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Abstract

A common method to protect personal information in data-dependent algorithms while
adding provable privacy guarantees is Differential Privacy (DP). To achieve this, DP gen-
erally uses a two-stage approach: First, it quantifies the maximum impact that a single
data point can have on the output of an algorithm. Then, noise is scaled according to this
maximum impact and added to the output of the algorithm to hide said influence. This
approach more often than not results in an immense amount of added noise and thus a
significant decrease in utility when compared to not-privacy-preserving algorithms.
The initial goal of this thesis is to address the described decrease in utility and to inves-
tigate whether an additional voting step can be used to reduce the negative impact of
additive noise on the performance of a differentially private algorithm. This investiga-
tion reveals an inherent problem of additive noise, the analysis of which constitutes the
main part of this thesis. Our main result shows that the negative impact of additive noise
increases with the dimensionality of the output to be perturbed, regardless of the noise
distribution used. We think that these findings can steer future research on differentially
private mechanisms on high-dimensional outputs.
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Zusammenfassung

Eine bewährte Methode, persönliche Informationen in datenabhängigen Algorithmen
zu schützen und gleichzeitig beweisbare Datenschutzgarantien zu erreichen, ist Differ-
ential Privacy (DP). Hierfür verwendet DP im Allgemeinen einen zweistufigen Ansatz:
Zunächst wird die maximale Auswirkung quantifiziert, die ein einzelner Datenpunkt auf
das Ergebnis eines Algorithmus haben kann. Danach wird Noise entsprechend dieser
maximalen Auswirkung skaliert und zum Ergebnis des Algorithmus hinzugefügt, um
den beschriebenen Einfluss zu verbergen. Dieser Ansatz führt in den meisten Fällen zu
einer erheblichen Menge an additivem Noise und damit zu einer deutlichen Verringerung
der Ergebnisqualität im Vergleich zu nicht die Privatsphäre schützenden Algorithmen.
Das initiale Ziel dieser Arbeit ist es, die beschriebene Verringerung der Ergebnisqualität zu
adressieren und zu untersuchen, inwiefern ein zusätzlicher Abstimmungsschritt verwen-
det werden kann, um den negativen Einfluss von additivem Noise auf die Leistung eines
die Privatsphäre schützenden Algorithmus zu reduzieren. Diese Untersuchung offenbart
ein inhärentes Problem von additivem Noise, dessen Analyse den Hauptteil dieser Arbeit
darstellt. Unser Hauptergebnis zeigt, dass der negative Einfluss von additivem Noise mit
der Dimensionalität der zu schützenden Ausgabe zunimmt, unabhängig von der verwen-
deten Noise-Verteilung. Wir denken, dass diese Erkenntnisse die zukünftige Forschung
zu die Privatsphäre schützenden Mechanismen auf hochdimensionalen Ausgaben lenken
können.
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1 Introduction

With the rapid technological developments of the last decade, data-dependent algorithms
became interesting to a variety of applications. Whether it’s traffic control, product recom-
mendation, speech recognition or even medical applications, especially with the advent of
Machine Learning (ML), the increasing reliance on immense amounts of data has reached
large parts of society.
Out of this development, an inherent conflict became increasingly relevant: On the one
hand, data-dependent algorithms can be used to benefit people, companies and entire
societies. The more data is available and the more detailed this data is, the better these
algorithms generally perform. On the other hand, there is a growing and justified concern
about the automated analysis and processing of personal data by companies or govern-
ments.
These concerns have long since reached the public, as evidenced by both corporate state-
ments (e.g., privacy segment at this year’s Apple WWDC21 [App21]) and legislative reso-
lutions (e.g., the General Data Protection Regulation (GDPR) in the European Union [Eur16]).
Nevertheless, the seemingly irresolvable contradiction described above between an exten-
sive use of personal information and data minimization remains.
This motivated a variety of research in the field of privacy-preservation with the goal of
integrating data protection and provable privacy guarantees into data-dependent algo-
rithms. Famous representatives of this research are k-anonymity by [SS98] and Differential
Privacy (DP) by [DMNS06]. Both techniques allow algorithms and their users to learn
and use information about groups in a dataset, but protect information about individ-
uals. Unfortunately, previous results show that even with these sophisticated methods,
privacy-preservation always comes at the expense of utility.
The thesis at hand focuses on a common problem that many approaches in DP suffer
from. To achieve privacy, these approaches use additive noise to hide the impact that
individuals have on the outcome of an algorithm. This method often adds a lot of noise,
causing the aforementioned decrease in utility. The first part of this thesis investigates
whether an additional voting step could be used to limit the negative effects of additive
noise on differentially-private algorithms. Then the second part further analyses general
properties of additive noise and shows why additive noise inevitably leads to a decrease
in utility. Further, it is evinced that this adverse effect increases with the dimensionality
of the noise being added. As a result, it is shown that especially for high-dimensional
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1 Introduction

applications, such as those found in ML, additive noise is unable to preserve much of an
algorithm’s utility, which should motivate further research to find better alternatives to
achieve DP in high-dimensional applications.

1.1 Structure of the Thesis

The structure of this thesis is as follows: At the beginning, Chapter 2 describes the the-
oretical foundations of DP and shows how it is currently applied to the training of deep
neural networks in an algorithm called DP-SGD. Afterward, Chapter 3 describes and anal-
yses the idea of adding an additional voting step to a differentially-private algorithm. As
an exemplary application, DP-SGD is chosen. Chapter 4 is then dedicated to the analysis
and implications of additive noise in DP. Finally, Chapters 5 and 6 conclude this thesis
and motivate possible future work.
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2 Preliminaries

2.1 Differential Privacy

A common method to incorporate privacy-preserving techniques into data-dependent
algorithms while at the same time providing provable privacy guarantees is differential
privacy (DP). The definition of DP dates back to 2006 where it was first proposed by
[DMNS06] after being preceded by prior work e.g., [DN03, DN04, BDMN05]. The original
goal of DP is to provide privacy guarantees for databases and their querying while pre-
serving the utility of such queries. The observations made through query outputs should
hide whether a single entry is part of a database or not. An intuitive presentation of DP
as a cryptographic puzzle is shown in Figure 2.1: An attacker sends two databases, D0

and D1, to a challenger which can be understood as a cryptographic oracle. The challenger
then randomly chooses one of the databases, applies the mechanismM to this database
and sends the result back to the attacker. From this result, the attacker’s chance of telling
whether D0 or D1 was used in M to produce the result should be bounded by exp(ε).
With regards to the relationship of D0 and D1, DP only restricts them to be neighboring
or adjacent.

Definition 2.1 (Adjacent Datasets). Two datasets D0 and D1 are called adjacent or neigh-
boring if they only differ in a single element {x} = (D0 \D1)∪ (D1 \D0). x is often called
the challenge element.

With this definition, DP is formally defined as:

Definition 2.2 (Differential Privacy (DP)). A randomized mechanism M : D → R with
domain D and rangeR is ε-differentially private if for any two adjacent datasets D0, D1 ∈
D, all x and for any subset of outputs S ⊆ R the following holds:

exp(−ε) ≤ Pr[M(D1) ∈ S]
Pr[M(D0) ∈ S]

=
Pr[M(D0 ∪ {x}) ∈ S]

Pr[M(D0) ∈ S]
≤ exp(ε)

ε is the main parameter which quantifies the privacy guarantees of a mechanism. The
lower the ε, the higher the degree of privacy protection which mechanism M achieves.
In practice, an ε ≤ 1 has shown to provide strong privacy guarantees, whereas the guar-
antees of an 1 < ε ≤ 10 are considered weak and with any ε > 10 the degree of privacy

3



2 Preliminaries
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Figure 2.1: Differential privacy as a cryptographic puzzle.

protection is negligible.

As seen in Definition 2.2 differential privacy not only defines privacy guarantees for
databases and their querying but for arbitrary mechanisms and thereby arbitrary appli-
cations. For example, when talking about machine learning, DP can be used to apply
privacy guarantees to the training of a neural network and quantify the probability of
an attacker being able to tell whether a certain training sample was used during training
(so-called membership inference attack [SSSS17]) or even extract training data from a
trained model (so-called model inversion attack [FJR15]).
The main method to achieve DP is the sensitivity method, also known as additive mechanism,
as proposed by [DMNS06]. Its goal is to quantify the maximum influence a single input
sample can have on the output of a mechanism and add noise appropriately scaled to
cover this influence. The magnitude by which a single input sample can change a function
or mechanism f is called sensitivity of f .

Definition 2.3 (Sensitivity). The magnitude by which a single input sample can change
the function f in the worst case is called sensitivity of f or Sf .

Since the sensitivity of a mechanism is often arbitrary, it has to be bounded artificially
to represent an appropriate scale for the noise required to achieve DP. This technique is
called clipping. As an example, one could consider a mechanismMsum(a, b) = a+bwhich
calculates the sum of two positive integers a and b. It is easy to see that the sensitivity
ofMsum is unbounded since a and b can be of arbitrary positive values. When applying
clipping, a clipping bound C is introduced. C limits the influence of a and b respectively
onMsum by fixing their maximum value. Any a, b > C is simply set to C, whereas values
≤ C remain as is. As a consequence, the maximum impact a, b can have on Msum is
bounded by C and thus SMsum = C.

4



2.1 Differential Privacy

In the years since the introduction of DP it became apparent that the bounds suggested by
Definition 2.2 are too strict in most scenarios. E.g., when analysing the privacy guarantees
of the Gaussian distribution using Definition 2.2 it does not suffice to achieve ε-DP. That is,
although only resulting from the characteristics of the tails of the Gaussian’s probability
density function (PDF) and thus only from a very small probability mass which is unlikely
to play a role in practice.
To allow for a small probability of the privacy guarantees of a mechanism to fail, approxi-
mate differential privacy was introduced.

Definition 2.4 (Approximate Differential Privacy (ADP)). A randomized mechanism
M : D → R with domain D and range R is called (ε, δ)-differentially private if for any
two adjacent datasets D0, D1 ∈ D and for any subset of outputs S ⊆ R the following
holds:

Pr[M(D0) ∈ S] ≤ eε Pr[M(D1) ∈ S] + δ

The additional parameter δ describes the probability of the privacy guarantees of a mech-
anism to fail completely. In other words, it describes the probability of events to occur that
clearly distinct one input data from another. Such events are called distinguishing events.
If a mechanismM has no distinguishing events, M is called purely differentially private.

Definition 2.5 (Pure Differential Privacy (PDP)). A randomized mechanism M : D → R
with domain D and range R is called purely-differentially private if for any two adjacent
datasets D0, D1 ∈ D and for any subset of outputs S ⊆ R the mechanism is (ε, δ = 0)-
differentially private.

Currently, a large share of research in DP focuses on finding and proving tight (ε, δ)-
bounds for privacy preserving mechanisms. In most cases this is done via the privacy
loss

L(o)M(x)‖M(y) = ln

(
Pr[M(x) = o]

Pr[M(y) = o]

)
which compares the probability of a certain observation o to occur for a mechanismM for
adjacent inputs x and y. To achieve (ε, δ)-DP, the privacy loss of a mechanism has to be
bounded by ε with probability at least 1− δ.
From the definition of the privacy loss, many approaches arose to estimate the true privacy
loss of a mechanism more accurately. Amongst the most popular are concentrated differen-
tial privacy by [DR16], Rényi differential privacy by [Mir17], privacy profiles by [BBG20] as
well as privacy buckets by [MM18, SMM19], each having their own advantages and disad-
vantages.
Another main part of research in DP is the development of differentially private algo-
rithms that achieve DP while preserving as much as possible of the utility of their not-

5



2 Preliminaries

privacy-preserving counterparts. There are three main techniques based on the mentioned
sensitivity method to add DP to an algorithm:

Input perturbation Where the input of an algorithm is perturbed. E.g., this is used by
[KLN+20] for differentially private empirical risk minimization (DP-ERM).

Objective perturbation Where the objective function of a (learning) algorithm is per-
turbed. A well-known example is objective perturbation as proposed by [CMS11]
that also use it to improve DP-ERM.

Output perturbation Where the output of an algorithm is perturbed. An example is the
already mentioned sensitivity method of [DMNS06].

This thesis focuses on the third technique: output perturbation. The de-facto standard to
use SGD in a privacy-preserving manner is DP-SGD which uses the sensitivity method of
[DMNS06] and is discussed in the next section.

2.2 DP-SGD: Applying Differential Privacy to Machine Learning

A common, de-facto standard method to train deep neural networks (DNN) in a privacy-
preserving manner is Differentially Private Stochastic Gradient Descent (DP-SGD) as pro-
posed by [ACG+16]. DP-SGD adapts the widely used machine learning algorithm
Stochastic Gradient Descent (SGD) and applies output perturbation to achieve DP. Al-
though suffering from various problems (e.g., an disparate impact on underrepresented
classes [XDW20]) it is still a common method to achieve DP when training neural net-
works.
As for its not-privacy-preserving counterpart SGD, the goal of DP-SGD is to train a ma-
chine learning model with parameters θ by minimizing the empirical loss function L(θ)
over the course of several training steps. To prepare the input data {x1, . . . , xN} of size
N for the training process, it is split into disjoint subsets, so-called batches or lots, of size
L. Each of these batches is then used to calculate one single training step. This way, an
epoch of SGD or DP-SGD training consists of N/L training steps. Since the training is not
only performed for a single but for an arbitrary number of epochs, the complete training
process consists of T = N/L ·#epochs training steps.
In each training step, the gradients∇θL(θ, xi) for all xi in the current batch are calculated.
Afterward, SGD calculates the average gradient of the batch and updates θ in the opposite
direction of this average gradient. To achieve DP, DP-SGD alters this update step. Accord-
ing to the sensitivity method of [DMNS06], it first limits the sensitivity of each update step
by clipping the length, or more precisely the l2-norm, of each gradient by a clipping bound
C. This sensitivity is called l2-Sensitivity.
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2.2 DP-SGD: Applying Differential Privacy to Machine Learning

𝑟 = 𝐶

1. 2. 3.

Figure 2.2: Visualization of gradient clipping and averaging. A batch of sizeL = 4 consists
of the three gray gradients plus the challenge element x. x is either the blue or
the red gradient.
1. Calculate the gradients, 2. Clip gradients to maximal length C, 3. Calculate
mean gradient.

Definition 2.6 (l2-Sensitivity). The l2-sensitivity of a function f : N|X | → Rk is defined
as:

∆2(f) = max
x,y∈N|X|,‖x−y‖1=1

‖f(x)− f(y)‖2

With this now bound sensitivity, the average (clipped) gradient is calculated and suffi-
ciently scaled noise can be added to achieve DP in each update step of DP-SGD. To add
noise, DP-SGD uses the Gaussian mechanism.

Definition 2.7 (Gaussian Mechanism). WithN (0, S2
f ·σ2) being the normal/Gaussian dis-

tribution with mean µ = 0 and standard deviation Sf · σ, the Gaussian mechanism is
defined by

M(x) , f(x) +N (0, S2
f · σ2)

where Sf represents the sensitivity of function f .

The Gaussian mechanism is proven to achieve DP with σ =
√

2 ln 1.25
δ /ε.

Lemma 2.8 (Privacy of the Gaussian Mechanism). For an arbitrary ε ∈ (0, 1) and c2 >

2 ln(1.25/δ), the Gaussian Mechanism with parameter σ ≥ c∆2(f)/ε is (ε, δ)-differentially pri-
vate.

The corresponding proof is found in [DR14]. Algorithm 1 shows the outline of DP-SGD.
Figure 2.2 shows a visualization of the gradient clipping and averaging process.
Two factors suggest that adding the described amount of noise to each training step does
indeed achieve DP but is the result of highly untight privacy estimations and thus is a
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2 Preliminaries

too pessimistic assessment of the actual privacy leakage. First, by design, the challenge
element xc is only sampled in one of the N/L batches of each epoch, therefore only with
a sampling probability of q = L/N has to be considered in the scaling of the noise for a
given batch. Second, the current estimation ignores how these bounds behave under com-
position, meaning the repeated execution of a mechanism. The authors of DP-SGD show
that under composition the bounds indicated by both sequential composition ([DR14],
Theorem 3.16) as well as the advanced/strong composition theorem ([DRV10, DR14]) are
still untight and leave room for more accurate estimations of the privacy loss induced by
DP-SGD. For this reason, they propose a new privacy accounting technique, the moments
accountant.
The moments accountant successfully considers both factors, the sampling probability q
and the resulting decrease in privacy loss per step as well as how DP-SGD behaves over
the composition of several training steps by tracking the moments of the privacy loss
random variable. As a result, much tighter bounds for the overall privacy spent can be
formulated.

Lemma 2.9 (Bounds of DP-SGD). There exist constants c1 and c2 so that given the sampling
probability q = L/N and the number of steps T , for any ε < c1q

2T , Algorithm 1 is (ε, δ)-
differentially private for any δ > 0 if we choose

σ ≥ c2
q
√
T ln(1/δ)

ε

The corresponding proof of this lemma is found in the original paper ([DR16]).

Algorithm 1: DP-SGD (Outline)

Input: Examples {x1, . . . , xN}, loss function L(θ) = 1
N

∑
i L(θ, xi). Parameters:

learning rate η(t), noise scale σ, batch size L, gradient norm bound C.
Output: The model’s parameters after training: θ(T )

1 Initialize θ(0) randomly
2 for t ∈ [T ] do
3 Take a random sample L(t) with sampling probability L/N
4 foreach i ∈ L(t) do
5 g(t)(xi)← ∇θ(t)L(θ(t), xi) // Compute gradient

6 ḡ(t)(xi)← g(t)(xi)/max(1,
‖g(t)(xi)‖2

C ) // Clip gradient

7 g̃(t) ← 1
L

(∑
i ḡ

(t)(xi) +N (0, σ2C2I)
)

// Add noise

8 θ(t+1) ← θ(t) − η(t)g̃(t) // Descent

When using DP-SGD for basic image classification tasks it becomes apparent that even
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(a) Training progression of DP-SGD (ε = 3.0) and SGD on the Fashion-MNIST dataset. The model
used is described in Listing A.1.
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(b) Training progression of DP-SGD (ε = 3.0) and SGD on the Cifar-10 dataset. The model used is
described in Listing A.3.

Figure 2.3: Training results of DP-SGD compared to SGD for different datasets. Solid lines
represent mean values whereas the semi-transparent area around them repre-
sents the 95% confidence interval.

with the tighter bounds given by the moments accountant, DP-SGD suffers from a ex-
tensive loss in utility when comparing its results to those of its not-privacy-preserving
counterpart SGD. Figure 2.3 shows the training progressions of DP-SGD and SGD for the
standard benchmark datasets Fashion-MNIST ([XRV17])) and Cifar-10 ([Kri09]).

Already for ε = 3.0 the achieved accuracy decreases by ≈ 23% for F-MNIST and ca. 50%
for the more challenging Cifar-10. Choosing a more practical ε ≈ 1.0 the results deteriorate
even further. This major drawback motivated the work on this thesis to investigate a
possible improvement of DP-SGD’s utility while preserving its privacy guarantees.

Remark: For the results shown, a relatively small batch size of L = 32 was chosen. The
original paper suggests a batch size of L ≈

√
N with N being the size of the dataset.

However, our experiments showed that the utility did not differ when using either batch
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2 Preliminaries

size for the investigated datasets. Since later sections benefit from smaller batchsizes, we
decided to discuss the results for L = 32 already in this section.

10



3 Voted-SGD

The initial goal of this thesis was to investigate whether an additional voting step can be
used to reduce the negative impact of additive noise on the performance of a differentially
private algorithm. As a case study of such a algorithm, DP-SGD was chosen. This chapter
describes the implementation of an additional voting step to DP-SGD, discusses its results
and shows how these results motivate a deeper analysis of additive noise.

3.1 Motivation

The idea to add a voting step to existing mechanisms arose when analysing the impact
of voting on simple, one-dimensional applications. An example for these simple appli-
cations is to determine the median of a given distribution of sampled, one-dimensional
data points {x1, . . . , xN}. To achieve this in a privacy-preserving manner, one could think
of the following mechanism: Given N one-dimensional data points called samples X =

{x1, . . . , xN}, the mechanism Mmed first calculates the clipped mean of X . Afterward,
Gaussian noise is added to this clipped mean to perturb its true value. This perturbed
mean is then output as the median ofX . We call this approach noisy-median. Of course, this
approximation of the median via the mean only works sufficiently, if the data is densely
packed around a single center or almost evenly distributed. If the data e.g. consists of
two far apart clusters, the mean and the median will differ greatly. Nonetheless, this basic
example suffices to show the positive effects an additional voting step can have. Addition-
ally, one could argue that many mechanisms in DP often meet these requirements but this
lays out of the scope of this thesis and thus this example simply remains as a motivation.
A scenario meeting the described requirements are samples taken from a simple Gaussian
distribution N (µ = 1., σ = 0.2).
To add an additional voting step to the noisy-median algorithm, the voters, the candidates
as well as the voting criterion need to be defined. In this thesis, whenever applying voting,
the unperturbed data is used as voters since the unperturbed execution of the underlying
algorithm is assumed to be optimal (at least this is what differentially-private mechanisms
must compare to). Candidates are acquired by sampling from the Gaussian distribution
not just once but multiple times. As the voting criterion, the Euclidean distance is used.
Summarizing this scenario, the (unperturbed) input samples vote on a number of samples
from the Gaussian distribution representing the perturbed mean. Voters will give their
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Figure 3.1: Results of median calculation ofN (1.0, 0.2) using noisy median compared to the
voting approach.

vote to the one sample that has the smallest Euclidean distance to them.

Figure 3.1 shows the resulting output distributions of both the noisy-median as well as
the voting approach for calculating the median of N (µ = 1., σ = 0.2). It is easy to see that
both output distributions have a mean of≈ 1.0 which is the desired result. Though, when
comparing their variance, the voting approach has an advantage (var(Mmed) ≈ 6.433

whereas var(Mvote) ≈ 0.642) which suggests a better reliability of the mechanism with
more stable results.

Another advantage of the voting approach becomes apparent when changing the input
distribution from one Gaussian distribution to a mixture of two Gaussians with different
means, e.g., N (−3, 0.2) and N (+3, 0.2). Figure 3.2 shows the results again for both the
noisy-median as well as the voting approach. The benefit of the latter is that it suffices
to depict the two hills of the input distribution while the noisy-median fails to do so.
Both for the current setting of finding a distribution’s median as well as for many other
applications it is important to get a depiction of the input distribution and its clusters.
A supposedly bad property of the voting approach is that a lot of probability mass can
be observed at the tails of the output distribution. This causes the left and right peaks
in Figure 3.2a and can be seen in more detail in Figure 3.2b. How much this behaviour
affects the results of real applications is investigated in later experiments.

Nonetheless, this first experiment provides promising results which motivates the transfer
to more complex mechanisms, e.g., DP-SGD and allows for the following conjecture.

Conjecture 3.1. An additional voting step can be used to improve the utility of mechanisms using
additive noise.

Whether this conjecture holds or not is investigated in this chapter.
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(a) Results for median calculation (zoomed
view).
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(b) Results for median calculation (complete
view).

Figure 3.2: Results of median calculation of N (−3.0, 0.2) + N (3.0, 0.2) using noisy median
compared to the voting approach.

3.2 Implementation

As the name suggests, the main idea of Voted-SGD is to use an additional voting step to
improve the results of DP-SGD. It introduces voters that vote on several candidates to get
the one candidate which most likely solves a given objective better than its competitors.
This underlying scheme could be applied to any differentially private algorithm that uses
additive noise but this thesis focuses on its application to the training of neural networks
and analyses the quality of its results compared to DP-SGD.
The general voting approach can be split into three components, independent of the un-
derlying algorithm it is used for.

Voters (general) Unperturbed variables that are assumed to represent the optimal be-
havior of the underlying algorithm but cannot directly be used without inducing
immense privacy leakage. Voters vote on the candidates according to the voting
criterion.

Candidates (general) Variables with additional random components that induce limited
privacy leakage when being generated or used.

Voting criterion (general) The scale by which the voters decide for what candidates to
vote. The voting criterion should enable the voters to find the one candidate that
most closely reflects their own influence on the underlying algorithm.

The first step of the implementation of Voted-SGD is to adapt these three components to
the training progress of a neural network. As Voted-SGD is an adaptation of DP-SGD, it

13



3 Voted-SGD

still focuses on the gradient calculation that is used to update the network’s parameters θ
in each training step. The resulting components are

Voters (Voted-SGD) The unperturbed gradients of every input sample in a batch.

Candidates (Voted-SGD) The average clipped gradient of a batch with additional Gaus-
sian noise. Each candidate is of form gmean+Ni with gmean being the average clipped
gradient of the batch and Ni being the ith sample from the added Gaussian noise.

Voting criterion (Voted-SGD) A common metric to measure the similarity between gra-
dients or vectors is the l2-norm. Another possible metric would be the cos-distance.
But since this would ignore any information about the gradients’ lengths and by this
an important property of the thereto related update length of θ, the l2-norm is used
in Voted-SGD.

With these three components defined, one update step of Voted-SGD has the following
structure: As described for SGD as well as DP-SGD the input dataset of size N is first
divided intoN/L disjoint batches of size L. Then for each batch, the gradients for all input
samples in that batch are calculated as well as the clipped mean of these gradients. To
compute the nc candidates of the subsequent voting step, for each candidate, the clipped
mean gradient is added to one sample from appropriately scaled Gaussian noise. In the
last step, the L unperturbed, unclipped gradients vote on the nc candidates and the one
candidate which gathered the most votes is used to update the network’s parameters θ.
This process is repeated for all T = N/L ·#epochs update steps.

Algorithm 2 shows the described outline of Voted-SGD as pseudocode.

Algorithm 3 shows the actual voting in more detail where the closest candidate to each
voter is computed and the votes per candidate are collected. To preserve DP during the
voting process, Report Noisy Max (RNM) is used, of which Algorithm 4 shows the outline.
RNM is further discussed in the next section dedicated to the privacy guarantees of Voted-
SGD.

3.3 Privacy of Voted-SGD

When determining the overall privacy leakage of Voted-SGD two parts have to be consid-
ered: the calculation of the nc candidates as well as the voting process with the publishing
of the elected candidate. These two parts can be considered separately if the overall pri-
vacy budget ε is split evenly between them. This can be formulated as the following
lemma:

14



3.3 Privacy of Voted-SGD

Algorithm 2: Voted-SGD (Outline)

Input: Examples {x1, . . . , xN}, loss function L(θ) = 1
N

∑
i L(θ, xi). Parameters:

learning rate η(t), noise scale σ′, group size L, gradient norm bound C,
number of candidates nc.

Output: The model’s parameters after training: θ(T ).

1 Initialize θ0 randomly
2 for t ∈ [T ] do
3 Take a random sample L(t) with sampling probability L/N
4 foreach i ∈ L(t) do
5 g(t)(xi)← ∇θ(t)L(θ(t), xi) // Compute gradient

6 ḡ(t)(xi)← g(t)(xi)/max(1,
‖g(t)(xi)‖2

C ) // Clip gradient

7 ḡ
(t)
mean ← 1

L

∑
i ḡ

(t)(xi) // Compute mean gradient
8 for k ∈ [nc] do
9 g̃

(t)
k ← ḡ

(t)
mean +

1
L · N (0, σ′CI) // Compute voting candidates

10 ĝ(t) ← voting(g̃(t), g(t)) // Compute best candidate

11 θ(t+1) ← θ(t) − η(t)ĝ(t) // Descent

Algorithm 3: Voting (Outline)
Input: Candidates {c1, . . . , cn}, voters {g1, . . . , gk}, noise scale σv.
Output: The most-voted candidate cm.

1 Initialize Vote counts [v1, . . . , vn] as [0, . . . , 0]
2 foreach g ∈ {g1, . . . , gn} do
3 j ← {j|∀i : ‖g − cj‖2 ≤ ‖g − ci‖2} // Compute closest candidate
4 vj ← vj + 1 // Increase candidate’s vote count

5 m← ReportNoisyMax([v1, . . . , vn], σv)
6 return cm

Algorithm 4: ReportNoisyMax (Outline)
Input: Histogram H , noise scale σv.
Output: Index i of noisy maximum of histogram.

1 foreach hi ∈ H do
2 ci ← hi + L(0, σv) // Add Laplace noise to each entry

3 return argmaxici

15



3 Voted-SGD

Lemma 3.2. If both the candidate calculation as well as the voting step of Voted-SGD achieve
(ε/2, δ/2)-DP, Voted-SGD overall achieves (ε, δ)-DP.

Proof. This lemma directly follows from the sequential composition theorem.

Theorem 3.3 (Sequential Composition ([DR14])). Let Mi : D → Ri with domain D and
range Ri be a (εi, δi)-differentially private randomized mechanism for i ∈ [k]. Then if M[k] :

D →
∏k
i=1Ri is defined to beM[k](x) = (M1(x), . . . ,Mk(x)) thenM[k] is (

∑k
i=1 εi,

∑k
i=1 δi)-

differentially private.

In other words, when sequentially composing k (ε, δ)-differentially private mechanisms,
the result achieves (kε, kδ)-DP. As a result, with a total privacy budget of ε, both the
candidate calculation as well as the voting process have to achieve (ε/2, δ/2)-DP. �

For simplicity, from now on the privacy budget of the candidate calculation is called ε′ =
ε/2 and the privacy budget of the voting step is called εv = ε/2.
When further analysing the privacy loss of the candidate calculation, it becomes apparent
that it can easily be derived from the privacy budget of DP-SGD. The privacy proof of
DP-SGD assumes that after each training step, the resulting update gradient is published
and thus causes the privacy leakage shown in Lemma 2.9. If for Voted-SGD not only one
but nc update gradients are published, this induces the same privacy leakage as running
DP-SGD not over T but over nc · T training steps. The privacy leakage of Voted-SGD can
thus be estimated by the results shown in Lemma 2.9 when instead of T using T ′ = T · nc
which results in a larger privacy leakage or requires a larger σ to achieve the same privacy
goal as DP-SGD for the same number of update steps.
For the voting step, Report Noisy Max (RNM) is used to achieve DP. RNM returns the
index of the maximal count present in a histogram in a privacy-preserving manner. Since
the voting process of Voted-SGD produces a histogram of counts (votes per candidate)
and uses the most voted candidate for its update step, RNM is very well suited for this
application. [DR14] show that the following lemma holds and thereby that the voting
process of Voted-SGD achieves DP.

Lemma 3.4. Report Noisy Max is (ε, 0)-differentially private when independently generated
Laplace noise Lap(1/ε) is added to each count in a histogram and afterward only the index of the
largest noisy count is released.

Since RNM achieves Pure-DP, Lemma 3.2 can be reformulated as

Lemma 3.5. If the candidate calculation of Voted-SGD achieves (ε′ = ε/2, δ)-DP and the voting
step achieves (εv = ε/2, 0)-DP, Voted-SGD overall achieves (ε, δ)-DP.
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The correctness again directly follows from the sequential composition theorem.

It has to be noted that the privacy bounds shown are still very loose and require further
research to more accurately capture the true privacy leakage of Voted-SGD. Especially the
results shown by [BBG20] proof tighter bounds for subsampling algorithms like Voted-
SGD via privacy profiles and could be extended to capture the influence of compositions.
Since this more sophisticated approach lies outside the scope of this thesis, this is left for
future research. Nonetheless, for this thesis, the results of this section suffice to show
that Voted-SGD achieves DP and enables to produce comparable results for DP-SGD and
Voted-SGD.

3.4 Results

To test whether Voted-SGD is a suitable alternative to DP-SGD, it is used to perform basic
image classification tasks both on the Fashion-MNIST as well as the Cifar-10 dataset. For
this first test, the number of candidates in each batch of size L is set to nc = L/2. The
privacy parameters σ′, C and σv are derived from the parameters of DP-SGD as described
in the last section. Thereby C = Cdpsgd, σ′ = 2 · √nc · σdpsgd and σv = 2 · σdpsgd (cf. Al-
gorithms 2-4 for the implementation of these parameters; parameters with a lower dpsgd
are those used in Algorithm 1). Figure 3.3 shows the respective results of Voted-SGD and
DP-SGD for comparison.

It becomes apparent that Voted-SGD does not suffice to outperform the utility of DP-SGD
but that both algorithms perform very equally. To understand why this is, the actual
voting process is further examined. As a first step, the grade of agreement across the
voters is investigated. To benefit from a voting process, across all candidates there has to
exist ideally one candidate that represents the best option for all or at least most voters. If
all candidates are equally favorable for the voters, the voting process has no benefit over
just choosing one of the candidates randomly. A measure for the voter’s agreement is to
calculate the entropy of the voting result which is a histogram collecting the number of
votes per candidate. Figure 3.4 shows how the voting result’s entropy develops over the
course of the training’s epochs. For a batch size of L = 32, nc = 16 is chosen resulting in
a maximum entropy of H(X) = −

∑nc
i=1 p(xi) log(p(xi)) ≈ 2.773 (where X represents the

candidates) if all candidates are equally voted for, and a minimum entropy of H(X) = 0

if only one candidate is voted for. Figure 3.4 shows that for the first epochs often a clear
best option appears to exist resulting in a high agreement across the voters and thereby
a small entropy of the voting result. Unfortunately, this changes rather quickly ending
in a much higher entropy at approximately epoch 7. From there on, until the end of the
training, the entropy basically remains the same. This entropy development suggests,
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(a) Training progression of Voted-SGD and DP-SGD on the Fashion-MNIST dataset. The model
used is described in Listing A.1.
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(b) Training progression of Voted-SGD and DP-SGD on the Cifar-10 dataset. The model used is
described in Listing A.3.

Figure 3.3: Training results of Voted-SGD compared to DP-SGD for different datasets and
ε = 3.0. Solid lines represent mean values whereas the semi-transparent area
around them represents the 95% confidence interval.
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Figure 3.4: Entropy of the voting result over the course of training on Fashion-MNIST.

that for the most part of the training, the voting process does not suffice to produce one
clearly favorable candidate but instead suggests that the optimal gradient to update the
network’s parameters θ is different for many of the voters.

The dissent of voters can be explained by two scenarios: Either the candidates resemble
the voters too close, providing most voters with their own personal favorite for which
they vote in the voting process; or the candidates and the voters differ too much so that
each voter has to decide between only bad options and pick their least evil. To determine
which scenario applies to the voting process of Voted-SGD, Figure 3.5 shows a comparison
between the l2-norm of the voters and the candidates.

From this comparison, it becomes apparent that the reason for the missing improvement
through the voting process is most likely the second scenario: voters and candidates have
very distinct properties leaving the voters with the choice of the least evil. Not only are the
lengths (l2-norm) of the candidates very different from those of the voters, but also appear
to be very uniform in this length. With the two farthest outliers being of length 20.51 and
20.58 respectively, their l2-norm at most varies in the second decimal place while having
an average length of approximately 20.545. This essentially leaves the voters no choice
about the size of the network’s next update step. A second factor to be considered is that
the candidates shown in Figure 3.5 result from clipping the length of the unperturbed
gradients of all batches at length C = 1.0. That the addition of noise to gradients with
a maximal length of 1.0 results in gradients of length > 20, shows the immense share
random noise has in these candidates. This further strengthens the assumption that the
voters have only a limited influence on the network’s updates.

The findings presented in this section suggest that random noise has a dominant influ-
ence on the results produced by mechanisms like Voted-SGD that aim to achieve DP. This
insight motivates the second part of this thesis starting with the next chapter which is
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(a) l2-norm distribution of the voters.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
epoch

20.51

20.52

20.53

20.54

20.55

20.56

20.57

20.58

l2
no

rm

(b) l2-norm distribution of the candidates.

Figure 3.5: l2-norm distribution of voters and candidates over the training on the Fashion-
MNIST dataset.
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dedicated to a deeper analysis of said noise and its influence on differentially private
mechanisms.
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4 Analysis of Additive Noise in DP

The results of the last chapter call for a deeper analysis of the noise being added by the
sensitivity method. At this point, two main questions arise from the previous results:
Firstly, is a more accurate description of the noise’s properties possible, which explains the
l2-norms seen in Figure 3.5? Secondly, the question arises whether the poor performance
with regards to utility can be explained by the properties of additive noise. The answer to
these two questions is the main result of this thesis.

4.1 Theoretical Foundations

To get a general description of the noise being added, independent of the underlying
application, the following lemma can be formulated.

Lemma 4.1. The noise being added by the Gaussian mechanism can be described as a d-variate
Gaussian distribution N (µ,Σ) with mean µ ∈ Rd and positive-definite covariance matrix Σ ∈
Rd×d where d is the number of dimensions of the data that is being perturbed.

The Gaussian mechanism adds independent noise with mean µ and variance σ2 to each
dimension of the data if the covariance Σ is a diagonal matrix. Thus, to prove that the
described lemma holds, it suffices to prove the following lemma.

Lemma 4.2. The probability density function (PDF) of d one-dimensional Gaussian distributions
N (µi, σ

2
i ) with mean µi and standard deviation σi where i ∈ {1, . . . , d} is equal to the PDF of one

d-variate Gaussian distribution N (µ,Σ) with mean vector

µ =


µ1
...
µd


and covariance matrix

Σ =


σ21 0.0 · · · 0.0

0.0 σ22 · · · 0.0
...

...
. . .

...
0.0 0.0 · · · σ2d

 ,
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In other words,

pdfN (µ,Σ)(x) =
d∏
i=1

pdfN (µi,σ2
i )
(xi)

Proof. The PDF of a multivariate Gaussian distribution is defined as

pdfN (µ,Σ)(x) =
1√

det(2πΣ)
exp

(
−(x− µ)TΣ−1(x− µ)

2

)

Since the covariance matrix Σ is a diagonal matrix, its inverse Σ−1 is again a diagonal
matrix with the reciprocal values ofΣ on its diagonal.

Σ−1 =


1
σ2 0.0 · · · 0.0

0.0 1
σ2 · · · 0.0

...
...

. . .
...

0.0 0.0 · · · 1
σ2


With these definitions, the PDF can be described as

pdfN (µ,Σ)(x) =
1√

det(2πΣ)
exp

(
−(x− µ)TΣ−1(x− µ)

2

)
=

1√
(2π)d

∏d
i=1 σ

2
i

exp

(
−(x− µ)TΣ−1(x− µ)

2

)

=
1√

(2π)d
∏d
i=1 σ

2
i

exp

−1

2

[
(x1 − µ1) · · · (xd − µd)

]
1
σ2
1
(x1 − µ1)

...
1
σ2
d
(xd − µd)




=
1√

(2π)d
∏d
i=1 σ

2
i

exp

(
−1

2

d∑
i=1

1

σ2i
(xi − µi)2

)

=
1√

(2π)d
∏d
i=1 σ

2
i

exp

(
−

d∑
i=1

(xi − µi)2

2σ2i

)

To complete the proof, it is shown that the same description holds for the PDF of d one-
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dimensional Gaussian distributions.

d∏
i=1

pdfN (µi,σ2
i )
(xi) =

d∏
i=1

1

σi
√
2π

exp

(
−1

2

(
xi − µi
σi

)2
)

=
1∏d

i=1 σi
√
2π

exp

(
−1

2

d∑
i=1

(
xi − µi
σi

)2
)

=
1√

(2π)d
∏d
i=1 σ

2
i

exp

(
−

d∑
i=1

(xi − µi)2

2σ2i

)

= pdfN (µ,Σ)(x) �

With this equality proven, findings for both settings, d independent, one-dimensional
Gaussian distributions as well as one d-variate Gaussian distribution, apply to the ad-
ditive Gaussian noise of the Gaussian mechanism.

4.2 Properties of Additive Gaussian Noise in DP

To achieve the main result of this thesis, the description of additive noise as d independent,
one-dimensional Gaussian distributions can be used to determine the estimated mean
of the l2-norm of samples from said additive noise distribution. For this purpose, the
following lemma is formulated and proven.

Lemma 4.3. The mean l2-norm of Gaussian noise added by the sensitivity method increases with
σ ·
√
2 · Γ ((d+1)/2)

Γ (d/2) where d represents the number of dimensions and σ describes the standard
deviation used in each dimension of this Gaussian noise.

Proof. Let Z1, . . . , Zd be independent, normally distributed random variables with mean
0 and standard deviation 1. Then, the statistic

Y =

√√√√ d∑
i=1

Z2
i

is distributed according to the χ-distribution. The mean of the χ-distribution is given by

µχ =
√
2 · Γ ((d+ 1)/2)

Γ (d/2)

where Γ describes the Gamma function.
As described for the Gaussian mechanism, Z ′1, . . . , Z

′
d are independent, normally dis-

tributed random variables with mean 0 and standard deviation σ. To adjust for the stan-
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dard deviation σ, Z ′1, . . . , Z
′
d have to be normalized by σ. Thus, with Zi = Z ′iσ, a statistic

Y ′ can be formulated as

Y ′ =

√√√√ d∑
i=1

Z ′2i

=

√√√√ d∑
i=1

(Ziσ)2

=

√√√√σ2
d∑
i=1

Z2
i

= σ ·

√√√√ d∑
i=1

Z2
i

= σ · Y

Which results in a new mean value and thereby completes the proof of Lemma 4.3.

µ′χ = σ · µχ

= σ ·
√
2 · Γ ((d+ 1)/2)

Γ (d/2)
�

This first result shows that the l2-norm of samples from a d-variate Gaussian distribu-
tion is determined by two factors: the dimensionality of the distribution and thus by the
output dimensionality of the computation that the Gaussian mechanism is used for to per-
turb, as well as the standard deviation used in each of its dimensions. Since the l2-norm is
direction-independent (in relation to µ), these results additionally suggest that the PDF of
the described d-variate Gaussian noise is the surface of a d-sphere or, figuratively speak-
ing, a d-dimensional ring with a mean radius of r = µ′χ and center µ.

To more accurately describe the structure of this noise ring, another description is given
by the PDF of a d-variate Gaussian distribution. For this purpose, a random variable D is
defined, which describes the l2-norm of samples from a d-variate Gaussian distribution.
The following equation describes the probability of the l2-norm of such samples to be of
value u.
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Pr[D = u] =

∫
∀w:‖w‖=u

pdfN (µ,Σ)(w)dw

=

∫
∀w:‖w‖=u

1√
det(2πΣ)

exp

(
−(w − µ)TΣ−1(w − µ)

2

)
dw

As before, only zero-centered distributions are considered, so µ = [0, . . . , 0].

=

∫
∀w:‖w‖=u

1√
(2π)dσd

exp

(
−w

TΣ−1w

2

)
dw

=

∫
∀w:‖w‖=u

1√
(2π)dσd

exp

(
−‖w‖

2

2σ2

)
dw

=

∫
∀w:‖w‖=u

1√
(2π)dσd

exp

(
− u2

2σ2

)
dw

∫
∀w:‖w‖=u dw describes the surface of a d-dimensional sphere, a d-sphere with radius u.

This surface is denoted by Sd−1(R) where R is the radius of the d-sphere. This surface is

universally defined as Sd−1(R) = 2π
d
2

Γ ( d
2
)
Rd−1.

= Sd−1(u) ·
1√

(2π)dσd
exp

(
− u2

2σ2

)
=

2π
d
2

Γ (d2)
· ud−1 · 1√

(2π)dσd
exp

(
− u2

2σ2

)
=

2

Γ (d2)
· ud−1 · 1√

2dσd
exp

(
− u2

2σ2

)
=

1

2(d/2)−1 · Γ (d2)
· u

d−1

σd
· exp

(
− u2

2σ2

)

This last line corresponds to the PDF of the χ-distribution which is the expected result
when considering independent, zero-centered Gaussian distributions as it is done here.
This implies several important insights. Firstly, this again underpins that Lemma 4.2 is in-
deed correct, otherwise, the usage of the PDF of an d-variate Gaussian distribution should
yield other results than the χ-distribution. Secondly, the outcome affirms the assumption
that the shape of additive noise is a d-dimensional ring or more precisely the surface of a
n-sphere as it arises in the shown equations. Lastly, it can be derived that this ring shape
applies not only to Gaussian noise but to any noise distribution: The resulting Sd−1(R) is
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independent of the used PDF and thus applies to any distribution. With these results, we
conjecture the following statement

Conjecture 4.4. For any noise distribution, the main share of the (probability) mass of this noise
will lie on the surface of a d-dimensional hypersphere. Its radius is determined by the number of
dimensions d and parameters specific to the noise distribution. We call this surface the noise ring.

For the Gaussian distribution we can further define this noise ring.

Lemma 4.5. The noise ring produced by a zero-centered d-variate Gaussian distribution as used
by the Gaussian mechanism with standard deviation σ in each dimension is described by the PDF
of the χ-distribution

pdfχ(u) =
1

2(d/2)−1 · Γ (d2)
· u

d−1

σd
· exp

(
− u2

2σ2

)

4.3 Evaluation of Theoretical Results

After successfully deriving theoretical descriptions of the length distribution (l2-norm)
of multivariate Gaussian noise, these are compared to the previous practical results to
confirm their implications.

As a first step, the results of Lemma 4.3 are compared to those results observed for the
implementation of DP-SGD. In these implementations the dimensionality d is defined by
the dimensionality of the network used for training or more accurately, by the number of
trainable parameters in this network. All networks together with their number of param-
eters used in the work on this thesis are listed in Appendix A.1.

For simplicity, DP-SGD is used to train the respective model on the Fashion-MNIST dataset
with fixed parameters (cf. Algorithm 1): C = 1.0, σdpsgd = 1.3, L = 32. With these param-
eters, the expected l2-norm of the additive Gaussian noise results to:

Choosing the model to be MNIST_FC4_Net (cf. Listing A.1):

σ ·
√
2 · Γ ((d+ 1)/2)

Γ (d/2)
=
C · σdpsgd

L
·
√
2 · Γ ((d+ 1)/2)

Γ (d/2)

=
1.0 · 1.3

32
·
√
2 · Γ ((242762 + 1)/2)

Γ (242762/2)

≈ 20.0163
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(a) l2-norm distribution of resulting gradients for MNIST_FC4_Net (cf. Listing A.1).
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(b) l2-norm distribution of resulting gradients for MNIST_FC7_Net (cf. Listing A.2).

Figure 4.1: l2-norm distribution of resulting gradients for DP-SGD over the training on the
Fashion-MNIST dataset.

Choosing the model to be MNIST_FC7_Net (cf. Listing A.2):

σ ·
√
2 · Γ ((d+ 1)/2)

Γ (d/2)
=
C · σdpsgd

L
·
√
2 · Γ ((d+ 1)/2)

Γ (d/2)

=
1.0 · 1.3

32
·
√
2 · Γ ((329226 + 1)/2)

Γ (329226/2)

≈ 23.3099

Figure 4.1 shows the resulting l2-norm distribution of the resulting gradients for the de-
scribed models and parameters.
These results show two important insights: First, the results of Lemma 4.3 are indeed
correct and reproducible through practical implementations. Secondly, they affirm the
immense impact that additive noise has on differentially private applications. Figure 4.1
not only shows the l2-norm of the noise samples, but the resulting gradients comprised
of noise added to the clipped mean of unperturbed gradients used by DP-SGD to update
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4 Analysis of Additive Noise in DP

the networks parameters. That the norms of these noisy gradients match the expected
norms of only noise samples with negligible variation, demonstrates that the influence
that unperturbed data has on the gradients is completely dominated by the noise added.
By that, the poor performance of DP-SGD as well as Voted-SGD can be explained.

4.4 Generalizability of Findings

To this point, only Gaussian noise was examined due to the implementation of the Gaus-
sian mechanism in DP-SGD and Voted-SGD. Whether the results shown also apply to
other noise distribution is analyzed in this section.

As an example, a technique proposed by [CMS11] is considered which can also be used to
achieve gradient updates in SGD in a privacy-preserving manner. Unlike for the Gaussian
mechanism, in this approach, noise is not added independently in each dimension of the
to be perturbed gradients but instead consists of two parts: First, the direction of a noise
vector is chosen randomly, e.g., by sampling a vector of length 1 from a d-dimensional
Gaussian distribution. Afterward, the length of this noise vector is scaled according to
the sensitivity of the mechanism to achieve DP. As the length determining distribution, a
1-dimensional Gamma distribution is used. The resulting noise vector with a random di-
rection and a length sampled from a Gamma distribution e.g., is then added to the clipped
mean gradient of a batch in (DP-)SGD.

It has to be noted that this is only a rough sketch of the approach by [CMS11] as a more
detailed description lies outside the scope of this thesis. The interested reader is referred
to the original paper.

The main questions to be answered is whether this different approach of additive noise
does also result in a noise ring establishing for multiple dimensions and whether the ra-
dius of this ring increases with dimensionality d. For this purpose, the described mecha-
nism is implemented and the l2-norm distribution of its resulting noise vectors is analyzed
for different d.

Figure 4.2 shows the resulting l2-norm distributions for different d in comparison to the
results produced by the Gaussian mechanism parameterized for the same privacy guaran-
tee ε. The results show that also for this different approach of additive noise, a noise ring
establishes with a radius increasing with dimensionality d. This radius increases linearly
with d and thus even faster compared to the results of the Gaussian distribution which
increases by a factor of Γ ((d+1)/2)

Γ (d/2) .
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Figure 4.2: l2-norm distribution of the d-variate Gaussian noise compared to the approach
of [CMS11] using a Gamma distribution.

4.5 Results and Implications

With the presented insights of this chapter, the question arises about what these results
imply. Can parts of the poor performance (with regards to its utility) of DP-SGD and other
differentially-private mechanism using additive noise be explained by the ring-form of the
added noise? Does this also explain the missing utility improvement of Voted-SGD? And
lastly, can this ring be avoided?

To address the first question, it suffices to discuss what the desired outcome of additive
noise is to preserve as much utility as possible. Ideally, the added noise has no influence
on the underlying algorithm. For zero-centered noise and the exemplary application of
gradient updates in DP-SGD, this means that noise samples close to the noise distributions
mean 0 are desirable. Although this is with high-probability achieved in the 1-dimensional
case, the probability of this preferred outcome decreases with each additional dimension
because of the establishing noise ring. As shown by the results of the previous sections,
for ML applications with several thousand of dimensions, no probability mass is left in
the noise distribution’s mean, making the desirable result impossible.

The same argumentation applies to the explanation of Voted-SGD’s poor results. As de-
scribed in Chapter 3, the standard variation σ has to increase by a factor of 2 · √nc (nc
being the number of candidates) compared to DP-SGD to compensate for the additional
privacy leakage. This further increases the radius of the noise ring from which the candi-
dates are sampled. Even if the voting successfully determines the best of those candidates
(with regard to utility), this candidate is still considered to have worse properties than all
samples that would result from DP-SGD initially. Thus, Voted-SGD is not able to improve
the results of DP-SGD.

To further investigate on the implications of this thesis’ results for ML applications it can
be worthwhile to take a second look at the parameters which determine the noise ring’s
radius. As already shown, this radius is given by a d-dependent term multiplied by the per
dimension standard deviation σ. For DP-SGD this is given by Lemma 2.9. With sampling
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probability q = L/N and the total number of steps T = N/L · #epochs it yields the
following result.

σ ≥ c2q
√
T ln(1/δ)

ε

= c2
L

N

√
N

L

√
ln(1/δ)

ε
·
√

#epochs

= c2
L√
L

√
N

N

√
ln(1/δ)

ε
·
√
#epochs

= c2
√
L

1√
N

√
ln(1/δ)

ε
·
√
#epochs

= c2

√
L

N

√
ln(1/δ)

ε
·
√
#epochs

These results suggest that a smaller batch size L or training for fewer epochs could suffice
to limit the effect of the noise ring. Unfortunately, these parameters cannot be changed
arbitrarily. Often, a certain number of epochs is necessary to achieve sufficient training
results. Additionally, lowering the batch size L would increase the per-gradient noise as
seen in Algorithm 1 and thus should not be too small. VGG-16 as proposed by [SZ15]
serves as an example for current models used in ML. VGG-16 consists of ≈ 130mil. pa-
rameters which results in a d-dependent factor of

√
2 · Γ ((d+1)/2)

Γ (d/2) ≈ 11, 400. Such a big
factor, realistically, could never be compensated by the additional factor σ. This suggests
that DP-mechanisms like DP-SGD fail to train current ML models.
Lastly, the question remains of whether the emergence of the described noise ring could
be prevented. At least with the current approaches using additive noise to achieve DP this
is not possible as it is an inherent problem of such noise. The privacy guarantees of DP
only hold if the mechanism’s results of neighboring inputs only differ at most by exp(±ε).
This implies changes in every of the output’s dimensions and thereby requires noise to be
added to each of these, be it directly (e.g., as for the Gaussian mechanism) or indirectly
(e.g., the approach of [CMS11]). With noise in every dimension, the described noise ring
emerges thus making it an inevitable problem of additive noise that strongly affects the
performance of differentially private mechanisms and should be considered in any future
research on such approaches.
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5 Conclusion

The original goal of this thesis was to investigate whether an additional voting step could
be used to improve the utility of differentially private mechanisms that use additive noise.
Although an improvement of DP-SGD, which was chosen as a case study of such a mech-
anism, did not result in the desired improvement, an even more valuable finding was
discovered: We found an inherent problem of multidimensional noise, namely that at
high dimensionality, noise distributions take the form of a multidimensional ring whose
radius increases with the number of dimensions.
This insight not only explains why many differentially private mechanisms suffer a great
loss in utility compared to not-privacy-preserving algorithms, but also indicates limits to
the practicality of these algorithms for high-dimensional applications.
We were able to accurately describe the shape of this ring for the d-variate Gaussian distri-
bution as used in the Gaussian mechanism, and show results that hold for arbitrary noise
distributions.
Since, to our knowledge, these results have not been shown by other work, the outcome
of this thesis is relevant to many developments in DP and should steer future research in
this area.
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6 Future Work

The results of this thesis have many implications relevant to future research in DP. This
chapter should serve as an overview for possible next steps.

6.1 The Voting Approach

Although the results of this thesis show that an additional voting step is not sufficient to
improve the utility of high-dimensional applications, its utility should still be analyzed
for low-dimensional settings. For example, (DP-)clustering has many low-dimensional
applications and could be improved with this extension.

6.2 Noise in High Dimensions

6.2.1 Further Analysis

With regards to the description of additive noise and the resulting noise ring, this thesis
focuses mainly on the Gaussian distribution motivated by the Gaussian mechanism. Al-
though many implications already apply to any other distribution, future research should
focus on a more general description of the noise ring described, independent of the noise
distribution used.

During the work on this thesis, it became apparent that the radius of the noise ring can
be approximated by σ ·

√
d, at least for the Gaussian distribution. Thus, the d-dependent

term
√
2 · Γ ((d+1)/2)

Γ (d/2) derived in this thesis could be approximated by
√
d. Future work

should prove that this approximation holds and whether it is valid in general or only for
the Gaussian distribution.

From the description of the noise ring and, in particular, its radius, it might be possible
to derive upper bounds on the utility of a DP-mechanism as a function of dimensionality.
Research in this direction could provide valuable results.

6.2.2 Alternatives

This thesis has shown that the resulting noise ring is an inherent problem of additive noise.
Future research should focus on possible alternatives to approaches using additive noise
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6 Future Work

or work on techniques that reduce the dimensionality of DP applications. For ML appli-
cations, for example, recent work by [KM21] has provided promising results on avoiding
large networks for DP mechanisms. A first, less challenging approach might be to use
convolutional neural networks instead of DNNs, as used in this thesis, since they generally
involve fewer parameters and thus a lower dimensionality for the privacy mechanism.
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A Appendix

A.1 Models

Listing A.1: Example of 4-layer fully connected neural network: MNIST_FC4_Net

Batch size: 32

Input shape: (32, 28, 28)

==============================================================================

Layer (type:depth-idx) Output Shape Param #

==============================================================================

MNIST_FC4_Net -- --

--Linear: 1-1 [32, 256] 200,960

--Linear: 1-2 [32, 128] 32,896

--Linear: 1-3 [32, 64] 8,256

--Linear: 1-4 [32, 10] 650

==============================================================================

Total params: 242,762

Trainable params: 242,762

Non-trainable params: 0

Total mult-adds (M): 7.77

==============================================================================

Input size (MB): 0.10

Forward/backward pass size (MB): 0.12

Params size (MB): 0.97

Estimated Total Size (MB): 1.19

==============================================================================

Listing A.2: Example of 7-layer fully connected neural network: MNIST_FC7_Net

Batch size: 32

Input shape: (32, 28, 28)

==============================================================================

Layer (type:depth-idx) Output Shape Param #

==============================================================================

MNIST_FC7_Net -- --

--Linear: 1-1 [32, 256] 200,960

--Linear: 1-2 [32, 256] 65,792

--Linear: 1-3 [32, 128] 32,896
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--Linear: 1-4 [32, 128] 16,512

--Linear: 1-5 [32, 64] 8,256

--Linear: 1-6 [32, 64] 4,160

--Linear: 1-7 [32, 10] 650

==============================================================================

Total params: 329,226

Trainable params: 329,226

Non-trainable params: 0

Total mult-adds (M): 10.54

==============================================================================

Input size (MB): 0.10

Forward/backward pass size (MB): 0.23

Params size (MB): 1.32

Estimated Total Size (MB): 1.65

==============================================================================

Listing A.3: Example of convolutional neural network: CIFAR10_Conv_Net

Batch size: 32

Input shape: (32, 3, 32, 32)

==============================================================================

Layer (type:depth-idx) Output Shape Param #

==============================================================================

CIFAR10_Conv_Net -- --

--Conv2d: 1-1 [32, 6, 28, 28] 456

--MaxPool2d: 1-2 [32, 6, 14, 14] --

--Conv2d: 1-3 [32, 16, 10, 10] 2,416

--MaxPool2d: 1-4 [32, 16, 5, 5] --

--Linear: 1-5 [32, 120] 48,120

--Linear: 1-6 [32, 84] 10,164

--Linear: 1-7 [32, 10] 850

==============================================================================

Total params: 62,006

Trainable params: 62,006

Non-trainable params: 0

Total mult-adds (M): 21.06

==============================================================================

Input size (MB): 0.39

Forward/backward pass size (MB): 1.67

Params size (MB): 0.25

Estimated Total Size (MB): 2.31

==============================================================================
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