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Abstract

Companies, governments, and institutes such as hospitals, have a strong
interest in gathering vast amounts of data about individuals. The poten-
tial benefits from analyzing these data are tremendous. Since most of
this information is private or sensitive, the main challenge is to reveal
useful information about the data while protecting the privacy of indi-
vidual contributors. The framework of differential privacy provides a
measurable level of privacy protection for such data. Thus, a differential
privacy-based approximation ensures that statistical conclusions are
reached deniable if an individual is included in the data set or not, by
using suitable additive noising strategies. In this work, we consider the
problem of producing a general and problem-dependent mechanism
that learns a suitable differentially private approximation based on
public data only. Given a first prototype derived in previous work, the
aim of this work is to develop a more accurate and applicable advanced
prototype version. In this process, first potential points of improvement
are identified. Later, techniques which incorporate these improvements
into the advanced prototype version are developed and implemented.
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Chapter 1

Introduction

There is a strong interest among governments, companies, and individuals in
collecting and analyzing digital data [5] [6]. Machine learning (ML) models
based on these data offer functions that are tailored to specific Big Data
applications, allowing to gain valuable insights into the behavior of groups
or individuals. Yet, many ML models do not have a concise representation
and might have unexpected behavior for specific data sets. Such behavior
can leak information about the input data set and thereby lead to privacy
violations. In order to preserve privacy while maintaining the benefits of
analyzing data, there is great interest in a technique providing both privacy
protection and data accuracy.

Differential privacy (DP) is a mathematical notion for analyzing whether a
function exhibits privacy leakage. By constructing a DP approximation of
a function offered by an ML model, a strong privacy guarantee is provided.
More precisely, DP approximations ensure that statistical conclusions are
reached deniable of whether an individual is included in the data set, thus
by adding random noise [4]. When developing a DP approximation, it is
crucial to find an appropriate balance between accuracy and privacy. To
consider this, a common method to design a DP approximation is to limit
the maximal change of the output value after replacing one entry of a data
set in the input space. Such a maximum change in the output space is called
sensitivity. There are several approaches that use this method to develop a
mechanism that constructs a suitable DP approximation for a given problem
using the specific training data as well as problem depending information.
This very problem dependency leads to the fact that once a mechanism has
been developed, it is not applicable to new problems. A generic approach for
learning DP approximation is one solution to construct a problem-dependent
mechanism from training data alone. In this work, we make significant
progress towards developing such a generic mechanism, concentrating on
the theoretical aspects. Given an ML model, we construct a mechanism that
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1. Introduction

learns an approximation that has bounded sensitivity and thus directly leads
to differential privacy.

In prior work, we derived a first prototype towards learning a DP approxima-
tion from arbitrary public data, for high-dimensional input spaces (with one
attribute per data-point) and one-dimensional output spaces [2] [10]. This
prototype is based on a mechanism that divides the input space into so-called
areas. More precisely, it structures the domain into a multi-dimensional
chessboard-like model composed of equal-sized hypercubes which has the
crucial advantage that DP-neighbours (i.e. a set of databases that differ in
at most one entry) can be identified more efficiently. The mechanism is
based on this structure to generate consistent output ranges that satisfy the
sensitivity constraints. Then, the output values of the approximation are
limited to especially these ranges to ensure that the sensitivity bounds are
never exceeded. Finally, an appropriate amount of random noise is added
to the output, leading to a differential private approximation for new data
sets with the same statistic as the public data set. This prototype has been
proven to be both general and problem-dependent. Moreover, testing this
prototype shows promising results. Nevertheless, there is still potential of
improvement which is not addressed yet.

Our Contribution. In this work, we will focus on deriving an advanced
version of this first prototype, by identifying and addressing potential points
of improvement. More precisely, the prototype version derived in this work
will incorporate the following points:

• Sparse Data. We derive and implement a procedure that generates an
accurate and valid DP approximation even if the number of areas is
significantly larger than the number of data sets.

• Optimal Abort Condition. We propose and implement an abort condi-
tion that ensures that our mechanism stops exactly when the sensitivity
is best exploited.

• Multivariate Input Data. We generalize the approach used to construct
the first prototype from high-dimensional input data Nn to multivariate
input data Nnxd. Then, given a data set D contained in the input space,
each row is a record associated with an individual, and each column
represents one attribute.

• Smoothed Sensitivity. Our first prototype version learns a DP approx-
imation based on the global sensitivity Sglobal . More precisely, it uses
global sensitivity to measure the amount of noise that has to be added
to the statistic g to be privacy-preserving. In this work, we consider the
so-called smooth sensitivity while learning a DP approximation. This
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smooth sensitivity additionally depends on the data set D making the
advanced prototype usable to a broader range of applications.

Furthermore, throughout this work, the derived prototype will be adapted to
supervised learning methods such as a decision tree.

Applications. With the proposed mechanism in this work, it is possible to
learn a differential private approximation for a non-commutative function,
that offers good practical accuracy without any trusted server. Additionally,
our advanced prototype expands the applicability range by adding a smaller
amount of noise if possible making the output of the resulting DP approxi-
mation more accurate. The median is one example of a function where this
property is crucial.

Structure. This work is structured as follows. In the beginning, fundamen-
tal definitions and concepts which form the basis of this work are introduced.
More precisely, the framework of differential privacy as well as the construc-
tion of the first prototype version of our prior work are recalled. Next, the
problem statement of this work is presented in detail in chapter 3. In chapter
4 the conceptual work that forms the foundation for the development of the
advanced prototype version is discussed. Then, in chapter 5 the process of
integrating our approaches from chapter 4 in the prototype is explained in de-
tail. Afterwards, the correctness, as well as the performance of the proposed
prototype version, is proven. In chapter 6, ways to adapt the prototype model
to other learning mechanisms are demonstrated. Thereafter, in chapter 7,
the functionality of our constructed prototype is evaluated. Further, possible
directions for future work are specified in chapter 8. Finally, the results of
this work are summarized in chapter 9.
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Chapter 2

Preliminaries

This chapter is organized into four parts. In the first part, the notations used
in this thesis are presented. Next, the fundamental concept behind the term
differential privacy is introduced. Thereafter, the prototype developed in
our previous work, which forms the basis of this work, is described. Finally,
we have a closer look at related work to consider other approaches which
address the problem statement of this work.

2.1 Notation

Throughout this work the following notations are used:

Notation Explanation
Itrain Training data

D = (x1, . . . , xn)
Data set D ∈ I with data points x1, . . . , xn
being a multivariate time series such that xi =
(a1, . . . , ad) where ai ∈N

MItrain

A differentially private approximation, based
on Itrain

g
A function g : I → R with I ⊆ Nnxd and R ⊆
R, which maps multivariate data sets to real
numbers.

g̃
Represents a restricted ”copy” of the function
g in such a way that the sensitivity bounds are
fulfilled.

Sglobal Global sensitivity of g

Table 2.1: Notation
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2. Preliminaries

Notation Explanation
Slocal(D) Local sensitivity of g on data set D

S̃ Smooth sensitivity approximation S̃ : I → R+

of g

areas The set of all elements forming a partition of
the domain I of g.

area o f data point(·)
A function which takes as input a data set
D ∈ I and returns the area in I in which D is
contained.

areacv Center Value of area ∈ areas.

(arealb, areaub)
Lower buffer and upper buffer value of area ∈
areas.

Table 2.2: Notation

2.2 Differential Privacy

Before the definition of differential privacy is introduced let us first define
some fundamental definitions, we will need later. Most of the definitions,
theorems, and proofs are based on chapter 3 of [4] and [8], other references
will be noted separately.

Definition 2.1 (neighbourhood) Let D = (x1, . . . , xn) be a dataset. We call D
and D′ neighbouring datasets if they differ in at most one dimension xi and x′i . The
set of neighbouring data sets to a fixed data set D, is called (direct) neighbourhood of
D and is denoted with Ddirect nghb.

This definition can be generalized as follows:

Definition 2.2 (k-neighbourhood) Let D and D′ are datasets. We call D and
D′ k-neighbouring data sets if they differ in exactly k dimensions. The set of k-
neighbouring data sets to a fixed data set D, is called k-neighbourhood of D and is
denoted with Dk nghb.

Definition 2.3 (DP-neighbourhood) Let D = (x1, . . . , xn) ∈ I ⊆ Nn, then a
DP-neighbourhood of D in dimension i ∈ [n] is referring to a number of elements
in I that differ only in the i-te dimension, i.e. {D′ ∈ I : x′1 = x1, . . . , x′i−1 =
xi−1, x′i+1 = xi+1, . . . , x′n = xn}.

Notice that the union of all DP-neighbourhoods of x are the same as the
direct neighbourhood of x.

Definition 2.4 ((ε, δ)-differentially private) Let ε, δ ≥ 0 and I ⊆ Nn. A
randomized mechanism g : I → R is called (ε, δ)-differentially private if for all
S ⊆ Range(g) and for all D, D′ ∈ I such that D′ ∈ Ddirect nghb:

Pr[g(D) ∈ S] ≤ eεPr[g(D′) ∈ S] + δ.
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2.2. Differential Privacy

If δ = 0, we say that M is ε-differentially private.

More intuitively, differential privacy will guarantee that a randomized algo-
rithm behaves indistinguishably on similar input data sets (i.e. data sets that
differ in at most one dimension).

2.2.1 Sensitivity

Given two neighbouring data sets, there is a need to estimate the maximal
possible change in the output range that can be expected, as this reveals the
amount of noise that has to be added to preserve privacy. The sensitivity is
such a measure. It captures the magnitude by which one element can change
the output of a function.

Definition 2.5 (l1-Global-Sensitivity) Let g : I → R be a function and D, D′ ∈
I be two arbitrary data sets such that their differ in at most one data point (i.e.,
D′ ∈ Ddirect nghb). Then the l1-global-sensitivity of g is defined by:

Sglobal := max
D,D′∈I

||g(D)− g(D′)||1.

Notice that by using the concept of global sensitivity described above, the
noise magnitude depends on g and the privacy parameter ε, but not on the
instance D. For many functions, such as the median gmedian, this approach
adds an excessive amount of noise, making the result meaningless. With
the concept of smoothed sensitivity, this can be prevented. To compute the
smoothed sensitivity function S̃ : I → R+ certain criteria must be respected.
For instance, the smoothed sensitivity function should not change quickly
in any neighbourhood of its input space. This criterion guarantees that no
information is leaked even though different sensitivities are used within the
data sets.

Before formally introducing the definition of smoothed sensitivity let us first
propose a simpler version of a local measure of sensitivity:

Definition 2.6 (Local Sensitivity) For g : I → R and D ∈ I ⊆ Nnxd, the local
sensitivity of g at D is defined by:

Slocal(D) := max
D′ : D′∈Ddirect nghb

||g(D)− g(D′)||1.

Remark 2.7 Notice that the maximal value of the local sensitivity of g is equal to
the global sensitivity of g:

Sglobal = max
D∈I

Slocal(D).

The magnitude of added noise defined by the local sensitivity function can
vary to the point that information about the data set is revealed. This can be
prevented by using smoothed sensitivity instead.

7



2. Preliminaries

Definition 2.8 (Smooth Bound) For γ > 0 and I ⊆ Nnxd, a function S̃ : I →
R+ is a γ-smooth upper bound on the local sensitivity of g if it satisfies the following
requirements:

∀D ∈ I : S̃(D) ≥ Slocal(D)

∀D, D′ ∈ I, d(D, D′) = 1 : S̃(D) ≤ eγS̃(D′)

A function S̃ that is the smallest to satisfy the above definition 2.8 is called
the smooth sensitivity of g.

2.2.2 Additive Noising Strategies

Given a function g and its bounded sensitivity Sg, one can convert g into a
differential private approximation by adding the right amount of random
noise. Such random noise could for an instant be drawn from the Laplace
distribution. Then, the scale of the noise will be calibrated to the sensitivity
of g (divided by ε). The Laplace mechanism describes exactly this procedure.
In the following, we will first define the Laplace distribution to later formally
introduce the Laplace mechanism

Definition 2.9 (Laplace Distribution) The Laplace distribution (centered at 0)
with scale b is the distribution with probability density function:

Lap(x|b) = 1
2b

exp(−|x|
b
)

Note that we will write Lap(0, b) to denote the Laplace distribution (centered
at 0) with scale b.

Definition 2.10 (Laplace Mechanism) Let I ⊆ Nnxd and R ⊆ Rk. Given a
function g : I → R with bounded sensitivity (i.e. Sg < ∞) and D ∈ I. The Laplace
mechanism is defined as follow:

ML(D, g(·), Sg, ε) = g(D) + (Y1, . . . , Yd)

where Yi are i.i.d. random variables drawn from the Laplace distribution centered
around zero with scale Sg

ε (i.e., Yi ∼ Lap(0, Sg
ε )).

Notice that the amount of added noise increases proportionally with the
magnitude of the sensitivity. Moreover, the value of epsilon reveals the
degree of privacy guaranteed. Regarding the Laplace mechanism, this means
that we add more noise for smaller epsilon values.

Theorem 2.11 Let ε > 0 and Yi ∼ Lap(0, Sg
ε ) for all i ∈ [d]. Then for any function

g : I → R with bounded sensitivity S and D ∈ I, the Laplace mechanism

ML(D, g(·), S, ε) = g(D) + (Y1, . . . , Yd)

is (ε, 0)-differentially private.
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2.3. DP Mechanism with High-Dimensional Input

For the proof of Theorem 2.11, we refer for instant to [4], Chapter 3.

Assuming a smooth sensitivity is given, the following theorem can be applied
on functions that return a single real value:

Theorem 2.12 Let g : I → R be any real-valued function and let S̃ : I → R+

be a γ-smooth upper bound on the local sensitivity of g. Then if γ ≤ ε
2ln( 2

δ )
and

δ ∈ (0, 1), the mechanism

ML(D, g(·), S̃, ε) = g(D) +
2S̃(D)

ε
·Y

where Y ∼ Lap(1), is (ε, δ)- differentially private.

The proof of Theorem 2.12, can be found in [8], Chapter 2.2.

2.3 DP Mechanism with High-Dimensional Input

The goal of this work is to develop a mechanism based on public data to
learn a suitable differential private approximation. In this section, we present
the approach used to construct our first prototype of such a mechanism
derived in prior work [2]. Understanding this first prototype is essential since
the mechanism constructed in this work is an extended version of the first
prototype.

This first version aims to be applicable to different settings by considering
individual statistics of public data to obtain a more reliable approximation. To
realize this, the domain of the function g is divided into so-called areas. More
precisely, the domain is structured into equal-sized hypercubes which has the
crucial advantage that the DP-neighbours can be identified more efficiently.
The former prototype is based on this structure to first find suitable center
values for each hypercube to later generate consistent output ranges that
satisfy the sensitivity constraints. After obtaining the output ranges for each
area, the output values of the approximated function of g are limited to
especially these ranges. This ensures that the sensitivity bounds are never
exceeded. Finally, the appropriate amount of Laplace noise is added to the
result, leading to a differential private approximation for new data sets with
the same statistic as Itrain.

Overall, this prototype is based on three basic steps. First, identifying
appropriate center values for each area. Then, using these center values to
determine valid output ranges. And finally, adding the appropriate amount
of noise to the individual output values using the Laplace mechanism. In the
following, these three basic steps are explained in more detail.
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2. Preliminaries

Figure 2.1: This illustration demonstrates the buffer idea while showing how shifting the center
values would work for area0, area2 ∈ area1direct nghb such that area0 /∈ area2direct nghb. In this
example area0center val can be shifted up without adjusting the center value of the direct neighbour
area1, due to the fact that there was enough buffer left between area0center val and area1center val .

2.3.1 Finding Center Values

To ensures compliance with the privacy constraints (i.e. sensitivity bounds)
while maximizing accuracy, center values for each area are introduced. These
center values are shifted during the mechanism towards the mean value
of all output values within one area. Furthermore, to guarantee that the
sensitivity bounds are respected, so-called buffers are initiated for each area.
These buffers indicate the extent to which the center value can be shifted
up or down without violating global consistency. In other words, these
buffers represent a measure of the flexibility of each center value. Before
moving a center value in one direction, the buffers of the affected area,
as well as the (directly) neighbouring areas, indicate whether this shift is
compatible with the sensitivity constraints. Besides that, the buffers reveal
which of the neighbouring areas have to be shifted additionally in order to
maintain consistency (as illustrated in figure 2.1 and figure 2.2). Furthermore,
a synchronization function is used to ensure that flexibility is exploited more
effectively. In detail, a synchronisation is performed if either not enough
buffer is left to shift the center value of the area or in the case, the buffers
of thus (direct) neighbouring areas, which must be updated to maintain
consistency, are depleted. In this synchronization step, all center values are
set equal to the mean value of the current center values. Therefore, after
performing a synchronisation all center values are identical. Consequently,

10



2.3. DP Mechanism with High-Dimensional Input

Figure 2.2: This illustration demonstrates the buffer idea while showing how shifting the center
values would work for area0, area2 ∈ area1direct nghb with area0 /∈ area2direct nghb. In this example
area0center val can only be shifted up if area1center val has enough lower buffer left to be adjusted,
this is due to the fact that there was no buffer left between area0center val and area1center val .

the buffers can be filled up again. To ensure the termination of this procedure
only a given maximum number of performed synchronizations is allowed.
Ultimately, this approach determines center values which indicates a suitable
output value within the individual area as accurately as possible while
respecting the privacy constraints.

2.3.2 Finding Valid Output Ranges

To find a consistent output range for each area it is essential that the center
values were chosen to be no further apart than sensitivity S if they belong to
areas that are within a DP-neighbourhood. As mentioned, the center value of
each area represents a valid and suitable mean output value within the area.
Therefore, by iteratively going over all areas, the minimum and maximum
center values of all neighbouring areas can be used to set the first limits for
the output ranges, which are no further than S wide. Next, these output
ranges can be extended symmetrically up to a length of S, to maximize the
flexibility.

2.3.3 Add Noise

Finally, by following both approaches, the output ranges of each area are
obtained, such that the resulting approximation has sensitivity S. It remains
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2. Preliminaries

to apply appropriate noising techniques to obtain a mechanism that learns a
DP approximation using the given public data, only. The Laplace Mechanism
is such a noising technique.

2.3.4 Prototype of the General Problem-Dependent Mechanism

A first prototype version of a general problem-dependent mechanism, based
on the previous three subsections, is formally introduced. This prototype
outputs a valid DP approximation MItrain , based on given public data.

Algorithm 1 General Problem-Dependent Mechanism
Input: Itrain = (Itraininput , Itrainoutput), countmax, EPOCHS, S, ε, g
Output: DP approximation: MItrain

1: // Finding center values
2: {areacv : area ∈ areas} ← Finding CV(Itrain, countmax, EPOCHS, S)
3: Ωall center values ← {areacv : area ∈ areas}
4: // Finding valid output ranges
5: {areaoutput range : area ∈ areas} ← Output Ranges(Ωall center values, S)
6: // Add noise and define the resulting DP approximation MItrain

7: function MItrain(D)
8: area← area o f data set(D)
9: (larea, uarea)← areaoutput range

10: if g(D) ≤ larea then
11: g̃(D)← larea
12: else if uarea ≤ g(D) then
13: g̃(D)← uarea
14: else
15: g̃(D)← g(D)
16: end if
17: Y ← Lap( S

ε )
18: MItrain(D)← g̃(D) + Y
19: end function
20: return MItrain

The input of this prototype is composed out of the maximal number of
synchronizations that is allowed countmax, the sensitivity S, the number of
iterations over the whole data set EPOCHS as well as the public data set
Itrain = (Itraininput , Itrainoutput), which will be used as training data. As men-
tioned the prototype outputs a valid DP approximation MItrain . First, a valid
center value for each area is obtained using the function Finding CV(). This
function is based on the approach explained in section 2.3.1 (lines 1-2). Then,
the function described in section 2.3.2 and denoted with Output Ranges()
is applied on the computed center values to find suitable output ranges
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2.4. Related Work

for each area (lines 4-5). Finally, based on the Laplace mechanism and the
calculated output ranges, a suitable DP approximation MItrain is constructed
and returned (lines 6-19).

Theorem 2.13 Let a data set Itrain be given. Furthermore, let countmax, EPOCHS ∈
Z≥0 and S, ε ∈ R≥0 be finite and given.
Then Algorithm 1(Itrain, countmax, EPOCHS, S, ε) returns a mechanism MItrain

that is (ε, 0)-differentially private.

For the proof of Theorem 2.13, we refer to [2], Chapter 5.

2.4 Related Work

This work aims to produce a general and problem-dependent mechanism
that learns a suitable differentially private approximation based on public
data. In this section, related work which addresses the problem statement
will be discussed. The more theoretical work of Dwork and McSherry [3],
proves that privacy can be preserved by calibrating the standard deviation
of the noise according to the global sensitivity of a general function g. More
precisely, a mechanism is presented which obtains ε-indistinguishability by
adding noise according to a certain distribution. The results of this work
are of great interest, creating the foundation for our approach. The work of
Nissim, Raskhodnikova, and Smith [8] introduces a problem-specific mecha-
nism which uses additive noising techniques to guarantee differential privacy
of the resulting approximation. More detailed, in this work a mechanism
that derives a DP approximation to the sample median is discussed. This
mechanism provides accuracy while being privacy-preserving by adding
noise proportional to the smoothed sensitivity. Nevertheless, it is not generic
applicable. Furthermore, the so-called Bernstein functional mechanism de-
termines a suitable DP approximation that depends on public data, only [1].
This generic mechanism is based on an approximation by Bernstein basis
polynomials.
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Chapter 3

Problem Statement

The aim of this work is to derive a generic mechanism, which learns a
DP approximation that preserves the individual privacy of new data. This
mechanism should be completely characterized by a given set of training
data. An example to illustrate the usefulness of such a mechanism is as
follows. Suppose that a store wants to analyze the shopping behavior of its
customers in order to improve its services. In this analysis, confidential data
such as time, visit time, purchase amount, gender, age, etc. is collected over
a period of time from different customers to subsequently draw valuable
conclusions about the shopping behavior. For such an private data analysis a
DP approximation is needed, which is constructed based on training data,
only.

So far, there is no reliable solution to this problem. According to state-of-the-
art, there are two strategies to develop a differential private approximation.
One of the strategies uses the specific statistics of the training data to find a
suitable mechanism. However, it should be emphasized that this approach
relies on information about the statistics of the data. Moreover, with this
strategy one results in a mechanism that is not applicable to other statistics
and therefore does not provide a proper solution. Thus, we are interested
in a prototype that is adaptable to different problems and consequently
to different statistics, while being based on training data, only. The other
strategy is indeed applicable to different problems, but there are no existing
realizations of such mechanisms which are satisfactorily reliable and accurate
[10].

In our previous work, we have already developed a first prototype version,
which offers a novel solution to the described problem. More detailed,
given any set of training data and an arbitrary statistic S as a black-box (i.e.,
input and output is given, while no internal information about the statistic
is provided), this prototype returns an DP approximation, which allows
making unknown databases with the same statistic S differential private. In
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3. Problem Statement

Figure 3.1: Upper illustration: The general problem dependent mechanism is shown, which is
trained on a public data set Itrain to finally return a differential private approximation MItrain .
Lower illustration: Here, it is shown, how the learned approximation MItrain can be used on new
data sets.

other words, our prototype is both general and problem-dependent on high-
dimensional input data (see figure 3.1). Beyond that, this first version respects
the order of the input data, making the prototype particularly qualified for
applications on time series data. However, this prototype is not yet fully
developed. In this work, we will identify and address shortcomings of this
first prototype and finally develop and implement an extended prototype
version.

More specifically, in this work, we will develop an advanced prototype
version based on the first prototype, while tackling the following weaknesses:

• Sparse Data. Currently, the approximation error tends to increase if
the number of areas is significantly larger than the number of data
sets. This described scenario leads to sparsity inside the domain. In the
case of sparsity, the output ranges will not be adjusted by a significant
number of areas. Resulting in a strong inaccuracy within the areas.
However, even the areas that are not directly affected by this are forced
to comply with the sensitivity bounds, which may prevent them from
achieving high accuracy. As this can be the case if the dimension of
the domain is increased, while the size of the training data set remains
constant, there is a strong interest in finding an efficient solution for
the problem of sparsity regarding this first prototype.

• Optimal Abort Condition. The prototype terminates directly as a
given number of iterations has been performed. By implementing an
elaborated abort condition, the algorithm stops when the sensitivity is
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best exploited, which results in better accuracy.

• Multivariate Input Data. The first mechanism works for high-dimensional
input datasets Nn. Generalise this to multivariate input datasets Nnxd,
where each row is a record associated with some individual, and the
columns are attributes, broadens the range of applications. Then, each
attribute (column) can be thought of as a dimension, and each individ-
ual record as a point in the multidimensional attribute space.

• Smoothed Sensitivity. The sensitivity determines how much perturba-
tion is required to preserve privacy. Our first prototype version derives
an DP approximation by considering the global sensitivity Sglobal , such
that enough noise is added to cover the ”worst case” for the function
g we want to approximate. Note that this global sensitivity does only
depend on g. In fact, there are functions, as for example the Median
function, that are not applicable on our prototype. More precisely, the
prototype would add so much noise that the result is meaningless. By
considering the smooth sensitivity, which additionally to the statistic g
depends on the data set D, a suitable local sensitivity can be added to
the output, making the prototype applicable for such functions.

Furthermore, this first version of the prototype is constructed to work on
chessboard like model structures. In this work, we will adapt the prototype
on structures of more general learning methods (e.g., decision trees).

Overall, this work aims to develop a more general version of the first proto-
type in which the improvements described above are considered as well as
ways to adapt the derived prototype to other learning methods.
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Chapter 4

Measures for Improvement

In this chapter, weaknesses of the former prototype are identified. In addition,
strategies to counteract these weaknesses are derived.

In the beginning of this chapter it is discussed to which extent non-discrete
center values can lead to inaccurate conclusions due to a limited amount
of digits. Further a form of discretization is proposed. The next chapter
presents techniques such that the prototype is better applicable to sparse
data. After that, in subsection 4.3 an optimal termination condition is derived
and its correctness is proven. In part 4.4, the generalization of the former
prototype to multivariate input spaces is discussed. Finally, an approach is
derived which allows the prototype to learn a DP approximation based on
smooth sensitivity.

4.1 Discretization of Center Values

Floating point numbers are represented in a limited amount of digits. This
has the consequence that not all real numbers can be represented accurately.
More precisely, if a real number requires more than the maximum amount
of digits and this number is stored as a float point number, then it will be
rounded. Throughout the mechanism described in the first prototype the
center values are repeatedly compared in absolute terms while their are
stored as floating point numbers. Consequently, wrong conclusions can occur
due to the rounding errors of the center values.

By converting the center values into discrete values, this issue can be ad-
dressed in our advanced version of the prototype. For the discretization of the
center values the given variable update step specifies the potential distance
in which the center values are shifted after one update. Note that the smaller
the value of update step is chosen, the more flexibility can be used. However,
at the same time the runtime for finding the desired center values increases.

19



4. Measures for Improvement

Therefore, the goal is to choose a suitable size for update step that reduces
the runtime while providing best possible accuracy. Note that the optimal
size of update step varies depending on the function to be approximated.

In the following, we adapt the definition of consistent center values for
discrete center values.

Definition 4.1 (Consistency for Discrete Center Values) Let two areas area 1
and area 2 are k-neighbours. Then the corresponding center values area 1CV and
area 2CV are consistent with each other, if their fulfill:

abs((area 1CV − area 2CV) · update step) ≤ k · Sglobal

Note that the definition of how valid buffers are defined remains the same.

Definition 4.2 (Valid Buffers) Let area ∈ areas. Then we call the lower buffer,
denoted with arealb, and the upper buffer, denoted with areaub, valid buffers for area,
if the maximum shift of the center values that is allowed by these buffers does not
lead to inconsistency.

4.2 Extension to Sparse Data

By first introducing a rank to each area a better understanding of what is
meant with sparse data can be achieved.

Definition 4.3 (Rank) All areas containing a data set that is included in the
training data are defined to be of rank 0. More generally, an area is assigned to
rank k (k ∈N0) if this area is k direct neighbourhoods away from an area of rank 0.
Accordingly, the set of direct neighbours of all areas of rank 0 are areas of rank 1 (or
areas of rank 0, if two areas of rank 0 are direct neighbours).

Due to the construction of our first prototype, only center values of areas of
rank 0 and 1 are adjusted. Therefore, in the case of sparsity, the output ranges
will not be adjusted by a significant number of areas. As a consequence,
the approximation error of the currently implemented method tends to
increase if the number of areas is significantly larger than the number of data
sets. Hence, there is a strong interest in finding an efficient solution for the
problem of sparsity regarding the first prototype.

A solution to the problem is to find a reasonable way to consider and adjust
the center values of areas with a rank greater than 1. This can be achieved
by defining criteria that specify such a reasonable approach. As a starting
point, the synchronization could be modified in such a way that instead
of setting all center values to the same mean value (as it is the case in the
synchronization of the first prototype), only the center values of areas with a
given rank k are shifted step-wise to the average of the center values of their
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direct neighbours with rank k − 1. Following this approach, an overview
of the buffers of the individual areas can be kept while shifting the center
values in such a way that the flexibility can be better exploited afterwards.

Before we explain the exact implementation of the advanced synchroniza-
tion, two helper functions that are needed within the synchronization are
presented. These functions specify how an update of one center value is im-
plemented as well as how we can re-establish consistency in case of missing
buffers by using the undo update() function.

Algorithm 2 update() - discrete version:
Input: bu f f er, area, distance, adapted lower bu f f er areas,

adapted upper bu f f er areas
Output: Set of areas with modified center values, lower and upper buffer

1: areaCV ← areaCV + sign(distance)
2: if arealb − sign(distance) ≤ bu f f er then
3: arealb ← arealb − sign(distance)
4: adapted lower bu f f er areas.append(area)
5: end if
6: if areaub − sign(distance) ≤ bu f f er then
7: areaub ← areaub + sign(distance)
8: adapted upper bu f f er areas.append(area)
9: end if

10: return

The update() function takes as input the initial buffer size bu f f er as well
as the area and the direction distance in which we want to move the cen-
ter value areaCV . Moreover, the two lists adapted lower bu f f er areas and
adapted upper bu f f er areas keep track of the areas from which the buffers
are adjusted during the update() function. In the beginning, the discrete
center value of area is shifted by one unit towards distance (line 1). Then,
the lower or upper buffer of area is decreased by one unit depending on
the direction of the shift (lines 2-9). Note that the value of each buffer can
never be less than zero, this is because update() is only performed if both
buffers are greater or equal to one. Finally, in case the lower buffer arealb
(resp. upper buffer areaub) needs to be adjusted, area is added to the list
adapted lower bu f f er areas (resp. adapted upper bu f f er areas) (lines 4 and
8).

As the update() function has now been described in more detail, the construc-
tion of the undo update() function can be discussed. The undo update() func-
tion represents the counterpart of the update() function. Similar to update(),
the function undo update() requires as input the initial buffer size bu f f er,
the considered area and the direction distance in which the center value
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Algorithm 3 undo update() - discrete version:
Input: bu f f er, area, adapted areas, adapted lower bu f f er areas,

adapted upper bu f f er areas, distance
Output: Set of areas with modified center values, lower and upper buffer

1: areaCV ← areaCV − sign(distance)
2: for n area ∈ adapted areas do
3: n areaCV ← n areaCV − sign(distance)
4: if n area ∈ adapted lower bu f f er areas then
5: n arealb ← n arealb + sign(distance)
6: end if
7: if n area ∈ adapted upper bu f f er areas then
8: n areaub ← n areaub − sign(distance)
9: end if

10: end for
11: return

areaCV was shifted. Moreover, the two lists adapted lower bu f f er areas and
adapted upper bu f f er areas are crucial to reverse the adjustment of the buffer
during the execution of the update() function. Additionally, undo update()
needs a list which contains all neighbour areas for which the buffer has been
adjusted. Therefore the list adapted areas is also needed as input.

Using these two helpers functions the advanced synchronization can be de-
scribed as follows. The advanced synchronization needs as input max width,
the initial buffer size of each area bu f f er, the step size update step as well as
lists consisting of areas with rank k (resp. rank k + 1) saved in areas rank k
(resp. areas rank k + 1). The synchronization returns areas with updated
center values (resp. lower and upper buffers) such that more flexibility for
areas with rank k− 1 and k is created. First of all, we update the buffers of
all areas of rank k + 1, considering that the synchronization will be executed
after shifting the center values of areas with rank k (in the main algorithm of
the prototype) (line 1). Next, we iterate over all areas of rank k + 1. While
iterating over area ∈ area rank k + 1, the distance dist between the center
value of area and the average of the center values of all areas of rank k
which are neighbours of area is calculated (lines 3-4). Afterwards, it will
be checked if the calculated distance can be reduced by shifting the center
value of area by update step (lines 5-7). If this is the case and area has enough
lower and upper buffer left, the center value of area is shifted towards dist
by update step (line 9). Thereafter, neighbour areas of area are shifted in the
same direction as areaCV was shifted to maintain consistency (lines 13-17).
In case such a neighbour area has not enough buffer left, all modifications
made in the iteration over area are reverted to maintain consistency (line 19).
After adapting the neighbour areas, the buffers of area are refreshed (line 23).

22



4.2. Extension to Sparse Data

Finally, all buffers of rank k, k + 1, and k + 2 are adjusted (line 25).

Algorithm 4 Advanced Synchronization()
Input: max width, bu f f er, areas rank k, areas rank k + 1, update step

Output: Set of areas with new center values, lower and upper buffer
1: Update the buffers of all areas of rank k + 1
2: for area ∈ areas rank k + 1 do
3: meanrk k ← mean(n areaCV |n area ∈ area[neighbours] ∩ areas rank k)
4: dist← meanrk k − areaCV
5: if abs(dist) · update step ≤ update step

2 then
6: continue
7: end if
8: if min(arealb − sign(dist), areaub + sign(dist)) ≥ 0 then
9: areaCV ← areaCV + sign(dist)

10: adapted areas← []
11: adapted lower bu f f er areas← []
12: adapted upper bu f f er areas← []
13: for n area ∈ area[neighbours] do
14: if abs((areaCV − n areaCV) · update step) > max width then
15: if min(n arealb − sign(dist), n areaub + sign(dist)) ≥ 0 then
16: Use update() with variables bu f f er, n area, dist, update step,

adapted lower bu f f er areas and adapted upper bu f f er areas
to shift n areaCV towards dist by one and to adjust the
buffers of n area accordingly.

17: adapted areas.append(n area)
18: else
19: Use undo update() with variables bu f f er, area, adapted areas,

adapted lower bu f f er areas, adapted upper bu f f er areas, dist,
and update step to undo all previous steps for area to
maintain consistency.

20: end if
21: end if
22: end for
23: Adjust the buffers of area.
24: end if
25: Update all buffers of areas with rank k,k+1 and k+2
26: end for
27: return

Remark 4.4 Note that the buffers within the for-loop in the function
Advanced Synchronisation() might be slightly incorrect. However, this does not
lead to inconsistency, since all center values are shifted towards the same direction.
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Theorem 4.5 Assume all input areas have consistent center values with each other
and valid corresponding lower resp. upper buffer. Let max width ≤ Sglobal . Fur-
thermore, let update() and undo update() be to valid functions. Then the advanced
synchronization described in algorithm 4 is correct and satisfies the following proper-
ties:

(i) The resulting center values are consistent with each other.

(ii) The resulting buffers of each area are valid.

Proof Assume that all input areas have consistent center values with each
other and valid corresponding lower resp. upper buffer. To prove correctness,
we show that properties (i) and (ii) hold after each iteration of the for-loop
over all areas with rank k + 1. Due to the assumption, it suffices to show that
if both properties (i) and (ii) hold at the beginning of an iteration, then they
hold at the end of the iteration as well. First of all, notice that if not enough
buffer is left or abs(dist) · update step ≤ update step

2 is fulfilled, then due to
the assumption that (i) and (ii) are satisfied at the beginning of the iteration
and the fact that no center value or buffer is modified, there is nothing to
prove. Thus, let area be of rank k + 1 such that enough buffer is left and
abs(dist) · update step > update step

2 is fulfilled. Then the center value of area
will be shifted by one unit towards dist.
Now assume that there exist no neighbour of area (denoted with n area)
such that abs(areaCV − n areaCV) · update step ≥ max width is satisfied after
moving areaCV by one unit. Then, only the center value of area is modified.
Thus, to show property (i), it is enough to prove that the updated value of
areaCV has a maximum distance of Sglobal to all center values of neighbouring
areas. Based on the assumption, we know that abs(areaCV − n areaCV) ·
update step < max width holds. Moreover, we have max width ≤ Sglobal .
Therefore, property (i) is fulfilled. To prove property (ii) it is enough to
verify that the buffers of area are correctly adjusted since only the center
value of area is modified. Due to the fact, that the buffers are adjusted after
iterating over the direct neighbourhood of area (line 23), we can follow that
property (ii) is fulfilled as well.
Next assume there exist at least one direct neighbour n area of area such that
abs(areaCV − n areaCV) · update step ≥ max width, where areaCV denotes the
shifted center value (see line 10). Consider the case when there exists a direct
neighbour n area which does not have enough buffer left, then the function
undo update() is executed as described in line 19. With the correctness
of undo update() we can follow that all modifications executed during the
iteration over area are reversed. Hence, with the assumption that properties
(i) and (ii) are fulfilled at the beginning of the iteration, it follows that both
properties are fulfilled after the iteration over n area, as well. Now consider
the other case (i.e. all direct neighbours have enough buffer left) then only
the function update() is executed as described in line 17. The correctness
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of update() implies that the neighbours of area have valid buffers even after
the update of the center values. In addition, line 23 ensures that area has
valid buffers as well. Therefore, we can conclude that property (ii) is met
after iterating over area. To see that property (i) is satisfied, notice that a
center value is only modified, in case enough buffer is left. The validity of the
buffers implies that the center values of neighbouring areas have a maximum
distance of Sglobal

update step . Hence, property (i) is fulfilled. �

Theorem 4.6 The running time of algorithm 4 is O(|areas|3).

Proof The running time of the advanced synchronization is dominated by
the costs of the two nested for-loops. In addition, the functions update() and
undo update() can be performed within the inner for-loop. Both functions
need at most running time O(|areas|). Furthermore, inside the outer for-loop
the buffers are adjusted. To adjust all buffers a running time of O(|areas|2) is
needed. Consequently, the following running time is required in total:

O(|areas| · (|areas|2 + |areas| · |areas|)) = O(|areas|3). �

4.3 Optimal Abort Condition

The termination of the former prototype version was ensured by limiting
the number of synchronizations that can be performed. While this approach
guarantees that the algorithm terminates, in general, it fails to exploit the
ideal amount of flexibility. In the following, one potential optimal termination
condition will be described. Here, optimal refers to maximizing the accuracy
of the returned DP approximation while ensuring that the mechanism stops
as soon as this point is reached.

When deriving such an abort condition, note that the algorithm should
stop when the majority of the areas reach optimal center values. However, it
should be noted that this is not the case if one area alone leads to inconsistency
due to a lack of flexibility for the corresponding center value. Furthermore,
the distance between the ”target values” of the individual center values is
not qualified as a stopping criterion, since this distance differs depending
on the statistic g. Thus, a measure that reflects the amount of flexibility
used across all areas must be defined. The total shift of the center values
after an iteration provides exactly such a measure. With the total shift of all
center values during one iteration as well as a given lower bound min change,
which defines the allowed minimum displacement after one iteration, an
optimal abort condition can be characterized with the following approach.
First, verify after each iteration that the total amount of shifts of the center
values is greater than min change. If this is the case, continue with the next
iteration. Otherwise, increase the variable count by one and then continue
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with the next iteration. Finally, if the variable count has reached a given value
count max, stop the iteration and return the center values that have been
calculated up to this point.

Theorem 4.7 If min change = 0, then the abort condition described above is
optimal.

Proof To prove the optimality of the termination condition, it is enough to
show once the abort conditions are reached the center values do not gain
accuracy in further iterations. Assume, that the abort conditions are met.
Thus change ≤ min change = 0 holds. In other words, the center values were
not shifted in the recent iteration. Now assume during following iterations
the center values are shifted closer to the ”target values”. However, this is
technically not possible, because the prototype determines the amount of
shift based on the current center values as well as the buffers allocated to
each area. In the case, that the center values have not been shifted within an
iteration, both values did not change. Therefore, it can conclude that once
there is no shift of the center values within one iteration, there will be no
more shifts in following iterations. This implies that once the termination
condition is satisfied further iterations will not lead to increased accuracy of
the DP approximation. This proves the optimality of our abort condition. �

Next, a helper function will be defined, which will be used to implement the
described abort condition in our advanced prototype.

Algorithm 5 termination f ct()
Input: old center val, new center val, min change, count, count max,

break out f lag, len(data), num areas
Output: A tuple which symbolizes whether the algorithm should

terminate
1: change← mean(abs(old center val − new center val))
2: if min change ≥ change · len(data)

num areas then
3: if count ≤ count max then
4: count← count + 1
5: else
6: break out f lag← TRUE
7: end if
8: end if
9: return (count, break out f lag)

In order to integrate the abort method in the prototype, a function (denoted
with termination f ct()) is needed. By using this function after each iteration
over the training set an overview of whether or not it is desirable to output
the center values determined so far is given. This function takes as input both
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the center values before old center val and after new center val the iteration.
In addition, a minimal bound of the average shift per center value within
one iteration min change, the number of iterations in which this minimal
shift was not reached count, as well as the upper bound count max for count,
is required as input. Besides that, the function uses the boolean variable
break out f lag, which indicates whether the mechanism stops, the length
of the training set len(data) as well as the number of areas num areas, as
input. Using this input, first the average shift per center value within the
considered epoch is calculated and stored under change (line 1). In case,
the average displacement per area is smaller than min change, there are
two ways to symbolize that the displacement in this epoch was smaller
than desired. Either count will be increased by one, this is the case if this
does not cause count to exceed the upper bound count max (lines 3-4), or
break out f lag is set to the value TRUE (lines 5-7). Finally, the returned tuple
(count, break out f lag) reveals if our prototype should terminate (line 9).

4.4 Extension to Multivariate Data

The first prototype can be applied only to univariate input data. With the aim
of making our prototype applicable to more problems, it is of strong interest
to adapt our prototype to multivariate input data. The problem statement
of this work can be defined as follows for multivariate input data. Given a
model M and a data set D = (x1, . . . , xn) with data points x1, . . . , xn being
multivariate time series such that xi = (a1, . . . , ad). Our prototype learns a
DP approximation M̃, such that the influence on the output M̃(D) of every
data point of a new data set is protected.

In chapter 2 the neighbourhood relation is defined for univariate input data.
Since this definition is fundamental to find a valid DP approximation it is
necessary to extend that definition to multivariate input data. One potential
extended neighbourhood definition is as follows:

Definition 4.8 (neighbourhood) Let D = (x1, . . . , xn) be a dataset with x1, . . . , xn
being a multivariate time series such that xi = (a1, . . . , ad). We call D and D′

neighbouring datasets if they differ in at most one data point xi and x′i . The set of
neighbouring data sets to a fixed data set D, is called (direct) neighbourhood of D
and is denoted with Ddirect nghb.

In other words, two areas are considered as direct neighbours if they differ
in exactly one data point. Note that, the number of attributes in which this
data point differs is irrelevant. Using this neighbourhood definition, all other
definitions defined in Chapter 2.2 are directly transferable.

To adapt the original prototype to multivariate input data, we have to clarify
the definition of an area. Based on our definition of a neighbourhood, we
consider an area to be a nxd-dimensional hypercube.

27



4. Measures for Improvement

Finally, the extended prototype with multivariate input data can be imple-
mented directly using these definitions.

4.5 Introducing Smoothed Sensitivity

Up to this point, we have derived a DP approximation by considering the
global sensitivity Sglobal , such that enough noise is added to cover the ”worst-
case” for the statistic g. This global sensitivity does only depend on g (the
function we want to approximate). By considering the smooth sensitivity,
which additionally depends on the data set D, a more suitable local sensitivity
can be added to the output.

Let k be the number of areas and D ∈ Rnxd. Then the smooth sensitivity S̃
can be defined as piece-wise linear function as follow:

S̃(D) =


S̃area1 , D ∈ area1
S̃area2 , D ∈ area2

...
S̃areak , D ∈ areak

4.5.1 Finding a Suitable Smoothed Sensitivity Function

To construct a valid sensitivity function we proceeded as follows. First, the
local sensitivity of each area is calculated. Next, the initial value of the
smooth sensitivity for each area is set equal to the global sensitivity. Then,
the smooth sensitivity of each area is step-wise decreased by γ, as long as
it stays greater or equal than the local sensitivity of the considered area.
During this last process, it is checked if the smooth sensitivity of the direct
neighbours of the considered area can be lowered as well. If this is not the
case, the value of the sensitivity function on this area is fixed to maintain
γ-smoothness.

In the following, it is presented how to implement this approach to finally
obtain a valid smooth sensitivity function. After that, the correctness of the
proposed smooth sensitivity function will be proven.

Algorithm 6 takes the set of areas, the global sensitivity as well as γ as input
values and returns a suitable and valid smooth sensitivity function. In the
beginning, we initialize a smooth sensitivity as well as a local sensitivity for
each area (lines 1-7). More precisely, the smooth sensitivity is set equal to the
global sensitivity Sglobal , which represents the upper bound for the smooth
sensitivity. Note that during this algorithm the value of the smooth sensitivity
can only decrease, this ensures that the smooth sensitivity never exceeds
the value of the global sensitivity. The local sensitivity is approximated by
the maximum distance between the neighbouring center values. Next, the
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Algorithm 6 smooth sensitivity()
Input: areas, Sglobal , γ

Output: S̃ : Rnxd → R+

1: for area ∈ areas do
2: S̃area ← Sglobal
3: Slocal(area) ← 0
4: for n area ∈ area[′neighbours′] do
5: Slocal(area) ← max{Slocal(area), areacv − n areacv}
6: end for
7: end for
8: f inal area← []
9: i← 1

10: while areas \ f inal areas 6= ∅ do
11: for area ∈ areas \ f inal areas do
12: if Sglobal − Slocal(area) ≥ i · γ then
13: S̃area ← S̃area − γ
14: else
15: f inal areas.append(area)
16: end if
17: end for
18: neighbour areas← []
19: for area ∈ f inal areas do
20: for n area ∈ area[′neighbours′] do
21: if n area /∈ f inal areas ∪ neighbour areas then
22: neighbour areas.append(n area)
23: end if
24: end for
25: end for
26: f inal areas.append(neighbour areas)
27: i← i + 1
28: end while
29: return
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smooth sensitivity is calculated (lines 10-28). For this, the first for-loop inside
the while-loop (lines 11-17) ensures that the smooth sensitivity of one area is
decreased only if the local sensitivity is still not undercut and the distance
between the considered area to all direct neighbours maintains less than γ.
The second loop ensures that if one area has reached its maximal lower bound
while fulfilling the smooth sensitivity properties, the smooth sensitivity
of neighbouring areas of one area can not be decreased by more than γ.
Furthermore, due to the while-condition (line 10), the smooth sensitivity is
reduced as long as possible while maintaining the characteristics of a smooth
sensitivity function.

Lemma 4.9 The function S̃ : Rnxd → R+ describes a smooth sensitivtiy of g.
Therefore the following properties are satisfied:

(i) S̃area ≥ Slocal(area) : ∀area ∈ areas

(ii) γ ≥ max{|S̃area − S̃n area| : ∀area ∈ areas, n area ∈ area[′neighbours′]}

This smooth sensitivity function S̃ has a running time of O(|areas|2).

Proof To prove correctness, we show that both properties (i) and (ii) hold after
each iteration of the while-loop over all data points. Due to the initialization
(lines 1-8), all areas are initialized with a smooth sensitivity equal to Sglobal
and a local sensitivity smaller or equal than Sglobal . To see the last one,
assume there exist one area such that Slocal(area) > Sglobal , then due to the
construction there must exist a neighbouring area n area ∈ area[′neighbours]
such that the center values of these areas have distance greater than Sglobal
(i.e., |areacv − n areacv| > Sglobal). But this contradicts the construction of our
prototype, in which center values of neighbouring areas are computed such
that there have at most difference Sglobal

2 . Hence, properties (i) and (ii) hold
at the beginning of the iteration. Therefore, it suffices to show that if both
properties (i) and (ii) hold at the beginning of an iteration, then they hold at
the end of the iteration as well. Since in each iteration over the while-loop
the value of the variable i increases by one unit, let us assume that both
properties are fulfilled at the beginning of the i’te iteration. To show that
they hold at the end of the i’te iteration, notice that the smooth sensitivity is
only adopted by areas that are not yet contained in the list f inal areas and
satisfy the if-condition in line 12 (lines 11-16).

Let area ∈ areas such that area /∈ f inal areas and Sglobal − Slocal(area) ≥ i · γ
(line 13) is satisfied. To see that area fulfilles property (i) at the end of
the iteration, it is enough to show S̃area − γ ≥ Slocal(area). First notice that
Sglobal − Slocal(area) ≥ (i − 1) · γ must be satisfied since area /∈ f inal areas.
Furthermore, by assumption Sglobal − Slocal(area) ≥ i · γ and Slocal(area) ≤ S̃area
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holds. Hence,

Slocal(area) ≤ Sglobal − i · γ
= Sglobal − (i− 1) · γ− γ

≤ Slocal(area) − γ

≤ S̃area − γ.

Now assume area ∈ f inal areas or Sglobal − Slocal(area) < i · γ is fulfilled, then
the value of S̃area remains unchanged, implying that (i) is satisfied. This
proves that property (i) holds.

To show property (ii) notice that whenever the smooth sensitivity of area ∈
areas remains unchanged during one iteration (i.e., area /∈ f inal areas or
Sglobal − Slocal(area) < i · γ), then the third for-loop (lines 19-26) ensures that
the smooth sensitivity of all neighbouring areas of area can not be decreased
in the next iteration. In other words, the maximal distance between the
smooth sensitivities of a pair of neighbouring areas is bounded by γ, which
is exactly property (ii). This proves the correctness of the algorithm 6.

Let us now consider the running time of algorithm 6. The first two nested
for-loops and the following while loop dominate the run-time of algorithm
6. The nested for-loops need O(|areas|2) to be executed. Whereas the while
loop requires O(|areas|2) time. Consequently, the total running time is
O(|areas|2 + |areas|2) = O(|areas|2). �
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Chapter 5

Our Advanced Prototype

In the previous chapter, we presented various points of improvement for the
former prototype as well as approaches to tackle these points of improvement.
In this chapter, based on these findings, an advanced prototype is derived
step by step, which is both general and problem-dependent. Afterwards, the
advantages and limitations of the proposed mechanism are discussed.

5.1 Implementation of the Advanced Prototype

In this section, the idea of developing an improved version of the original
mechanism will be put into practice.

5.1.1 Finding Center Values

In the following, the procedure used by the advanced prototype for finding
valid center values is described. Thereby, the approaches used in the previous
chapter are considered with the aim of producing accurate results even on
sparse data. More, the termination condition described in section 4.3 is
included in the advanced prototype. In addition, the discretization of the
center values is considered.

Before presenting an algorithm that computes valid center values, it is nec-
essary to introduce the function simple syn(). This function is relevant if
only areas of rank 0 and 1 exist. Note that simple syn() is identical to the
synchronization function of the former prototype.

In the following, the construction of the simple synchronization function will
be described in more detail. The function simple syn() takes the initial buffer
size denoted with bu f f er val as input. It returns refreshed areas that have
been assigned to new center values and refilled buffers. In the beginning, the
mean value of the current center values of all areas is calculated (line 1). This
mean center value is then assigned to all areas as the new center value (line
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3). Since all areas are assigned to the same center value, the upper and lower
buffers can be refilled (line 4).

Algorithm 7 simple syn
Input: bu f f er val
Output: new center values and full buffers for all areas

1: mean val ← mean(areascv)
2: for all area ∈ areas do
3: areacv ← mean val
4: (arealb, areaub)← (bu f f er val, bu f f er val)
5: end for

Based on the simple and advanced synchronization, one can construct an
advanced function that determines suitable center values as follow.

Algorithm 8 requires as an input the training set Itrain and a lower bound
min change, which specifies the amount of the desired shifting of the center
values per iteration. Besides that, a maximum number count max that indi-
cates how often the shift of the center values in one iteration is allowed to
be smaller than change min is needed. Moreover, the maximum number of
iterations over the training set EPOCHS, the global sensitivity Sglobal , and
the initial buffer value bu f f er val are required as input. Then, this algorithm
returns valid center values for each area. To determine these center values,
first variables which are needed throughout the algorithm are initialized.
More precisely, the variable count is initialized to zero (line 2) in order to
count the number of periods in which the shift of the center values has been
on average less than min change. In addition, in case there are no areas
with rank bigger or equal than two, the variable count counts the number
of performed simple synchronizations. Then the variable break out f lag is
initialized with the boolean value FALSE (line 3). This variable is used to
stop the algorithm according to the abort condition. Moreover, the variables
max width and update step are initialized with Sglobal

2 and Sglobal
len(Itrain)

(lines 4-5).
Next, the center values, as well as the buffers of the individual areas, are
defined (lines 6-10). In addition, the rank of each area is specified (line 11).
Afterwards, we iterate up to EPOCHS times over all data points in Itrain.
At the beginning of each iteration, the current center values are stored in
the list old center values (line 13). Thereafter, the area in which the input of
the data set Dinput is located is computed (line 15). The distance between
the discrete center value of this area and Doutput is stored in dist (line 16).
Next, in case area has enough buffer left (line 17), dist will be used to specify
the direction in which the center value of area is shifted (line 18). After
adjusting the corresponding buffers to the shift of the center value, three
empty lists are initialized (lines 19-23). These lists serve to keep track of
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Algorithm 8 Finding center values
Input: Itrain = (Itrain input, Itrain output), countmax, min change, EPOCHS,

Sglobal , bu f f er val
Output: center value for each area

1: // Initialization of variables:
2: count← 0
3: break out f lag← FALSE
4: max width← Sglobal

2

5: update step← Sglobal
len(Itrain)

6: // Initialization of all areas:
7: for all area ∈ areas do
8: areacv ← round(mean(Ioutput)

update step )

9: (arealb, areaub)← ( len(Itrain)
2 , len(Itrain)

2 )
10: end for
11: Assign ranks to each area
12: for all epoche in range(EPOCHS) do
13: old center values← store all current center values
14: for all D = (Dinput, Doutput) in Itrain do
15: area← area o f data set(Dinput)
16: dist← Doutput − areacv · update step
17: if min(arealb − sign(dist), areaub − sign(dist)) ≥ 0 then
18: areacv ← areacv + sign(dist)
19: arealb ← min(arealb − sign(dist), bu f f er val)
20: areaub ← min(areaub + sign(dist), bu f f er val)
21: adapted areas← []
22: adapted lb areas← []
23: adapted ub areas← []
24: for all n area ∈ areas[′neighbours′] do
25: if abs((n areacv − areacv) · update step) < max width then
26: if min(n arealb − sign(dist), n areaub + sign(dist)) ≥ 0 then
27: adapted areas.append(n area)
28: update(bu f f er val, area, dist, adapted lb areas,
29: adapted ub areas)
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30: else
31: // Advanced Synchronization:
32: if adapted areas rank2 6= [] then
33: undo update(bu f f er val, area, adapted areas,
34: adapted lb areas, adapted ub areas, dist)
35: advanced syn(max width, bu f f er val, areas rk2, areas rk3,
36: update step)
37: advanced syn(max width, bu f f er val, areas rk3, areas rk4,
38: update step)
39: advanced syn(max width, bu f f er val, areas rk4, areas rk5,
40: update step)
41: go to line 55
42: // Simple Synchronization:
43: else if count ≤ countmax then
44: simple syn(bu f f er val)
45: count← count + 1
46: go to line 55
47: else
48: undo update(bu f f er val, area, adapted areas,
49: adapted lb areas, adapted ub areas, dist)
50: go to line 68
51: end if
52: end if
53: end if
54: end for
55: update all buffers
56: end if
57: end for
58: new center values← store all new center values
59: (count, break out f lag)← termination f ct(old center values,
60: new center values,
61: min change, count,
62: count max, len(data),
63: len(areas))
64: if break out f lag == TRUE then
65: break
66: end if
67: end for
68: return areacv for all areas
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which neighbouring areas, from the currently considered area, need to have
their center values adjusted in order to maintain consistency. Finally, we
iterate over all direct neighbours of area and adjust the center values as well
as the buffers if necessary. In case one neighbouring area cannot be adjusted
due to resulting inconsistency, a synchronization will be performed (lines
24-46). The type of synchronization depends on whether there exist areas of
rank greater than or equal to two. In case, all areas are either of rank 0 or 1,
the variable count is used to restrict the number of simple synchronizations
(lines 47-50). After a synchronization is performed, the buffers of each area
are updated (line 55). Once an iteration over one epoch is completed the
function termination f ct() is used to assess whether to iterate over another
epoch (lines 58-66). Note that, this function is based on the amount of change
of the center values created in one epoch. Finally, the computed center values
for each area are returned (line 68).

Lemma 5.1 Algorithm 8 is correct, which means it satisfies the following properties:

(i) For all area ∈ areas, the values of the corresponding buffers (arealb, areaub)
never take on a negative value.

(ii) The center values of (directly) neighbouring areas have a maximum distance of
sensitivity Sglobal from each other.

Further, algorithm 8 has a running time of O(EPOCHS · |Itrain| · |areas|3).

Proof To prove correctness, we show that properties (i) and (ii) hold after
each iteration of the for-loop over all data sets contained in the training set.
Due to the initialization, both properties (i) and (ii) hold at the beginning
of the iteration. Therefore, it is sufficient to show that if properties (i) and
(ii) hold at the beginning of an iteration, then both properties hold at the
end of the iteration as well. First of all, notice that if there is not enough
buffer left and count > countmax (i.e., the abort conditions are met), then due
to the assumption that properties (i) and (ii) are satisfied at the beginning
of the iteration, there is nothing to prove. Thus, consider area 0 ∈ areas has
enough buffer to update the corresponding center value area 0cv. Then either
all direct neighbours area 0direct nghb are adjusted to maintain consistency
or, if not enough buffer is left, a synchronization is performed. In the
first case, any neighbouring area n area ∈ area 0direct nghb will be updated
if the new center value area 0cv and the unmodified center value n areacv

would be further than Sglobal
2 away from each other, i.e. if consistency is not

preserved. This ensures that property (ii) remains fulfilled. To see that
property (i) is satisfied, notice that whenever the buffers are updated, we
first check if enough buffer is left in area 0 and area 0direct nghb to adjust the
center values as described in the if-condition. Therefore, after performing
an update the buffers of area 0 and area 0direct nghb are at least zero. This
proves property (i). In the other case, a synchronization is performed. More
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precisely, if there exists one area with rank 2, then the inconsistency caused
by the missing buffer of a neighbouring area is reversed with the function
undo update(), before performing an advanced synchronization. Based on
the correctness of the advanced synchronization (see theorem 4.5) we can
conclude that the properties (i) and (ii) remain fulfilled after the execution of
the advanced synchronization. Else if there exists no area with rank 2 and
count ≤ countmax holds, then the simple synchronization is performed. In
other words, all center values and buffers are reinitialized. Similar to the first
initialization, properties (i) and (ii) are satisfied. Finally, if no area with rank
2 exist and count > countmax holds, then by using the function undo update()
consistency is re-established (i.e., properties (i) and (ii) are fulfilled).

In the following, we will prove the run-time of algorithm 8. Notice that
the run-time is dominated by the for-loop starting at line 12. In the worst
case, the for-loop is executed EPOCHS times. Within each iteration, we
iterate |Itrain| times over neighbouring areas, which means a maximum
number of |areas| − 1 times. Here, in the worst case with respect to the
runtime the functions undo update and advanced syn are executed. Given
that undo update() (resp. advanced syn()) has a running time of O(|areas|)
(resp. O(|areas|2)) the total running time of algorithm 8 is

O(EPOCHS · |Itrain| · |areas| · (|areas|+ |areas|2))

= O(EPOCHS · |Itrain| · |areas|3)

5.1.2 Finding Valid Output Ranges

In the previous section, a procedure to find valid discrete center values,
which obtain high accuracy even on sparse data, was presented. This section
discusses in detail how these center values can be used to find an output
range for each area that has smooth sensitivity. After that, the correctness
and performance of the proposed procedure is proven.

Let γ be a constant that determines the allowed change between the smoothed
sensitivity values of two neighbouring areas. Then, given such a γ, the global
sensitivity Sglobal , and consistent center values, suitable output ranges for each
area can be calculated as follow. At the beginning of the process, the smooth
sensitivity of each area is determined using the function smooth sensitivity()
(line 1). Similar to the former prototype, we iterate over each area to find
suitable output ranges. Here, only the global sensitivity is replaced by
the smooth sensitivity computed in line 1. In more detail, while iterating
over area ∈ areas a list denoted with output range is created to store po-
tential boundaries for the output range of area. In the beginning, this list
is initialized with S̃area-long interval constructed around the center value
areacv (lines 2-3). Then, a valid interval is iteratively generated for each
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Algorithm 9 Finding valid output ranges for each area
Input: (consistent) areacenter val for all areas, global sensitivity Sglobal , γ
Output: consistent output ranges for each area

1: smooth sensitivity(areas, S, γ)
2: for area in areas do
3: output range← [(areacv − S̃area

2 , areacv +
S̃area

2 )]
4: for dim in range(num dim) do
5: lower bound← min

n area∈areadirect nghb[dim]
(n areacv)

6: upper bound← max
n area∈areadirect nghb[dim]

(n areacv)

7: di f f ← upper bound− lower bound
8: lower bound← lower bound− S̃area−di f f

2

9: upper bound← upper bound + S̃area−di f f
2

10: interval ← output range.append(lower bound, upper bound)
11: end for
12: lower bound← max

i∈range(num dim)
(interval[i, 0])

13: upper bound← min
i∈range(num dim)

(interval[i, 1])

14: areaoutput range ← (lower bound, upper bound)
15: return areaoutput range
16: end for

DP-neighbourhood of area, which includes all center values of the areas
within the DP-neighbourhood. This interval will be extended to the length
S̃area to obtain the highest possible flexibility. Furthermore, the calculated
interval of each DP-neighbourhood of area will be added to the initialized
list output range (lines 4-11). In the next step, by choosing the lower (resp.
upper) bound of areaoutput range as the maximum lower (resp. minimum
upper) bound of the valid intervals of the DP-neighbourhoods, we ensure
that areaoutput range is valid in every DP-neighbourhood which contains area.
Notice, that this can be easily calculated by using the previously computed
list output range (lines 12-14). Finally, the output ranges are returned (lines
15-16).

Lemma 5.2 Algorithm 9 is correct, meaning the following statements hold:

(i) Two neighbouring areas are consistent with each other in the output range, i.e.
for every area ∈ areas and n area ∈ areadirect nghb we have:

max
g(D)∈areaoutput range

g(D′)∈n areaoutput range

|g(D)− g(D′)| ≤ S̃area.
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(ii) For all area ∈ areas, the length of the output range satisfies:

len(areaoutput range) ≤ S̃area ≤ Sglobal

Furthermore, algorithm 9 has a running time of O(|areas|2 · num dim).

Proof To show property (i), assume for the sake of contradiction, that there
exist g(D) ∈ areaoutput range and g(D′) ∈ n areaoutput range such that |g(D)−
g(D′)| > min(S̃area, S̃n area) holds. Moreover, assume w.l.o.g. that areacv ≤
n areacv holds. Based on the construction of the output ranges, we know that
the following is satisfied:

g(D) ∈[(areacv −
min(S̃area, S̃n area)

2
, areacv +

min(S̃area, S̃n area)

2
)]

g(D′) ∈[(n areacv −
min(S̃area, S̃n area)

2
, n areacv +

min(S̃area, S̃n area)

2
)]

From this, an upper bound for the distance between g(D) and g(D′) can
estimated as followed:

|g(D)− g(D′)| ≤ (areacv −
min(S̃area, S̃n area)

2
)− (n areacv +

min(S̃area, S̃n area)

2
)

= areacv − n areacv −min(S̃area, S̃n area)

≤ min(S̃area, S̃n area)

≤ S̃area

The first inequality follows by the assumption that areacv ≤ n areacv holds.
Since we have chosen n area to be a direct neighbour of area the distance
between the center values is limited by min(S̃area, S̃n area). It follows, that
|g(D) − g(D′)| ≤ min(S̃area, S̃n area) is fulfilled. This is a contradiction to
our assumption. Thus, we can conclude that property (i) holds. It remains
to show the property (ii). First, notice that the center values within a DP-
neighbourhood regarding an area area are no farther apart than S̃area (i.e.
di f f ≤ S̃area). This implies that the bounds of the output ranges of each
DP-neighbourhood are at most S̃area long. Second, if possible, the boundaries
of each DP-neighbourhood are symmetrically extended to the length of the
corresponding smooth sensitivity. Therefore, the lower (resp. upper) bound
of the output range is set as the maximum lower (resp. minimum upper)
bound of the previously computed smooth sensitivity long intervals. By the
construction of our smooth sensitivity function, we can conclude that the
output range of a given area reaches most the length of the corresponding
smooth sensitivity. Thus, the correctness of the algorithm is shown.

The smooth sensitivity is constructed in O(|areas|2) time (see lemma 4.9).
However, the two nested for-loops dominate the running time of algorithm
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9. Whereas O(|areas|) time is needed to find the minimum and maximum
center value within the two for-loops. Therefore, in total the algorithm needs
a running time of

O(|areas|2 + |areas| · num dim · |areas|) = O(|areas|2 · num dim). �

5.1.3 Adding Noise

In the previous subsections, a method to compute output ranges for each
area that are both accurate and consistent with each other has been derived.
Using these output ranges, an approximation of g : I → R can be defined,
which is bounded by the corresponding smooth sensitivity. This restricted
”copy” of g will be denoted by g̃. As in the original prototype, the co-domain
R of g̃ must be restricted to the union of the output ranges, in order to fulfill
smooth sensitivity for g̃. This can be realized by replacing the output values
of g that exceed the output range of the corresponding area. More formally,
let D ∈ I and the output range of the area which contains D be [lD, uD] ⊆ R.
Then one could define g̃ as follow:

g̃(D) =


lD for g(D) ≤ lD

g(D) for lD < g(D) < uD

uD for uD ≤ g(D)

(5.1)

Given this approximation of g with forced output ranges and bounded
sensitivity, differential privacy can be easily achieved by adding calibrated
noise to each area. For instance, consider the Laplace mechanism ML(·)
introduced in section 2.2.2, which calibrates the added noise to the smooth
sensitivity divided by ε. By applying theorem 2.12 we can conclude, that
MItrain := ML ◦ g̃(Itrain) preserves differential privacy and therefore meets our
desired criteria for the wanted differential private approximation.

5.1.4 Combing all Achievements to the Advanced Mechanism

In this section, all findings from the last three subsections are combined to
construct an advanced prototype of a general problem-dependent mecha-
nism, based on the first prototype version. First, this prototype is formally
introduced. Thereafter, the correctness and performance of the advanced
prototype is proven. More precisely, we prove that the derived advanced
prototype indeed outputs a valid DP approximation MItrain , based on given
public data.

Based on the training data Itrain, count max, EPOCHS, the global sensitivity
Sglobal , the constants ε and γ, as well as the function g offered by the ML
model, the algorithm 10 generates a valid DP approximation MItrain . First,

41



5. Our Advanced Prototype

Algorithm 10 Advanced General Problem-Dependent Mechanism
Input: Itrain = (Itrain input, Itrain output), countmax, EPOCHS, Sglobal , ε, g, γ
Output: DP approximation: M(Itrain)

1: {areacv : area ∈ areas} ← Algorithm 8(Itrain, countmax, EPOCHS, Sglobal ,
2: bu f f er val)
3: Ωall center values ← {areacv : area ∈ areas}
4: {areaoutput range : area ∈ areas} ← Algorithm 9(Ωall center values, Sglobal , γ)
5: function MItrain(D)
6: area← area o f data set(D)
7: (larea, uarea)← areaoutput range
8: if g(D) ≤ larea then
9: g̃(D)← larea

10: else if uarea ≤ g(D) then
11: g̃(D)← uarea
12: else
13: g̃(D)← g(x)
14: end if
15: Y ← Lap(1)
16: MItrain(D)← g̃(D) +

2·Ssmooth(area)
ε ·Y

17: end function
18: return MItrain

algorithm 8 returns valid center values (lines 1-2), which are used in algorithm
9 to identify valid output ranges for each area (line 4). Given these output
ranges, the DP approximation MItrain is defined throughout the lines 5-17.
More precisely, the output values of g are restricted to the computed output
ranges as described in equation 5.1. Furthermore, the optimal amount of
Laplace noise will be added to the restricted output values of g̃.

Before proceeding with the analysis of the correctness and performance
of algorithm 10, it is worth to recall an important property of the Laplace
mechanism of section 2.2.2:
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Theorem 2.12 Let g : I → R be any real-valued function and let S̃ : I → R+

be a γ-smooth upper bound on the local sensitivity of g. Then if γ ≤ ε
2ln( 2

δ )
and

δ ∈ (0, 1), the mechanism

ML(D, g(·), S̃, ε) = g(D) +
2S̃(D)

ε
·Y

where Y ∼ Lap(1), is (ε, δ)- differentially private.

With the help of this theorem, we are now able to show the main theorem of
this chapter.

Theorem 5.3 Let a training set Itrain be given. Furthermore, let countmax, Sglobal ,
ε, γ ∈ R≥0 and EPOCHS ∈ Z≥0 be finite and given. Let δ ∈ (0, 1) such that
γ ≤ ε

2ln( 2
δ )

. Then Algorithm 10(Itrain, countmax, EPOCHS, Sglobal , ε, γ) returns a

mechanism MItrain that is (ε, δ)-differentially private.

Proof To prove that Algorithm 10(Itrain, countmax, EPOCHS, Sglobal , ε, γ) re-
turns a mechanism MItrain that is (ε, δ)-differentially private, first note that
within the algorithm consistent output ranges are computed for each area.
This follows directly from lemma 5.1 and lemma 5.2. Therefore, it remains to
verify that these output ranges are properly used to define the differentially
private approximation MItrain . In our advanced prototype, these consistent
output ranges are used to ensure that the approximated function g̃ has
bounded sensitivity. Therefore, according to theorem 2.12, by adding noise
drawn from the Laplace distribution centered around zero with scale 2·S̃(D)

ε
to g̃ one finally obtain an approximation MItrain which is (ε, δ)-differentially
private. �

Lemma 5.4 Let the running time of the function area o f data set(·) be negligible.
Then algorithm 10 has running time

O(|EPOCHS| · |Itrain| · |areas|3 + |areas|2 · num dim).

Proof Given that the running time of performing area o f data point(·) is
negligible. Then, the running time is dominated by the approximation of g,
which depends on the run-time of algorithm 8 and algorithm 9. Therefore,
the run-time of algorithm 10 is

O(EPOCHS · |Itrain| · |areas|3 + |areas|2 · num dim). �

5.2 Advantages and Limitations

In the last section, we derived an extended prototype version that approxi-
mates the statistic g of an arbitrary public data set Itrain such that it satisfies
differential privacy constraints. In this section, we will illustrate some advan-
tages and weaknesses of this new prototype version.
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5.2.1 Advantages

An important advantage of this prototype is that a more accurate DP approx-
imation can be generated based on a small set of training data. To illustrate
this, an approximation of the function g representing a hyperplane was
applied to our prototype. Based on a training set of size two, our prototype
generated the DP approximation illustrated in Figure 5.1. In this figure, it
can be seen that the new approach allows more flexibility for areas of rank
less or equal to two by controlling the center values of the other areas as well.

Figure 5.1: This figure shows both the linear function g and the implemented approximation
g̃ (without added noise) based on two data points. Note that in order to represent g and g̃
graphically, the four-dimensional domain is illustrated in two dimensions.

Another important advantage of the derived prototype is that the order of
the input data is respected. This is of great importance for applications with
time-series data.

5.2.2 Limitations

One weakness of our mechanism concerns the neighbourhood definition in
the multivariate input space. Due to the fact that we did not distinguish be-
tween the number of attributes in which two data points differ. Consequently,
in the case of two data sets that differ only within the same data point in two
or more attributes, the flexibility cannot be fully exploited. This limitation
could, however, be alleviated with an adjusted neighboring relation.

Another weakness of our prototype is that a reasonable structure on the
input space must be given. This structure defines how to split the input
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space into a set of disjoint areas which need to be both reducing the size
of the corresponding DP-neighbourhood as well as minimizing the output
ranges defined by the input points inside of each area. Note, that the output
ranges defined by one area can be reduced by understanding the learning
mechanism which was used to learn the function g. However, some of the
resulting structures created by learning mechanisms cannot be represented
easily (e.g. neural networks). Therefore, our prototype is not yet optimized
for such learning mechanisms.

Finally, it is important to point out that the efficiency and accuracy of the
prototype depend strongly on the number of areas. This dependency has a
strong effect on the usefulness of our advanced prototype. Unfortunately,
with increasing complexity, more areas need to be considered resulting in
longer running time.
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Chapter 6

Adopting the Advanced Prototype on
the Decision Tree Learning Method

In this chapter, we will take a closer look at the structure in which the input
space is partitioned. Since this structure defines the shape of each area
and therefore the corresponding neighbourhood relations, the form of the
structure is crucial for the accuracy of the resulting DP approximation as
well as for the efficiency of the mechanism. First, the structure used in the
original prototype will be described. Afterwards, a potential structure, which
is suitable for a decision tree learning method, is proposed. Later, this new
structure is implemented and adapted to the advanced prototype derived in
the previous chapter.

6.1 Chessboard-Like Model

First, it is essential to better understand the structure into which the domain
was divided in the original prototype. To make the prototype more efficient,
the input space was divided into areas that have the form of equal-sized
hypercubes. This simplification has the advantage that it is possible to iterate
over all areas instead of each point while remaining efficient. In addition, by
choosing the areas as hypercubes, neighbourhoods of areas can be identified
more easily. This chessboard-like structure is very suitable if the supervised
learning method used to determine the function g divides the input space
into a highly complicated structure that is not exactly comprehensible. For
instance, when dealing with complex neural networks, this is the case. How-
ever, if a less complex learning method is used to determine g, it can lead
to more accuracy if the structure of the domain is adapted to the learning
method.
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6.2 Decision-Tree Model

In this subsection, we adapt our advanced prototype to the structure gener-
ated by a regression decision tree. By the selection of a suitable supervised
learning method, it was crucial that the resulting structure of the input space
is not too complex. In order to apply our prototype to a given decision tree,
we need to define a set of areas that participate the domain in such a way
that the corresponding output values are predictable. For this, it is essential
to understand the way a decision tree divides its input space and to clarify
how this structure can be used to define areas in the input space. Finally, an
approach to efficiently identify direct neighbours of each area is derived and
implemented.

6.2.1 Partitioning of an Input Space by a Decision Tree

Figure 6.1: Left figure: A binary decision tree with three inner nodes and four leaf nodes. Right
figure: The corresponding partition of the decision tree. (Source: [7])

Within this subsection, a better understanding of how the input space of a
decision tree is partitioned will be given. A decision tree is a supervised
learning method for classifying data and solving decision problems. A
decision tree consists of a root node and an arbitrary number of inner nodes
as well as at least two leaf nodes. Where each node represents a decision rule
and each leaf represents an answer to the decision problem. For simplicity,
assume in the following, that a binary decision tree with a two-dimensional
input space is considered. An example of a binary decision tree is shown in
figure 6.1. Observe that each input data point is assigned uniquely to one
region (in Fig. 6.1 denoted with R1, R2, R3, R4). Moreover, within a region,
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the output behavior is known. In figure 6.1 (right) it is illustrated how the
input space is partitioned according to the corresponding decision tree.

6.2.2 Defining Areas on the Input Space

Figure 6.2: The partition of the input space of a binary decision tree into 9 different areas.

Using this structure created by the partition of the domain, a proper char-
acterization of the areas can be described as follow. A decision tree splits
the input space into disjointed orthotopes. One possible approach to de-
fine areas is to treat each region as one area. However, this can lead to a
large number of direct neighbours for one area. Consequently, such an area
has many constraints which must be considered when determining a valid
output range. As a result, the accuracy of the DP approximation is often
unsatisfactory. To overcome this problem we divide the input space into more
areas. More precisely, the input space is completely spitted by all decision
rules regardless of which sub-tree the inner node is located. This leads to an
input space that is partitioned into a set of disjoint orthotopes of different
sizes as demonstrated in figure 6.2. Due to the fact that an area is completely
contained in one region, the output value range of the individual areas can
be predicted, as desired.
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6.2.3 Identifying Neighbourhood Relations

Using the characterization of the set of areas, we can start to derive an
approach to identify direct neighbours. For this, a formal definition of two
neighbouring areas is introduced first.

Definition 6.1 Let areaa, areab ⊆ Rnxd are two different areas. Define

S := {i ∈ [n]|Di 6= D′i : ∀D ∈ areaa, D′ ∈ areab}.

Then areaa and areab are called k-neighbours if |S| = k. We call areaa and areab
direct neighbours if k = 1.

One can simply find the direct neighbourhood for each area by pairwise
comparison, if a function, that determines for two given areas whether these
areas are direct neighbours, is given. Therefore, in the following, a function
that determines if two given areas are direct neighbours is presented.

Algorithm 11 i f ace.areas are neighbours()
Input: areaida , areaidb

Output: if areaa, areab differ in exactly one data point (i.e. ite data point)
then output [i] otherwise []

1: thresholda ← areas[areaida ][
′threshold′]

2: thresholdb ← areas[areaidb ][
′threshold′]

3: equal thresholds← zeros(i f ace.hypercube dim)
4: for i ∈ range(i f ace.hypercube dim) do
5: equal thresholds[i]← thresholda[i] == thresholdb[i]
6: end for
7: non equal thresholds← logical not(equal thresholds)
8: non equal data points← []
9: for i, j ∈ enumerate(non equal thresholds) do

10: if j == 1 then
11: non equal data points.append(i)
12: end if
13: end for
14: if len(non equal data points) == 1 then
15: return [non equal data points]
16: else
17: return []
18: end if

The function i f ace.areas are neighbours() takes the area ids of areaa and areab
as input and returns a list. This returned list reveals if areaa and areab are
direct neighbours. In case both areas are neighbours, the returned list will
indicate in which data point these two areas differ from each other. If both
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areas are not directly neighbouring, an empty list is returned. First, all
the boundaries defining areaa (resp. areab) are stored using the variable
thresholda (resp. thresholdb) (lines 1-2). Then, an array equal thresholds (and
later non equal thresholds) of length n is used to store if the thresholds which
define areaa and areab differ (lines 3-7). Finally, in the initially empty list
non equal data points all dimensions in which the thresholds differ are saved
(lines 8-13). If both areas differ in exactly one threshold this list will be
returned. Otherwise, an empty list is returned (lines 14-15).

Lemma 6.2 Let areaa and areab are two different areas with area ID’s areaida and
areaidb . Then the function

i f ace.areas are neighbours(areaida , areaidb)

correctly returns a list with all elements in S if areaa and areab are direct neighbours
and an empty list otherwise.

Proof Assume that areaa and areab are direct neighbours. Then by definition
there exist i ∈ [n] such that Di 6= D′i for all data sets D ∈ areaa and D′ ∈ areab.
Consequently, the thresholds in the ite data point must differ in at least one
attribute, which is considered in lines 4 to 7. Furthermore, since areaa and
areab are direct neighbours we have |S| = 1. In other words S = {i} or only
the ite data points always differ in at least one attribute. By considering lines
14 and 15 the function correctly returns a list which does only contain the
element i. Note that this element indicates correctly which data point of the
data sets differ.
Now assume that areaa and areab are k-neighbours with k ≥ 2. By definition
there exist a set S = {i ∈ [n]|Di 6= D′i : ∀D ∈ areaa, D′ ∈ areab} such that
|S| ≥ 2. Therefore, for every i ∈ S the thresholds in the ite data point must
differ in at least one attribute, which is considered in lines 4 to 7. By the fact
that |S| ≥ 2, it can be conclude that there are more that one element such
that Di 6= D′i . Consequently, an empty list is returned (lines 14-17). �
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Chapter 7

Evaluation on Statistical and Machine
Learning Models for Time Series

Prediction

In this chapter, we will evaluate and analyze the performance of our proto-
type. For this purpose, the prototype will be applied to data used for traffic
forecasting. In the process, emerging problems will be addressed. Moreover,
some interesting characteristics of our prototype will be discussed.

7.1 Traffic Forecasting using Long Short-Term Memory
Neural Network

Let a data set that measures the number of cars on four different lanes
for every five minutes, as well as the resulting sum of these cars, over one
month be given [9]. And split this data set in a training set and a test
set. In addition, a long short-term memory (LSTM) model trained on this
training data is given [9]. This model predicts the total number of cars in
the lanes within the next time step using four time steps directly back in
time. Then, by applying this forecasting model to our derived prototype, a
DP approximation can be learned based on the training set. Note that the
complexity of the structure into which an LSTM model divides the input
space is not easily understood. Consequently, classifying the input space
according to the underlying structure is not straightforward. Therefore, it is
simpler to split the input space into a chessboard-like structure, as described
in chapter 6.

Setting. Due to efficiency reasons, each dimension of the four-dimensional
input space (one dimension corresponds to exactly one of the four times-
tamps) is divided into three equal-sized parts. This separation results in a
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total of 81 disjoint areas. The test data set consists out of 283 different times-
tamps in which the total number of cars at one timestamp varies between
0 and 633. We want to protect the identity of one car. Thus, two data sets
are considered as neighbours if they differ from each other by exactly one
car. Furthermore, the test data are distributed over the input space in such a
way that 21 areas contain at least one data element in the test set, (i.e. they
are of rank 0). By using the neighbourhood relation described above, the
direct neighbours of these rank 0 areas are in total 36 areas which are of rank
1. Moreover, 21 areas are assigned to rank 2 and the remaining 3 areas are
assigned to rank 3. Additionally, the sensitivity value is set equal to 10, the
lower bound min change = 0.3, which specifies the amount of desired shift-
ing of the center values per iteration, and the maximal number of iterations
in which min change could not be achieved is is limited by countmax = 3.

Observation. Let us now describe the results obtained by applying our
advanced mechanism on the traffic forecasting data, based on the setting
specified above. First of all, the implemented mechanism computes the center
values for each area. In the considered example, these values are between
295.901 and 316.431. While calculating the center values, 5388 advanced
synchronizations have been performed during 42 iterations over the data set.
Next, based on the obtained center values, the mechanism determines the
best possible output ranges for each area. These output ranges allow overall
a minimum output value of 294.876 and a maximum output value of 317.933.
In other words, the calculated approximation of the statistic derived with
the LSTM model based on the training data allows a maximum difference of
23.057 within the function values.

Evaluation. Note that the resulting output ranges allow a maximum differ-
ence that is significantly larger than the global sensitivity Sglobal . Furthermore,
considering that the domain is limited to four dimensions as well as the fact
that the domain is partitioned into a relatively small number of areas, a
large dependency between the areas in terms of DP-neighbourhoods occurs.
Therefore, it can be concluded that due to the limitation of our setting the
flexibility was exploited to the best possible extent. Nevertheless, it is of
great interest to perform this application in a setting that splits the input
space into significantly more areas and uses a smaller threshold value for
min change. However, the number of performed synchronizations rapidly
increases with the number of areas. Therefore, when performing such an
application, it is strongly recommended to ensure that the computational
power of the underlying system is adequate.
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Chapter 8

Future Work

In this chapter potential directions for future work are presented.

8.1 Generalize to High-Dimensional Co-Domain

Within this work, a mechanism was derived, which outputs a suitable DP
approximation for given data. However, this mechanism is limited by the
fact that the output value is contained in a one-dimensional space. In order
to broaden the range of applications, it is of great interest to generalize this
mechanism in such a way that it can be applied to arbitrary dimensional
output spaces. For this purpose, the approach based on our prototype
has to be extended to a high-dimensional co-domain. To do this, it is no
longer practical to use the L1-distance as we did in our prototypes, since
the distance becomes arbitrarily large with increasing dimension. However,
one way to avoid this is by using the L2-distance. In this setting, it is
necessary to redefine the meaning of fulfilling the sensitivity constraints in
high-dimensional output space.

8.2 Sustainability

In the previous chapter, our advanced prototype was applied to a traffic
forecasting example. By applying this prototype to other examples as well,
the functionality of the prototype can be validated. Furthermore, this can
identify potential weaknesses that have not yet been considered.
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8.3 More Detailed Definition of Neighbourhood Rela-
tions for Multivariate Input Data

For extending the former prototype to multivariate input data two data sets
are considered to be neighbours if they differ in exactly one data point. For
simplicity, we did not distinguish between the number of attributes in which
the two data points differ. However, in order to obtain more accuracy for the
resulting DP approximation, it is of interest to make such a distinction. More
precisely, a more accurate approach would be to characterize two data sets
as neighbours if they differ in exactly one attribute in the same data point.

8.4 Group Privacy

Our prototype does not meet the group privacy constraints. In other words,
it does not protect the privacy of time-series data which contains sensitive
information spread across several data points. It only protects the influence
of one data point (i.e., xi) on the output value. To be able to apply our
prototype to a broader class of time series, it is of interest to extend our
prototype to meet the group privacy requirements.

56



Chapter 9

Conclusion

Throughout this work, a more generally applicable and accurate version of a
former mechanism that learns a differentially private approximation MItrain

based on a given publicly available data set Itrain has been developed and
implemented. Furthermore, this advanced mechanism version is adapted to
common ML models such as the decision tree.

In prior work, we developed a generic mechanism to learn a DP approxi-
mation for high-dimensional input spaces that is both general and problem
independent i.e., it provides accurate results while being applicable to differ-
ent problems [2]. This former mechanism, using a domain-based approach,
divides the input space of a statistic g into hypercubes of equal sizes which
has the crucial advantage that the DP-neighbours can be identified more
efficiently. To the best of our knowledge, this approach has not yet been
researched more.

Based on this work, we have derived an advanced version of the mechanism
that addresses a number of limitations regarding its first implementation.
Concretely, the advanced mechanism derived in this work is now applicable
to multivariate input spaces. Furthermore, this mechanism has an optimal
abort condition, which minimizes the running time while increasing the
accuracy of the resulting DP approximation. The advanced synchronization
function implemented in this new mechanism allows us to output an accurate
DP approximation even with sparse training data. Moreover, the mechanism
can be applied to a larger class of statistics, since it computes the amount
of added noise based on the smooth sensitivity which depends on the data
set D, besides the statistic g. Finally, we derived an approach to adapt the
prototype of this mechanism on structures of more general learning methods
like decision trees.

In conclusion, the advanced mechanism constructed in this work is appli-
cable to a broader range of statistics and therefore a first prototype version
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applicable to real-world problems.
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Appendix A

Appendix

In the following, the implemented advanced prototype for an decision tree
learning mechanism, which was derived in chapter 5 as well as in chapter 6
and evaluated in chapter 7, is provided. Please note that within the code the
areas in the domain are labelled with nodes. In addition, the statistics of the
data points are denoted with f instead of g.

A.1 Problem Instantiations (Model: Decision Tree)

import numpy as np

from matplotlib import pyplot as plt

import pandas as pd

import itertools

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeRegressor

from sklearn import tree

from keras.models import model_from_json

class InterfaceDecisionTree(DecisionTreeRegressor):

def __init__(self, hypercube_dim, num_attribute):

self.hypercube_dim = hypercube_dim

self.num_attribute = num_attribute

def number_of_nodes(self):

if self.hypercube_dim == 0:

number_of_nodes = 0

else:

num_of_nodes = 1

for i in range(self.hypercube_dim):

for j in range(self.num_attribute):

num_of_nodes *= len(thresholds[i][j])

return num_of_nodes

def number_of_dimensions(self): # minimal number of subtrees

return self.hypercube_dim
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def nodes_are_neighbours(self, node_id_a, node_id_b):

assert node_id_a != node_id_b #cubes must no overlap

threshold_a = nodes[node_id_a]['threshold']
threshold_b = nodes[node_id_b]['threshold']

equal_thresholds = np.zeros(iface.hypercube_dim)

for i in range(iface.hypercube_dim):

equal_thresholds[i] = threshold_a[i] == threshold_b[i]

non_equal_dimensions = np.arange(iface.hypercube_dim)

[np.logical_not(equal_thresholds)]

return (list(non_equal_dimensions) if len(non_equal_dimensions) == 1

else [])

# Approach for get_node_id()

# 1. given the data_set, find the thresholds which describe the

# corresponding node

# 2. given the thresholds, find the corresponding node

def get_node_id(self, data_set):

node_of_data_set = [[1 for _ in range(iface.num_attribute)].copy()

for _ in range(iface.hypercube_dim)]

for dim in range(self.hypercube_dim):

for attribute in range(self.num_attribute):

i = 0

while thresholds[dim][attribute][i] <= data_set[dim][attribute]

and i <= len(thresholds[dim][attribute])-1:

i +=1

node_of_data_set[dim][attribute] = thresholds[dim][attribute][i]

for id, node in enumerate(nodes):

if node_of_data_set == node['threshold']:
node_id = id

return node_id

def evaluate_f(self, data_set):

# this is something like a circular wave originating from 0, with minimum

# -1 and maximum 1,

# and multiple up and downs, characterised by SPEED

SPEED = 4

return np.sin(np.pi * np.linalg.norm(data_set, ord=2) * SPEED )

def generate_data(self, length, seed):

# helper function

np.random.seed(seed)

return np.random.uniform(low=0, high=1, size=(length, self.hypercube_dim,

self.num_attribute))

# note dim = 3 is dimension 4. In general dim = n-1 represents the tree for

# dimension n

def build_tree(self, data_X):

X = self.bring_data_in_valid_form(data_X)

y = [self.evaluate_f(data_set) for data_set in data_X]
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clf = DecisionTreeRegressor(random_state=0)

#max_leaf_nodes = 2 ** self.num_attribute, random_state=0)

fitted_tree = clf.fit(X, y)

return fitted_tree

def bring_data_in_valid_form(self, data_X):

X = np.array([data_set for data_set in data_X])

nsample, n_dim ,n_attribute = X.shape

X = X.reshape((nsample, n_dim * n_attribute))

return X

iface = InterfaceDecisionTree(hypercube_dim=3, num_attribute = 2)

data = iface.generate_data(length=10, seed=10)

#creating the tree

decisiontree = iface.build_tree(data)

# return the set of leaves of a given binary tree

def classified_node_ids(decisiontree):

set_of_leaves = []

splitting_nodes = []

path_to_leaf = [0]

n_nodes_in_tree = decisiontree.tree_.node_count

children_left = decisiontree.tree_.children_left

children_right = decisiontree.tree_.children_right

node_depth = np.zeros(shape=n_nodes_in_tree, dtype=np.int64)

is_leaves = np.zeros(shape=n_nodes_in_tree, dtype=bool)

stack = [(0, 0)] # start with the root node id (0) and its depth (0)

while len(stack) > 0:

# `pop` ensures each node is only visited once

node_id, depth = stack.pop()

node_depth[node_id] = depth

# If the left and right child of a node is not the same we have a split

# node

is_split_node = children_left[node_id] != children_right[node_id]

# If a split node, append left and right children and depth to `stack`
# so we can loop through them

if is_split_node:

stack.append((children_left[node_id], depth + 1))

stack.append((children_right[node_id], depth + 1))

else:

is_leaves[node_id] = True

for i in range(n_nodes_in_tree):

if is_leaves[i]:

set_of_leaves.append(i)

else:

splitting_nodes.append(i)

# check if all leaves are contained in set_of_leaves

# assert len(set_of_leaves) == tree.get_n_leaves()
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return set_of_leaves, splitting_nodes

# assign all splitting nodes to one dimension

# IMPORTANT to find all neighbour nodes

leave_nodes, splitting_nodes = classified_node_ids(decisiontree)

dim_of_splitting_node = []

attribute_of_splitting_node = []

threshold_of_splitting_node = []

# note: dimension n is stored as n-1 ind dim_of_splitting_node

# (same for attribute_of_splitting_node)

for id in splitting_nodes:

# find cooresponding threshold which is relevant for the splitting node

threshold = decisiontree.tree_.threshold[id]

threshold_of_splitting_node.append(threshold)

# find corresponding dimension which is relevant for the splitting node

dim = int(decisiontree.tree_.feature[id] / iface.num_attribute)

dim_of_splitting_node.append(dim)

# find corresponding attribute which is relevant for the splitting node

attribute = (((decisiontree.tree_.feature[id] -

((dim+1)*iface.num_attribute)))%iface.num_attribute)

attribute_of_splitting_node.append(attribute)

# find all thresholds in each dimension for each attribute

# assume that each attribute takes a value between [0,1]

# thresholds is a matrix with column = #attributes and rows = #dimensions

thresholds = [[None for _ in range(iface.num_attribute)].copy()

for _ in range(iface.hypercube_dim)]

for dim in range(iface.hypercube_dim):

for attribute in range(iface.num_attribute):

threshold_in_dim_and_attribute = [1]

for i, node_id in enumerate(splitting_nodes):

if dim == dim_of_splitting_node[i]

and attribute == attribute_of_splitting_node[i]:

threshold_in_dim_and_attribute.append(threshold_of_splitting_node[i])

thresholds[dim][attribute] = sorted(threshold_in_dim_and_attribute)

# Given a leaf id i, get_path(i) returns path (from root to leaf i)

# Output is a list with tree_node_ids of increasing depth (starts with root and

# ends with leaf node i)

# if k is the id of an internal node, get_path(k) will return None

def allpaths(start_node):

# a class method which finds all the tree paths from the root to the leaf

if start_node == None:

return []

elif start_node in leave_nodes: # in set of leaf nodes

return [start_node]
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else:

return [str(start_node) + "-->" + str(l) for l in

allpaths(decisiontree.tree_.children_left[start_node])

+ allpaths(decisiontree.tree_.children_right[start_node])]

def get_path(k):

"""tree method to get the desired path from root to leaf"""

l = allpaths(0)

for x in l:

my_list = [int(y) for y in x.split("-->")]

if my_list[-1] == k:

return(my_list)

else:

pass

# returns if the direction in which the given path continues after each

# splitting node

# True : left child - splitting threshold is respected

# False: right child - splitting threshold is exceeded

# note: this function works only for binary trees

def splitting_node_direction(path):

assert path != None # input path is not valid

decisions = []

for i, id in enumerate(path[:len(path)-1]):

if decisiontree.tree_.children_left[id] == path[i+1]:

decisions.append(True)

else:

decisions.append(False)

return(decisions)

A.2 Initialization

dim = iface.number_of_dimensions()

S = 0.6

EPOCHS = 500 # at least len(data)

max_syn = 3

update_step = S / (len(data))

buffer_value = S/(2*update_step)

max_update_steps = iface.number_of_dimensions()

max_width = S/2

count_syn = 0

count = 0

count_max = 2 # S/update_step

break_out_flag = False

break_out_flag_2 = False

minimal_change = 0.0001

forced_syn = True

stop_syn1 = False

count_sny2 = 0

# finally, nodes will contain {'center_val': value that has to be contained
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# in all neighbouring intervals, 'neighbours': a (dim x undef) list with node

# indexes that are direct neighbours. }

nodes = []

# build up node map and instantiate all nodes with start values

start_f_val = np.mean([iface.evaluate_f(d) for d in data[:100] ])

# take average of first 100 values

discret_start_f_val = round(start_f_val/update_step)

### range(iface.number_of_nodes()) = {0,...,iface.number_of_nodes()-1}

for i in range(iface.number_of_nodes()):

nodes.append({'center_val': discret_start_f_val,

'lower_buffer': buffer_value, 'upper_buffer': buffer_value})

# create a list all possible combinations of node IDs and assign each of them

# to a node:

# find all combinations of thresholds

dimension_combination = []

# find all combinations per dimensions

for dim in range(iface.hypercube_dim):

dimension_combination.append(list(itertools.product(*thresholds[dim][:])))

threshold_combinations = list(itertools.product(*dimension_combination))

for i, node in enumerate(nodes):

threshold_node = [list(x) for x in threshold_combinations[i]]

# save it as list of lists instead as tuple of tuples

node['threshold'] = threshold_node

# build up node <--> data_point reference for later use

node_of_data_set = []

for data_set in data:

node_ids = iface.get_node_id(data_set)

node_of_data_set.append(node_ids)

# compute f value for each datapoint

f_of_data_set = []

for data_set in data:

f_of_data_set.append(iface.evaluate_f(data_set))

# build up two lists one which contains all DP-neighbours

# (nodes that share an interval in any dimension)

# now one node_id has the length of num_attribute

for id_a, node in enumerate(nodes):

neighbours = [[] for _ in range(iface.number_of_dimensions()) ]

for id_b in range(iface.number_of_nodes()):

if id_a == id_b:

# we do not want the node itself listed as neighbour

continue
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else:

neighbour_dims = iface.nodes_are_neighbours(id_a, id_b)

[ neighbours[dim].append(id_b) for dim in neighbour_dims ]

node['neighbours'] = neighbours

A.2.1 Assign Nodes to Ranks

adapted_nodes_total = [] # to save all adjusted nodes with arbitrary rank

adapted_nodes_rank0 = [] # to save all adjusted nodes with rank 0

# i.e. nodes which contain a trainingpkt

adapted_nodes_rank1 = [] # to save all adjusted nodes with rank 1

adapted_nodes_rank2 = [] # to save all adjusted nodes with rank 2

adapted_nodes_rank3 = [] # to save all adjusted nodes with rank 3

adapted_nodes_rank4 = [] # to save all adjusted nodes with rank 4

adapted_nodes_rank5 = [] # to save all adjusted nodes with rank 5

# collect all nodes with rank 0

for i_d, _ in enumerate(data):

node_id = node_of_data_set[i_d]

node = nodes[node_id]

if node_id not in adapted_nodes_total:

adapted_nodes_total.append(node_id)

adapted_nodes_rank0.append(node_id)

# collect all nodes of rank 1

for i_d, _ in enumerate(data):

node_id = node_of_data_set[i_d]

node = nodes[node_id]

for dim in range(iface.number_of_dimensions()):

for n_node_rk1_id in node['neighbours'][dim]:
n_node_rk1 = nodes[n_node_rk1_id]

if n_node_rk1_id not in adapted_nodes_total:

adapted_nodes_total.append(n_node_rk1_id)

adapted_nodes_rank1.append(n_node_rk1_id)

# collect all nodes of rank 2

for n_node_rk1_id in adapted_nodes_rank1:

for dim2 in range(iface.number_of_dimensions()):

n_node_rk1 = nodes[n_node_rk1_id]

for n_node_rk2_id in n_node_rk1['neighbours'][dim2]:
n_node_rk2 = nodes[n_node_rk2_id]

if n_node_rk2_id not in adapted_nodes_total:

adapted_nodes_total.append(n_node_rk2_id)

adapted_nodes_rank2.append(n_node_rk2_id)

# collect all nodes of rank 3

for n_node_rk2_id in adapted_nodes_rank2:

for dim3 in range(iface.number_of_dimensions()):

n_node_rk2 = nodes[n_node_rk2_id]

for n_node_rk3_id in n_node_rk2['neighbours'][dim3]:
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n_node_rk3 = nodes[n_node_rk3_id]

if n_node_rk3_id not in adapted_nodes_total:

adapted_nodes_total.append(n_node_rk3_id)

adapted_nodes_rank3.append(n_node_rk3_id)

# collect all nodes of rank 4

for n_node_rk3_id in adapted_nodes_rank3:

for dim4 in range(iface.number_of_dimensions()):

n_node_rk3 = nodes[n_node_rk3_id]

for n_node_rk4_id in n_node_rk3['neighbours'][dim4]:
n_node_rk4 = nodes[n_node_rk4_id]

if n_node_rk4_id not in adapted_nodes_total:

adapted_nodes_total.append(n_node_rk4_id)

adapted_nodes_rank4.append(n_node_rk4_id)

# collect all nodes of rank 5 or higher

for id,_ in enumerate(nodes):

if id not in adapted_nodes_total:

adapted_nodes_total.append(id)

adapted_nodes_rank5.append(id)

A.3 Helper Functions

### evaluate f in the computed sensitivity bound ###

def evaluate_f_hat(data_set, nodes, iface):

node_ids = iface.get_node_id(data_set)

node_id_index = iface.node_id_to_index(node_ids)

lower_bound, upper_bound = nodes[node_id_index]['bounds']

f = iface.evaluate_f(data_set)

if f > upper_bound:

return upper_bound

elif f < lower_bound:

return lower_bound

return f

def evaluate_lower_bound(data_set, nodes, iface):

node_ids = iface.get_node_id(data_set)

node_id_index = iface.node_id_to_index(node_ids)

lower_bound, _ = nodes[node_id_index]['bounds']

return lower_bound

def evaluate_upper_bound(data_set, nodes, iface):

node_ids = iface.get_node_id(data_set)

node_id_index = iface.node_id_to_index(node_ids)

_, upper_bound = nodes[node_id_index]['bounds']

return upper_bound
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def update_buffers(old_buffer_nodes_as_ids, new_buffer_nodes, update_step, max_width):

for node_id in old_buffer_nodes_as_ids:

node = nodes[node_id]

new_upper_buffer = [node['upper_buffer']]
new_lower_buffer = [node['lower_buffer']]
for dim in range(iface.number_of_dimensions()):

for n_node_id in node['neighbours'][dim]:
n_node = nodes[n_node_id]

if n_node in new_buffer_nodes:

if (node['center_val']-n_node['center_val'])* update_step

> max_width:

new_lower_buffer.append(n_node['upper_buffer'])
elif (n_node['center_val']-node['center_val'])* update_step

> max_width:

new_upper_buffer.append(n_node['lower_buffer'])
# switch of lower <-> upper is intentional

if new_upper_buffer != []:

node['lower_buffer'] = min(new_upper_buffer)

if new_lower_buffer != []:

node['upper_buffer'] = min(new_lower_buffer)

return

def advanced_synchronization(max_width, buffer, nodes_rank1, nodes_rank2,

nodes_rank3, update_step):

# adjust the buffers of all nodes of rank 1 (since we have already changed the

# buffers by shifting the center values of nodes with rank 1)

# find valued upper/lower buffer for node of rank 2

update_buffers(nodes_rank1, nodes, update_step, max_width)

update_buffers(nodes_rank1, nodes, update_step, max_width)

# adjust the buffers of all nodes of rank 2 (since we have already changed the

# buffers by shifting the center values of nodes with rank 1)

# find valued upper/lower buffer for node of rank 2

update_buffers(nodes_rank2, nodes_rank1, update_step, max_width)

update_buffers(nodes_rank2, nodes_rank1, update_step, max_width)

# RANK 2: update all center values of nodes with rank 2

for node_rk2_id in nodes_rank2:

node_rk2 = nodes[node_rk2_id]

break_out_flag1 = False

# mean value of all nghb. center values of rank 1:

# note that every node of rank 2 has at least one nghb node of rank 1

# (otherwise it would be of rank 3)

rank1_nghb_centerval = []

rank1_nghbs = []

for dim in range(iface.number_of_dimensions()):
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for n_node_rk1_id in node_rk2['neighbours'][dim]:
n_node_rk1 = nodes[n_node_rk1_id]

if n_node_rk1_id in nodes_rank1:

rank1_nghb_centerval.append(n_node_rk1['center_val'])
rank1_nghbs.append(n_node_rk1)

mean_nghb_centerval = round(sum(rank1_nghb_centerval)

/len(rank1_nghbs))

# if we apply this syn2 on nodes of rank2, rank3, rank3 it

# could happen that rank1_nghb_centerval is empty!!

if rank1_nghb_centerval == []:

mean_nghb_centerval = node_rk2['center_val']
continue

dist1 = mean_nghb_centerval - node_rk2['center_val']

if abs(dist1 * update_step) <= update_step/2:

continue

# if possible: shift center_val by step towards the mean value of its

# nghb of rank 1 + adjust the lower and upper buffer

if min(node_rk2['lower_buffer']-np.sign(dist1),
node_rk2['upper_buffer']+np.sign(dist1)) >= 0:

node_rk2['center_val'] += np.sign(dist1)

# update all neighboring center_vals that are outside of

# center_val +- max_dist + adjust the lower and upper buffer

# note that this neighboring notes are probably nodes

# of rank 2 or 3 not of rank 1

upper_list1 = [min(node_rk2['upper_buffer']+np.sign(dist1),buffer)]
lower_list1 = [min(node_rk2['lower_buffer']-np.sign(dist1),buffer)]
adapted_nodes1 = [] # to save all adjusted ngbh nodes

adapted_lower_buffer_nodes1 = []

adapted_upper_buffer_nodes1 = []

for dim in range(iface.number_of_dimensions()):

for n_node_rk1_id in node_rk2['neighbours'][dim]:
n_node_rk1 = nodes[n_node_rk1_id]

if abs((node_rk2['center_val'] - n_node_rk1['center_val'])
* update_step) > max_width:

if n_node_rk1['lower_buffer']-np.sign(dist1) >= 0 and

n_node_rk1['upper_buffer']+ np.sign(dist1) >= 0:

update(buffer,node_rk2, n_node_rk1,dist1,update_step,

adapted_lower_buffer_nodes1,

adapted_upper_buffer_nodes1,nodes_rank3)

adapted_nodes1.append(n_node_rk1)

else:

# Undo previous steps to maintain consistency

undo_update(buffer, node_rk2, adapted_nodes1,

adapted_lower_buffer_nodes1,

adapted_upper_buffer_nodes1,

dist1, update_step)

break_out_flag1 = True

break
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if (node_rk2['center_val']-n_node_rk1['center_val'])
* update_step > max_width:

lower_list1.append(n_node_rk1['lower_buffer'])
elif (n_node_rk1['center_val']-node_rk2['center_val'])

* update_step > max_width:

upper_list1.append(n_node_rk1['upper_buffer'])

if (break_out_flag1 == True):

break

if (break_out_flag1 == False):

# switch of lower <-> upper is intentional

if upper_list1 != []:

node_rk2['lower_buffer'] = min(upper_list1)

if lower_list1 != []:

node_rk2['upper_buffer'] = min(lower_list1)

########## update all buffers of nodes with rank 1,2 & 3 ########

# update buffers of rank 2 (Buffers of nodes with rank 2 are

# up-to-date/adjusted)

# to be sure, update all buffers of nodes with rank 2 depending on

# nodes of rank 2

update_buffers(nodes_rank2, nodes_rank2, update_step, max_width)

update_buffers(nodes_rank2, adapted_nodes_total, update_step, max_width)

update_buffers(nodes_rank2, adapted_nodes_total, update_step, max_width)

# update buffers of nodes with rank 3

update_buffers(nodes_rank3, nodes_rank2, update_step, max_width)

update_buffers(nodes_rank3, adapted_nodes_total, update_step, max_width)

# update Buffers of nodes with rank 1

update_buffers(nodes_rank1, nodes_rank2, update_step, max_width)

update_buffers(nodes_rank1, adapted_nodes_total, update_step, max_width)

return

def simple_syn(buffer):

current_center_val = []

for node in nodes:

current_center_val.append(node['center_val'])
new_center_val = int(np.mean(current_center_val))

for node in nodes:

node['center_val'] = new_center_val

node['upper_buffer'] = buffer

node['lower_buffer'] = buffer

return

def update(buffer,current_node,ngbh_node,distance,update_step,

modified_lower_buffer_nghb_nodes,modified_upper_buffer_nghb_nodes,
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adapted_nodes_rank_bigger_ids):

ngbh_node['center_val'] += np.sign(distance)

if ngbh_node['lower_buffer'] - np.sign(distance) <= buffer:

ngbh_node['lower_buffer'] -= np.sign(distance)

modified_lower_buffer_nghb_nodes.append(ngbh_node)

else:

ngbh_node['lower_buffer'] = buffer

if ngbh_node['upper_buffer'] + np.sign(distance) <= buffer:

ngbh_node['upper_buffer'] += np.sign(distance)

modified_upper_buffer_nghb_nodes.append(ngbh_node)

else:

ngbh_node['upper_buffer'] = buffer

# adjust the buffers of nghb nodes of nghb_node, in case their have rank

# equal or smaller than ngbh_node

for dim1 in range(iface.number_of_dimensions()):

for ngbh_ngbh_node_id in ngbh_node['neighbours'][dim]:
ngbh_ngbh_node = nodes[ngbh_ngbh_node_id]

if ngbh_ngbh_node not in [current_node,ngbh_node]:

if ngbh_ngbh_node_id not in adapted_nodes_rank_bigger_ids:

update_buffers([ngbh_ngbh_node_id], nodes,

update_step, max_width)

return

def undo_update(buffer, current_node, modified_nghb_nodes,

modified_lower_buffer_nghb_nodes,

modified_upper_buffer_nghb_nodes, distance, update_step):

current_node['center_val'] -= np.sign(distance)

# include all neighbors, which we have already modified

for modified_nghb_node in modified_nghb_nodes:

modified_nghb_node['center_val'] -= np.sign(distance)

if modified_nghb_node in modified_lower_buffer_nghb_nodes:

modified_nghb_node['lower_buffer']
= min(modified_nghb_node['lower_buffer']

+ np.sign(distance), buffer)

if modified_nghb_node in modified_upper_buffer_nghb_nodes:

modified_nghb_node['upper_buffer']
= min(modified_nghb_node['upper_buffer']

- np.sign(distance), buffer)

return

def termination_fct(old_cv,new_cv,min_change,count,count_max,flag):

change = np.mean(abs(np.array(old_cv) - np.array(new_cv)))

if min_change > change *(len(data)/len(adapted_nodes_total)):

if count <= count_max:

count += 1
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else:

flag = True

return(count,flag)

A.4 Algorithm

A.4.1 Finding Suitable Center Values

for epoche in range(EPOCHS):

# center_values before

old_center_values = []

new_center_values = []

if new_center_values == []:

for node in nodes:

old_center_values.append(node['center_val'])
else:

old_center_values = new_center_values

for i_d, _ in enumerate(data):

break_out_flag = False

break_out_flag_2 = False

node_id = node_of_data_set[i_d]

node = nodes[node_id]

distance = f_of_data_set[i_d] - node['center_val'] * update_step

# we have to accept an inaccuracy of update_step/2

if abs(distance) <= update_step/2:

continue

# if possible: shift center_val by step towards its optimal value

# and adjust the lower and upper buffer

if min(node['lower_buffer']-np.sign(distance),node['upper_buffer']
+np.sign(distance)) >= 0:

node['center_val'] += np.sign(distance)

node['lower_buffer']= min(node['lower_buffer']-np.sign(distance),
buffer_value)

node['upper_buffer']= min(node['upper_buffer']+np.sign(distance),
buffer_value)

# update all neighboring center_vals that are outside of center_val

# +- max_dist and adjust the lower and upper buffer

# upper_list = []

# lower_list = []

adapted_nodes = [] # to save all adjusted ngbh nodes

adapted_lower_buffer_nodes = []

adapted_upper_buffer_nodes = []

for dim in range(iface.number_of_dimensions()):

for n_node_id in node['neighbours'][dim]:
n_node = nodes[n_node_id]

if abs((n_node['center_val']
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- node['center_val']) * update_step)

> max_width:

if n_node['lower_buffer']-np.sign(distance)>= 0 and

n_node['upper_buffer'] +np.sign(distance) >= 0:

adapted_nodes.append(n_node)

# update function

update(buffer_value,node,n_node,distance,

update_step, adapted_lower_buffer_nodes,

adapted_upper_buffer_nodes,

adapted_nodes_rank2)

else:

if adapted_nodes_rank2 != []:

# undo all updates of the current node to get

# consistency

undo_update(buffer_value,node,adapted_nodes ,

adapted_lower_buffer_nodes,

adapted_upper_buffer_nodes,

distance,update_step)

advanced_synchronization(max_width,

buffer_value, adapted_nodes_rank0,

adapted_nodes_rank1, adapted_nodes_rank2,

update_step)

advanced_synchronization(max_width,

buffer_value, adapted_nodes_rank1,

adapted_nodes_rank2, adapted_nodes_rank3,

update_step)

advanced_synchronization(max_width,

buffer_value, adapted_nodes_rank2,

adapted_nodes_rank3, adapted_nodes_rank4,

update_step)

advanced_synchronization(max_width,

buffer_value, adapted_nodes_rank3,

adapted_nodes_rank4, adapted_nodes_rank5,

update_step)

advanced_synchronization(max_width,

buffer_value, adapted_nodes_rank1,

adapted_nodes_rank2, adapted_nodes_rank3,

update_step)

forced_syn = False

break_out_flag = True

count_sny2 += 1

elif count_syn < count_max:

simple_syn(buffer_value)

break_out_flag = True

count_syn += 1

else:
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# undo all updates of the current node to get

# consistency

undo_update(buffer_value,node,adapted_nodes,

adapted_lower_buffer_nodes,

adapted_upper_buffer_nodes,

distance, update_step)

stop_syn1 = True

if (break_out_flag == True):

break

elif (stop_syn1 == True):

break

# find valued upper/lower buffer for node

update_buffers([node_id], nodes, update_step, max_width)

if (break_out_flag == True):

continue

elif (stop_syn1 == True):

break

# center_values after

for node in nodes:

new_center_values.append(node['center_val'])

(count, break_out_flag_2) = termination_fct(old_center_values, new_center_values,

minimal_change, count, count_max,

break_out_flag_2)

if count >= count_max -1 and forced_syn == True:

forced_syn = False

advanced_synchronization(max_width, buffer_value, adapted_nodes_rank0,

adapted_nodes_rank1, adapted_nodes_rank2, update_step)

advanced_synchronization(max_width, buffer_value, adapted_nodes_rank1,

adapted_nodes_rank2, adapted_nodes_rank3, update_step)

advanced_synchronization(max_width, buffer_value, adapted_nodes_rank2,

adapted_nodes_rank3, adapted_nodes_rank4, update_step)

advanced_synchronization(max_width, buffer_value, adapted_nodes_rank3,

adapted_nodes_rank4, adapted_nodes_rank5, update_step)

advanced_synchronization(max_width, buffer_value, adapted_nodes_rank1,

adapted_nodes_rank2, adapted_nodes_rank3, update_step)

count_sny2 += 1

if (break_out_flag_2 == True):

break

elif (stop_syn1 == True):

break
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A.4.2 Finding Output Ranges

Construction of Smoothed Sensitivity Function

gamma = S/5

# 1. Find/Define the local sensitivity for each node and set the

# initial smooth sensitivity = global sensitivity

for node in nodes:

node['smooth_sensitivity'] = S

node['local_sensitivity'] = 0

for dim in range(iface.number_of_dimensions()):

for n_index in node['neighbours'][dim]:
n_node = nodes[n_index]

node['local_sensitivity'] = max(node['local_sensitivity'],
abs(node['center_val']

- n_node['center_val'])
* update_step)

# 2. Define a suitable smooth sensitivity

unfinished_nodes = range(len(nodes))

final_nodes = []

i = 1

while len(nodes) != len(final_nodes):

# elements in list unfinished_nodes that are not in list final_node

for node_index in np.setdiff1d(unfinished_nodes,final_nodes):

node = nodes[node_index]

if S - node['local_sensitivity'] >= i * gamma:

node['smooth_sensitivity'] -= gamma

else:

final_nodes.append(node_index)

for node_index in final_nodes:

node = nodes[node_index]

for dim in range(iface.number_of_dimensions()):

for n_index in node['neighbours'][dim]:
if n_index not in final_nodes:

final_nodes.append(n_index)

i += 1

Computing Output Ranges

for node in nodes:

da_intervals = []

for dim in range(iface.number_of_dimensions()):

da_vals = np.array([nodes[n_index]['center_val']
for n_index in node['neighbours'][dim] ])

da_vals = np.append(node['center_val'],da_vals)
da_interval = [np.min(da_vals), np.max(da_vals)]

# extend to S

diff = da_interval[1] - da_interval[0]

# MOST IMPORTANT SANITY CHECK in terms of DP
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assert diff*update_step <= node['smooth_sensitivity']
assert diff >= 0

# here we approximate optimal solution by extending intervals symmetrically

da_interval[0] -= (int(node['smooth_sensitivity']/update_step + 1/2) - diff)/ 2

da_interval[1] += (int(node['smooth_sensitivity']/update_step + 1/2) - diff)/ 2

da_intervals.append(da_interval)

da_intervals = np.array(da_intervals)

# maximal lower bound of all neighbouring cells

lower_bound = np.max(da_intervals[:,0])* update_step

# minimal upper bound of all neighbouring cells

upper_bound = np.min(da_intervals[:,1])* update_step

assert lower_bound <= upper_bound, (lower_bound, upper_bound)

node['bounds'] = (lower_bound, upper_bound)
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