
Injection Attacks on Secure Encrypted Virtualization

Injektionsangriffe auf Secure Encrypted Virtualization

Masterarbeit

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Luca Wilke

ausgegeben und betreut von
Prof. Dr. Thomas Eisenbarth

mit Unterstützung von
Jan Wichelmann

Lübeck, den 9ten Januar 2020



Abstract
Data privacy concerns are one of the main aspects that stops customers from making use
of cloud hosted applications, since the hosting provider can inspect the content of the
virtual machines (VMs) used for hosting them. File- or disk encryption solutions only
partially solve this problem, as the data remains unprotected when it is at use. The most
prevalent solution to this problem is AMD’s Secure Encrypted Virtualization (SEV), which
allows to encrypt the RAM of VMs with a key, that is not accessible to the hosting provider.
This is achieved, by managing it in a separate, trustworthy hardware component called
Secure Processor (SP). The latest extension SEV-ES also protects the Virtual Machine Con-
trol Block (VMCB), that contains the state of the VM. This way the hosting provider can
neither learn the content, nor any relevant part of the state of the VM.
Several previous works demonstrated how to move data into or out of the VM, by ma-
nipulating I/O operations. However, the I/O manipulation makes them vulnerable to
detection and is a known problem to AMD. In this thesis we show how to inject arbitrary
code into SEV secured VMs, simply by copying ciphertext blocks, that are already inside
the VM, to new locations. This allows us to completely take over the VM without relying
on any I/O, which makes our attack very steatlhy. We identified SEV’s missing integrity
protection as the main cause for this vulnerability.
In an independent result, we discovered that AMD Epyc 3xx1 CPUs use a new, enhanced
encryption mode and show that it is still vulnerable to our attacks.

Kurzfassung
Datenschutz ist einer der Hauptgründe, der Kunden davon abhält Clound-Anwendungen
zu nutzen, da der Hosting-Anbieter den Inhalt der virtuellen Maschinen (VMs), die zum
hosten dieser genutzt werden, inspizieren kann. Datei- oder Festplattenveschlüsselungs
Verfahren lösen dieses Problem nur teilweise, da die Daten weiterhin ungeschützt sind,
wenn sie sich in Verwendung befinden. Die am meisten verbreitetste Lösung für dieses
Problem ist AMDs Secure Encrypted Virtualization (SEV), welche es erlaubt den RAM
von VMs mit einem, für den Hosting-Anbieter nicht lesbaren, Schlüssel zu verschlüsseln.
Dies wird dadurch erreicht, dass der Schlüssel von einer separaten, vertrauenswürdigen
Hardwarekomponente verwaltet wird. Die neueste Erweiterung, SEV-ES, sichert außer-
dem den Virtual Machine Control Block (VMCB) ab, der den Zustand der VM beinhaltet.
Auf diese Weise kann der Hosting-Anbieter weder den Inhalt noch relevante Details über
den Zustand der VM lernen.
Mehrere vorangegangene Arbeiten haben gezeigt, wie man durch Manipulation von
I/O-Operationen Daten in die VM kopieren kann. Diese I/O Manipulationen machen es
jedoch möglich, solche Angriffe festzustellen und sind ein AMD bekanntes Problem. In
dieser Arbeit zeigen wir, wie man beliebigen Code in mit SEV gesicherte VMs injizieren

ii



kann, in dem man Ciphertext-Blöcke, die sich bereits in der VM befinden, an neue Po-
sitionen kopiert. Dies erlaubt uns, die VM vollständig zu übernehmen ohne von I/O
abzuhängen, was es sehr schwierig macht unseren Angriff zu detektieren. Wir haben
SEVs fehlenden Integritätsschutz als die Hauptursache für diese Schwachstelle identi-
fiziert. In einem separatem Ergebnis, haben wir entdeckt, dass AMD Epyc 3xx1 CPUs
einen neuen, verbesserten Verschlüsselungsmodus verwenden und zeigen, dass auch
dieser für unsere Angriffe anfällig ist.

iii





Erklärung

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und nur unter Be-
nutzung der angegebenen Hilfsmittel angefertigt zu haben.

Lübeck, den 9ten Januar 2020

v





Acknowledgements

I want to thank Prof. Thomas Eisenbarth and Jan Wichelmann for their excellent supervi-
sion of this thesis. In addition, I want to thank Mathias Morbitzer for fruitful discussions.

vii





Contents

1 Introduction 1

2 Background 5
2.1 Virtualization Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Page Fault Side Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Memory Encryption using Tweakable Block Ciphers . . . . . . . . . . . . . . 11
2.4 AMD’s Memory Encryption Solutions . . . . . . . . . . . . . . . . . . . . . . 13

3 Related Work 17
3.1 Previous Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Intel’s Memory Encryption Solutions . . . . . . . . . . . . . . . . . . . . . . . 22

4 Reverse Engineering the Encryption Mode 25
4.1 Analysis of AMD Ryzen and AMD Epyc 7xx1 CPUs . . . . . . . . . . . . . . 25
4.2 Updated Encryption Mode for newer Epyc 3xx1 CPUs . . . . . . . . . . . . 28

5 Fault Injection Attacks 31
5.2 Tracking Guest Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Placing Partially Controlled Plaintext . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Code Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Executing Arbitrary Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Comparison to Related Work 45

7 Countermeasures 49

8 Conclusion & Outlook 55

References 57

ix





1 Introduction

In the modern IT infrastructure, more and more services no longer run locally but, on re-
mote servers, to make them available to more people at once and allow for easier manage-
ment. Furthermore, to make better use of the hardware, one server usually runs multiple
services. From a security point of view, this is problematic because a vulnerability in one
of the services may also affect the other services, as they run on the same system. Thus,
every new service reduces the security of the system as a whole. Another problem of this
approach is, that the computing power required by a service, like a webshop, often shows
high fluctuation, while setting up new physical hardware requires some time. To cope
with that, a certain amount of resource over-commitment is needed to handle peaks, that
remains unused during periods of low load and thus creates unnecessary costs.

Virtual Machines (VMs) are a very popular solution to these problems. The physical server
runs a software called hypervisor, that allows the creation of multiple VMs on the same
server, which can be treated as independent computers from the user’s point of view. The
hypervisor provides one-sided isolation, as it prohibits software running inside the VM
from accessing the host system itself or other VMs. This way, a security breach in one of
the VMs does not have a severe impact on other components running on the same host.

Since VMs have a near-instant setup time, load fluctuations can easily be coped with by
increasing or decreasing the number of VMs used for running the service. Instead of
renting or buying hardware to host VMs, the customer directly rents VMs from a hosting
provider, with enough hardware resources to allow the creation of new VMs at any time.
These two properties make hosting services with rented VMs a very popular use-case in
the current server market.

As mentioned earlier, the hypervisor only provides one-sided isolation, i.e. the VM cannot
access the host or other VMs while the hypervisor has full control over the VM’s hardware
and thus can arbitrarily read from/write to the RAM used by the VM. Thus the hypervisor
can spy on sensitive data in the VM or manipulate the code of loaded programs to take
over the VM. It is very hard for the VM to detect such inspections/manipulations; it sim-
ply has to trust the hosting provider. That’s why potential customers still cite data privacy
concerns toward cloud service providers as the main reason not to adopt such solutions,
especially in cases where the hosting location within a given jurisdiction cannot be guar-
anteed. Security solutions like full disk encryption only partially address this issue, since
data is still vulnerable when being decrypted and stored in the RAM at run time.

1



1 Introduction

There are two approaches to this problem: Homomorphic encryption and hardware-based
security solutions that prohibit the hosting provider from accessing the users’ data and are
able to prove this to the customer.

Homomorphic encryption [GB09] allows to perform computations directly on encrypted
data. Instead of uploading data in plaintext, the user encrypts it with such a scheme
before uploading it. This way, the service processing the data never learns the actual
content, which in turn prohibits the hypervisor from spying on it. However, these
schemes are quite complex and have a high-performance overhead for general com-
putations [AAUC18].

Hardware-based security solutions for providing full isolation between the hypervisor
and the VM have been studied extensively by researchers as well as industry [AGJS13,
KPW16, Kap17, JACH11, XLC13, Int19]. The general idea is to use a hardware component
with higher privilege levels than the hypervisor or the host Operating System (OS) which
enables it to protect the data via access right restrictions or cryptography. The hardware
component itself proves its authenticity via asymmetric cryptography. This way the cus-
tomer only has to trust the hardware manufacturer, which he has to do regardless of using
a VM or his own dedicated hardware.

Intel Software Guard Extensions (SGX) [AGJS13, HLP+13, MAB+13] was the first widely
available solution for protecting data in RAM. However, it only can protect a small chunk
of RAM, not the VM as a whole [Gue16]. In 2016, AMD introduced Secure Memory En-
cryption (SME) and Secure Encrypted Virtualization (SEV) [KPW16] to protect the entire
system’s main memory. SME provides drop-in, AES based RAM encryption. SEV extends
this for VMs by using different encryption keys per VM, in order to prohibit the hypervi-
sor from inspecting the VM’s main memory. This was a first step towards full isolation.
The Linux kernel support for SEV was mainlined in early 2018 [AMD]. In February 2017,
AMD introduced SEV Encrypted State (SEV-ES) [Kap17], which offers additional protec-
tion against manipulating the state of a VM during context switches. While SEV-ES does
not need new hardware, it requires extensive modification of the Linux kernel. According
to AMD, the corresponding patches to the Linux kernel are mostly finished, however sup-
port for SEV-ES has not been mainlined, yet [Len19]. Intel is also working on a solution
similar to SME/SEV, called Total Memory Encryption (TME)/Multi-Key Total Memory
Encryption (MKTME) [Int19], but did not yet publish corresponding processors.

This thesis focuses on AMD’s solutions for providing full isolation between hypervisor
and VM, as it is the most prevalent full memory encryption. Prior attacks still working
under SEV-ES either used a firmware bug [BWS19] or I/O to move known plaintext into
encrypted pages or extract encrypted data [DYM+17, MHHW18, MHH19, LZL19]. How-
ever, the I/O channel is well known problem to AMD. We demonstrate that our attack

2



vector is available even without user-controlled I/O or access to unprotected I/O opera-
tions.
This thesis is structured as follows. First, we explain the current state of virtualization
technology, review the official information on AMD’s memory encryption and discuss
related work. Next, in Chapter 4, we analyze the encryption mode used by SME/SEV as
there is very little official information on it. We show, that the AMD Epyc 3xx1 product
line uses an updated encryption mode and prove, that it is still vulnerable to the previous
attacks.
Using this knowledge, we demonstrate in Chapter 5, that minimal information about the
system is enough to compromise and completely take over the VM. To achieve this, we
exploit some weaknesses of the encryption mode, to construct a primitive that allows us to
inject data into the encrypted RAM of the VM, simply by copying ciphertext blocks with
known plaintext to a new memory location. However, in the basic variant this only allows
us to control 4 plaintext bytes of every two continuous 16-byte ciphertext blocks. Thus, in
the next step we build on this primitive to bootstrap an encryption oracle from just a few
megabytes of known plaintext, that is able to control full 16-byte blocks, allowing us to
place and execute arbitrary code in the VM. In addition, we present that code execution
can be used to build a decryption oracle.
Finally, we compare our results to related work and discuss possible countermeasures. We
identify the lack of integrity protection as the main weakness of AMD’s memory encryp-
tion solutions and postulate that full security against our attacks can only be achieved by
integrating a proper integrity protection scheme into the currently used encryption mode.

3





2 Background

To understand the requirements for fully isolating hypervisor and VM, we first need to
understand how they interact with each other. Thus this section starts with an introduc-
tion to virtualization technology. While Intel’s and AMD’s approaches to virtualization
share many similar concepts, we will focus on AMD’s variant when it comes to the de-
tails, as this thesis analyzes the AMD exclusive features SME/SEV. Next, we will briefly
explore theoretical considerations for memory encryption, before reviewing the official
information on AMD’s memory encryption technologies.

2.1 Virtualization Technology

As discussed in [TB15, p. 471 et seq.], the goal of virtualization is to to create and run mul-
tiple VMs on a single physical computer in such a way, that they are isolated from each
other. As mentioned in the introduction, this has multiple advantages like improved se-
curity when hosting multiple services, reduced hardware costs and easier load balancing.
The VMs are created and managed by a software called hypervisor. In order to isolate VMs
from each other and from the hypervisor itself, the hypervisor emulates a set of virtual
hardware components for each VM. On a technical level, this is achieved by intercepting
and manipulating certain operations issued by the VM. We will call this one-sided isola-
tion, as it does not isolate the VM from the hypervisor, but isolates the hypervisor from its
VMs, as well as the VMs from each other. In the following, we are going to explore how
to virtualize the CPU, memory accesses and accesses to I/O devices.

2.1.1 Virtualizing the CPU

First of all, the hypervisor has to emulate a CPU to allow its guests to execute code, which
boils down to executing assembly instructions. However, the hypervisor must prevent
its guests from executing instructions that would allow it to manipulate the hypervisor
or other VMs. AMD CPUs support a hierarchical privilege-levels concept [Adv19, p. 96],
ranging from the most privileged level ring 0 to the least privileged level ring 3. Some
assembly instructions, so-called privileged instructions, can only be executed in ring 0. The
host OS/hypervisor runs at ring 0, while user software usually runs in ring 3.
The hypervisor must run at a higher privilege level than its VMs, to be able to isolate itself
from them. If a privileged instruction is executed in a ring different from ring 0, it causes

5



2 Background

a trap which transfers the control flow to a handler function of the host OS/hypervisor.
This handler is provided with certain information like the process that tried to execute the
privileged instruction. Based on this it can decide if the instruction should actually get
executed or not. Afterwards, the control flow is restored to the calling application. In the
non-virtualization context, this mechanism allows the OS to enforce privilege separation.
Similar, the hypervisor can use this mechanism to isolate itself from the VM as well as
different VMs from each other, by restricting or emulating certain instructions issued by
the VM. This is also called instruction interception.

Unfortunately, on x86 some instructions behave differently based on the ring that they are
executed in, without causing a trap like privileged instructions. If we virtualize a soft-
ware, like an OS, that would usually run in ring 0, this causes unexpected behavior, as the
instruction is now executed at a different privilege level. As each VM must run an OS,
this is very problematic. Early approaches to virtualization solved this by scanning the as-
sembly code executed in VMs for such instruction and replaced them with a semantically
equivalent instruction sequence causing a trap. The downside of this approach is that it
introduces a performance overhead.

To overcome these problems, in 2005 both Intel and AMD introduced an instruction set
extension to enable hardware-assisted virtualization. AMD’s solution is called Secure Vir-
tual Machine (SVM) [Adv05] and Intel’s solution is called VT-x [UNR+05].

SVM adds two additional privilege layers called host mode and guest mode, as well as new
instructions for switching between them. Each mode has ring 0 to 3, as before. Thus
virtualized applications can again run in their intended ring nullifying the problem of
instructions that behave differently depending on the ring they are executed in. However,
in guest mode, certain instructions are forbidden/restricted. If an exception, interrupt or
trap occurs while in guest mode, the CPU performs a context switch to the hypervisor.
Figure 2.1 contains a schematic overview of the rings, modes and the control flow transfer
between them.

In order to start a VM, the host executes the VMRUN instruction with a reference to the Vir-
tual Machine Control Block (VMCB) of the VM. This instruction first saves the CPU state
information of the host, before loading the VM’s state from the VMCB and switching the
CPU to guest mode. Afterwards, the CPU runs the VM in guest mode until exceptions,
interrupts or traps occur, triggering a #VMEXIT. If this happens, the CPU writes back the
current state of the CPU to the VMCB, switches the CPU to host mode at privilege level
zero and resume the execution at the saved host state. The VMCB primarily contains the
state of the CPU at the last time the VM was executed. This especially includes regis-
ter values. In addition to instructions that must trap to the hypervisor in order to allow
proper functioning of the VM, SVM also allows configuring certain other instructions to

6



2.1 Virtualization Technology

Host Mode

Ring 3

Ring 2

Ring 1

Ring 0

Guest Mode

Ring 3

Ring 2

Ring 1

Ring 0

User Space
Applications

Host OS

User Space
Applications

Guest OS

VMRUN

#VMEXIT

Load VMCB

Store VMCB

Figure 2.1: Schematic overview of CPU rings and modes used for virtualization on the
AMD x86 architecture. Switching between modes is done via the VMRUN in-
struction and the #VMEXIT exception. Ring 0 has the highest rights. Rings 1
and 2 are seldomly used.

trap, allowing the hypervisor to emulate them. Two prominent examples for this are the
cpuid and the rdtsc instructions. The cpuid instruction allows querying a wide span of
CPU information, including an accurate model number, a list supported features and the
system topology. Trapping this instruction, allows the hypervisor to change the returned
registers values, allowing it fine-grained control over the hardware features it exposes to
the guest. The rdtsc instruction returns the current state of the CPU core-private times-
tamp counter. OSs and other programs may use this counter for cycle-level time measure-
ments. If a VM is live-migrated from one host to another, the cpuid and rdtsc values on
both machines might be different. Emulating these instructions allows the hypervisor to
convey a consistent picture of the system state. Whether such instructions are intercepted
or not, can be configured in the VMCB [Adv19].

In summary, handling instructions executed in the guest, that could potentially break the
isolation between hypervisor and VMs is the most important part of CPU virtualization.
To achieve isolation, the hypervisor can intercept such instructions before they are exe-
cuted, which allows it to perform additional emulation. Next, we will discuss the virtual-
ization of memory accesses.

7



2 Background

2.1.2 Memory Accesses

Before we explore the virtualization of memory accesses, we give a brief overview of how
memory accesses work on a non-virtualized system.

As discussed in [TB15], on modern OSs, like Windows, Linux and MacOS, processes do
not directly address the physical memory to access data. Instead, an additional indirec-
tion layer called Virtual Address (VA) is used. If a program accesses a VA, the CPU tries to
translate it to a Physical Address (PA) via a data structure called page table. Furthermore,
this data structure also contains additional information like access rights and various sta-
tus bits for each entry. In order to speed up the translation, page table entries do not refer
to a single byte of physical memory, but to a larger chunk of memory called a page, which
usually has a size of 4KB. To achieve this, only the upper bits of a VA are used to trans-
late it to a PA, while the lower 12 bits are used as an offset inside the 4KB page without
any translation. In addition, the results of page table lookups are stored in a cache called
Translation Lookaside Buffer (TLB), speeding up subsequent accesses. Furthermore, the
actual translation process is done in hardware. The PA of the top-level page table is stored
in a well-known hardware register and is managed by the OS.

VAs allow for more flexible addressing, as they enable the OS to create and manage dif-
ferent page tables for each process. This way, each process has its own address space
and can use the memory, as if it is the only process running on the system. For example,
two processes A and B can both manipulate the content of the VA 0x1000 without seeing
each other’s results, as the OS takes care of mapping these VAs to different PAs. This
also greatly improves the security and stability of the system, as process A cannot access
the memory of process B without requesting the OS to add the respective mappings to its
page table. If a program accesses a VA, for which it does not have a mapping in its page
table, the hardware issues a page fault, which gets processed by a handler in the OS. The
OS can then decide, whether it wants to allow or deny this access. In the former case, it
creates a new mapping in the page table and re-executes the instruction that caused the
page fault. In the latter case, the program that caused the page fault gets aborted.

Virtualizing memory accesses is more difficult, as the VM itself also has to run an OS
that expects to manages its own top-level page table. However, the hypervisor clearly
cannot allow the VM to create entries for arbitrary physical memory pages in its page
table, as this would allow the VM to read from/write to memory pages belonging to the
hypervisor or other VMs running on the physical machines. This breaks the one-sided
isolation we want to achieve. To overcome this problem, an additional layer of indirection
is introduced. The page table of the VM only translate Guest Virtual Addresses (GVAs)
into Guest Physical Addresses (GPAs), which are then translated to the actual PA, also
known as Host Physical Addresses (HPAs) in this context. The translation of GPAs to

8



2.1 Virtualization Technology

HPAs is done via an additional data structure called Nested Page Table (NPT) [Adv08].
The NPT is managed by the hypervisor, allowing it to control which physical pages are
used for the memory requests of the VM. This process is completely transparent for the
VM, i.e. it does not know that its GPAs do not actually point to physical memory. In
the context of virtualization, AMD tags the TLB entries with a so-called Address Space
Identifier (ASID) in order to allow the hardware to distinguish between entries originating
from different VMs or the host [Adv05]. This way, the TLB does not need to be flushed
before performing a context switch between the hypervisor and theVM, which improves
the performance.

In summary, the use of NPTs ensures that the hypervisor has full control over the physical
memory pages that a VM can use. Therefore, the hypervisor can ensure that the VM can-
not read any memory that is used by the hypervisor itself or other VMs, if the hypervisor
does not explicitly allow it.

2.1.3 I/O Devices

Finally, we want to discuss how VMs access I/O devices like network cards or hard drives.
According to [TB15, p. 490 et seq.], the VM probes for connected I/O devices on startup.
These instructions are trapped to the hypervisor, which can then decide whether it wants
to expose a device to the VM or not. Interfacing with hardware components can be done
via hardware control registers. The instructions for accessing these register, also trap to
the hypervisor, which then can decide, whether it wants to copy the data to/from the real
hardware registers or not. This also allows the hypervisor to emulate devices that are
not physically attached to it. A classical example for this are hard drives. The operating
systems running in the VM expect access to a hard drive partition. However, actually
creating partitions on the real hard drive that is attached to the physical machine is cum-
bersome. Instead, the hypervisor stores all of the VM’s contents in a regular file on and
only emulates to the VM, that it accesses a real hard drive.

Another important aspect are DMA operations, which allow hardware components to
read from/write to the RAM without using the CPU, which greatly reduces the system
load. On modern x86 systems, a hardware component called I/O Memory Management
Unit (IOMMU) is responsible for mapping DMA capable hardware components into the
address space used by the OS. In order to support virtualization, the hypervisor can pro-
gram the IOMMU to use the NPT of the VM to translate the GPAs of the VM into HPA
before performing memory accesses. Directly using the GPA as a PA would break the
isolation, as the VM could exploit the IOMMU to access memory areas, that were not
assigned to it by the hypervisor.

9



2 Background

The preceding sections have shown, that the one-sided isolation of the hypervisor from its
VMs rests on two main pillars. The first is, that the hypervisor runs in a higher privilege
mode on the physical CPU and thus can prevent its VMs from breaking out of their lower
privilege level, by restricting the use of certain instructions. The second pillar is, that the
hypervisor controls the physical memory which can be accessed by its VM via the NPT.
This way, a malicious VM is unable to modify the hypervisor itself or other VMs running
on the same physical machine. However, this one-sided isolation does not protect the
VMs against a malicious hypervisor. This is mainly due to the fact, that the hypervisor
can manipulate the VM’s RAM content, as it has control over all of the physical memory.
Therefore, the hypervisor can manipulate the code executed in the VM and extract sensi-
tive data when it gets loaded into the RAM for processing. As the VM cannot detect or
prevent such accesses, it simply has to trust, that the hypervisor respects its privacy. This
may be acceptable in traditional use-cases, where a company uses its own physical ma-
chine, which is located at their premises, to run multiple VMs. However, as already noted
in the introduction, in modern use-cases companies or persons rent VMs from third-party
providers. Thus they do not have any control over the hypervisor or the physical ma-
chine and have to trust the hosting provider to not spy on their VM. As we will see in
Section 2.4, AMD’s SEV technology tries to achieve full isolation between VM and hyper-
visor, by encrypting the memory content of the VM with a key, that is not known to the
hypervisor.

2.2 The Page Fault Side Channel

The page fault side channel was first explored in the context of Intel SGX [XCP15]. When
SEV is active, the page table of the guest is encrypted and thus not accessible by the hy-
pervisor. However, as the hypervisor is responsible for managing the NPT, it can infer
information about the VM’s memory assignment by monitoring the entries in the NPT.
Since the NPT cannot be accessed by the VM, it cannot prevent the hypervisor from over-
writing permissions in the NPT. A schematic overview of how the hypervisor can exploit
this is shown in Figure 2.2.

As discussed in Subsection 2.1.2, the VM contains the GVA to GPA page table while the
host manages the GPA to HPA translation in the NPT. Both page tables contain status bits
that control whether a page is present, writeable or executable. However, the hardware
only honors the status bits from the NPT, triggering a page fault on illegal accesses. If
the VM causes a page fault, the corresponding handler in the hypervisor is called. It is
provided with the GPA of the fault as well as the reason for the fault in order to handle
it. A malicious hypervisor can manipulate the status bits in the NPT to get notified if the

10



2.3 Memory Encryption using Tweakable Block Ciphers

GPA rw- GPA rw-GPA r-x

Guest Page Table

HPA rwx HPA rwx HPA rw-

Host Page Table

GVA GVA GVACode:

rip

1. Remove execute
permission

        2. Page fault is raised due
to missing execute permission

Figure 2.2: Schematic overview of the page fault side channel. When the VM tries to exe-
cute an instruction, the GVA to which the program counter (rip) points, has to
be resolved to a HPA. This is accomplished by performing a walk through the
NPT, while checking the respective permission flags. The hypervisor can force
a page fault by removing the execute flag, in the corresponding NPT entry.
Subsequently, the hypervisor learns which page the VM tried to execute. The
same method can be used for detecting memory reads or writes by clearing the
respective flags instead.

VM tries to read, write, or execute a page. Multiple attacks make use of this possibility
to gather information about where the VM stores critical data [HB17, MHHW18, BHP18,
LZL19, MHH19].

2.3 Memory Encryption using Tweakable Block Ciphers

As the name suggests, block ciphers only operate on a fixed-length data block. However,
the data that should be encrypted/decrypted is usually larger than one block and not
a multiple of the block size. The latter can be solved with padding or ciphertext steal-
ing [Aum17, p. 69-70]. The easiest way to encrypt multiple blocks of data is the Electronic
Codebook Mode (ECB) mode, which simply applies the cipher independently to each
block. This method is very fast, as blocks can be encrypted and decrypted in parallel,
but has various weaknesses like the fact that equal plaintext blocks encrypt to the same
ciphertext blocks, allowing to recover information on the plaintext.
Other block modes overcome this problem by making the encryption of a plaintext block
depend on other plaintext or ciphertext blocks, like discussed in [Aum17, p. 65 et seq.].
For example, in the Cipher Block Chaining (CBC) mode the plaintext of block i gets XORed
with the ciphertext of block (i− 1) before encryption. While this mitigates the problem of

11



2 Background

equal plaintexts encrypting to the same ciphertexts (or more general: ciphertext frequency
analysis), it also prevents parallelizing the encryption process. However, applications like
encrypting the RAM or hard drives require very fast encryption and decryption, as any
introduced latency slows down the whole system.

Another approach to this problem is using Counter Mode (CTR) mode, which converts
the block cipher into a stream cipher, by using it to encrypt a counter value and XORing
the result with the plaintext. Using a good block cipher like AES, the encryption of counter
values i and i + 1 appear independent. In addition, encryption as well as decryption are
fully parallelizable and, if no counter value is used twice, the encrypted blocks appear
independent regardless of the plaintext.

However, CTR mode is not well suited for RAM encryption or full disk encryption: In or-
der to prevent using the same counter value twice the latest counter value has to be stored
for each memory location/disk sector. In addition, flipping one ciphertext bit only flips
the corresponding plaintext bit, instead of changing the whole block in an unpredictable
manner, like it is the case for block ciphers. An attacker with some knowledge of the sys-
tem could use this for directed manipulations, e.g. to flip an access right bit in a kernel
data structure.

Tweakable block ciphers, on the other hand, provide full parallelization for encryption
and decryption without the need to store a counter value or risking ciphertext frequency
analysis. In addition to the key, the ciphertext produced by a tweakable block cipher is
also influenced by a so-called tweak, that allows to securely change the behavior of the
block cipher, similar to instantiating it with a new key, but with less overhead. Unlike the
key, the tweak does not need to be secret [LRW02].

If the ECB style encryption is used with a different tweak for each block, equal plaintext
blocks no longer encrypt to equal ciphertext blocks. Instead, the blocks appear as if they
were independent. Nonetheless, without proper integrity protection several attacks re-
main possible, like randomizing the plaintext (by altering the ciphertext) and replaying
old values.

AES-XTS [XTS19] is a tweaked version of AES, that is very popular for storage encryp-
tion, as it includes ciphertext stealing, which allows expansion-free block encryption for
arbitrary-length plaintexts by using previous ciphertext for padding. The tweak is usu-
ally a function of the logical disk block address. AES-XTS is used in Apple’s FileVault, MS
Bitlocker and Android’s File-based Encryption.

However, the RAM and the uncore part of the CPU (components that are not part of the
CPU core but closely connected to it like the L3 cache) are always handled in 32 or 64
byte blocks which are multiples of the 16-byte block size of the AES [Adv17]. Thus, RAM
encryption does not require padding or ciphertext stealing. Rogaway [Rog04] introduces

12



2.4 AMD’s Memory Encryption Solutions

Plaintext

AES

Ciphertext

Tweak

(a) XE mode

Plaintext

AES

Ciphertext

Tweak

(b) XEX mode

Figure 2.3: Flowchart of the XE and XEX construction, that turns a regular block cipher
like AES, into a tweakable block cipher.

the Xor-Encrypt (XE) and the Xor-Encrypt-Xor (XEX) modes, which turn a block cipher
such as AES into a tweakable block cipher, by XORing a tweak-derived value with the
plaintext before encryption (and again after encryption in the case of XEX), as shown in
Figure 2.3.

Rogaway proposes special tweak functions for XE and XEX, which allow very efficient
computation, especially if the tweak function is evaluated in a sequential manner, e.g.
multiple consecutive disk sectors or consecutive memory addresses are encrypted/de-
crypted.

2.4 AMD’s Memory Encryption Solutions

Currently AMD offers three main memory encryption solutions, that build on each
other This section presents them in a hierarchical order. Figure 2.4 contains a schematic
overview of the encryption/decryption process as well as the interaction between the
different components.

2.4.1 AMD SME

AMD Secure Memory Encryption (SME) was first introduced in a whitepaper in 2016
[KPW16]. It is a hardware-based security feature, which allows encrypting data before it
is stored in RAM in order to guard against Direct Memory Access (DMA) or cold boot at-
tacks [HSH+08, BGF16, YADA17]. According to [KPW16], it works as follows: The mem-

13



2 Background

ory controller includes an AES encryption module to allow high-speed encryption/de-
cryption. However, the used block mode is not specified by AMD. They claim to apply an
address based tweak to the plaintext to protect against "cipher-text block move attacks".
The key K for the encryption is managed by the AMD Secure Processor (SP), an ARM
based co-processor. It is regenerated during the boot process, using a NIST SP 800-90
compliant random number generator. The key is never stored outside the SP. Due to this,
it cannot be recovered by cold boot or DMA attacks.
To allow more flexibility, SME uses a special bit in the page table entries – the so-called
C-bit – to encode whether a page should be treated as encrypted or not. For example, this
can be used to only encrypt memory locations containing secrets like full disk encryption
or RSA keys.
However, changing the C-bit does not perform in-place en- or decryption; i.e., to encrypt
the data inside an initially unencrypted page, the data has to be rewritten after changing
the C-bit. There is no coherency between mappings of the same memory location with
different C-bit values or different encryption keys. Thus, changing the encryption status
requires flushing all involved CPU caches, to write back and invalidate all cached entries.
Otherwise, the next access might return a cached result, that does not reflect the new
encryption status [Adv19].
Managing the C-bit requires support from the OS. In case the OS does not support SME,
Transparent SME (TSME) can be used: In TSME mode, all memory pages are encrypted
independently from the value of the C-Bit.

2.4.2 AMD SEV

AMD SEV, which was also introduced in [KPW16], builds on SME, to provide full cryp-
tographic isolation between the hypervisor and the VM. This means that the VM owner
does not have to trust the hypervisor.
To achieve this, each VM is assigned an encryption key by the SP, which is used to encrypt
the VM’s main memory with the SME technology. The mapping from VM to encryption
key is based on the ASID of the VM. Like it is the case for SME, the key never leaves the
SP. Thus, even an attacker with hypervisor privileges is unable to obtain the key.
Like with SME, the VM has page-wise control over the RAM encryption via the C-bit.
If the C-bit is set, the page is encrypted with the VM-specific key; else, the key of the
hypervisor is used. This allows the VM to set up shared pages (pages accessible by the
VM and the hypervisor).
The SP offers an API to manage SEV secured VMs [Adv18]. This is used by the hyper-
visor, to perform operations requiring knowledge of the key, like encrypting the initial
RAM content during VM startup. To prove to the VM owner, that the hypervisor has not

14



2.4 AMD’s Memory Encryption Solutions

CPU
Secure Processor

(SP)

Memory Controller

RAM

Write

Read

AES Engine

Manage
AES Keys

Manage via
SEV API

Write
to

DRAM

Read
from

DRAM

 C-Bit of
Address

Figure 2.4: Schematic overview of the encryption and decryption process of SME/SEV.
Memory accesses are routed through a hardware-based AES engine. However,
data is only encrypted/decrypted if the C-Bit of its address is set. Key manage-
ment is handled by the SP. For SEV, the SP exposes an API allowing the CPU
to to perform certain key-related operations without exposing the key to the
CPU. For example, the CPU can request that a new key should be created in
order to start a new SEV secured VM.

tampered with the initial content before loading it via the SP API, the owner can request
a signed hash of the initial RAM content of his VM from the SP. For the signature the SP
uses an asymmetric key pair, that is signed by AMD, to prove its authenticity.
In addition, the asymmetric key pair can also be used to establish a secure channel be-
tween the VM owner and the SP. This way, the VM owner can transfer secrets, like full
disk encryption keys or OpenSSH private keys, into the VM in a secure manner.

2.4.3 AMD-ES

A known problem of SEV is, that it does not protect the VMCB before switching from the
VM’s context to the hypervisor’s context. The VMCB describes the state of a VM, like the
values of the VM’s general purpose registers. It is also used for communication between
the hypervisor and the VM. For example, if the VM exits due to an interrupt it can store
additional information about the interrupt reasons in this structure.
To address these issues, AMD introduced SEV-ES [Kap17] as an extension for SEV. SEV-
ES splits the VMCB into two areas: The control area and the save area. The unencrypted
control area contains information that must always be available to the hypervisor in order

15



2 Background

to manage the VM, e.g. flags for interrupt injection. The save area contains all of the
other information from the VMCB, and is protected against access or manipulation from
the hypervisor by encrypting it when the VM exits. However, since certain operations
require the VM to share data from its save area with the hypervisor (e.g. reading and
writing certain registers when emulating cpuid), AMD introduced the Guest Hypervisor
Communication Block (GHCB), which basically is a shared page, allowing communication
between guest and hypervisor. In addition, they introduced a new exception that gets
triggered by operations that require the VM to share information with the hypervisor,
allowing the guest to copy the required data from the VMCB to the GHCB before the
context switch. When the VM is resumed, it can copy the data back to its VMCB.

16



3 Related Work

This chapter is split into two sections. The first one discusses existing attacks on AMD’s
memory encryption technology. The second section provides a summary of Intel’s mem-
ory encryption solutions, in order to provide an overview of current technologies for solv-
ing the hypervisor trust problem on the x86 architecture.

3.1 Previous Attacks

This section summarizes already known attacks on SEV. If not stated otherwise, all attacks
assume a malicious hypervisor. In addition to this, Chapter 6 contains a detailed compar-
ison of our results with the ones from Du et al. [DYM+17] and Li et al. [LZL19], as both of
them construct encryption oracles.

3.2 VMCB based Encryption/Decryption Oracles

Hetzelt and Buhren [HB17] explore the idea of manipulating the general purpose registers
stored in the VMCB to create an encryption/decryption oracle. They leverage, that prior
to SEV-ES, the VMCB was stored unencrypted and without integrity protection during
context switches between hypervisor and VM. Therefore, they can manipulate the VM’s
register values, that are stored in the VMCB.
However, in order to create an encryption oracle, they have to make sure that the register
values are written to RAM when the VM resumes. To achieve this, they construct cor-
responding gadgets via a ROP style attack. Instead of manipulating return addresses on
the stack, they directly manipulate the unprotected value of the rip register containing
the GVA of the next instruction that gets executed. Similarly, they construct a decryption
oracle by constructing gadgets that load data from memory into general-purpose registers
before forcing a context switch.

3.2.1 NPT Manipulation

Hetzelt and Buhren [HB17] also constructed an attack that leverages the page fault side
channel to launch a replay attack against an OpenSSH server running inside the VM. Dur-
ing the login process, OpenSSH stores the user’s password in RAM for a short period of
time, to perform the authentication. They show, that an attacker can identify this memory

17



3 Related Work

location and create a copy of it before it gets overwritten for security reasons. Afterwards,
the attacker starts a login process via SSH with the user account, whose password was just
captured and replays the captured page to pass the password check.
Since the memory is encrypted, the attacker cannot deduce the correct location of the page
containing the password from the memory content itself. Furthermore, with SEV-ES he is
also unable to observe the state of an application running inside the VM via the data from
the VMCB, as it is encrypted. Instead, Hetzelt and Buhren determine the right timing by
observing system calls and memory accesses of the VM. The latter are immediately leaked
by the page fault side channel. The former requires knowledge of the VM’s kernel version
and the GPA that it is loaded to. By removing the execute rights from the pages containing
the system call handlers of the guest OS, the page fault side channel can be used to track
the VM’s system call usage.
For the replay part, the attacker has to remap the GPA where OpenSSH expects the pass-
word, to the HPA at which the password was captured, before overwriting its content. The
remapping is necessary due to the HPA based tweak function. Replaying the ciphertext
to another HPA changes the plaintext it decrypts to.
In their implementation, they achieved a successful replay attack in 23% of all logins at-
tempts. They ascribe the low success rate to two circumstances. The first is, that the offset
of the password inside the memory page changes during login attempts. The second is,
that the correct identification of the page via the system call and read/write access pat-
terns is only successful in 86% of the cases.
Since SEV was not available at this time, they tested their implementation on an unen-
crypted VM and argue that the information they used is also available on a SEV secured
VM.

3.2.2 I/O based Encryption/Decryption Oracles

Morbitzer et al. [MHHW18], construct a decryption oracle based on the hypervisors abil-
ity to manipulate the NPT as well as self-generated network I/O. They require a network
reachable service running in the VM, that returns some kind of resource on request. A
good example for such a service is an HTTP server, serving a static web page. The basic
idea is, that the attacker can manipulate the GPA to HPA mapping in the NPT, to change
the content returned by the service, when the resource is requested.
The attack is split into two phases. First, the attacker has to identify the GPAs of the
memory page(s) containing the data returned by the service. In order to do so, he requests
the resource from the service, while monitoring the page accesses of the VM via the page
fault side channel, until he receives the result of this request over the network. However,
due to other processes running inside the VM, there are multiple page accesses in this time

18



3.2 VMCB based Encryption/Decryption Oracles

span. To identify the page accesses related to the resource, the attacker queries the server
multiple times and only marks pages occurring every time as relevant. After sufficient
repetitions the set of relevant pages converges toward the page containing the resource
returned by the server.

In the second step, the attacker manipulates the NPT to change the HPA to which the
GPA containing the resource is mapped. Thus on the next request to the service, the
data located at this HPA is returned instead of the original data. If the original resource
returned by the service spans at least one page, this process can be iterated to send all of
the VM’s RAM content over the network. Otherwise, only the offsets of each page that
were used by the original resource can be sent. Due to the address based tweak function,
the attacker cannot simply copy the other parts of the page to this part to get the rest of
the page’s content.

Morbitzer et al. implemented the attack on an AMD Epyc 7251, which has full SEV sup-
port. For the network reachable service, they evaluated Apache, Nginx and OpenSSH.
In all cases, the returned resource spanned at least a whole page. To simulate a real en-
vironment up to 50 random requests per second were simulated during the page access
measurements. For Apache and Nginx the set of possible pages converged to a number
of less than five in at most 22 iterations that required at most 23 seconds. For OpenSSH
more than 100 iterations were required, that took at most 5 minutes.

They achieved a transfer rate of 79.4KB / sec in the case of Apache and Nginx and a rate
of 41.6KB / sec for OpenSSH. In their follow up paper [MHH19], Morbitzer et al. showed
how to use the page fault side channel to identify pages that are likely to contain secrets
like encryption keys.

Du et al. [DYM+17] were, to the best of our knowledge, the first first to discover the orig-
inal encryption mode of SME as well as the tweak values. They combine their knowledge
of the tweak function with a specific memory management behavior of an Nginx server
running inside the VM, to build an encryption oracle.

In the Nginx version used by them, parts of a client’s request get stored in a memory page
that is not overwritten after the request has been processed. They call this the bridge page.
To get the GPA of the bridge page, they leverage the fact that parts of the request get stored
in continuous 16-byte blocks inside the bridge page. They exploit this, by preparing the
request in such a way, that the data stored at these offsets nullifies the effect of the tweak
function. Thus these offsets encrypt to the same ciphertext, as if ECB was used without
a tweak function, making them easily detectable in a memory dump. Furthermore, they
observed that the GPA of the bridge page does not change during requests. Thus, sub-
sequent requests can be used to encrypt arbitrary data. Furthermore, they show that the
encrypted data can be moved to a different memory location, if the plaintext is prepared

19



3 Related Work

in such a way that it nullifies the effect of the different tweak values used at these memory
addresses. In order to demonstrate this, they overwrite parts of OpenSSH’s .text section
with code that opens a remote shell without requiring a login.

Since SEV was not available at the time, they used SME to for a self-built, simulated ver-
sion of SEV. They do not provide performance measures. The attack is not mitigated by
SEV-ES. Chapter 6 contains a comparison of this attack with our encryption oracle from
Section 5.5.

Li et al. [LZL19] show, how to use unprotected DMA operations to create a decryption
as well as an encryption oracle. According to them, VM’s mainly use DMA to perform
I/O operations with (virtual) hardware like network cards. As discussed in Section 2.1,
this is done via a hardware component called IOMMU, which maps the I/O buses of
the (virtual) hardware into memory. They observed, that this hardware unit does have
support for different memory encryption keys. If the hypervisor wants to provide DMA
capabilities to different VMs, the IOMMU can at most use the single memory encryption
key that is used to encrypt the host’s RAM. Thus, the pages used for DMA are shared
between the hypervisor and the VM. If the VM wants to read from a device via DMA, the
data gets copied into a shared page (a page encrypted with the shared hypervisor key) ps.
Afterwards the VM copies the data from ps into a private page pp (a page encrypted with
its own key) before further processing the data. Writing to a device is done by the inverse
process. They demonstrate their attack based on network packets related to an OpenSSH
server running inside the VM, as network packets get sent via DMA.

The construction of the encryption oracle is quite similar to [DYM+17]. The attacker uses
the page fault side channel to find the private page pp to which the VM copies the data
from ps during a read operation. To encrypt arbitrary data, the attacker replaces the orig-
inal data before the VM copies it from ps to pp. For the decryption oracle, the attacker
manipulates DMA write operations issued by the VM. This time, the content of pp is re-
placed with the content of the page that should be decrypted, before the VM copies the
data to ps. Again the page fault side channel is used to get the correct timing.

In their implementation, they were able to identify pp with an average precision of 0.956
and an average recall of 0.847. They achieve a throughput of 200 B/s for their decryption
oracle. They do not give performance measures for the encryption oracle, but due to
the symmetric construction, its throughput should be similar. Chapter 6 contains a more
detailed discussion of this attack as well as a comparison with our encryption oracle from
Section 5.5.

20



3.2 VMCB based Encryption/Decryption Oracles

3.2.3 Data Faults

In [BGN+17], Buhren et al. explore the idea of performing classical fault attacks on ap-
plication data, by flipping a bit in a ciphertext block, in order to create garbled plaintext.
They demonstrate this, by performing a fault attack on a GnuPG version without a fault
resistant RSA CRT implementation. They implemented their attack for SME, as SEV was
not available at that time, thus their attacker model is different. They require, that the
attacker is able to run an unprivileged application and can perform DMA memory access.
They used the unprivileged application to perform a prime and probe cache attack, to
infer the state of the GnuPG application, allowing them to inject the fault at the correct
time. In order to get the memory location containing the data used in the RSA CRT calcu-
lations, they used some Linux kernel specific memory management behavior, as well as
the pagemap interface (which now requires root permissions).

3.2.4 IBS based Fingerprinting

Werner et al. [WMA+19], showed two independent results. First, they use the unen-
crypted VMCB to reconstruct code executed in the VM by single-stepping the VM while
observing the changes to the unencrypted register values in the VMCB. Like [HB17], they
also use the unencrypted VMCB to encrypt/decrypt data. This is mitigated by SEV-ES. In
their second result, they show a novel approach to fingerprint applications running inside
the VM. For this they leverage a performance counter subsystem called Instruction Based
Sampling (IBS). This subsystem leaks information on instructions executed in the VM as
well as their GVA. They show, that the distance between return statements (measured in
their GVA), uniquely identifies specific versions of applications and even allows to dis-
tinguish between different compilers. One major problem they had to overcome, was
that the IBS subsystem does neither distinguish between instruction executed in different
applications nor between instructions executed in userspace and kernel space. Thus the
returned data has to be filtered and assigned to the application they originated from, to
apply the fingerprinting technique. They claim, that the guest cannot detect whether IBS
is activated. This result holds under SEV-ES.

3.2.5 AMD SP security

In [BWS19], Buhren et al. explore another attack vector. They examine the security of the
AMD SP, which forms the root of trust for SEV. The SP only executes signed firmware
images. However, they found a bug in the signature check mechanism of the firmware,
allowing them to execute manipulated firmware on the SP. While newer firmware versions
fix that bug, there is no rollback prevention mechanism. Thus an attacker can just load a

21



3 Related Work

vulnerable firmware version. Using a modified firmware, they are able to extract the
private key, used by the SP to authenticate itself as an AMD device. Among other things,
this allows them to fake the presence of an authentic AMD SP.

3.3 Intel’s Memory Encryption Solutions

Intel has two different memory encryption solutions: SGX and TME/MKTME. SGX is
intended to protect small parts of applications and is available in current Intel CPUs. TME
provides encryption of the entire RAM with a single key, while MKTME builds on that,
adding the possibility to use multiple keys. However, TME and MKTME are not available
yet.

3.3.1 SGX

Intel SGX [AGJS13, HLP+13, MAB+13, CD16] was introduced in 2013. Its goal is to create
a protected enclave, that allows private computations without trusting the OS, the hyper-
visor or any hardware that is attached to the computer’s system bus. SGX ensures the
confidentiality as well as the integrity of an enclave. However, it is designed to protect
only parts of an application. In addition, existing software must be modified to make use
of SGX.
All data related to an SGX enclave, is stored inside the Enclave Page Cache (EPC), which is
a subset of the Processor Reserved Memory Range (PRM), a special, continuous memory
area reserved for SGX. The EPC is divided in 4KB pages and each page can only be used
by a single enclave. I.e., EPC pages cannot be used to share data between enclaves. The
size of the EPC is very limited, but it is possible to use paging to temporarily remove
pages. However, this requires additional OS support, as special SGX instructions must be
used for evicting and restoring pages.
There are two mechanisms to protect data in the EPC. The first is, that the EPC’s memory
pages cannot be accessed by software outside of the enclave, removing the need to trust
the OS’s page tables to prevent such memory accesses. The access checks are performed
in hardware. In addition to this access right based protection, SGX uses cryptography to
ensure the confidentiality, integrity and freshness of all pages in the EPC. The data only
gets decrypted when it enters the CPU.
An existing enclave can essentially be in three states: "uninitialized", "initialized and in
use" and "initialized and not in use". Enclaves are managed by newly introduced instruc-
tions. If and only if an enclave is in the "uninitialized" state, untrusted software can load
data into the enclave, via the EADD or EEXTEND instructions. The loaded data is hashed.
If the untrusted software is done loading, it executes the EINIT instruction. At this point

22



3.3 Intel’s Memory Encryption Solutions

the hash gets finalized and signed, to allow attestation of the initial enclave content. This
way, the creator of the enclave can check whether the untrusted software, that performed
the loading process, has tampered with the data. If the attestation is successful, the en-
clave enters the "initialized and not in use" state. During the lifetime of an enclave the
state cannot be reverted to "uninitialized", implicating that untrusted software cannot use
the loading mechanism anymore.
Entering and exiting enclaves works via special instructions, similar to entering and exit-
ing VMs. The state of an enclave is stored in a data structure called State Save Area (SSA)
which resides in the EPC. The state is loaded into the CPU upon entering the enclave and
stored before exiting it. This is comparable to the VMCB mechanism in the context of vir-
tualization. In order to prevent leaking secrets from the enclave, the CPU’s state-related
registers are overwritten with dummy values, before the enclaves exits.
SGX also includes a remote attestation feature, to prove to a remote party, that it is talking
to an SGX secured enclave.
Intel SGX has two drawbacks in comparison to AMD’s SME/SEV technology. The first
is the limited size of the EPC, as it is designed to only protect small parts of an applica-
tion, instead of a whole VM, like SEV. However, there has been research to protect whole
applications or even Docker containers with SGX [ATG+16, BWG+16, TPV17, KPM+16,
KCV18, KPM+16]. The second drawback is, that software must be modified in order to
make use of SGX. AMD’s SEV on the other hand, only requires modifications to the OS,
but not to userland software running in the SEV secured VM. For SME, there even is the
TSME mode which does not require any software modifications at all. However, the ma-
jor advantage of SGX is that it does not only provide confidentiality like SME/SEV, but
also integrity and freshness. A more detailed comparison between Intel SGX and AMD’s
memory encryption technologies can be found in [MZLS18].
There have been multiple attacks on Intel SGX that use side channels, like the CPU cache,
to extract secret data from enclaves [BMD+17, GESM17, LSG+17, WCP+17, SCNS16].
Other attacks [BCD+18, LJJ+17] exploited memory corruption vulnerabilities of code run-
ning inside enclaves, to perform Return Oriented Programming (ROP) attacks.

3.3.2 Intel TME/MKTME

Intel TME and MKTME [Int17] are planned features, that will be supported in future Intel
processors. TME provides encryption of the entire RAM, like AMD’s SME. It requires a
small change in the BIOS to be globally activated and thus does not need software modi-
fications. It will use AES-XTS with a 128-bit key, that gets randomly generated upon boot
and is not accessible by software.
Intel MKTME builds on TME but allows the usage of multiple keys on a per-page basis.

23



3 Related Work

The decision, which key should get used to access a page is stored in the page table entries
and is thus manageable by software. Intel claims, that this enables hypervisors to isolate
whole VMs or containers from each other, by encrypting their memory with different keys.
However, it is unclear, whether MKTME can also be used to protect against a malicious
hypervisor. In addition to keys generated by the hardware, MKTME will also support
software provided keys.

24



4 Reverse Engineering the Encryption Mode

In order to predict how the plaintext that corresponds to a ciphertext block changes, when
the ciphertext block gets copied to a new memory location, we need to reverse engineer
the AES encryption mode, particularly the address based tweak function. Only with this
knowledge, we are able to inject meaningful data into the VM via ciphertext moving.

As shown in [DYM+17], AMD uses a tweaked AES encryption to avoid that a ciphertext
block appears multiple times due to an identical plaintext. If AMD would not have added
any randomization, it would have been trivial to move ciphertext blocks, and easy to
fingerprint applications by detecting certain repeating patterns in memory, e.g. alignment
bytes between functions, or zeroed pages.

Since an encrypted block does not have any kind of tag or temporal information, AMD
uses a function of its physical address to compute the associated tweak value. In the
following, we summarize our findings on that function and verify and extend the results
from [DYM+17].

We performed our initial analysis on an AMD Ryzen 1950X which only supports SME.
Later we reproduced these results (with the exception of some minor changes on an AMD
Epyc 7251 with full SEV support. Finally, we analyze the newer AMD Epyc 3151 and
show, for the first time, that it uses a new enhanced encryption mode. However, the mode
is still vulnerable to previous attacks.

4.1 Analysis of AMD Ryzen and AMD Epyc 7xx1 CPUs

According to [DYM+17], AMD uses a fixed array of 16-byte tweak constants ti for i ≥ 4.
Given a physical address p, where bit(p, i) represents its i-th least significant bit for i ≥ 0,
the tweak value T (p) is defined as

T (p) :=

n−1⊕
i=4

bit(p, i) · ti,

so for each physical address bit the respective tweak constant is XORed, if that bit is 1. As
the lowest 4 address bits index inside a 16-byte AES block, they are not used by the tweak
function.

25



4 Reverse Engineering the Encryption Mode

A 16-byte plaintext block m ∈ {0, 1}128 with physical address p is then encrypted as

EncXE
K (m, p) := AESK (m⊕ T (p)) .

Similarly, decryption of a ciphertext c uses the inverse transformation:

DecXE
K (c, p) := AES−1

K (c)⊕ T (p).

This construction is a variant of the XE mode of operation [Rog04].

In order to verify, that the tweak function is indeed T (p) =
⊕

i bit(p, i) · ti, as well as to
provide a universal method for computing the tweak values, we modeled the effect of
the tweak function with a system of linear equations. For simplicity we assume 64-bit
addresses. 

p0

p1
...
pn

 ·


t63

t62
...
t0

 =


T (p1)

T (p2)
...

T (pn)

 .

Unfortunately, it is not possible to directly observe the tweak values for a given address
due to the AES encryption. However, by moving a ciphertext block to another address
before decrypting it, we are able to observe the XORed tweak values for two different
addresses. If q is the address in which m gets encrypted, then moving its ciphertext to
another address p and decrypting it there yields

DecXE
K (EncXE

K (m, q), p)

= DecXE
K (AESK(m⊕ T (q)), p)

= AES−1
K (AESK(m⊕ T (q)))⊕ T (p)

= m⊕ T (q)⊕ T (p).

Since we are able to observe m ⊕ T (q) ⊕ T (p), we can repeat this experiment with a con-
stant ciphertext at address q and varying destination addresses pi, until the destination
addresses form a basis of the address space (or some subspace of it). This allows us to
recover the tweak values by solving the following system of linear equations. To simplify

26



4.1 Analysis of AMD Ryzen and AMD Epyc 7xx1 CPUs

Table 4.1: The first three tweak constants on an Epyc 7251 processor. We denote the first
one as t4 , since there are no dedicated constants for the least significant bits 3 to
0. This also implies that each tweak constant has a length of 16 bytes.
t4 82 25 38 38 82 25 38 38 82 25 38 38 82 25 38 38
t5 ec 09 07 9c ec 09 07 9c ec 09 07 9c ec 09 07 9c
t6 40 00 00 18 40 00 00 18 40 00 00 18 40 00 00 18

the equations, we omit m as it is a known, constant value.
q ⊕ p1

q ⊕ p2
...

q ⊕ pn

 ·


t63

t62
...
t0

 =


T (q)⊕ T (p1)

T (q)⊕ T (p1)
...

T (q)⊕ T (pn)

 .

Note that q can be chosen arbitrarily without altering the solution space of the system of
equations since it is simply a linear combination of

q

q
...
q

 ·


t63

t62
...
t0

 =


T (q)

T (q)
...

T (q)

 and


p1

p2
...
pn

 ·


t63

t62
...
t0

 =


T (p1)

T (p2)
...

T (pn)

 .

The data required for solving these systems of linear equations can be generated by a
Linux kernel module. This allows recovering the tweak values at run time, with very low
overhead.

The first few constants are shown in Table 4.1. Each constant consists of a repeating pattern
of 4 bytes, thus reducing its entropy to at most 32 bits.

The tweak constants on our Epyc 7251 mostly equal those from [DYM+17], who used a
Ryzen 7 1700X. This suggests that AMD hardcoded these values, or at least uses a fixed
seed to generate them on startup. However, even fully randomizing these values on boot
would not add any security, since they are shared across VMs and the hypervisor thus
could easily compute them in advance, as shown above.

We also performed these experiments on an AMD Ryzen 1950X, which only has SME
support. On our first measurements, we found that t8 = t9 = 0, which leads to four
offsets inside each page, that share the same tweak value and thus encrypt to the same
ciphertext if the plaintexts are equal. Sometime later, after applying several OS and BIOS
updates, the tweak values t8 and t9 changed, removing those patterns. This leads us to
the conclusion that the tweak values are influenced by firmware. We used a MSI x399 SLI

27



4 Reverse Engineering the Encryption Mode

Plus Motherboard. The BIOS Version after the update is E7B09AMS.A70.

After our initial experiments on the AMD Ryzen 1950X we built a fingerprinting mech-
anism for the Linux kernel based on these patterns, as, at that point in time, we were
unaware that t8 = t9 = 0 does not hold on the SEV enabled AMD Epyc product line.
In an offline phase, we built a fingerprint that states which pages of the kernel’s .text
section contain equal plaintext at the four offsets that share the same tweak value due to
t8 = t9 = 0. In the online phase, we dumped the system’s memory and tried to find a page
sequence that matches the fingerprint (note, that the Linux kernel is loaded to continuous
GPA’s in a VM).

We evaluated this approach using the Linux kernel versions 4.9.0-3 to 4.9.0-9 from Debian
"Stretch" and were able to identify them without any errors. This result also highlights
the importance of linear independent tweak values (especially for the page offset bits),
as linear dependencies between them would also lead to memory locations that share the
same tweak value. However, as we will see in Chapter 5, linear independent tweak values
in combination with missing integrity protection, strengthen our ability to inject code into
the VM.

In summary, these results show that XE schemes in combination with missing integrity
protection leak information about the tweak function. This is problematic especially in the
context of RAM encryption, where the tweak function is required to have low computa-
tional complexity. The techniques presented in this section show a fundamental approach
to reverse engineer such tweak functions.

4.2 Updated Encryption Mode for newer Epyc 3xx1 CPUs

The Epyc Embedded 3151 processor was released about 8 months after the Epyc 7251,
and features full SEV support. We conducted the same experiments as on the Epyc 7251,
and found that the system of linear equations does not have any solutions on the new
processor, i.e. AMD must have changed the encryption mode.

To reverse engineer the new encryption mode, we assumed that AMD did not greatly
deviate from their previous implementations, and thus conducted a few experiments with
slightly modified functions which used the same tweak values as before. This approach
proved successful and yielded the new encryption function

EncXEX
K (m, p) := AESK (m⊕ T (p))⊕ T (p),

and the matching decryption function

DecXEX
K (c, p) := AES−1

K (c⊕ T (p))⊕ T (p).

28



4.2 Updated Encryption Mode for newer Epyc 3xx1 CPUs

As these equations show, AMD chose to use the XEX [Rog04] mode of operation, where
a second tweak value is XORed to the AES encrypted ciphertext; in this case, both tweak
values are identical.

The altered encryption function significantly complicates the calculation of the tweak con-
stants, since simply decrypting a ciphertext at a different position does not yield usable
results anymore:

DecXEX
K

(
EncXEX

K (m, p) , q
)

= AES−1
K (AESK (m⊕ T (p))⊕ T (p)⊕ T (q))⊕ T (q).

Instead, the attacker needs to guess T (p) ⊕ T (q) and add this number to the ciphertext
before decryption. He can then check his guess by computing

DecXEX
K

(
EncXEX

K (m, p)⊕ T (p)⊕ T (q), q
)

?
= AES−1

K (AESK (m⊕ T (p)))⊕ T (q)

= m⊕ T (p)⊕ T (q).

(4.1)

If all 128 bits of the tweak constants were chosen randomly, this operation would become
infeasible; however, AMD still uses the repeated 4-byte pattern, so each tweak constant
has only 32 bits of entropy.

Guessing these tweak constants is still computationally expensive, since one has to flush
the respective TLB entry and the CPU caches when changing the encryption status of a
page. Only performing one guess per flush operation, would require more than a day,
to brute force a single tweak value. The number of guesses per flush operation can be
increased with the following strategy.

Let us assume we want to brute force the tweak for bit i and already know the tweaks t4 to
(including) ti−1. First, we encrypt our initial plaintext at an address q, which has bit i set,
but does not have set any bits with a larger index. This allows us to use all 16-byte blocks,
whose address p does have set any bit with an index larger than i − 1, to test a different
guess for ti. Figure 4.1 shows a visualization of this memory layout. In practice, some of
these blocks might already be in use. To do so, we first copy the original ciphertext from
address q to p. As we choose the addresses q and p in such a way, that q ⊕ p has bit i set,
but does not have set bits with a larger index, we can calculate the tweak difference of q
and p except for the influence of bit i, for which we guess a tweak value. Afterwards, we
can test our guess by decrypting the moved ciphertext blocks, as shown in Equation 4.1.
If we do not know any tweak values, we need to use a slightly less efficient strategy, as
the addresses p used for guessing tweak values may only differ in bit i. However, we can

29



4 Reverse Engineering the Encryption Mode

p_k

0i63address bits

0 0.......................0000............................1

1 0.......................0000............................0

0 0.......................0000............................0

...
0 0.......................0100............................0

q

p_0
p_1

...

Copy
Copy
Copy

Figure 4.1: Memory layout for brute-forcing tweak ti, when t4 to ti−1 are already known.
The original ciphertext gets encrypted at block q and is copied to blocks with
a smaller address. This way, we can calculate the tweak difference of q and pi
except for the influence of bit i, for which we want to guess the tweak value.

work around this, by encrypting our initial plaintext at multiple addresses.
Using these strategies, we only need around 30 minutes for each tweak constant. Given
that even the newer CPUs still use the same tweak constants for every VM, the hypervi-
sor can pre-compute the table once in advance, so the slightly higher computation time
becomes negligible in terms of security. Even changing the tweak values each boot would
not mitigate this as the decision to reboot is controlled by the attacker.
In summary, we showed that on the recent Epyc 3xx1 product line AMD implemented the
well-known XEX encryption mode. However, the tweak values have very low entropy
and depend linearly on the physical memory addresses, enabling a malicious hypervisor
to compute the entire table of tweak constants nevertheless. In the next chapter, we will
exploit this fact and show how known plaintext can be used to place arbitrary code and
data in the encrypted VM.

30



5 Fault Injection Attacks

As we have seen in the previous chapter, we can compute the tweak values for any phys-
ical address. In this chapter, we show how a malicious hypervisor can use the knowledge
of the tweak values together with known plaintext and the missing integrity protection,
to place 16-byte blocks containing some consecutive, controlled bytes. This narrow attack
vector already suffices to insert early returns in functions and skip parts of code, as shown
in Subsection 5.4.1. In Section 5.5 these byte sequences are exploited to build a full 16-byte
encryption oracle, which allows us to execute arbitrary code on the highest privilege level
within the VM. Contrary to previous work [DYM+17, LZL19], which has used network
I/O to create an encryption oracle, we do not need any control over the plaintext that
gets loaded into the VM in order to inject arbitrary data/code: Instead, we simply use the
plaintext that is already inside the VM anyway.

5.1 Attacker Model

We assume that the attacker controls the hypervisor, which implies control over the NPTs
and the ability to modify the VM’s RAM. The attacker knows at least parts of the binary
of the guest kernel, which might be due to the unencrypted /boot partition or by using
fingerprinting (see Section 7.4). We assume that the VM is secured by SEV-ES, implicating
that the initial VM image cannot be tampered with and the VMCB is protected. We do not
require, that the VM communicates over the network or uses disk I/O.

5.2 Tracking Guest Execution

To be able to make the VM execute hypervisor-supplied code while being in a known
state, we need to follow and eventually suspend its execution. We achieve this by using
the page fault side channel, as explained in Section 2.2.
Our attacks require computing tweak values, which in turn depend on HPAs, so we have
to infer the latter for both the source and destination GPAs. The NPTs provide this trans-
lation. Since we aim at injecting and executing code in the VM, we need to find GPAs
that are mapped as executable inside the guest. We cannot directly inspect the page tables
inside the VM, but we can acquire this information by monitoring for page faults due to
missing execute permissions via the page fault side channel.

31



5 Fault Injection Attacks

The guest kernel is a suitable target for code injection attacks because it is executed with
the highest privileges. However, similar to Address Space Layout Randomization (ASLR)
for the virtual addresses of userspace applications, the kernel’s GPA and GVA are also
randomized. This is called Kernel Address Space Layout Randomization (KASLR) and
intended to harden the kernel against memory corruption based attacks. In contrast to
user space applications, the Linux kernel is loaded to consecutive GPAs and GVAs. This
makes it significantly easier to locate it based on page fault information as the GPA of a
single function/symbol of the kernel is enough to break the randomization. We present
a method for finding the guest kernel in Subsection 5.4.1 and discuss alternatives in Sec-
tion 7.4.
As mentioned in the attacker model, the kernel code can be assumed to be entirely known
to the attacker and thus also serves as a reliable source for ciphertext blocks with known
plaintext, which can be copied to other places in the kernel to trigger malicious behavior.

5.3 Placing Partially Controlled Plaintext

Knowing the destination address in VM memory, we can now start to construct our at-
tack primitive. Since SEV lacks any integrity protection, the hypervisor can modify the
contents of the entire guest’s memory. Randomly guessing ciphertexts is rather unlikely
to yield meaningful plaintext and will, especially in the case of code, most probably crash
the VM. However, since we can compute the tweak values for any given address, we can
re-use existing ciphertext blocks after applying slight adjustments.
We assume that we want to place a 16-byte block m at address p. We then need to find
an address q holding a known 16-byte plaintext block m′, which satisfies the following
property:

m⊕ T (p) = m′ ⊕ T (q)

⇔ m′ = m⊕ T (p)⊕ T (q).

Copying the corresponding ciphertext block from q to p and decrypting it, yields the de-
sired plaintext block m:

DecXE
K

(
EncXE

K

(
m′, q

)
, p
)

= AES−1
K

(
AESK

(
m′ ⊕ T (q)

))
⊕ T (p)

=
(
m′ ⊕ T (q)

)
⊕ T (p)

= [m⊕ T (p)⊕ T (q)⊕ T (q)]⊕ T (p)

= m.

32



5.4 Code Injection

To target the XEX encryption mode of the AMD Epyc 3xx1 product line, the copied cipher-
text block needs to be slightly adjusted, by adding an additional T (p)⊕ T (q) to cancel out
the effect of the additional XOR:

DecXEX
K

(
EncXEX

K (m′, q)⊕T (p)⊕ T (q), p
)

= DecXEX
K

(
AESK

(
m′ ⊕ T (q)

)
⊕ T (q)⊕ T (p)⊕ T (q), p

)
= DecXEX

K (AESK (m⊕ T (p))⊕ T (p), p)

= m.

The complexity of the bit sequences a malicious hypervisor is able to create with this
method is limited by several factors. The first is the diversity of the known plaintext
blocks, i.e. whether they have enough entropy. The next limitation is the 32-bit periodicity
of the tweak values (which we can control by choosing the HPA a GPA gets mapped to),
so we can expect to able to control at most 4 bytes of any 16-byte block in a reliable way.
Finally, for the 28 tweak values we reverse engineered on our processor, we found that all
of them are linear independent, so for each guest page, the hypervisor can choose from
up to 228 different base addresses which yield different ciphertext blocks. This suggests a
rough upper bound of 3 bytes per block, which an attacker is likely able to fully control,
if given enough plaintext. Given more memory, there might even be more independent
tweaks (but no more than 32 as the 128-bit tweaks are 32-bit periodic).
In our experiments, we found that we can very reliably find a fitting pair m′/q for any se-
quence of two bytes, given about 8 MB of known plaintext. We obtained them by copying
the .text (code) section of the Linux kernel bootstrapper as it gets loaded into memory,
which can be easily located due to the lack of randomization of its load GPA. In addi-
tion, as discussed in the previous section, we can also use the .text section of the kernel
binary itself as a known-plaintext source.

5.4 Code Injection

We now show how the two controlled bytes per block can be used to modify existing VM
code, allowing us to redirect control flow and to insert arbitrary 2-byte instructions.
Instructions on x86-64 have variable length and might share prefixes, so we have to con-
sider whether we change or break an existing instruction when injecting our 16-byte block.
Also, we have to ensure that the uncontrolled bytes of our block do not get executed since
we cannot control their effect which most likely results in a crash. The easiest way to
achieve this is by finding a 16-byte aligned instruction and overwriting it with a short

33



5 Fault Injection Attacks

??13

13 48f3 48 85 c0 74 ff c2 48 89 15 b0 2e 10 00 ff 10 48 89 05 a7 2e 10 00 48 89 05... ...

test
rax, rax

je
+0x13

inc
rdx

mov
qword [...], rdx

call
[rax]

mov
qword [...], rax

f3 48 85 c0 eb ?? ?? 05 a7 2e 10 00 48 89 05... ...

test
rax, rax

jmp
+0x13

??

?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

(a)

(b)

Figure 5.1: Example for changing execution flow by replacing one 16-byte block of code.
While the base program (a) branches conditionally depending on the value of
the rax register, the patched version (b) has this branch replaced by an un-
conditional one. The remainder of the inserted block consists of uncontrolled
bytes, which are not expected to form a sequence of meaningful instructions.

branch instruction like ret or jmp, like show in Figure 5.1. This simple modification
already suffices to completely disable KASLR, as we will see in Subsection 5.4.1.

Finding a 16-byte aligned instruction for an injection point is rather easy for 64-bit code:
For performance reasons, most compilers align functions and frequently used chunks of
functions to an architecture-specific value, which usually happens to be 8 bytes on x86-64,
so we can expect around every second function to be aligned to a 16-byte boundary.

To avoid executing the uncontrolled bytes of a block, we always have to insert a jump
instruction – which takes both usable bytes of a block, so this method only allows us to
skip small parts of the underlying code. For inserting other instructions, we propose the
layout shown in Figure 5.2. First, we inject a jmp at a 16-byte aligned instruction. With
this, we jump to offset 14 of the following block, where we can place an arbitrary two-
byte instruction. We will call this the payload. Then we can use the first two bytes of the
following block to again jump to the next payload location. This way we maximize the
number of consecutive bytes that we can control.

In Subsection 5.4.1, we successfully use this method to disable KASLR and illustrate a fast
cpuid-based 16-byte encryption oracle. Finally, in Section 5.5 we build another 16-byte
encryption oracle which solely relies on ciphertext block moving and a synchronization
mechanism. We show how the latter can be implemented based on intercepted instruc-
tion or the page fault side channel. The 16-byte encryption oracle does not depend on the
capability of the hypervisor to modify the cpuid registers, so it is hard to mitigate with-
out introducing proper integrity protection. Both encryption oracles allow us to execute
arbitrary code within the VM.

34



5.4 Code Injection

pay
load

jmp
+0x1c

pay
load

jmp
+0x1c

jmp
+0x1c

pay
load

control flow

2 Bytes 14 Bytes

uncontrolled

uncontrolleduncontrolled

uncontrolleduncontrolled

uncontrolled

Figure 5.2: A sequence of consecutive 16-byte blocks are chained together to get small
contiguous chunks of code, which are connected by unconditional 2-byte jmp
instructions to avoid executing the uncontrolled bytes in between. Thus two
bytes of every second block can be used to execute arbitrary 1-byte or 2-byte
instructions (payload). The last payload may either redirect to original code
(e.g. by returning) or enter a loop.

5.4.1 Attack Case Studies

This section shows example applications of the just created injection primitive. As we will
see, even very subtle modifications to an application’s control flow can have severe effects.

Disabling KASLR

To be able to track the VM’s execution, the hypervisor needs to know the base GPA of the
kernel, which is randomized by KASLR, as discussed in Section 5.2 . In order to perform a
first demonstration of our attack primitives, we disable KASLR using the one-block code
injection method from Section 5.4, effectively placing the kernel at a well-known, constant
GPA.
To perform KASLR, the function choose_random_location is called, while the kernel
bootstrapper loads the actual kernel code. The function checks whether the user provided
the nokaslr kernel command-line option; if this is the case, it returns immediately. Else
the function computes random physical and virtual offsets and adds them to the standard
base addresses for the kernel. Therefore, it is sufficient to place a ret at an early location
in the function, to disable KASLR.
For a successful modification we need to perform the attack after the code has been loaded
into memory, but before it gets executed. To get the right timing, we utilize the page fault

35



5 Fault Injection Attacks

side channel as explained in Section 2.2. We remove the write permissions to the physical
page after the first part of the targeted function is copied. This causes a page fault to be
triggered as soon as the boot loader is done copying the first part of the function and
tries to copy the next one. When handling the page fault, the hypervisor places the block
containing the ret instruction and then resumes execution.

CPUID Encryption Oracle

Our code injection primitive can be combined with the hypervisor-interceptable cpuid

instruction to gain control over certain general purpose registers and build a high-
performance 16-byte encryption oracle.

As explained in Subsection 2.4.3, the content of the VMCB gets encrypted and integrity
protected upon a #VMEXIT in case SEV-ES is enabled. This prevents a malicious hypervi-
sor from manipulating its content; however, in order to emulate instructions like cpuid,
the value of certain registers is still shared via the GHCB. While the guest owner may
disable instruction emulation, they are an important virtualization feature that allows for
fine-grained control over exposed hardware features as well as keeping the VM’s environ-
ment consistent in case of live migration.

OS kernels frequently call the cpuid instruction during startup to retrieve information
about system capabilities and topology. Since the results of these calls often get directly
stored in memory for caching purposes (e.g. the vendor string), this poses an easy target
for injection attacks. First, we determine the HPA of the cpuid call and the associated
memory store; then we inject a block containing an unconditional jump to the cpuid

instruction after the memory store in order to create a loop. On each cpuid call, the
hypervisor sets the return registers, resumes execution and waits for the next cpuid call.
When this call occurs, the data from the last call has been stored, so the hypervisor can
copy the encrypted data to the desired location.

We implemented this exploit in the get_model_name function (arch/x86/kernel/
cpu/common.c) of the Linux kernel, since it writes the cpuid result to a contiguous
block of 16-bytes, which can be directly used as an encryption oracle. One could also
use our basic injection attack to create such a cpuid loop. The results can be stored on
the program’s stack memory, whose GPA can be determined by the stack detect gadget
which will be presented in the next section. Since we only need one context switch be-
tween VM and hypervisor per 16-byte block, this channel is very efficient: We encrypted
1’000’000 blocks (16 MB) within around 37.5 seconds, suggesting a bandwidth of around
3.41 MBit/s or 426.67 KB/s.

36



5.4 Code Injection

Breaking OpenSSH Privacy

SSH is a very popular remote access solution under Linux. While there are various im-
plementations, OpenSSH is the most popular one [GHC14]. In the SSH handshake, the
client and server first negotiate a shared secret using a Diffie-Hellman (DH) handshake.
Next, the server proves its authenticity via the Digital Signature Algorithm (DSA) or El-
liptic Curve Digital Signature Algorithm (ECDSA). We show that we can compromise the
shared secret, as well as the private key used for the DSA signature, by altering the control
flow in the random number generators used for generating the randomized values in the
respective algorithms. For our experiments, we used Ubuntu with OpenSSH_7.9p1 and
OpenSSL 1.1.1c.
In our OpenSSH version, the x25519 variant of the Elliptic Curve Diffie-Hellman (ECDH)
handshake is used, which is implemented directly in the OpenSSH server. The random
number for the server’s private part of the handshake is generated by a ChaCha20-based
random number generator. The content of a global variable rs is used as a key for the
ChaCha20 algorithm. During the startup of the OpenSSH process, rs is seeded from the
OpenSSL random number generator. OpenSSH uses its own process for every connection.
The keystream generated by ChaCha20 is stored in a buffer and used as random data on
request. If all data from the buffer has been read, ChaCha20 is called again to reseed rs
with new random data.
The functions for seeding rs on startup are 16-byte aligned and have no return value. Thus
we can abort them by injecting a ret instruction to prevent seeding. This means that rs
(as a global C variable) is still initialized to zero when it is used as a key for ChaCha20.
This allows the attacker to calculate the shared secret, as he knows the private value used
by the server and can easily obtain the client’s public value by monitoring the VM’s net-
work traffic.
The attack on the signature algorithm works in a similar fashion. The OpenSSH server
uses OpenSSL’s implementation of DSA/ECDSA to prove its identity. Both variants use
an ephemeral key value for the signature, that must remain secret. Otherwise, the private
key can be calculated given the message and the signature. Using our injection primitive
we can reduce the randomness to an uninitialized stack array by inserting a jmp instruc-
tion. With the OpenSSL 1.1.1c version, this value was always constant. We also tried this
with the OpenSSL versions shipped in Debian Buster (stable) and Debian Bullseye (next
stable). In these versions about 32 bits of the value were randomized.
In OpenSSH, the message that gets signed to prove the server’s authenticity, contains the
shared secret generated by the DH handshake and is never explicitly sent over the net-
work. Instead, both parties calculate them from the transmitted values. Thus an attacker
either has to initiate a handshake himself or combine this attack with the attack on the

37



5 Fault Injection Attacks

shared secret, to be able to infer the message that gets signed. The latter has the advantage
that the attacker does not need to generate network packets himself. In [HB17, MHH19],
it is shown how to identify pages containing specific data of user space processes with
the page fault side channel. This should also be applicable to identifying the GPA of
OpenSSH’s code pages, in order to perform our attack.

5.5 Executing Arbitrary Code

The previous two examples have shown that even little modifications to the control flow
can have a severe effect on the system’s overall security. However, our ultimate goal is
to execute arbitrary code, without having to rely on the ability to control register con-
tents through an intercepted instruction, or use of I/O. We will advance the 4-byte block
chaining method from Section 5.4, to inject a program into the VM, which writes arbitrary
data into a 16-byte block of memory. This block encryption oracle enables us to execute
arbitrary code with kernel privileges inside the VM. We show that the oracle can easily be
used to construct a decryption oracle as well.
The basic idea is to inject a small code gadget into the VM, that performs some computa-
tions in order to write 4 bytes of plaintext into a 32-bit register. Next, we push this register
onto the stack, to get an encrypted version of our plaintext; this serves as an intermediate
4-byte encryption oracle, so we are able to control 2+4 = 6 consecutive bytes. We then use
this increased payload size to repeat the same process with 64-bit registers, finally giving
us control over the full 16 bytes of a block.

5.5.1 Synchronisation with Hypervisor

The proposed attack needs careful synchronization between VM and hypervisor, such
that the hypervisor can suspend execution at a precise point in time and modify guest
memory. We propose two different mechanisms to achieve this. The first mechanism
utilizes the cpuid instruction, which can be intercepted by the hypervisor and features a
2-byte opcode: Each time cpuid is executed, the hypervisor is called to emulate it. So, by
interleaving the injected instructions with cpuid calls, we can precisely redirect execution
to the hypervisor.
The cpuid calls clobber the eax, ebx, ecx and edx general purpose registers, so they
are not usable for the constructed gadgets. Also, the eax register (which determines the
requested leaf ID) should be cleared beforehand to avoid calling additional handling logic
in the hypervisor – leaf 0 just returns the vendor ID.
It is convenient to use the cpuid instruction because it has a simple handler in the KVM
hypervisor. As stated in Section 2.1, the interception of instructions like cpuid or rdtsc

38



5.5 Executing Arbitrary Code

is important, as it allows fine-grained control over exposed hardware features, as well as
providing the VM with consistent information after a live migration. However, the guest
owner can configure which instructions are interceptable by the hypervisor via the VM’s
VMCB.

A more complex alternative to the cpuid-based execution transfer is the usage of the
page fault side channel, which also allows a precise interruption of the VM. If we want
to interrupt the VM between two injected instructions, we ensure that they reside on two
different pages p1 and p2, and remove the execute permission in the hypervisor’s NPT.
This way, the VM gets interrupted before the first instruction in p2 gets executed. We then
remove the execute permission for p1, such that the hypervisor gets triggered another time
to remove execute permissions for p2 once again.

For simplicity, we use the cpuid instruction if we want to express that the VM should be
interrupted at a certain point. However, the same results can be achieved by only using
the page fault side channel, which is more cumbersome to use, but also more difficult to
mitigate.

5.5.2 Locating the stack memory

In order to use the stack for our encryption oracle, we need to get the HPA of the related
stack pages. We solve this problem by combining the cpuid method and the page fault
side channel.

We use the attack primitive from Section 5.4 to construct an instruction sequence cpuid;
push rdi. cpuid triggers the hypervisor, which then removes write access from all
memory pages belonging to the VM, and resumes execution. The following push rdi

tries to write to the non-writable stack memory page and subsequently raises a page fault
in the hypervisor. The page fault exception information yields the corresponding GPA
and thus the HPA of the stack.

If the write address of the push rdi is near the end of a page, the hypervisor may issue
an extra pop rdi instruction to ensure that the next stack operation writes to the same
page. This also significantly eases restoring original execution after inserting the encryp-
tion oracle code.

5.5.3 4-Byte Encryption Oracle

Originally, x86 only supported 16-bit and 32-bit operands. When the CPU vendors
implemented support for native 64-bit operations, they did not add new opcodes for
every general-purpose instruction (e.g. arithmetic and memory-to-register/register-to-
memory); instead, they introduced the REX prefix, which, when put before an instruc-

39



5 Fault Injection Attacks

aa bb cc dd 00 00 00 00 aa bb cc dd 00 00 00 00

?

?

00 08
rsp+0x00

rsp+0x10

1) push rsi

2) push rsi

esi = 0xddccbbaa

Figure 5.3: Layout of stack after pushing the 32-bit esi register. The stack pointer is de-
creased when pushing a register, so, depending on the stack pointer’s original
alignment, we might have to push the register another time to set the lower
address part of a 16-byte block. Since this is a 64-bit operation, the (zeroed)
higher 32-bits of rsi are pushed as well. Due to the endianness of x86 the
lower significant bytes end up first, the higher bytes last. We thus finally get a
16-byte block where we control the first 4 bytes.

tion’s opcode, upgrades its operands to 64-bit mode. Since in 32-bit mode most general-
purpose instructions are encoded using at least 2 bytes, this prefix extends them to 3
bytes – but our attack primitive only supports 2 bytes of payload. However, when adding
64-bit support, the 1-byte push reg instructions were redefined to only support 64-bit
registers, so we can use the payload to perform stack writes. We thus can use 32-bit in-
structions to control the lower half of some registers, and then push those onto the stack.
Hence we can control the lower 4 bytes of a 16-byte block, so the possible payload is
doubled, enabling us to use 64-bit instructions for the next step.
x86 is a little-endian system, so when we push a register to the stack, its bytes are stored
in reversed order. This means, if we set the least significant 32 bits of a register and push
it to the stack, those bits will be placed at lower addresses (Figure 5.3). If the stack pointer
has been 16-byte aligned before our first push, the controlled bytes will then reside in
the middle of the 16-byte block, where we cannot chain them with another block. So we
have to push the register a second time – now the stack pointer is 16-byte aligned, and
the payload resides at the block beginning. Depending on the stack page offset and the
number of blocks being created, one might have to add some pop instructions to free up
stack space before proceeding with the next block.
As the last building block, we need a gadget to place an arbitrary 32-bit value into a regis-
ter. This gadget can be constructed via a simple combination of increments and left shifts:
First, the register is cleared by XORing it with itself (this also automatically clears the up-
per 32-bit of the corresponding 64-bit register). To add a 0 bit, the register is just shifted; to
add a 1 bit, the register is incremented and then shifted. This will take at most 31 rounds

40



5.5 Executing Arbitrary Code

jmp +0x1c

xor eax, eax

jmp +0x1c

xor esi, esi

jmp +0x1c

cpuid

0x00 0x02 0x10 Case 1: Set next bit to 0
A

shl esiB

Case 2: Set next bit to 1
inc esiA

shl esiB

Case 3: Write to stack and reset
2x push rsiA

jmp nextB

2x nop

jmp +0x1c

A
jmp +0x1c

B
jmp -0x62

next:

Virtual Machine Hypervisor

0x0e

Figure 5.4: Schematic of the 4-byte encryption oracle. Each row represents a 16-byte block
(not to scale), control flow jumps are denoted by arrows. On each call of cpuid,
the hypervisor replaces blocks A and B depending on the desired action: It may
either shift 0s and 1s into esi, or push the rsi register two times to the stack to
get an encrypted 16-byte block. This process can be repeated arbitrarily often.

until the most-significant bit has been set. All the involved instructions have 2-byte op-
codes. The final block layout forming the 32-bit oracle is shown in Figure 5.4. To move the
payload from the location where it gets encrypted to another memory location, we need to
consider the XOR difference of the tweaks used at these two memory locations and XOR
it with our payload before using the 4-byte oracle.
In summary, we are now able to control 4 byte per 16-byte block. In the next paragraph
we show that this is sufficient to inject a program allowing us to control a whole 16 byte
block.

5.5.4 16-Byte Encryption Oracle

The 16-byte encryption oracle works very similar to the 4-byte encryption oracle. First,
we ensure that the stack is 16-byte aligned; if we used the described process for creating
the 4-byte encryption oracle, we already have this information. Then we use the same
strategy as in the 4-byte encryption oracle to load the two 64-bit chunks of our plaintext
into 64-bit registers and push them onto the stack. Since we made sure that the stack was
16-byte aligned before the first push operation, we now have an entire 16-byte aligned
16-byte block in memory, which only needs to be copied to the desired location.
The formerly introduced 4-byte oracle allows us to use 6-byte instruction gadgets, so after
subtracting the necessary jmp instructions we can use 4 bytes of payload. This is suffi-
cient for most 64-bit register-to-register arithmetic. Though there might be more efficient
methods for assigning hypervisor-defined values to a 64-bit register, we reuse the incre-

41



5 Fault Injection Attacks

48 ff c6 eb 1a

inc
rsi

jmp
+0x1c

??

Figure 5.5: Example for injection of a 3-byte opcode payload followed by an uncondi-
tional jump, using a block created with the cipher block moving primitive,
and one block from the 4-byte encryption oracle. It is desirable to fully use
the 4 bytes from the encryption oracle, since finding a fitting block for the ci-
pher block moving primitive requires more complexity, when the number of
payload bytes increases.

ment/shift method for sake of simplicity.
The implementation is very similar to the 4-byte oracle: All instructions involving the
target register (rsi) are extended to 64-bit using the REX opcode prefix. Additionally,
instead of pushing rsi twice, it is only pushed once and another iteration is started to
push another value. This way we can fully control all 128 bits of the plaintext block.
Figure 5.5 shows an excerpt of a gadget using a 3-byte opcode payload.
In summary, we are able to encrypt arbitrary 16-byte values, by injecting a program into
the VM that performs some computations in order to write data into encrypted memory
owned by the VM.
Finally, we show how to implement the gadgets from the previous paragraphs without
the use of intercepted instructions like cpuid. We demonstrate this with the 4 byte en-
cryption oracle. We first split the instructions shown in Figure 5.4 between two pages
p1, p2 as follows: everything above the cpuid instructions is stored at the end of p1 while
everything below this instructions gets stored at the start of p2. The cpuid instruction
itself is removed. Before entering the gadget, we remove the exec rights from p2. Thus,
the VM gets interrupted before the first instruction of p2 is executed. When receiving the
interrupt, in addition to deciding which blocks should get inserted at A and B, we also
remove the exec rights from p1. This way, the VM gets interrupted again, when we jump
back to p1 via the jmp instruction after the placeholder. B, allowing us to again remove
the exec rights from p2. This concludes the first round. Note that we are back at the initial
state.

5.5.5 Code Execution allows stealthy Decryption

Throughout this section, we have shown how to execute arbitrary code via a self-
bootstrapping, non I/O dependent encryption oracle. This of course raises the question,
if it is possible to create a decryption oracle with a similarly low set of requirements. We
now show how a decryption oracle can be constructed by extending an idea of Hetzelt

42



5.5 Executing Arbitrary Code

and Buhren [HB17].
As explained in Subsection 2.4.1, the encryption status of a page can be controlled via the
C-bit, in each page table entry. This allows the VM to share pages with the hypervisor.
Hetzelt and Buhren show that using an encryption as well as an decryption oracle, the
hypervisor can insert a shared page into the page table of a process running inside the
VM. The hypervisor can then copy the content of an encrypted page into the shared page.
In their approach, they use a decryption oracle in order to find a free entry in the page
table of a victim process running in the VM. We do not need a decryption oracle for this
approach: Allocating a shared page, as well as copying some data to it, can be done via an
injected program instead.
Thus, we conclude that the existence of an encryption oracle immediately implies a de-
cryption oracle. Furthermore, this method is very stealthy compared to using loggable
network communication to extract data, like in [MHHW18, LZL19]. In addition, this al-
lows for very high throughput, as the copy rate of the injected program is only limited by
the VM’s ability to write to RAM.

43





6 Comparison to Related Work

First, we present a performance analysis of our 16-byte encryption oracle, before compar-
ing it to encryption oracles constructed in related work.

6.1 Throughput of our oracle

We performed the experiments related to the encryption oracle on an AMD Epyc 3151,
running Ubuntu 19.04 with Linux kernel version 5.0.18 as a host OS and 16 GB of RAM.
The guest was running Ubuntu 19.04 with kernel 5.0.0-27-generic and was configured
with 1 GB of RAM. The used QEMU version was 2.12.0. We made use of the SEVered
framework [MH19] to inject page faults into the VM.
To evaluate the performance of our encryption oracle, we set up a program that waits for
a trigger before calling the function in which we injected our gadgets. First, we bootstrap
the 16-byte encryption oracle via the stack detect gadget and the 4-byte encryption oracle.
Then we use it 1000 times to encrypt 16-bytes of payload data. On our unoptimized proto-
type, the setup part takes 0.62 seconds and the payload encryption needed 75.86 seconds.
This translates to a throughput of 211 Bytes per second for the 16-byte oracle.
Our prototype implementation focuses on ease of implementation and debugability, thus
the performance can be improved by writing more than one bit to the rsi register before
interrupting the computation with a call to cpuid. A sequence of zeroes could be written
by inserting an x-bit left shift (4-byte opcode), instead of performing x rounds with a
single bit left shift. Furthermore, we could simply increase the number of instructions
we execute each round, to decrease the number of interrupts/context switches and write
operations which require expensive flushes.

6.2 Comparison

In this section, we compare our results to the encryption/decryption oracles constructed
by Du et al. [DYM+17] and Li et al. [LZL19]. If not stated otherwise all attacks assume a
malicious hypervisor. An overview can be found in Table 6.1.
Du et al. [DYM+17] were, to the best of our knowledge, the first to discover the original
encryption mode of SME as well as the tweak values. Their experiments were performed
on an AMD Ryzen CPU without SEV support (AMD Epyc 7xx1 CPUs were not readily

45



6 Comparison to Related Work

Table 6.1: Comparison of different approaches for encryption oracles. 1Li et al. [LZL19]
only specify the decryption rate, but it should be similar to the encryption rate
due to the similar construction.

Du et
al. [DYM+17]

Li et
al. [LZL19]

cpuid
Cipher Block

Moving
Needs service in VM yes no no no

Relies on I/O yes yes no no
Needs instruction

emulation
no no yes no

Encryption rate
(B/s)

unknown 2001 426670 211

available at that time). They constructed an encryption oracle for a self-built simulation
of SEV. Their attack requires knowledge of the tweak values, an Nginx server running in
the VM and is not mitigated by SEV-ES.

They found that Nginx stores parts of the data sent to it in consecutive 16-byte blocks at
fixed offsets inside a page. Building on this, they send an HTTP packet whose payload is
designed in a way, that the parts going to these offsets contain exactly the tweak values of
said offsets. This way, the data encrypts to the same ciphertext, making it easily detectable
in a memory dump.

They use this to encrypt code and execute it in the VM. In contrast to our encryption
oracle, they rely on self-generated network traffic getting processed by an Nginx web
server inside the VM as well as the discussed memory management behavior of Nginx.
It is unclear whether different services, or even different versions of Nginx, show similar
exploitable behavior. They do not give performance measures.

Li et al. [LZL19] showed how to create an encryption/decryption oracle by leveraging un-
protected DMA operations, knowledge of the tweak function and control over the NPTs.
For the demonstrated attack, they also require network traffic, whose frequency linearly
scales with the throughput of their oracles. Their attack works with SEV-ES.

According to them, DMA is the most common method used by VMs to perform I/O oper-
ations. They exploit, that current IOMMU hardware (which is responsible for performing
DMA) only supports one memory encryption key, while SEV uses one key for the hyper-
visor as well an additional key per VM. Thus, all DMA operations must be performed on
memory pages ps that are shared between the hypervisor and the VM i.e. encrypted with
the hypervisor’s encryption key. This means if the guest wants to write data via DMA, it
first needs to prepare the content in a private page pp before copying the content into ps.
Reading data via DMA works the other way around.

The general idea for their decryption oracle is to manipulate the content of pp, before its

46



6.2 Comparison

content is copied to ps. For their decryption oracle, they use DMA write operations. To
decrypt the memory at address q they copy it into pp, before it gets copied to ps. In order
to get the GPA of pp, they use the page fault side channel. They demonstrated their ideas
based on DMA operations related to OpenSSH network traffic.
For the decryption oracle, they are limited to the packets sent by the VM. Further, they
show that they can make their oracle harder to detect by only overwriting parts of pp that
contain known metadata spanning at least a whole 16-byte aligned block. This way, they
can restore the overwritten parts before sending the package over the network. Assuming
a packet rate of 10 packets per second they showed that their decryption oracle has a
throughput of about 200 B/s.
For the encryption oracle, they can also use self-generated network packets. Since only
the VM can decide whether it wants to process a package or not, all network traffic ad-
dressed to it gets copied into the VM. If there is no service listening for a packet, the VM
simply drops the packet. Thus, their encryption oracle can also be used if there is no net-
work service running in the VM. However, a high rate of dropped packages might arouse
suspicion. They did not give any data for the throughput of the encryption oracle. But
since the construction is similar to the decryption case, its throughput should scale in a
comparable manner with the packet rate.
For the encryption oracle, they do not state whether the idea of replacing the payload with
known metadata can be applied. If this is not possible, the VM can observe the packages
that get destroyed by the encryption oracle. Our encryption oracle is not affected by such
problems, because we take over the control flow that processes the data, instead of trying
to manipulate data used by the regular control flow.
Like we have shown above, our encryption oracle reaches a slightly higher throughput
with our prototype implementation, although they based their measurements on an SSH
packet rate of 10 pps, which is quite high for user-generated input (one packet roughly
equals one keystroke). Since we do not depend on I/O, we can achieve our throughput
independently of the rate of network packages. While they claim that their approach can
be applied to any DMA I/O performed by the VM, it is unclear which of them sport
known metadata that spans at least a 16-byte aligned memory block in order to make the
attack stealthy.

47





7 Countermeasures

Our code injection attacks, as well as the injected 16-byte encryption oracle, build on the
missing integrity protection, the reverse-engineered tweak values, known plaintext and
the page fault side channel. The high-performance cpuid encryption oracle from the case
study in Subsection 5.4.1 also requires that the cpuid instruction is interceptable by the
hypervisor. In the following sections, we discuss how changes in these areas influence our
attack.

7.1 Integrity Protection

With cryptographic integrity protection, the cryptosystem could detect blocks created
with the cipher block moving approach. This would prevent us from injecting code/data
into the VM, mitigating the attacks presented in this thesis, as well as all of the related
work mentioned in Chapter 6 with the exception of the application fingerprint presented
in [WMA+19] and the attacks on the AMD SP from [BWS19]. In a recent talk, [Kap19]
David Kaplan (AMD) provides first information on a planned extensions of SEV, called
SEV Secure Nested Paging (SEV-SNP). Instead of adding strong, cryptographic integrity
protection, they propose a new mechanism called Reverse Map Table (RMP) to prevent
the hypervisor from writing to pages used by the guest. In order to manage this structure,
they plan to introduce an x86 instructions set extension. However, at the time of writing,
no whitepaper with precise technical information on SEV-SNP exists.

7.2 Tweak Function

Without the knowledge of the tweak values, we could no longer predict the effect of a
cipher block move. [LZL19] claims that "Future versions of the tweak function will be im-
plemented as T (k, a) where a is the physical address and k is a random input that changes
after every systems boot". For the non XEX version of the encryption scheme, considered
by them, this would not make any difference, since our method from Chapter 4 can be
implemented in a kernel module to recalculate the tweak values at run time, with very
little overhead. For the XEX version, discovered by us, we demonstrated in Section 4.2
how to brute force the tweak values at run time, as long as they stay 32 bit periodic (or
have a similarly low periodicity). While the tweak recovery process takes about 30 min-

49



7 Countermeasures

utes per tweak, we want to stress that the decision to reboot is under the control of the
malicious hypervisor. However, we are unaware of any method to directly calculate the
tweak values, like it was possible with the previous version. We believe that using 128-bit
randomized tweak values are a mitigation to this attack vector.

7.3 Fixing the Page Fault Side Channel

Currently the hypervisor can manipulate the NPT to provoke page faults. In theory, the
page faults should contain the full GPA, which is the Guest Frame Number (GFN) as well
as the page offset where the faults occurred. In our experiments, we were only able to
get the page offset for write faults. In our opinion, completely removing the hypervisor’s
ability to observe the page faults of the VM is not realistic, since the hypervisor needs this
information for memory management purposes. However, we believe that there are two
realistic approaches to reduce the amount of information leaked by this side channel.
For the first approach, the VM no longer shares the page offset, but only the GFN of the
fault with the hypervisor. The memory management of the host OS should not be affected
by this, as it works at the page level anyway. However, this change would only make our
attack slightly more complicated. While there are some cases where the offset is fixed and
known, like for our attack on KASLR, this is not the case for the offset of the stack, which
we need for our injected 16-byte oracle. In order to work around a masked page offset, we
can modify the stack detect gadget from Subsection 5.5.2 to the following:

1 cpuid

2 push rdi

3 cpuid

4 push rdi

5 push rdi

6 cpuid

Lines 1 to 3 are equal to the original stack detect gadget, but now only yield the GFN of
the stack. Before we resume from the second cpuid in line 3, we take a copy of the page
to which the just obtained GFN points. Next, we push two 8-byte values to the stack at
lines 4 and 5. When we reach the third cpuid at line 6, we simply compare our copy of
the page to its current state to get the offset of the stack pointer inside the page. Although
we can only observe changes with a 16-byte granularity (as we can only see ciphertext
blocks), this is sufficient since the stack is either 8- or 16-byte aligned. If the two push
operations from lines 4 and 5 only result in one changed ciphertext block, the stack was
16-byte aligned at the changed block. If two ciphertext blocks have changed, the stack
was 8-byte aligned at the first changed block. The usage of the page fault side channel as
a replacement for intercepted instructions is not affected by these changes.

50



7.4 Availability of Known Plaintext

For the second approach, we assume that the hypervisor’s ability to manipulate the NPTs
gets restricted, so that it is no longer possible to manipulate certain bits in the NPTs, like
the ones responsible for write or execute permissions. This way we could no longer
provoke page faults, but only observe page faults that are “naturally” triggered by the
VM. Implementing this approach would however most likely need major architectural
changes, like instruction set extensions. On the other hand, it would make our attack sig-
nificantly harder or even infeasible, depending on the availability of intercepted instruc-
tions as well as the RAM size of the VM. For the stack detection gadget, we could still
use the same strategy as in the previous paragraph. But, since we are no longer able to
provoke a page fault, allowing us to at least get the GFN of the stack, we would now have
to dump all of the VM’s RAM that has ever been written to. Furthermore, we may have
to change a larger portion of the stack to reliably identify the GPA of the stack. Depend-
ing on the RAM size, this could take a significant amount of time. In order to interrupt
the VM at precise points in time, we would now dependent on intercepted instructions.
Another problem is detecting whether the VM has started executing our gadget, if we are
no longer able to remove the execute permission. A possible solution could be to issue a
unique sequence of intercepted instructions, to mark the start of our gadget.

We thus conclude, that closing the page fault side channel most likely requires introducing
major architectural changes. However, even in this case, the hypervisor’s control over
physical memory could still be exploited to track the VM’s memory usage, by observing
”natural” page faults.

7.4 Availability of Known Plaintext

For our attack, we used the Linux kernel itself as a source of known plaintext. We split
our analysis in two parts: Knowing the plaintext and finding it in the memory.

As customers most likely use a common Linux distribution, it can be assumed that they
are running the kernel supplied by the respective distribution. Furthermore normal disc
encryption setups do not encrypt the /boot partition from which the kernel gets loaded
at boot, allowing the attacker to read the kernel binary in plaintext.

Another approach is using the technique presented in Werner et al. [WMA+19] (see re-
lated work in Chapter 6). They showed how to use IBS to reliably fingerprint specific
application versions running in SEV-ES secured VMs based on the distance (measured
by the GVA) of executed return instruction of an application. One of the problems they
had to overcome was separating GVAs/instruction tuples by the instruction that issued
them, based on the GVAs. In their algorithm for this, they state that it is easy to filter the
instructions belonging to the Linux kernel, due to the large addresses. While they only

51



7 Countermeasures

evaluated their approach for user space applications, their result is still applicable to the
Linux kernel, and it could also potentially perform even better due to the easier data sep-
aration. Another approach could be to apply their technique to kernel functions, whose
GPAs gets leaked by the page fault side channel.

The bootstrap part of the kernel gets loaded to a fixed GPA. Thus we can use the page fault
side channel to infer when it is loaded into memory in order to copy it into our database.
The load address of the Linux kernel is randomized by KASLR. There are several strategies
to break KASLR in the malicious hypervisor scenario. In Subsection 5.4.1 we showed
how to completely disable KASLR with an injection attack. However, the guest might get
suspicious if the kernel is always loaded to the same address. In our experiments, we
observed that the naturally occurring page faults during VM startup are enough to locate
the kernel in memory. So, even if the hypervisor can no longer manipulate the NPTs to
provoke page faults, we are able to locate the kernel and use it as a plaintext source. A
third method is presented in [HB17]. They show that the kernel location can be detected at
runtime, by removing the execute permissions from all pages, injecting an interrupt and
observing the occurring page faults. However, this is only possible if we are still able to
manipulate the NPTs.

7.5 Emulated Operations

Whether an instruction like cpuid or rdtsc is intercepted by the hypervisor can be con-
figured in the control area of the VMCB [Adv19]. The VMCB gets encrypted and integrity
protected upon a #VMEXIT. Furthermore, it is part of the initial attestation [Kap17]. Thus
it cannot be manipulated by a malicious hypervisor. The high-performance encryption
oracle we built in Subsection 5.4.1, by using the exposed registers of the cpuid opera-
tion during instruction emulation, can thus be mitigated by disabling interception of the
cpuid instruction [Adv19]. However, as already mentioned in Section 2.1, emulation of
instructions is an important virtualization feature since it allows fine-grained control over
exposed hardware features as well as simulating a consistent environment after live mi-
gration. A better-suited approach would be to check the returned values for plausibility.
[Kap19] suggests that future SEV versions offer such functionality.

Like explained in Section 5.5, the injected 16-byte encryption oracle can be implemented
without relying on hypervisor emulated operations. For this, we split the instructions
over two pages and use the page fault side channel with active manipulation of the NPTs.

52



7.6 Detection

7.6 Detection

Another important aspect, besides direct countermeasures, is how hard it is to detect an
attack in the first place. In the scenario of a malicious hypervisor spying on its VMs, the
detection of an attack could be enough for the guests to switch to another service or pursue
legal matters. We analyze two possible ways of detecting our attack. The first is detecting
the changed code itself, the second is detecting abnormal behavior.
Since SEV itself does not provide any integrity protection for the RAM content, this must
be done in software and inside the guest. However, the injection could take place at any
memory location that gets executed during the lifetime of the VM. This makes for a very
large search space. Furthermore, our injected code is only temporarily visible, as we can
take a copy of the original memory content before performing our injection attack. This
allows us to restore the original state after we are done. Finally, the program that inspects
the guests’ RAM content, in order to find changed code, cannot be certain that its own
code is unchanged.
The second approach is to detect abnormal behavior, like the unusual kernel base ad-
dress when disabling KASLR. However, detecting more transient abnormal behavior, like
a random number generator that got faulted for a short period of time, or a mapping for
a shared page, is more difficult. Like for detecting changed code, the attack surface for
changed behavior is quite large.
Finally, we want to stress that while our injected code hijacks the original control flow,
we are able to restore it. For this, we simply need to jump back to the location where we
took over the control flow, after restoring the original content. Since the jump back itself
obviously cannot be overwritten before being executed, it must be at a memory location
that is not immediately executed after resuming the original control flow. For example, it
could be located in the block right before the one that we jump back to. This way, we have
enough time to overwrite the jump back instruction itself before the natural control flow
return to this location. The content of registers can be stored on the stack before they are
modified and restored at the end of the injected code.

53





8 Conclusion & Outlook

In this thesis, we have analyzed the security properties of AMD’s SME/SEV memory
encryption technology. The main goal of SEV is to provide full isolation between the
hypervisor and its VMs by encrypting the VM’s RAM and the VMCB with a key, that
is not accessible to the hypervisor. This way, customers could use rented VMs to process
sensitive data, without having to trust the hosting provider not to spy on their data. While
VM based cloud solutions have been a major success, data privacy concerns are one of the
major reasons why some customers do not want to use them. However, in its current
state, SEV fails to achieve full isolation, as related work and this thesis have shown that is
possible to construct encryption and decryption oracles for SEV secured VMs. This way,
a malicious hypervisor can read sensitive data from the VM’s RAM or move his own data
into the VM, breaking the full isolation. Nonetheless, SEV makes such attacks significantly
harder, compared to the previous state of affairs, where the hypervisor could simply read
from/write to all of the VM’s RAM in plaintext. The attacks from related work were either
based on a firmware bug of the SP or manipulated I/O operations performed by the VM.
Some of them even require that the attacker has to generate the I/O traffic himself, which
greatly increases the risk of detection.

In this thesis, we have demonstrated that the manipulation of I/O operations is not neces-
sary to construct an encryption or decryption oracle. In fact, we do not require the VM to
perform any I/O operations, making our attack hard to detect and applicable in a broad
range of scenarios. Instead, we have shown in Chapter 5 that it suffices to simply move
ciphertext blocks containing known plaintext, from one memory location to another to
construct a first encryption oracle, that allows us to partially control the plaintext to which
a 16-byte ciphertext block decrypts. For this we exploited, that it is possible to reverse en-
gineer the address-based tweak values used in SEV’s XE-based encryption mode, as we
have shown in Chapter 4. While this was partially known for the older AMD 7xx1 prod-
uct line, we have provided additional detail on the analysis. Besides, we have leveraged
the fact that SEV does not provide any integrity protection. Furthermore, we have discov-
ered, that the newer AMD 3xx1 product line uses a new, enhanced XEX-based encryption
mode. Nevertheless, we have been able to prove that it is still vulnerable to our attack, as
it is still possible to reverse engineer the tweak values. However, computing them now re-
quires a much higher computational effort. By knowing the address-based tweak values,
we are able two predict how the plaintext of a ciphertext block changes, when copying the

55



8 Conclusion & Outlook

ciphertext block to a new memory location. Given about 8 MB of known plaintext, this
enables us to control 4 consecutive plaintext bytes every two 16-byte ciphertext blocks.
Based on this, we have bootstrapped a full encryption oracle that can control all 16-bytes
of a ciphertext block. This allows us to move data into the VM, which in turn enables us
to execute arbitrary code inside the VM. Moreover, we discuss how code execution can be
used to build a decryption oracle.

In the late summer of 2019, AMD released the 7xx2 product line of Epyc processors, that
is based on their new Zen 2 architecture. Our first analysis has shown that it uses a much
stronger tweak function, as the tweak values are no longer 4-byte periodic and seem to
be regenerated on boot. However, due to the limited scope of a master thesis, we did
not have enough time to perform a full analysis. Anyhow, we do not expect that it is
possible to fully mitigate our attack vector, without implementing cryptographic integrity
protection, which is able to detect that a ciphertext block is not decrypted at its original
location. Without integrity protection, an attacker can always exploit the ability to decrypt
a ciphertext block at an arbitrary address, to gain some information on the tweak values.
Even without knowing the tweak values, an attacker might be able to place less complex
data, simply by trial and error. Since the decryption of a modified AES ciphertext can be
modeled as a random mapping, placing 1-byte assembly instructions by copying arbitrary
ciphertext blocks, should succeed with a probability of 1/256.
Another approach to decrease our attack’s dependency on knowing the tweak values,
could be to exploit paging. The main idea is to modify the hypervisor in a way, that it
only uses one (or a small number) of HPAs for all of the VM’s main memory. As the
tweak is dependent on the HPA, this would provide us with many valid ciphertext blocks
for each page offset. If we know the plaintexts of these blocks, we could again try to inject
instructions, by swapping such blocks. However, we leave exploring the feasibility of this
approach to future work.

56



References

[AAUC18] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey
on homomorphic encryption schemes: Theory and implementation. ACM
Computing Surveys (CSUR), 51(4):79, 2018.

[Adv05] Advanced Micro Devices. Secure Virtual Machine Architecture Reference
Manual. Technical report, Advanced Micro Devices, 2005.

[Adv08] Advanced Micro Devices. Nested Paging. http://developer.amd.com/
wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf, 2008.

[Adv17] AMD64 Architecture Programmer’s Manual Volume 1: Application
Programming. https://www.amd.com/system/files/TechDocs/

24592.pdf, 2017.

[Adv18] Advanced Micro Devices. Secure Encrypted Virtualization API Version
0.16. http://support.amd.com/TechDocs/55766_SEV-KM%20API_

Specification.pdf, 2018.

[Adv19] AMD64 Architecture Programmer’s Manual Volume 2: System Program-
ming. https://www.amd.com/system/files/TechDocs/24593.pdf,
2019.

[AGJS13] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative
technology for cpu based attestation and sealing. In Proceedings of the 2nd in-
ternational workshop on hardware and architectural support for security and privacy,
volume 13. ACM New York, NY, USA, 2013.

[AMD] AMD SEV Resource Center. https://developer.amd.com/sev/. Ac-
cessed: 2019-11-26.

[ATG+16] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Mar-
tin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe,
Mark Stillwell, et al. SCONE: Secure Linux Containers with Intel SGX. In
OSDI, pages 689–703. USENIX, 2016.

[Aum17] Jean-Philippe Aumasson. Serious Cryptography: A Practical Introduction to
Modern Encryption. No Starch Press, 2017.

57

http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
https://www.amd.com/system/files/TechDocs/24592.pdf
https://www.amd.com/system/files/TechDocs/24592.pdf
http://support.amd.com/TechDocs/55766_SEV-KM%20API_Specification.pdf
http://support.amd.com/TechDocs/55766_SEV-KM%20API_Specification.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://developer.amd.com/sev/


References

[BCD+18] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-
Reza Sadeghi. The guard’s dilemma: Efficient code-reuse attacks against intel
{SGX}. In 27th {USENIX} Security Symposium ({USENIX} Security 18), pages
1213–1227, 2018.

[BGF16] Johannes Bauer, Michael Gruhn, and Felix C Freiling. Lest we forget: Cold-
boot attacks on scrambled ddr3 memory. Digital Investigation, 16:S65–S74,
2016.

[BGN+17] Robert Buhren, Shay Gueron, Jan Nordholz, Jean-Pierre Seifert, and Julian
Vetter. Fault Attacks on Encrypted General Purpose Compute Platforms. In
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, pages 197–204. ACM, 2017.

[BHP18] Robert Buhren, Felicitas Hetzelt, and Niklas Pirnay. On the detectability of
control flow using memory access patterns. In Proceedings of the 3rd Workshop
on System Software for Trusted Execution, pages 48–53. ACM, 2018.

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srd-
jan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure: SGX
cache attacks are practical. In 11th USENIX Workshop on Offensive Technolo-
gies (WOOT 17), Vancouver, BC, 2017. USENIX Association.

[BWG+16] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias
Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. Securekeeper:
confidential zookeeper using intel sgx. In Proceedings of the 17th International
Middleware Conference, page 14. ACM, 2016.

[BWS19] Robert Buhren, Christian Werling, and Jean-Pierre Seifert. Insecure Until
Proven Updated: Analyzing AMD SEV’s Remote Attestation. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’19. ACM, 2019.

[CD16] Victor Costan and Srinivas Devadas. Intel SGX Explained. https://

eprint.iacr.org/2016/086.pdf, 2016.

[DYM+17] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang, Jesse Liu,
and Jesse Fang. Secure encrypted virtualization is unsecure. arXiv preprint
arXiv:1712.05090, 2017.

[GB09] Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme, vol-
ume 20. Stanford University Stanford, 2009.

58

https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf


References

[GESM17] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache
Attacks on Intel SGX. In EUROSEC, pages 2–1, 2017.

[GHC14] Oliver Gasser, Ralph Holz, and Georg Carle. A deeper understanding of
ssh: results from internet-wide scans. In 2014 IEEE Network Operations and
Management Symposium (NOMS), pages 1–9. IEEE, 2014.

[Gue16] Shay Gueron. Memory encryption for general-purpose processors. IEEE Se-
curity & Privacy, 14(6):54–62, 2016.

[HB17] Felicitas Hetzelt and Robert Buhren. Security Analysis of Encrypted Virtual
Machines. In Proceedings of the 13th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, VEE ’17, pages 129–142, New York,
NY, USA, 2017. ACM.

[HLP+13] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and
Juan Del Cuvillo. Using innovative instructions to create trustworthy soft-
ware solutions. HASP@ ISCA, 11, 2013.

[HSH+08] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and
Edward W Felten. Lest We Remember: Cold Boot Attacks on Encryption
Keys. In usenix-security, 2008.

[Int17] Intel. Intel Architecture Memory Encryption Technologies Specification.
https://software.intel.com/sites/default/files/managed/

a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf, 2017.

[Int19] Intel Architecture Memory Encryption Technologies Specification, April
2019.

[JACH11] Seongwook Jin, Jeongseob Ahn, Sanghoon Cha, and Jaehyuk Huh. Architec-
tural support for secure virtualization under a vulnerable hypervisor. In 2011
44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 272–283. IEEE, 2011.

[Kap17] David Kaplan. Protecting VM Register State with SEV-ES. White Paper,
February 2017.

[Kap19] David Kaplan. Upcoming x86 technologies for malicious hypervisor protec-
tion. https://static.sched.com/hosted_files/lsseu2019/65/

SEV-SNP%20Slides%20Nov%201%202019.pdf, November 2019. Ac-
cessed: 2019-11-23.

59

https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf


References

[KCV18] Dmitrii Kuvaiskii, Somnath Chakrabarti, and Mona Vij. Snort intrusion de-
tection system with intel software guard extension (intel sgx). arXiv preprint
arXiv:1802.00508, 2018.

[KPM+16] Kubilay Ahmet Küçük, Andrew Paverd, Andrew Martin, N Asokan, Andrew
Simpson, and Robin Ankele. Exploring the use of intel sgx for secure many-
party applications. In Proceedings of the 1st Workshop on System Software for
Trusted Execution, page 5. ACM, 2016.

[KPW16] David Kaplan, Jeremy Powell, and Tom Woller. AMD memory encryption.
Technical report, Advanced Micro Devices, 2016.

[Len19] Thomas Lendacky. Improving and expanding sev support. https:

//static.sched.com/hosted_files/kvmforum2019/61/KVM_

Forum_2019_SEV.pdf, 2019. Talk at KVM Forum 2019, Accessed:
2019-11-26.

[LJJ+17] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi,
Changho Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang.
Hacking in darkness: Return-oriented programming against secure en-
claves. In 26th {USENIX} Security Symposium ({USENIX} Security 17), pages
523–539, 2017.

[LRW02] Moses Liskov, Ronald L Rivest, and David Wagner. Tweakable block ciphers.
In Annual International Cryptology Conference, pages 31–46. Springer, 2002.

[LSG+17] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In 26th USENIX Security Symposium (USENIX Security 17),
pages 557–574, Vancouver, BC, 2017. USENIX Association.

[LZL19] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. Exploiting Unprotected
I/O Operations in AMD’s Secure Encrypted Virtualization. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, 2019.

[MAB+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instruc-
tions and software model for isolated execution. Hasp@ isca, 10(1), 2013.

[MH19] Mathias Morbitzer and Manuel Huber. Github - SEVered Framework.
https://github.com/Fraunhofer-AISEC/severed-framework/,
2019.

60

https://static.sched.com/hosted_files/kvmforum2019/61/KVM_Forum_2019_SEV.pdf
https://static.sched.com/hosted_files/kvmforum2019/61/KVM_Forum_2019_SEV.pdf
https://static.sched.com/hosted_files/kvmforum2019/61/KVM_Forum_2019_SEV.pdf
https://github.com/Fraunhofer-AISEC/severed-framework/


References

[MHH19] Mathias Morbitzer, Manuel Huber, and Julian Horsch. Extracting Secrets
from Encrypted Virtual Machines. In Proceedings of the Ninth ACM Conference
on Data and Application Security and Privacy, CODASPY ’19, pages 221–230.
ACM, 2019.

[MHHW18] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. SEV-
ered: Subverting AMD’s Virtual Machine Encryption. In Proceedings of the
11th European Workshop on Systems Security, EuroSec’18, pages 1:1–1:6, New
York, NY, USA, 2018. ACM.

[MZLS18] Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Weidong Shi. A comparison
study of intel sgx and amd memory encryption technology. In Proceedings of
the 7th International Workshop on Hardware and Architectural Support for Security
and Privacy, page 9. ACM, 2018.

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockciphers and re-
finements to modes ocb and pmac. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 16–31. Springer,
2004.

[SCNS16] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Sax-
ena. Preventing page faults from telling your secrets. In Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security, pages
317–328. ACM, 2016.

[TB15] Andrew S Tanenbaum and Herbert Bos. Modern operating systems. Pearson,
2015.

[TPV17] Chia-Che Tsai, Donald E Porter, and Mona Vij. Graphene-sgx: A practical li-
brary {OS} for unmodified applications on {SGX}. In 2017 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 17), pages 645–658, 2017.

[UNR+05] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM Mar-
tins, Andrew V Anderson, Steven M Bennett, Alain Kagi, Felix H Leung, and
Larry Smith. Intel virtualization technology. Computer, 38(5):48–56, 2005.

[WCP+17] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky cauldron on
the dark land: Understanding memory side-channel hazards in sgx. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2421–2434, New York, NY, USA, 2017. ACM, ACM.

61



References

[WMA+19] Jan Werner, Joshua Mason, Manos Antonakakis, Michalis Polychronakis, and
Fabian Monrose. The SEVerESt Of Them All: Inference Attacks Against Se-
cure Virtual Enclaves. In Proceedings of the 2019 ACM Asia Conference on Com-
puter and Communications Security, Asia CCS ’19, pages 73–85. ACM, 2019.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating systems. In Pro-
ceedings of the 2015 IEEE Symposium on Security and Privacy, SP ’15, pages
640–656, Washington, DC, USA, 2015. IEEE Computer Society.

[XLC13] Yubin Xia, Yutao Liu, and Haibo Chen. Architecture support for guest-
transparent vm protection from untrusted hypervisor and physical attacks.
In 2013 IEEE 19th International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 246–257. IEEE, 2013.

[XTS19] IEEE Standard for Cryptographic Protection of Data on Block-Oriented Stor-
age Devices. IEEE Std 1619-2018 (Revision of IEEE Std 1619-2007), pages 1–41,
Jan 2019.

[YADA17] Salessawi Ferede Yitbarek, Misiker Tadesse Aga, Reetuparna Das, and Todd
Austin. Cold boot attacks are still hot: Security analysis of memory scram-
blers in modern processors. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 313–324. IEEE, 2017.

62


	Introduction
	Background
	Virtualization Technology
	The Page Fault Side Channel
	Memory Encryption using Tweakable Block Ciphers
	AMD's Memory Encryption Solutions

	Related Work
	Previous Attacks
	Intel's Memory Encryption Solutions

	Reverse Engineering the Encryption Mode
	Analysis of AMD Ryzen and AMD Epyc 7xx1 CPUs
	Updated Encryption Mode for newer Epyc 3xx1 CPUs

	Fault Injection Attacks
	Tracking Guest Execution
	Placing Partially Controlled Plaintext
	Code Injection
	Executing Arbitrary Code

	Comparison to Related Work
	Countermeasures
	Conclusion & Outlook
	References

