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Zusammenfassung

Polynome haben eine Vielzahl an Anwendungen, wie zum Beispiel Interpola-
tion oder lokale Approximation von Funktionen. In dieser Arbeit beschränken
wir uns auf univariate Polynome über endlichen Körpern. Unser Beitrag ist
dabei dreierlei: Zuerst untersuchen wir Polynome hinsichtlich ihrer Nullstel-
len. Hier betrachten wir verschiedene Varianten, unter anderem die Gesamt-
zahl von (unterschiedlichen) Nullstellen oder jene mit bestimmten Vielfach-
heiten an bestimmten Stellen. Wir zählen die Anzahl solcher Polynome und
betrachten die entsprechenden Zufallsvariablen bei uniformerWahl der Poly-
nome. Ferner geben wir statistische Größen wie den Erwartungswert und die
Varianz derNullstellen an, sowie ihr asymptotisches Verhalten. Polynomefin-
den ebenfalls in der Kryptografie Anwendung.Wir verbessern zwei Arbeiten,
[BEF+23] und [ABEO24], die Shamir’s (polynomielles) Secret Sharing verwen-
den, um Hardwareschaltkreise gegen kombinierte physikalische Angriffe zu
schützen. Bei [BEF+23] verbessern wir eine obere Schranke der Wahrschein-
lichkeit, dass ein Angreifer nicht entdeckt wird, der Fehler in einen Schalt-
kreis fügt.Wir argumentieren, dass unsere Schranke scharf ist, unter der ver-
tretbaren Annahme, dass der Angreifer den Grad eines Faultpolynoms frei
wählen kann. Zum Schluss präsentieren wir für den double-sharing Ansatz
in [ABEO24] zwei Methoden, die stets erkennen, ob ein Angreifer Fehler hin-
zufügt. Dies verbessert vorherige Ergebnisse, die dies nur mit einer gewissen
Wahrscheinlichkeit detektieren. Überdies stellen wir weitere Ansätze vor, die
jedoch für das Szenario in [ABEO24] nicht oder nur partiell verwendbar sind.
Näherhin funktionieren sie nur für bestimmte Schaltkreise oder können nicht
für kombinierte Angriffe genutztwerden. Letzterem liegt zugrunde, dass kein
Schutz gegen passive Angreifer besteht.
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Abstract

Polynomials have various applications, such as interpolation or local function
approximation. In this thesis, we consider univariate polynomials over finite
fields. Our contribution is threefold: Firstly, we investigate polynomials re-
garding their zeros. We analyze several variants, such as a certain number of
(distinct) zeros in total or zeros at specific positions and multiplicities. We
count the number of polynomials satisfying these constraints and also con-
sider the corresponding randomvariableswhenpolynomials are sampled uni-
formly at random. Furthermore, we provide statistical properties such as the
average number and variance of such zeros in polynomials and their asymp-
totic behavior. Polynomials are also used in cryptography. We improve two
papers, [BEF+23] and [ABEO24], which employ Shamir’s (polynomial) secret
sharing to protect hardware circuits against combined physical attacks. In
[BEF+23],we improve an upper bound on the probability that an adversary can
fault a circuit without being detected. We argue that our bound is tight under
the reasonable assumption that an adversary can choose the degree of a fault
polynomial. Lastly, in [ABEO24], we present two methods that always detect
an adversary introducing faults into the computation in the double-sharing
setting. Moreover, we state further approaches, which, however, either only
work with specific circuits or cannot be used for combined attacks. The latter
is due to the lack of protection against passive adversaries.
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1
Preliminaries

In this chapter, we first provide some notation used throughout this thesis. Afterward,
we present definitions and concepts fromdifferent domains ofmathematics, such as ab-
stract algebra and number theory.

Wewrite “≜” to denote that equality holds between the left and right sides by defini-
tion of one of the sides. We do not use “≜” to define the meaning of a symbol or expres-
sion. We use “≔” instead.

As usual, we use blackboard bold symbols, such as ℝ, ℤ, and ℙ, to denote sets of
numbers, such as the sets of reals, integers, and primes. We stress that 0 ∉ ℕ, however,
0 ∈ ℕ0. To denote that a set 𝕊 only includes numbers less than or equal to n, we write
𝕊≤n. Similarly, we write 𝕊≥n if 𝕊 only includes numbers greater than or equal to n. The
closed interval [m, n] is assumed to be a subset ofℤ. Ifm = 1, we abbreviate [1, n] by [n].

Unless otherwise stated, we call integer sequences (an) ≔ (an)n ≔ (an)mn=k simply se-
quences, denoted by parentheses around the sequence terms an. We refer to tuples com-
prising n elements as n-tuples. We adopt set-theoretic operations or relations to tuples
in a natural manner. Furthermore, 0n and 1n denote the n-tuples consisting of 0 and 1,
respectively. In the context of vectors, 0n and 1n denote the n × 1 column vectors com-
prising 0 and 1, respectively. Usually, q denotes the cardinality of the finite field 𝔽q with
q elements, where q is a prime power.

We use [[⋅]] to denote the Iverson bracket, which is 1 if the argument, i.e., logical ex-
pression, is true and 0 otherwise. For instance, [[2 < 3]] = 1 and [[0 ∈ ℕ]] = 0.

In a mathematical statement, such as a theorem or fact, a citation succeeding the
statement’s number means that this result is mentioned in said reference, and we did
not establish it ourselves. A citation at the beginning of a proof expresses that the entire
proof, its methodology, or parts originate from said reference, that is, we restated the
proof. In both cases, we usually mention the precise circumstances.

1.1 Algebra

In this section,we briefly discuss algebraic concepts thatmainly regard ring theory, such
as units or ideals. We use R and𝔽 to denote a ring and field, respectively. We recall both
definitions:
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1 Preliminaries

Definition 1.1 (Rings). Let R be a set with two associated binary operations + and ⋅. We
callR ≔ (R, +, ⋅) a ring if (R, +) is an Abelian group, (R, ⋅) is amonoid, and distributivity
holds.

When the ring forms an Abelian group under multiplication, we refer to the ring as
a field.

Definition 1.2 (Fields). Let (R, +, ⋅) be a ring. We call 𝔽 ≔ (R, +, ⋅) a field if (R, ⋅) is an
Abelian group.

If the order of 𝔽q is prime, i.e., if q ∈ ℙ, we let 𝔽q = ℤ/qℤ denote the field of
integers modulo q.

Even if a ring is not a field, some elements v ∈ Rmay be invertible. These elements
are also referred to as units.

Definition 1.3 (Units [Hie24]). Let R be a ring. An element v ∈ R is called a unit if there
exists v′ ∈ R such that vv′ = 1. We denote the subset of units by R∗ ⊆ R.

The “canonical” unit is the identity element 1 of (R, ⋅), which is also called the unity.
The examples we give in this sectionmainly relate to polynomials because this thesis

focuses on polynomials. Thus, we define the ring of all polynomial functions with coeffi-
cients from𝔽.

Definition 1.4 (Polynomial Rings over a Field [Hie24]). Let 𝔽 be a field. We denote by 𝔽[x]
the polynomial ring in one variable over 𝔽, whose elements we refer to as f such that we
write f (x) = ∑n

k=0 fkx
k ∈ 𝔽[x]with n ∈ ℕ0 and with coefficients fi ∈ 𝔽.

As an example of the set of units of a ring, we consider the polynomial ring𝔽[x].

Example 1.5 ([Hie24]). Let𝔽[x] be the polynomial ring over𝔽. Then,𝔽[x]∗ consists of all
units of the underlying field, i.e.,𝔽[x]∗ = 𝔽∗, where we consider𝔽 ⊆ 𝔽[x] a subring.

The above example implies that only the “constant” polynomials of degree 0 are in-
vertible. It is justified to call degree-zero polynomials over a field1 constants or elements
of the underlying field because we may interpret 𝔽 as a subring in 𝔽[x] via the injective
mapping𝔽 → 𝔽[x], a ↦ a = ax0 [Hie24].

The notion of prime elements ismost prominently known due to prime numbers. Ac-
cording to Euclid’s lemma, a prime p that divides a product ab also divides a or b. Clearly,
this statement does not hold for arbitrary integers. For instance, 4 ∣ 2 ⋅ 6 but neither 4 ∣ 2
nor 4 ∣ 6, where ∣ denotes the divisibility relation between two integers a and b. Prime
elements can be considered in arbitrary (commutative) rings by using Euclid’s lemma as
the definition. A property similar to primality is irreducibility: An irreducible element v
can only be written as a product v = ab if a or b is a unit. More precisely, the difference
of an element being prime and being irreducible is as follows:

Definition 1.6 (Prime and Irreducible Elements [Hie24]). Let R be a commutative ring, such
as a field. An element v ∈ R ∖ (R∗ ∪ {0}) is called
1This interpretation does not hold for arbitrary rings.

– 2 –



1 Preliminaries

– prime if for all x, y ∈ R, it holds that v ∣ xy if, and only if, v ∣ x or v ∣ y.
– irreducible if v = xywith x, y ∈ R implies that x ∈ R∗ or y ∈ R∗.

Every prime element is irreducible, but the converse does not generally hold [Hie24].
Fortunately, equivalence holds if R is a unique factorization domain (UFD), such as a field
[Hie24]. Thus, if we consider polynomial rings over fields, a polynomial is prime if, and
only if, it is irreducible, and wemay use both terms interchangeably.

Fact 1.7 ([Hie24]). The polynomial ring𝔽[x] is a UFD.

UFDs are rings in which every element has a factorization that is unique up to, e.g.,
the ordering of terms. For instance, the fundamental theorem of arithmetic asserts that the
ringℤ is a UFD, that is, all integers (except−1, 0, and 1) have a unique prime factor de-
composition. However, asℤ is commutative, the ordering is per se ambiguous. For in-
stance, 6 can be written as 2 ⋅ 3 and 3 ⋅ 2. But, since both products represent the same
number, it is justified to disregard the ordering.

Definition 1.8 (Unique Factorization Domains [Hie24]). A domain R is called a unique factor-
ization domain (UFD) if every v ∈ R ∖ (R∗ ∪ {0}) has a decomposition v = ∏m

i=1 vi with
irreducible factors v1, … , vm ∈ R that is unique up to reordering and multiplication by
units.

The “multiplication by units” part is usually omitted in the fundamental theorem of
arithmetic since it usually only regards positive integers, and the only positive unit ofℤ is
1. However, the part is required for polynomial rings, as shown by the following example:

Example 1.9. Let f (x) = 2x2+2x+1 ∈ 𝔽5[x]. Then, f factors as 2(2+x)(4+x),where 2 is
a unit, and 2+x and 4+x are irreducible. In general, f can be factored as v(2+x)v′(4+x)
for all v, v′ ∈ 𝔽5 such that vv′ = 2, i.e., for all (v, v′) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}.

Fortunately,we canelude this annoyanceby concentratingonmonic polynomials, i.e.,
polynomials whose leading coefficient is 1.

Finally, we briefly mention ideals. They are subsets of a ring that are closed under
addition, closed under multiplication with any ring element, and contain 0.

Definition 1.10 (Ideals [Hie24]). Let a, b, v ∈ R and let R′ ⊆ R such that a, b ∈ R′. We call
R′ an ideal (of R) if 0 ∈ R′, a+ b ∈ R′, and av ∈ R′.

For instance, 2ℤ, the set of even integers, is an ideal ofℤ. The ideal of a ring element
v ∈ R is the set comprising all elements that v divides.

Definition 1.11 (Generated Ideals [Hie24]). Let v ∈ R. The ideal generated by v, denoted by
⟨v⟩, equals ⟨v⟩ = { vv′ ∶ v′ ∈ R }.

For instance, the unit ideal ⟨1⟩ generates the entire ring, i.e., ⟨1⟩ = R, because 1 is the
unity of R.
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1 Preliminaries

1.2 Number Theory

In this section, we present two number-theoretic concepts, which we use in Section 1.5
to count the number of irreducible polynomials. We first introduce theMöbius function.

Definition 1.12 (Möbius Function). TheMöbius function 𝜇∶ ℕ → {−1, 0, 1} is defined as

𝜇(n) =
⎧{{
⎨{{⎩

1 if n = 1
(−1)k if n is the product of k distinct primes
0 else.

Examples 1.13. 𝜇(1) = 1,𝜇(135) = 𝜇(33 ⋅ 5) = 0,𝜇(165) = 𝜇(3 ⋅ 5 ⋅ 11) = (−1)3 = −1, and
𝜇(2145) = 𝜇(3 ⋅ 5 ⋅ 11 ⋅ 13) = (−1)4 = 1.

In Section 1.5, we state the number of irreducible polynomials over𝔽[x] of a specific
degree. This function is not in a closed form but includes a sum. This sum iterates over
all pairs (a, b) such that ab = n for some n ∈ ℕ. Since ab = n implies that a and b
divide n, we can rewrite the sum∑a,b∶ab=n f (a, b) as∑d∶d∣n f (d, n/d), or∑d∣n f (d, n/d) for
short. Here, f (⋅, ⋅) denotes the argument of the sum, and d ∈ ℕ is simply an alternative
notation for a (or b). The divisor sumnotation d ∣ n ismore commonly used, and it is easy
to see why both notations are equivalent: Since ab = n, b = n/a is a divisor of n and so is
a. Thus, a becomes d, and b = n/a becomes n/d.

Example 1.14 ([Apo76]). For all n ∈ ℕ, it holds that∑d∣n 𝜇(d) = [[n = 1]].

1.3 Probability Theory

In this section, we recall and present some probability-theoretic concepts that we use
throughout this thesis. We usually denote random variables by X, Y , and calligraphic
upper-case letters. Recall that a random variable X ∶ D → R is a mathematical function,
where D and R denote the domain and range, respectively. We also write range(X) to
denote the latter. Moreover, supp(X) ⊆ R, the support ofX, comprises all values ofX that
occurwithpositive probability. We refer to the expectation and variance ofX as𝔼[X] and
Var[X], respectively. Finally, we use s ←$ S to denote that s ∈ S was sampled uniformly
at random from the set S.

We present three common discrete probability distributions, their expected value,
variance, and an example since we will encounter them in Chapter 3. We begin with the
geometric distribution,whichmodels the number of tries before the first success occurs.

Definition 1.15 (Geometric Distribution). A randomvariableX follows the geometric distribu-
tion with parameter p ∈ (0, 1) if Pr[X = k] = [[k ∈ ℕ0]] p(1 − p)k. We write this as
X ∼ Geo(p).

Intuitively, the probability Pr[X = k] gives the probability that the first success of
identical and independent trials occurs after k failures. We note that k occasionally, but
not in this thesis, denotes the total number of tries rather than the number of failures.
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1 Preliminaries

Example 1.16. Consider rolling a fair die and letX ∼ Geo(1/6) be the number of rolls after
one first rolls a six. The probability that the first time happens directly after k = 5 rolls is
Pr[X = 5] = 1/6 ⋅ (5/6)5 ≈ 6.7%.

Themean and variance of X ∼ Geo(p) are as follows:

Fact 1.17. Let X ∼ Geo(p). Then,𝔼[X] = (1− p)/p and Var[X] = (1− p)/p2.

The next distribution that we consider is the binomial distribution.

Definition 1.18 (Binomial Distribution). A random variable X follows the binomial distribu-
tionwith parameters n ∈ ℕ0 and p ∈ (0, 1) if Pr[X = k] = [[k ∈ ℕ≤n

0 ]](nk)pk(1 − p)n−k.
We write this as X ∼ Bin(n, p).

Example 1.19. Consider rolling n = 10 fair dice and let X ∼ Bin(n, 1/6) be the number
of which show a six. Then, the probability that exactly k = 4 dice show a six is precisely
Pr[X = 4] = (104 )(1/6)4(5/6)6 ≈ 5.4%.

Themean and variance of X ∼ Bin(n, p) are as follows:

Fact 1.20. Let X ∼ Bin(n, p). Then,𝔼[X] = np and Var[X] = np(1− p).

Finally,we consider the negative binomial distribution. This distribution can be seen
as a generalization of the geometric distribution because the latter gives the number of
tries before the first success occurs, and the former gives the number of tries before the
rth one occurs.

Definition 1.21 (Negative Binomial Distribution). A random variable X follows the negative
binomial distributionwith parameters r ∈ ℕ0 and p ∈ (0, 1), denoted by X ∼ NBin(r, p),
if Pr[X = n] = [[n ∈ ℕ0]](

n+r−1
r−1 )pr(1− p)n.

We remark that it is also common to consider n as the total number of trials rather
than the number of failures. We then had Pr[X = n] = (n−1r−1)pr(1− p)n−r for n ∈ ℕ0.

Example 1.22. Consider rolling a fair die and let X ∼ NBin(r, 1/6) be the number of rolls
until one rolls a six for the r = 3rd time. The probability that this takes n = 10 rolls is
Pr[X = 10] = (92)(1/6)3(5/6)7 ≈ 4.7%.

Themean and variance of X ∼ NBin(r, p) are as follows:

Fact 1.23. Let X ∼ NBin(r, p). Then,𝔼[X] = r(1− p)/p and Var[X] = r(1− p)/p2.

To measure the “difference” between two probability distributions, we use the statis-
tical distance, that is, half of the L1 distance between both PMFs.

Definition 1.24 (Statistical Distance). Let X and Y be two random variables defined over a
finite domainD. The total variation distanceΔ, also called statistical distance, betweenX and
Y is defined as Δ(X, Y) = 1/2∑s∈D | Pr[X = s] − Pr[Y = s]|.

The statistical distance betweenX and Y is 0 if, and only if, the randomvariables have
the same probability distribution. We then write X d= Y . Given a sequence of random
variables (Xn)n∈ℕ, it may be that none of the terms Xn have the same distribution as X;
however, itmay be that the individual random variables approachX gradually as n → ∞.
We then say that (Xn)n converges to X.
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1 Preliminaries

Definition 1.25 (Convergence in Distribution). LetX be a random variable and (Xn)n∈ℕ be a
sequence of random variables such that the Xn and X are defined over a domain D. Also,
let F and Fn denote the CDF of X and Xn, respectively. The sequence (Xn) converges in dis-
tribution to X if limn→∞ Fn(k) = F(k) for all k ∈ D.

1.4 Generating Functions

A generating function stores terms of an (infinite) sequence in its coefficients and can
thus be regarded as a “compact” representation of that sequence. Furthermore, it facili-
tates the derivation of properties of (mathematical) objects, such asmoments of random
variables or the number of ways to partition a positive integer. We consider the following
introductory example about rolling an unfair die four times:

Example 1.26. Assume one has an unfair die whose probability of showing an even num-
ber is twice that of an odd number. Thus, the probability of rolling any even number and
any odd number is 2/9 and 1/9, respectively. Let X ∶ [6]4 → [4, 24] denote the random
variable giving the sum of the pips when rolling the die four times (independently). We
are interested in the PMF and the expectation of X. Generating functions allow us to
easily “list” the probabilities Pr[X = n] for all possible sums n = 4, … , n = 24 as fol-
lows: For each outcome o of rolling the die once, we create a monomial pxo, where p is the
corresponding probability, and x is an indeterminate. Thus, we have

{
1
9
x1,

2
9
x2,

1
9
x3,

2
9
x4,

1
9
x5,

2
9
x6} . (1.1)

To “list” the PMF of X, we must determine the probabilities pn ≔ Pr[X = n] in the set
{p4x4, p5x5, … , p24x24}. Observe that we begin with the fourth power and end with the
24th because we add exponents, i.e., individual outcomes. Thus, to determine, say, p5,
we can find all quadruples that sum to 5, namely, all four permutations of (1, 1, 1, 2). The
probability of rolling each of the four sequences is (1/9)3 ⋅ (2/9)1 = 2/6561, therefore,
p5 = 4 ⋅ 2/6561 = 8/6561.

Fortunately, there is an “automatic” way to compute the probabilities pn and all expo-
nents: We form the sum of all monomials corresponding to individual outcomes, that is,
of all elements in the set of Equation 1.1. We have s1(x) ≔ 1/9x1 + 2/9x2 + ⋯ + 2/9x6.
Because individual rolls are independent and due to distributivity, we obtain the sum
s(x) ≔ p4x4 + ⋯ + p24x24 that corresponds to the sums by raising s(x) to the fourth
power:

s(x) = s41(x) = (
1
9
x1 + ⋯ +

2
9
x6)

4

=
1

6561
x4 +

8
6561

x5 +
28
6561

x6 + ⋯ +
16
6561

x24.

We conclude that p4 = 1/6561, p5 = 8/6561, … . Further, we call s(x) = ∑24
n=4 pnx

n the
generating function of (pn)24n=4.

If we intend to extract an individual coefficient, i.e., probability pn, we could elim-
inate all monomials except pnxn and set x = 1 since pn1n = pn. Since s is a polynomial
(in x), we can differentiate it n times and evaluate s(n)(x) at x = 0. The former operation
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1 Preliminaries

eliminates all terms below pnxn and the latter all terms above. Unfortunately, s(n)(0) ≢ pn
because differentiating polynomials not only decreases exponents but alsomultiplies the
coefficients by those. For instance, [4x3]′ = 3 ⋅ 4x3−1 = 12x2 ≢ 4x2, where [⋅]′ denotes
the first derivative. It becomes apparent that s(n)(0) = pn(n(n − 1) ⋯ 1) = pn ⋅ n!. Thus,
pn = s(n)(0)/n!. For instance, p5 = s(5)(0)/5! = (320/2187)/5! = 8/6561.

Finally, we aim to determine the mean 𝔼[X]. Since 𝔼[X] ≜ ∑24
n=4 npn, we can ex-

tract all 21 probabilities using the above derivative method and plug them in the sum,
i.e., 𝔼[X] = ∑24

n=4 n(s
(n)(0)/n!). There is, however, an easier way: To determine the

terms npn, we can differentiate s once. Obviously, s′(x) = 4p4x3 + 5p5x4 + ⋯ + 24p24x23.
To “eliminate” the variable parts x3, x4, … , x23, we evaluate s′ at x = 1. Conveniently, s′(1)
not only gives us the desired addends of∑24

n=4 npn but the entire sum. We conclude that

𝔼[X] =
24

∑
n=4

npn = s′(1) =
4
6561

13 +
40
6561

14 + ⋯ +
128
2187

123 =
44
3

.

There are different types of generating functions,most prominently ordinary and ex-
ponential ones. In this thesis, however, we consider only generating functions of the for-
mer kind. For instance, s(x) from Example 1.26 is ordinary.

Definition 1.27 (Ordinary Generating Functions). Let (an)n∈ℕ0
be a sequence. The ordinary

generating function of (an) is A(z) = ∑∞
n=0 anz

n.

Evidently, ordinary generating functions are power series,where z ismerely an indeter-
minate used as an iterator. Henceforth, we use z rather than x to distinguish generating
functions from the polynomials we examine in Chapter 3.

The generating function s(x) from Example 1.26 does not feature a “compact” repre-
sentation because it enumerates all members of (pn) explicitly and because different die
faces appear with different probabilities. A slightly more compact representation is

s(x) =
x4(1+ 2x + x2 + 2x3 + x4 + 2x5)4

6561
.

We present two sequences with compact generating functions below:

Example 1.28. Let an = 2n be the number of binary strings of length n. The corresponding
generating function is A(z) = ∑∞

n=0 2
nzn = 1/(1− 2z).

Example 1.29 ([GKP94]). Let bn = F(n) be the nth Fibonacci number. The corresponding
generating function is B(z) = ∑∞

n=0 F(n)zn = z/(1− z − z2).

Certainly, A(z) = 1/(1− 2z) and B(z) = z/(1− z − z2) are more compact represen-
tations than (1, 2, 4, 8, 16, … ) and (0, 1, 1, 2, 3, … ), respectively. However, they “hide” the
individual terms an = 2n and bn = F(n).

Definition 1.30 (Coefficients of Generating Functions). Let (an)n∈ℕ0
be a sequence and A(z)

be its corresponding generating function. We denote by [zn]A(z) the coefficient of zn in
A(z), that is, [zn]A(z) = an.
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As already mentioned in Example 1.26, setting z = 0 eliminates all terms but a0.
Thus, to extract an = [zn]A(z), we shift (an) to the left until an “becomes independent” of
z, that is, an becomes a0 = a0z0 (or rather an = anz0).

Fact 1.31 ([SSB+22]). LetA(z)beagenerating function. Then, [zn]A′(z) = (n+1)[zn+1]A(z).

The above fact states that differentiation shifts terms to the left andmultiplies them
by their initial index. In this thesis, we assume that the sum of a generating function
converges and that all necessary derivatives exist.

Theorem 1.32. Let (an) be a sequence and A(z) the corresponding generating function. It holds
that an = A(n)(0)/n!.

Proof. LetA(n)(z) = ∑∞
n=0 ̂anzn be the generating functionof the coefficients inA(n). Thus,

̂an = [zn]A(n)(z). We aim to show that an = A(n)(0)/n!. By applying Fact 1.31 recursively
n times, we obtain [z0]A(n)(z) = n![zn]A(z). Since [zn]A(z) ≜ an, we conclude that
A(n)(0) ≜ â0 = n! ⋅ an. Finally, we can solve â0 = n! ⋅ an for an because the factorial
function n! has no zeros. �

Example 1.33. Consider again the Fibonacci numbers fromExample 1.29. Tofind F(3),we
calculateB(3)(0) = 6(z4 + 6z2 + 4z + 2)/(z2 + z − 1)4∣z=0 = 12. Thus, F(3) = 12/3! = 2.

However, calculating the nth derivative of an ordinary generating function, let alone
expressing the generating function in a closed form, often is non-trivial.

In Chapter 3, we count polynomials using generating functions,whichwe express as
products rather than the “usual” sums ∑∞

n=0 anz
n. This approach closely resembles Euler

products. In 1737, Euler established the Euler product formula, which regards prime num-
bers and uses the fact that the prime factorization of integers is unique. Without going
too deeply into the details, he proved that:

Fact 1.34 ([Apo76]). For all s ∈ ℕ≥2, it holds that∑∞
n=1 n

−s = ∏p∈ℙ(1− p−s)−1.

The sum∑∞
n=1 n

−s is also known as Riemann’s zeta function. In the next paragraph, we
elaborate on why Fact 1.34 holds because this gives us insight into why we can express
generating functions as products. The following explanation, except the part referring to
Example 1.26, is from [Mur06].

Again, we stress that every integer n ≥ 1 uniquely decomposes into a product of
primes n = ∏∞

k=1 p
ei
i = 2e13e2 ⋯, where pi is the ith prime, and ei is its multiplicity. We

recall that ei = 0 for almost all iholds for every n. InExample 1.26, at the beginning of this
section, we obtained the probability that the sum of four die rolls equals a specific total
number of pips. To this end,wemultiplied the sums of possible pips. Consider the product
over all primes, where each factor consists of the sum of all multiplicities of that prime,
i.e.,∏p ∑∞

k=0 p
k = (20+21+… )(30+31+… ) ⋯. By expanding this infinite product,we

observe that each addend represents one distinct integer. For instance, 203050 ⋯ = 1 and
23315470110130 ⋯ = 15 000. Since∑n n

−s on the left-hand side considers every integer n,
it follows that ∑n n

−s = ∏p ∑∞
k=0 p

−sk. Finally, the inner sum ∑∞
k=0 p

−sk = ∑∞
k=0(p

−s)k
simplifies to (1− p−s)−1 because it is a convergent geometric series (as ps > 1).
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Euler’s product formulademonstrates that products canbeused to count thenumber
ofways to assemble the term zn. We consider a further example regarding values of coins,
which can be (almost) directly adapted to count polynomials in Section 1.5 andChapter 3.

Example 1.35. Assume one has coins of values 1 ct, 2 ct, and 5 ct. The number of coins are
c1 = 3, c2 = 2, and c5 = 4. We are interested in the number an of different combinations
of coins whose combined value is n and aim to use generating functions to determine
it. We interpret each of the nine coins as an abstract object. However, since we are only
interested in their values, we can equate coins with the same value. To incorporate dif-
ferent quantities of one coin (since all ci > 1), we consider an enumerator of a fixed coin
of value i ∈ {1, 2, 5}. The possible values of coin i, depending on its “multiplicity,” are
0, i, 2i, … . The corresponding objects z0, zi, z2i, … represent the combined coins, where
the exponents represent their sums.

To find all sums that are expressible by combining the values of the coins available,
we expand the product of the three enumerators z0⋅1+ z1⋅1+ z2⋅1+ z3⋅1, z0⋅2+ z1⋅2+ z2⋅2, and
z0⋅5+ z1⋅5+ z2⋅5+ z3⋅5+ z4⋅5. The expanded product is 1z0+ 1z1+2z2+2z3+⋯+ 1z26+ 1z27.
For instance, there are two ways to obtain the sum 3: 1 + 1 + 1 and 1 + 2. We neglect the
ordering of coins just as in other commutative structures.

Now,we introduce thedistinctionbetweendifferent editionsof coins of the samevalue.
However, we assume that each edition occurs with equal frequency. For simplicity, we
assume that the values 1 ct, 2 ct, and 5 ct have e1 = 1, e2 = 2, and e5 = 3 editions, each
with c1, c2, and c3 coins. Hence, there are∑i ciei = 19 coins in total. Clearly, the value of
a coin is independent of its edition. Nevertheless, the sum 3 can now be formed in three
ways instead of two because we differentiate between editions, and the 2 ct coins have
two. Thus, the threeways are 1+ 1+ 1 and 2+ 1 twice. To incorporate this distinction into
our generating function,we introduce each enumeration, i.e., factor, as often as there are
different editions. As each edition occurs with equal frequency, the product simplifies to

(z0⋅1 + z1⋅1 + z2⋅1 + z3⋅1)c1(z0⋅2 + z1⋅2 + z2⋅2)c2(z0⋅5 + z1⋅5 + z2⋅5 + z3⋅5 + z4⋅5)c3

= 1z0 + 1z1 + 3z2 + 3z3 + ⋯ + 3z69 + z70 + z71

= ∏
i∈{1,2,5}

⎛⎜
⎝

ci

∑
k=0

zki⎞⎟
⎠

ei

.

We conclude that we can express the generating function A(z) = ∑∞
n=0 anz

n = ∑71
n=0 anz

n

in terms of the product∏i∈{1,2,5} (∑ci
k=0 z

ki)ei and that (an)71n=0 = (1, 1, 3, 3, … , 3, 1, 1).

1.5 Polynomials

This section provides all the necessary information about polynomials to analyze zeros in
Chapter 3 and fault attacks in Chapters 4 and 5.

First and foremost,we draw attention to the difference between polynomials and poly-
nomial functions because, over finite fields, it can happen that “two different polynomials
represent the same function.” The following disambiguation is due to [Ogu08]. Roughly
speaking, polynomials are the tuples, vectors, or sequences of coefficients of polynomial
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functions. More precisely, polynomials (over a field 𝔽) are sequences (fk)k∈ℕ0
such that

fk ∈ 𝔽 and fk = 0 for almost all k. For each polynomial (fk), we can define a polynomial
function f ∶ 𝔽 → 𝔽 by letting f (x) = ∑∞

k=0 fkx
k = ∑n

k=0 fkx
k, where n = max{ k ∶ fk ≠ 0 }

is the largest index of a non-zero coefficient. In particular, two polynomials are equal if,
and only if, they constitute the same coefficient vector. An intuitive notion of equality be-
tween (polynomial) functions is that they are equal if, and only if, they agree on allmembers
of their domain. More formally, two (polynomial) functions f , g ∶ 𝔽 → 𝔽 are equal if, and
only if,∀x ∈ 𝔽 � f (x) = g(x).

Certainfields, suchasℝ, allowreconstructing thepolynomial, i.e., coefficients, from
thepolynomial function. However, infinitefields existmultiple functions that “generate”
the same coefficients, i.e., polynomial [Ogu08].

Example 1.36. Let f (x) = x3 + 1 and g(x) = x + 1 be two polynomial functions over 𝔽2.
Then, f (0) = 03 + 1 = 0 + 1 = g(0) and f (1) = 13 + 1 = 1 + 1 = g(1). However, the
underlying polynomials are (1, 0, 0, 1, 0, … ) and (1, 1, 0, … ), respectively.

Although two equal polynomial functions canhavedifferent underlyingpolynomials,
in this thesis,wedefineequality in termsof their polynomials. Thus,we treat f and g from
Example 1.36 as different functions.

Remark 1.37 ([Hie24]). Polynomial functions in the form f (x) = ∑n
k=0 fkx

k are, by definition,
described by the tuple of coefficients (fk)nk=0. Hence, two polynomial functions are equal
if, and only if, all their coefficients are equal.

For the remainder of this thesis, we refer to polynomial functions as polynomials, e.g.,
we call f ∶ x ↦ x2 + x a polynomial. Besides, we allow the sequence of coefficients (fk)∞

k=0
to be truncated to (fk)nk=0 to omit the infinitely many zeros. We also write coef(f , k) to
denote the coefficient fk of f .

We usually group polynomials according to their degree n, the largest index of a non-
zero coefficient.

Definition 1.38 (Degree of a Polynomial). Let f ∈ 𝔽[x] with f (x) = ∑n
k=0 fkx

k such that
fn ≠ 0. The degree deg of f is defined as deg(f ) = n. We define the degree of the zero
polynomial to be deg(0) = −∞.

For multivariate polynomials f (x1, … , xm) inm variables, we consider the total degree
over all terms, which equals the largest sum of all variables’ exponents. For instance, the
total degree of f (x1, x2) = x21 x42 + x51x2 + x21 x22 ismax{2+ 4, 5+ 1, 2+ 2} = 6.

Throughout this thesis, we are particularly interested in the zeros of polynomials.

Definition 1.39 (Zeros of a Polynomial). Let f ∈ 𝔽[x] be a polynomial. We say that v ∈ 𝔽
is a zero of f if, and only if, f (v) = 0, which is equivalent to (x − v) ∣ f . The multiplicity
s ∈ ℕ0 of the zero v (w.r.t. f ) is the number of how often (x − v) can be factored out.

Zeros denote the positions where (polynomial) functions vanish, that is, where they
assume the value 0. However, since a zero can occur multiple times, we usually refer to
zeros as “the multiset of positions” and to the number of zeros as its cardinality. If we
only consider the positions v ∈ 𝔽, we use the term distinct.
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Example 1.40. Let f (x) = (x− 2)4(x− 3)(x2 + 1) ∈ 𝔽7[x]. Then, f has two distinct zeros,
viz., x = 2 and x = 3. Further, f has five zeros, four at x = 2 and one at x = 3.

We remark on the following fact about the limit of the number of zeros of a polyno-
mial:

Fact 1.41 ([Hie24]). Let f ≠ 0 be a univariate polynomial over a field. If deg(f ) = n, then f
has at most n zeros.

If the polynomial is not univariate or not defined over a field, this upper bound does
not necessarily hold.

Counterexamples 1.42. Let f (x1, x2) = x1 − x2 be a bivariate polynomial over 𝔽3. Then, f
has 3 > 1 zeros since f (x1, x2) = 0 if, and only if, x1 = x2.

Let f (x) = 3x3 + 3x2 be a univariate polynomial overℤ/6ℤ. It follows that f (x) = 0
for all 6 > 3 elements inℤ/6ℤ.

When two polynomials are combined using addition or multiplication, the degrees
of the resulting polynomials behave as follows:

Fact 1.43 ([Hie24]). Let f and g be two polynomials over a ring R. In that case, it holds
that deg(f + g) ≤ max{deg(f ), deg(g)} with equality if deg(f ) ≠ deg(g). Moreover,
deg(fg) ≤ deg(f ) + deg(g)with equality if R is a UFD, such as a field.

Next, we group polynomials possessing a mutual property, e.g., the same degree,
into sets. Recall that q is some prime power.

Definition 1.44 (Set of All Same-Degree Polynomials). Let n ∈ ℕ0 ∪ {−∞}. We denote by
Pn,q the set of all polynomials of degree n, i.e., Pn,q = { f ∶ f ∈ 𝔽q[x] ∧ deg(f ) = n }. We
write P≤n,q, to denote the set of all polynomials of degree at most n. If q is evident from
the context, we simply write Pn ≔ Pn,q and P≤n ≔ P≤n,q.

Since we define polynomials by their coefficients, we can quickly determine the car-
dinalities of Pn and P≤n.

Theorem 1.45. For all q and n ∈ ℕ0, there are ∣Pn,q∣ = (q − 1)qn polynomials of degree n and
∣P≤n,q∣ = qn+1 polynomials of degree at most n, respectively.

Proof. We count the number of different tuples of coefficients (fk)nk=0 because we can
specify every polynomial f ∈ Pn,q by its coefficients (fk)nk=0 as f (x) = ∑n

k=0 fkx
k. For all fk

with k ∈ [0, n− 1], there are ∣𝔽q∣ = q possible values per coefficient because fk ∈ 𝔽q. The
leadingcoefficient fnmustnotbe0becausedeg(f ) is assumed toben. Thus, there areonly
∣𝔽q ∖ {0}∣ = q− 1 possible values. We conclude that there are (q− 1)1q|[0,n−1]| = (q− 1)qn
different (fk), i.e., polynomials of degree n. Recall that this equality particularly holds if
n = 0 since the degree of the zero polynomial is−∞ ≠ 0.

It remains to determine the cardinality of P≤n,q. We observe that P≤n,q is the union
P≤n,q = P−∞,q ∪ ⋃n

k=0 Pk,q. In addition, all sets Pk,q and Pk′,q, where k ≠ k′, are disjoint
because polynomials must differ if their degrees do. We conclude that

∣P≤n,q∣ = |{0}| +
n

∑
k=0

∣Pk,q∣ = 1+
n

∑
k=0

(q− 1)qk = 1+ (qn+1 − 1) = qn+1. �
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For reasons of simplicity, we often consider “normalized” polynomials, that is, poly-
nomials whose leading coefficients are 1. Such monic polynomials will be helpful to our
analysis of zeros.

Definition 1.46 (Monic Polynomials). Let f ∈ Pn,q. We say that f ismonic if, and only if, its
leading coefficient is 1, i.e., if fn = 1.

We stress that the zero polynomial is notmonic. As above,we define the correspond-
ing set comprising all monic polynomials of the same degree.

Definition 1.47 (Set of All Same-Degree Monic Polynomials). Let n ∈ ℕ0. We denote byMn,q
the set of allmonic polynomials of degree n, i.e.,Mn,q = { f ∶ f ∈ Pn,q ∧ fn = 1 }. Wewrite
M≤n,q, to denote the set of all monic polynomials of degree at most n. If q is evident from
the context, we simply writeMn ≔ Mn,q andM≤n ≔ M≤n,q.

It is easy to see that Mn,q ⊊ Pn,q for all q > 2 because, for every f ∈ Mn, we can
replace the leading coefficient fn = 1 with any of the remaining q − 2 field elements to
obtain anon-monic polynomial of degreen. We establish the cardinalities ofMn andM≤n
similarly toTheorem 1.45.

Theorem 1.48. For all q and n ∈ ℕ0, there are ∣Mn,q∣ = qn monic polynomials of degree n and
∣M≤n,q∣ = (qn+1 − 1)/(q− 1)monic polynomials of degree at most n, respectively.

Proof. Let f ∈ Mn,q. As before, the n coefficients f0, … , fn−1 can assume arbitrary values
in𝔽q. The leading coefficient fn, however,must be fn = 1 because f ismonic. We conclude
that ∣Mn,q∣ = 1 ⋅ q|[0,n−1]| = qn.

Since monic polynomials of different degrees k and k′ differ, the setsMk,q andMk′,q
are disjoint. Thus, ∣M≤n,q∣ = ∑n

k=0∣Mn,q∣ = ∑n
k=0 q

n = (qn+1 − 1)/(q− 1). �

We deduce that the ratio between the number of polynomials in Pn andMn is q− 1.

Corollary 1.49. For all q and n ∈ ℕ0, it holds that (q− 1)∣Mn,q∣ = ∣Pn,q∣.

Proof. Theorems 1.45 and 1.48 state that ∣Pn,q∣ = (q − 1)qn and ∣Mn,q∣ = qn, respectively.
Since ∣Mn,q∣ > 0, we deduce that ∣Pn,q∣/∣Mn,q∣ = (q− 1). �

To “make” a polynomial f ≠ 0monic, one can simply divide f (x) by its leading coeffi-
cient fn. This process is somewhat “injective” in the sense that for everymonic polynomial
̂f ∈ Mn and every non-zero leading coefficient fn ∈ 𝔽∗

q , there is only one f ∈ Pn such
that f −1

n f (x) = ̂f (x). Thus, it is justified to say that f is converted into its monic form.

Theorem 1.50. Let n ∈ ℕ0. Consider the following functionmon, which converts polynomials
into their monic form:

mon ∶ Pn,q → Mn,q, f (x) =
n

∑
k=0

fkxk ↦ f −1
n

n

∑
k=0

fkxk = ̂f (x).

The functionmon is onto but not one-to-one unless q = 2. More precisely, it is (q − 1)-to-one, i.e.,
all members of its image have exactly q− 1 preimages.
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Proof. We prove both properties individually.
Since the codomain is a subset of the domain and 1−1 ∈ 𝔽q, it immediately follows

thatmon is onto. To prove thatmon is (q − 1)-to-one, fix any ̂f ∈ Mn and consider the
set 𝜎 ≔ 𝜎 ̂f ≔ { v ̂f (x) ∶ v ∈ 𝔽∗

q } ⊆ Pn, which includes all polynomials with the same
monic form ̂f . Obviously, |𝜎| = ∣𝔽∗

q ∣ = q− 1 as all polynomials in 𝜎 differ in their leading
coefficient. Hence, ̂f has at least q− 1 preimages. Also, every f ∈ Pn that maps to ̂f must
be in 𝜎 because fn is invertible, i.e., v = f −1

n . Thus, ̂f has at most q− 1 preimages, and the
claim follows. �

As a third and final class of polynomials, we consider irreducible polynomials. They
become helpful when we count polynomials later. The relationship between irreducible
polynomials and polynomials is the same as between primes and integers. In fact, ir-
reducible polynomials are prime elements of 𝔽[x], according to Fact 1.7. The results in
Section 1.1 show that every polynomial f ∈ 𝔽[x] ∖ (𝔽[x]∗ ∪ {0}) has a unique decom-
position into irreducible polynomials. The uniqueness is up to the ordering of terms and
multiplication of units. This highlights our focus on monic polynomials, for which the
latter part is no longer required.

Definition 1.51 (Set of All Monic Irreducible Same-Degree Polynomials). Let n ∈ ℕ0. We
denote by ℑn,q = { f ∶ f ∈ Mn,q ∧ f is irreducible } the set of all monic and irreducible
polynomials of degree n. If q is evident from the context, we simply write ℑn ≔ ℑn,q.

We remark thatℑ0 = ∅ becauseP0 = 𝔽[x]∗ consists of the units of𝔽[x]. We already
know howmany (monic) polynomials of degree n exist in𝔽[x]. However, the number of
which are also irreducible is not apparent. Moreover, whether an irreducible polynomial
of degree n exists for all n ≥ 1 is uncertain.

Fact 1.52 ([Chi09; IBS11]). For all q and n ∈ ℕ, there are In,q ≔ ∣ℑn,q∣ = qn/n∑d∣n 𝜇(d)q1/d
monic irreducible polynomials of degree n. If q is clear from the context,wewrite In ≔ In,q.
Moreover, ℑn,q ≠ ∅, and if n is prime, the function simplifies to In,q = (qn − q)/n.

We omit the proof of Fact 1.52 because it requires specific number-theoretical back-
ground knowledge. Besides, we never use the actual number of monic irreducible poly-
nomials in this thesis except for the following: There are I1,q = q linearmonic irreducible
polynomials of degree 1. Thus, all ∣M1,q∣ = q linear monic polynomials are irreducible.

For our analysis of zeros in Chapter 3, we consider the sequence’s generating func-
tion M (z) comprising the cardinalities of Mn,q. FromTheorem 1.48, it is apparent that
M (z) = ∑∞

n=0∣Mn,q∣zn = ∑∞
n=0 q

nzn. Since (qnzn)n = ((qz)n)n is a geometric sequence,
the generating function has the compact representationM (z) = 1/(1 − qz). Similar to
Example 1.35, we aim to expressM (z) as a product since this helps us count polynomi-
als with certain zeros in Chapter 3. Although the product form ofM (z) can be found in
several papers, e.g., [FGP96; Kno75; Pan04], we thoroughly elaborate on its derivation as
it can be modified to count further kinds of polynomials.

Theorem 1.53 ([Pan04]). Let M (z) ≔ Mq(z) denote the generating function of the sequence
(∣Mn,q∣)

∞
n=0. It holds thatMq(z) = ∑∞

n=0 q
nzn = 1/(1− qz) = ∏∞

n=1(1− zn)−In,q.
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Proof ([FGP96; Pan04]). We prove the theorem in three steps, with one step per equation:
Firstly, we show that Mq(z) = ∑∞

n=0 q
nzn. Then, we simplify the sum to 1/(1 − qz). Fi-

nally, we argue that∏∞
n=1(1− zn)−In equals the same sum. For the third step, we use the

approach from [Pan04] with additional explanations from [FGP96].
According to Theorem 1.48, ∣Mn,q∣ = qn for all n ∈ ℕ0. Therefore, its generating

function is M (z) = ∑∞
n=0 q

nzn = ∑∞
n=0(qz)

n, which is a geometric series. Hence, we
obtain the simplified form ∑∞

n=0(qz)
n = 1/(1 − qz). Strictly speaking, the sum only

converges if ∣qz∣ < 1. However, we recall that since we interpret z as an indeterminate,
i.e., formal variable, we avoid such convergence issues.

It remains to prove that∑∞
n=0 q

nzn = ∏∞
n=1(1 − zn)−In. To this end, we elaborated in

Section 1.4 on why we can express the sum over all integers as a product over all primes
in Euler’s product formula (Fact 1.34). The gist was that every integer can be uniquely
written as a product of primes, which is covered by one addend of the expanded prod-
uct. The same holds for (monic) polynomials,whichwe can uniquely write as the product
of irreducible polynomials. Recall Example 1.35, the coin example from Section 1.4. We
considered each coin as an abstract object and assigned it a value: the coin value. Now,
we consider polynomials, where a polynomial’s “value” is its degree because we count the
number of different polynomials of degree n. The number of coins was limited, whereas
each prime could occur arbitrarily often. The latter reflects the situation of polynomials.

Let F = ⋃∞
i=1 ℑi,q be the family of all monic irreducible polynomials over 𝔽q. As be-

fore, we interpret each polynomial f ∈ F as an abstract2 object, where f i represents
the ith power of f . The formal sum f 0 + f 1 + f 2 + ⋯ = ∑∞

i=0 f
i, hence, generates all

polynomials being a power of f . Observe that this sum is a geometric series, namely,
∑∞

i=0 f
i = 1/(1 − f ). We conclude that by forming the product ∏f∈F 1/(1 − f ) of all

formal sums over all f ∈ F , we generate all monic polynomials (†).
Since we are interested in the value, i.e., degree, of each generated polynomial, we

consider the mapping f ↦ zdeg(f ). From (†), it follows that

M (z) = ∏
f∈F

1
1− zdeg(f )

= ∏
f∈F

(1− zdeg(f ))−1 . (1.2)

By definition, F includes every monic irreducible polynomial of every degree n ∈ ℕ.
Thus, we separate the product in Equation 1.2 by degree and thereby replace deg(f )with
that degree:

∏
f∈F

(1− zdeg(f ))−1 =
∞

∏
n=1

∏
f∈F

deg(f )=n

(1− zdeg(f ))−1 =
∞

∏
n=1

∏
f∈F

deg(f )=n

(1− zn)−1 . (1.3)

Since the argument of the inner product in Equation 1.3 only depends on the degree of f
but not f itself, we can simplify the inner product by repeatedlymultiplying (1− zn)−1 by
itself. Since the number of f ∈ F of degree n is precisely In, we obtain

M (z) =
∞

∏
n=1

∏
f∈F

deg(f )=n

(1− zn)−1 =
∞

∏
n=1

((1− zn)−1)In =
∞

∏
n=1

(1− zn)−In .

2We abstain from introducing a different variable for the formal polynomial.
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We conclude that∑∞
n=0 q

nzn = ∏∞
n=1(1− zn)−In, which completes the proof. �

1.6 Polynomial Secret Sharing

In Chapters 4 and 5, we use polynomials to protect the values of wires in circuits from
being read and manipulated by an adversary. The values are protected by secret sharing
schemes.

Polynomial secret sharing schemes provide a way to share a secret s among several
parties such that a certain minimum number of parties, say d + 1, is required to recover
the secret. Thus, as soon as at least d + 1 parties collaborate, they can recover the secret.
However, any constellation of at most d parties learns nothing about s by combining their
shares. In what follows, we will consider sharing schemes over a finite field 𝔽q and refer
to the total number of parties by n ∈ ℕ. We denote the degree of the polynomial that
includes the secret by d. We also assume that d < n < q.

In 1979, Shamir [Sha79] introduced secret sharing based on polynomials, which is
also knownas Shamir’s secret sharing. His idea is to sample a randompolynomial f ∈ P≤d,q
of degree at most d and to embed the secret by replacing the constant coefficient with it,
that is, f0 = s. The polynomial f is then evaluated at n specific and distinct positions
𝛼1, … , 𝛼n ∈ 𝔽 ∖ {0}, where 𝛼i corresponds to party i’s position, i ∈ [n]. For instance, the
canonical position is 𝛼i = i.

Definition 1.54 (Support Points and Nodes). Let i ∈ [n]. In the context of secret sharing,
we call the position 𝛼i ∈ 𝔽∖{0} of party i his support point or node. We refer to the n-tuple
𝛼 ≔ (𝛼i)ni=1 comprising all n distinct nodes as the tuple of support points or nodes.

Wemust exclude 𝛼i = 0 because f (0) = f0 is precisely the secret.
Each party i is now given his share of the secret, which is the member of the function

graph of f at𝛼i, namely, (𝛼i, f (𝛼i)). Since it is usually clearwhat node party i corresponds
to, we also treat his share as the function value f (𝛼i).

Definition 1.55 (Shares). Let f ∈ P≤d,q and let 𝛼 be an n-tuple of nodes. We call the value
Fi ≔ f (𝛼i) the share of party i. Further, we refer to the n-tuple F ≔ (Fi)ni=1 ≜ (f (𝛼i))ni=1 as
the n-sharing of f (w.r.t. 𝛼).

Shamir shows that any collection of at least d + 1 parties, i.e., shares, can recover
all coefficients of f , particularly f0 = s. This can be seen by noticing that, given a share
Fi = f (𝛼i), the linear equation ∑d

k=0 fk𝛼
k
i

!= Fi contains d + 1 unknowns, viz., f0, … , fd.
Hence, d+ 1 equations uniquely determine all coefficients, i.e., a polynomial of degree at
most d, because f is evaluated at distinct positions 𝛼i.

Fact 1.56 ([SB03]). Let 𝜋∶ [n] → [n] be a permutation and (F𝜋(i))d+1i=1 be a (d + 1)-tuple
of shares at nodes 𝛼𝜋(1), … , 𝛼𝜋(d+1). Then, there exists a unique polynomial f ∈ P≤d such
that f (𝛼𝜋(i)) = F𝜋(i) for all i ∈ [d + 1].

Using more than d + 1 shares, such as all n, is possible. Although this resembles an
overdetermined systemof equations, a unique solution still exists because the remaining
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n − d − 1 equations only provide redundant information. The process of determining a
polynomial from the points it “passes through” is called interpolation.

Shamir also shows that at most d shares cannot interpolate f . Moreover, the par-
tial information from these shares does not even reveal anything about f0 = s (in an
information-theoretic sense): Since f (0) = f0 = s, we can append this share to the other
d. According to Fact 1.56, these d + 1 shares uniquely determine a polynomial f ∈ P≤d.
Clearly, this works for every secret s ∈ 𝔽. Furthermore, since the polynomial underlying
the d shares was sampled uniformly at random, each complementary share f (0) = v,
where v ∈ 𝔽, is equally likely [Sha79].

Fact 1.57 ([Sha79]). Let s ∈ 𝔽, let f ←$ P≤d,q such that f0 = s, and let F be the n-sharing
of f . Any subset F′ ⊆ F of at least d + 1 shares uniquely determines f , hence, f0 = s.
Moreover, for any 𝛼′ = (𝛼′

i) ⊆ 𝛼with ∣𝛼′∣ ≤ d, the corresponding subset F″ = (F″
i ) ⊆ F

of at most d shares is independent of s, i.e., Pr[f0 = s] = Pr[f0 = s ∣ ⋀i f (𝛼′
i) = F″

i ].

By now, it should be apparent that both the coefficients and shares of f are impor-
tant for secret sharing. Since 𝔽[x] forms a vector space, we can easily switch between
the coefficient view (fi)di=0 = (f0, … , fd) and the sharing view (Fi)ni=1 = (f (𝛼1), … , f (𝛼n)).
Assuming that both tuples are row vectors, we can transform (fi)i into (Fi)i using a ma-
trix V ∈ 𝔽n×(d+1) such that

V ⋅ (fi)T
i = (Fi)T

i ↔
⎛⎜⎜⎜⎜⎜⎜
⎝

V0,0 V0,1 … V0,d
V1,0 V1,1 … V1,d

⋱
Vn−1,0 Vn−1,1 … Vn−1,d

⎞⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜
⎝

f0
f1
⋮
fd

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

F1
F2
⋮
Fn

⎞⎟⎟⎟⎟⎟⎟
⎠

↔
⎛⎜⎜⎜⎜⎜⎜
⎝

V0,0 ⋅ f0 + V0,1 ⋅ f1 + ⋯ + V0,d ⋅ fd
V1,0 ⋅ f0 + V1,1 ⋅ f1 + ⋯ + V1,d ⋅ fd

⋮
Vn−1,0 ⋅ f0 + Vn−1,1 ⋅ f1 + ⋯ + Vn−1,d ⋅ fd

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

F1
F2
⋮
Fn

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Observe that matrix indices are zero-based. From the definition of polynomials in Re-
mark 1.37,we conclude thatVi,j = 𝛼ji+1. ThematrixV is known as theVandermondematrix.

Definition 1.58 ([Inverse] Vandermonde Matrix). Let d, n ∈ ℕ and let 𝛼 be an n-tuple of
shares. The Vandermonde matrix Vd ≔ Vd(𝛼) ∈ 𝔽n×(d+1) includes the jth power of 𝛼i+1 in
its entry Vi,j, that is,Vi,j = 𝛼ji+1. If d = n− 1, then V ≔ Vn−1 is square, and we refer to the
entry V−1

i,j as 𝜆j,i.

We implicitly assumed V to be invertible. Since the nodes in 𝛼 are pairwise disjoint,
the well-known determinant det(V(𝛼)) = ∏i,j>i(𝛼j − 𝛼i) implies that V−1 exists.

Fact 1.59. For all node tuples 𝛼 ⊆ 𝔽, the n × n Vandermondematrix V(𝛼) is invertible.

From the n-sharing F, it is possible to individually compute the kth coefficient fk of f
using the kth row of the inverse Vandermondematrix as fk = ∑n

i=1 𝜆i−1,kFi.
In many scenarios, it is desirable to alter s. This includes adding or multiplying it by

some value v ∈ 𝔽 or combining it with a secret from another sharing. In a way that re-
sembles homomorphic encryption, modifying s is indeed possible without having to reveal,
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alter, and then share it again. A framework that realizes the aforementioned function-
ality is due to Ben-Or, Goldwasser, and Wigderson [BGW88] and is mainly used in the
context of secure multi-party computation (MPC).

In Chapters 4 and 5, we use polynomial secret sharing to protect wires in a circuit
againstmanipulation by an adversary by identifying thewire valuewith the secret. Thus,
if the adversarymodifies, i.e., faults, awire,he changesone shareof the sharingF protect-
ing the actual wire value. If the degree of the polynomial f corresponding to the faulted
sharing is greater than d, the sharing is invalid, and otherwise remains valid. We call the
coefficients f0, … , fd the lower-order coefficients of f and fd+1, fd+2, … the higher-order ones.
The following observation states when a faulted sharing is invalid:

Observation 1.60. Let F be an n-sharing of a polynomial f of degree d. If𝜔 ∈ [n − d − 1]
shares change, the degree of the polynomial corresponding to this altered sharing is at
least n− 𝜔.

This is because the difference sharing FΔ ≔ F′ − F includes exactly𝜔 shares that do
not vanish. Thus, exactly n− 𝜔 shares are 0, that is, FΔ has at least n− 𝜔 (distinct) zeros.
Accordingly, the corresponding polynomial is either the zero polynomial or its degree is
at least n− 𝜔, according to Fact 1.41. The former, however, is not possible since FΔ ≠ 0n.
Since we assumed that𝜔 < n − d, the degrees of f and fΔ are distinct, and we conclude
that deg(f ′) = max{deg(f ), deg(fΔ)} = deg(fΔ) ≥ n− 𝜔.

Arnold et al. [ABEO24] embed two secrets in one polynomial using the lowest and
highest coefficients. Embedding two secrets is optimal because placing a non-random
value on any intermediate coefficient can restrict the choice of possible polynomials re-
sulting from the corresponding sharing [pon13]. Wemention that there are ways to em-
bedmultiple secrets, notablymore than two, in one polynomial. These schemes are called
packed secret sharing schemes and were introduced by Franklin and Yung [FY92]. The main
difference is that secrets are not embedded as coefficients but as function values. We
note that embeddingmultiple secrets in one polynomial, either using packed or conven-
tional secret sharing, changes the “hide-reconstruct gap”: Using a polynomial of degree d
in Shamir’s classical secret sharing guarantees that any constellation of at most d parties
learns nothing about the secret, nevertheless, d + 1 parties can reconstruct it. Thus, the
gap is (d+ 1) − d = 1. By embeddingmultiple, say,𝜎, secrets, d+ 1 parties still suffice to
reconstruct the secrets. However, it is only guaranteed that any constellation of at most
d−𝜎 +1 parties learns nothing about the secrets. This gap ofmagnitude𝜎 (as opposed to
1) yields an increase of the degree from d to d+𝜎 − 1 if we insist on requiring d+ 1 parties
to reconstruct the secrets. For instance, since Arnold et al. embed two secrets, they must
increment the degree by 1.

– 17 –



2
Introduction

An important and “nice” class of functions are polynomial functions because their proper-
ties make them applicable to several areas inside and outside of mathematics. For in-
stance, they are continuous and infinitely often differentiable, i.e., smooth. They can be
used to (locally) approximate functions that are otherwise hard to evaluate, e.g., using
Taylor expansion. In particular, they are applicable to areas of discretemathematics such
as cryptography and coding theory. There, polynomials are usually regarded from their
sharing view, that is, by the values the function assumes at specific nodes. That is because
the sharing view enables extracting properties such as the (minimal) number of distinct
zeros more easily. Recall that every polynomial of degree (at most) d − 1 is uniquely de-
termined by d distinctmembers of its function graph. Notice that it is possible to embed
information in the coefficients of polynomials. In coding theory,Reed–Solomon codes em-
bed up to d values in polynomials over a finite field 𝔽q. The corresponding codeword is
derived by evaluating the polynomial at n ≤ q nodes [RS60]. If k entries of the code-
word change, the degree of the altered polynomial is at least n − k, which is potentially
larger than d − 1. This enables error detection (and correction). For these codes, coeffi-
cients do not need to remain secret. The situation is different in the case of cryptography.
Shamir’s secret sharing [Sha79] embeds the secret in the constant term of a polynomial to
hide and split a secret value into multiple parts. Like Reed–Solomon codes, the polyno-
mial is evaluated at n < q nodes, where each party obtains one function value. Naturally,
the polynomial must not be evaluated at position 0 since this value is equal to the secret.
If the degree of the polynomial is d − 1, then d parties suffice to reconstruct the polyno-
mial and the secret. However, it can be shown that if the remaining d − 1 coefficients
are sampled uniformly at random, any constitution of at most d − 1 parties is not only
unable to reconstruct the entire polynomial but neither learns any information about the
secret. Thus, secret sharing is particularly suitable for applications requiring confiden-
tiality and tamper protection from individual parties. In this thesis, we employ secret
sharing to protect circuits against adversaries that try to learn and modify the values of
wires. Zeros provide a further link between a polynomial’s coefficients and function val-
ues. Although the number and positions of zeros are often not apparent from the coeffi-
cients, it was shown that themore consecutive coefficients a polynomial has, all of which
are 0, the fewer distinct zeros it can have [Gei15; KW14]. Formulae exist to calculate all
zeros for polynomials over the reals (or complexnumbers) andofdegree atmost 4. Never-
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theless, the Abel–Ruffini theorem states that no algebraic solutions exist to solve polynomial
equations involving powers greater than 4. Thus, computing the zeros of polynomials
specified by their coefficients becomesmore complicated. A different approach is to fac-
torize thepolynomial. Integers canbeuniquely3 decomposed into their prime factors. An
analogous result holds for polynomials over fields. They can be decomposed into a prod-
uct of irreducible polynomials. Observe that v ∈ 𝔽 is a zero if, and only if, the linear,
irreducible factor x− v divides the polynomial. To determine the number of polynomials
of degree dwith a zero at v, it is possible to divide the polynomial by x− v. Thus, it is suf-
ficient to count the number of different quotients. Generating functions are a handy tool to
enumerate (mathematical) objects, such as polynomials with specific properties. For in-
stance, in probability theory, they ease the computation of the PMF,mean, and variance
of random variables. However, compactly storing (structured) information, e.g., the Fi-
bonacci numbers, is also possible. We utilize generating functions to count polynomials
with specific zeros.

2.1 Contributions of This Thesis

This thesis contributes to three areas: zeros of univariate polynomials over finite fields
and improvements to two papers, [BEF+23] and [ABEO24].

Regarding the zeros of polynomials, we present (parts) of the results established in
[IM08] and [KK90] combined as a survey. Together, both papers provide a thorough
overview of the distribution of zeros. However, they cover different aspects. We link both
topics by showing how the results in [KK90] can be derived from [IM08]. To this end, we
generalize the results from the latter. We also restate and prove the fundamental results
from [IM08] because the authors provided no proof. Finally, we correct one result from
[KK90] regarding the variance of a random variable.

Furthermore, we determine the exact success probability of a (non)-adaptive adver-
sary in [BEF+23]. Previously, the authors established an upper bound; however, the exact
value remains undetermined. Ensuing from our probability, we present further upper
bounds and compare our results with those from [BEF+23].

The third and final contribution is the improvement of the error detection of the
double-sharing framework introduced in [ABEO24]. The original framework allows an
adversary to go unnoticed. We present twomodifications that eliminate this possibility.
Moreover, we argue why one approach cannot work for the framework.

2.2 Related Work

Polynomials are awell-studied subject. The same is true for their zeros. Unless otherwise
stated,we assume that (random) polynomials aremembers of the polynomial ring𝔽q[x],
where q is a prime power.

In [IM08], Ivchenko andMedvedev analyzewhat they call the “local structure” of ran-
dompolynomials f . Theydecompose f into its irreducible factors and consider theirmul-

3Up to reordering of factors.
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tiplicities. Among other things, they consider the probability that the jth irreducible fac-
tor of degree i ∈ [n] occurs in the decomposition of f with a multiplicity of exactly and
at least s ∈ [0, n], respectively. The authors consider the corresponding probability dis-
tribution, mean, variance, and asymptotic behavior for many variants. They specifically
address the case i = 1, i.e., the linear irreducible polynomials. As mentioned at the be-
ginning of this chapter, these factors contribute the zeros of f . We remark that we use
results from this paper in Chapter 3.

Knopfmacher and Knopfmacher [KK90] investigate the number of polynomials of
degree n with exactly k ∈ [0, n] zeros and distinct zeros, respectively. Moreover, they
establish the average number and variance in both cases, as well as their asymptotic be-
havior. The authors employ generating functions to count the number of such polynomi-
als. We use this technique and present their results in Chapter 3. Recall that the number
of linear irreducible factors, i.e., factors of degree i = 1, of a polynomial is equal to the
number of its zeros. In a follow-uppaper,Knopfmacher andKnopfmacher [KK93] gener-
alize the results from [KK90] to count the number of polynomials with exactly k (distinct)
irreducible factors of degree i.

In 2023, Jain,Moon, andWu[JMW23] proved that for anyfixed q, the averagenumber
of distinct zeros of any non-constant multivariate polynomial in m variables is always
qm−1. In particular,m = 1 implies that for univariate polynomials, the average number is
q1−1 = 1. Wemention that this result is known in the univariate case, e.g., due to [KK90],
and in themultivariate case, e.g.,due to [Sch76]. Nevertheless, the authorsuse adifferent
approach from the realm of algebraic geometry to prove the result.

Kopparty and Wang [KW14] show that if a polynomial f ≠ 0 with deg(f ) ≤ q − 2
has many distinct zeros, it cannot have a long consecutive sequence of zero-coefficients.
More precisely, they prove that if m ∈ ℕ is the number of positions v ∈ 𝔽∗

q such that
f (v) ≠ 0, then for no k ∈ [0, q − 1 − m], all m consecutive coefficients starting at fk,
that is, fk, fk+1, … , fk+m−1, are 0. Geil [Gei15] generalizes the above result in two aspects.
Firstly, he considers any k ∈ [0, q− 2]withm consecutive coefficients starting at fk, i.e.,
fk, f(k+1) mod (q−1), … , f(k+m−1) mod (q−1). For instance, this allows us to consider only the low-
est andhighest coefficients, f0 and fn. By“arranging” the coefficients circularly, it becomes
apparent that both are consecutive, although 0 and n are not. An alternative formulation
of his theorem is the following: If f takesmdifferent non-zero values (i.e., if f has q−1−m
zeros) in𝔽∗

q , then it cannot occur thatm consecutive coefficients are all 0. Moreover, Geil
states a variant for multivariate polynomials in m variables. However, since this thesis
considers univariate polynomials, we omit further details.

Ax [Ax64] shows that for all multivariate polynomials f inm variables of total degree
d, the number qb divides the number of zeros of f . Here, b ∈ ℕ0 is the largest number
such that b < m/d. Unfortunately, this result is trivial for univariate polynomials since
m = 1 implies that if d ≥ 1, the variable b is 0. Thus, qb = q0 = 1, which divides every
integer.

The authors of [DNV15] consider zeros of random polynomials over ℝ. Since it is
uncertain how to sample coefficients or polynomials uniformly at random from an (un-
countably) infinitely “wide” set, different distributions are considered. Do, Nguyen, and
Vu sample a random polynomial f of degree n by sampling its i.i.d. coefficients f0, … , fn
according to any distribution that (1) has mean 0, (2) has unit variance, and (3) 0 is not
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in its support. Among other things, they consider the case where the fi are Bernoulli-
distributed such that Pr[fi = −1] = 1/2 and Pr[fi = 1] = 1/2. Then, they show that the
probability that f has at least one double zero is at mostΘ(n−2) + n−𝜔(1).

Hwang [Hwa98] considers the random variableΩn of the number of irreducible fac-
tors of a random polynomial inMn. He shows that the PMF Pr[Ωn = s], where s ∈ ℕ, is
a convolution if n → ∞ and n − s → ∞. In that case,Ωn follows a Poisson distribution
convoluted with a negative binomial one.

Many works regarding (irreducible) factors of polynomials use generating functions
to count polynomials that satisfy specific properties. For instance, Flajolet,Gourdon, and
Panario [FGP96] and Panario [Pan04] thereby prove that the number of squarefree4 poly-
nomials in Mn of degree at least 2 is qn − qn−1. From this, they deduce that a random
polynomial is squarefree with probability 1 − q−1, which tends to 1 if q → ∞. Thus, an
overwhelming number of polynomials decomposes into distinct irreducible polynomi-
als. We recall that in the previous Chapter 1, we used generating functions to count the
number of all, monic, and irreducible polynomials of degree n.

Weconclude this sectionby considering fault attacks. Richter-Brockmann,Sasdrich,
and Güneysu [RSG23] evaluate common fault attack techniques. Additionally, they pro-
pose ageneric andunifiedmodel todescribe adversaries in fault attacks,which is suitable
for many different techniques.

2.3 Structure of This Thesis

This thesis comprises three main parts: Chapter 3 concerns zeros of polynomials. We
start by analyzing the multiplicity of a zero at one particular position, which enables us
to expand our analysis to multiple arbitrary positions. We use these results to focus on
the total number of zeros and distinct zeros. In Chapter 4, we improve one result from
[BEF+23], which concerns the success probabilities of two kinds of adversaries. We begin
by determining the exact number of two polynomials that occur. This way, we establish
the exact success probabilities of both adversaries. Afterward, we provide upper bounds
on one of the probabilities and compare our resultwith the original one. Finally, inChap-
ter 5, we present modifications to the framework from [ABEO24] such that a rigging ad-
versary is always detected instead of only with a certain likelihood. Our first approaches
are bound to the current operation used with the framework. Then,we present a univer-
sal method. Due to its inefficiency, we present a further method.

4A polynomial is squarefree if all irreducible factors occur in its decomposition withmultiplicity at most 1.
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In this chapter, we analyze polynomials with regard to the distribution of their zeros.
Among other things, we consider the number of polynomials of degree n ∈ ℕ0 with
k ≤ n total zeros and distinct zeros each. When choosing a polynomial f fromMn (or Pn)
uniformly at random, the numbers immediately yield the probability that f possesses a
given type and number of zeros, e.g., k zeros either in total or distinct. By gaining in-
sight into the number and distribution of different variants of zeros, we aim to provide a
foundation for applications that concern polynomials in terms of their zeros or degrees.
It is known that for polynomials, the degree and number of zeros are related, e.g., due
to Fact 1.41. For instance, a polynomial of degree 4 cannot have more than four zeros
(unless it is the zero polynomial). We note that this upper bound holds only for univari-
ate polynomials over a field. However, we restrict ourselves to such polynomials in this
chapter. In addition, polynomials can be regarded from their sharing view, i.e., from the
values they take at certain positions. In this case, the number and positions of zeros are
immediately apparent. In Chapters 4 and 5, we consider polynomials from that sharing
view. Although this chapter does not contribute to improving the results in these two
chapters, its results may become helpful to further research in their areas, namely, poly-
nomialmasking and fault resilience. Notwithstanding the benefit for other applications,
we provide an extensive survey regarding the distribution of zeros of polynomials over
finite fields. To the best of our knowledge, we are the first to compile the results in such
a united manner.

In thefirst Section 3.1,we start by considering a zero at one specific position v ∈ 𝔽 and
examine polynomials regarding the multiplicity of that zero. Zeros may occur at other
positions, too, but we neglect them. We give the probability distribution of the multi-
plicity but also state its average and variance. Furthermore, we consider the asymptotic
behavior as n → ∞ and find that the distribution has a geometric limit.

In Section 3.2, we expand our analysis of the multiplicity to two and then arbitrary
ℓ ∈ [|𝔽|] zeros at specific positions. As before, we investigate the numbers and proba-
bility distributions. Moreover, we consider the restriction that zeros must not occur at
positions other than those ℓ.

Afterward, in Section 3.3, we relax the assumptions on specific multiplicities at cer-
tainpositionsandonly require thesepositions tohavea combinedmultiplicity of k. When
setting ℓ = q, we obtain polynomials with exactly k zeros in total. We elaborate on that
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number and its probability distribution. Here, we find that the distribution has a nega-
tive binomial limit.

Finally, Section 3.4 addresses the casewhenweconsider thepositions of zerosbutnot
theirmultiplicities. For agivencollectionofpositions,wegive thenumberofpolynomials
with zeros at those positions. We also provide the number when we additionally require
that zeros at positions other than those in the collection must not occur. Similarly to
the previous Section 3.3, we relax the assumptions of the exact positions and obtain the
number of polynomials with exactly k distinct zeros. Again, we go into detail about the
distribution and finally ascertain a binomial limit.

Unless otherwise stated, the following holds: We consider polynomials and zeros
over 𝔽q[x] and 𝔽q ≕ 𝔽, respectively, where q is a prime power. Moreover, we primarily
considermonic polynomials for convenience. Since Pn andMn differ by a factor of q − 1,
multiplying any number established in a theorem (or suchlike) by q− 1 yields the number
when polynomials in Pn are considered. When mentioning the term monic in parenthe-
ses, i.e., “(monic),” we intend to express that the respective matter holds for both monic
and non-monic polynomials. We recall that themultiplicity of a zero is the exact number
of times the zero occurs. Thus, a polynomial with a zero v of multiplicity s implies that
(x − v)s+1 does not divide the polynomial. In theorems (or suchlike), we use the phrase
such that to implicitly set the quantity in question to0 if the subsequent condition is false.
For instance, the sentence “For all k, n such that k ≤ n, the number of polynomials of de-
gree nwith k zeros…” implies that if k > n, said number is 0.

3.1 The Multiplicity of One Zero

Webegin this chapterwith themost trivial case, focusing on oneposition and considering
polynomials with a zero there (but not necessarily only there). In later sections, we ex-
pand our study tomultiple positions. Our analysis of multiplicities of individual zeros is
influenced by Ivchenko andMedvedev [IM08]. In this paper, the authors analyze the de-
composition of polynomials into irreducible factors. For us, the irreducible polynomials
of degree 1 are of interest because they correspond to the zeros. The authors state several
probabilities regarding zeros at one or multiple individual positions. However, [IM08]
does not include proofs nor the corresponding number of polynomials that satisfy these
constraints. Thus, we use generating functions to count polynomials first. This way, we
deduce the probability and prove the statements claimed in [IM08]. Furthermore, we
independently determine some results from [IM08].

Firstly,we state the number of polynomials of degree nwith a zero ofmultiplicity s at
an arbitrary but fixed position v ∈ 𝔽. We recall that it is still possible for the polynomial
to have additional zeros at other positions. For instance, if v = 1 and s = 3, the polyno-
mial x5(x − 1)3 is feasible nevertheless. We stress that Ivchenko and Medvedev [IM08]
determine the corresponding probability (stated below in Corollary 3.2). However, they
present no proof. Since it is simple to derive the probability from the number of favorable
polynomials, we first determine the latter. To count polynomials, we follow the method-
ology of Knopfmacher and Knopfmacher [KK90], who use generating functions to prove
Theorems 3.19 and 3.28, found in Sections 3.3 and 3.4, respectively. These theorems ad-
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dress a polynomial’s total number of (distinct) zeros. However, since it is reasonable to
begin with examining one zero, we adapt their approach to use it to prove Theorem 3.1
first. Throughout this chapter, we use their methodology in various ways to count poly-
nomials satisfying different constraints on their zeros.

Theorem 3.1. For all n, s ∈ ℕ0 such that s ≤ n and for all v ∈ 𝔽, the number of monic
polynomials of degree n with a zero at x = v of multiplicity s equals Z1(s, n) ≔ Z1,v(s, n) ≔
⎧{
⎨{⎩

qn−s − qn−s−1 if s ≤ n− 1
1 if s = n.

Proof ([KK90]). Let v be arbitrary but fixed, and let f ∈ Mn have a zero at v ofmultiplicity
s. Throughout several proofs in this chapter,we use the fact that we can factorize polyno-
mials over a field into a unique product of irreducible polynomials. This follows because
𝔽[x] is a UFD, according to Fact 1.7. In particular, we can factorize linear terms, which
correspond to zeros.

Here, we can write f = (x − v)sg, where g is another polynomial. Factorizing f in
that way ensures that f has a zero at x = v ofmultiplicity at least s. So far, themultiplicity
does not need to be exactly s because g might also include x − v as a factor. Either way,
deg(g) = n − s since deg(f ) = n and s linear factors x − v are fixed. We must ensure
that g does not have a zero at v, that is, g(v) ≠ 0. Thus, wemay only consider such gwith
all zeros being at x ≠ v. Accordingly, the number of desired polynomials f equals the
number of such g ∈ Mn−s.

To determine the number of feasible g, we use generating functions. Knopfmacher
and Knopfmacher [KK90] prove Theorem 3.19 using an approach that involves generat-
ing functions. We adapt their approach to prove this theorem. In that regard, we recall
the proof of Theorem 1.53. As described in the proof of Theorem 1.53, the collection of
all monic polynomials is ∏f∈F (1 − f )−1, where F is the family of all monic irreducible
polynomials. We are interested in the collection of all monic polynomials without zeros
at x = v. Let G be this multiplicative semigroup generated by all non-linear monic irre-
duciblepolynomials and the linear onesx−v′,where v′ ∈ 𝔽∖{v}. Westress that generated
is different from consist of. Besides, although the identity 1 = 1x0 is not irreducible, it is
generated by the irreducible polynomials, i.e., 1 ∈ G. Thus, G is not only a semigroup
but also a monoid. Nevertheless, we call G a semigroup to be consistent with [KK90]. To
summarize: A monic polynomial lies in G if, and only if, it has no zero at v.

We call G(z) = ∑∞
n=0 G(n)zn the generating function of (G(n))n∈ℕ0

, where G(n) is
the number of polynomials of degree n in G, i.e.,G(n) = ∣G∩ Mn∣. The generating func-
tion of all monic polynomials is M (z) = 1/(1 − qz) = ∏∞

n=1(1 − zn)−In, according to
Theorem 1.53. SinceM (z) is already known, we try to express G(z) usingM (z). In the
product∏∞

n=1(1−z
n)−In, the factor at n = 1 contributes the linear factors, i.e., zeros. This

factor (1 − z1)−I1 = (1 − z)−q now becomes (1 − z)−(q−1) because polynomials generated
by Gmust not include one specific factor, namely, x − v. Thus, the number of irreducible
polynomials in F of degree 1 that we regard is ∣ℑ1 ∖ {x − v}∣ = I1 − 1 = q− 1.

We split the product ofM (z) into∏∞
n=1(1− zn)−In = (1− z)−q ∏∞

n=2(1− zn)−In. This
enables us to compareM (z)withG(z) factor-wise. By the above reasoning, it holds that
G(z) = (1 − z)−(q−1) ∏∞

n=2(1 − zn)−In. Consequently,M (z) and G(z) only differ in the
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first factor, which yields the following relation: M (z) = (1 − z)−1G(z), or equivalently,
(1 − z)M (z) = G(z). This can be seen because we only need to turn the first factor
(1− z)−q into (1− z)−(q−1), which we accomplish by multiplying (1− z)−q by 1− z.

Next, we use the simple closed form ofM (z), namely, 1/(1 − qz), to derive one for
G(z). We have G(z) = (1− z)M (z) = (1− z) ⋅ 1/(1− qz) = (1− z)/(1− qz).

It remains to findG(n), which is included inG(z) ≜ ∑∞
n=0 G(n)zn. Fortunately,G(z)

is the product of two generating functions, 1 − z and 1/(1 − qz), each of which we know
the generated sequence of: For one thing, 1− z = 1z0 + (−1)z1 is the generating function
of the sequence (1, −1, 0, 0, … ), and for another, 1/(1 − qz) = ∑∞

n=0 q
nzn. We use the

Cauchy product to determine the sequence generated by (1− z) ⋅ (1/(1− qz)), i.e.,G(n):

G(z) =
1− z
1− qz

=
∞

∑
n=0

⎛⎜⎜⎜⎜⎜
⎝

n

∑
i=0

qn−i
⎧{{
⎨{{⎩

1 if i = 0
−1 if i = 1
0 else

⎞⎟⎟⎟⎟⎟
⎠
zn =

∞
∑
n=0

⎛⎜
⎝

⎧{
⎨{⎩

q0 if n = 0
qn − qn−1 else

⎞⎟
⎠
zn.

Since G(z) ≜ ∑∞
n=0 G(n)zn, we can see that

G(n) = [zn]G(z) =
⎧{
⎨{⎩

q0 if n = 0
qn − qn−1 else

=
⎧{
⎨{⎩

1 if n = 0
qn − qn−1 else.

Recall that deg(g) = n− s, so the number of feasible g is G(n− s), which equals

G(n− s) =
⎧{
⎨{⎩

1 if n− s = 0
qn−s − qn−s−1 else

=
⎧{
⎨{⎩

qn−s − qn−s−1 if s ≤ n− 1
1 if s = n.

Based on the above reasoning, the number of feasible g equals the number of different f
with a zero at v of multiplicity s. Since G(n− s) is said number, the claim follows. �

We note that since v was chosen arbitrarily, Z1,v(s, n) = Z1,v′(s, n) for all v, v′ ∈ 𝔽.
This is reflected in the function Z1,v(s, n), which is independent of v.

Weuse the obtained functionZ1(s, n) to derive the probability that a polynomial has a
zero at v ofmultiplicity s. According to Laplace’s rule, if we assume a uniform distribution
over the polynomials inMn (or Pn), the probability in question is given by the number of
favorable polynomials, i.e.,Z1(s, n), divided by the number of all polynomials, i.e., ∣Mn∣ or
∣Pn∣. Irrespective of whether or not we restrict ourselves tomonic polynomials, the prob-
ability remains the same. This is implied byTheorem 1.50 since the process of converting
a polynomial into itsmonic form is independent of its zeros. We recall that Ivchenko and
Medvedev give the probability but without proof.

Corollary 3.2 ([IM08]). For all n, s ∈ ℕ0 such that s ≤ n and for all v ∈ 𝔽, letZ1(n) ≔ Z1,v(n)
denote the randomvariable of themultiplicity of the zero v of a random (monic) polynomial of degree

n. Then, the PMF ofZ1,v(n) equals Pr[Z1,v(n) = s] =
⎧{
⎨{⎩

q−s − q−s−1 if s ≤ n− 1
q−s if s = n.

Proof. Due to the uniform distribution, each polynomial f ∈ Mn has an equal chance to
be chosen. This leads to Pr[Z1,v(n) = s] = Z1(s, n)/∣Mn∣ = Z1(s, n)/qn.
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Corollary 1.49 states that ∣Pn∣ = (q − 1)∣Mn∣. Accordingly, if f ∈ Pn, then we have
Pr[Z1,v(n) = s] = ((q − 1)Z1(s, n))/∣Pn∣ = Z1(s, n)(q − 1)/((q − 1)qn) = Z1(s, n)/qn as
before. �

For our applications, we usually consider polynomials from their sharing view. If
a share at node v is zero, we can directly deduce that the polynomial has a zero there.
However, we cannot infer anything about the multiplicity of this zero other than that it
is at least 1. Since the support of Z1(n) is [0, n], finding the probability that v is a zero
is easy. In fact, the probability is Pr[Z1(n) ≥ 1] = 1 − Pr[Z1(n) = 0]. Although the
probabilities Pr[Z1(n) ≥ 1] and Pr[Z1(n) ≥ s] (the latter being the “probability variant”
of Lemma3.4) appear in [IM08],wederived them independently aswewereunaware that
Ivchenko and Medvedev had previously stated them. We use Corollary 3.2 to conclude
that the probability is:

Corollary 3.3 ([IM08]). Let n ∈ ℕ0, v ∈ 𝔽, and f ∈ Pn (be monic). The probability that v is a
zero of f equals Pr[Z1,v(n) ≥ 1] = [[n ≥ 1]]q−1. The probability that v is not a zero of f equals
Pr[Z1,v(n) = 0] = 1− [[n ≥ 1]]q−1.

We omit the proof since the probabilities can be directly obtained from Observa-
tion 3.2 using s = 0. Nevertheless, we mention that Corollary 3.3 can also be deduced
using generating functions in an approach similar to the proof ofTheorem 3.1. We recall
that in the proof,we needed to ensure that g does not have a zero at v. However, in Corol-
lary 3.3, we only require amultiplicity of at least one. Thus, any g (with the proper degree)
is feasible, and we only need to count how many polynomials of said degree exist. That
number is given inTheorem 1.48.

We state this result below but in a more generalized form since we use it for further
applications in later sections.

Lemma 3.4. Let n ∈ ℕ0 and let v1, … , vℓ ∈ 𝔽 be pairwise distinct. The number of monic poly-
nomials of degree nwith zeros at v1, … , vℓ of multiplicities at least s1, … , sℓ ∈ ℕ0, respectively, is
qn−k, where k ≔ ∑ℓ

i=1 si ≤ n.

Proof. Let f ∈ Mn, and let v1, … , vℓ be arbitrary but fixed. As before, we write f as the
product of the zeros x − v1, … , x − vℓ and some polynomial g. We factorize out (x − vi)si
since the multiplicity of vi is at least si. More formally, we write f = g∏ℓ

i=1(x − vi)si,
where g is a polynomial of degree n − k. Any g is suitable because it can only add zeros
to f . Hence, it cannot decrease but increase themultiplicities of the vi. We conclude that
the number of feasible f is precisely the number of polynomials of degree n− k, namely,
∣Mn−k∣ = qn−k. �

To prove Corollary 3.3 using Lemma 3.4, as mentioned before, we set ℓ = 1, k = 1,
and obtain qn−1. Dividing this number by ∣Mn∣ = qn yields q−1 = Pr[Z1(n) ≥ 1].

However, Lemma 3.4 can be used to not only prove the “at least” case but also the
“exact” cases in Theorem 3.1 and Corollary 3.2. This is achieved by expressing equality
through inequalities as follows: Observe that for all integers s and s′, the twopropositions
s = s′ and s ≥ s′ ∧¬(s ≥ s′ + 1) are equivalent. Hence, some zero v of f has amultiplicity
of s if, and only if, v has a multiplicity of at least s but not at least s + 1. According to
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Lemma 3.4, the number, therefore, is qn−s − qn−(s+1) if s < n and qn−n − 0 = 1 if s = n. In
both cases, it coincides with Z1(s, n).

For the remainder of this section, we return to the random variableZ1(n). To better
understand its behavior, we analyze two statistical quantities: its expectation and vari-
ance. The former can be found in [IM08], however, without its asymptotic behavior and
proof, and equals:

Theorem 3.5 ([IM08]). The expected value ofZ1(n) is𝔼[Z1(n)] = (1− q−n)/(q− 1). Moreover,
the asymptotic expectation equals limn→∞ 𝔼[Z1(n)] = 1/(q− 1).
Proof. We use the definition of the expectation, i.e.,𝔼[Z1(n)] ≜ ∑n

s=0 s Pr[Z1(n) = s].
In Corollary 3.2,we established that Pr[Z1(n) = s] distinguishes two cases, s ≤ n− 1 and
s = n. Thus, we split the sum accordingly and obtain

𝔼[Z1(n)] =
n−1
∑
s=0

s Pr[Z1(n) = s] +
n

∑
s=n

s Pr[Z1(n) = s]

=
n−1
∑
s=0

s(q−s − q−s−1) + nq−n

=
q−n(qn − nq+ n− 1)

q− 1
+ nq−n

=
1− q−n

q− 1
.

(3.1)

It remains to determine the asymptotic expectation. Using the result from Equation 3.1,
we obtain limn→∞ 𝔼[Z1(n)] = limn→∞(1−q−n)/(q−1) = (1−0)/(q−1) = 1/(q−1). �

Proceeding from the expectation, we can now calculate the variance.

Theorem 3.6. The variance of Z1(n) is Var[Z1(n)] = q−2n(q2n+1−(2n+1)(q−1)qn−1)
(q−1)2 . Moreover, the

asymptotic variance equals limn→∞ Var[Z1(n)] = q/(q− 1)2.
Proof. It is well known that Var[Z1(n)] = 𝔼[Z1(n)2] − 𝔼[Z1(n)]2. Thus, we determine
theminuend and subtrahend. Computing𝔼[Z1(n)]2 is straightforward sincewe already
established𝔼[Z1(n)] in Theorem 3.5. The second raw moment 𝔼[Z1(n)2] is established
in the same way𝔼[Z1(n)]was, that is, we split the sum. We obtain

𝔼[Z1(n)2] =
n−1
∑
s=0

s2 Pr[Z1(n) = s] + n2q−n

=
q−n ((q+ 1)(qn − 1) − 2n(q− 1) − n2(q− 1)2)

(q− 1)2 + n2q−n

=
q−n ((q+ 1)(qn − 1) − 2n(q− 1))

(q− 1)2 .

Combining both values results in

Var[Z1(n)] =
q−n ((q+ 1)(qn − 1) − 2n(q− 1))

(q− 1)2 − ⎛
⎝
1− q−n

q− 1
⎞
⎠

2

=
q−2n (q2n+1 − (2n+ 1)(q− 1)qn − 1)

(q− 1)2 .
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To determine the asymptotic variance as n approaches infinity, we observe that the lead-
ing termin theparenthesesof theabovenumerator is q2n+1. Thus,weomit theother terms
and establish limn→∞ Var[Z1(n)] = limn→∞(q−2n(q2n+1 + 0))/(q− 1)2 = q/(q− 1)2. �

Thealert readermight have noticed that in the asymptotic case, as n tends to infinity,
mean and variance agree with those of Geo(1 − q−1). This is not a coincidence since for
s ≤ n − 1, the PMF of Z1(n) equals Pr[Z1(n) = s] = q−s − q−s−1 = (q−1)s(1 − q−1).
This is precisely the PMF of a random variable X ∼ Geo(1 − q−1) at X = s, according
to Definition 1.15. Ivchenko and Medvedev state that Z1(n) follows the truncated geo-
metric distribution Geo(q−1). However, it is apparent that the truncated PMF of Z1(n)
corresponds toGeo(1− q−1) and notGeo(q−1).
Observation 3.7 (Corrected [IM08]). The random variableZ1(n) follows a geometric distribu-
tion truncated at s = n. More precisely, Pr[Z1(n) = s] = Pr[X = s] if, and only if,
s ≤ n− 1, where X ∼ Geo(1− q−1).

Because both PMFs are equal at all support points except s = n, it follows that Z1(n)
has a geometric limit. LetZ1 ≔ Z1,v denote the limit distribution ofZ1(n) as n → ∞. In-
formally speaking, this follows because the distribution of Z1(n) is a “compressed” vari-
ant of the one Z1 follows, i.e., Geo(1 − q−1). More precisely, Pr[Z1(n) = n] = q−n and
Pr[Z1(n) > n] = 0, but Z1 has an infinite support with Pr[Z1 ≥ n] = q−n. In other
words,Z1(n) “centers all its mass above” n− 1 at s = n, whereasZ(n) does not.

We will later see that all random variables we consider throughout this chapter have
common limit distributions.

Theorem 3.8. The sequence (Z1(n))n∈ℕ0
converges in distribution toZ1 ∼ Geo(1− q−1).

Proof. Let Fn(s) = Pr[Z1(n) ≤ s] and F(s) = Pr[Z1 ≤ s] denote the CDF of Z1(n) and
Z1, respectively. Firstly, we observe that the two CDFs are Fn(s) = 1 − [[s ≤ n − 1]]q−s−1

and F(s) = 1− q−s−1.
To prove convergence in distribution, we need to show that limn→∞ Fn(s) = F(s) for

all s ≥ 0. Since s ≤ n − 1 holds for all s when n approaches infinity, we conclude that
limn→∞ Fn(s) = 1− 1 ⋅ q−s−1, which coincides with F(s). �

As mentioned above, the PMFs of Z1(n) and Z1 only disagree if s ≥ n. However, the
probability that any of both random variables takes a value s ≥ n is the same, namely,
Pr[Z1(n) ≥ n] = Pr[Z1 ≥ n] = q−n. Since q−n is negligible in n, both distributions
seem to “approach” each other exponentially fast (in n). Ivchenko and Medvedev [IM08]
observedbutdidnot prove that this holds if thenotionof closeness is the statistical distance
betweenZ1(n) andZ1.

Theorem 3.9 ([IM08]). The statistical distance betweenZ1(n) andZ1 isΔ(Z1(n), Z1) = q−n−1.

Proof. Let 𝛿(s) = Pr[Z1(n) = s] − Pr[Z1 = s]. The statistical distance is defined as
Δ(Z1(n), Z1) = 1/2∑∞

s=0∣𝛿(s)∣. Following Corollary 3.2, we split the sum into three parts
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and obtain
∞

∑
s=0

∣𝛿(s)∣ =
n−1
∑
s=0

∣𝛿(s)∣ + ∣𝛿(n)∣ +
∞

∑
s=n+1

∣𝛿(s)∣

=
n−1
∑
s=0

0+ ∣q−n − (q−1)n(1− q−1)∣ +
∞

∑
s=n+1

Pr[Z1 = s]

= 0+ ∣q−n−1∣ + q−n−1

= 2q−n−1.

We conclude that Δ(Z1(n), Z1) = 1/2(2q−n−1) = q−n−1. �

If the geometric distribution is used to approximate the actual distribution ofZ1(n),
the error is at most q−n−1 as Theorem 3.9 implies ∣Pr[Z1(n) ∈ S] − Pr[Z1 ∈ S]∣ ≤ q−n−1

for all S ⊆ [0, ∞). The inequality holds in particular if S is a singleton.

3.2 The Multiplicities of Arbitrary Zeros

In this section, we “generalize” our findings from Section 3.1 and consider two, later on,
ℓ ≤ q, different zeros, v1, v2 ∈ 𝔽, with respective multiplicities of s1 and s2. We put
generalize into quotationmarks because we now specify the multiplicities of zeros at two
(or ℓ) positions. If we neglect part of the zeros, we still need to specify theirmultiplicities
(and positions).

We first inspect the joint probability function Pr[Z1,v1(n) = s1 ∧ Z1,v2(n) = s2],
where s1 + s2 ≤ n. Calculations would become simple if the random variables Z1,v1(n)
andZ1,v2(n)were independent. In that case, the “generalization” ismerely the product of
both individual PMFs we established in Corollary 3.2. Unfortunately, this is not the case,
as demonstrated by the following counterexample:

Counterexample 3.10. Let s1 = s2 = n/2 and let n be even. Then, the individual probability
distributions are Pr[Z1,v1(n) = s1] = Pr[Z1,v2(n) = s2] = q−n/2−q−n/2−1, and the product
equals (q − 1)2q−n−2. However, the joint PMF is Pr[Z1,v1(n) = s1 ∧ Z1,v2(n) = s2] = q−n

since the only possible polynomial is (x − v1)n/2(x − v2)n/2. Both probabilities are equal
if, and only if, q = 1/2.

The fact that both randomvariables aredependent is not surprisingbecause knowing
that a factor (x− v1)s1 divides some polynomial influences the choice of possible s2 of the
factor (x− v2)s2. For instance, if s1 = n− 3, Fact 1.41 implies that s2 ≤ 3 since s1 + s2 ≤ n.
In that case, the factor (x − v2)n−1 cannot occur (unless n ≤ 4).

Since the one-zero case does not trivially expand tomultiple zeros,weuse generating
functions to establish the number of polynomials with two zeros of multiplicities s1 and
s2, respectively. The approach is similar to Theorem 3.1. For clarity, we denote the pairs,
later on, ℓ-tuples, of zeros andmultiplicities by v = (v1, v2) and s = (s1, s2), respectively.
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Theorem 3.11. For all n, s1, s2 ∈ ℕ0 such that s1 + s2 ≤ n and for all v1 ≠ v2 ∈ 𝔽, the number of
monic polynomials of degree nwith zeros at v1 and v2 of multiplicities s1 and s2, respectively, equals

Z2(s, n) ≔ Z2,v(s, n) ≔
⎧{{
⎨{{⎩

(q− 1)2qn−(s1+s2)−2 if s1 + s2 ≤ n− 2
q− 2 if s1 + s2 = n− 1
1 if s1 + s2 = n.

Proof. Let v1 ≠ v2 be arbitrary but fixed, and let f ∈ Mn be as required. We adapt the
proof ofTheorem 3.1 and explicitly consider the two factors (x− v1)s1 and (x− v2)s2. Then,
we can write f = (x − v1)s1(x − v2)s2g, where deg(g) = n − (s1 + s2), and g must not
introduce zeros at v1 or v2.

Again,we letGbe thegenerating functionof this semigroup,which is generatedbyall
non-linear irreducible polynomials and the polynomials x−v′,where v′ ∈ 𝔽∖{v1, v2}. By
comparingG(z)withM (z) = ∏∞

n=1(1−z
n)−In, it becomes apparent thatwe turn thefirst

factor (1− z)−q into (1− z)−(q−2) to exclude x− v1 and x− v2. Thus,G(z) = (1− z)2M (z).
The sequence generated by (1− z)2 = 1z0 + (−2)z1 + 1z2 is (1, −2, 1, 0, 0, … ).

As in the proof of Theorem 3.1, we could do a case distinction to derive G(n). How-
ever, since we expand the numbers of zeros to arbitrarily many later, it is unrewarding
to expand (1 − z)3, (1 − z)4, and so forth to extract all coefficients. For this reason, we
use a different but unified approach: Notice that (1 − z)2 can also be written using the
binomial formula and series as ∑2

n=0 (2n)12−n(−z)n = ∑∞
n=0 (2n)(−1)nzn. The sequence

((2n)(−1)n)∞
n=0 is precisely (1, −2, 1, 0, 0, … ).

We knowM (z) = ∑∞
n=0 q

nzn and (1 − z)2 = ∑∞
n=0 (2n)(−1)nzn. The Cauchy product

yields the generating function of G,

G(z) =
(1− z)2

1− qz
=

∞
∑
n=0

⎛
⎝

n

∑
i=0

⎛⎜
⎝
2
i
⎞⎟
⎠

(−1)iqn−i⎞
⎠
zn.

If we instead use the case-distinction approach, we can simplify G(z), or rather G(n),
further and obtain

G(z) =
∞

∑
n=0

⎛⎜⎜⎜⎜⎜
⎝

⎧{{
⎨{{⎩

qn if n = 0
(q− 2)qn−1 if n = 1
(q− 1)2qn−2 else

⎞⎟⎟⎟⎟⎟
⎠
zn.

Recall that the number of f with zeros at v1 and v2 of multiplicities s1 and s2, respectively,
equals the number of different suitable g. Since deg(g) = n− (s1 + s2), we conclude that
Z2(s, n) equals

G(n− (s1 + s2)) = [zn−(s1+s2)]G(z) =
⎧{{
⎨{{⎩

(q− 1)2qn−(s1+s2)−2 if s1 + s2 ≤ n− 2
q− 2 if s1 + s2 = n− 1
1 if s1 + s2 = n.

As can be seen, we simplified (q− 2)qn−(s1+s2)−1 to q− 2 if s1 + s2 = n− 1. �
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Proceeding fromthe functionZ2(s, n),wecanderive theprobability that apolynomial
has two zeros of certain multiplicities when we assume a uniform distribution over the
polynomials inMn (or Pn). Again, we establish the probability using Laplace’s rule.

Corollary 3.12. For all n, s1, s2 ∈ ℕ0 such that s1 + s2 ≤ n and for all v1 ≠ v2 ∈ 𝔽, denote
by Z2(n) ≔ Z2,v(n) the random variable of the multiplicities of the zeros v1 and v2 of a random
(monic) polynomial of degree n. Then, the PMF ofZ2,v(n) equals

Pr[Z2,v(n) = s] =
⎧{{
⎨{{⎩

(q− 1)2q−(s1+s2)−2 if s1 + s2 ≤ n− 2
(q− 2)q−n if s1 + s2 = n− 1
q−n if s1 + s2 = n.

We omit the proofs of Corollary 3.12 and all subsequent PMFs since they are almost
identical to the proof of Corollary 3.2: We divide the number of favorable polynomials
Z2(s, n) by the number of all polynomials.

As in the first chapter, we analyze the expectation and variance next. However, the
range of Z2(s, n) is a pair, more precisely, range(Z2(s, n)) = [0, n]2. Before we try to
adapt the definition of expectation to not only work with scalars but also with tuples, we
observe that the distribution ofZ2,v(n) can be considered the joint distribution ofZ1,v1(n)
and Z1,v2(n), i.e., Pr[Z2,v(n) = s] = Pr[Z1,v1(n) = s1 ∧ Z1,v2(n) = s2]. Thus, it is rea-
sonable to treat Z2,v(n) as a multivariate random variable Z2,v(n) = (Z1,v1(n), Z1,v2(n)).
Theorems 3.5 and 3.6 then imply the mean and variance, respectively, because they are
𝔼[Z2,v(n)] = (𝔼[Z1(n)], 𝔼[Z1(n)]) and Var[Z2,v(n)] = (Var[Z1(n)],Var[Z1(n)]).

Wemove on from considering two zeros and concentrate on ℓ ∈ [q] zeros at v1, … , vℓ
ofmultiplicities s1, … , sℓ, respectively, for the remainder of this section. During the proof
of Theorem 3.11, we saw that the generating function of (1 − z)2 cannot only be estab-
lished by expanding the square of the binomial. Instead, we expressed (1 − z)2 using
the binomial series∑∞

n=0 (2n)(−1)nzn. Since we now consider ℓ zeros, the binomial 1 − z
is raised to the ℓth power. The corresponding binomial series is easily deduced, namely,
(1− z)ℓ = ∑∞

n=0 (ℓ
n)(−1)nzn. Thereby, we can directly establish the number of such poly-

nomials while following the pattern ofTheorems 3.1 and 3.11.

Theorem 3.13. For all n, s1, … , sℓ ∈ ℕ0, for all pairwise distinct v1, … , vℓ ∈ 𝔽, and k = ∑ℓ
i=1 si,

the number of monic polynomials of degree n with zeros at v1, … , vℓ of multiplicities s1, … , sℓ, re-
spectively, equals Zℓ(s, n) ≔ Zℓ,v(s, n) ≔ qn−k ∑n−k

i=0 (ℓ
i)(−1)iq−i. Moreover, if k ≤ n − ℓ, the

function simplifies to Zℓ(s, n) = qn−k(1− q−1)ℓ.

Proof. We follow the approach of the previousTheorems 3.1 and 3.11,which you should be
familiar with. In particular, we construct f ∈ Mn as f = g∏ℓ

i=1(x − vi)si. The degree of
g is n− (s1 + ⋯ + sℓ) ≜ n− k.

In order to determine the number of feasible g, we let G be the multiplicative semi-
group generated by all non-linear irreducible polynomials and the q−ℓ linear ones x−v′,
where v′ ∈ 𝔽 ∖ {v1, … , vℓ}. We recall that in this way, we ensure that g does not alter the
ℓ predefinedmultiplicities.

– 31 –



3 Zeros of Polynomials

It should now be obvious that the generating function of G is G(z) = (1 − z)ℓM (z).
Since (1− z)ℓ can be expressed as (1− z)ℓ = ∑∞

n=0 (ℓ
n)(−1)nzn, the Cauchy product yields

G(z) =
(1− z)ℓ

1− qz
=

∞
∑
n=0

⎛
⎝

n

∑
i=0

⎛⎜
⎝

ℓ
i
⎞⎟
⎠

(−1)iqn−i⎞
⎠
zn =

∞
∑
n=0

⎛
⎝
qn

n

∑
i=0

⎛⎜
⎝

ℓ
i
⎞⎟
⎠

(−1)iq−i⎞
⎠
zn,

fromwhich we can directly read the term G(n).
We conclude that the number of different g and, hence, the number of feasible f

equals G(n− k) = [zn−k]G(z) = qn−k ∑n−k
i=0 (ℓ

i)(−1)iq−i.
It remains to show that if n − k ≥ ℓ, the sum in G(n − k) simplifies to (1 − q−1)ℓ.

Here, we observe that if i > ℓ, the binomial coefficient (ℓ
i) is 0. Hence, the argument

of the sum is. Thus, the sum remains unchanged, regardless of whether the upper limit
satisfies n− k > ℓ or n− k = ℓ, so we only consider n− k = ℓ. In that case, the binomial
formula is complete, and the binomial theorem yields∑n−k

i=0 (ℓ
i)(−1)iq−i = (1− q−1)ℓ. �

Unfortunately, there is no simple closed formof the sum if n−k < ℓ. Simplifications
producedbyMathematica [Wol] involve theGaussianhypergeometric function 2F1. This func-
tion is also defined via a non-trivial sum, including factorials and the Pochhammer symbol
[Bag09]. A further investigation regarding possible simplifications is beyond the scope
of this thesis.

Weproceedwithgiving thePMFregarding themultiplicities s of apolynomial chosen
uniformly at random. LetZℓ(n) ≔ Zℓ,v(n) denote the random variable of the multiplici-
ties of the zeros v1, … , vℓ of a random (monic) polynomial of degree n.

Corollary 3.14. For alln, s1, … , sℓ ∈ ℕ0, for all pairwise distinct v1, … , vℓ ∈ 𝔽, and k = ∑ℓ
i=1 si,

the PMF ofZℓ,v(n) equals Pr[Zℓ,v(n) = s] = q−k ∑n−k
i=0 (ℓ

i)(−1)iq−i. Moreover, if k ≤ n − ℓ,
the PMF simplifies to Pr[Zℓ,v(n) = s] = q−k(1− q−1)ℓ.

So far, this and the previous chapter neglected the multiplicities at the remaining
unspecified positions. To conclude this section, we consider a tightened variant of The-
orem 3.13, where we additionally require that zeros may only occur at the specified posi-
tions v1, … , vℓ in v. Since the tuples v and s are ordered,we can useTheorem 3.13 to derive
the number of polynomials satisfying this tightened condition: To ensure that the other
positions are not zeros, we can include them in v, e.g., by appending them, and specify
their multiplicity in s as 0. Thus, the sum of all multiplicities k remains unchanged be-
causewe only add 0s, and the desired number is Zq,v(s, n) (instead of Zℓ,v(s, n)). Note that
we claim that the aforementioned function uses the unmodified tuples v and s, which do
not include any of the remaining q− ℓ values.

Theorem 3.15. For all n, s1, … , sℓ ∈ ℕ0, for all pairwise distinct v1, … , vℓ ∈ 𝔽, and k = ∑ℓ
i=1 si,

the number of monic polynomials of degree nwith zeros at, and only at, v1, … , vℓ of multiplicities
s1, … , sℓ, respectively, equals Zq(s, n) = Zq,v(s, n) = qn−k ∑n−k

i=0 (qi)(−1)iq−i. Furthermore, if
k ≤ n− q, the function simplifies to Zq(s, n) = qn−k(1− q−1)q.

Proof. Using the usual technique, we could construct f as f = g∏ℓ
i=1(x − vi)si and then

consider the number of different g of degree n − k without zeros, similar to the proof of
Theorem 3.13.
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However,we employ a different approach that enables us to derive the number using
a function that we already established: To ensure that all other positions vℓ+1, … , vq ∉ v
are not zeros of f , we set their multiplicities sℓ+1, … , sq to 0. We can then append the
new positions to v andmultiplicities to s, that is, we have v′ ≔ (v1, … , vℓ, vℓ+1, … , vq) and
s′ ≔ (s1, … , sℓ, 0, … , 0). Since we covered all possible positions and introduced no new
zeros, k′ ≔ ∑q

i=1 si equals k. Since |v| = q and k′ = k, Theorem 3.13 implies that the
number of different f equals Zq(s′, n) = Zq(s, n). �

Wemake one final remark regarding the number of zero-free polynomials because we
can use the previous theorems to directly deduce this number. We call a polynomial f
zero-free if it has no zeros, i.e., if ∀v ∈ 𝔽 � f (v) ≠ 0. To find that number, we specify
the multiplicities at all positions and set them to 0, i.e., s = 0q for any v ∈ 𝔽q. Thus,
we ensure that no linear polynomial x − v, where v ∈ 𝔽, occurs in the decomposition of
the polynomial since (x − v)0 = 1 (and by defining 00 = 1). Theorems 3.13 and 3.15 give
the number of polynomials without zeros. We can use either because we specify all ℓ = q
possible positions.

Corollary 3.16. For all n ∈ ℕ0, the number of zero-freemonic polynomials of degree n equals
qn ∑n

i=0 (qi)(−1)iq−i. For n ≥ q, the function simplifies to qn(1− q−1)q.

Proof. WeuseTheorem 3.15 to show that the actual number is as claimed above. We spec-
ify all possible positions using v = (i)i∈𝔽q

and set s = 0q. Thus, the sum of all multiplici-
ties equals k = 0. In fact, we can use any v ∈ 𝔽q since the multiplicity at every position
specified is the same (namely, 0), and, therefore, there is only one way to permute s.

Using the values,Theorem 3.15 states that Zq(s, n) = Zq(0q, n) equals the number of
different polynomials with zeros at, and only at, all possible positions in𝔽 ofmultiplicity
0. Clearly, this is equivalent to the number of polynomials without zeros.

Finally, we remark that the “only at” part can be omitted because we consider all po-
sitions. Thus,Theorem 3.13 also yields the number in question, Zℓ(s, n) = Zq(0q, n), be-
cause ℓ ≜ |v| = q. �

3.3 The Total Multiplicity of Arbitrary Zeros

Up to now,we have considered zeros at specific positions v1, … , vℓ of specificmultiplicities
s1, … , sℓ, respectively. Since k = ∑ℓ

i=1 si represents the total number of zeros at these ℓ
positions but with fixed multiplicities, accounting for permutations and replacements
of elements in s yields the number of monic polynomials for which there exist ℓ possible
zeros v1, … , vℓ of accumulatedmultiplicity k. We recall that vi is not a zero if itsmultiplicity
is si = 0, i.e., the factor x−vi does not occur in the decomposition of the polynomial. The
ℓ-tuple s = (s1, s2, … , sℓ) can be composed arbitrarily as long as its sum equals k. Since
each si is a non-negative integer, the number of feasible s, therefore, equals the number
of ways to represent k ≤ n as the sum of ℓ non-negative integers. It is well known that
this number is:

Fact 3.17. Let k ∈ ℕ0. The number of ℓ-tuples (s1, … , sℓ) with si ∈ ℕ0 for all i ∈ [ℓ]
satisfying∑ℓ

i=1 si = k equals (ℓ+k−1
k ) = (ℓ+k−1

ℓ−1 ).
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In Theorem 3.13 of the previous section, we established the number of polynomials
with zeros at v and exact multiplicities s. Notice that the function Zℓ(s, n) uses s only to
derive the value k. Thus, Zℓ(s, n) = Zℓ(s′, n) for all s′ such that ∑s∈s′ s = k. This means
that, if S denotes the set of all such s′, the number of polynomials with zeros in v whose
multiplicities sum up to k satisfies∑s′∈S Zℓ(s′, n) = |S| ⋅ Zℓ(s, n). Since the cardinality of
S is given by Fact 3.17, we obtain the number of favorable polynomials by combining this
fact withTheorem 3.13.

Theorem 3.18. Let s(k) be any s with∑s∈s s = k. For all n, k ∈ ℕ0 and for all pairwise distinct
v1, … , vℓ ∈ 𝔽, thenumber ofmonic polynomials of degreenwith ℓpossible zeros at v1, … , vℓ of total
multiplicityk equals(ℓ+k−1

k )Zℓ(s(k), n) = (ℓ+k−1
k )qn−k ∑n−k

i=0 (ℓ
i)(−1)iq−i. Moreover, if k ≤ n−ℓ,

the function simplifies to (ℓ+k−1
k )qn−k(1− q−1)ℓ.

Proof. The theorem follows immediately from combiningTheorem3.13 and Fact 3.17. �

Knopfmacher and Knopfmacher [KK90] examine a special case of the above Theo-
rem 3.18. As there are only |𝔽| = q positions for zeros to occur, specifying the multi-
plicities at all q positions implies that the polynomial has not only k zeros at v1, … , vq but
k zeros in total. Since Theorem 3.18 takes permutations of s into account, we obtain the
number of monic polynomials with exactly k zeros if ℓ = q.

Theorem 3.19 ([KK90]). For all n, k ∈ ℕ0, the number of monic polynomials of degree nwith ex-
actly k total zeros equalsZ(k, n) ≔ (q+k−1k )Zq(s(k), n) = (q+k−1k )qn−k ∑n−k

i=0 (qi)(−1)iq−i. More-
over, if k ≤ n− q, the function simplifies to Z(k, n) = (q+k−1k )qn−k(1− q−1)q.

Proof. The theorem follows immediately from Theorem 3.18 because, with ℓ = q, there
are no remaining positions for further zeros to occur in that case. �

We remark that Knopfmacher and Knopfmacher proveTheorem 3.19 using generat-
ing functions. It is not a coincidence thatwe utilize generating functions to prove several
theorems that concern counting polynomials in this chapter. As previously mentioned,
e.g., at the beginning of Section 3.1 or in the context of Theorem 3.1, we adapted their
proof strategy.

For the remainder of this section, we concentrate on the random variable Z(n) of
the number k of total zeros of a (monic) polynomial of degree n chosen uniformly at ran-
dom. According to Theorem 3.8, Z1(n) has a geometric limit. Although this is not the
case for Z(n), it convergences to another common probability distribution: the nega-
tive binomial distribution. This observation and the expectation and variance of Z(n)
are examined in [KK90]. UnlikeZℓ(n) in the previous chapter,Z(n) is not amultivariate
random variable because its range does not comprise multiplicities at several positions
but all feasible integers k, i.e., range(Z(n)) = [0, n]. Thus, the expectation and variance
are scalars.

Corollary 3.20. For all n, k ∈ ℕ0, the PMF of the random variable Z(n), defined above, equals
Pr[Z(n) = k] = (q+k−1k )q−k ∑n−k

i=0 (qi)(−1)iq−i. Moreover, if k ≤ n − q, the PMF simplifies to
Pr[Z(n) = k] = (q+k−1k )q−k(1− q−1)q.
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In Theorem 3.19 and Corollary 3.20, the sum inside the PMF simplifies to (1 − q−1)q
if k ≤ n − q. Note that q−k = (q−1)k. Thus, the expression (q+k−1k )q−k(1 − q−1)q equals
the PMF of the negative binomial distributionNBin(q, 1− q−1) evaluated at k, according
to Definition 1.21. We further conclude that Z(n) follows a truncated negative binomial
distribution, which was already observed in [KK90].

Observation 3.21 ([KK90]). The random variableZ(n) follows a negative binomial distribu-
tion truncated at k = n− q+ 1. More precisely, Pr[Z(n) = k] = Pr[X = k] if k ≤ n− q,
where X ∼ NBin(q, 1− q−1).

Since we consider q fixed, the difference n − q approaches infinity when n does. As
a result, the truncation point n − q + 1 “moves” towards infinity, and the PMFs of Z(n)
andX ∼ NBin(q, 1− q−1) coincide. Thus,Z(n) has a negative binomial limit. Thismakes
it easy to deduce statistical properties, such as expectation and variance, in the asymp-
totic case because they have already been analyzed in the context of the negative binomial
distribution.

LetZ denote the limit distribution ofZ(n) as n → ∞.

Theorem 3.22. The sequence (Z(n))n∈ℕ0
converges in distribution toZ ∼ NBin(q, 1− q−1).

Proof. Let Fn(k) and F(k) denote the CDF of Z(n) and Z, respectively, and assume that
Z ∼ NBin(q, 1− q−1). We need to show that limn→∞ Fn(k) = F(k) holds for all k ≥ 0.

According to Observation 3.21, the PMFs of Z(n) and Z coincide if k ≤ n − q. It is
apparent that k ≤ n− q holds for all k if n → ∞ because q is considered constant. Hence,
limn→∞ Pr[Z(n) = k] = Pr[Z = k].

We conclude that the CDFs coincide because they comprise the same PMF, that is,
limn→∞ Fn(k) ≜ limn→∞ ∑k

i=0 Pr[Z(n) = i] = ∑k
i=0 Pr[Z = i] ≜ F(k). �

In addition to the number of polynomials with k zeros in total, Knopfmacher and
Knopfmacher also examine the expectation and variance of Z(n). Although the authors
give proof of the former, we restate the proof for two reasons: For one thing, their proof
of the variance is based on it. Since we elaborate on the variance in greater detail, it is
helpful to be familiar with the basis of that proof. For another thing, the original proof
in [KK90] is terse, which canmake it challenging to comprehend.

We first state the average number of total zeros of a polynomial of degree n. SinceZ
follows a negative binomial distribution, the asymptotic expectation ofZ(n) is immedi-
ately determined. Furthermore, when q also tends to infinity, the expectation converges
to 1. In other words, for large q, we expect polynomials of large degree to have one zero.

Theorem 3.23 ([KK90]). For all n ∈ ℕ0, the expected value of the random variableZ(n) equals
𝔼[Z(n)] = (q−q1−n)/(q− 1). Moreover, the asymptotic expectation equals𝔼[Z] = q/(q− 1)
as n → ∞.

Proof ([KK90]). Using Z(k, n) fromTheorem 3.19 to derive the expectation is tedious be-
cause the sum in Z(k, n) is alternating and has no elementary closed form.

Instead, we count the zeros of a polynomial according to their multiplicities. For
instance, if the multiplicity of a zero is 3, then the multiplicity is at least 1, at least 2, and
at least 3. By counting every “at least” individually but only once, they still add up to the
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actual multiplicity 3 ⋅ 1 = 3. The “at least” view allows us to use Lemma 3.4 to count the
number of polynomials with a zero at v ∈ 𝔽 of a certain multiplicity. Moreover, as we
deal with nested sums,we simplify expressions using associativity and commutativity to
switch their order.

Let f ∈ Mn, let 𝜁(f )denote the total number of zeros of f , and let 𝜁i(f ) be the number
of distinct zeros of multiplicity at least i. In other words, 𝜁i(f ) = ∣{ v ∈ 𝔽 ∶ (x − v)i ∣ f }∣.
By counting the zeros of f according to theirmultiplicities (as explained above),wenotice
that 𝜁 can be expressed by 𝜁i as 𝜁(f ) = ∑n

i=1 𝜁i(f ). Thus, and since every f is chosen with
probability q−n, we can expand the expectation as follows:

𝔼[Z(n)] ≜ ∑
f∈Mn

q−n𝜁(f ) = q−n ∑
f

𝜁(f ) = q−n ∑
f

n

∑
i=1

𝜁i(f ) = q−n
n

∑
i=1

∑
f

𝜁i(f ).

Next,we evaluate the sum∑f 𝜁i(f ). As explained above, 𝜁i(f ) is the number of v ∈ 𝔽
such that (x − v)i ∣ f . This allows us to write 𝜁i(f ) = ∑v[[(x − v)i ∣ f ]]. Thus, we can
further expand∑f 𝜁i(f ) to∑f 𝜁i(f ) = ∑f ∑v[[(x − v)i ∣ f ]] = ∑v ∑f [[(x − v)i ∣ f ]].

Hence, we aim to evaluate the inner sum∑f [[(x − v)i ∣ f ]]. Observe that its value is
equal to the number of polynomials inMnwith a zero at v ofmultiplicity at least i. Accord-
ing to Lemma 3.4, this number is precisely qn−i. Hence,∑v ∑f [[(x − v)i ∣ f ]] = ∑v q

n−i.
Furthermore, since v is arbitrary, the sum∑v q

n−i simplifies to |𝔽| ⋅ qn−i = qn−i+1.
We conclude that ∑f 𝜁i(f ) = ∑v ∑f [[(x − v)i ∣ f ]] = ∑v q

n−i = qn−i+1, and the
expectation follows immediately:

𝔼[Z(n)] = q−n
n

∑
i=1

∑
f

𝜁i(f ) = q−n
n

∑
i=1
qn−i+1 =

q− q1−n

q− 1
.

It remains to show that the asymptotic expectation is q/(q− 1). Theorem 3.22 states
thatZ(n) d= Z ∼ NBin(q, 1 − q−1) as n → ∞. Thus, the expectation of limn→∞ 𝔼[Z(n)]
and𝔼[Z] coincides, where𝔼[Z] = q/(q− 1), according to Fact 1.23. �

As mentioned previously, if q approaches infinity in addition to n, the expectation
tends to limq→∞ 𝔼[Z] = 1. However, even for small q and n, the average number of ze-
ros of a polynomial is small: We observe that 𝔼[Z(n)] is monotonically increasing in n.
Thus, is it sufficient to consider the asymptotic mean and computemaxq(𝔼[Z]) to find
maxn,q(𝔼[Z(n)]). Sincemaxq(𝔼[Z]) ≜ maxq(q/(q − 1)) = 2, we conclude that the av-
erage number of zeros is always at most 2. Although this upper bound is asymptotically
tight, there are no n and q such that𝔼[Z(n)] = 2.

Finally, we provide the variance of the number of total zeros. As n and q tend to infin-
ity, the variance again converges to 1. Besides, the asymptotic case is once again implied
by Z ∼ NBin(q, 1 − q−1). Thus, we focus on Z(n). We remark that Knopfmacher and
Knopfmacher [KK90] state the variance, but it is incorrect. This is due to a mistake in
splitting a sum inside their proof. Below, we state the correct variance and further de-
tails in the proof, whose structure we adopt from [KK90].

Theorem 3.24 ([KK90]). Foralln ∈ ℕ0, thevarianceofZ(n) isVar[Z(n)] = q(q−q1−2n−(q2−1)nq−n)
(q−1)2 .

Moreover, the asymptotic variance equalsVar[Z] = (q/(q− 1))2 as n → ∞.
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Proof ([KK90]). The reader should be roughly familiar with the proof ofTheorem 3.23 and
the proof on pages 4–5 of [KK90]. Nevertheless,we also outline the latter proof. We recall
that the functionsN∗ andNi in [KK90] correspond to 𝜁 and 𝜁i, respectively. Furthermore,
we format equations from [KK90] in parentheses and a sans-serif letterform and under-
line the number, e.g., (3.5).

Let f ∈ Mn. The variance satisfies Var[Z(n)] = 𝔼[Z(n)2] − 𝔼[Z(n)]2. Hence, it
suffices to compute𝔼[Z(n)2] = q−n ∑f 𝜁(f )2. We recall that 𝜁(f ) = ∑n

i=1 𝜁i(f ), which
implies that∑f 𝜁(f )2 = ∑f (∑n

i=1 𝜁i(f ))2. The authors expand the inner sum to

⎛
⎝

n

∑
i=1

𝜁i(f )⎞
⎠

2

=
n

∑
i=1

𝜁i(f )2 + 2
n

∑
i=1

n

∑
j=i+1

𝜁i(f )𝜁j(f ). (3.2)

To determine∑n
i=1 ∑

n
j=i+1 𝜁i(f )𝜁j(f ), the authors distinguish two cases, i+ j ≤ n and

i + j > n. This way, they establish two separate formulae, in (3.3) and (3.4), respectively.
In equation (3.6), they split the sum5 ∑n

j=i+1 into two parts,∑
n−i
j=i+1 and∑n

j=n−i+1, to plug
in these deduced formulae. However, it is possible for the latter sum to “start” before the
former. This happens if n− i+ 1 < i+ 1 (i.e., if i > n/2). In that case, the former sum is
empty. Butmore importantly, besides the indices i+1, i+2, … , n, the sum(s) additionally
consider i, i− 1, … , n− i+ 1.

Fortunately, there is a simple remedy for this problem: We adjust the bounds of the
sums to∑max{n−i,i}

j=i+1 and∑n
j=max{n−i,i}+1. UsingMathematica [Wol],we obtain the following

results6: The correct equation (3.6) is

q−n ∑
f

n

∑
j=i+1

𝜁i(f )𝜁j(f ) =
(1− q)q−max{i,n−i}−i+1 + q1−i + q2−2i − q1−2i − q1−n

q− 1

=

⎧{{
⎨{{⎩

q(q−i − q−n)
q− 1

if 2i ≥ n

q(−q−2i + q−i + q1−2i − q1−n)
q− 1

else.

We infer the correct variance by plugging the correct equation (3.6) in the residual
parts of the proof in [KK90]. Summing over all i yields equation (3.7):

q−n ∑
f

n

∑
i=1

n

∑
j=i+1

𝜁i(f )𝜁j(f ) =
(1− q)q3−2⌈n/2⌉ + nq1−n − 2q2−n + 2q2

(q− 1)2(q+ 1)

+
q4−n − (1+ n)q3−n

(q− 1)2(q+ 1) − ⌈
n
2

⌉ q1−n.
(3.3)

Recall that the inner sumin the secondrawmoment𝔼[Z(n)2] = q−n ∑f (∑n
i=1 𝜁i(f ))2

is split according to Equation 3.2. There, the single sum is established in (3.5), and we

5For the sake of clarity, we omit the arguments of the sums.
6We attached the Mathematica notebook with the performed computations to the CD.
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computed the double sum in Equation 3.3. Hence, combining both results yields the cor-
rect second rawmoment

𝔼[Z(n)2] = q−n ∑
f

n

∑
i=1

𝜁i(f )2 + 2q−n ∑
f

n

∑
i=1

n

∑
j=i+1

𝜁i(f )𝜁j(f )

=
q1−n (1− 2n(q− 1) + q(2(q+ qn) − 5))

(q− 1)2

+
q ((1− q)q−2⌊n/2⌋ − 2q2−2⌈n/2⌉ − 2q−n(q2 − 1)⌈n/2⌉)

(q+ 1)(q− 1) .

We finally obtain the variance

Var[Z(n)] =
q2 − q2−2n

(q− 1)2 −
(q2 − 1)(2n− 2q+ 1)q1−n

(q− 1)2(q+ 1)

−
q (2q2−2⌈n/2⌉ + (q− 1)q−2⌊n/2⌋)

(q− 1)(q+ 1) − 2q1−n ⌈
n
2

⌉

by combining the second rawmoment and the squared expectation fromTheorem 3.23.
To eliminate the floor and ceiling functions,we distinguishwhether n is even or odd.

Letm ∈ ℤ such that either n = 2m or n = 2m+ 1. The variance simplifies to

Var[Z(n)] =

⎧{{
⎨{{⎩

q(q− q1−4m − 2mq2−2m + 2mq−2m)
(q− 1)2 if n = 2m

q−4m ((1+ 2m)q2m − 1− (1+ 2m)q2+2m + q2+4m)
(q− 1)2 if n = 2m+ 1

(†)=
q (q− q1−2n − (q2 − 1)nq−n)

(q− 1)2 .

It can be seen that (†) holds by substituting nwith 2m and 2m+ 1 each.
Finally, the asymptotic variance limn→∞ Var[Z(n)] = Var[Z] agrees with [KK90].

Fact 1.23 andTheorem 3.22 imply that Var[Z] = (q/(q− 1))2. �

Notice thatVar[Z] = 𝔼[Z]2. It follows that if q and n approach infinity, the variance
also tends to 𝔼[Z]2 = 12 = 1. Regarding an upper bound on the variance for all q and
n, it can be shown that Var[Z(n)] is monotonically increasing in n. Thus, the asymptotic
variance implies that Var[Z(n)] ≤ maxq(𝔼[Z]2) = 22 = 4 is an asymptotically tight
upper bound for all q and n.

3.4 The Positions of Zeros

In this final section, we analyze the number of (monic) polynomials in terms of their dis-
tinct zeros. Thus, we neglect multiplicities and only count the number of positions with
zeros. For instance, the polynomial x5(x − 1)3 has two distinct zeros, viz., x = 0 and
x = 1. Recall that some position v is a zero of a polynomial f if the term x − v occurs in
the decomposition of f . This, on the other hand, is the case if the multiplicity of v is at
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least 1. Thus, we can use the results from Section 3.3 to derive formulae that only count
positions.

The structure of this section is (more or less) identical to Section 3.3: We start by
counting distinct zeros in different ways. Then, we analyze the random variable of the
number of distinct zeros, where we consider its asymptotic behavior, expectation, and
variance. We remark that these quantities are also stated in [KK90].

Lemma 3.4 provides the number of polynomials with zeros at vwithmultiplicities of
at least s. Using s = 1ℓ, we count polynomials with zeros at v and obtain the equivalent of
Theorem 3.13:

Theorem 3.25. For all n, ℓ ∈ ℕ0 such that ℓ ≤ n and for all pairwise distinct v1, … , vℓ ∈ 𝔽, the
number of monic polynomials of degree nwith zeros at v1, … , vℓ equals qn−ℓ.

Proof. The theorem follows immediately from Lemma 3.4 with s = 1ℓ. �

At the end of Section 3.2, we imposed the restriction that zerosmay occur only at the
ℓ positions v1, … , vℓ. The number of such polynomials can be found in Theorem 3.15. To
prove that theorem,we suggested counting the number of different polynomials g of de-
gree n − k that are zero-free. This ensures that the remaining positions are not zeros
and that the multiplicities of the zeros at v do not increase. Since we neglect multiplici-
ties in this chapter, we must only ensure the former, i.e., that no zeros are introduced at
positions that are not in v. Thus, g can have zeros but only at positions in v.

Theorem 3.26. For all n, ℓ ∈ ℕ0 and for all pairwise distinct positions v1, … , vℓ ∈ 𝔽, the num-
ber of all monic polynomials of degree nwith zeros at, and only at, the ℓ positions v1, … , vℓ equals
Z∗

ℓ (n) ≔ Z∗
ℓ,v(n) ≔ qn−ℓ ∑n−ℓ

i=0 (q−ℓ
i )(−1)iq−i. Moreover, if n ≥ q, the function simplifies to

Z∗
ℓ (n) = qn−ℓ(1− q−1)q−ℓ.

Proof. Let v1, … , vℓ be arbitrary but fixed, and let f ∈ Mn have zeros at, and only at,
the ℓ specified positions. We use generating functions and proceed similarly to previous
proofs, such asTheorem 3.13.

To ensure that f has zeros in v,we construct f = g∏ℓ
i=1(x−vi),wheredeg(g) = n−ℓ.

To ensure that f does not have zeros at the remaining q − ℓ positions, gmust have zeros
that are only in v.

Let G denote the multiplicative semigroup generated by all non-linear irreducible
polynomials and the ℓ linear ones x−v′,where v′ ∈ v. As before,wemodify (1−z)−q from
M (z) to disregard all positions not in v. Since there are q positions in total, we obtain

G(z) = (1− z)q−ℓM (z) =
∞

∑
n=0

⎛
⎝

n

∑
i=0

⎛⎜
⎝
q− ℓ
i

⎞⎟
⎠

(−1)iqn−i⎞
⎠
zn.

We conclude that the number of different g and, hence, the number of feasible f equals
G(n− ℓ) = [zn−ℓ]G(z) = qn−ℓ ∑n−ℓ

i=0 (q−ℓ
i )(−1)iq−i.

If n − ℓ ≥ q − ℓ, that is, if n ≥ q, the binomial formula is complete, and the sum
simplifies to∑n−ℓ

i=0 (q−ℓ
i )(−1)iq−i = (1− q−1)q−ℓ. �

At the beginningof Section 3.3,we relaxedTheorem3.13 byneglecting the actualmul-
tiplicities of the zeros at v1, … , vℓ. For the remainder of that section,weonly required that
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the sum of all multiplicities at v equals some predetermined value k. By specifying all q
positions in v,we covered allmultiplicities. Thus,we obtainedTheorem3.19,which states
the number of polynomials with k zeros in total. Since we disregard multiplicities in this
section, we do not need to exhaust all qmultiplicities to obtain the number of polynomi-
als with a total of ℓ distinct zeros. We solely need to count how many ways exist to select
ℓ ≤ q positions. Selecting positions is simpler than selecting multiplicities because the
former are pairwise distinct.

Fact 3.27. Let ℓ, q ∈ ℕ0. Thenumber ofways to choose ℓ distinct elements froma setwith
q elements disregarding their order equals (qℓ).

Since we count polynomials with a certain total number of distinct zeros, we hence-
forth use variable k instead of ℓ to be consistent with the previous Section 3.3, such as in
Theorem 3.19.

By combining Theorem 3.26 and Fact 3.27, we obtain the “distinct” variant of Theo-
rem 3.19. This theorem appears in [KK90] and is therein proven using generating func-
tions, similar toTheorem 3.19.

Theorem 3.28 ([KK90]). For all n, k ∈ ℕ0 such that k ≤ n, the number of monic polynomials of
degree nwith exactly k distinct zeros is Z∗(k, n) ≔ (qk)Z∗

k (n) = (qk)qn−k ∑n−k
i=0 (q−ki )(−1)iq−i.

Moreover, if n ≥ q, the function simplifies to Z∗(k, n) = (qk)qn−k(1− q−1)q−k.

Proof. The theorem directly follows from combiningTheorem 3.26 and Fact 3.27. �

We mention that in Theorem 3.28, Z∗(k, n) can be defined through Z∗
k (n), although

no positions in v are specified. This is because Z∗
k only uses them to derive the quantity

|v| = ℓ, which we explicitly state in Z∗, namely, in the first argument.
The remainder of this section is dedicated to the random variableZ∗(n) concerning

the number of distinct zeros. As in the previous section,we analyze its asymptotic behav-
ior. We determine that Z∗(n) has a binomial limit. Besides, both its mean and variance
are independent of n, with the expectation equaling 1 regardless of n (unless n = 0).

Firstly, we consider the probability of obtaining a polynomial with a certain number
of distinct zeros:

Corollary 3.29. For all n, k ∈ ℕ0 such that k ≤ n, let Z∗(n) denote the random variable of the
number of distinct zeros of a random (monic) polynomial of degree n. Then, the PMF of Z∗(n)
equals Pr[Z∗(n) = k] = (qk)q−k ∑n−k

i=0 (q−ki )(−1)iq−i. Moreover, if n ≥ q, the PMF simplifies
to Pr[Z∗(n) = k] = (qk)q−k(1− q−1)q−k.

UnlikepreviousPMFs, thePMFofZ∗(n) takes its simplified form independently of k.
Moreover, (qk)q−k(1−q−1)q−k = (qk)(q−1)k(1−q−1)q−k is the PMF of the binomial distribu-
tionBin(q, q−1), according toDefinition 1.18. Thus,Z∗(n) follows a binomial distribution
for almost all n (if we consider qfixed),whichKnopfmacher andKnopfmacher [KK90] also
observed.

Observation 3.30 ([KK90]). The random variable Z∗(n) follows the binomial distribution
Bin(q, q−1) if n ≥ q.
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Since Z∗(n) follows Bin(q, q−1) for almost all n, it follows this distribution in partic-
ular for all sufficiently large n. More precisely, the sequence (Z∗(n))n∈ℕ≥q coincides with
(X)n∈ℕ≥q, where X ∼ Bin(q, q−1). Hence, we conclude thatZ∗(n) has a binomial limit.

LetZ∗ denote the limit distribution ofZ∗(n) as n approaches infinity.

Theorem 3.31. The sequence (Z∗(n))n∈ℕ0
converges in distribution toZ∗ ∼ Bin(q, q−1).

Proof. Let Fn(k) and F(k) denote the CDF of Z∗(n) and Z∗, respectively. Also, assume
thatZ∗ ∼ Bin(q, q−1) and that q is arbitrary but fixed. It is particularly easy to show that
limn→∞ Fn(k) = F(k) for all k ≥ 0 because the PMFs of Z∗(n) and Z∗ coincide for all
n ≥ q. Hence, Fn(k) = F(k) for all n ≥ q, and the claim follows. �

We conclude this section and chapter with the expectation and variance of Z∗(n).
Knopfmacher and Knopfmacher state these values in [KK90]. However, they give no
proofbecause their results follow frommoregeneral onesdeterminedbySchmidt [Sch76].
Schmidt examines the zeros ofmultivariate polynomials over finite fields. His results on
the expectation and variance concern polynomials inm ∈ ℕ variables, however, only of
a positive (total) degree. Thus, we remark that if n = 0, the expectation is 0 because all
units have the same number of zeros, namely, 0. Since all polynomials have that same
number of zeros, the variance is 0, too. Furthermore, it is also 0 if n = 1 because each
linear polynomial x − v has exactly one zero, namely, v.

Theorem 3.32 ([KK90]). For all n ∈ ℕ0, the expected value ofZ∗(n) is𝔼[Z∗(n)] = [[n ≥ 1]].

Proof ([Sch76]). If n = 0, the expectation is 0 because all units are zero-free. The remain-
ing case, n ≥ 1, is proven in [Sch76] for polynomials inm variables. Schmidt determines
that the expectation is qm−1. Since we consider univariate polynomials in this thesis, we
setm = 1 and obtain𝔼[Z∗(n)] = q1−1 = 1. �

Because the expected value is the same for all but one n, its asymptotic behavior is
𝔼[Z∗] = 1, andwe do not explicitly state it inTheorem 3.32. This result also follows from
the expectation of Bin(q, q−1), which is qq−1 = 1 [KK90].

The varianceVar[Z∗(n)] is not constant but only depends on q. Asmentioned above,
if n ≤ 1, the variance is 0. We note that Schmidt does not consider the case n = 1 sepa-
rately, although the formula provided in [Sch76] only holds if n ≥ 2.

Theorem 3.33 ([KK90]). For all n ∈ ℕ0, the variance of the random variable Z∗(n) is equal to
Var[Z∗(n)] = [[n ≥ 2]](1− q−1).

Proof ([Sch76]). If n = 0, all polynomials are zero-free. Likewise, all polynomials have
exactly one zero if n = 1. Thus, the variance is 0 in both cases. The remaining case, n ≥ 2,
is proven in [Sch76] formultivariate polynomials inm variables. Schmidt determines that
the variance is qm−1−qm−2,which simplifies to q1−1−q1−2 = 1−q−1 in our casem = 1. �

Onceagain, theasymptotic varianceVar[Z∗] canbedirectly obtained fromthedistri-
bution Bin(q, q−1) [KK90]. When q tends to infinity, the (asymptotic) variance converges
to limq→∞(1− q−1) = 1. SinceVar[Z∗(n)] ismonotonically increasing in q, an asymptot-
ically tight upper bound on the variance is 1 for all n and q.

– 41 –



4
Exact Detection Probabilities of Adversaries in
Combined Attacks

In this chapter,weaddress theworkbyBerndt et al. [BEF+23] and improve a result therein
about the probability that an adversary is not detected when introducing faults. Coun-
termeasures based on polynomial sharing have proven useful to protect against fault and
leakage attacks in cryptographic implementations, e.g., [CPR13; SFES18]. Recall that we
introduced polynomial sharing in Section 1.6 of Chapter 1. Berndt et al. [BEF+23] pro-
pose a framework that addresses combined attacks, i.e., attacks both passive and active. In
passive attacks, an adversary only observes side-channel information about the compu-
tation, e.g., by probing wires. In active attacks, on the other hand, an adversary alters
(values in) the computation, e.g., by inserting faults [BEF+23]. Furthermore, the frame-
work from Berndt et al. addresses adaptive attacks, i.e., attacks introducing faults based
on previously conducted probing. Their work improves many previous ones, which only
considered non-adaptive adversaries. The authors establish security notions applicable
to adaptive adversaries and present new compilers that reduce the required randomness
and number of shares.

Given an arithmetic circuit over𝔽 ≔ 𝔽q, Berndt et al.’s approach replaces gates with
so-called gadgets, which use encodings of a field element rather than the actual element
itself. For instance, a gate computing usual addition has two input wires and one output
wire, where the value of the output wire is the sum of both values corresponding to the
inputwires. The corresponding gadget takes two sharings as input and outputs a sharing
such that its secret equals the sum of the secrets of both input sharings. We usually use
the term sharing instead of encoding. An adversary probing an intermediate wire then
solely obtains a share of the protected value. In addition, him actively faulting awire, i.e.,
a share, likely renders the underlying sharing invalid due to the degree of the polynomial
being too high. More precisely, Berndt et al. focus on the detection of errors rather than
their correction. They consider n-sharings of polynomials of degree d < n, and call a shar-
ing invalid if, and only if, the degree of its underlying polynomial is greater than d. Thus,
The authors must ensure that errors do not vanish. To be consistent with [BEF+23], we
consider n-sharings of polynomials of degree d < n, and we adopt their definition of
(in)valid sharings. An adversary can introduce up to e ∈ ℕ0 errors. Berndt et al. show
that n = d+e+ 1 shares are necessary and sufficient to protect circuits against combined
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attacks. Thus, they assume that n ≥ d + e+ 1 throughout the paper, which we adopt.
As alreadymentionedabove,we improve a result in [BEF+23], stated inFact 4.2, about

the probability that an adversary is not detectedwhen introducing faults, in otherwords,
that he remains undetected if the degree of the polynomial corresponding to the output
of a gadget is at most d, although the secret is incorrect. We state the improved version
inTheorem 4.18. We assume that the reader is (roughly) familiar with the paper [BEF+23]
or with its concepts. The proof of Fact 4.2 should be known, however, we sketch it at the
beginning of Section 4.1.

For the sake of convenience, we first restate the authors’ definition of fault robust-
ness.

Definition 4.1 (e-f-robust [ABEO24; BEF+23]). A gadget G with two input sharings and one
output sharing is e-fault-robust with respect to a class of faultsF if for any valid encodings
x ≔ (xi)i∈[n] and x′ ≔ (x′

i )i∈[n], the output y ≔ (yi)i∈[n] ← G(x, x′) is also valid. Further,
it holds for any fault vectors v ≔ (vi)i∈[n], v′ ≔ (v′

i)i∈[n], and T ∈ A(F )with |T| ≤ e and
(yi+wi+w′

i)i∈[n] ← T[G](x+v, x′ +v′), that there are numbers t1 and t2with t1+ t2 ≤ |T|
such that

1. weight(w) ∈ [0, t1] ∪ [|weight(v+ v′) − t1|,weight(v+ v′) + t1], whereweight gives
the number of non-zero elements of a vector;

2. and (w′
i)i∈[n] is the zero vector or produced by the following random experiment: A

polynomial p′ ∈ P≤n−t2 is chosen such that the coefficients p
′
d+1, p′

d+2, … , p′
n−t2 are

chosen uniformly at random from𝔽. Then, (w′
i)i∈[n] ≔ (p′(𝛼i))i∈[n].

We interpret the fault vectors as n-sharings and thus associate the sharingsw andw′with
the polynomials p and p′, respectively, at pairwise distinct nodes 𝛼1, … , 𝛼n ∈ 𝔽.

We may interpret adding faults v and v′ to the inputs x and x′, respectively, as well
as inside the gadget (except for gates corresponding to non-linear operations) as faulting
the output sharing y of G by adding the fault vector w. This is due to the “linear” nature
of polynomial sharing. Since faults at the inputs of the gadget and inside the gadget can
cancel out each other, it can happen thatweight(w) ∈ [|weight(v+ v′) − t1|,weight(v+
v′) + t1]. The absolute value of the left endpoint is needed because there may be more
faults at the inputs than inside the gadget and vice versa. The second fault vector w′

corresponds to faults introduced at non-constant, i.e., binary, multiplication gates. By
definition of polynomialmultiplication, the higher-order coefficients pd+1, pd+2, … of the
product polynomial p are each a combination of the lower-order coefficients of x0, … , xd
of both factor polynomials. Since the adversary cannot probe all these lower-order co-
efficients, the higher-order coefficients of p are essentially random7 from the view of an
adversary.

Berndt et al. [BEF+23] establish upper bounds on the probability that an adversary
generates a valid sharing of an invalid value, i.e., the adversary is not detected when in-
troducing faults. Their theorem is as follows:

Fact 4.2 (Theorem 4 in [BEF+23]). If a circuit is e-fault-robust, the probability that s ≤ e
faults can produce a valid encoding of an invalid value is atmost qs−e−1 in the case of non-
adaptive attackers and qs−e(d + e+ 1)t1 for all t1 ≤ s in the case of adaptive attackers.
7The product of two random polynomials in Pd is not random over P2d.
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Throughout this chapter, we refer to Fact 4.2 as Theorem 4 (formatted in sans-serif
and without chapter number).

In Section 4.1,wemention that three quantities established in the proof of Theorem 4
are not exact but upper (or lower) bounds. Thus, we establish the exact figures.

In Section 4.2, we improve the authors’ theorem by stating the exact probabilities in
both the non-adaptive and adaptive cases. Regarding the latter case, although our for-
mula gives the exact probability, it is not in closed form. This stems from the fact that it
includes the PMF of a random variable that is a priori difficult to analyze.

Finally, in Section 4.3, we provide several upper bounds on the probability in the
adaptive case, e.g., by replacing t1 + t2 with s since t1 + t2 ≤ s. These formulae include
fewer terms than the exact formula, and they are in a closed form. This facilitates using
them in other applicationswhere the exact probability is not required. Wealso argue that
one of the given upper bounds is tight. Furthermore, we present an improved version of
Theorem 4 in Theorem 4.18. Lastly, we compare the improved theorem with the original
one and conclude that our upper bound yields a proper improvement over theirs.

4.1 Notes on the Original Theorem

Beforewe improve Theorem 4,wefirst remark that three quantities stated byBerndt et al.
in the proof of Theorem 4 are upper or lower bounds rather than exact figures. Further-
more, one upper bound was derived incorrectly. Nevertheless, this upper bound and the
entire Theorem 4 are still valid.

We first sketch the proof of Theorem 4. Berndt et al. establish the upper bound qs−e−1
in the caseofnon-adaptive adversaries by computing theprobability that all higher-order
coefficients of p′ are 0, which they state as qs−e−1. In Lemma 4.10, we prove that the exact
probability is qd+t2−n ≤ qs−e−1. In the adaptive case, it can occur that the higher-order
coefficients of p and p′ cancel out each other when both polynomials are added. The au-
thors compute the probability of that happening by comparing the number of different
p with the number of different p′. They state the number of the former and the latter as
(nt1)q

t1 and qe−t2, respectively. These numbers are upper bounds and lower bounds, respec-
tively. Then, they divide the former by the latter to determine the probability qt1+t2−ent1
that some pmatching the polynomial p′ exists such that the higher-order coefficients of
p + p′ vanish. Finally, the term qs−e(d + e + 1)t1 is used to bound qt1+t2−ent1 from above,
which, however, does not hold: We consider both factors, qt1+t2−e and nt1. Regarding the
former, bounding qt1+t2−e by qs−e from above is valid because t1 + t2 ≤ s. Regarding the
latter, substituting n with d + e + 1, however, yields a lower bound since n ≥ d + e + 1.
That is, (d + e + 1)t1 ≤ nt1. The upper bound on the first factor qt1+t2−e ≤ qs−e cannot
compensate for this because if t1 + t2 = s, the upper bound is tight, although n can still
be larger than d + e+ 1.

Nevertheless, onemaywonder if thefinal bound qs−e(d+e+1)t1 yields a feasible upper
bound on the actual probability. In Remark 4.17, we answer in the affirmative, hence,
Theorem 4 is valid.

We further elaborate on the exact numbers of different p and p′. Firstly, we regard
the number of possible polynomials p′. We recall that p′ is the polynomial defining the
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sharing w′, which captures faults introduced at multiplication gates or other non-linear
ones. In the proof, the authors give this number as qe−t2, which we conceive as an exact
figure since the authors say that “the number of different polynomials possible for [p′] is
qe−t2.” We emphasize that this number is only a loose lower bound. We also recall that
n ≥ d + e + 1, where d + e + 1 is the minimum number of shares required to protect
against adversaries who can probe dwires and fault ewires.

Lemma 4.3. The number of different polynomials p′ equals qn−t2+1 > qe−t2.

Proof. By construction, p′ is a polynomial of degree at most n − t2 with random higher-
order coefficients p′

d+1, … , p′
n−t2. Theorem 1.45 states that ∣P≤n−t2 ∣ = qn−t2+1. Thus, there

are qn−t2+1 different p′, regardless of whether the higher-order coefficients are randomly
sampled. Since n > d + e, we obtain the lower bound qn−t2+1 > q(d+e)−t2+1. We conclude
that qe−t2 is a loose lower bound because d + e− t2 + 1 > e− t2. �

We turn to polynomial p, which corresponds to the sharing w combining the input
faults and the faults at linear gates inside the gadget. The authors specify the number of
different p as (nt1)q

t1, which we also understand as an exact figure. Since the authors do
no elaborate on the derivation of the formula,we suppose that by using the term qt1 (which
equals |𝔽|q1) rather than (q − 1)t1 (which equals |𝔽 ∖ {0}|t1), they account for the fact that
at most t1 faults occur. This allows them to introduce no faults at certain selected shares.
In particular, (nt1)q

t1 counts the number of ways of choosing t1 shares from n possible ones
to add t1 (vanishing) faults from 𝔽 there. Thus, the formula (nt1)q

t1 sometimes counts the
“same” faulting twice, namely, when no faults occur at two different chosen shares.

Example 4.4. Let t1 = 2 and consider the two pairs of chosen nodes (𝛼1, 𝛼2) = (1, 2), as
well as (𝛼′

1, 𝛼′
2) = (1, 3). The only non-zero fault, say, 𝜀, occurs at node 𝛼1 = 𝛼′

1 = 1. Since
no fault is introduced at nodes 2 and 3, both faultings constitute the same fault vector,
namely, (𝜀, 0, … , 0). The formula distinguishes them because we chose different nodes.

The formula counts twice as soon as we can introduce no fault at a node in the cho-
sen node vector. The formula counting the exact number of different p should count the
actual number of faults. Remember that at most t1 shares are faulted. The exact formula,
therefore, is:

Observation 4.5. For all n, t1 ∈ ℕ0, the number of ways to introduce at most t1 faults into
an n-sharing is∑t1

i=0 (ni)(q− 1)i.
The summand (ni) counts the number of ways of choosing the i fault nodes, i.e., i

elements from 𝛼. The term (q− 1)i counts the number of ways to fault i nodes. We stress
that we introduce exactly i faults since the value 0 is prohibited.

However, as the authors establish an upper bound and (nt1)q
t1 overestimates the actual

number of different p, as shown below, this turns out not to be a problem, and Theorem 4
remains valid.

Theorem 4.6. For all q ∈ ℕ≥2, n ∈ [0, q], and t1 ∈ [0, n], the formula (nt1)q
t1 provides an upper

bound on the number of different p, i.e.,∑t1
i=0 (ni)(q− 1)i ≤ (nt1)q

t1 holds.
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Proof. We prove the claim by showing that for every combination considered by the left-
hand side of the inequality, a corresponding one exists considered by the right-hand side.

Let 𝛼 = (𝛼j)j∈[n] ∈ 𝔽n be the vector of nodes, let 𝜌 = (𝜌j)j∈[i] ⊆ 𝛼 be the vector
of nodes where a fault occurs, and denote by 𝜀 ≔ (𝜀j)j∈[i] ∈ (𝔽 ∖ {0})i the fault vec-
tor comprising the fault values at the i nodes in 𝜌. We stress that the number of faults
need not be exactly t1 but rather is between 0 and t1. Let 𝜋 = {⟨𝜌1, 𝜀1⟩, … , ⟨𝜌i, 𝜀i⟩} be
the set of node-value fault pairs, considered by the sum on the left-hand side. Likewise,
let 𝜋′ = {⟨𝜌′

1, 𝜀′
1⟩, … , ⟨𝜌′

t1, 𝜀
′
t1⟩} be the set of node-value pairs that corresponds to possi-

ble faults, considered by the formula on the right-hand side, where 𝜌′ = (𝜌′
j)j∈[t1] and

𝜀′ ∈ 𝔽t1. Furthermore, letΠ andΠ′ be the sets of possible𝜋 and𝜋′, respectively.
We show that for every 𝜋, there exists a corresponding 𝜋′ that represents the same

faulting by giving an injective mapping 𝜑∶ Π → Π′, 𝜋 ↦ 𝜋′. The mapping constructs
𝜋′ from𝜋 by “faulting” the remaining t1 − i positions with 0. More precisely,

𝜑(𝜋) ≜ 𝜑({⟨𝜌1, 𝜀1⟩, … , ⟨𝜌i, 𝜀i⟩})
≜ {⟨𝜌1, 𝜀1⟩, … , ⟨𝜌i, 𝜀i⟩, ⟨𝜌′

i+1, 𝜀′
i+1⟩, … , ⟨𝜌′

t1, 𝜀
′
t1⟩}

≔ {⟨𝜌1, 𝜀1⟩, … , ⟨𝜌i, 𝜀i⟩, ⟨𝜌1, 0⟩, … , ⟨𝜌t1−i, 0⟩},

where (𝜌)i∈[n−i] = 𝛼 ∖ 𝜌. The function 𝜑 is one-to-one because none of the 𝜀j ∈ 𝜀
is 0. Thus, the original set 𝜋 can be recovered by removing the t1 − i appended pairs
⟨𝜌1, 0⟩, … , ⟨𝜌t1−i, 0⟩ from 𝜑(𝜋). From the injectivity of 𝜑, we conclude that |Π| ≤ |Π′|.
Since |Π| = ∑t1

i=0 (ni)(q− 1)i and |Π′| = (nt1)q
t1, the claim follows. �

It follows that, once the adversary introduces faults but not at every node, that is,
t1 ∈ [n− 1], there is a combination that the formula (nt1)q

t1 counts twice. This implies that
the inequality inTheorem 4.6 is tight if, and only if, t1 = 0 or t1 = n, where the latter case
cannot occur since t1 < n.

Corollary 4.7. Equality between∑t1
i=0 (ni)(q− 1)i and(nt1)q

t1 holds if, and only if, t1 = 0 or t1 = n.

Proof. We consider all three cases, viz., t1 = 0, t1 = n, and t1 ∈ [n − 1], separately, and
we begin with t1 = 0.

If t1 = 0, we have∑0
i=0 (ni)(q− 1)i = (n0)(q− 1)0 = 1 = (n0)q0.

Likewise, if t1 = n, the binomial formula,which the sum represents, is complete, and
we obtain∑n

i=0 (ni)(q− 1)i = ∑n
i=0 (ni)(q− 1)i1n−i = ((q− 1) + 1)n = qn = (nn)qn.

Finally, if t1 ∈ [n− 1], then according to Example 4.4, we can always choose two dif-
ferent nodes (since t1 < n) andnot fault there. They count as two combinations,neverthe-
less. More precisely and by referring to the proof ofTheorem 4.6, for all i ∈ [0, t1 − 1], we
do not fault at the remaining t1 − i nodes 𝜌′

i+1, … , 𝜌′
t1, i.e., we set all 𝜀

′
i+1, … , 𝜀′

t1 to 0. Since
t1 < n, there exists a node 𝛼j ∈ 𝛼which is neither in 𝜌 nor in 𝜌′. Hence, replacing any of
the remaining nodes with 𝛼j, say, 𝜌′

t1, yields a different combination because 𝜌′ changed.
However, since 𝜀′

t1 = 0, substituting 𝛼j for 𝜌′
t1 leaves the faulting unchanged. �

Finally, to obtain an upper bound on the probability in the adaptive case, Berndt et
al. divide the number of different p by the number of different p′. We note that there are
caseswithmore p than p′, hence, the bound can exceed 1. In general, there are sometimes
more p than p′ and vice versa.
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Example 4.8. Let q = 23, t1 = 14, t2 = 4, and d = 1. With n = t1 + t2 + d+ 1 = 20, we have
more p than p′, namely,∑t1

i=0 (ni)(q− 1)i ≈ 2.65 ⋅ 1023 > 1.41 ⋅ 1023 ≈ qn−t2+1, whereas with
n = q− 1 = 22, we have less p than p′, namely, approximately 2.14 ⋅ 1024 < 7.46 ⋅ 1025.

4.2 Establishing Exact Probabilities

In this section, we improve Theorem 4 by providing exact probabilities rather than upper
bounds in case the adversary is not adaptive and when he is. We first consider the case
where the adversary is non-adaptive. As the authors have already observed, either p or p′

may be assumed to be zero in this case. We give the exact probabilities, first if p′ is zero
and then if p is.

If p′ is zero, an adversary introducing faults into the computation is always detected.

Fact 4.9 ([BEF+23]). If the adversary is non-adaptive and p′ = 0, the output sharing is
always invalid or p = 0.

Since we use the reason why Fact 4.9 holds later on, we recall it: If at most t1 faults
occur, p has at least n − t1 > d zeros or p = 0. The former implies deg(p) ≥ n − t1 > d,
according to Fact 1.41. Then, the sharing is invalid. The latter, however, implies that no
fault occurred.

Next, we consider the second case, that is, if p = 0 instead. In this case, the sharing
maybe valid but only if p′ is also zero. Berndt et al. give anupper boundon the probability
that p′ is zero, namely, qs−e−1. Here, e ≥ t1 + t2 is an upper bound on the number of
faults an adversary can introduce, and s ≥ t1 + t2 equals the actual number of introduced
faults. We determine the exact probability that p′ is zero below by adapting the proof
from [BEF+23]:

Lemma 4.10. If the adversary is non-adaptive and p = 0, the probability that the output sharing
is valid is qd+t2−n ≤ qs−e−1.

Proof ([BEF+23]). By construction, we can write p′ as p′(x) = ∑n−t2
k=0 p

′
kx
k. Recall that the

output sharing is valid if, and only if, deg(p′) ≤ d because we assumed that p = 0.
Further, the higher-order coefficients of p′ are randomly sampled. Thus, p′ is valid if, and
only if,⋀n−t2

k=d+1(p
′
k = 0). Since all coefficients are sampled uniformly and independently,

the probability that p′ is valid is Pr[⋀n−t2
k=d+1(p

′
k = 0)] = ∏n−t2

k=d+1 q
−1 = qd+t2−n.

Finally, we show that qs−e−1 yields an upper bound. Since n ≥ d+ e+ 1 and t2 ≤ s, we
deduce that qd+t2−n ≤ qd+s−(d+e+1) = qs−e−1. �

We have completed analyzing the non-adaptive case and now turn to the more so-
phisticated one where the adversary is adaptive. To simplify computations, we hence-
forth assume that p is invalid, i.e., deg(p) > d. This is reasonable because otherwise,
i.e., if deg(p) ≤ d, the polynomial pmust be zero, which is implied by Observation 1.60
since at most s faults ensure that deg(p) ≥ n − s > d. But if p = 0, an adaptive adver-
sary can only use p′ to generate an invalid output sharing. Recall that p′ corresponds to
faults at multiplication gates. However, the higher-order coefficients of p′ are randomly
produced, according to Definition 4.1. Thus, whether p′ is invalid is independent of the
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faults that the adversary introduces. This means he cannot exploit having probed wires
beforehand andmay thus be considered non-adaptive. In otherwords, the case p = 0 re-
duces to that of a non-adaptive adversary, inwhich case Lemma4.10 gives the probability
of him not being detected.

Before we determine the probability of an adaptive adversary not being detected, we
state the part of the PMF of deg(p′) (treated as a random variable) that is relevant for us
as it will be of use in various places throughout the remainder of this chapter. According
to Definition 4.1, we can only give the exact PMF when deg(p′) ≥ d + 1 because only
the higher-order coefficients of p′ are random. Fortunately, this range coincideswith the
relevant part.

Lemma 4.11. For all i ∈ [d + 1, n − t2], the probability that the degree of p′ equals i is precisely
Pr[deg(p′) = i] = (q− 1)qi+t2−n−1. Moreover, Pr[deg(p′) > n− t2] = 0.

Proof. Let i = deg(p′) and recall that we have p′(x) = ∑n−t2
k=0 p

′
kx
k by construction. It

immediately follows that deg(p′) > n− t2 is impossible.
Thus, assume that i ∈ [d+ 1, n− t2]. The degree of p′ is i if, and only if, the coefficient

p′
i does not vanish, but all coefficients above it do, i.e., p′

i ≠ 0 and⋀n−t2
k=i+1(p

′
k = 0). Since

the higher-order coefficients are uniformly and independently, the former happens with
probability (q−1)/q and the latterwith probability q−((n−t2)−(i+1)+1) = qi+t2−n. Finally, due
to the p′

k being independent, the probability that both events occur is the product of the
two previous probabilities, namely, (q− 1)/q ⋅ qi+t2−n = (q− 1)qi+t2−n−1. �

Weare now ready to give the probability of an adaptive adversary not being detected.
For the sake of clarity, we let p+ = p + p′, 𝛿 = deg(p), 𝛿′ = deg(p′), and 𝛿+ = deg(p+).
Wemention that d is the degree of a regular, valid polynomial used to share a wire value.
Since the adversary can only probe dwires, choosing d as the degree is optimal.

Theorem 4.12. If the adversary is adaptive, the probability that the output sharing is valid equals

qd+t2−2n(qt1+1 − qt2)
q− 1

n−t2
∑
i=n−t1

qi Pr[deg(p) = i]. (4.1)

Proof. First, recall that 𝛿′ > d does not necessarily hold, whereas we may always assume
that 𝛿 > d holds. It should be clear that the adversary is not detected if, and only if,
𝛿+ ≤ d. Since we add p and p′, it may happen that their higher-order terms cancel out
each other, that is, 𝛿+ ≤ d, although 𝛿 > d or 𝛿′ > d. Otherwise, if 𝛿+ > d, an adaptive
adversary is always detected. Fortunately, 𝛿+ ≤ d can only happen if 𝛿 = 𝛿′, accord-
ing to Fact 1.43. Using this observation, we analyze both cases separately and combine
them later using the law of total probability. More precisely, we separate the probability of
interest Pr[𝛿+ ≤ d] into

Pr[𝛿+ ≤ d] = Pr[𝛿+ ≤ d | 𝛿 = 𝛿′] Pr[𝛿 = 𝛿′] + Pr[𝛿+ ≤ d | 𝛿 ≠ 𝛿′] Pr[𝛿 ≠ 𝛿′].

We begin with the easy case where 𝛿 ≠ 𝛿′. Then, the adversary cannot go unnoticed
since at least one of the higher-order coefficients p+

d+1, p+
d+2, … does not vanish. This is

implied by Fact 1.43. More precisely, 𝛿+ is exactlymax{𝛿, 𝛿′} ≥ 𝛿 if 𝛿 ≠ 𝛿′ and, therefore,
𝛿+ ≥ 𝛿 ≥ n− t1 > (d + e) − e = d. We conclude that Pr[𝛿+ ≤ d | 𝛿 ≠ 𝛿′] = 0.
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It remains to regard the case 𝛿 = 𝛿′, where we need to compute Pr[𝛿+ ≤ d | 𝛿 = 𝛿′]
and Pr[𝛿 = 𝛿′]. To evaluate probabilities regarding 𝛿 = 𝛿′, we evaluate the joint PMF
Pr[𝛿 = i∧ 𝛿′ = i] over the common domain of 𝛿 and 𝛿′. Since both random variables are
finite, it is sufficient to consider i in the set supp(𝛿)∩supp(𝛿′). Berndt et al. have already
ascertained that equality can only occur in case n − t1 ≤ n − t2, i.e., if t1 ≥ t2, because
𝛿 ≥ n− t1 but 𝛿′ ≤ n− t2. We, hence, only consider i ∈ [n− t1, n− t2] ⊆ [d+ 1, n− t2].
The conditional probability of 𝛿+ being at most d equals

Pr[𝛿+ ≤ d | 𝛿 = 𝛿′] =
n−t2
∑
i=n−t1

Pr[𝛿+ ≤ d | 𝛿 = i∧ 𝛿′ = i]

(†)=
n−t2
∑
i=n−t1

Pr ⎡⎢
⎣

i

⋀
j=d+1

(p′
j = −pj)

∣
∣
∣
pi, p′

i ≠ 0⎤⎥
⎦

(‡)=
n−t2
∑
i=n−t1

⎛⎜
⎝

1
q− 1

i−1
∏
j=d+1

q−1⎞⎟
⎠

= [[t1 ≥ t2]]
qd+1−n(qt1+1 − qt2)

(q− 1)2 .

(4.2)

The second equality (†) holds since to achieve 𝛿+ ≤ d, all coefficients p+
d+1, … , p+

i must
vanish. Because p+

j ≜ pj + p′
j , this requires p′

j = −pj. Moreover, the third equality (‡)
holds because the higher-order coefficients of p′ are chosen independently (of p). The
probability that p′

j = −pj equals q−1 if j < i. In case of j = i, the probability is 1/(q − 1)
since we assume pi, p′

i ≠ 0.
Now that we have calculated Pr[𝛿+ ≤ d | 𝛿 = 𝛿′], it remains to establish Pr[𝛿 = 𝛿′].

Again, we evaluate the joint PMF.We use the fact that 𝛿 and 𝛿′ are independent if 𝛿′ > d
and that we already obtained the PMF of 𝛿′ when 𝛿′ ∈ [d + 1, n− t2] in Lemma 4.11:

Pr[𝛿 = 𝛿′] =
n−t2
∑
i=n−t1

Pr[𝛿 = i∧ 𝛿′ = i]

=
n−t2
∑
i=n−t1

Pr[𝛿 = i] Pr[𝛿′ = i]

=
n−t2
∑
i=n−t1

Pr[𝛿 = i](q− 1)qi+t2−n−1

= (q− 1)qt2−n−1
n−t2
∑
i=n−t1

qi Pr[𝛿 = i].

Because p depends on the adversary’s fault strategy, specifying the distribution of 𝛿 is
difficult. For that reason, we provide universal upper bounds and argue that one bound
is tight in the next Section 4.3.
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Finally, we can combine all results and obtain the desired probability:

Pr[𝛿+ ≤ d] = Pr[𝛿+ ≤ d | 𝛿 = 𝛿′] Pr[𝛿 = 𝛿′] + Pr[𝛿+ ≤ d | 𝛿 ≠ 𝛿′] Pr[𝛿 ≠ 𝛿′]
= Pr[𝛿+ ≤ d | 𝛿 = 𝛿′] Pr[𝛿 = 𝛿′] + 0

= ⎛
⎝

[[t1 ≥ t2]]
qd+1−n(qt1+1 − qt2)

(q− 1)2
⎞
⎠

⎛⎜
⎝

(q− 1)qt2−n−1
n−t2
∑
i=n−t1

qi Pr[𝛿 = i]⎞⎟
⎠

=
qd+t2−2n(qt1+1 − qt2)

q− 1

n−t2
∑
i=n−t1

qi Pr[𝛿 = i],

where in the last row, wemay omit the [[t1 ≥ t2]] bracket due to the present sum. �

4.3 Upper Bounds and Comparison

InTheorem 4.12 of the previous Section 4.2, we determined the exact probability that an
adaptive adversary is not detected. In the established Equation 4.1,we could not simplify
the sum∑n−t2

i=n−t1
qi Pr[𝛿 = i]because thedistributionof 𝛿dependson the adversary. Thus,

we present an upper bound on the aforementioned equation that holds regardless of the
adversary’s strategy. The following estimation comes in useful:

Observation 4.13. For all q ∈ ℕ, a, b ∈ ℕ0 such that a ≤ b, and random variables X such
that [0, b] is a subset of its codomain,∑b

i=a q
i Pr[X = i] ≤ ∑b

i=a q
b Pr[X = i] ≤ qb holds.

Applying Observation 4.13 to Equation 4.1 yields a universal upper estimate.

Theorem 4.14. If the adversary is adaptive, the probability that the output sharing is valid is at
most

Pr[𝛿+ ≤ d] ≤
qd+t2−2n(qt1+1 − qt2)

q− 1
qn−t2

n−t2
∑
i=n−t1

Pr[𝛿 = i]

≤ [[t1 ≥ t2]]
qd+t2−2n(qt1+1 − qt2)

q− 1
qn−t2 ⋅ 1

= [[t1 ≥ t2]]
qd−n(qt1+1 − qt2)

q− 1
≕ I.

(4.3)

Proof. We omit all [[t1 ≥ t2]] brackets because the chain of inequalities holds regardless.
The two inequalities in Equation 4.3 hold due to Observation 4.13, which implies that the
sum in Equation 4.1 can be bounded from above by

n−t2
∑
i=n−t1

qi Pr[𝛿 = i] ≤
n−t2
∑
i=n−t1

qn−t2 Pr[𝛿 = i] = qn−t2
n−t2
∑
i=n−t1

Pr[𝛿 = i] ≤ qn−t2.

Thus, replacing the sum by either qn−t2 ∑n−t2
i=n−t1

Pr[𝛿 = i] or qn−t2 yields the claimed chain
of inequalities. �
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With the universal upper bound I established, the question arises whether it is tight.
In the following, we argue that I is tight because an adversary is always able to choose
a polynomial p of suitable degree. Naturally, the greater the degree, the more likely it is
that a randomly chosen p′ is of said degree because i < i′ implies ∣Pi∣ < ∣Pi′ ∣, but the less
likely it is that all necessary coefficients of p and p′ cancel out so that 𝛿+ ≤ d. Hence, an
adversary controlling pwould certainly try to find the best trade-off, i.e., he would choose
a pwith 𝛿 = argmaxi(Pr[𝛿

′ = i∧ 𝛿+ ≤ d | 𝛿 = i]). In fact, his choice is not restricted at
all because the probability is the same for all possible 𝛿. This is intuitively clear because an
increase of 𝛿′ by 1 requires an additional coefficient to cancel out to achieve 𝛿+ ≤ d. Thus,
the initial probability ismultiplied by q−1. However, if the degree 𝛿′ increases by 1, there is
one coefficient less between p′

i+1 and p′
n−t2 that must vanish in order that p

′ assumes that
degree. Since each coefficient vanishes with probability q−1 as well, both probabilities
cancel out.

Lemma 4.15. For all i ∈ [n − t1, n − t2], the probability Pr[𝛿′ = i ∧ 𝛿+ ≤ d | 𝛿 = i] is the
same, namely, qd+t2−n.

Proof. To be able to use expressions that we have already determined,we first rewrite the
term Pr[𝛿′ = i∧ 𝛿+ ≤ d | 𝛿 = i] by applying the definition of conditional probability:

Pr[𝛿′ = i∧ 𝛿+ ≤ d | 𝛿 = i] ≜ Pr[𝛿+ ≤ d | 𝛿 = i∧ 𝛿′ = i] Pr[𝛿′ = i | 𝛿 = i]
= Pr[𝛿+ ≤ d | 𝛿 = i∧ 𝛿′ = i] Pr[𝛿′ = i].

The second equality holds because 𝛿 and 𝛿′ are independent when i ≥ d+ 1. Fortunately,
both factors areknown, the former fromEquation4.2and the latter fromLemma4.11. We
recall that Pr[𝛿+ ≤ d | 𝛿 = i∧ 𝛿′ = i] = qd+1−i/(q− 1) and Pr[𝛿′ = i] = (q− 1)qi+t2−n−1.
We conclude that

Pr[𝛿′ = i∧ 𝛿+ ≤ d | 𝛿 = i] =
qd+1−i

q− 1
((q− 1)qi+t2−n−1) = qd+t2−n,

which is independent of i. �

It is reasonable to assume that the adversary knows t1 and t2. Consequently, theupper
bound Pr[𝛿+ ≤ d] ≤ I in Equation 4.3 is tight if the adversary can choose 𝛿 ad libitum,
i.e., choose p such that 𝛿 ∈ [n− t1, n− t2]. In that case, Pr[𝛿 ∈ [n− t1, n− t2]] = 1, and
so is the sum∑n−t2

i=n−t1
Pr[𝛿 = i] in Equation 4.3. In other words, this is the best strategy

the adversary can pursue since the event 𝛿+ ≤ d then only depends on the higher-order
coefficients of p′, which he cannot control. We recall that 𝛿 depends on the number of
faults the adversary introduces into the computation. Consider the following example:
If the adversary introduces 𝛾 = 4 faults using w, then 𝛿 is at least n − 4 because w has at
least n−𝛾 = n−4 (distinct) zeros. However, it is uncertain that a suitable p exists for every
degree between n − 4 and n − 1. For instance, if t2 happens to be 3, the adversary must
be able to choose p such that 𝛿 ≤ n− t2 = n− 3, whereas it may be that w, including the
𝛾 = 4 faults, corresponds to a polynomial of degree n−1. Nevertheless, the adversary can
always construct a sharingwwith exactly𝛾 ≥ 1 faults that corresponds to a polynomial of
degree i ∈ [n−𝛾, n−1] for all i, i.e., he can choose a pwith 𝛿 ∈ [n−t1, n−t2]. Toprove this
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claim,we construct a polynomial of degree iwhose n-sharing includes precisely 𝛾 faults,
that is, 𝛾 non-zero entries. The adversary can efficiently construct the polynomial and
evaluate it at all n nodes in 𝛼 to obtain the sharing w, according to which he introduces
the 𝛾 faults.

We show that for any degree i ∈ [n− 𝛾, n− 1], there is a polynomial of degree iwith
exactly n− 𝛾 distinct zeros at the nodes in 𝛼, i.e., with exactly 𝛾 faults.

Theorem 4.16. For all𝛾 ∈ ℕ≤n and for all i ∈ [n− 𝛾, n− 1], there is a polynomial p of degree i
such that the corresponding n-sharingw = (p(𝛼i))i∈[n] satisfiesweight(w) = 𝛾.

Proof. Weconstructpaccording to the requirementsmade tow. For the sakeof simplicity,
let w1, … ,w𝛾 be the faults in w, that is, its non-zero elements. Thus, w𝛾+1, … ,wn vanish,
which implies that 𝛼𝛾+1, … , 𝛼n are zeros of p. As previously done throughout Chapter 3,
this observation lets us construct p as p = g∏n

j=𝛾+1(x−𝛼j). This constructionguarantees
(until now) that w has at least n − 𝛾 vanishing entries, viz., w𝛾+1, … ,wn. Thus, we must
define g in a way that guarantees that the remaining 𝛾 entries are non-zero, that is, g
must not introduce zeros there. Furthermore, since deg(p) = i and the degree of the
split product∏n

j=𝛾+1(x−𝛼j) is n−(𝛾 +1)+1 = n−𝛾, the degree of gmust be i−(n−𝛾).
There are several options to define g so that both of the above-mentioned requirements
are satisfied. For instance, g(x) = (x − v)i−n+𝛾 is feasible for any v ∈ 𝔽 ∖ {𝛼1, … , 𝛼𝛾}
because it only introduces a zero where p already is or that is not in 𝛼. Since 𝛾 < q,
𝔽 ∖ {𝛼1, … , 𝛼𝛾} ≠ ∅ and, hence, such v always exists. �

In Section 4.1, we raised the following question concerning the final upper bound
in the proof of Theorem 4: Does the final upper bound qs−e(d + e + 1)t1 yield a feasible
bound on the actual success probability of an adaptive adversary, stated in Equation 4.1,
although it does not on qt1+t2−ent1? Now that we have established I, we can answer in the
affirmative:

Remark 4.17. Thefinal bound qs−e(d+ e+ 1)t1 in Theorem 4 is feasible because it is at least
as great as I. To seewhy,we first bound I from above by dropping its denominator,which
yields I ≤ qd−n(qt1+1 − qt2). Substituting n and qt2 with d + e + 1 and 0, respectively,
further yields qd−n(qt1+1 − qt2) ≤ q−e−1(qt1+1 − 0) = qt1−e. It remains for us to show that
qt1−e ≤ qs−e(d + e + 1)t1. Note that (d + e + 1)t1 ≥ 1. Thus, the previous inequality holds
since already qt1−e ≤ qs−e⋅1holds. Finally,we remark that the slightly differentfinal bound
qt1+t2−e(d + e+ 1)t1 is feasible too.

We present further upper bounds on I from Equation 4.3 and, accordingly, also on
Pr[𝛿+ ≤ d] because simpler expressions suffice for certain applications. We use the pre-
existing inequalities 0 ≤ t2 ≤ t1 ≤ s ≤ e < n and t1 + t2 ≤ s to bound the numerator of
I further from above. The established chain of inequalities is displayed in Figure 4.1. We
omit further bounds regarding the denominator q− 1 of I and simply note that dropping
it yields a feasible upper bound.

In Section 4.2, we established exact formulae for the probability of an adversary re-
maining undetected in the non-adaptive and adaptive cases. For the latter, we also pro-
vided upper bounds and argued that I in Equation 4.3 is tight. Thus, we are ready to
present our improved version of Theorem 4.
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qd−n (qt1+1 − qt2)

qd−n (qs+1 − qt2) qd−n (qt1+1 − 1)
(†)

qd−n (qs+1 − 1)

q−e−1 (qs+1 − 1)

1− q−s−1

1− q−e−1

t 1 
s t2  0

t2  
0 t 1 

s

n d + e+ 1

e s

s e

Figure 4.1: The chain of inequalities of the denominator of I in Equation 4.3. An arrow
pointing from A to Bmeans that A ≤ B. A squiggly arrow a b denotes substituting a
with b. Inequality (†) holds because qs+1 − qt2 ≥ qt1+t2+1 − qt2 and qt1+t2+1 − qt2 ≥ qt1+1 − 1
is equivalent to (qt1+1 − 1)(qt2 − 1) ≥ 0, where both factors are non-negative.

– 53 –



4 Exact Detection Probabilities of Adversaries in Combined Attacks

Theorem 4.18 (Improved Theorem 4 in [BEF+23]). If a circuit is e-fault-robust, theprobability that
s ≤ e faults can produce a valid encoding of an invalid value is at most qd+t2−n ≤ qs−e−1 in the case
of non-adaptive attackers and

qd+t2−2n(qt1+1 − qt2)
q− 1

n−t2
∑
i=n−t1

qi Pr[deg(p) = i]
(†)
≤
qd−n(qt1+1 − qt2)

q− 1
≤ q−e−1(qt1+1 − 1)

for all t1, t2 ≤ s in the case of adaptive attackers. Moreover, the first inequality (†) is tight.

Proof. The theorem follows immediately from combining Fact 4.9, Lemma 4.10, Theo-
rems 4.12 and 4.14, and Lemma 4.15. The last inequality holds since n > d + e and
t2 ≥ 0. �

Finally,we compare our upper bound I against the original one established byBerndt
et al. We recall that the authors’ final upper bound is qs−e(d + e + 1)t1 and that it is valid,
according to Remark 4.17. We even use t1 + t2 instead of s, that is, we compare our bound
with qt1+t2−e(d + e+ 1)t1.

Theorem 4.19. Theupper bound I is at least (q− 1)(d+ e+ 1)t1 times as good as the original one
qs−e(d + e+ 1)t1 in Theorem 4.

Proof. Let𝜇 = d+ e+ 1. Since t1+ t2 ≤ s, we have qt1+t2−e𝜇t1 ≤ qs−e𝜇t1. Thus, it is sufficient
to consider the quotient of I and qt1+t2−e𝜇t1 and bound it from below:

qt1+t2−e𝜇t1/
qd−n(qt1+1 − qt2)

q− 1
=

(q− 1)qn+t1+t2−d−e𝜇t1
qt1+1 − qt2

≥
(q− 1)q(d+e+1)+t1+t2−d−e𝜇t1

qt1+1 − qt2

=
(q− 1)qt1+t2+1𝜇t1

qt1+1 − qt2
(†)
≥

(q− 1)qt1+0+1𝜇t1
qt1+1 − q0

≥
(q− 1)qt1+1𝜇t1
qt1+1 − 0

= (q− 1)𝜇t1.

Thus, qt1+t2−e𝜇t1 is at least (q− 1)𝜇t1 times as large as I. The inequality (†) holds because it
is equivalent to q2t1+2(qt2 −1)/((qt1+1−1)(qt2 −qt1+1)) ≤ 0 and all four factors but qt2 −qt1+1
are non-negative. This implies the left-hand side is non-positive. �

We note thatTheorem 4.19 continues to hold if 𝜇 = d+ e+ 1 is replaced by n. Thus, I
is at least (q− 1)nt1 times as good as qt1+t2−ent1 ≤ qs−ent1.

Ourupperbound Idemonstrates aproper improvement for all q > 2 sinceboth ratios
(q − 1)𝜇t1 are strictly greater than 1. If q = 2, then n ≤ 1 and e, d ≤ 0, i.e., the adversary
cannot introduce faults. Thus, it is justified to say that our upper bound always yields a
proper improvement.
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5
Definitive Error Detection in the Double-Sharing
Setting

In a follow-up paper, Arnold et al. [ABEO24] modify the framework proposed by Berndt
et al. [BEF+23],whichwe covered inChapter 4, toworkwith two secrets per sharing albeit
considering only additive faults and non-adaptive adversaries.

We assume familiarity with the concepts used in [ABEO24] (and [BEF+23]). To recall
the definition of fault-robustness, see Definition 4.1 on page 43. We remark that e and s
are henceforth called 𝜎 and 𝜔, respectively. We again denote by d and n the degree of a
sharing polynomial and the number of parties, respectively. Throughout this chapter,we
refer to a polynomial of degree atmost d simply as a polynomial of degree d. Furthermore,
the higher-order coefficients usually denote the coefficients of xn−𝜎, … , xn−1. Concerning
the (input) polynomials f and g, we call the corresponding sharings F ≔ (Fi)i∈[0,n−1] and
G ≔ (Gi)i∈[0,n−1] and their four secrets: s0, s1, s′0, and s′1. We embed the first secret in
the lowest-degree coefficient and the second in the highest coefficient, where s(⋅) and s′(⋅)
correspond to f and g, respectively, i.e., s0 = f0, s1 = fd, s′0 = g0, and s′1 = gd. Indices of
sharings and parties are zero-based to be consistent with [ABEO24].

As observed by the authors, share-wise operations on f and g, i.e., linear ones, con-
tinue to functionwith double sharings. In particular,we have coef(af +bg, 0) = as0+bs′0
and coef(af + bg, d) = as1 + bs′1, where a, b ∈ 𝔽 are constants. Hence, we focus on non-
linear operations.

In order to support different operations, as well as the combination and reordering
of secrets, Arnold et al. introduce so-called (𝜑0, 𝜑1)-gadgets. These gadgets operate on
F and G and return a sharing Q ≔ (Qi)i∈[0,n−1] of a polynomial q of degree d such that
q0 = 𝜑0(s0, s1, s′0, s′1) and qd = 𝜑1(s0, s1, s′0, s′1). Inside the 𝜑-gadgets, the authors utilize
ℓ-functions to set the coefficients q0 and qd, where ℓ(𝜑0,𝜑1)

i,j (Fi,Gi) is the share of party i for
party j of the polynomial 𝜑0(s0, s1, s′0, s′1) + 𝜑1(s0, s1, s′0, s′1)xd. Recall that coefficients of,
say, f , can be expressed using the inverse Vandermonde matrix as fk = ∑n−1

i=0 𝜆i,kFi. In
order to add fk to xm, i.e., to obtain the polynomial fkxm, party i canmultiply its share of fk
by 𝛼mi . Due to distributivity, the sharing (∑n−1

i=0 𝜆i,kFi𝛼mj )j∈[0,n−1] corresponds to fkx
m.

Examples 5.1. We provide three instantiations of 𝜑 = (𝜑0, 𝜑1)-functions together with
their corresponding ℓ-functions. Further can be found in [ABEO24] on page 18.
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1. 𝜑 = (s0 + s′0, 0): The ℓ-function is ℓ(𝜑0,𝜑1)
i,j (Fi,Gi) = 𝜆i,0Fi + 𝜆i,0Gi. Since s0 and s′0 are

the secrets at the constant terms f0 and g0,we extract themusing𝜆(⋅),0 and add them.
2. 𝜑 = (0, s0 + s′0): The ℓ-function is ℓ(𝜑0,𝜑1)

i,j (Fi,Gi) = (𝜆i,0Fi + 𝜆i,0Gi)𝛼dj . Multiplying by
𝛼dj adds the coefficient to qd instead of q0. Since 𝛼0j = 1, the term is omitted for 𝜑0.

3. 𝜑 = (s0+s′1, 3s1s′1): The ℓ-function is ℓ(𝜑0,𝜑1)
i,j (Fi,Gi) = (𝜆i,0Fi+𝜆i,dGi)+(3𝜆i,2d(FiGi)𝛼dj ).

The coefficient s1s′1 = fdgd is at position 2d in fg. Due to linearity, we multiply by 3.

ThesharingQ corresponds toapolynomial ofdegreedbecause ℓ-functions contribute
only to coefficients q0 and qd, which in turn are added to random polynomials of degree
d generated by ZEnc. More precisely, with q(x) = ∑d

k=0 qkx
k, the coefficients of q are

q0 = 𝜑0(s0, s1, s′0, s′1), qd = 𝜑1(s0, s1, s′0, s′1), and qk = ∑n−1
i=0 z

(i)
k for all k ∈ [d − 1], where

z(i) is the polynomial corresponding to the ZEnc-sharing computed by party i during the
execution of the 𝜑-gadget.

The degree of q always being d implies that an adversary faulting F or G is never de-
tected because the detectionmechanism requires the degree of q to exceed d. To restrain
the adversary from going unnoticed, the authors add an error propagation polynomial 𝜌 to
q. Its construction should guarantee that q′ ≔ q + 𝜌 equals q if no fault occurred (i.e.,
𝜌 = 0) and that otherwise,deg(q′) > d. Theydefine𝜌 via the n-sharing that includes all𝜎
higher-order coefficients of f ′g′, namely, (coef(f ′g′, n−1), … , coef(f ′g′, n−𝜎), 0, … , 0).
To add 𝜌 to q, the error propagation term Ei,jF′

iG′
i is added to the ℓ-function during the com-

putation, where Ei,j = [[j < 𝜎]]𝜆i,n−j−1. Since f and g are polynomials of degree d, the
degree of fg is 2d, according to Fact 1.43. If n > 2d+ 𝜎, the higher-order terms at positions
n−𝜎, … , n−1 all vanish if, andonly if, f ′ and g′ are valid. Here, f ′ = f +𝜁 f and g′ = g+𝜁 g
include the “potential” fault polynomials 𝜁 f and 𝜁 g, respectively.

As already noticed in [ABEO24], a fault pair (ZFi , ZGi ) exists for each pair (Fi,Gi) of
input shares such that F′

iG′
i = FiGi because 𝜌 uses the product f ′g′. This means that all

higher-order terms of f ′g′ may vanish despite the adversary introducing faults. Suppose
the 𝜑-gadget computes a multiplication, such as (s0s′0, s1s′1). In that case, the faulting is
ineffective since F′

iG′
i = FiGi implies f ′g′ = fg. Unfortunately, the faults can remain ef-

fective when the gadget uses different operations. An estimate calculated by the authors
shows that due to the adversary beingnon-adaptive, the probability of him“guessing” the
correct faults to remain unnoticed is at most |𝔽|−𝜔.

In the following, we present several approaches to mitigate the adversary’s success
probability of going undetected. Although not all approaches are suitable, we include
themas theymight be of independent use, e.g., in domains different from secret sharing
andMPC.

We begin in Section 5.1 by using different error propagation terms depending on
the operation the ℓ-function performs. However, it remains unclear how to deal with
ℓ-functions that compute multiple operations.

In Section 5.2, we combine different error terms using addition to enable combin-
ing different operations. We ascertain that adding two error terms does not protect the
operations but their sum. We ask whether there is an operation with no vanishing er-
rors. However, we can only show that two generic operations do have vanishing errors.
Combining the error terms differently, e.g., using multiplication, fails too.

Since combining error terms seems to fail, we consider the higher-order terms of f ′
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and g′ separately in Section 5.3. We modify the 𝜑-gadget by introducing two additional
sharings,Q f andQg. These include thehigher-order coefficients of f ′ and g′, respectively.
By comparing the degrees of the polynomials corresponding to Q f and Qg with d, we al-
waysmanage to detect whether f ′ or g′ are invalid.

We present an alternative approach in Section 5.4, where we check the vector con-
sisting of all higher-order coefficients of f ′ and g′ for non-zero entries. We describe two
strategies: On theonehand,parties randomize f ′ and g′ before exchanging shares of both
polynomials. This enables each party to reconstruct all higher-order terms without re-
vealing the secrets. On the other hand, the higher-order coefficients are normalized and
subtracted from 1 first. The corresponding polynomials can be multiplied when parties
re-share the adjusted coefficients separately. Due to the aforementioned preprocessing,
the embedded secret equals the product of the altered coefficients, which is 1 if, and only
if, all higher-order terms are zero. However, it is tedious to re-share and combine all 𝜎
coefficients. It can even be undesirable to reconstruct polynomials.

In the attempt we pursue in Section 5.5, we try to truncate all lower-order terms us-
ing polynomial division. When dividing f ′ and g′ by xn−𝜎, all coefficients below f ′

n−𝜎 and
g′
n−𝜎, respectively, vanish. That way, any information about the secrets embedded in f
and g is removed, and the parties can exchange shares directly. However, the framework
we use to compute the division privately cannot function under standard secret sharing
requirements since it allows parties to learn additional shares.

Finally,we present aworking technique to truncate lower-order terms in Section 5.6.
We utilize the Vandermondematrix to transform a sharing of a polynomial into its coef-
ficient vector. Using modified identity matrices allows us to alter the coefficient vector,
particularly to zero the lower-order coefficients. Finally, the altered coefficient vector is
transformed back so parties can obtain their new shares.

5.1 Approach 1: Gadget-Specific Error Propagation

We start with the idea of using distinct error propagation terms depending on the op-
eration the 𝜑-gadget performs. For instance, if the gadget performs a multiplication,
such as (𝜑0, 𝜑1) = (s1s′1, s0s′0), themultiplicative error propagationoriginally proposedby
Arnold et al. can beused. Likewise, if the gadget performs an addition, such as (𝜑0, 𝜑1) =
(s0 + s′1, s1 + s′0), we can use the additive error propagation term Ei,j(Fi + Gi) instead.

However, it is unclear how to choose the correct error term if different operations
are combined. Consider, for instance, the gadget (s0 + s′0, s1s′1) with its corresponding
ℓ-function 𝜆i,0(Fi + Gi) + 𝜆i,2dFiGi𝛼dj . The error terms corresponding to the polynomials
f + g and fg are Ei,j(Fi +Gi) and Ei,jFiGi, respectively. We present one solution in the next
Section 5.2.

Another drawback is that this approach is not unified, meaning that the error term
must be adapted for distinct ℓ-functions. Besides, one has to manually fabricate new
error terms for new ℓ-functions.
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5.2 Approach 2: Additive Combination of Multiple Error Propagation

The approach presented in the previous Section 5.1 lacks composability. We assume the
gadget combines the coefficients using different operations, such as addition andmulti-
plication, and we now try combining the error terms corresponding to these operations.
We consider the naïve approach to protect the combination by first computing both er-
ror terms and then merging them in an adequate way. In the case of addition, we have
Ei,j(Fi + Gi), whereas for multiplication, we have Ei,j(FiGi). Since the original approach
in [ABEO24] adds the error term to the ℓ-function, we proceed to do so with both terms.
Accordingly, we obtain ℓ(𝜑0,𝜑1)

i,j (Fi,Gi) + Ei,j(Fi + Gi) + Ei,j(FiGi), with distributivity im-
plying Ei,j(Fi +Gi) +Ei,j(FiGi) = Ei,j(Fi +Gi + FiGi). Thus, the added error terms protect
the polynomial f + g+ fg rather than f + g and fg. In order for the higher-order terms of
f ′ + g′ + f ′g′ to be 0, we require

(Fi + ZFi ) + (Gi + ZGi ) + (Fi + ZFi )(Gi + ZGi ) = Fi + Gi + FiGi.

Equality holds if, e.g.,

ZGi = −
(Gi + 1)ZFi
Fi + 1+ ZFi

. (5.1)

It is easy to see that choosing faultsZFi andZGi such thatEquation 5.1 holdsdoesnot render
the fault on either f ′ + g′ or f ′g′ ineffective. Consequently, both coefficients q0 and qd are
incorrect, although deg(q′) ≤ d.

It is natural to ask whether some algebraic operation ⋄ on f and g exists such that
the higher-order coefficients of f ′ ⋄ g′ are 0 if, and only if, the adversary introduces no
faults into the computation, e.g., if f ′ ⋄ g′ = f ⋄ g. We call such an operation perfect,
i.e., if for all strategies that the adversary can use to fault f and g, the function f ′ ⋄ g′ is
invalid. Such operation must also be computable using sharings of f and g. To this end,
with faulted shares F′

i = Fi + ZFi and G′
i = Gi + ZGi , we can treat the original shares Fi

and Gi as constants (or parameters) and the faults ZFi and ZGi as variables. We follow the
approach to achieve (Fi + ZFi ) ⋄ (Gi + ZGi ) != Fi ⋄ Gi. By subtracting the right-hand side
from the left-hand side, it becomes clear that we are interested in the non-trivial zeros of
the bivariate function

𝛽⋄ ≔ 𝛽⋄,Fi,Gi ∶ (ZFi , ZGi ) ↦ ((Fi + ZFi ) ⋄ (Gi + ZGi )) − (Fi ⋄ Gi).

If we proved that for every appropriate 𝛽⋄, i.e., operation⋄, a non-trivial zero exists, this
would imply that no perfect ⋄ exists. As we assume the underlying field to be arbitrary,
a non-trivial zero must exist for all𝔽q. However, requiring a non-trivial zero to exist for
somefield𝔽q could also suffice, depending on the scenario. In any case, the choice of pos-
sible 𝛽⋄ depends on the operations applicable to polynomials that can also be computed
with sharings.

In what follows, we assume ⋄ is a composition of only addition, multiplication, and
squaring. Thus, 𝛽⋄ is a polynomial. We recall that given a share Fi of f , it is possible to
locally transform Fi into a share of the “linear” transformation af + b. We already know
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the operations addition andmultiplication are not perfect because non-vanishing faults
exist for both operations if the gadget performs a different one. Consequently, neither is
squaring because it can be reduced8 tomultiplication. It follows that neither of the above
is perfect when f and g are transformed “linearly” beforehand. Since we assume n > 2d,
we cannot square f or g and multiply the result by the respective other polynomial. We
can, however, add the resulting polynomials.

Wenow consider two “generic” operations and state vanishing faults for each. In this
way, we show that many operations are unsuitable for ⋄. Let a1, a2 ∈ 𝔽∗, b1, b2 ∈ 𝔽, and
c1, c2 ∈ {1, 2}. The c(⋅) serve as exponents. We restrict ourselves to the two values in {1, 2}
because, on the one hand, a value greater than two can cause the parties to no longer be
able to reconstruct the polynomial. On the other hand, if c(⋅) = 0, a constant value is
added because the addend is 1 or a2 + b2, depending on the operation.

1. The operation (a1f + b1)c1 + (a2g + b2)c2 has the vanishing faults

c1 = 1, c2 = 2 ∶ ZFi = −
a2ZGi (2(a2Gi + b2) + a2ZGi )

a1
∧ ZGi ≠ 0

c1 = 2, c2 = 2 ∶ ZFi = 0 ∧ ZGi = −
2(a2Gi + b2)

a2
∧ a2Gi + b2 ≠ 0.

Note that ZFi and ZGi can be swapped by substituting a2, b2, and Gi with a1, b1, and Fi,
respectively.

2. The operation (a1f c1 + b1) + (a2gc2 + b2) has the vanishing faults

c1 = 1, c2 = 2 ∶ ZFi = −
a2ZGi (2Gi + ZGi )

a1
∧ ZGi ≠ 0

c1 = 2, c2 = 2 ∶ ZFi = −2Fi ∧ ZGi ∈ {0, −2Gi}.

We omit the case c1 = 2∧ c2 = 1 due to commutativity.
Unfortunately, due to a shortage of time, we are not able to show (or refute) that all

appropriate bivariate polynomials 𝛽⋄ have non-trivial zeros over all (or some) fields 𝔽q.
However, we mention the following fact for univariate polynomials, which perhaps also
applies to bivariate polynomials in some related way:

Fact 5.2 ([Hie24]). For all𝔽q and for all non-constant irreducible univariate polynomials p
over𝔽q, there exists an extensionfield such that p has a zero in it, namely,𝔽q[x]/⟨p⟩with
zero x + ⟨p⟩, where ⟨p⟩ denotes the ideal generated by p. Moreover, there exists exactly9
one extension field in which p splits, namely,𝔽qdeg(p).

We may assume irreducibility since if p is reducible, it has two non-trivial factors.
According to the zero-product property, it is sufficient to examine these factors instead.

The above fact implies that the splitting field is different from𝔽q unless deg(p) = 1,
in which case p is linear and obviously splits over𝔽. Regarding thementioned extension
field, Definition 1.11 implies that the ideal ⟨p⟩ equals the product of all p′ ∈ 𝔽[x] by p.

8Use the non-trivial fault ZFi = −2Fi.
9Up to isomorphism.
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Hence, x + ⟨p⟩ ∉ 𝔽q is not a suitable zero either. We stress that the above does not
necessarily have to hold for bivariate polynomials.

For the remainder of this section,we consider two alternativemethods of combining
multiple error terms.

As additively combining both error terms, say, Ei,j𝜀1 and Ei,j𝜀2, is only one option, we
now consider multiplying them. We then need to use√Ei,j instead of Ei,j. The product of

both error terms equals (√Ei,j𝜀1)(√Ei,j𝜀2) = Ei,j𝜀1𝜀2. As can be seen, the error terms are
multiplied instead of being added. If we continue to use the previous two error terms,
𝜀1 = Fi + Gi and 𝜀2 = FiGi, the polynomial corresponding to 𝜀1𝜀2 is f 2g + fg2. Since
the degree of f and g is likely to be exactly d, the degree of the combined polynomial can
exceed 2d, so parties cannot reconstruct the secrets. Because it is reasonable that one
involved operation is multiplication-like, this approach does not work.

Finally, we multiply the error terms by the ℓ-function instead of adding them. Re-
gardless of the operation ∘ used to combine the error terms with (e.g., ∘ ∈ {+, ⋅}), the
multiplication yields Qj(1 + Ei,j(𝜀1 ∘ 𝜀2)) = Qj + QjEi,j(𝜀1 ∘ 𝜀2). The share Qj remains
unaltered if no fault is introduced since QjEi,j ⋅ 0 = 0. However, the contrary does not
need to hold because Qj = 0 causes the product to vanish. Thus, this approach does not
work either.

5.3 Approach 3: Separate Error Propagation

In this section, we present a comparison-based approach that always detects if the ad-
versary faults F or G and returns an (in)valid sharing accordingly. Unlike Section 5.2, we
no longer combine error propagation terms but evaluate them separately. Wemodify the
original 𝜑-gadget proposed by Arnold et al. [ABEO24]. More precisely, each party holds
three shares instead of one during computation: The first share corresponds to the un-
modified sharing Q, and the remaining two include the error terms. Instead of adding
Ei,jFiGi to Qj, parties add the error terms, e.g., Ei,j(Fi + Gi) and Ei,jFiGi, to the last two
shares separately and reconstruct the underlying polynomials. We thereby ascertain if
all higher-order terms vanish.

If we use the above example error functions Fi + Gi and FiGi, which correspond to
f + g and fg, respectively, it is again possible for the adversary to choose vanishing faults,
namely, ZFi = Gi − Fi and ZGi = Fi − Gi. It is, hence, essential to use error terms corre-
sponding either to the twooperations of the𝜑-gadget since this renders faults ineffective
or to operations such that higher-order terms cannot vanish.

Wepursue the latter approach because it is independent of the underlying ℓ-function
and avoids the drawback of the approach in Section 5.1, namely, the approach not being
unified. Let Qj continue to be the jth share of the unmodified output sharing Q without
any error propagation. Also, recall that Q̃ i is party i’s sharing of a random polynomial
generated by ZEnc. The share for party j is denoted by Q̃ i,j. The jth shares of the other
two sharings, say, Q f and Qg, consist of the sum of n ZEnc shares and the (n − 1 − j)th
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higher-order coefficients of f ′ and g′, respectively. In particular, it holds that

Q f
j =

n−1
∑
i=0

(Q̃ f
i,j + Ei,jF′

i ) =
n−1
∑
i=0

Q̃ f
i,j +

⎧{
⎨{⎩

f ′
n−j−1 if j ∈ [0, 𝜎 − 1]
0 else,

Qg
j =

n−1
∑
i=0

(Q̃g
i,j + Ei,jG′

i) =
n−1
∑
i=0

Q̃g
i,j +

⎧{
⎨{⎩

g′
n−j−1 if j ∈ [0, 𝜎 − 1]
0 else.

As can be seen,wedonot add the ℓ-function to eitherQ f
j orQ

g
j since this saves ij additions

andmakes no difference to the error detection. The updated 𝜑-gadget from [ABEO24] is
presented in Algorithm 5.1. Our changes are as follows: In lines 4 and 5, we initialize

Algorithm 5.1 (𝜑0, 𝜑1)-GadgetWith Guaranteed Fault Detection
Input: Degree-d shares of s0, s1 as F and shares of s′0, s′1 as G.
Output: Degree-d shares of q0 = 𝜑0(s0, s1, s′0, s′1), qd = 𝜑1(s0, s1, s′0, s′1) asQ.
1: initializeQj,Q

f
j ,Q

g
j

2: for i = 0 to n− 1 do
3: (Q̃ i,0, … , Q̃ i,n−1) ← ZEncdn
4: (Q̃ f

i,0, … , Q̃ f
i,n−1) ← ZEncdn

5: (Q̃g
i,0, … , Q̃g

i,n−1) ← ZEncdn
6: for j = 0 to n− 1 do
7: Qj ← Qj + Q̃ i,j + ℓ(𝜑0,𝜑1)

i,j (Fi,Gi)
8: Q f

j ← Q f
j + Q̃ f

i,j + Ei,jFi
9: Qg

j ← Qg
j + Q̃g

i,j + Ei,jGi
10: reconstruct ̂f fromQ f and ̂g fromQg

11: if deg( ̂f ) > d or deg( ̂g) > d then
12: p ←$ P≤n−1 ∖ P≤n−𝜎−1
13: P ← (p(𝛼i))i∈[0,n−1]
14: return (P0, … , Pn−1)
15: return (Q0, … ,Qn−1)

random sharings to protect the shares Fi and Gi in Q
f
j and Q

g
j , respectively. The sharings

may correspond to any random polynomials of degree d and need not necessarily origi-
nate from ZEnc. In lines 8 and 9, we add the error propagation terms toQ f

j andQ
g
j . Once

each party i has obtained its sharesQ f
i andQ

g
i , parties exchange them to reconstruct the

corresponding polynomials ̂f and ̂g in line 10. The polynomials do not include sensitive
information becauseQ f

j andQ
g
j only include information from random polynomials and

the coefficients of 𝜁 f and 𝜁 g. Then, in line 11, the parties validate if the degrees of ̂f or ̂g
exceed d, i.e., if ̂f or ̂g is invalid. We later argue that this is the case if, and only if, the
adversary introduced faults. If both polynomials are valid, the original sharing Q is re-
turned. Otherwise, parties sample a random polynomial p of degree at least n − 𝜎 and
return the sharing P corresponding to p in lines 12–14.

We must now prove that the sharing returned by Algorithm 5.1 is valid and includes
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the correct secrets if no faults were introduced. Otherwise, the output sharing must be
invalid. In any case, no information about the secrets may be deduced.
Observation 5.3. After leaving thefirst (outer) for-loop, i.e.,when line 10 is reached, it holds
thatQ𝜒 = (∑n−1

i=0 Q̃
𝜒
i,0, … , ∑n−1

i=0 Q̃
𝜒
i,n−1) + (𝜒′

n−1, … , 𝜒′
n−𝜎, 0, … , 0), where 𝜒 ∈ {f , g}.

We prove the aforementioned claims in three steps: In Lemma 5.4, we show that the
sharing returned by Algorithm 5.1 is valid if, and only if, the adversary introduced no
faults. The only-if part is equivalent to saying that f ′ and g′ are valid. Then, in Lemma 5.5,
we prove that if the returned sharing is valid, the secrets embedded in the corresponding
polynomial are correct, i.e., as specified by 𝜑0 and 𝜑1. It remains to show that parties
do not learn sensitive information about the secrets (or shares of F and G) during the
computation or by the returned sharing. We show this in Lemma 5.6.

Lemma 5.4. Algorithm 5.1 returns a valid sharing if, and only if, f ′ and g′ are valid.

Proof. Recall that f ′ and g′ are valid if, and only if, f ′ = f and g′ = g, respectively. Also,
the unmodified output sharing Q corresponds to a polynomial of degree d because it re-
mains as originally specified in [ABEO24]. Thus, the output sharing can only be invalid if
a sharing different fromQ is returned. This only happens in line 14. We show that line 14
is reached if, and only if, the adversary faults F or G, in which case f ′ or g′ becomes in-
valid. Thus, the returned sharing is valid if, and only if, f ′ = f and g′ = g, i.e., if no faults
were introduced.

Line 14 is reached if, and only if, ̂f or ̂g is invalid. W.l.o.g.,we only consider ̂f : Accord-
ing to Observation 5.3, ̂f is the sum of n polynomials of degree d and the polynomial, say,
uf , corresponding to thehigher-order coefficients of f ′. Thus, the sharingUf correspond-
ing to the latter polynomial uf equals Uf = (f ′

n−1, … , f ′
n−𝜎, 0, … , 0). Since n > d + 𝜎, the

sharingUf is zero if, and only if, the adversary did not fault any Fi (i.e., F′ = F or f ′ = f ).
This implies that the degree of ̂f is d if no fault was introduced and, otherwise, is at least
n − 𝜎. Since the if-condition in line 11 uses d as the degree threshold, we conclude that
line 14 is reached if, and only if, f ′ ≠ f or g′ ≠ g.

We already argued above that Q corresponds to a valid polynomial. Thus, it remains
to show that P does not. The sharing P corresponds to the random polynomial chosen in
line 12, whose degree is at least n − 𝜎 by specification. Accordingly, P corresponds to an
invalid polynomial since d < n− 𝜎. �

Next, we show that any valid sharing returned by Algorithm 5.1 includes the correct
secrets. Roughly speaking, this is implied by [ABEO24] because we do not alter the spec-
ification ofQ in our modified algorithm.

Lemma 5.5. If Algorithm 5.1 returns a valid sharingQ , the embedded secrets corresponding to the
polynomial ofQ areas specifiedby𝜑0 and𝜑1, i.e.,q0 = 𝜑0(s0, s1, s′0, s′1)andqd = 𝜑1(s0, s1, s′0, s′1).

Proof. According to Lemma 5.4, the output sharing is valid if, and only if, the adversary
did not introduce faults. This is equivalent to Algorithm 5.1 returning Q and not P. We
know Q is returned since we assume that the output sharing is valid. Its shares Qj are
composed of the operation in line 7 and are not altered afterward. The operation in line 7
is identical to the one in the original 𝜑-gadget from [ABEO24]. The claim follows since
Arnold et al. proved the correctness of the original 𝜑-gadget. �
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Through the two previous lemmata, we showed the correctness of Algorithm 5.1 and
that it always detects if the adversary faulted F or G. It is left to show that the modifica-
tions we introduced in Algorithm 5.1 do not allow an adversary to extract sensitive infor-
mation. To this end, we argue that the original gadget from Arnold et al. is secure and
that our modifications mainly consist of computing three, instead of one, ℓ-functions.

Lemma 5.6. From and during the computation of Algorithm 5.1, an adversary can only deduce
information about the secrets, F, or G, that he can already deduce from the original 𝜑-gadget in
[ABEO24].

Proof. Weshow that, for one thing, parties do not exchange data fromwhich sensitive in-
formation canbededuced, and for another thing, that the output sharing reveals nothing
sensitive.

Regarding the former, we analyze all places where the sensitive shares Fi and Gi are
used. As can be seen, the shares are used only for Qj, Q

f
j , and Q

g
j in lines 7–9. Note that

no party i sends the result of the ℓ-function, Ei,jFi, or Ei,jGi directly and individually to
party j. Instead, they add Q̃ i,j, Q̃

f
i,j, and Q̃

g
i,j to them, respectively, beforehand. Observe

that the terms Ei,jFi and Ei,jGi can be interpreted as ℓ-functions. Because theQj reveal no
sensitive information about Fi or Gi, as shown in [ABEO24], neither do Q̃

f
i,j and Q̃

g
i,j. We

stress that this no longer holds if we use the same “masking” shares in lines 3–5.
Next, we show that neither ̂f nor ̂g includes sensitive information. As before, we

only analyze ̂f : According to Observation 5.3, ̂f corresponds to the sum of the n ran-
dom polynomials specified by Q̃ f

0, … , Q̃ f
n−1 and the polynomial specified by the sharing

(f ′
n−1, … , f ′

n−𝜎, 0, … , 0). Since d < n − 𝜎, the higher-order terms of f ′ equal those of
𝜁 f . Thus, (f ′

n−1, … , f ′
n−𝜎, 0, … , 0) = (𝜁 fn−1, … , 𝜁 fn−𝜎, 0, … , 0). Neither 𝜁 f nor any of the Q̃ f

i
include any information about f : The error polynomial 𝜁 f is independent of f since it cor-
responds to the sharing of faults added to F by the adversary, who is non-adaptive. Also,
Q̃ f
i is generated using ZEnc, which, by definition, samples a random polynomial without

constant term from P≤d−2. This procedure is independent of f and the secrets.
Finally, we argue that no output sharing reveals sensitive information. According to

[ABEO24], the original sharing Q does not. Neither does P because it corresponds to a
random polynomial. �

We have proven all the necessary facts above. Thus, we can state the complete theo-
rem that combines all three results.

Theorem 5.7. Thesharing returned byAlgorithm5.1 is valid if, and only if, the adversary introduces
no faults into the computation. Further, any valid output sharing is correct, i.e., it embeds the secrets
specified by𝜑0 and𝜑1. Moreover, the adversary learns nothing about the secrets embedded in f and
g, neither during the computation nor from the output sharing.

Proof. The theorem follows immediately from combining Lemmata 5.4, 5.5, and 5.6. �

We remark that instead of replacingQ with P in case a fault occurs, we initially con-
sidered returningamodifiedQ as follows: If ̂fn−i−1 ≠ 0or ̂gn−i−1 ≠ 0,where i ∈ [0, 𝜎−1],
we add a random non-zero value to Qi. Since at least one, but at most 𝜎 higher-order
terms do not vanish, between one and 𝜎 entries in Q are modified. Thus, the modified
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sharingQ ′ corresponds toapolynomial ofdegreeat leastn−𝜎,which is invalid. Theprob-
lem with this approach is that if the adversary faults, say, F, such that only one higher-
order coefficient of f ′ is non-zero, we replace only one share, e.g., Q0. If the adversary
subsequently faults the modified share Q ′

0, the probability that he reverts to the origi-
nal value of Q ′

0 is q−1. If the adversary were adaptive, the probability would increase to
1/(q− 1) since he knows thatQ0 ≠ Q ′

0 by probingQ ′
0. In any case, he turnsQ ′ into a valid

sharing with incorrect secrets. He might also deduce further information about Q since
Q ′
0 is not distributed uniformly over𝔽.
There are, of course, more alternatives to replace Q with an invalid Q ′ in case a fault

occurs. For instance, we can returnQ + (1, 0, … , 0),Q f in case deg( ̂f ) > d, orQg in case
deg( ̂g) > d. However, we strongly advise against using these alternatives because each
enables the adversary to trivially transform the output sharing Q ′ back into a valid one.
In general, the adversary can take advantage of such “deterministic” invalid sharings in
subsequent computations because the higher-order terms of the corresponding output
polynomial are no longer random, let alone uniformly distributed. This is not the case for
the original multiplicative error term Ei,jFiGi of [ABEO24] since the higher-order terms
of the product f ′g′ are indeed random from the view of an adversary (see Chapter 4 on
page 43).

5.4 Approach 4: Indicator-Function-Based Error Detection

Althoughwe presented an always-detecting solution in the previous Section 5.3,we elab-
orate on furtherways to detect invalid sharings, e.g.,when it is undesirable or impossible
to reconstruct polynomials during the computation of the 𝜑-gadget.

Let C = (f ′
n−𝜎, … , f ′

n−1, g′
n−𝜎, … , g′

n−1) be the vector consisting of the higher-order
coefficients of f ′ and g′. The idea is to compareC with the zero vector02𝜎 to ascertain if all
higher-order coefficients are 0 [ABO24]. More precisely, we aim to privately compute the
predicate 𝜏(C ) ≔ [[C ≠ 02𝜎]], which is 0 if all coefficients are zero and, say, 1 otherwise.

If the coefficients inC wereBoolean,𝜏would precisely represent the logicalOR func-
tion, that is,𝜏(C ) = ⋁c∈C c ≡ ¬ ⋀c∈C ¬c. As we use arithmetic circuits and values over
some finite field 𝔽q, associating the Boolean constants ⊥ and ⊤ with 0, 1 ∈ 𝔽2 allows
evaluating Boolean circuits by arithmetical ones as follows: Evaluate ¬a and a ∧ b by
computing 1− a and ab, respectively. Using this minimal functionally complete set con-
sisting of negation and conjunction, we need not reduce results over𝔽q.

Hence, it seems prudent to compute 𝜏 by

1− ∏
c∈C

(1− c) = 1−
n−1
∏
k=n−𝜎

((1− f ′
k )(1− g′

k)) . (5.2)

Unfortunately, if q > 2, the result inEquation5.2doesnotneed toequal𝜏(C )because the
values c ∈ C can be different from 0 and 1. This causes 𝜏(C ) to be 0, even though f ′ or g′

is invalid: If all c are equal to0, the result is0, as expected since 1−∏c(1−0) = 1−1 = 0.
If there exists c ≠ 0, the product should be 0 (or at least take a value different from 1).
However, this is not always the case:
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Counterexample 5.8. Let all c be 2. Then10, ∏c(1 − c) = ∏c(−1) = (−1)|C | = 1 since
|C | = 2𝜎 is even.

To circumvent this problem, we can normalize the coefficients in C . To normalize an
element v ∈ 𝔽q, i.e., compute sgn(v) ≔ [[v ≠ 0]], Fermat’s little theorem gives a possible
way if q is prime.

Theorem 5.9. Let 𝜂(v) = vq−1 mod q and assume that q ∈ ℙ. For all v ∈ 𝔽q, it holds that
𝜂(v) = sgn(v).

Proof. If v = 0, we have 𝜂(v) = 0q−1 = 0 = sgn(0) as q > 1. Since q is prime, it holds
that𝔽∗

q = 𝔽q ∖ {0}. Accordingly, q and every v ≠ 0 are coprime. Fermat’s little theorem
implies vq−1 ≡ 1 (mod q), i.e., 𝜂(v) = 1 = sgn(v). �

Consequently, we are able to compute 𝜏 as follows:

𝜏(C ) = 1− ∏
c∈C

(1− 𝜂(c)) = 1−
n−1
∏
k=n−𝜎

((1− f ′
k
q−1)(1− g′

k
q−1)) . (5.3)

For finite fields in general, field elements can be raised to the power of 𝜆(q), where 𝜆 is
the Carmichael function. For the remainder of this section, we use q− 1 instead of 𝜆(q).

However, how to efficiently evaluate 𝜏 remains unclear because we assume we know
f ′
k and g

′
k in Equation 5.3. The obvious way is that parties interactively obtain these coef-

ficients and thereby construct C . But in this case, they can simply check if C = 0, need
not evaluate 𝜏, and save computing several multiplications and exponentiations. Sup-
pose the coefficients are obtained by exchanging 𝜆i,kFi and 𝜆i,kGi (or directly using Fi and
Gi). In that case, it is necessary to re-randomize the sharings beforehand to erase the
secrets, e.g., by adding random polynomials of degree d. We described this approach in
Algorithm 5.1 in the previous Section 5.3.

We now consider evaluating 𝜏 using the parties’ shares Fi and Gi such that the value
𝜏(C ) is embedded in one of the secrets of some polynomial. This enables the parties to
recover 𝜏(C ) by reconstructing said coefficient.

According to Equation 5.3, parties first need to attain shares of f ′
k
q−1 and g′

k
q−1. We

mention that parties cannot simply raise their shares to the power of q − 1 as this does
not result in the coefficients being raised to said power. Using repeated multiplication,
e.g., exponentiation by squaring, to obtain shares of f ′q−1 and g′q−1 does not work either
because multiplying invalid polynomials can lead to a degree overflow and a consequen-
tial loss of information. Even if no overflow occurs, the higher-order terms are “garbled”
and, due to (several) degree reductions, not preserved either. Hence, parties must first
re-share f ′

k and g
′
k to raise them to a higher power.

Assume f ′
k = s0 and g′

k = s1 have been re-shared in one polynomial with the corre-
sponding sharing D(k) ≔ (D(k)

i )i∈[0,n−1]. Using exponentiation by squaring, the sharing
of a polynomial that includes the normalized coefficients f ′

k
q−1 and g′

k
q−1 can be computed

using the ℓ-functions (s20, s21 ) = (f ′
k
2, g′

k
2) and (s0f ′

k , s1g′
k) onD(k) repeatedly.

Let D(k) denote the sharing that embeds the normalized coefficients s0 = f ′
k
q−1 and

s1 = g′
k
q−1. Before parties can compute the product of all 𝜎 normalized higher-order

10Recall that−1 ≡ q− 1 (mod q).
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coefficients, theymust transform s0 and s1 into 1− s0 and 1− s1. This can be accomplished
by negating shares and adding 1. Negating the shares D(k)

i negates the secrets because
the underlying polynomial is negated. To add 1 to−s0 and−s1, respectively, parties add
𝛼0i = 1 and 𝛼di to their shares. Thus, they apply the mappingD(k)

i ↦ 1+ 𝛼di − D(k)
i .

Now that parties possess shares of the polynomial embedding the transformed nor-
malized coefficients, they can compute the product in Equation 5.3. It then holds that
s0 = ∏k(1− f ′

k
q−1) and s1 = ∏k(1− g′

k
q−1).

Finally, it is left to subtract the negated products from 1. Additionally, we merge the
products into one secret, in our case, into the first. To this end,we employ the ℓ-function
(1 − s0s1, 0). The coefficient of the constant term equals 𝜏(C ), which parties can recon-
struct. Alternatively, instead of adding the secret to the constant term, it can be added to
any higher-order term, e.g., at position n− 𝜎. In this case, the polynomial is valid if, and
only if, C = 02𝜎, i.e., if the adversary introduced no faults.

Due to the computationally expensive operations that accompany computing𝜏, such
as re-sharingall𝜎higher-order coefficients,wepresentmoreefficient approaches inSec-
tions 5.5 and 5.6.

5.5 Approach 5: Division-Based Truncation of All Lower-Order Terms

Theapproachwe pursue in this section and the following Section 5.6 is to truncate all but
the higher-order terms of f ′ and g′. We then know that a polynomial is valid if, and only
if, it is the zero polynomial (i.e., corresponds to the zero sharing).

In this section, we attempt to use polynomial division to privately compute the quo-
tients f ′ ÷ xn−𝜎 and g′ ÷ xn−𝜎, which include no lower-order terms. Here, ÷ denotes
polynomial division with remainder. Thus, the quotient of two polynomials remains a
polynomial. A division by xn−𝜎 “shifts” the coefficients by n− 𝜎 positions to the left non-
circularly. The resulting polynomials are, hence, of degree (n− 1)−(n−𝜎) = 𝜎 − 1 < n.
After performing the division, parties can exchange their shares and reconstruct both
polynomials to see if they equal the zero polynomial. This can also be deduced directly
fromthe sharingbecauseonly thezero sharingcorresponds to thezeropolynomial. How-
ever, our approach to computing polynomial division cannot work in the general context
of MPC since it allows a party to learn further shares. We will elaborate on that later on.

Firstly, we show that the quotient polynomials are zero if, and only if, the adversary
did not introduce faults. This follows from observing that the quotient comprises pre-
cisely the higher-order terms.

Theorem 5.10. Thepolynomials f ′ ÷xn−𝜎 and g′ ÷xn−𝜎 are zero if, and only if, f ′ and g′ are valid,
respectively.

Proof. W.l.o.g., we consider f ′. If f ′ is valid, its degree is d. Then, f ′ ÷ xn−𝜎 = 0 since
d < n−𝜎. If f ′ is invalid, there exists k ∈ [0, 𝜎 − 1] such that f ′

n−𝜎+k ≠ 0. This coefficient
is shifted to position (n − 𝜎 + k) − (n − 𝜎) = k ≥ 0 and, hence, f ′ ÷ xn−𝜎 cannot be
zero. �

Next, we prove that it is safe for parties to exchange shares of the truncated polyno-
mials. The truncated polynomials reveal nothing about the lower-order terms since all
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coefficients less than or equal to d are removed, and the higher-order terms are indepen-
dent of f and g.

Theorem 5.11. The polynomials f ′ ÷ xn−𝜎 and g′ ÷ xn−𝜎 include no information about the secrets
embedded in f and g, respectively.

Proof. W.l.o.g.,weconsider f ′. Recall that f ′ = f+𝜁 f and that thedegreeof f isd,whereas
the degree of 𝜁 f is at least n − 𝜎 (or 𝜁 f = 0). Since all higher-order terms of f are 0, it
holds that

f ′
k ≜ coef(f + 𝜁 f , k) =

⎧{
⎨{⎩

fk + 𝜁 fk if k ∈ [0, d]
𝜁 fk if k ∈ [d + 1, n− 1].

Because d < n− 𝜎 and a division by xn−𝜎 eliminates all coefficients less than n− 𝜎, every
coefficient of f vanishes. It follows that f ′(x) ÷ xn−𝜎 = ∑𝜎−1

k=0 𝜁 fk+(n−𝜎)x
k. We conclude

that as 𝜁 f is independent of the secrets embedded in f , so is f ′ ÷ xn−𝜎. �

In order to privately computepolynomial division,weplannedonusing the approach
by Mohassel and Franklin [MF06], which does not require interaction. They use the fact
that for any polynomial p of degree 𝛿, the polynomial x𝛿p(1/x) corresponds to pwith re-
versed coefficients. For instance, if p(x) = 1+2x+3x2, then x2p(1/x) = 3+2x+1x2. With
reversed coefficients, theauthors are able to truncate all higher-order termsofpby reduc-
ing the reversed polynomial modulo xn−𝜎, which removes all but the lowest n − 𝜎 terms.
It, therefore, holds that the coefficients removed in p(x) ÷ xn−𝜎 and x𝛿p(1/x) mod xn−𝜎

are the same. Finally, they reverse the reduced polynomial once more to return the co-
efficients to their initial order. We can, however, omit this last step because we are only
interested in whether or not the reduced polynomial is zero. We remark that since the
exact degrees of f ′ and g′ (and especially of f and g) are unknown, it is possible to use
𝛿 = n− 1 instead of 𝛿 = deg(f ′) and 𝛿 = deg(g′).

Mohassel and Franklin assume the so-called shared-coefficients model, where coeffi-
cients are shared individually. Both previously mentioned operations can be computed
privately and without interaction (i.e., locally) in said model.

Fact 5.12 ([MF06]). Given a share of a polynomial p of degree 𝛿, it is possible to locally ob-
tain shares of the polynomials x𝛿p(1/x) and x𝛿p(1/x) mod x𝛿, respectively, in the shared-
coefficients model.

Wenowargue that this approach cannotwork forMPC-related applicationswhenwe
assume the “standard” secret-sharingmodel as described in Fact 1.57. First of all, revers-
ing coefficients becomes trivial if parties can interact with each other and do not have to
use polynomial division. For instance, they employ the anti-diagonal matrix in the ap-
proach described in Section 5.6. On the other hand, the local case ismore complicated. If
we assume x𝛿 to be publicly known, the obvious approach is trying to transforma share of
p(x) into one for p(1/x) and then multiply by the share of x𝛿, namely, 𝛼𝛿

i . This, however,
cannotwork as it allows aparty to learn a further share and,hence, less than d parties suf-
fice to reconstruct the polynomial [ABO24]. More precisely, party i possessing its share
p(𝛼i) then learns the share p(𝛼−1

i ), which corresponds to a different node if 𝛼i ≠ 1.
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Furthermore, a party must not even obtain a share of the completely reversed poly-
nomial x𝛿p(1/x) because it again enables them to deduce the second share p(𝛼−1

i ) as fol-
lows: To transform the reversed polynomial x𝛿p(1/x) back to p(1/x), wemultiply by x−𝛿.
We stress that we may consider x−𝛿 a polynomial since x−𝛿 ≡ x𝜙(q)−𝛿 (mod xq − x) and
𝜙(q) − 𝛿 ∈ ℕ0, where𝜙 denotes Euler’s totient function. According to Fermat’s little theo-
rem, party i’s share of x−𝛿 is 𝛼−𝛿

i ≡ 𝛼𝜙(q)−𝛿
i , where both terms belong to the same residue

class. Although we consider n-sharings, the degree of x𝜙(q)−𝛿 may exceed n − 1 because
we do not want to reconstruct the polynomial or its coefficients—the polynomial is al-
ready known. We only demand that 𝛼𝛿

i and the share in question, say, s, cancel, that is,
s ⋅ 𝛼𝛿

i p(𝛼−1
i ) = p(𝛼−1

i ). A feasible s is s ≡ 𝛼−𝛿
i , which holds for all 𝛼i ∈ 𝛼when using x−𝛿.

Note that instead of using x−𝛿, it is also possible to use the polynomial corresponding
to the n-sharing (𝛼−𝛿

i )i∈[0,n−1] because the values of both functions coincide at all nodes
𝛼i ∈ 𝛼.

Below, we illustrate the approach using an example.

Example 5.13. Let q = 11, n = 5, 𝛿 = n − 1 = 4, 𝛼 = [n], and consider the polynomial p
with p(x) = 3+ 6x + 4x2. Since x−𝛿 ≡ x6, the sharings are

p(x)∶ (2, 9, 2, 3, 1), p(1/x)∶ (2, 7, 3, 2, 7),
x𝛿p(1/x)∶ (2, 2, 1, 6, 8), x−𝛿 ∶ (1, 9, 3, 4, 5).

Multiplying the sharing of x𝛿p(1/x) by the one of x−𝛿 componentwise yields (2, 7, 3, 2, 7),
the sharing of p(1/x). The polynomial corresponding to the n-sharing of x6 is 7 + 3x +
10x2 + 6x3 + 8x4, and of course, its sharing coincides with (𝛼6i )i∈[0,n−1] ≜ (i6)i∈[n].

We conclude that any approach, whether division-based or reduction-based, must
produce shares corresponding to the final truncated polynomial to be usable in our con-
text of secret sharing or for MPC. However, the approach described above works in the
context of side-channel attacks where the adversary can only probe a fixed number of
shares or for applications where the secret need not remain confidential, such as Reed–
Solomon codes in coding theory. In these scenarios, two parties, i and j, simply “swap”
their shares 𝛼i and 𝛼j = 𝛼−1

i , or each party i possesses both 𝛼i and 𝛼−1
i [ABO24].

5.6 Approach 6: Matrix-Based Truncation of All Lower-Order Terms

In this last section,wepursue the samegoal as in the previous section: We intend to trun-
cate all lower-order terms to determine if the corresponding polynomial is zero. In con-
trast to Section 5.5, this approach is usable forMPC applications, andwe utilizematrices
instead of polynomial division. More precisely, we employ the Vandermonde matrix to
switch between the coefficient view and the sharing view of polynomials. Recall that the
lower-order coefficients of a polynomial p refer to p0, … , pd, and the higher-order ones
refer to pn−𝜎, … , pn−1. Although it is sufficient to truncate the lower-order coefficients,
we truncate all but the higher-order ones. The arguments in this section hold regardless,
and changing the matrices to truncate only the lower-order terms is straightforward.
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Let ⇂i and ↾i denote the identity matrix I ≔ In of size nwith its first i rows and all but
its first i+ 1 rows set to zero, respectively. That is,

row(⇂i, j) =
⎧{
⎨{⎩

row(I, j) if j ≥ i
01×n else,

row(↾i, j) =
⎧{
⎨{⎩

row(I, j) if j ≤ i
01×n else,

where row(A, j) denotes the jth row of matrix A. Moreover, let 𝜋i,j be the permutation
matrix formedby swapping rows i and j of I. We recall thatmatrix indices are zero-based.

Example 5.14. Let n = 5. Then,

⇂2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, ↾1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝜋0,1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

In order to remove all but the higher-order terms like in Section 5.5, we employ the
method described by Asharov and Lindell [AL11], which they use to perform the degree-
reduction step in case of a multiplication gate in the protocol of [BGW88].

Fact 5.15 ([AL11]). For given n, d < n/2, and interpolation nodes 𝛼0, … , 𝛼n−1, there exists
a constant matrix A such that for all polynomials p of degree 2d with p(x) = ∑2d

k=0 pkx
k

and corresponding truncation p′(x) = ∑d
k=0 pkx

k, it holds that A ⋅ (p(𝛼0), … , p(𝛼n−1))T =
(p′(𝛼0), … , p′(𝛼n−1))T. Thematrix A is precisely A = V↾dV−1.

Thematrix A is constant because it is independent of the shares p(𝛼0), … , p(𝛼n−1) and
changes only if n, d, or 𝛼 change. In other words, A is public. We briefly explain why
the above method works: Multiplying the sharing (p(𝛼i))T

i∈[0,n−1] by V−1 transforms the
sharing vector into the coefficient vector (pk)T

k∈[0,n−1] of p. Thematrix ↾d truncates all but
its first d + 1 elements, effectively zeroing the coefficients pd+1, … , p2d in p. Finally, V
transforms the coefficient vector back into the sharing corresponding to p′. Since A is
constant and matrices describe linear transformations, parties can privately compute a
sharing of the truncated polynomial p′, as shown in [AL11]. Themethod also works in the
double-sharing setting if the coefficients pd and p2d are swapped beforehand using𝜋d,2d.
Thematrix A then equals V↾d𝜋d,2dV−1.

Modifying I differently, that is, usingmatrices other than ↾d and ↾d𝜋d,2d, enables ma-
nipulating p in further ways. In particular, we can remove all but the higher-order terms
using ⇂n−𝜎 (or only the lower-order terms using ⇂d+1).

Theorem 5.16. For given𝜎, n, and interpolation nodes𝛼0, … , 𝛼n−1, there exists a constantmatrix
A′ such that for all polynomialsp of degreen−1withp(x) = ∑n−1

k=0 pkx
k and corresponding trunca-

tion p″(x) = ∑n−1
k=n−𝜎 pkx

k, it holds thatA′ ⋅ (p(𝛼0), … , p(𝛼n−1))T = (p″(𝛼0), … , p″(𝛼n−1))T.
Thematrix A′ is precisely A′ = V⇂n−𝜎V−1.

Proof. It is evident that A′ = V⇂n−𝜎V−1 sets all coefficients p0, … , pn−𝜎−1 to 0 and leaves
the higher-order ones untouched. Thus, the claim follows. �
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After applying the transformation described in Theorem 5.16, parties can compare
their shares with 0 to verify if all higher-order terms of p are 0 since those are the ones p″

precisely comprises.

Observation 5.17. All higher-order terms of p are 0 if, and only if, p″ is the zero polynomial,
that is, if, and only if, V⇂n−𝜎V−1(p(𝛼0), … , p(𝛼n−1))T ≜ (p″(𝛼0), … , p″(𝛼n−1))T = 0n.

For our purposes, i.e., to detect whether the adversary introduced faults, parties pri-
vately compute the transformation described inTheorem 5.16, once for f ′ and once for g′.
Afterward, they exchange shares or notify each other if one of their shares is not 0.

In fact, if n > 2𝜎, we can store all higher-order terms of f ′ and g′ in one polyno-
mial, say, h, and save checking one sharing. For instance, we put the coefficients of g′ in
hn−𝜎, … , hn−1 and shift the higher-order coefficients of f ′ to the left by 𝜎 positions to put
them in hn−2𝜎, … , hn−1−𝜎. In that case, h is as follows:

h(x) =
n−1
∑
k=n−𝜎

f ′
k x

k−𝜎 +
n−1
∑
k=n−𝜎

g′
kx
k

= f ′
n−𝜎xn−2𝜎 + ⋯ + f ′

n−1xn−𝜎−1 + g′
n−𝜎xn−𝜎 + ⋯ + g′

n−1xn−1.

As before, h = 0 holds if, and only if, f ′ and g′ are valid. Computing a sharing H of h
from sharings F′ and G′ can be accomplished using permutation matrices, as they allow
permuting the coefficients of f ′:

HT = ⎛
⎝
V ⎛

⎝

n−1
∏
i=n−𝜎

𝜋i,i−𝜎⎞
⎠

⇂n−𝜎V−1⎞
⎠

⋅ F′T + (V⇂n−𝜎V−1) ⋅ G′T.

Observe that both matrices, which F′T and G′T are multiplied by, are again constant.
We finally mention that if n > 2𝜎 cannot be guaranteed or the overhead is unde-

sirable, yet only one sharing is available, we can combine the higher-order coefficients
of f ′ and g′ pairwise, e.g., using subtraction. In this case, we consider the polynomial
∑n−1

k=n−𝜎(f ′
k − g′

k)xk = (f ′
n−𝜎 − g′

n−𝜎)xn−𝜎 + ⋯ + (f ′
n−1 − g′

n−1)xn−1. However, we are then
again facedwith the problemof coefficients f ′

k and g
′
k potentially canceling out each other.
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6
Conclusion and Outlook

In this thesis, we investigated univariate polynomials over finite fields regarding their
zeros and improved results from [BEF+23] and [ABEO24]. These improvements concern
the probability of an adversary successfully faulting a circuit without being noticed.

In Chapter 3, we considered the zeros of polynomials from several perspectives. We
began by counting the number of polynomials in Mn with a zero at one specific posi-
tion v ∈ 𝔽 of multiplicity s ≤ n. Here, we used the generating-function approach
from [KK90] to derive the desired number. We stated the corresponding random vari-
able Z1,v(n), which gives the multiplicity of the zero v of a polynomial chosen uniformly
at random from Mn or Pn. The random variable Z1(n) follows the geometric distribu-
tion Geo(1 − q−1), truncated at s = n. Thus, Z1(n) has a geometric limit. Furthermore,
we proved that the statistical distance Δ(Z1(n), Z1) = q−n−1 is negligible in n, and we
derived the expectation and variance of Z1(n). Their asymptotic behavior is implied by
Geo(1 − q−1). We proceeded to consider two, then ℓ, positions v with zeros of multi-
plicities s. Again, we established the number of such polynomials. We observed that the
random variable Zℓ,v(n) is multivariate and comprises the ℓ random variables from the
single-position case, i.e., Zℓ,v(n) = (Z1,v1(n), … , Z1,vℓ(n)). Hence, the expectation and
variance directly follow. Additionally, we considered the more restrictive case where ze-
ros may only occur at positions in v, which allowed us to derive the number of zero-free
polynomials. Weadvanced todisregard theexactmultiplicities s and,henceforth,only re-
quired that ℓ positions, either v or any other, have a combinedmultiplicity of k = ∑s∈s s.
As before, we derived the number of favorable polynomials. From this, we inferred the
number of polynomials with k zeros in total. The corresponding random variable Z(n)
follows the negative binomial distributionNBin(q, 1−q−1) truncated at k = n−q+1. The
asymptotic expectation and variance are, hence, directly established. When n and q ap-
proach infinity, polynomials have one zero on average and a variance of the same. Finally,
we disregarded the multiplicities and focused only on the positions v with zeros. Since
a zero occurs if, and only if, its multiplicity is at least 1, we were able to use our previous
results to count all feasible polynomials. The randomvariableZ∗(n) follows the binomial
distribution Bin(q, q−1) for all n ≥ q and, hence, has a binomial limit. The mean num-
ber of distinct zeros is 1 (unless n = 0), and its variance depends on q but not n. When
q tends to infinity, the variance converges to 1. In the future, it is worthwhile to further
analyze and simplify the similar alternating sums of the functions Zℓ, Z, and Z∗, such as
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∑n−k
i=0 (qi)(−1)iq−i. That way, properties like lower or upper bounds can be derived more

easily. Furthermore, the analysis of zeros can be expanded to multivariate polynomials
or those over more general (finite) rings. We recall that in either case, Fact 1.41 no longer
holds, that is, the number of zeros can exceed a polynomial’s degree. These results can be
used to improve applications that do not (necessarily) work over fields.

In Chapter 4, we first established the exact number of different polynomials p and
p′. Then, we improved the upper bounds in Theorem 4 from [BEF+23] by providing exact
probabilities in case the adversary is either non-adaptive or adaptive. The former proba-
bility is in closed form,whereas the latter contains parts of the unknown PMF of 𝛿. Thus,
we provided an upper bound that holds unconditionally. Further, we argued that said
upper bound is tight since the adversary can choose p such that the relevant parts of the
PMFaddup to 1. Using known inequalities such as t1 ≤ s and e < n,we presented further
upper bounds in Figure 4.1. Finally, we compared our upper bound with the original one
from [BEF+23] and concluded that ours is at least (q− 1)(d + e+ 1)t1 > 1 times as good.

InChapter 5,we improved the error detectionof thedouble-sharing framework from
[ABEO24]. Since the original error propagation term, which protects the polynomial fg,
allows an adversary to remain unnoticed when non-linear operations are used, we con-
sidered using different terms. Initially, we used different error terms depending on the
operation the ℓ-function performs. However, this yields a non-unified method since the
error propagation must be adapted to match the ℓ-function. Thus, we considered com-
biningmultiple termsbyadding them. We found that this protects the sumof thepolyno-
mials rather than both polynomials individually. We considered the error terms protect-
ing f +g and fg, whose sumprotects f +g+ fg. In that case,we showed that the adversary
still can introduce non-vanishing faults. However, we could neither show nor refute that
there is a single polynomial such that the adversary can only introduce vanishing faults.
Since the higher-order terms of f ′ and g′ cannot vanish if considered individually, we
adapted the 𝜑-gadget in [ABEO24] by adding two further sharings, Q f and Qg, besides
Q. Our modified 𝜑-gadget in Algorithm 5.1, hence, always detects if an adversary intro-
duces faults and returns an (in)valid sharing accordingly. We further considered three
potential alternative methods that provide always-detecting error detection. Firstly, we
privately combined all higher-order coefficients of f ′ and g′ in one coefficient of a poly-
nomial such that the combination is 0 if, and only if, all higher-order coefficients are 0.
The remainingmethods aim to truncate all but the higher-order terms of f ′ and g′ using
either polynomial division ormatrixmultiplication. The framework from [MF06], which
we intended to use to perform polynomial division, does not work for secret-sharing-
related applications since it allows parties to learn additional shares. Hence, we adapted
the matrix-based approach described in [AL11] and, thereby, established a second work-
ing method that always detects a faulting adversary. Future research should pursue de-
terminingmore efficientmethods for error detection. In that regard,Algorithm5.1 could
be further improved, e.g., to shed theneed to interpolate twopolynomials (line 11). More-
over, in Section 5.2, we could neither prove nor refute whether there is a meaningful bi-
variate polynomial without vanishing faults, i.e., non-trivial zeros, for all or some finite
fields. By “meaningful,” we refer to a polynomial corresponding to an operation com-
putable by an ℓ-function. Resolving this open question shows whether or not a universal
error term exists that protects all operations.
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