV
up to 22 times smaller than Slalom and up to 1181 times smaller than Delphi and is thus
clearly the most efficient scheme regarding the communication.

Note that the XONN [RSC+19] and DeepSecure [RRK18] schemes not listed here, which
are also based on pure GC approaches, require only a constant number of CRs. How-
ever, these schemes are not suitable for general ANNs or depth CNNs, and we have re-
frained from including them in the comparison. SecureML [MZ17] and the CryptoNets
[XBF+14, GDL+16, CBL+18] are also not practical for deep CNNs and therefore not con-
sidered. Fancy-garbling is not directly comparable because it does not distinguish between
an online and offline phase and streams the GC from the garbler to the evaluator. This
stream is orders of magnitude larger than the online cost of Sprint.

6.5 Feature Set in Comparison

In this last part of the evaluation, we briefly compare the feature set and properties of
Sprint with other current OML schemes for secure outsourcing of ANNs (see also chap-

48

6.5 Feature Set in Comparison

ter 3). Table 6.5 shows that Sprint outperforms other schemes also in terms of the pro-
vided feature set. In particular, Sprint stands out with full FPU support. Both linear and
non-linear layers can be accelerated on an FPU without breaking the underlying security
guarantees. Another unique feature is that Sprint offers both semi-honest and malicious
security modes. Sprint is one of the few schemes that can securely outsource practically
used deep ANNs. Overall, this comparison further illustrates the competitiveness of our
scheme. In the future, it would be interesting to deepen and further expand this compari-
son.

49

7 Conclusion & Outlook

In this final chapter, we summarize the thesis results, provide an outlook on the next
steps until the full implementation of our schema Sprint and discuss the wide range of
opportunities for future work.

7.1 Summary

The area of OML is diverse, an exciting research field, growing rapidly, and promises
to solve the practical pressing problem of protecting sensitive data in the field of ML.
In the past, mixed-SMPC approaches that combine HE, SS, and GCs were considered to
pave the most promising road to practical OML schemes for ANNs. We observed that
these schemes all need to communicate when switching between SMPC techniques. Since
different techniques are used depending on the operation and layer of the ANN to be
outsourced, this communication overhead grows linearly in the depth of the ANN. This
is problematic since deep ANNs have proven to be especially powerful in many domains.
We have identified the Slalom scheme [TB19] as particularly promising, but unfortunately,
even this scheme suffers from a communication overhead that grows linearly in the depth
of the ANN. However, Slalom differentiates itself from other approaches by alleviating
this communication overhead through the use of a TEE and a co-located FPU that commu-
nicate via a high-speed interface. Slalom uses the TEE for sensitive computations and the
FPU for simple cryptographically protected and accelerated computations. Based on the
trend of mixed-SMPC approaches and Slalom, we raised the research question of whether
we can omit the communication between the layers of an outsourced ANN and reduce
the massive communication overhead in the online phase. Like Slalom, we remain in the
typical MLaaS case where a client wants to outsource computational intense inference on
ANNs to a powerful server.
After a deep dive into highly optimized arithmetic GCs, including ANN specific opti-
mized gadgets in chapter 4, we presented our new scheme Sprint in chapter 5. Sprint is
based entirely on arithmetic GCs and requires only minimal communication in the on-
line phase at the start and end of the inference process. During the computation of the
inference, and in particular, between each layer of the ANN, Sprint does not require any
communication, thus answering our research question positively. Like Slalom, Sprint uses
an FPU co-located to a TEE and is divided into an offline and online phase. In the offline

51

7 Conclusion & Outlook

phase, the TEE quantizes and encodes the weights and biases of the outsourced ANN.
Then the TEE converts them to their CRT representation for garbling and transmission to
the FPU. When the TEE receives an input for inference, it starts the online phase, quantizes
and encodes the inputs, transfers them to their CRT representation, and garbles them for
transmission to the FPU. The FPU evaluates the garbled input on the GC received in the
offline phase and sends the garbled output back to the TEE. The TEE decodes the garbled
output and sends it back to the client over a secure channel.

Compared to the typical mixed-SMPC approaches and Slalom, Sprint massively reduces
the communication overhead during the online phase. In addition, Sprint is particularly
versatile since GCs allow the computation of arbitrary functions. This way, Sprint is ready
for future ANN layers and allows pre-processing like normalization and scaling or post-
processing like majority voting of model orchestras and much more. In addition, Sprint
offers two modes of operation, the faster one with public ANN weights and the malicious
secure one with secret weights.

Unfortunately, for reasons already described, it was not possible to complete the imple-
mentation of our scheme before the submission of the thesis. However, we completed
the full CPU implementation, including searching for suitable MRS bases for the approx-
imated sign gadget and evaluating it concerning computational performance, accuracy
and communication cost in the online phase. We show the competitiveness of our CPU
implementation and gain deeper insights into the search and error structure of MRS-bases
for the garbled sign approximation.

7.2 Outlook

Three implementation steps are missing before the completion of Sprint. The most com-
plex one is to finish the implementation of the GC evaluation on a CUDA-enabled GPU.
From this part of the implementation, we expect a significant performance boost. The de-
tails that have to be considered for this part of the scheme are described in section 2.6 and
section 5.6. The second step involves isolating the sensitive computations and intermedi-
ate results belonging to the garbling procedure in an SGX enclave. Since the size limitation
of the SGX enclaves, which existed at the beginning of the thesis, has been raised consid-
erably, this step should be smoothly implementable. The last missing step concerns the
search for suitable MRS bases for the approximated sign gadget. This search can be well
parallelized and potentially accelerated on a GPU. From this step, we expect a significant
accuracy improvement for deeper and more complex ANNs.

52

7.3 Future Work

7.3 Future Work

While the OML domain offers countless possibilities for future work, we see four inter-
esting optimization areas concerning our scheme, Sprint, and its use case. The first area
of GC optimizations is the smallest, as we already did extensive literature research and
implemented many optimizations. However, it might be exciting to take a closer look at
binary GCs and binarized ANNs. The work on the scheme XONN [RSC+19] deals with
the binary case and can serve as a good starting point.

The second area concerns the setting of our scheme. Since Sprint significantly optimizes
the communication in the online phase, it would be interesting to research use cases where
the communication is comparatively expensive. This does not apply to the case described
in the thesis since the communication between the TEE, and the co-located FPU is com-
paratively cheap. For example, a scenario in which no TEE is available on the server or
the security guarantee of a TEE is not sufficient would be thinkable. Then the client must
send the garbled ANN in the offline phase and the garbled inputs in the online phase
to the server. Subsequently the server answers after the GC evaluation with the garbled
outputs.

The third area regards the implementation of our scheme. First of all, it would be interest-
ing to exploit further optimization possibilities like Intel SSE, AVX, or multi-threading and
observe their influence on the performance. Besides, a performance comparison of Intel
SGX with AMD SEV would be exciting. While not directly related to the implementation,
several algorithmic optimizations exist for the matrix multiplication (like the prominent
one of Strassen [Str69]), which account for a large part of our computational workload.
It would be interesting to study to what extent these optimizations are applicable and
valuable in arithmetic GCs.

The last area concerns the ANNs to be garbled and is quite broad since we did not per-
form any optimizations of this kind so far. First, we could use quantization-aware training
techniques [JKC+18, WJZ+20] to make the ANNs robust to accuracy losses. Besides quan-
tization, it would also be interesting to consider the approximation of the ReLU function
already during training. For example, it would be reasonable to shift pre-activation values
in the error range of the input of the approximated sign function (see also figure 6.2) into
error-free ranges or to use the approximated ReLU function on the forward-pass. We ex-
pect a significant accuracy or since smaller MRS bases can be used, performance boost by
such an approach. To optimize the communication during the offline phase, all standard
methods for model reduction, e.g., pruning [MS88, Kar90], are interesting to study. Most
of the work in the field of OML deals exclusively with inference, and we are not aware
of any scheme that allows outsourcing the training of practically relevant deep ANNs.

53

7 Conclusion & Outlook

Therefore, it would be very exciting to explore how our arithmetic GC approach could be
extended by training methods.

54

References

[Citing pages are listed after each reference.]

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from ten-
sorflow.org. [Pages 8 and 43.]

[ACG+16] Martín Abadi, Andy Chu, Ian J. Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Edgar R. Weippl, Stefan Katzenbeisser, Christo-
pher Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pages 308–318. ACM, 2016.
[Page 9.]

[AIK11] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. How to garble arithmetic circuits. In Rafail Ostro-
vsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA,
USA, October 22-25, 2011, pages 120–129. IEEE Computer Society, 2011. [Page 30.]

[BCM+19] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole Schimanski. Garbled neural networks
are practical. IACR Cryptol. ePrint Arch., 2019:338, 2019. [Pages 2, 30, 31, 32, 33, 35, 37, 41, 43, 44, 46, and 47.]

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum, editor,
Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 11-15, 1991, Proceedings, volume 576 of Lecture Notes in Computer Science, pages 420–432.
Springer, 1991. [Page 65.]

[Ben12] Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Isabelle Guyon,
Gideon Dror, Vincent Lemaire, Graham W. Taylor, and Daniel L. Silver, editors, Unsupervised and Transfer
Learning - Workshop held at ICML 2011, Bellevue, Washington, USA, July 2, 2011, volume 27 of JMLR Proceed-
ings, pages 17–36. JMLR.org, 2012. [Page 26.]

[BFH+18] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018. [Page 8.]

[BFL+11] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and Thomas Schneider. Privacy-
preserving ECG classification with branching programs and neural networks. IEEE Trans. Inf. Forensics
Secur., 6(2):452–468, 2011. [Page 2.]

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling from a fixed-
key blockcipher. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,
2013, pages 478–492. IEEE Computer Society, 2013. [Page 36.]

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, the ACM Conference on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012, pages 784–796. ACM, 2012. [Page 13.]

55

References

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks are practical. In William Enck and Collin Mulliner,
editors, 11th USENIX Workshop on Offensive Technologies, WOOT 2017, Vancouver, BC, Canada, August 14-15,
2017. USENIX Association, 2017. [Page 18.]

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
May 13-17, 1990, Baltimore, Maryland, USA, pages 503–513. ACM, 1990. [Pages 13 and 14.]

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek. Garbling gadgets for boolean and arithmetic circuits. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 565–577. ACM, 2016. [Pages 2, 13, 29, 37, 41, and 42.]

[BOP06] Mauro Barni, Claudio Orlandi, and Alessandro Piva. A privacy-preserving protocol for neural-network-
based computation. In Sviatoslav Voloshynovskiy, Jana Dittmann, and Jessica J. Fridrich, editors, Proceed-
ings of the 8th workshop on Multimedia & Security, MM&Sec 2006, Geneva, Switzerland, September 26-27, 2006,
pages 146–151. ACM, 2006. [Page 2.]

[C+15] François Chollet et al. Keras. https://keras.io, 2015. [Pages 8 and 43.]

[CBL+18] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryptonets:
Leveraging sparsity for real-world encrypted inference. CoRR, abs/1811.09953, 2018. [Pages 26 and 48.]

[CD16] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol. ePrint Arch., 2016:86, 2016.
[Page 16.]

[CJM20] Nicholas Carlini, Matthew Jagielski, and Ilya Mironov. Cryptanalytic extraction of neural network models.
In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part III, volume 12172 of Lecture Notes in Computer Science, pages 189–218. Springer, 2020. [Page 23.]

[CL01] Yan-Cheng Chang and Chi-Jen Lu. Oblivious polynomial evaluation and oblivious neural learning. In
Colin Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, 7th International Conference on the Theory
and Application of Cryptology and Information Security, Gold Coast, Australia, December 9-13, 2001, Proceedings,
volume 2248 of Lecture Notes in Computer Science, pages 369–384. Springer, 2001. [Page 2.]

[CLD16] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware extensions for strong
software isolation. In Thorsten Holz and Stefan Savage, editors, 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016, pages 857–874. USENIX Association, 2016. [Page 16.]

[Cré87] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl Pomerance, editor,
Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic Techniques,
Santa Barbara, California, USA, August 16-20, 1987, Proceedings, volume 293 of Lecture Notes in Computer
Science, pages 350–354. Springer, 1987. [Page 11.]

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
2009), 20-25 June 2009, Miami, Florida, USA, pages 248–255. IEEE Computer Society, 2009. [Page 47.]

[Den12] Li Deng. The MNIST database of handwritten digit images for machine learning research [best of the web].
IEEE Signal Process. Mag., 29(6):141–142, 2012. [Page 43.]

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient mixed-protocol
secure two-party computation. In 22nd Annual Network and Distributed System Security Symposium, NDSS
2015, San Diego, California, USA, February 8-11, 2015. The Internet Society, 2015. [Page 25.]

56

https://keras.io

References

[Dwo08] Cynthia Dwork. Differential privacy: A survey of results. In Manindra Agrawal, Ding-Zhu Du, Zhenhua
Duan, and Angsheng Li, editors, Theory and Applications of Models of Computation, 5th International Con-
ference, TAMC 2008, Xi’an, China, April 25-29, 2008. Proceedings, volume 4978 of Lecture Notes in Computer
Science, pages 1–19. Springer, 2008. [Page 9.]

[EGL82] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology: Proceedings of
CRYPTO ’82, Santa Barbara, California, USA, August 23-25, 1982, pages 205–210. Plenum Press, New York,
1982. [Page 11.]

[EMH19] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. J. Mach.
Learn. Res., 20:55:1–55:21, 2019. [Page 28.]

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, pages 1322–1333. ACM, 2015. [Page 23.]

[FLJ+14] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon M. Lin, David Page, and Thomas Ristenpart. Privacy
in pharmacogenetics: An end-to-end case study of personalized warfarin dosing. In Kevin Fu and Jaeyeon
Jung, editors, Proceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014,
pages 17–32. USENIX Association, 2014. [Page 23.]

[Fre77] Rusins Freivalds. Probabilistic machines can use less running time. In Bruce Gilchrist, editor, Information
Processing, Proceedings of the 7th IFIP Congress 1977, Toronto, Canada, August 8-12, 1977, pages 839–842. North-
Holland, 1977. [Page 24.]

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural net-
works. In Yee Whye Teh and D. Mike Titterington, editors, Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010,
volume 9 of JMLR Proceedings, pages 249–256. JMLR.org, 2010. [Page 8.]

[GDL+16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy. In Maria-
Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 201–210. JMLR.org, 2016. [Pages 26 and 48.]

[GESM17] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache attacks on intel SGX. In Cris-
tiano Giuffrida and Angelos Stavrou, editors, Proceedings of the 10th European Workshop on Systems Security,
EUROSEC 2017, Belgrade, Serbia, April 23, 2017, pages 2:1–2:6. ACM, 2017. [Page 18.]

[GKWY20] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty computation from fixed-
key block ciphers. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020, pages 825–841. IEEE, 2020. [Page 36.]

[GLNP15] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits under standard as-
sumptions. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October 12-16, 2015, pages
567–578. ACM, 2015. [Page 36.]

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.
[Page 9.]

57

References

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York, New York, USA, pages 218–229. ACM, 1987. [Pages 11
and 65.]

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation using
garbled circuits. In 20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011, Proceedings.
USENIX Association, 2011. [Page 36.]

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques and Constructions. Infor-
mation Security and Cryptography. Springer, 2010. [Page 9.]

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan van der Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-
basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with numpy. Nat., 585:357–362, 2020.
[Page 7.]

[HP94] CY Hung and B Parhami. An approximate sign detection method for residue numbers and its application
to rns division. Computers & Mathematics with Applications, 27(4):23–35, 1994. [Page 33.]

[HP17] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edition: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 6th edition, 2017. [Page 18.]

[HS06] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural networks.
science, 313(5786):504–507, 2006. [Page 26.]

[HSS+18] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett Witchel. Chiron: Privacy-
preserving machine learning as a service. CoRR, abs/1803.05961, 2018. [Page 23.]

[HZG+18] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Max Augustin, Michael Backes, and Mario
Fritz. Mlcapsule: Guarded offline deployment of machine learning as a service. CoRR, abs/1808.00590,
2018. [Page 23.]

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 770–778. IEEE Computer Society, 2016. [Page 47.]

[Int21] Intel. Intel software guard extensions developer reference for linux* os, 2021. [Page 16.]

[JKC+18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, pages 2704–2713. Computer Vision Foundation / IEEE Computer
Society, 2018. [Page 53.]

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low latency frame-
work for secure neural network inference. In William Enck and Adrienne Porter Felt, editors, 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 1651–1669.
USENIX Association, 2018. [Page 27.]

[Kap16] David Kaplan. {AMD} x86 memory encryption technologies. 2016. [Page 16.]

[Kar90] Ehud D. Karnin. A simple procedure for pruning back-propagation trained neural networks. IEEE Trans.
Neural Networks, 1(2):239–242, 1990. [Page 53.]

58

References

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. [Pages 7 and 43.]

[KH+09] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
[Page 47.]

[KMR14] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. Flexor: Flexible garbling for XOR gates that
beats free-xor. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, volume 8617
of Lecture Notes in Computer Science, pages 440–457. Springer, 2014. [Page 13.]

[KO11] Bekir Karlik and A Vehbi Olgac. Performance analysis of various activation functions in generalized mlp
architectures of neural networks. International Journal of Artificial Intelligence and Expert Systems, 1(4):111–
122, 2011. [Page 8.]

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications.
In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and
Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International Colloquium, ICALP 2008,
Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming
& Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in Computer Science, pages
486–498. Springer, 2008. [Pages 13 and 14.]

[KS13] Vladimir Kolesnikov and Thomas Schneider. Secure function evaluation techniques for circuits containing
xor gates with applications to universal circuits, May 14 2013. US Patent 8,443,205. [Page 14.]

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with malicious adver-
saries. In Tadayoshi Kohno, editor, Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA,
August 8-10, 2012, pages 285–300. USENIX Association, 2012. [Page 36.]

[LBW+18] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng Wang, Haixu Tang, Carl A. Gunter,
and Kai Chen. Understanding membership inferences on well-generalized learning models. CoRR,
abs/1802.04889, 2018. [Page 23.]

[LJLA17] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network predictions via minionn transfor-
mations. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 619–631. ACM, 2017. [Pages 2, 25, 47, and 48.]

[LLP+19] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee, Fengyuan Xu, Chenren
Xu, Lintao Zhang, and Junehwa Song. Occlumency: Privacy-preserving remote deep-learning inference
using SGX. In Stephen A. Brewster, Geraldine Fitzpatrick, Anna L. Cox, and Vassilis Kostakos, editors, The
25th Annual International Conference on Mobile Computing and Networking, MobiCom 2019, Los Cabos, Mexico,
October 21-25, 2019, pages 46:1–46:17. ACM, 2019. [Page 23.]

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In Moni Naor, editor, Advances in Cryptology - EUROCRYPT 2007, 26th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24,
2007, Proceedings, volume 4515 of Lecture Notes in Computer Science, pages 52–78. Springer, 2007. [Page 11.]

[LPK16] Rone Kwei Lim, Linda R. Petzold, and Çetin Kaya Koç. Bitsliced high-performance AES-ECB on gpus.
In Peter Y. A. Ryan, David Naccache, and Jean-Jacques Quisquater, editors, The New Codebreakers - Essays
Dedicated to David Kahn on the Occasion of His 85th Birthday, volume 9100 of Lecture Notes in Computer Science,
pages 125–133. Springer, 2016. [Page 42.]

59

References

[LPS08] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-party computation efficiently with
security against malicious adversaries. In Rafail Ostrovsky, Roberto De Prisco, and Ivan Visconti, editors,
Security and Cryptography for Networks, 6th International Conference, SCN 2008, Amalfi, Italy, September 10-12,
2008. Proceedings, volume 5229 of Lecture Notes in Computer Science, pages 2–20. Springer, 2008. [Page 36.]

[LSG+17] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch shadowing. In Engin Kirda and Thomas Ristenpart,
editors, 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18, 2017,
pages 557–574. USENIX Association, 2017. [Page 18.]

[MAB+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R. Savagaonkar. Innovative instructions and software model for isolated execution. In Ruby B.
Lee and Weidong Shi, editors, HASP 2013, The Second Workshop on Hardware and Architectural Support for
Security and Privacy, Tel-Aviv, Israel, June 23-24, 2013, page 10. ACM, 2013. [Page 16.]

[MCXS17] Jianwei Ma, Xiaojun Chen, Rui Xu, and Jinqiao Shi. Implementation and evaluation of different parallel
designs of AES using CUDA. In Second IEEE International Conference on Data Science in Cyberspace, DSC
2017, Shenzhen, China, June 26-29, 2017, pages 606–614. IEEE Computer Society, 2017. [Page 42.]

[MLS+20] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks. In Srdjan Capkun and Franziska Roesner, editors,
29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, pages 2505–2522. USENIX
Association, 2020. [Pages 2, 27, 47, and 48.]

[MPS15] T Malkin, V Pastro, and A Shelat. The whole is greater than the sum of its parts: Linear garbling and
applications. In Workshop talk at Securing Computation Workshop in Berkley, 2015. [Pages 29 and 31.]

[MR18] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning. In David
Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-
19, 2018, pages 35–52. ACM, 2018. [Pages 2 and 24.]

[MS88] Michael Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from a network
via relevance assessment. In David S. Touretzky, editor, Advances in Neural Information Processing Systems 1,
[NIPS Conference, Denver, Colorado, USA, 1988], pages 107–115. Morgan Kaufmann, 1988. [Page 53.]

[Mur12] Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive computation and machine learning
series. MIT Press, 2012. [Pages 5 and 6.]

[MZ17] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine learn-
ing. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages
19–38. IEEE Computer Society, 2017. [Pages 2, 24, and 48.]

[NAI17] Naoki Nishikawa, Hideharu Amano, and Keisuke Iwai. Implementation of bitsliced AES encryption on
cuda-enabled GPU. In Zheng Yan, Refik Molva, Wojciech Mazurczyk, and Raimo Kantola, editors, Network
and System Security - 11th International Conference, NSS 2017, Helsinki, Finland, August 21-23, 2017, Proceed-
ings, volume 10394 of Lecture Notes in Computer Science, pages 273–287. Springer, 2017. [Page 42.]

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with CUDA.
In International Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2008, Los Angeles,
California, USA, August 11-15, 2008, Classes, pages 16:1–16:14. ACM, 2008. [Page 18.]

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Jeffrey Scott Vitter,
Lawrence L. Larmore, and Frank Thomson Leighton, editors, Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages 245–254. ACM, 1999.
[Page 11.]

60

References

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism design. In
Stuart I. Feldman and Michael P. Wellman, editors, Proceedings of the First ACM Conference on Electronic
Commerce (EC-99), Denver, CO, USA, November 3-5, 1999, pages 129–139. ACM, 1999. [Pages 13, 14, and 36.]

[NSH19] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of deep learning: Pas-
sive and active white-box inference attacks against centralized and federated learning. In 2019 IEEE Sym-
posium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 739–753. IEEE, 2019.
[Page 23.]

[Nvi21] Nvidia. Cuda toolkit documentation, 2021. [Pages 19 and 21.]

[OPB07] Claudio Orlandi, Alessandro Piva, and Mauro Barni. Oblivious neural network computing via homomor-
phic encryption. EURASIP J. Inf. Secur., 2007, 2007. [Page 2.]

[OSF+16] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil Vaswani, and
Manuel Costa. Oblivious multi-party machine learning on trusted processors. In Thorsten Holz and Stefan
Savage, editors, 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016, pages 619–636. USENIX Association, 2016. [Page 23.]

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. [Page 8.]

[PMG+17] Nicolas Papernot, Patrick D. McDaniel, Ian J. Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-
Reza Sadeghi, and Xun Yi, editors, Proceedings of the 2017 ACM on Asia Conference on Computer and Com-
munications Security, AsiaCCS 2017, Abu Dhabi, United Arab Emirates, April 2-6, 2017, pages 506–519. ACM,
2017. [Page 23.]

[PS19] Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A comprehensive survey. ACM Comput.
Surv., 51(6):130:1–130:36, 2019. [Page 16.]

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party computation
is practical. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, 15th International Con-
ference on the Theory and Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009.
Proceedings, volume 5912 of Lecture Notes in Computer Science, pages 250–267. Springer, 2009. [Page 13.]

[PSSY20] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. ABY2.0: improved mixed-protocol
secure two-party computation. IACR Cryptol. ePrint Arch., 2020:1225, 2020. [Page 24.]

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptol. ePrint Arch., 2005:187,
2005. [Page 11.]

[RAD+78] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks and privacy homomorphisms.
Foundations of secure computation, 4(11):169–180, 1978. [Page 26.]

[RR21] Mike Rosulek and Lawrence Roy. Three halves make a whole? beating the half-gates lower bound for gar-
bled circuits. Cryptology ePrint Archive, Report 2021/749, 2021. https://eprint.iacr.org/2021/
749. [Page 15.]

[RRK18] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: scalable provably-secure
deep learning. In Proceedings of the 55th Annual Design Automation Conference, DAC 2018, San Francisco, CA,
USA, June 24-29, 2018, pages 2:1–2:6. ACM, 2018. [Pages 2 and 48.]

61

https://eprint.iacr.org/2021/749
https://eprint.iacr.org/2021/749

References

[RSC+19] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E. Lauter, and Farinaz Koushanfar.
XONN: xnor-based oblivious deep neural network inference. In Nadia Heninger and Patrick Traynor,
editors, 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA, USA, August 14-16, 2019,
pages 1501–1518. USENIX Association, 2019. [Pages 2, 48, and 53.]

[RWT+18] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori, Thomas Schneider, and
Farinaz Koushanfar. Chameleon: A hybrid secure computation framework for machine learning applica-
tions. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim, editors,
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, AsiaCCS 2018, Incheon,
Republic of Korea, June 04-08, 2018, pages 707–721. ACM, 2018. [Page 2.]

[SCNS16] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Preventing page faults from
telling your secrets. In Xiaofeng Chen, XiaoFeng Wang, and Xinyi Huang, editors, Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June
3, 2016, pages 317–328. ACM, 2016. [Page 18.]

[SGS10] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming standard for heteroge-
neous computing systems. Comput. Sci. Eng., 12(3):66–73, 2010. [Page 20.]

[SS08] Ahmad-Reza Sadeghi and Thomas Schneider. Generalized universal circuits for secure evaluation of pri-
vate functions with application to data classification. In Pil Joong Lee and Jung Hee Cheon, editors, Infor-
mation Security and Cryptology - ICISC 2008, 11th International Conference, Seoul, Korea, December 3-5, 2008,
Revised Selected Papers, volume 5461 of Lecture Notes in Computer Science, pages 336–353. Springer, 2008.
[Page 2.]

[SSSS17] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA,
USA, May 22-26, 2017, pages 3–18. IEEE Computer Society, 2017. [Page 23.]

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–356, 1969. [Page 53.]

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recog-
nition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. [Page 47.]

[TB19] Florian Tramèr and Dan Boneh. Slalom: Fast, verifiable and private execution of neural networks in trusted
hardware. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. [Pages 1, 23, 37, 47, 48, and 51.]

[TGS+18] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and Ramachandran Ramjee. Privado: Prac-
tical and secure DNN inference. CoRR, abs/1810.00602, 2018. [Page 23.]

[TZJ+16] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing machine learning
models via prediction apis. In Thorsten Holz and Stefan Savage, editors, 25th USENIX Security Sympo-
sium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages 601–618. USENIX Association, 2016.
[Page 23.]

[WC19] Canhui Wang and Xiaowen Chu. GPU accelerated AES algorithm. CoRR, abs/1902.05234, 2019. [Page 42.]

[WCP+17] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A. Gunter. Leaky cauldron on the dark land: Understanding memory side-channel hazards
in SGX. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 2421–2434. ACM, 2017. [Page 18.]

[WJZ+20] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization for
deep learning inference: Principles and empirical evaluation. CoRR, abs/2004.09602, 2020. [Page 53.]

62

References

[WRP19] Martin Wistuba, Ambrish Rawat, and Tejaswini Pedapati. A survey on neural architecture search. CoRR,
abs/1905.01392, 2019. [Page 28.]

[XBF+14] Pengtao Xie, Misha Bilenko, Tom Finley, Ran Gilad-Bachrach, Kristin E. Lauter, and Michael Naehrig.
Crypto-nets: Neural networks over encrypted data. CoRR, abs/1412.6181, 2014. [Pages 26 and 48.]

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual Sympo-
sium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages 162–167. IEEE Computer
Society, 1986. [Pages 11 and 13.]

[ZHC+20] Fan Zhang, Warren He, Raymond Cheng, Jernej Kos, Nicholas Hynes, Noah M. Johnson, Ari Juels, Andrew
Miller, and Dawn Song. The ekiden platform for confidentiality-preserving, trustworthy, and performant
smart contracts. IEEE Secur. Priv., 18(3):17–27, 2020. [Page 23.]

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data transfer in
garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in Computer
Science, pages 220–250. Springer, 2015. [Pages 13 and 15.]

63

Appendix

GMW Protocol

The GMW protocol was published in 1987 and is an additive SMPC protocol for boolean
and arithmetic circuits named after its authors Goldreich, Micali, and Wigderson [GMW87].
While figure 1 shows the procedure of the protocol for the two parties Alice with inputs
x1, . . . , xn and Bob with inputs y1, . . . , yn, the protocol generalizes nicely to the general
SMPC setting (see [GMW87]).
In the first step, Alice and Bob mask their inputs with random bits ri and send the result
to each other. In this way, the generated masks and the received masked values form a
secret sharing of the inputs. Using the shared inputs, the gates of the circuit can now
be successively evaluated without any party learning the other’s inputs. In figure 1, we
consider a boolean circuit consisting of XOR, AND, and NOT gates27.
To evaluate the NOT gate, it is sufficient for one party to negate its input, as Alice does
in figure 1. Then both parties hold a valid sharing of the output of the NOT-gate. The
evaluation of the XOR gate is just as straight-forward: Both parties xore their shares.
While the evaluation of NOT and XOR gates does not require any communication between
the parties, the evaluation of the AND gate requires a 1-out-of-4 oblivious transfer. In the
first step, a party chooses a random bit sh1k as its share of the output. Then, it computes all
four possible evaluations of the AND gate gn,m given its input sh1i , sh

1
j and the unknown

input of the other party and masks them with the random bit sh1k. Next, it transfers the
masked output value that arises under the other party’s correct input to the other party
using the oblivious transfer. In the end, both parties hold a valid share sh1k, sh

2
k of the

output of the AND gate without learning the input of the other party.

Beaver Triples

With the introduction of beaver triples (BT), also called multiplication triples, Beaver
[Bea91] shows how to transfer a large part of the communication overhead of SMPC
protocols to an input-independent offline phase. At the same time, BTs naturally trans-
fer the additive sharing approach of the GMW protocol to the arithmetic input-domain.
Like NOT and XOR, addition, and multiplication by a constant are trivial and require no

27These gates are sufficient to model arbitrary functions.

65

Appendix

Alice
A(x1, . . . , xn)

∀i ∈ [n] : r1i ∈r {0, 1}
∀i ∈ [n] : x̃i = r1i ⊕ xi

First gates:
sh1i = r1i
sh1j = ỹj

sh1k = ¬sh1i

sh1k = sh1i ⊕ sh1j

sh1k ∈r {0, 1}

n m
(sh1i ⊕ n)
∧(sh2i ⊕m)

shn,mk

0 0 g00 g00 ⊕ sh1k
0 1 g01 g01 ⊕ sh1k
1 0 g10 g10 ⊕ sh1k
1 1 g11 g11 ⊕ sh1k

Boolean/Arithmetic
Circuit

C(x1, . . . , xn, y1, . . . , yn)

x̃1, . . . , x̃n

ỹ1, . . . , ỹn

XOR/
AND

sh1i ⊕ sh2i = gi

sh1j ⊕ sh2j = gj
sh1k ⊕ sh2k = gk

NOTsh1i ⊕ sh2i = gi sh1k ⊕ sh2k = gk

Successively evaluate circuit gate by gate

NOT: ¬gi
¬gi = ¬(sh1i ⊕ sh2i)

= ¬sh1i ⊕ sh2i = gk

XOR: gi ⊕ gj
gi ⊕ gj = (sh1i ⊕ sh2i)⊕ (sh1j ⊕ sh2j)

= (sh1i ⊕ sh1j)⊕ (sh2i ⊕ sh2j)
= gk

AND: gi ∧ gj

1-4-OTshn,mk

Alice and Bob hold valid secret shares sh1k, sh2k of the circuit output

Bob
B(y1, . . . , yn)

∀i ∈ [n] : r2i ∈r {0, 1}
∀i ∈ [n] : ỹi = r12 ⊕ yi

First gates:
sh2i = x̃i

sh2j = r2i

sh2k = sh2i

sh2k = sh2i ⊕ sh2j

n = sh2i , m = sh2j

sh2k = shn,mk

Figure 1: Procedure of the GMW protocol.

66

communication. For a multiplication, Beaver’s approach produces correlated value pairs
offline and later leverages them in an elegant way requiring only the communication of
two variable-openings per multiplication. Using BTs, the arithmetic GMW protocol is
secure against n− 1 corrupted parties in the semi-honest attacker model.
Consider the case where Alice and Bob have an additive sharing [x], [y] of the inputs
of a multiplication gate and want to compute the output [z] = [xy]. In addition, they
determined an additive sharing (the BTs) [a], [b], and [c] with c = a · b in an offline phase.
To compute the multiplication, during the online phase, both parties first compute locally
[d] = [x − a], [e] = [y − b], then open d and e and finally compute [z] = [xy] = de + d[b] +

e[a] + [c] locally. Now Alice and Bob hold valid shares of the product z.

67

	Introduction
	Motivation
	Research Path
	Organization

	Background
	Machine Learning
	Linear Regression
	Logistic Regression
	Artificial Neuronal Networks

	Secure Multiple-Party Computation and Outsourced Machine Learning
	Ideal/Real Simulation Paradigm
	Attacker Models

	Garbled Circuits
	Oblivious Transfer
	Garbled Circuit Protocol

	Garbled Circuit Optimizations
	Point-and-Permute
	Garbled Row-Reduction 3
	Free-XOR
	Half Gates

	Trusted Execution Environments
	Graphical Processing Units
	Memory Spaces
	General-Purpose Computing

	Related Work
	Slalom
	SecureML
	Oblivious Neuronal Networks via MiniONN Transformations
	Faster CryptoNets
	Delphi

	Garbling Techniques for Sprint
	Garbling Gadgets for Arithmetic Circuits
	Garbled Neuronal Networks
	Half-Gate Generalization
	Mixed-Modulus Half-Gate
	Mixed-Radix Addition
	Approximated Garbled Sign
	Fancy-Garbling

	Efficient Garbling with Random Permutations via Fixed-Key AES

	Sprint: Secure and Fast Outsourced Machine Learning
	Residue Level
	CRT Level
	ANN Level
	Security
	Implementation
	GPGPU Specifics

	Performance and Accuracy Evaluation
	CRT Representation and the Quantization Constant
	Searching Mixed-Radix Bases and the Approximated Sign Function
	Computational Workload in Comparison
	Online-Communication in Comparison
	Feature Set in Comparison

	Conclusion & Outlook
	Summary
	Outlook
	Future Work

	References
	Appendix

