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Abstract

Side-channel attacks allow adversaries to gather information on cryptographic devices
during execution. This information leads to increasingly more powerful attacks on crypto-
graphic implementations. Consequently, side-channel countermeasures are an important
topic of research, of which masking is the most researched and practically used choice.
However, developing secure masked implementations can be complex and error-prone
and therefore benefits from formal verification.
One state-of-the-art automated formal verification tool is MASKVERIF, which allows for
verification based on formal security notions, even in the presence of physical defaults,
like glitches and transitions. Many masked post-quantum cryptographic schemes use
both Boolean and arithmetic operations and thus require secure conversion gadgets,
which currently lead to false negatives when using MASKVERIF.
In this work, we extend MASKVERIF in a way that allows us to correctly verify first-order
Boolean-to-arithmetic conversion gadgets in an automated fashion. We also provide a se-
curity proof for Goubin’s seminal algorithm for Boolean-to-arithmetic conversion, show-
ing that it achieves t–probing security. Additionally, we provide a number of MASKVERIF

gadgets and explain the intricacies of interacting with the tool from a user’s and program-
mer’s perspective. Lastly, we provide a detailed explanation of MASKVERIF’s codebase as
well as in-code documentation, both of which allow for easier understanding and exten-
sion of the tool.
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Zusammenfassung

Seitenkanal-Angriffe ermöglichen es Angreifern, während der Ausführung von kryp-
tografischen Algorithmen Informationen zu sammeln. Diese zusätzlichen Informationen
führen zu immer mächtigeren Angriffen auf kryptografische Implementierungen. Fol-
glich sind Seitenkanal-Gegenmaßnahmen ein wichtiges Forschungsthema, von denen
Maskierung die am meisten erforschte und genutzte Wahl ist. Die Entwicklung sicherer
maskierter Implementierungen kann jedoch komplex und fehleranfällig sein und profi-
tiert daher von formaler Verifikation.
Ein automatisiertes formales Verifikationstool ist MASKVERIF, das eine Verifikation
auf der Grundlage formaler Sicherheitsbegriffe ermöglicht, selbst in Gegenwart von
physikalischen Effekten wie Glitches und Übergängen. Viele maskierte post-quantum
kryptographische Verfahren verwenden sowohl Boolsche als auch arithmetische Opera-
tionen und erfordern daher sichere Konvertierungsgadgets, die derzeit zu falsch nega-
tiven Ergebnissen führen, wenn MASKVERIF verwendet wird.
In dieser Arbeit erweitern wir MASKVERIF so, dass Boolsche-zu-arithmetische Kon-
vertierungsgadgets der ersten Ordnung automatisch und korrekt überprüft werden kön-
nen. Wir liefern auch einen Sicherheitsbeweis für Goubins bedeutenden Algorithmus aus
Bereich Boolsche-zu-arithmetische Konvertierung und zeigen, dass er t–probing-Sicherheit
erfüllt. Darüber hinaus stellen wir eine Reihe von MASKVERIF-Gadgets zur Verfügung
und erläutern die Komplexitäten der Interaktion mit dem Tool von Seiten der Benutzer
und Programmierer. Schließlich bieten wir eine detaillierte Erklärung der Codebasis
von MASKVERIF sowie eine Dokumentation des Codes, die das Verständnis und die
Erweiterung des Tools erleichtert.
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1 Introduction

In a cryptographic key extraction scenario, an attacker tries to obtain secret information
from a device while having restricted access to it. In the most basic scenario, referred to as
the Black-box model, an attacker may only analyze the input and output behavior that they
observe and use this information in their attempt to extract sensitive information.
This model, however, is oftentimes not sufficient to accurately assess the information the
attacker has at their disposal. In addition to input and output behavior, information like
power consumption [KJJ99], noise emission [GST14], fault injection [BS97], timing infor-
mation [Koc96] and much more, are available to an attacker.
In reality, the attacker can thus also make use of this additional information, referred to
as side-channel information, to perform side-channel attacks. This attack scenario is called the
Grey-box model and permits much stronger attacks than the Black-box model, one of them
being differential power analysis (DPA) introduced by Kocher et al. [KJJ99] in 1999. In a
DPA attack, the power consumption is monitored and power traces are collected, which
the attacker uses in a statistical analysis to extract the secret key. This attack turns out
to be very powerful and has been used to break many symmetric cryptosystems, such as
DES [KJJ99] and the AES candidates [CJRR99a, DR99], as well as public-key cryptosys-
tems [Cor99, MDS99b].
Due to the potency of this and other side-channel attacks, research into countermeasures
has become an increasing priority, leading to techniques like masking [CG00, CJRR99b].
The idea behind masking is to use secret sharing schemes to split the sensitive values into n

shares such that the original value can only be reconstructed if one has all shares. A reg-
ular DPA attack is not able to extract the key anymore, since individual shares are not
correlated to the sensitive values that are processed.
In order to assess the security of masked implementations formal security notions are
necessary. One of the most used security notions is the ISW model [ISW03], which al-
lows for practically relevant analysis with the simple assumption that an attacker can
observe at most t intermediate values on the wires of a circuit [DDF14]. The ISW model
has laid the foundation for more complex and sophisticated security notions like non-
interference (t–NI), strong non-interference (t–SNI) [FGMDP+18], and probe-isolating non-
interference (t–PINI) [CS20]. These notions offer different security guarantees and the
development of algorithms satisfying them is an important topic of research. Since
the development of masking schemes requires extensive effort and can be error-prone,
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1 Introduction

automated formal verification is often used to verify masked implementations regarding
the previously mentioned security notions. In practice, formal verification tools like
MASKVERIF [BBD+15, BBD+16, BBC+19], SILVER [KSM20], VERICA [RBFSG22], and
others, allow researchers to automatically develop and verify more robust and secure
countermeasures and offer guarantees regarding their security.

Contributions. Despite MASKVERIF being one of the leading automated verification
tools, it currently does not correctly verify arithmetic-to-Boolean (A2B) and Boolean-to-
arithmetic (B2A) conversion gadgets that are proven secure in the literature [SPOG19,
CGV14]. The conversion algorithms play a crucial role in masked cryptographic im-
plementations, e.g., masked versions of the post-quantum cryptographic schemes Ky-
ber [BGR+21], Dilithium [MGTF19] , SABER [KDVB+22], and NTRU [CGTZ23]. Kyber
and Dilithium are of special importance, since they were chosen for standardization by
the National Institute of Standards and Technology1. Therefore, ensuring correct ver-
ification of conversion algorithms is vital to allow for formal verification of complex
cryptographic schemes incorporating them. Our work in this thesis can be summarized
in four contributions:

• The first contribution is the extension of MASKVERIF, in which we implement rules
that solve the problems that occur during the verification of the first-order B2A
conversion algorithms from Goubin [Gou01] and Coron [Cor17]. These rules find
expressions which can lead MASKVERIF to incorrectly return a false negative and
substitute these expressions by terms that are semantically equivalent and can be
correctly verified.

• As our second step, we provide a concrete security proof for Goubin’s B2A algo-
rithm [Gou01]. More specifically, we show that the algorithm achieves t–probing
security, but fails to achieve the stronger t–non–interference property. The rules we
implemented, that aid MASKVERIF in its verification process of Goubin’s B2A algo-
rithm [Gou01], rely on this security proof to substitute expressions. This proof also
allows researchers to easily understand which of the modern security properties
Goubin’s algorithm satisfies.

• Our third contribution is the documentation and explanation of MASKVERIF’s code-
base. The original MASKVERIF code2 does not have any documentation, which
makes it exceedingly difficult to understand how the verification is implemented
and how it can be extended. This contribution should help researchers aiming to

1https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
2https://gitlab.com/benjgregoire/maskverif/
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further improve the tool by offering explanations for parts of the codebase which
are crucial for the verification.

• Last but not least, we implemented MASKVERIF gadgets for first-order B2A and
A2B conversion for Goubin’s algorithms [Gou01], first and second order gadgets
for Coron’s B2A algorithm [Cor17], mask refreshing gadgets for the algorithm by
Rivain et al. [RP10] up to tenth-order and t–SNI secure bitwise AND, as well as gad-
gets for a t–SNI addition algorithm proposed by Coron et al. in Algorithm 1 and 2
of [CGV14] up to fifth order. All of these gadgets were implemented from scratch
and can be incorporated into more complex gadgets.

Outline. We first go over preliminaries that are necessary for this work in Section 2. Then
we present related work regarding masking conversion and formal verification tools in
Section 3. Next, Section 4 contains an overview of MASKVERIF gadgets, verification al-
gorithms and the gadgets for the t–SNI addition algorithm by Coron et al. [CGV14]. Sec-
tion 5 goes into detail on how we fixed the verification of first-order B2A algorithms from
Goubin [Gou01] and Coron [Cor17]. Lastly, our documentation and explanation regarding
MASKVERIF’s codebase can be found in Section 6.
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2 Preliminaries

First, we briefly explain the basics of a differential power analysis attack and then go over the
side-channel countermeasure masking. Afterward, we discuss different security notions
used to categorize side-channel security and lastly discuss formal verification and its use
cases for the design of side-channel protected algorithms.

2.1 Differential Power Analysis

Differential power analysis (DPA) was first introduced by Kocher et al. [KJJ99] and is a
side-channel attack that analyzes the power consumption of the hardware running code
of a target to obtain secret information. To perform a DPA attack, a target device contain-
ing secret information and running an unprotected cipher is needed. Furthermore, the
attacker must be able to measure the power consumption of the device while running the
cipher. One example of such target devices is smart cards, which Messerges et al. exam-
ined regarding power analysis attacks in [MDS99a]. To extract sensitive information from
the device, we analyze the correlation between a hypothesis regarding key candidates
and the actual power consumption. First, an attacker collects numerous power traces of
the cryptographic device while it is running (known input) data. Using these traces, the
attacker correlates the power consumption at any fixed moment in time. Each hypothesis
simulates the power consumption of the given leaking function for the (known) input and
guessed secret data. The actual attack and analysis can be separated into the following
five steps:

1. Choosing an Intermediate Result of the Executed Algorithm: The first goal is to
find an attack vector, e.g., a function call f that processes some known non-constant
data d and a small part s of the secret key sk. This can be written as f(d, s) where
the only unknown is s, which we will later try to reveal.

2. Measuring the Power Consumption: The next step is to measure the power con-
sumption to obtain power traces or in short just traces, consisting of q sample points
of a run of the scheme. This procedure is repeated n times to receive n traces for
different known values.
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2 Preliminaries

3. Calculating Hypothetical Intermediate Values: Next, we have to calculate the hy-
pothetical output of the function f for each of the n runs. As the function input, we
have the known inputs d for each of the n traces and all possible values for the key,
denoted as key guess s∗ ∈ G, where G are all possible key guesses. We obtain inter-
mediate values which we use for our attack, by calculating f(d, s∗), for all s∗ ∈ G.

4. Mapping Intermediate Values to Power Consumption Values: The next step is to
convert the hypothetical values from Step 3 to realistic power consumption values
by using simulation techniques. Applying these simulation techniques, e.g., the
Hamming weight or Hamming distance, gives us usable values for correlation with
our power traces.

5. Comparing the Hypothetical Power Consumption Values with the Power Traces:
The last step is to use a correlation function on the values from Step 4 with the
measured power traces from Step 2. This gives us values indicating the correlation
between our hypothesis regarding a key guess and the power traces, over the course
of the execution. The highest correlation value (negative or positive depending on
the practical setup) points to the key guess with the highest probability of being used
during the execution on the device.

If the highest value is either not the correct key or the difference in correlations is
small, either more traces are needed to see a good result, or the hypothesis is not
well-chosen and will not lead to a high correlation.

2.2 Masking

Masking is a side-channel countermeasure that hides a sensitive value x belonging to a
group with operator ◦, depending on the circuit by splitting it into n individual shares,
through the usage of a secret sharing scheme. For such a sharing, the following must
hold [KLRBG22]:

x = x0 ◦ ... ◦ xn−1.

All but one of the shares are random, while the last value xn−1 is chosen such that the
original value x is computed. The type of masking used and the circuit being shared
dictate what group operator ◦ is used. Should ⊕ be chosen as the group operator this
is called Boolean masking, in the case of an addition or multiplication we call this arithmetic
masking.
To compute a sharing of a secret value x of k bit size the following procedure share can
be used:

6



2.3 Security Notions

Algorithm 1: An algorithm that splits a secret x into n shares.
Input: A secret value x that is split into n shares.
Output: n independent shares x0, ..., xn−1 of secret x.

1 function share(x):
2 x1, ..., xn−1←$ {0, 1}k
3 x0 ← x ◦ x1 ◦ ... ◦ xn−1
4 return (x0, ..., xn−1)

For recombination of a secret value, the procedure combine in Algorithm 2 can be used:

Algorithm 2: An algorithm that combines n shares into the secret value x.
Input: n independent shares x0, ..., xn−1 of secret x.
Output: The secret value x.

1 function combine(x0, ..., xn−1):
2 x← x0 ◦ ... ◦ xn−1
3 return x

A function f that processes the intermediate value x also needs to have a sharing that
fulfills the following equality [KLRBG22]

f(x) = combine(f(x0), ..., f(xn−1)),

meaning that the function now operates on shares that, when recombined, are equivalent
to the original function computed on the secret input.
The type of masking depends on the operations used in a function, when masked cryp-
tographic implementations use both Boolean and arithmetic operations, a conversion
between both masking types becomes necessary. Examples of such implementations
are masked versions of Kyber [BGR+21], Dilithium [MGTF19], SABER [KDVB+22], and
NTRU [CGTZ23].

2.3 Security Notions

To assess the security of cryptographic implementations we need formal models. These
allow us to verify a masking scheme and make security guarantees regarding specific
adversarial capabilities.
One security model of particular interest is the ISW model introduced by Ishai et al. [ISW03],
which allows an attacker to read up to t intermediate values on the wires of the circuit.
Protecting a circuit in this model can be done by splitting a sensitive input value into at
least t + 1 independent shares, such that no subset of shares leaks anything about the

7



2 Preliminaries

secret value, using an appropriate secret-sharing scheme.

In the following, we will go over the most used side-channel security notions from the
literature.

Definition 1 t–probing security [ISW03, FGMDP+18]: A circuit gadget G is t–probing se-
cure iff every t−tuple of its intermediate variables is independent of any sensitive variable.

Definition 2 t–non–interference (t–NI) [FGMDP+18]: A gadget G is t–non–interference
iff for any set of t1 probes on its intermediate values and every set of t2 probes on its
output shares with t1 + t2 ≤ t, the totality of the probes can be simulated with t1 + t2

shares of each input.

This means that for a circuit using a sharing of at least t + 1 independent values, a distin-
guisher is unable to differentiate between an attacker’s view that has an arbitrary position
of probes and a simulator’s view generated only from input shares. Before the computa-
tion of a circuit, a sharing of the secret value x into t + 1 values is generated in a way that
any combination of t shares is independent and identically distributed. To generate such
a sharing, Algorithm 1 can be used. Therefore, all intermediate values that the attacker
obtains can be simulated from t input shares and since t+ 1 shares are necessary to obtain
the secret input, the attacker obtains no sensitive information.

We can conclude from this, that a t–probing attacker can not learn anything about a
(t + 1)-shared circuit that is t–NI. However, when multiple t–NI circuits are composed,
the resulting circuit is not guaranteed to be t–NI [FGMDP+18]. For this purpose, the
property of t–strong non–interference was defined, which guarantees that the composition
of multiple t–SNI circuits is also t–SNI.

Definition 3 t–strong non–interference (t–SNI) [FGMDP+18]: A gadget G is t–SNI iff for
any set of t1 probes on its intermediate values and every set of t2 probes on its output
shares with t1 + t2 ≤ t, the totality of the probes can be simulated with t1 shares of each
input.

The t–SNI property tightens the t–NI property further by only allowing the simulator
to use an input share for each intermediate probe. This means that in the absence of
intermediate probes, the distribution of outputs will be uniform and independent of the
input values. However, in the presence of intermediate probes, the distribution of outputs
is entirely dependent on the probed internal wires. According to Barthe et al., the much-
desired composability of t–SNI can be achieved by using mask refresh gadgets at specific

8



2.3 Security Notions

positions between t–NI gadgets [BBD+16]. An alternative security notion that also offers
composability is called t–probe–isolating non–interference, which defines restrictions on the
positions of probes.

Definition 4 t–probe–isolating non–interference (t–PINI) [CS20]: Let G be a gadget over n

shares and P a set of t1 probes on wires of G (called internal probes). Let A be a set of t2
share indices. The set P ∪ yGA,∗ denotes the combination of internal wires P and probes on
the share indices A of the outputs y belonging to gadget G. Additionally, the set xGA∪B,∗
denotes the set of inputs x belonging to the share indices A∪B of gadget G. The gadget G
is t–probe–isolating non–interference iff for all P and A such that t1 + t2 ≤ t, there exists a
set B of at most t1 share indices such that probes on the set P ∪ yGA,∗, can be simulated
with the wires xGA∪B,∗.

The general idea is that a gadget is t–PINI if a set B of at most t1 share indices exists, such
that the union of any t1 internal probes in set P and any outputs with t2 share indices
in set A, can be simulated from the inputs with share indices A ∪ B. This means that the
restriction is now on the positions of the probes, meaning the indices of the shares, instead
of the number of probes, like in the t–SNI property.

Cassiers et al. have also proven that any t–PINI gadget (with a number of shares n > t)
is t–probing secure [CS20]. Interestingly, t–PINI offers a very simple composition property,
where a gadget composed only of t–PINI gadgets is also t–PINI. Notably, this avoids the ex-
pensive mask refresh gadgets that the t–SNI property requires and can offer a performance
increase when building masked circuits if many refresh gadgets would be necessary.

While we have taken a look at the ISW model and different security notions based on
it, physical defaults occurring on concrete implementations can cause masking schemes
which are proven secure in the ISW model to be vulnerable against side-channel at-
tacks [MPG05]. Two of these physical defaults that the MASKVERIF tool considers are
glitches and transitions.

Glitches describe the behavior of information not propagating simultaneously during an
execution, leading to additional dependencies between an instruction and its predeces-
sors [MPG05, BGG+15]. Transitions occur when a value in a register is overwritten by
another value and the resulting leakage then depends on both values [BGG+15].

Now that we have taken a look at the relevant security notions we can talk about formal
verification and its benefits.

9



2 Preliminaries

2.4 Formal Verification

Developing side-channel secure implementations is an important topic of research, but
the process is tedious and error-prone. Oftentimes many cycles of design and verification
are necessary to develop such protected implementations.
To assist researchers and offer a fast and reliable method of identifying vulnerabilities
in masked implementations, tools for formal verification were developed. Barthe et
al. [BBD+15] published the first formal verification tool that was able to verify gad-
gets in the ISW model. Over the years, this topic was researched extensively and
many more tools with different capabilities for very specific use cases were developed
[RBSS+21, KSM20, RBFSG22, BMRT22, BBD+16, BBC+19, Cor18]. However, a bottleneck
of these formal verification tools is that they use algorithms to verify t probe positions
for which the number of t-tuples grows exponentially. Therefore, current approaches
for formal verification face inherent performance limitations and every tool has different
strategies to allow for relatively efficient verification. Consequently, the correct tool for a
respective verification needs to be chosen appropriately, since many tools have a trade-off
between completeness and performance. This means that developing new tools that allow
for faster, complete verification of newly published security notions is an important topic
of research.

10



3 Related Work

In the first part of this section, we discuss related work in the field of Boolean-to-arithmetic
and arithmetic-to-Boolean conversion and offer an overview of algorithms used in the
literature. Then we talk about numerous formal verification tools, explain some of their
capabilities regarding the different security notions, and discuss what some of their use
cases are.

3.1 Boolean to Arithmetic Conversion (B2A)

In 2001, Goubin published algorithms to convert between arithmetic and Boolean masking
and has proven his algorithms to be secure against DPA [Gou01]. First, we need to look at
Goubin’s definition of Boolean and arithmetic masking, so that we can take a deeper look
at his conversion algorithms:

Boolean masking: x = x0 ⊕ x1,

Arithmetic masking: x = A0 + A1 mod 2k.

Here, x is the sensitive value, x1 and A1 respectively are sampled uniformly at random,
and x0 or A0 respectively are chosen such that they fulfill the equation of the respective
masking type. All arithmetic operations we perform are considered mod 2k, where a pro-
cessor is assumed to have k-bit registers (in practice the values for k are usually 8, 16, 32
or 64).

3.1.1 Goubin’s B2A Algorithm

The B2A algorithm uses the function B2A(x0, x1) : F2k × F2k 7→ F2k to generate an arith-
metic sharing, such that:

B2A(x0, x1) = (x0 ⊕ x1)− x1 mod 2k.

Theorem 1 (Goubin [Gou01]) The function B2A(x0, x1) is affine with respect to x1 over F2.
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Goubin uses this property to devise an algorithm (Algorithm 1 in [Gou01]), that performs
B2A conversion secure against first-order attacks with a constant runtime ofO(1) indepen-
dent of input size. Due to this affine property, an arithmetic sharing can also be generated
securely by using a random masking value. Given two shares x0, x1, which fulfill the con-
dition x = x0 ⊕ x1, and r, a randomly sampled value of F2k , we calculate an arithmetic
sharing that fulfills x = A0 + A1 mod 2k. Since all the arithmetic operations we talk about
in this thesis are performed mod 2k, we will omit the mod 2k from this point forward.

A0 = (x0 ⊕ x1)− x1 = B2A(x0, x1) = B2A(x0, x1 ⊕ r ⊕ r)

= B2A(x0, r ⊕ (x1 ⊕ r)) = B2A(x0, r)⊕B2A(x0, x1 ⊕ r)⊕B2A(x0, 0)

= ((x0 ⊕ r)− r)⊕ x0 ⊕ ((x0 ⊕ x1 ⊕ r)− (x1 ⊕ r))

This calculation can be written as an algorithm that can be seen in Algorithm 3.

Algorithm 3: Goub B2A rewritten version of Goubin’s Algorithm 1 in Section
3.2 [Gou01]
Input: (x0, x1) such that x = x0 ⊕ x1.
Output: (y0, y1) such that x = y0 + y1.

1 r←$ {0, 1}k
2 t1 ← x0 ⊕ r

3 t2 ← t1 − r

4 t3 ← t2 ⊕ x0

5 t4 ← x1 ⊕ r

6 t5 ← t4 ⊕ x0

7 t6 ← t5 − t4

8 t7 ← t3 ⊕ t6

9 y0 ← t7

10 y1 ← x1

11 return (y0, y1)

In Section 5, we will examine Algorithm 3 further and evaluate its security. However, as
we will later, see this approach only achieves t–probing security.

Since Goubin’s approach only works for first-order masking, Coron et al. extended this
approach to allow for the secure conversion of B2A masking of any order [CGV14]. They
present a B2A algorithm (Algorithm 6 in [CGV14]) with complexity O(n2k), where n

and k are the number of shares and the register size, respectively. The previously listed al-
gorithms, however, only work for arithmetic moduli of 2k. Thus, more generic algorithms
were developed [BBE+18, SPOG19] to allow for conversion even when arithmetic moduli

12
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Table 3.1: Operation count for B2A conversions mod 2k for (A) Goubin [Gou01], (B)
Coron [Cor17], (C) Bettale et al. [BCZ18] and (D) Schneider et al. [SPOG19].
Here n is the number of shares and k is the register size.

n 2 3 4 5 6 7 9 11

∀k (A) 7 - - - - - - -
∀k (B) 9 55 155 367 803 1 687 7 039 28 519
∀k (C) 9 49 123 277 591 1 225 5 053 20 401
k = 1 (D) 12 33 63 102 150 207 348 525
k = 8 (D) 156 354 624 966 1 380 1 866 3 054 4 530
k = 32 (D) 636 1 434 2 520 3 894 5 556 7 506 12 270 18 186

are used that are not of a power of two. Additionally, Coron et al. published another
conversion algorithm that has complexity O(2n) and is therefore independent of register
size and very efficient for small n [Cor17]. Coron’s algorithm was further improved upon
by Bettale et al. [BCZ18] requiring about 50% less random values and achieving a lower
operation count, despite having the same runtime complexity of O(2n). This means that
choosing a suitable conversion algorithm depends on the specific order n and register
size k of the larger scheme. In Table 3.1, we compare the operation count of algorithms
from Coron [Cor17], Bettale et al. [BCZ18], and Schneider et al. [SPOG19].

As Table 3.1 shows, the algorithm by Schneider et al. performs very well for small k and
increasingly larger n. However, as k grows even small orders require a lot more opera-
tions. The advantage of Coron’s and Bettale et al.’s improvement of Coron’s algorithm
is that they are independent of k, making it very efficient for large k and small orders n.
A downside is that the complexity of both algorithms is exponential in n and the perfor-
mance suffers substantially as the number of shares increases.

3.1.2 Coron’s B2A Algorithm

In 2017, Coron [Cor17] published an algorithm that uses Goubin’s previously described
algorithm as a subroutine. By applying additional randomness, Coron creates a version
of Goubin’s algorithm that achieves the stronger t–SNI property for t = 1. The general
idea behind the higher-order conversion is to recursively apply the t–SNI Goubin subrou-
tine to turn Boolean shares into arithmetic ones. A crucial component of the higher-order
conversion is mask refreshing, which means applying new randomness to each share such
that x = x0 ⊕ ... ⊕ xn−1 still holds. We will walk through the higher-order conversion
algorithm by first examining the t–SNI Goubin subroutine, then looking at an insecure
version of the higher-order conversion algorithm that highlights the idea and finally com-

13



3 Related Work

bining this with applications of the mask refreshing to achieve a t–SNI higher-order B2A
conversion algorithm.

First-Order SNI Algorithm

To extend Goubin’s algorithm, Coron adds randomness to both input shares x0 and x1

before computing the rest of Goubin’s algorithm. This modification can be written as the
following algorithm:

Algorithm 4: SNI Conv rewritten version of Coron’s Algorithm 1 in Section
3.2 [Cor17]
Input: (x0, x1) such that x = x0 ⊕ x1.
Output: (A0, A1) such that x = A0 + A1.

1 r, s←$ {0, 1}k
2 a0 ← x0 ⊕ s

3 a1 ← x1 ⊕ s

4 t1 ← a0 ⊕ r

5 t2 ← t1 − r

6 t3 ← t2 ⊕ a0

7 t4 ← a1 ⊕ r

8 t5 ← t4 ⊕ a0

9 t6 ← t5 − t4

10 t7 ← t3 ⊕ t6

11 A0 ← t7

12 A1 ← a1

13 return (A0, A1)

The intermediate variables can be simulated with the knowledge of either x0 or x1, similar
to Goubin’s conversion algorithm. Additionally, we need to show that both outputs A0, A1

can be perfectly simulated without the use of any input shares. The value A1 = x1 ⊕ s is
uniformly distributed over {0, 1}k since an ⊕ operation between the original share and a
uniformly distributed random variable is performed.

The converted share A0 = (a0⊕ a1)− a1 can also be expressed as A0 = (x0⊕ s⊕x1⊕ s)−
(x1 ⊕ s) = (x0 ⊕ x1) − (x1 − s). Since x1 ⊕ s is uniformly distributed, subtracting it from
x0 ⊕ x1 = x also results in a uniformly distributed value, because the subtraction is a
bijection. Therefore, both outputs can be simulated without the usage of any input shares,
meaning that Coron’s algorithm fulfills the t–SNI property.
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Insecure Higher-Order Conversion Algorithm

This insecure version of a higher-order conversion algorithm is described by Coron in
Section 4.1 of [Cor17] to illustrate the basic idea behind the higher-order t–SNI algorithm.
Assuming we have n Boolean shares x0, ..., xn−1 such that

x = x0 ⊕ ...⊕ xn−1,

we want to convert them to n arithmetic shares A0, ..., An−1, such that

x = A0 + ... + An−1.

Coron now recursively splits off Boolean shares into arithmetic shares by computing the
B2A function on the share being split off and all remaining Boolean shares. An example
for the share x0 looks like this:

x = x1 ⊕ ...⊕ xn−1 + ((x0 ⊕ x1 ⊕ ...⊕ xn−1)− (x1 ⊕ ...⊕ xn−1)).

Using the notation we established for Goubin’s conversion we can write:

x = x1 ⊕ ...⊕ xn−1 + B2A(x0, x1 ⊕ ...⊕ xn−1).

Since the B2A function is affine, we can split up the right side of the addition and obtain:

x = x1 ⊕ ...⊕ xn−1 + (n ∧ 1) · x0 ⊕B2A(x0, x1)⊕ ...⊕B2A(x0, xn−1).

At this point, we have n−1 terms on both sides of the addition and keep converting these
by recursively using the same algorithm on both sub-terms to convert a single share at a
time. This gives us 2n− 2 arithmetic shares of the following form:

x = A0 + ... + An−2 + B0 + ... + Bn−2.

Since Coron’s goal is to obtain n arithmetic shares, he now adds up some of these terms
to reduce the amount of shares.
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Let Di ← Ai +Bi for 0 ≤ i ≤ n− 3 and Dn−2 ← An−2 and Dn−1 ← Bn−2. This results in n

arithmetic shares, such that

x = D0 + ... + Dn−1.

However, as Coron states, this algorithm is insecure. The value B2A(x0, x1 ⊕ ... ⊕ xn−1)

can be obtained by placing n − 1 probes into the values of the term (n ∧ 1) · x0 ⊕
B2A(x0, x1)⊕ ...⊕ B2A(x0, xn−1).

Now the adversary can check the distribution of B2A(x0, x1⊕...⊕xn−1) and B2A(x0, xn−1),
which depends on x. Furthermore, this attack can even be applied with a single probe,
by targeting the recursive part of the conversion. A recursive call with n− 1 values leaks
information about its variable with n − 2 probes. By attacking the deepest point in the
recursion, the attacker can use a single probe to obtain a value that depends on the secret
value x.

Secure Conversion from Boolean to Arithmetic Masking

To secure this algorithm, Coron uses mask refreshing at specific points in the algorithm to
remove the dependency within the recursive calls. The refresh algorithm that Coron uses
was published by Rivain et al. [RP10].

Algorithm 5: RefreshMasks algorithm used by Coron
Input: x0, ..., xn−1 such that x = x0 ⊕ ...⊕ xn−1.
Output: y0, ..., yn−1 such that x = y0 ⊕ ...⊕ yn−1.

1 yn−1 ← xn−1

2 for i = 0 to n− 2 do
3 ri←$ {0, 1}k
4 yi ← xi ⊕ ri

5 yn−1 ← yn−1 ⊕ ri

6 end
7 return (y0, ...yn−1)

The RefreshMasks algorithm shown in Algorithm 5 generates n shares, where every com-
bination of at most n−1 shares is independent of the original input shares x0, ..., xn−1. The
security of Coron’s higher-order conversion algorithm hinges on the security properties
of RefreshMasks. Coron describes his algorithm Cn recursively in the following fashion:
Initially, we have n Boolean shares x = x0⊕ ...⊕ xn−1. In the case n = 2, the t–SNI version
of Goubin’s algorithm described in Algorithm 4 is used. Otherwise, we do the following:
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1. Perform a RefreshMasks on the input shares with an additional value xn = 0 to
get n + 1 shares:

a0, ..., an ← RefreshMasks(x0, ..., xn).

This maintains the equality x = a0 ⊕ ...⊕ an, therefore, we can now use these shares
for conversion. Just as in the insecure example, we now split off the first share and
convert it using Goubin’s B2A formula:

x = a1 ⊕ ...⊕ an + ((a0 ⊕ a1 ⊕ ...⊕ an)− (a1 ⊕ ...⊕ an))

= a1 ⊕ ...⊕ an + B2A(a0, a1 ⊕ ...⊕ an).

2. Since B2A is affine we can also write this as:

x = a1 ⊕ ...⊕ an + (n ∧ 1) · a0 ⊕B2A(a0, a1)⊕ ...⊕B2A(a0, an).

For readability, let b0 ← (n ∧ 1) · a0 ⊕ B2A(a0, a1) and let bi ← B2A(a0, ai+1),
where 1 ≤ i ≤ n− 1. Using this notation, we get:

x = a1 ⊕ ...⊕ an + b0 ⊕ ...⊕ bn−1.

3. Now a RefreshMasks of all ai and bi is performed:

c0, ..., cn−1 ← RefreshMasks(a1, ..., an),

d0, ..., dn−1 ← RefreshMasks(b0, ..., bn−1).

4. Next the two last shares of the ci’s and di’s are xored together to compress the
number of shares down to n − 1. Let ei ← ci and fi ← di for 0 ≤ i ≤ n − 3

and en−2 ← cn−2 ⊕ cn−1 and fn−2 ← dn−2 ⊕ dn−1. We now have 2(n− 1) shares that
fulfill the equation:

x = e0 ⊕ ...⊕ en−2 + f0 ⊕ ...⊕ fn−2.
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5. At this point, two recursive calls to Cn−1 are performed to convert the rest of the
shares:

A0, ..., An−2 ← Cn−1(e0, ..., en−2),
B0, ..., Bn−2 ← Cn−1(f0, ..., fn−2).

This results in 2(n− 1) arithmetic shares such that:

x = A0 + ... + An−2 + B0 + ... + Bn−2.

6. Finally, we reduce these 2(n − 1) into n shares. Let Di ← Ai + Bi for 0 ≤ i ≤ n − 3

and Dn−2 ← An−2 and Dn−1 ← Bn−2. Our final result is an arithmetic sharing with
n shares for which the following equality holds:

x = D0 + ... + Dn−1.

As Coron shows in Section 4, Theorem 3 of [Cor17], this algorithm achieves the t–SNI
property.

3.2 Arithmetic to Boolean Conversion (A2B)

Goubin also developed an A2B algorithm to convert a first-order arithmetic sharing into
a valid Boolean sharing. Theorem 2 describes the recursion formula that can be used to
convert arithmetic to Boolean shares in an unmasked fashion.

Theorem 2 (Goubin [Gou01]) If we denote x0 = (A0+A1)⊕A1, we also have x0 = A0⊕uK−1,
where uK−1 is obtained from the following recursion formula:u0 = 0

∀k ≥ 0, uk+1 = 2[uk ∧ (A0 ⊕A1)⊕ (A0 ∧A1)].

To secure this algorithm Goubin slightly altered this theorem into a version that uses a
random value to mask the intermediate values. Goubin describes this in the following
corollary:
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Corollary 2.1 (Goubin [Gou01]) For any value r, if we denote x0 = (A0 + A1) ⊕ A1, we also
have x0 = A0 ⊕ 2r ⊕ tK−1, where tK−1 is obtained from the following recursion formula:t0 = 2r

∀k ≥ 0, tk+1 = 2[tk ∧ (A0 ⊕A1)⊕ w],

in which w = r ⊕ (2r) ∧ (A0 ⊕A1)⊕A0 ∧A1.
Using this formula, Goubin created an A2B algorithm (Algorithm 2 in [Gou01]) that can
be described as following:

Algorithm 6: Goub_A2B rewritten version of Goubin’s Algorithm 2 in Section
4.2 [Gou01]

Input: (A0, A1) such that x = A0 + A1.
Result: (x0, x1) such that x = x0 ⊕ x1.

1 r←$ {0, 1}k
2 t← 2r

3 a← A1 ⊕ r

4 b← a ∧ r

5 a← t⊕A0

6 c← a⊕ r

7 c← c ∧A1

8 b← b⊕ c

9 c← t ∧A0

10 b← b⊕ c

11 for i = 1 to k − 1

12 do
13 c = t ∧A1

14 c← c⊕ b

15 t← t⊕A0

16 c← c⊕ t

17 t← 2c

18 end
19 x0 ← a⊕ t

20 x1 ← A1

21 return (x0, x1)

In Section 4.3 of his work, Goubin presents a security proof for this algorithm and shows
that all intermediate values depend on at most one secret share. As with the B2A algo-
rithm, Goubin did not include the outputs of his algorithm in his security proof. However,
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since x0 = (A0 + A1)⊕ A1 does not contain any randomness to hide either share, the dis-
tribution of x0 depends on both shares. This means that the algorithm does not fulfill the
t–NI property and is only t–probing secure, since x0 = (A0+A1)⊕A1 = x⊕A1 is uniformly
distributed if A1 is a uniformly sampled random value.

This approach does not work for higher-order conversion and was also extended to arbi-
trary orders by Coron et al. [CGV14]. The first iteration of their A2B algorithm has com-
plexityO(n3k), where n and k are the number of shares and the register size, respectively.
After introducing some small changes, the complexity is reduced to O(n2k). However,
again these conversion algorithms only work for arithmetic moduli 2k. The more generic
approach by Barthe et al. [BBE+18] can be used for arithmetic moduli that are not a power
of two.

3.3 Verification Tools

After talking about security notions, masking, and conversion between Boolean and arith-
metic masking, we now examine some tools used to formally verify masked implementa-
tions in practice. Generally, three types of tools exist. The first are tools focused on passive
attacks, called side-channel analysis (SCA) that consider what information an attacker can
perceive by obtaining intermediate values. The different security notions highlighted in
Section 2.3 fall under this category and are verified by a multitude of tools. The second
type of tools are focused on active attacks like fault injection analysis (FIA) and explore
what information an attacker can obtain by introducing faults into a target. It is important
to note that different security notions exist for FIA [FRBSG22], however, we will not go
over them here since MASKVERIF, the tool we focus on, does not include those notions
and only checks security regarding passive attackers.

3.3.1 Side-Channel Security Tools

MASKVERIF

The security of higher-order masked implementations can be verified using MASKVERIF in
an automated fashion, even in the presence of physical defaults (glitches and transitions).
This tool was developed in three iterations. The first one was published in 2015 [BBD+15],
the second one in 2016 [BBD+16], and the latest one in 2019 [BBC+19]. The first version of
the tool was only able to verify t–probing security and the second version added t–NI and
t–SNI verification. The latest version added verification of glitches and transitions, is able
to parse Verilog implementations, and has improved performance.
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Barthe et al. use language-based approaches with a divide-and-conquer approach, em-
bodied in two algorithms. The first one checks if leakage is independent of secrets for
fixed sets of observations and the second one explores admissible observation sets and
calls the first algorithm on them.
The tool makes use of a relevant model from the literature, the ISW model, as well as the
versions of the model including glitches and transitions, which are supposed to model
additional leakage in hardware or software implementations. Additionally, MASKVERIF

evaluates implementations regarding the three security properties t–probing security, t–NI,
and t–SNI. The order at which MASKVERIF can verify gadgets depends strongly on the
complexity of the gadget.
Due to its wide range of features and its efficiency, MASKVERIF is a state-of-the-art tool to
verify masked implementations regarding side-channel security. Its main flaw, however,
is the occurrence of false negatives, declaring some implementations not secure (despite
the algorithms being proven secure), which can be solved by introducing more random-
ness that in reality is unnecessary. An example of this was shown by Knichel et al. [KSM20]
for a shared version of the 4-bit bijection quadratic class Q4

12, as described by Bilgin et
al. [BNN+15]. The version used for verification has two shares per input, as presented in
the Appendix of [RBN+15], and is classified as not being t–probing secure by MASKVERIF,
although all possible probes are statistically independent of secrets. Knichel et al. also
show a modified example of this design that has additional randomness added to it and
is correctly verified by MASKVERIF. These false positives occur mostly when MASKVERIF

verifies non-linear designs and are a downside of the non-complete, but very performant,
approach that MASKVERIF uses for verification.
Currently, MASKVERIF does not support arithmetic-to-Boolean masking conversion or
vice versa, which is an important functionality in various masked cryptographic imple-
mentations, specifically post-quantum cryptographic schemes like masked versions of Ky-
ber [BGR+21], Dilithium [MGTF19], SABER [KDVB+22], and NTRU [CGTZ23].

CHECKMASKS

This tool was published by Coron in 2018 [Cor18] and uses an approach similar to the
first version of MASKVERIF. One of the differences, however, is the representation of the
underlying circuit that Coron uses. Possible observations are represented as nested lists in
CHECKMASKS, where MASKVERIF uses recursively defined expressions to build its state
of observations.
Coron adds a number of rules to his tool that allow him to also verify Boolean-to-
arithmetic masking for the algorithms proposed in [Gou01, Cor17]. The verification
works for orders up until n = 6 at which point it does not finish since the higher-order
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algorithm has complexityO(2n) and the amount of possible (n−1) tuples of intermediate
variables isO(2n

2
) according to Coron. Additionally, Coron has added rules that improve

the verification of mask-refreshing gadgets. This tool does not see very much use in the
literature and is generally not compared much to state-of-the-art verification tools in the
literature. However, it was used for the verification of an improved version of Coron’s
B2A algorithm by Bettale et al. [BCZ18] and the improved high-order masking of look-
up tables countermeasure by Coron et al. [CRZ17]. Overall this tool is an alternative to
MASKVERIF when B2A conversion is part of the tested circuit.

IRONMASK

IRONMASK is a verification tool developed by Belaïd et al. [BMRT22] for implementations
protecting against passive attacks. One of IRONMASK’s core features is that it can ver-
ify gadgets in the random probing model while guaranteeing completeness. The random
probing model states that each wire in a circuit leaks its value independently with a proba-
bility p during its evaluation [BCP+20]. This model is interesting since it bridges the gap
from the noisy leakage model to the t-probing model [DDF14]. The noisy leakage model best
describes the physical reality of side channels but is very cumbersome to evaluate security
proofs in. The random probing model offers a compromise between the neat and theoret-
ical t–probing model and the noisy probing model. For standard probing security notions
(t–NI, t–SNI) IRONMASK outperforms SILVER, another formal verification tool also offer-
ing completeness, by several orders of magnitude. When compared to MASKVERIF the
speed depends on the use case. IRONMASK outperforms MASKVERIF on multiplication
gadgets but is much slower on mask refreshing gadgets. To establish how viable IRON-
MASK is as an alternative to MASKVERIF for standard probing security a more detailed
comparison of a variety of gadget types would be necessary.

SILVER

SILVER was developed by Knichel et al. [KSM20] and uses exhaustive analysis of proba-
bility distributions to verify the security of masked circuits and implementations. The tool
receives a Verilog implementation or instruction list and can verify it in the ISW model
even when glitches are present. Security properties from the literature like t–probing, t–NI,
t–SNI, and t–PINI can be verified. All of this is possible without the occurrence of false
negatives since SILVER offers completeness at the cost of speed. According to the authors,
this makes it a viable competitor to MASKVERIF, despite being slower and less efficient for
larger designs.
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3.3.2 Fault Injection Security Tools

FIVER

FIVER aims to detect vulnerabilities produced by an active attacker through FIA. This
tool was developed by Richter-Brockmann et al. [RBSS+21] in 2021 and used as a building
block for the combined security analysis that VERICA performs. The protected cryp-
tographic algorithm is given in the form of a gate-level netlist to create a model of the
underlying logic. The verification uses symbolic fault injection to model all possible fault
events that can occur for a given logic circuit, meaning that FIVER fulfills completeness.
Since this tool was published Richter-Brockmann et al. refined and integrated it into VER-
ICA [RBFSG22], however, as the first tool for verification of countermeasures against FIA
achieving completeness it deserves a mention.

3.3.3 Combined Security Tools

VERICA

VERICA [RBFSG22] is an automated framework for the formal verification of hardware
circuits under Combined Analysis (CA). Other tools consider security threats from SCA or
FIA in isolation. VERICA, however, is the first tool to consider a combination of both. To
implement this, the SCA analysis and verification is based on the SILVER tool [KSM20],
and the FIA verification is based on the FIVER tool [RBSS+21]. A limitation of the tool is
that with an increasing number of gates, CA becomes very hard to verify. This is due to
a drastic increase in valid fault injections, which each need to be verified for side-channel
security, meaning that this tool is most useful for implementations with a low order of
masking and a small number of gates.
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This section offers further insight into some of MASKVERIF’s inner workings and intro-
duces the reader to the tool. Two different types of files can be verified using MASKVERIF.
The first are MASKVERIF gadgets written as .mv files and the second are Verilog imple-
mentations. Verilog is a hardware description language to model electronic circuits and
is often in the design and verification of digital circuits. Verification of Verilog imple-
mentations was added with MASKVERIF version three and can be useful to verify an al-
ready existing design quickly, without having to write a separate gadget. The benefit of
MASKVERIF gadgets is that the user has more control over specific assignments and in-
structions. We provide a detailed overview of MASKVERIF gadgets and the functions used
to verify them.

4.1 MASKVERIF Gadgets

A gadget starts with proc to indicate its start and is declared finished with end. The two
gadgets displayed in Figure 4.1 serve as a very simple example of what MASKVERIF input
files can look like. We will now examine different features and notations to comprehen-
sively show how MASKVERIF gadgets are used.

Gadget Parameters

A gadget can have a multitude of parameters that are declared before the actual instruc-
tions are written. These can be seen in lines 11-13 and 27-30 of Figure 4.1. Note that these
parameters need to be declared in this exact order, otherwise, the gadget will not be parsed
correctly. All gadget parameters are summarized in Table 4.1.

Table 4.1: Parameters of a MASKVERIF gadget.

Parameters Description

inputs: a[0:1], b[0:1] Number of gadget inputs and input shares
outputs: c[0:1] Number of gadget outputs and output shares
shares: d[0:1] Intermediate variables, necessary for

compact assignment notation
randoms: r Fresh randomness for assignments
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1 (* Comments look like this in maskVerif. *)
2

3 (* #or is a custom-defined operator, define number of arguments,
4 results and variable size in bits.
5 Can also be declared as "bij" in case it is a bijective operator,
6 which allows maskVerif to apply additional rules. *)
7

8 op #or : w1, w1 -> w1
9

10 proc example1:
11 inputs: a[0:1], b[0:1]
12 outputs: d[0:1]
13 shares: c[0:1];
14

15 (* c = ~a is a shortcut for c[0] = ~a[0] and
16 c[1] = ~a[1] in a single assignment.
17 This shortcut only works if the left side of the assignment is
18 declared as a share in the inputs section. *)
19

20 c = ~a;
21 d = #or(c,b);
22 end
23

24 Probing example1
25

26 proc example2:
27 inputs: a[0:1]
28 outputs: c[0:1]
29 shares: b[0:1]
30 randoms: r;
31

32 b = example1(a,a);
33 c[0] = b[0] + r;
34 c[1] := b[1] + r;
35 end
36

37 (* verbose is a debugging parameter and offers additional information.
38 Can be configured from 1, offering the least information, to 4,
39 offering maximum debug output. *)
40

41 verbose 4
42

43 (* The following indicates to maskVerif
44 what type of security notion is verified. *)
45

46 Probing example2
47 NI example2
48 noglitch SNI example2
49 SNI example2

Figure 4.1: Two example MASKVERIF gadgets
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Inputs, outputs, and randoms are fairly straightforward. Shares, however, are an optional
parameter that can be used to make gadgets easier to implement and read. Most notably,
shares allow the user to write the compact assignments c = a + b that MASKVERIF offers,
which performs the ⊕ operation for all shares of a and b and saves the result into the
corresponding shares of c.
A user can also use intermediate variables which are not declared as shares. However,
then the compact notation will not work since MASKVERIF interprets this as a mismatch
between a single variable and a shared variable. Therefore, it is helpful to carefully iden-
tify which intermediate variables of an algorithm are best declared as shares and which
ones can simply be used as temporary variables.
By default, all the above parameters are 1-bit values. Should a user wish to use different
values these also need to be declared. The following short gadget displays how ⊕ is used
for 8-bit values.

1 proc xor_8bit:
2 inputs: w8 a[0:3], w8 b[0:3]
3 outputs: w8 c[0:3];
4

5 c := a ^w8 b;
6 end

Operators

In its current version MASKVERIF only supports the Boolean operators ⊕,∧, and ¬. These
are available for 1, 8, 16, 32, and 64-bit values, which can be seen in Table 4.2. Additionally,
we have added subtraction mod 2k as an operator, where k is 1, 8, 16, 32, or 64.

Table 4.2: Operators in a MASKVERIF gadget.

1-bit operator 8-64 bit operators Description

+ ˆw8, ˆw16, ˆw32, ˆw64 ⊕ operator
* &w8, &w16, &w32, &w64 ∧ operator
∼ ∼ w8, ∼ w16, ∼ w32, ∼ w64 Bitwise complement operator
- -w8, -w16, -w32, -w64 Subtraction mod 2k

In cases where these operators do not suffice, a user can declare custom operators. An
example of this can be seen in line 8 of Figure 4.1 where we declare the ∨ operator for a
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1-bit value. There are a couple of things to consider when declaring custom operators:
they start with an optional parameter bij, which should be added if the custom operator
is bijective. This is crucial since MASKVERIF is only able to apply one of its most important
simplification rules, the optimistic sampling rule, which we go over in Section 4.4.1, on bi-
jective operators. Then, we declare a custom operator with op, followed by the operator’s
name with # at the start. Additionally, the number of input parameters and their size in
bits are declared, as well as the number of outputs and their size. A common mistake that
can occur when writing gadgets is to have mismatches between the sizes of variables or
operators, so we recommend to pay special attention when using custom operators.

Assignment Types

When writing a gadget it is very important to consider which type of assignment to use,
since this greatly impacts the possible observations or, in some cases, leads to parsing
errors in gadgets if used incorrectly. Five types of assignments with different leakages are
supported by MASKVERIF and summarized in Table 4.3.

Table 4.3: Assignments in a MASKVERIF gadget.

Assignment Description

var := expr Hardware instruction, leaks sub-expressions, causes glitches
var = ![expr] Hardware register, leaks sub-expressions, stops glitches
var = expr Software instruction, leaks sub-expressions, stops glitches
var = {expr} Computation result, does not leak sub-expressions, stops glitches
var <- expr Instruction with no observable leakage does not stop glitches

Hardware instruction assignment The first assignment type is var := expr, which
represents an assignment in the glitch extended probing model [FGMDP+18]. This
means that the expression leaks the joint distribution of all sub-expressions that have
not been written to a register yet.

An example of this is the assignment y0 := x0 ⊕ x1 ⊕ r, where y0 is an observable
intermediate variable, x0 and x1 are a sharing of the secret x, and r is a uniformly
distributed sampled value. When the attacker probes y0 the leakage has the joint
distribution (x0, x1, r), meaning that the attacker can retrieve the first and second
components and compute x = x0 ⊕ x1, recovering the secret value.

Hardware register assignment To stop the propagation of glitches a register assignment
of the form var = ![expr] can be used. We will now split the previous assign-
ment into two assignments to prevent the attacker from recovering the secret. The
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first assignment is t = ![x1 ⊕ r], leaking the distribution (x1, r). The second as-
signment is y0 := x0 ⊕ t, which now leaks the distribution (x0, x1 ⊕ r). Since the
register stopped the propagation of glitches the leakage of x1 ⊕ r is now uniformly
distributed and the attacker is unable to recover the secret x from (x0, x1 ⊕ r).

Software instruction assignment Next, MASKVERIF also supports an assignment for
the transition extended probing model, which aims to model a physical default in
software implementations. In this case, an intermediate variable is reused and not
cleared in between assignments and leaks a joint distribution of the values it was
assigned. An example of the transition assignment var = expr can be seen in Fig-
ure 4.2.

1 proc transition:
2 inputs: a[0:1]
3 outputs: b[0:1]
4

5 t = a[0];
6 b[0] = t;
7 t = a[1];
8 b[1] = t;
9 end

Figure 4.2: A MASKVERIF gadget with transitions.

The gadget in Figure 4.2 simply takes input shares and writes them to an intermedi-
ate variable and then to an output variable. Without the consideration of transitions,
every intermediate and output variable can be perfectly simulated using a single in-
put share.

However, considering transitions, the leakage after the second assignment of t de-
pends on both of its assignments a0 and a1, therefore, revealing information about
the secret. A simple way to mitigate transitions is to assure that intermediate vari-
ables are not reused or are cleared in between assignments. The same gadget can be
secured by rewriting it as shown in Figure 4.3.

Additionally, the var = expr assignment needs to be used when calling another
gadget as a function. An example of this is b = example1(a, a) from line 32 in
Figure 4.1. Using any other assignment type will lead to a parse error and should be
avoided.

Computation result assignment The fourth assignment is var = {expr}, which rep-
resents the notion that only a computation’s result without any physical defaults
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1 proc transition_fixed:
2 inputs: a[0:1]
3 outputs: b[0:1]
4

5 t0 = a[0];
6 b[0] = t0;
7 t1 = a[1];
8 b[1] = t1;
9 end

Figure 4.3: A MASKVERIF gadget where transitions no longer happen.

will leak. Going back to the example from our first assignment y0 = {x0 ⊕ x1 ⊕ r},
now y0 will only leak the computational result which is x0⊕ x1⊕ r and is uniformly
distributed.

Leakage-free assignment The last supported assignment var <- expr, can be used
to declare that an assignment is leakage free. This can be especially useful to debug
gadgets that are presumed secure but evaluated as insecure. A user can pinpoint
leakage by declaring other assignments leakage-free and debugging which exact as-
signments are problematic.

1 proc leakage_free:
2 inputs: a[0:1]
3 outputs: b[0:1]
4

5 t <- a[0] + a[1];
6 t2 = t;
7 b[0] = a[0];
8 b[1] = a[1];
9 end

Figure 4.4: A MASKVERIF gadget with a leakage-free assignment.

In the example in Figure 4.4 the assignment t ← a0 ⊕ a1 would in reality leak
the secret but is considered to have no observable leakage. Using this assignment,
MASKVERIF will disregard the observation t ← a0 ⊕ a1 and evaluate the gadget as
secure. However, when we assign t2 = t, MASKVERIF will substitute a0⊕a1 for t and
flag this as insecure, since the secret is leaked. The leakage-free assignment should
be used very carefully and mostly for debugging purposes or in cases where the
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user has complete confidence that no leakage can be observed for the assignment in
question.

Verification Parameters

Multiple verification parameters can be used in MASKVERIF gadgets, these can be seen in
Table 4.4.

Table 4.4: Verification parameters in a MASKVERIF gadget.

Verification parameter Description

verbose 1-4 Parameter for additional debug information
noglitch Assignments never cause glitches
Probing Verifies t–probing security notion
NI Verifies t–NI security notion
SNI Verifies t–SNI security notion

The first parameter that we discuss is the verbose parameter. If we omit this parame-
ter MASKVERIF only tells us if the verification succeeded or it tells us the probe positions
for which the verification failed. By adding the verbose parameter we can receive ad-
ditional information about MASKVERIF’s internal state and reasoning. The amount of in-
formation gradually increases from verbose 1 to 4, eventually printing out all internal
states and tested probe positions. We advise testing and finding a value for this that suits
the purpose, since using verbose 4 prints an overwhelming amount of information for
any nontrivial gadget.

When verifying a gadget, a user can use assignments to model the presence or absence
of glitches. If glitches are not considered, the noglitch parameter can be added in front
of the evaluation type to disable glitch leakages. In terms of security notions, a user can
choose Probing, NI, or SNI as parameters, and MASKVERIF will try to verify the circuit
for these notions to the best of its ability. It is important to note that MASKVERIF does not
offer completeness. If a gadget is evaluated as secure, it is indeed secure. However, when
gadgets are evaluated as insecure this can be a false negative in MASKVERIF’s verification
and it is up to the user to identify if the gadget is insecure or just not verified correctly.

4.2 ISW Multiplication

In 2003, Ishai et al. [ISW03] proposed the security notion of the t–probing model and pro-
posed an algorithm for a secure multiplication gadget. This gadget is often referred to
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as ISW AND in the literature, named after its inventors. It is a great example to get
acquainted with the different security properties and to understand what the different
assignment types from the previous section are useful for.
Before looking at the gadgets, we briefly explain how the ISW AND algorithm works.
The general idea is to split up the computation c = a ∧ b into c =

∑
i,j aibj , where a, b are

secret inputs and c is the result. The procedure that Ishai et al. described can be seen in
Algorithm 7.

Algorithm 7: ISW AND rewritten version of Ishai et al.’s algorithm in Sec-
tion 3 [ISW03]
Input: Boolean shares (a0, ..., an−1) and (b0, ..., bn−1) of secrets a, b.
Output: (c0, ..., cn−1) which fulfill c = a ∧ b = c0 ⊕ ...⊕ cn−1.

1 for i = 0 to n− 1 do
2 ci = ai ∧ bi
3 for j = 0 to n− 1 do
4 if i 6= j then
5 ri,j←$ {0, 1}K
6 rj,i = ri,j ⊕ aibj ⊕ ajbi
7 ci = ci ⊕ ri,j
8 end
9 end

10 end
11 return (c0, ..., cn−1)

We will now show what first-order MASKVERIF gadgets implementing the ISW AND
algorithm look like. To convert the ISW AND algorithm into a gadget we first need to
unroll the loops, since MASKVERIF does not support any form of loop assignment. The
first version of this gadget is written in a way that disregards the occurrence of glitches
since the glitch-extended probing model was not considered when this algorithm was
first published. When verifying the gadget in Figure 4.5 we use the noglitch option to
completely disregard glitches no matter what kind of assignment is used.
The verification with MASKVERIF succeeds for all security notions in the standard probing
model but is evaluated as not t–NI when considering glitches. The reason is that the values
in aux propagate a0∧ b1 and a1∧ b0 without the additional random mask r. To fix this, the
gadget in Figure 4.6 uses register assignments for aux to stop the propagation of glitches.
This gadget in Figure 4.6 achieves the t–NI property. However, it is not t–SNI because c0

and c1 are assigned values a0 ∧ b0 and a1 ∧ b1 respectively, and propagate these values
through to the output. Therefore, the outputs are not uniformly distributed and do not
fulfill the t–SNI property. We can fix this by adding register assignments for both outputs
to stop glitch propagation.
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1 proc ISW_AND:
2 (* The algorithm takes two inputs each split into two shares. *)
3 inputs: a[0:1], b[0:1]
4 (* It returns one output split in two shares. *)
5 outputs: c[0:1]
6 (* r is a fresh random local to the algorithm. *)
7 randoms: r;
8

9 c[0] := a[0] * b[0];
10 a0b1 := a[0] * b[1];
11 a1b0 := a[1] * b[0];
12 c[1] := a[1] * b[1];
13 aux := r + a0b1;
14 aux := aux + a1b0;
15 c[0] := c[0] + r;
16 c[1] := c[1] + aux;
17 end
18

19 noglitch Probing ISW_AND
20 noglitch NI ISW_AND
21 noglitch SNI ISW_AND
22 Probing ISW_AND

Figure 4.5: First-order secure ISW_AND gadget without glitches.

1 proc ISW_AND_NI_G:
2 inputs: a[0:1], b[0:1]
3 outputs: c[0:1]
4 randoms: r;
5

6 c[0] := a[0] * b[0];
7 a0b1 := a[0] * b[1];
8 a1b0 := a[1] * b[0];
9 c[1] := a[1] * b[1];

10 (* Register assignments are necessary to prevent the
11 propagation of unmasked values when probing on c[1]. *)
12 aux = ![r + a0b1];
13 aux = ![aux + a1b0];
14 c[0] := c[0] + r;
15 c[1] := c[1] + aux;
16 end
17

18 NI ISW_AND_NI_G
19 SNI ISW_AND_NI_G

Figure 4.6: First-order secure ISW_AND_NI_G gadget with glitches that satisfies the t–NI
property.
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1 proc ISW_AND_SNI_G:
2 inputs: a[0:1], b[0:1]
3 outputs: c[0:1]
4 randoms: r;
5

6 c[0] := a[0] * b[0];
7 a0b1 := a[0] * b[1];
8 a1b0 := a[1] * b[0];
9 c[1] := a[1] * b[1];

10 aux = ![r + a0b1];
11 aux = ![aux + a1b0];
12 (* Stop the propagation of glitches into the outputs
13 with register assignments, since output distributions
14 need to be independent of shares to achieve SNI. *)
15 c[0] = ![c[0] + r];
16 c[1] = ![c[1] + aux];
17 end
18

19 SNI ISW_AND_SNI_G

Figure 4.7: First-order secure ISW_AND_SNI_G gadget with glitches that satisfies the
t–SNI property.

The resulting gadget in Figure 4.7 now fulfills all of MASKVERIF’s security notions, even
in the glitch-extended model.

4.3 t–SNI Secure Addition

Now that we have presented the ISW AND algorithm, we will examine a t–SNI secure
addition algorithm by Coron et al. [CGV14] that uses the ISW AND algorithm as a sub-
routine. The motivation for this algorithm is to avoid conversion and perform an addition
directly on Boolean shares instead. Coron proposed two variants of secure addition vari-
ants, of which we chose the first one. A rewritten version of Coron et al.’s algorithm can
be seen in Algorithm 8.

This algorithm makes use of the property that an addition d = a + b mod 2k, can also
be computed as d = a ⊕ b ⊕ c, where c is the carry of the addition. Conveniently, we
already have an algorithm to securely compute the carry of a and b. Coron classifies his
algorithm as secure in the ISW model, which refers to the security notion that we call
t–probing security. However, we will show that Coron’s algorithm achieves the much
stronger notion of t–SNI. Algorithm 7 allows us to compute a bitwise ∧while maintaining
the t–SNI property. Since t–SNI offers compositional guarantees, meaning that all outputs
of ISW AND are uniformly distributed, the values ci are all uniformly distributed. Each
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Algorithm 8: SEC ADD rewritten version of Coron et al.’s Algorithm 2 [CGV14].
Input: Boolean shares (a0, ..., an−1) and (b0, ..., bn−1) of secrets a, b of size k.
Output: (d0, ..., dn−1) which fulfill d = a + b = d0 ⊕ ...⊕ dn−1.

1 (c0i )i∈n ← 0
2 for j = 0 to k − 2 do
3 (abji )i∈n ← ISW AND((aji )i∈n, (b

j
i )i∈n)

4 (acji )i∈n ← ISW AND((aji )i∈n, (c
j
i )i∈n)

5 (bcji )i∈n ← ISW AND((bji )i∈n, (c
j
i )i∈n)

6 (cj+1
i )i∈n ← (abji )i∈n ⊕ (acji )i∈n ⊕ (bcji )i∈n

7 end
8 (di)i∈n ← (ai)i∈n ⊕ (bi)i∈n ⊕ (ci)i∈n
9 return (d0, ..., dn−1)

share of d is then computed through an xor of the corresponding shares of a and b, and the
xor with each of the uniformly distributed carries ci masks the result. Hence, all shares of d
are simulatable without any input shares. Therefore, the SEC ADD algorithm achieves
t–SNI security. One exception to this is the case of k = 1 where the ISW AND algorithm is
not applied. Every output share is then computed as di = ai⊕bi. To be able to simulate one
of the outputs di, a simulator now requires the respective input shares ai and bi, satisfying
the t–NI property. However, since the output di still requires input shares for simulation,
the t–SNI property is not satisfied for this specific case.

We chose to implement this algorithm into MASKVERIF gadgets because it is a relevant use
case of the ISW AND algorithm. Another reason was that the secure addition on a Boolean
sharing offers an alternative to B2A conversion. Since we knew that B2A conversion is not
verified correctly with MASKVERIF, it was interesting to see if the SEC ADD algorithm can
be verified correctly.

The MASKVERIF gadget in Figure 4.8 shows a first-order implementation of the SEC ADD
algorithm for 8-bit values. Implementing this algorithm revealed some problems that can
occur when implementing gadgets. First, MASKVERIF always leaks an entire variable,
even when only certain bits are extracted and used in a calculation. This gives us two
choices for the SEC ADD algorithm.

The first option is to implement a gadget that is equivalent in instruction to the algorithm
but over-approximates leakage. The second option is to write a gadget that is equivalent
in leakage but does not implement instructions according to the algorithm. We chose the
first option, requiring us to generate 1-bit masks to give us the ability to select bits from
both inputs and calculate bitwise operations correctly. What adds to this problem, is that
constants only exist as one-bit values, which are incompatible with the 8-bit values used
in the algorithm. Therefore, a helper function is necessary to expand a 1-bit value into
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an 8-bit value to avoid incompatibilities between the data types. From that point on, the
algorithm can be executed normally, the only other change is that we need to add up the
individual carry bits into an 8-bit mask in lines 91-93 of Figure 4.8.
We implemented SEC ADD gadgets for up to fifth-order with input sizes 1, 8, 16, 32, and
64-bit values. These gadgets are verified as t–SNI using MASKVERIF, for up to fifth-order
with input sizes up to 32-bit. The verification was performed without parallelization en-
abled and on a regular desktop computer. We stopped verification at the fifth-order gadget
for 32-bit values when the verification time exceeded two hours. Should a more powerful
computer perform the verification with parallelization enabled, it stands to reason that
slightly higher orders can be verified.
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1 proc ISW_AND:
2 inputs: w8 a[0:1], w8 b[0:1]
3 outputs: w8 c[0:1]
4 shares: w8 a0b1[0], w8 a1b0[0], w8 aux[0]
5 randoms: w8 r;
6

7 c[0] := a[0] &w8 b[0];
8 a0b1[0] := a[0] &w8 b[1];
9 a1b0[0] := a[1] &w8 b[0];

10 c[1] := a[1] &w8 b[1];
11 aux[0] := r ^w8 a0b1[0];
12 aux[0] := aux[0] ^w8 a1b0[0];
13 c[0] := c[0] ^w8 r;
14 c[1] := c[1] ^w8 aux[0];
15 end
16

17 (* This is a helper function to convert a 1 bit into an 8 bit value. *)
18 op #expand : w1 -> w8
19 (* This is a helper function to perform a 1 bit left shift. *)
20 op #lsl1 : w8 -> w8
21

22 (* SNI secure ADD *)
23 proc SEC_ADD:
24 inputs: w8 a[0:1], w8 b[0:1]
25 outputs: w8 d[0:1]
26 shares: w8 maska[0:1], w8 maskb[0:1], w8 carry[0:1],
27 w8 auxa0[0:1], w8 auxa1[0:1], w8 auxa2[0:1], w8 auxa3[0:1],
28 w8 auxa4[0:1], w8 auxa5[0:1], w8 auxa6[0:1], w8 auxb0[0:1],
29 w8 auxb1[0:1], w8 auxb2[0:1], w8 auxb3[0:1], w8 auxb4[0:1],
30 w8 auxb5[0:1], w8 auxb6[0:1], w8 auxb7[0:1], w8 ab0[0:1],
31 w8 ab1[0:1], w8 ab2[0:1], w8 ab3[0:1], w8 ab4[0:1], w8 ab5[0:1],
32 w8 ab6[0:1], w8 ab7[0:1], w8 ac0[0:1], w8 ac1[0:1], w8 ac2[0:1],
33 w8 ac3[0:1], w8 ac4[0:1], w8 ac5[0:1], w8 ac6[0:1], w8 ac7[0:1],
34 w8 bc0[0:1], w8 bc1[0:1], w8 bc2[0:1], w8 bc3[0:1], w8 bc4[0:1],
35 w8 bc5[0:1], w8 bc6[0:1], w8 bc7[0:1], w8 c0[0:1], w8 c1[0:1],
36 w8 c2[0:1], w8 c3[0:1], w8 c4[0:1], w8 c5[0:1], w8 c6[0:1], w8 c7[0:1];
37

38 (* This inconvenient part is necessary to simulate the computation of
39 single bit operations while using the 8-bit data type. *)
40 c0[0:1] = #expand((0d0 : w1));
41 maska[0:1] = #expand((0d1 : w1));
42 maskb[0:1] = #expand((0d1 : w1));
43 auxa0[0:1] = a[0:1] &w8 #lsl1(maska[0:1]);
44 auxa1[0:1] = a[0:1] &w8 #lsl1(maska[0:1]);
45 auxa2[0:1] = a[0:1] &w8 #lsl1(maska[0:1]);
46 auxa3[0:1] = a[0:1] &w8 #lsl1(maska[0:1]);
47 auxa4[0:1] = a[0:1] &w8 #lsl1(maska[0:1]);
48 auxa5[0:1] = a[0:1] &w8 #lsl1(maska[0:1]);
49 auxa6[0:1] = a[0:1] &w8 #lsl1(maska[0:1]);
50 auxb0[0:1] = b[0:1] &w8 #lsl1(maskb[0:1]);
51 auxb1[0:1] = b[0:1] &w8 #lsl1(maskb[0:1]);
52 auxb2[0:1] = b[0:1] &w8 #lsl1(maskb[0:1]);
53 auxb3[0:1] = b[0:1] &w8 #lsl1(maskb[0:1]);
54 auxb4[0:1] = b[0:1] &w8 #lsl1(maskb[0:1]);
55 auxb5[0:1] = b[0:1] &w8 #lsl1(maskb[0:1]);
56 auxb6[0:1] = b[0:1] &w8 #lsl1(maskb[0:1]);
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57 (* This is where the computation of individual carry bits happens. *)
58

59 ab0[0:1] = ISW_AND(auxa0[0:1], auxb0[0:1]);
60 ac0[0:1] = ISW_AND(auxa0[0:1], c0[0:1]);
61 bc0[0:1] = ISW_AND(auxb0[0:1], c0[0:1]);
62 c1[0:1] := ab0[0:1] ^w8 ac0[0:1] ^w8 bc0[0:1];
63 ab1[0:1] = ISW_AND(auxa1[0:1], auxb1[0:1]);
64 ac1[0:1] = ISW_AND(auxa1[0:1], c1[0:1]);
65 bc1[0:1] = ISW_AND(auxb1[0:1], c1[0:1]);
66 c2[0:1] := ab1[0:1] ^w8 ac1[0:1] ^w8 bc1[0:1];
67 ab2[0:1] = ISW_AND(auxa2[0:1], auxb2[0:1]);
68 ac2[0:1] = ISW_AND(auxa2[0:1], c2[0:1]);
69 bc2[0:1] = ISW_AND(auxb2[0:1], c2[0:1]);
70 c3[0:1] := ab2[0:1] ^w8 ac2[0:1] ^w8 bc2[0:1];
71 ab3[0:1] = ISW_AND(auxa3[0:1], auxb3[0:1]);
72 ac3[0:1] = ISW_AND(auxa3[0:1], c3[0:1]);
73 bc3[0:1] = ISW_AND(auxb3[0:1], c3[0:1]);
74 c4[0:1] := ab3[0:1] ^w8 ac3[0:1] ^w8 bc3[0:1];
75 ab4[0:1] = ISW_AND(auxa4[0:1], auxb4[0:1]);
76 ac4[0:1] = ISW_AND(auxa4[0:1], c4[0:1]);
77 bc4[0:1] = ISW_AND(auxb4[0:1], c4[0:1]);
78 c5[0:1] := ab4[0:1] ^w8 ac4[0:1] ^w8 bc4[0:1];
79 ab5[0:1] = ISW_AND(auxa5[0:1], auxb5[0:1]);
80 ac5[0:1] = ISW_AND(auxa5[0:1], c5[0:1]);
81 bc5[0:1] = ISW_AND(auxb5[0:1], c5[0:1]);
82 c6[0:1] := ab5[0:1] ^w8 ac5[0:1] ^w8 bc5[0:1];
83 ab6[0:1] = ISW_AND(auxa6[0:1], auxb6[0:1]);
84 ac6[0:1] = ISW_AND(auxa6[0:1], c6[0:1]);
85 bc6[0:1] = ISW_AND(auxb6[0:1], c6[0:1]);
86 c7[0:1] := ab6[0:1] ^w8 ac6[0:1] ^w8 bc6[0:1];
87

88 (* Assemble the individual carry bits into
89 an 8 bit value and perform the instruction
90 from line 8 of the secure addition algorithm.*)
91

92 carry[0:1] = #expand((0d0 : w1));
93 carry[0:1] := carry[0:1] ^w8 c0[0:1] ^w8 c1[0:1]
94 ^w8 c2[0:1] ^w8 c3[0:1] ^w8 c4[0:1]
95 ^w8 c5[0:1] ^w8 c6[0:1] ^w8 c7[0:1];
96 d[0:1] := a[0:1] ^w8 b[0:1] ^w8 carry[0:1];
97 end
98

99 noglitch SNI SEC_ADD

Figure 4.8: First-order secure SEC ADD MASKVERIF gadget for 8-bit values.
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4.4 MASKVERIF’s Verification Algorithms

After taking a look at some MASKVERIF gadgets and their notation, we will now discuss
some high-level functions and how MASKVERIF uses these to reason about security. The
algorithms can be divided into a verification algorithm, called Check, that verifies the
independence of a set of observations from secrets and an exploration algorithm, called
CheckAll that calls the verification algorithm on all possible sets of observations. A gad-
get is successfully verified if all sets of observations were determined to be free of leakage
according to the chosen verification parameters. The key idea behind MASKVERIF’s ver-
ification is to take a set of observations O and transform it into a set O′ with the same
distribution, which is independent of secrets. This is done by successively applying trans-
formations following the optimistic- and general optimistic sampling rule on the set O. If
further transformations are no longer possible while independence from secrets has not
been reached the verification fails.

We will now present the verification algorithms as they are defined by Barthe et al. [BBC+19]
and offer a high-level explanation of how they work.

4.4.1 Single Set Verification

The algorithms used by MASKVERIF can be split into two categories. The first set of algo-
rithms is used to verify a single set of observations and the second set of algorithms uses
the first algorithms on all possible observation sets. The algorithms used for single-set
verification can be seen in Figure 4.9.

The main verification algorithm is called Check, which additionally uses the functions
Test, Select, Simplify. First, we will examine the Test function. This function checks if a
set of observations O′ is independent of secret values, depending on the security notion.

Verification algorithm

proc Select(R,O) = proc Check(R,B,O) =
if ∃r, e, C | O = C[e + r] ∧ r 6∈ e ∪ C then if Test(O) then return B;

return (R, (e, r), C[r]); (R′, b, O′) = Select(R,O);
if ∃r, e, C | O = C[e + r] ∧ r 6∈ e ∪R then Check(R′, B :: b,O′);

O′ = Simplify(O{r ← e + r});
return (R ∪ {r}, (e, r), O′);

else fail ;

Exploration algorithm

proc Replay(B,O) = proc Extend(B,X) =
if B = [] then return Test(Simplify(O)) {O ∈ X |
if B = (e, r) :: B′ then Replay(B,O)}

Replay(B′, O{r ← e + r})

proc OptSampling(X) = proc CheckAll(X) =
if ∃r, e, CX | X = CX [e + r] ∧ r 6∈ e ∪ CX then if X = ∅ return true;

OptSampling(CX [r]); X = OptSampling(X);
else return X; O = Choose(X);

B = Check(∅, [], O);
X0 = Extend(B,X);
CheckAll(X \X0);

Fig. 5. Verification algorithm for probing security

necessarily decrease. To ensure termination, we add a set R of random variables
on which the general rule has already been used. The application of the rule is
conditioned by the fact that r 6∈ R. The termination of the Check algorithm is
ensured since either R increases or the size of O decreases (lexicographic order).

When more than one r allow to apply the rules (i.e for the selection of
the context), we define the multiplicative depth of a random variable and we
rewrite in increasing order of multiplicative depth. For instance, in the expression
r + (r′ + e)× e′ we assign multiplicative depth 0 to r and 1 to r′.

We can prove that our new algorithm always terminates and is sound, i.e. it
can detect all the attacks in our models. Note that considering only the first rule
(first if statement of Select) makes our algorithm equivalent to the one of [2].
When we apply both rules (the two if statements of Select), our algorithm
is equivalent to the one of [4], inspired from Gaussian elimination: contrary
to this last one, we do not require the expressions to be linear. An additional
advantage is the absence of false negatives when all the expressions are linear
(completeness), it is no more the case if we remove the second if in Select.

Both algorithms return the list B of optimistic sampling rules that have been
applied: successive transformations in the exploration algorithm can be replayed.

Exploration. The exploration algorithm ensures that the verification algorithm
analyzes all the possible sets of at most t intermediate variables. However, rather
than verifying each set separately, the exploration algorithm recursively checks

Figure 4.9: These are the single set verification algorithms as described by Barthe et al. in
Figure 5 [BBC+19].
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• For t–probing security it is checked if O′, with t probe positions, does not contain the
secret inputs.

• For t–NI check if O′ contains at most t shares of each input.

• For t–SNI check if O′ contains at most tin shares of each input, where tin is the num-
ber of internal observations in O′.

If Test on O evaluates to true, Check returns the set of bijections B that were used to
transform the original observation set into an independent one. In the case that Test does
not succeed, Check calls Select with the current set O and a set of randoms R that was
already used for transformation.
Select now tries to apply two possible rules on O. The first one is the optimistic sampling
rule which the first if statement in Select covers and the second is the general optimistic
sampling rule, which the second if statement covers. If neither of these rules can be ap-
plied then the verification fails, since a set O′ that is independent of secrets could not be
found.
The optimistic sampling rule is MASKVERIF’s strongest simplification rule to transform a
set of observations O into a smaller set O′ with the same distribution. Simply put, for an
expression e in O and a random variable r, if r /∈ e then e + r can be replaced by r. In the
original paper, this is described over a context C[·] which is not formally defined. How-
ever, our knowledge of the tool indicates that O = C[e + r] describes that the observation
set O contains e + r, as well as some other expressions. For this first version of the opti-
mistic sampling rule, it is important that r does not occur in e or the context C, which are
all other expressions. Another way of thinking about this is that r can only be used once
in the current set O that is being checked. This rule is applicable for any bijective operator,
which is why custom operators should be declared as such. Otherwise, MASKVERIF can
not apply this specific rule to certain observations. Therefore, e ⊕ r can be replaced by r

and leakage no longer depends on e.
The general optimistic sampling rule is a variation of the previous rule which is applied
if the first rule can not be used. The constraint of r only occurring once is removed, as
long as r does not occur in e for O = C[e + r] and r is not contained in the set of already
used randoms R, this rule can be applied. In this case r is now substituted by e + r in
O′ = O{r ←− e + r}, meaning all occurrences of r are replaced. Since the size of O′ does
not necessarily decrease, r needs to be added to the set R to ensure termination.

4.4.2 Extending to Combinations of Observation Sets

The previous algorithms work to verify a single set of observations, however, since all
combinations of t observations can be probed MASKVERIF has to efficiently check increas-
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Verification algorithm

proc Select(R,O) = proc Check(R,B,O) =
if ∃r, e, C | O = C[e + r] ∧ r 6∈ e ∪ C then if Test(O) then return B;

return (R, (e, r), C[r]); (R′, b, O′) = Select(R,O);
if ∃r, e, C | O = C[e + r] ∧ r 6∈ e ∪R then Check(R′, B :: b,O′);

O′ = Simplify(O{r ← e + r});
return (R ∪ {r}, (e, r), O′);

else fail ;

Exploration algorithm

proc Replay(B,O) = proc Extend(B,X) =
if B = [] then return Test(Simplify(O)) {O ∈ X |
if B = (e, r) :: B′ then Replay(B,O)}

Replay(B′, O{r ← e + r})

proc OptSampling(X) = proc CheckAll(X) =
if ∃r, e, CX | X = CX [e + r] ∧ r 6∈ e ∪ CX then if X = ∅ return true;

OptSampling(CX [r]); X = OptSampling(X);
else return X; O = Choose(X);

B = Check(∅, [], O);
X0 = Extend(B,X);
CheckAll(X \X0);

Fig. 5. Verification algorithm for probing security

necessarily decrease. To ensure termination, we add a set R of random variables
on which the general rule has already been used. The application of the rule is
conditioned by the fact that r 6∈ R. The termination of the Check algorithm is
ensured since either R increases or the size of O decreases (lexicographic order).

When more than one r allow to apply the rules (i.e for the selection of
the context), we define the multiplicative depth of a random variable and we
rewrite in increasing order of multiplicative depth. For instance, in the expression
r + (r′ + e)× e′ we assign multiplicative depth 0 to r and 1 to r′.

We can prove that our new algorithm always terminates and is sound, i.e. it
can detect all the attacks in our models. Note that considering only the first rule
(first if statement of Select) makes our algorithm equivalent to the one of [2].
When we apply both rules (the two if statements of Select), our algorithm
is equivalent to the one of [4], inspired from Gaussian elimination: contrary
to this last one, we do not require the expressions to be linear. An additional
advantage is the absence of false negatives when all the expressions are linear
(completeness), it is no more the case if we remove the second if in Select.

Both algorithms return the list B of optimistic sampling rules that have been
applied: successive transformations in the exploration algorithm can be replayed.

Exploration. The exploration algorithm ensures that the verification algorithm
analyzes all the possible sets of at most t intermediate variables. However, rather
than verifying each set separately, the exploration algorithm recursively checks

Figure 4.10: Algorithms to verify all possible observation sets as described by Barthe et al.
in Figure 5 [BBC+19].

ingly larger sets of observations for independence. The algorithms to verify all possible
combinations of observations, that Barthe et al. [BBC+19] defined, can be seen in Fig-
ure 4.10.

Instead of checking all possible combinations of observations independently, MASKVERIF

uses the property that if set O is independent of the secret, then all sub-tuples of observa-
tions are also independent of the secret. This is used by determining sets independent of
secrets through bijections and then extending these bijections to other observations and
determining if the bijections still hold. If this is the case then a larger set independent of
secrets has been found and the process can be repeated until all possible combinations of
sets have been deemed secure.

More specifically CheckAll receives a set of all tuples X that need to be verified. The first
if statement checks the trivial condition of X being empty, and therefore independent of
secrets. Afterward, the optimistic sampling rule is applied globally wherever the condi-
tion is satisfied. This is an important step because it allows us to share the transformation
across all tuples instead of trying it on sub-tuples and extending it later.

Next, an observation O is chosen from X with Choose. Then the verification algorithm
Check, which was discussed previously, is applied. If the algorithm succeeds then B

contains a list of transformations that were performed to prove that O is independent of
secrets. Then Extend attempts to increase the set of observations while making sure that
the bijections in B still apply. This is done by calling Replay on B with all observations
in X . Replay then recursively checks if the transformations in B can be performed on
those observations.
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After this process, X0 contains the observations to which the bijections in B could be ex-
tended. Finally, CheckAll is called again with all observations which could not be verified
yet. This way the set of observations that still need to be checked gets smaller until it is
empty and the if statement X = ∅ is true and verification succeeds, or no further simplifi-
cations are possible and the verification fails. Now that we have discussed the algorithms
that MASKVERIF uses to reason about a gadget’s security, we can discuss the implementa-
tion of Boolean-to-arithmetic conversion in the next chapter.
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In this section, we explain our initial approach to identify why the verification of B2A
algorithms leads to false negatives. We then present a security proof for Goubin’s B2A
algorithm showing that it is t–probing secure, but not t–NI. By carefully examining which
semantically equivalent expressions are correctly verified by MASKVERIF, we can define
simplification and substitution rules that lead to the correct verification of first-order B2A
gadgets. Lastly, we discuss MASKVERIF’s data structures and how our rules were imple-
mented in MASKVERIF’s codebase.
It is important to note that the rules we have chosen are very similar to the rules that Coron
used to incorporate B2A conversion into his tool CHECKMASKS [Cor18]. We encountered
this tool while finishing the write-up of the thesis and found that we had independently
reached a similar approach to the one that Coron presented. His tool is based on the
first and second versions of MASKVERIF [BBD+15, BBD+16] and uses similar verification
methods. The rules that Coron chose also aim to find expressions violating the optimum
sampling rule and replace them. CHECKMASKS operates on Common Lisp files and func-
tions for verification and does not support Verilog or MASKVERIF gadgets. In contrast to
MASKVERIF version three, CHECKMASKS can only verify t–probing, t–NI, and t–SNI no-
tions without the consideration of glitches and transitions. This is also one of the reasons
that MASKVERIF is used a lot, since the consideration of physical defaults is important for
practical analysis.

5.1 Goubin’s B2A Algorithm

Initially, we knew that B2A and A2B conversion were not verified correctly in MASKVERIF,
however, the precise reason was unknown. Therefore, the first step was understanding
the algorithms and writing verification gadgets for them. We started with Goubin’s B2A
algorithm [Gou01] since it is a classic work in the field of B2A and A2B conversion. The
corresponding gadget and a circuit representation can be seen in Figure 5.1.
In the early stages of testing, we used the custom operator bij op #sub: w1,w1->w1

since MASKVERIF does not provide arithmetic operations natively. Later on, we deemed
it necessary to implement a native subtraction operator in MASKVERIF, which is used in
the gadget displayed in Figure 5.1.
At first glance, we believed that this gadget should fulfill the t–NI property, for t = 1, and
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x0 x1r
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y0 y1

1 proc B2A_Goub:
2 inputs: x[0:1]
3 outputs: y[0:1]
4 randoms: r;
5 t1 := x[0] + r;
6 t2 := t1 - r;
7 t3 := t2 + x[0];
8 t4 = ![r + x[1]];
9 t5 := x[0] + t4;

10 t6 := t5 - t4;
11 t7 = t6 + t3;
12

13 y[0] = t7;
14 y[1] = x[1];
15

16 end
17

18 Probing B2A_Goub
19 NI B2A_Goub

Figure 5.1: Circuit and MASKVERIF gadget representation of Algorithm 3.

tested a combination of normal assignments and leakage-free assignments to determine
where the verification fails. As it turns out, operation t7 does not allow for the application
of the optimal sampling rule, and MASKVERIF is unable to verify this exact observation.
The two observations t6 and t3, which occur in t7, can be verified individually. This is
possible because MASKVERIF can find a bijection for t6 determining that t6 depends on t5

and t4, where t5 = t4⊕x0, meaning that t4 occurs twice, but the randomness r only occurs
once in t4 = x1 ⊕ r. Consequently, MASKVERIF can verify that this statement does not
violate t–NI and does not depend on x1. For t3, MASKVERIF can do the same thing. The
problem arises when both intermediate values are combined and MASKVERIF has two
different expressions, namely t2 = (x0⊕ r)− r and t6 = (x0⊕ x1⊕ r)− (x1⊕ r), for which
it cannot find a bijection such that a chain of dependencies is built where only one sub-
expression depends on r and every following expression only has exactly one expression
in which it is used.
After finding the problematic instruction we decided to go through a manual proof to de-
termine which security notion Goubin’s algorithm satisfies exactly with regard to modern
terminology.

5.1.1 Goubin B2A Security

Goubin talks about the security of his algorithm in Section 3.3 [Gou01], where he analyzes
security against DPA attacks. However, since Goubin’s security proof does not include
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any of the formal security notions like t–probing, t–NI, or t–SNI, which did not exist at the
time, the question of what correct verification should result in, arises. Therefore, it was
necessary to analyze Goubin’s B2A algorithm and offer a formal proof that allows us to
modify MASKVERIF’s verification.

Lemma 5.1. The gadget in Figure 5.1 is t–probing secure and is not t–NI, for t = 1.

In this subsection, we show which parts of Goubin’s algorithm are in accordance with the
t–NI property and outline where the algorithm violates t–NI.

For this proof, we use the following from Goubin’s work [Gou01]:

Corollary 1.2 [Gou01] For any value r, if we denote A = (x0 ⊕ x1)− x1, we also have

A = [(x0 ⊕ r)− r]⊕ x0 ⊕ [(x0 ⊕ (x1 ⊕ r))− (x1 ⊕ r)].

Corollary 1.2 shows that an arithmetic share can still be computed correctly even when a
random mask r is added during specific points of the calculation. This corollary is vital to
the secure and correct calculation of the arithmetic share A.

Next, Theorem 1 states an alternative representation of calculating the arithmetic share A:

Theorem 1 [Gou01]

B2A(x0, x1) = x0 ⊕
K−1⊕
i=1

[(
i−1∧
j=1

(2jx0)) ∧ (2ix0) ∧ (2ix1)]

Lastly, we need Lemma 2 in Annex 1 of [Gou01], which states that for any integers u, v,
the following holds:

u− v ≡ (u⊕ v)− 2(ū ∧ v) mod 2K .

Proof (Proof of Lemma 5.1). We will show that every step of Goubin’s algorithm, except for
the output value t7, can be simulated with at most one input share. The output t7 depends
on both shares, however, the result of the computation is uniformly distributed, if x1 is
uniformly distributed.

As r is randomly chosen and uniformly distributed on {0, 1}K , where K is the register size
in the computation, one can see that r, t1, t4, and t5 are uniformly distributed on {0, 1}K .

This means that a simulator can produce values with the same output distribution as
these intermediate values by sampling a random value. The terms t2 and t3 only contain
the share x0 and are independent of x1. The output y1 depends only on the input share x1

and can thus be simulated with one share.
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Next, we will show that the distribution of t6 depends only on x0 and not on x1. There-
fore, t6 can be simulated with the share x0 and a uniformly random sampled value.

We will use Lemma 2 to simplify the terms containing subtractions and show that they
only depend on x0.

Proof that t6 is in accordance with the t–NI property:

First, we apply Goubin’s previously mentioned Lemma 2 to t6 = (x0 ⊕ x1 ⊕ r)− (x1 ⊕ r)

and obtain:

t6 = (x0 ⊕ x1 ⊕ r)− (x1 ⊕ r)

= (x0 ⊕ x1 ⊕ r ⊕ x1 ⊕ r)− 2((x0 ⊕ x1 ⊕ r) ∧ (x1 ⊕ r))

= x0 − 2((x0 ⊕ x1 ⊕ r) ∧ (x1 ⊕ r))

= x0 − 2((x0 ⊕ x1 ⊕ r) ∧ (x1 ⊕ r))

= x0 − 2(((x1 ⊕ r) ∧ x0)⊕ ((x1 ⊕ r) ∧ x1)⊕ ((x1 ⊕ r) ∧ r))

= x0 − 2((x0 ∧ r)⊕ (x0 ∧ x1)⊕ (x1 ∧ x1)⊕ (x1 ∧ r)⊕ (x1 ∧ r)⊕ (r ∧ r))

= x0 − 2((x0 ∧ r)⊕ (x0 ∧ x1)⊕ x1 ⊕ (x1 ∧ r)⊕ (x1 ∧ r)⊕ r)

= x0 − 2((x0 ∧ r)⊕ (x0 ∧ x1)⊕ x1 ⊕ r)

= x0 − 2((x0 ∧ (x1 ⊕ r))⊕ x1 ⊕ r).

At this point we substitute z = x1 ⊕ r to improve readability and obtain

= x0 − 2((x0 ∧ z)⊕ z)

= x0 − 2(((x0 ∧ z) ∧ z) ∨ (x0 ∧ z ∧ z))

= x0 − 2((x0 ∨ z) ∧ z)

= x0 − 2((x0 ∧ z) ∨ (z ∧ z))

= x0 − 2(x0 ∧ z)

= x0 − 2(x0 ∧ (x1 ⊕ r)).

If given x0, a simulator can generate an output with the same distribution as t6, since it
can sample a uniformly distributed random value that has the same distribution as x1⊕ r.
Consequently, x1 has no impact on the distribution of t6 and the t–NI property holds.

Proof that t7 violates the t–NI property:

The distribution of t7 depends on both input shares x0 and x1, meaning that the t–NI
property is violated. To see why the random value r does not influence the distribution
of t7, we will apply the previously mentioned Theorem 1 from Goubin’s work to t7:
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t7 = x0 ⊕
K−1⊕
i=1

[(
i−1∧
j=1

(2jx0)) ∧ (2ix0) ∧ (2ir)]⊕ x0⊕

x0 ⊕
K−1⊕
i=1

[(
i−1∧
j=1

(2jx0)) ∧ (2ix0) ∧ (2i(r ⊕ x1))]

= x0 ⊕
K−1⊕
i=1

[(
i−1∧
j=1

(2jx0)) ∧ (2ix0) ∧ (2ir)]

⊕
K−1⊕
i=1

[(
i−1∧
j=1

(2jx0)) ∧ (2ix0) ∧ (2i(r ⊕ x1))]

= x0 ⊕
K−1⊕
i=1

[((
i−1∧
j=1

(2jx0)) ∧ (2ix0) ∧ (2ir))⊕ ((
i−1∧
j=1

(2jx0)) ∧ (2ix0) ∧ (2i(r ⊕ x1)))]

= x0 ⊕
K−1⊕
i=1

[(
i−1∧
j=1

(2jx0)) ∧ (((2ix0) ∧ (2ir))⊕ ((2ix0) ∧ (2i(r ⊕ x1))))]

= x0 ⊕
K−1⊕
i=1

[(
i−1∧
j=1

(2jx0)) ∧ (2ix0) ∧ ((2ir)⊕ (2i(r ⊕ x1)))]

= x0 ⊕
K−1⊕
i=1

[(
i−1∧
j=1

(2jx0)) ∧ (2ix0) ∧ ((2ir)⊕ (2ir)⊕ (2ix1))]

= x0 ⊕
K−1⊕
i=1

[(
i−1∧
j=1

(2jx0)) ∧ (2ix0) ∧ (2ix1)]

= B2A(x0, x1) = x− x1.

The result x − x1 is only uniformly distributed if x1 is uniformly distributed. Since the
notion of t–NI does not require shares to be uniformly distributed, t7 can not be simulated
without both shares x0, x1. However, the notion of t–probing security assumes shares to be
uniformly distributed, in which case t7 is also uniformly distributed. Therefore, Goubin’s
algorithm achieves t–probing security, but not t–NI. �

5.1.2 Coron B2A Security

Coron extends Goubin’s algorithm in [Cor17] to achieve the t–SNI property. This is done
by applying additional randomness s←$ {0, 1}K to both shares, such that a0 = x0 ⊕ s

and a1 = x1 ⊕ s. Then all of the intermediate computations of Goubin’s algorithm are
performed with a0, a1 instead of the original shares x0, x1. The circuit and MASKVERIF

gadget for Coron’s first-order t–SNI algorithm can be seen in Figure 5.2.
Since all the intermediate steps already fulfilled the t–NI property and additional fresh ran-
domness is added for remasking, all of these values stay secure. Remember that the t–SNI
property requires that the distribution of outputs can be simulated without input shares.
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1 proc B2A_SNI:
2 inputs: x[0:1]
3 outputs: y[0:1]
4 shares: a[0:1]
5 randoms: r, s;
6 a[0] := x[0] + s;
7 a[1] := x[1] + s;
8 t1 := a[0] + r;
9 t2 := t1 - r;

10 t3 := t2 + a[0];
11 t4 = ![r + a[1]];
12 t5 := a[0] + t4;
13 t6 := t5 - t4;
14 t7 = t6 + t3;
15

16 y[0] = t7;
17 y[1] = a[1];
18

19 end
20

21 Probing B2A_SNI
22 NI B2A_SNI

Figure 5.2: Circuit and MASKVERIF gadget representation of Algorithm 4.

The first output y0 = t7 = B2A(a0, a1) = (a0 ⊕ a1)− a1 = (x0 ⊕ x1 ⊕ s⊕ s)− (x1 ⊕ s) =

x− (x1 ⊕ s) is always uniformly distributed, since x1 ⊕ s is uniformly distributed and
subtracting a uniformly distributed value from the secret x results in a uniformly dis-
tributed value. Consequently, y0 can be simulated without any input shares.
The second output y1 = a1 = x1 ⊕ s is also uniformly distributed, therefore, Coron’s
algorithm satisfies the t–NI property.

5.1.3 Determining Verifiable Expressions

After examining the security notions that each algorithm satisfies, the next task was to
determine a suitable method to allow MASKVERIF to verify these algorithms correctly.
The original term t7 = ((x0⊕r)−r)⊕x0⊕((x0⊕x1⊕r)−(x1⊕r)) can not be simplified with
the rules that MASKVERIF has at its disposal. Our next step was to test which expressions
MASKVERIF could verify correctly and found that the term x− x1 is classified correctly as
t–probing secure. We determined this by manually verifying different semantically equiv-
alent expressions and evaluating how MASKVERIF reasons about their security.
To avoid the problems with the optimal sampling rule we implemented our first rule,
which we call Goubin substitution. This rule checks expressions to look for the pattern
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((x0⊕r)−r)⊕((x0⊕x1⊕r)−(x1⊕r)) and simplifies the expression into ((x0⊕x1)−x1)⊕x0.
When applied to the term t7, this results in ((x0 ⊕ x1)− x1)⊕ x0 ⊕ x0. To further simplify
this, we first need to understand how t–probing security is verified in MASKVERIF.

For this security notion, MASKVERIF internally defines t–probing security as t–NI under the
restriction of uniformly sampled shares, for all but one share. This means that all but one
share are eligible for the optimal sampling rule and the only non-uniformly distributed
share is now defined as x0 = x⊕ x1 ⊕ ...⊕ xn−1 for a secret x split into n shares.

This changes the internal representation of the result t7 = ((x0 ⊕ x1) − x1) ⊕ x0 ⊕ x0 to
((x ⊕ x1 ⊕ x1) − x1) ⊕ (x ⊕ x1) ⊕ (x ⊕ x1). Since x1 still occurs in multiple expressions
the verification fails, however, all the problems with this expression can be remedied by
implementing another rule we call xor simplification.

This rule aims to eliminate any even number of occurrences where one variable is xored
with itself. Meaning the term x1 ⊕ (x1 ⊕ x1) is simplified into the term x1 and x1 ⊕ x1

is removed. When applied to the previous expressions we obtain x − x1, which can be
verified correctly.

Additionally, we implemented an and simplification rule which substitutes any sequence
of a variable that has the ∧ operation performed with itself for a single occurrence of a
variable, meaning x1 ∧ x1 ∧ ... ∧ x1 is substituted by x1. This specific rule has no bearing
on our example, it should, however, allow for simplification of expressions generally.

Our rules are applied as a preprocessing on the observations that MASKVERIF builds be-
fore any verification function is called. The Goubin substitution rule will only detect and
substitute terms with the specific structure we mentioned and the correctness of the sub-
stitution has been shown with the previous proofs and Goubin’s Corollary 1.2. The and
simplification and xor simplification rules are checked for every expression in the full set
of observations and allow MASKVERIF to apply its verification function on simpler, yet
semantically equivalent expressions, that can be verified more easily.

For Coron’s algorithm the expression t7 = ((a0⊕r)−r)⊕a0⊕((a0⊕a1⊕r)−(a1⊕r)) can be
reduced to (a0⊕a1)−a1 = (x0⊕x1⊕s⊕s)− (x1⊕s) = (x0−x1)− (x1⊕s) using the same
rules described before. Since t–SNI does not assume shares to necessarily be randomly
sampled the only randomness that MASKVERIF can use for its optimal sampling rule is s.
Fortunately, s only occurs once after our simplification rules are applied and the term t7 is
correctly evaluated as t–SNI, for t = 1.

After briefly describing the rules we used to fix the verification of first-order B2A conver-
sion algorithms, we will highlight the implementation details in the next section.
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5.2 Implementation Details

In this section, we will explain how the three rules we previously described are imple-
mented into MASKVERIF’s codebase. Since MASKVERIF is written in the functional pro-
gramming language OCaml, most of the following pseudocode is written in an abstract
functional manner and substantially simplified. Before describing the functions we wrote
we first need to look at the data structure that MASKVERIF uses to represent expressions.

1 type expr = {
2 eid : int;
3 enode : exprnode}

Figure 5.3: Expression data type in MASKVERIF.

Expressions are a tuple of an expression ID and an expression node and the definition of
the data type can be seen in Figure 5.3. When an expression is constructed, an expression
node receives an ID and is added to a hash table. If the node is already present in the hash
table the same ID is assigned to the node.

1 type exprnode =
2 | Etop
3 | Ernd of rnd
4 | Eshare of param * int * var
5 | Epub of var
6 | Epriv of var
7 | Eop1 of operator * expr
8 | Eop2 of operator * expr * expr
9 | Eop of bool * operator * expr array

10 | Econst of constant

Figure 5.4: Expression node data type in MASKVERIF.

Expressions and expression nodes are recursively defined over one another, where every
expression has an ID and a node that is either a leaf in a tree or another expression. The
data type expression node, as it is defined in MASKVERIF, can be seen in Figure 5.4.
The leaves of our expression nodes are the empty node as Etop, a random variable rnd,
a share Eshare, a public value Epub, a private value Epriv, or a constant value Econst.
For the leaves, this high-level description suffices to understand our later approach. The
nodes in the tree are constructed with operators that have expressions as arguments,
namely operators with a single argument Eop1, operators with two arguments Eop2, and
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operators with more than two arguments Eop.
The implementation of our rules required us to detect expressions that are semantically
equivalent but syntactically different due to having an associative operator. When looking
at the two terms x0 ⊕ x1 and x1 ⊕ x0 it is obvious that these are semantically equivalent.
However, MASKVERIF will assign two different IDs to their expressions and structural
comparisons on these expression nodes will evaluate to false. This behavior makes pattern
matching and equivalence checks more troublesome and can be avoided by first sorting
the leaves and subtrees of expressions by IDs. We implemented the function orderexpr

which uses a recursive helper function ordernodes and can be seen in Figure 5.5.

1 function orderexp(exprlist):
2 function ordernodes(exprnode):
3 switch exprnode:
4 case Eop1(op, e1):
5 return Eop1(op, ordernodes(e1.enode))
6 case Eop2(op, e1, e2):
7 return Eop2(op,
8 ordernodes(e1.enode),
9 ordernodes(e2.enode))

10 case Eop(op, exprarray):
11 return Eop(op,
12 foreach exp in exprarray: ordernodes(exp.enode))
13 otherwise:
14 return exprnode
15

16 return foreach exp in exprlist: ordernodes(exp.enode)

Figure 5.5: A function to order expressions by their IDs.

This pseudocode shows that we recursively order expressions along their operators. Some
specific checks and conditions, regarding how the ordering is done, are left out for sim-
plicity’s sake and can be found in the source code.

5.2.1 Operator Simplification

Now we have ordered expressions to perform our substitution and simplification rules.
Next, we will describe the functions that implement the and simplification and xor
simplification rules. Both and simplification and xor simplification are implemented
through a function called operator_simplification. This function receives an op-
erator and a list of expressions and tries to simplify all expressions for the specified
operator.
To find potential sub-expressions for simplification within the global expression two re-
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cursive functions calling each other are used.

The first function build_subtree builds a subexpression for all connected nodes with
the same operator and returns a tuple containing the subexpression and a list of simplifi-
cation candidates.

The second function find_op finds expression nodes with the operator in question and
then calls build_subtree and reduce_expression on them.

Additionally, another helper function called reduce_expression, is used. It receives
an operator and a tuple containing a list of expressions that should be reduced and the
expression node for which the reduction should be performed.

Figure 5.6 shows an abstract version of the code that implements the and simplification
and xor simplification rules, that could be used for other potential operators as well. This
means that we could also use the operator_simplification function for the subtrac-
tion operator. We currently do not perform this though, since the only MASKVERIF gadgets
using the newly implemented subtraction operator are our gadgets, in which expressions
like e − e never occur. Consequently, calling the function for the subtraction operator is
useless. The simplification rule can be extended for other operators with a single line of
code, should the number of gadgets using our subtraction operator increase.

Next, we will briefly explain how the pseudocode shown in Figure 5.6 works. First,
find_op explores the expression tree and compares operators it finds with the operator
that was passed to operator_simplification. When the correct operator is found
build_subtree is called, which identifies all sub-expressions that have the specified
operator between them. This chain needs to be uninterrupted, otherwise, the order of
operations and associativity do not necessarily allow for trivial simplification. Therefore,
finding any other operator requires another call of find_op to check if we can still sim-
plify further in that sub-expression. All uninterrupted chains of expressions are then sim-
plified with the reduce function according to the and simplification or xor simplification
rules.

5.2.2 Goubin Substitution

This leads us to the Goubin substitution rule which is implemented through two core
functions. The first one is goubin_substitution, which uses a structure similar to the
operator_simplification function to find potential candidates in sub-expressions
that are connected by the correct operators. The second one is goubin_solve, which
receives a list of expression nodes with a subtraction as their operator, making these ex-
pressions potential candidates for substitution, and the current sub-expression which was
checked. Additionally, several helper functions are used:
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• is_candidate checks if an expression with a subtraction operator fulfills the con-
ditions to be a candidate for substitution,

• flatten takes an expression and turns it into a list of nodes along the xor operator,

• find_matches goes over candidates and finds the best matches, such that the sub-
stitution structure can create the smallest terms possible,

• simplify performs the substitution and returns simplified expressions, and

• reconstruct takes the flattened expressions we have been working on and returns
them to their regular structure.

Before we take a look at the pseudocode, we will briefly explain the requirements that
have to be met to substitute expressions. Two expressions presenting the pattern e0 =

(x⊕(y0⊕...⊕yn−1))−(y0⊕...⊕yn−1) and e1 = ((x⊕z)⊕(y0⊕...⊕yn−1))−(z⊕(y0⊕...⊕yn−1))
need to be xored with each other. This means that both expressions have the structure
x⊕ y − y, while one expression contains additional variables.
According to Goubin’s Corollary 1.2, we can eliminate all variables which occur in both
expressions. Initially, we performed a three-argument matching for Corollary 1.2, mean-
ing that we checked if (x⊕y)−y, (x⊕y⊕z)−(y⊕z), and x were present and substituted all
three expressions for x⊕ z− z. We later changed our approach to a two-argument match-
ing only checking for (x⊕y)−y and (x⊕y⊕z)−(y⊕z) since this reduced the effort to find
the necessary structure. In turn, we now need to substitute ((x⊕ z)− z)⊕ x for these two
expressions. The extra variable x needs to be added to fulfill the equation and ensure that
our substitution is correct. After substitution, we obtain ((x⊕ z)− z)⊕x⊕x = (x⊕ z)− z,
which is an expression that MASKVERIF can correctly verify.
Next, we explain the pseudocode of the goubin_solve function shown in Figure 5.7. It
receives a list of candidate expressions for which the substitution will be attempted. Then,
the flatten function is called on all expressions, turning the recursive data structure
into a list, allowing us to perform easier comparisons and checks between expressions.
Now, find_matches finds expressions that fulfill the substitution condition mentioned
above and matches them according to the largest set of variables that can be eliminated.
If no matches are found, then no simplification is possible and the original expression
is returned. Afterward, simplify performs the substitution and returns the simplified
expression. The last step is to call reconstruct and turn the simplified expressions back
into the original data structure and insert them back into the global expression.
Finally, we will explain the goubin_substitution function visible in Figure 5.8. This
function receives a list of expressions and performs the Goubin substitution rule wher-
ever possible.
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The overall structure of this function is similar to the operator_simplification func-
tion, where the find_op function looks for an operator, in this case, the ⊕ operator, and
then calls the build_subtree function to generate a list of potential candidates for the
substitution. A slight change to build_subtree, however, is that now a chain of xored
expressions is checked for expressions containing a subtraction as their operator. Should a
subtraction be found, a check is performed by calling is_candidate, to determine if this
expression fits the structure of (x⊕y)−y, where y can be any arguments. If this is the case,
we found a potential candidate for substitution and add it to the list of candidates. After
checking an expression connected by xors and finding all candidates, goubin_solve
is called and potentially returns a substituted expression. This new expression is then
inserted into the tree in the position of the old expression. By performing these checks on
all expressions we can substitute all relevant terms.

It is important to note that the order in which our rules are applied matters. The Goubin
substitution rule needs to be applied before the xor simplification rule, to guarantee that
the substituted terms are simplified correctly. If the simplification is not performed after
the Goubin substitution, the resulting expression can not be verified correctly as first-
order probing secure by MASKVERIF.
An example of this is the expression t7 = ((x0⊕ r)− r)⊕x0⊕ ((x0⊕x1⊕ r)− (x1⊕ r)) that
we previously looked at. If the xor simplification rule is applied first, it has no impact on
the expression.
The following application of the Goubin substitution leads to t7 = ((x0⊕x1)−x1)⊕x0⊕x0.
This term is evaluated as not t–probing secure by MASKVERIF. If the rules are applied in
reverse order, the resulting expression is t7 = ((x0 ⊕ x1)− x1), which is correctly verified
as t–probing secure. This means that the rules need to be applied in a specific order, or
applied multiple times to guarantee an exhaustive simplification of expressions.
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1 function operator_simplification(operator, exprlist):
2 function build_subtree(expr):
3 switch expr.enode:
4 case Eop1(op, e1):
5 return [Eop1(op, e1)], Eop1(op, find_op(e1))
6 case Eop(b, op, exprarray):
7 return [Eop(b, op, exprarray)],
8 Eop(b, op, foreach exp in exprarray: find_op(exp))
9 case Eop2(op, e1, e2):

10 if op == operator:
11 l1, node1 = build_subtree(e1)
12 l2, node2 = build_subtree(e2)
13 return List.append(l1, l2),
14 find_op(Eop2(op, node1, node2))
15 else:
16 return [Eop2(op, e1, e2)], find_op(Eop2(op, e1, e2))
17 otherwise:
18 return [expr.enode], expr.enode
19

20 function find_op(expr):
21 switch expr.enode:
22 case Eop1(op, e1):
23 return Eop1(op, find_op(e1))
24 case Eop(b, op, exprarray):
25 return Eop(b, op, foreach exp in exprarray: find_op(exp))
26 case Eop2(op, e1, e2):
27 if op == operator:
28 return reduce_expression(op,
29 build_subtree(Eop2(op, e1, e2)))
30 else:
31 return Eop2(op, find_op(e1), find_op(e2))
32 otherwise:
33 return expr.enode
34

35 return foreach exp in exprlist: find_op(exp)

Figure 5.6: Pseudocode for the operator_simplification function.

1 function goubin_solve(candidates, expr):
2 foreach c in candidates:
3 flatten(c)
4 matches = find_matches(candidates)
5 if matches == []:
6 return expr
7 simplify(matches)
8 return reconstruct(matches)

Figure 5.7: Pseudocode for the goubin_solve function.

55



5 Implementing Boolean to Arithmetic Conversion

1 function goubin_substitution(exprlist):
2 function build_subtree(expr):
3 switch expr.enode:
4 case Eop1(op, e1):
5 return [], Eop1(op, find_op(e1))
6 case Eop(b, op, exprarray):
7 return [],
8 Eop(b, op, foreach exp in exprarray: find_op(exp))
9 case Eop2(op, e1, e2):

10 if op == Xor:
11 l1, node1 = build_subtree(e1)
12 l2, node2 = build_subtree(e2)
13 return List.append(l1, l2),
14 find_op(Eop2(op, node1, node2))
15 else if op == Sub:
16 if is_candidate(e1, e2) == true:
17 return [(e1, e2)], Eop2(op, e1, e2)
18 else:
19 return [], find_op(Eop2(op, e1, e2))
20 otherwise:
21 return [], expr.enode
22

23 function find_op(expr):
24 switch expr.enode:
25 case Eop1(op, e1):
26 return Eop1(op, find_op(e1))
27 case Eop(b, op, exprarray):
28 return Eop(b, op, foreach exp in exprarray: find_op(exp))
29 case Eop2(op, e1, e2):
30 if op == Xor:
31 return goubin_solve(build_subtree(Eop2(op, e1, e2)))
32 else:
33 return Eop2(op, find_op(e1), find_op(e2))
34 otherwise:
35 return expr.enode
36

37 return foreach exp in exprlist: find_op(exp)

Figure 5.8: Pseudocode for the goubin_substitution function.
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Over the course of this work, it was necessary to get a deeper understanding of MASKVERIF’s
code and how it processes gadgets. In this section, we document some files and functions
which we believe to be important for understanding and extending MASKVERIF. Un-
derstanding and working with MASKVERIF was the most time-consuming part of this
thesis since the tool’s code is completely undocumented and is far from self-explanatory.
The codebase of MASKVERIF contains approximately 5000 lines of code contained in 22
files, which makes an overview of its core files and functions a necessity. Therefore,
we offer documentation that allows others that want to get a deeper understanding of
MASKVERIF’s code or extend the tool to get a head start by identifying important func-
tions and having an overview of the codebase. The structure of this chapter is as follows,
a section represents a .ml file, while subsections represent functions inside that file. Over
the course of this thesis, we have written close to 1000 lines, of which approximately half
is code and the other half is documentation. Providing documentation for ourselves and
others became a necessity because a large chunk of MASKVERIF’s program flow, func-
tion names, and state are hard to identify when comparing the actual codebase and the
MASKVERIF version three paper [BBC+19]. Most of the codebase documentation that we
provide is focused on establishing a connection between the pseudocode in the paper and
the existing codebase.

6.1 File preprocess.ml

All the additions we have made to enable our Goubin substitution, and simplification
and xor simplification rules can be found in preprocess.ml. These rules are applied to
the observations that are built by Prog.build_obs_func and therefore serve, as the file
name indicates, as a preprocessing that is applied before MASKVERIF’s core verification
routine. This also makes it fairly simple to extend these rules further, since understanding
the internal verification process is helpful, but not strictly necessary when working on the
observations instead of the graph state that is later initialized for the verification routine.
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6.2 File main.ml

The main.ml file has a large part of its code devoted to parsing, the most interest-
ing parts, however, are the functions check_threshold, check_ni, check_sni and
check_spini. These are the different possible security notions that MASKVERIF can
check and the function that is called depends on the specified verification parameter. In
all of these functions, a set of observations is built with the Prog.build_obs_func call
from the prog.ml file. This function builds the set of observations that has to be checked
depending on multiple parameters specified in the gadget, e.g., glitches, assignment
types, and security notions. Afterward check_threshold, check_ni, check_sni and
check_spini call their respective counterparts in the checker.ml file and pass the
observations and verification parameters along.

6.3 File checker.ml

For this file we have the main verification functions check_threshold, check_ni,
check_sni and check_spini which mostly differ in their parameters and restrictions.
The underlying verification process is similar and that is what we will focus on. All the
previously named functions start by first building a state of expressions from the obser-
vations that were passed in main.ml. Additionally, the number of maximum shares is
initialized and used as a checking condition to verify independence from t probes under
the respective security notions. Then check_all_opt is called, which decides if the ver-
ification is parallelized or not, depending on if the parameter was specified in the gadget
or not. Over the course of this work, we have almost exclusively worked with non-parallel
verification, since it allows for significantly easier program flow analysis and debugging.

6.3.1 Function check_all

This is the first notable function in the verification process and is named similarly to the re-
spective function in the algorithmic description of MASKVERIF version 3 [BBC+19]. How-
ever, the algorithmic description that the authors presented only loosely relates to the
actual function names and program flow that happens within the tool. The first key dif-
ference is that instead of passing sets of observations and bijections to further functions
almost all the following functions operate on a graph-based state which contains all vari-
ables currently being checked. This data structure is used to nicely illustrate dependen-
cies between sub-expressions and the bijections that MASKVERIF identifies are realized by
changing parent and child nodes within the graph.

After setting up the state, check_all tests if the current observations are independent of
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secrets. Then simplify_ldfs is called, attempting to apply the OptSampling(X) call
from Figure 4.10 on all oberservations. Consequently, we now obtain a potentially simpli-
fied set of observations after this function call. The check continue1 is performed to test
if verification needs to continue or if independence is reached. Should further verification
be necessary, find_bij is called, which in part fulfills the functionality of the single-set
Check algorithm from Figure 4.4, as well as the Choose, Extend and Replay algorithms
from Figure 4.10. An updated state of observations is returned for which applications of
the optimal sampling rule were found and all the observations that these bijections hold
for are no longer considered in the rest of the verification.

At this point, the set of observations is divided and combinations of probes into the sep-
arated parts are checked by calling check_all on them. Here, the same verification
process begins anew.

6.3.2 Function simplify_ldfs

This function loosely corresponds to the X = OptSampling(X) call from the exploration
algorithm we described in Chapter 4 Figure 4.10. The state is initialized, by clearing it
and adding all available observations. Afterward simplify_until, from state.ml,
is called, which consists of a series of function calls that essentially correspond to the
optimal sampling rule application. Now the state is either independent of secrets, in
which case we terminate, or further verification effort is attempted. This is done by call-
ing simplified_expr with the state to globally rewrite expressions with a simplified
form. This essentially equates to the OptSampling(X) call, but instead of obtaining bijec-
tions that hold for all observations, MASKVERIF now chooses to substitute the expressions
for which the optimal sampling rule could be applied globally and continue with these.
Lastly, a new set of observations is derived and we return into check_all.

6.3.3 Function find_bij

The name of this function alludes to its task to find bijections for observations through
applications of the optimal sampling rule. It operates by first choosing a subset of all ob-
servations based on a heuristic and adding these to the state, which corresponds to the
Choose algorithm from Figure 4.10. A verification attempt is then made for this set of
observations by calling simplify_until, from state.ml, on the state to obtain ex-
pressions that have been simplified. Should this simplification fail, MASKVERIF attempts
to apply strategies to mitigate the number of false negatives and, should these fail, asserts
that could not verify the gadget for the given security notion at that currently tested probe
position. If simplifications were possible, get_bij is used to obtain the bijections that
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were applied, and more expressions are added to the state.

Now, replay_bij and simplify_until_with_clear are used to try and find ex-
pressions to which the bijections also apply, which corresponds to the Extend and Replay
of the original algorithms. Note that these are still performed in find_bij and not in
check_all as the pseudocode in Figure 4.10 describes it. At this point, we return to
check_all with the updated state of observations.

6.4 File state.ml

The state manages, as the name indicates, the state that MASKVERIF uses during its
verification process. In addition to functions that initialize, update, and manage the state,
some other functions which are part of the actual verification logic are also present in this
file. Some notable ones include simplify_until, simplify, simplify1, apply_bij
and is_rnd_for_bij.

6.4.1 Function simplify_until

This function is called by multiple functions from checker.ml and initiates the applica-
tion of the optimal sampling rule. As long as the predicate continue is true, meaning
the observations are still dependent on secret values, simplify is called. If simplify
has no more random values eligible for optimal sampling rule simplification, but sim-
plifications were performed, it will return true, and simplify_until will recursively
call itself and attempt further simplification. If continue is true, but no simplification
through simplify is possible simplify_until returns false, indicating that simplifi-
cation is necessary but can not be performed.

6.4.2 Function simplify

The main purpose of this function is to call simplify1, which in turn attempts to apply
the optimal sampling rule to all random variables which are eligible. If simplify1 re-
turns true, meaning that at least one application of the optimal sampling rule could be ap-
plied, it recursively applies simplify1 to the new state. If simplify1 was called once
and can not be applied anymore, simplify returns true. However, when simplify1

can not be applied at all, meaning no randoms could be considered for the optimal sam-
pling rule, it returns false.
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6.4.3 Function simplify1

The application of the optimal sampling rule happens here, state.s_todo contains all
randoms that could potentially be used for simplification.
Then the function is_rnd_for_bij is called, which returns true if the optimal sam-
pling rule can be applied for the random in question. If this returned true, apply_bij
is called for the random variable, which substitutes a random value r for an expression c

by changing its parent and descriptor to r. Additionally, the bijection used is saved and
is_rnd_for_bij on c to check if c could also be used for further simplification with
the optimal sampling rule. After all available randoms in state.s_todo were checked,
simplify1 returns true. If state.s_todo was initially empty and no simplifications
could be performed, false is returned.

6.4.4 Function is_rnd_for_bij

This is the check to establish if a random variable r can be used for the optimal sampling
rule. First, two conditions need to be fulfilled, the variable r needs to be a random variable
and it needs to have exactly one child, meaning that only one expression in the current
state is dependent on r. If these conditions are fulfilled, the function checks if the operator,
which r is used in, is bijective. This is a mandatory requirement since the leakage of an
expression e can otherwise not be substituted by r.

6.4.5 Function apply_bij

The function receives the state and a random variable r. A bijection chain is built for
a child c of r, where c’s descriptor is replaced by r’s, essentially substituting r for c, but
maintaining the expression c and its children. Then c is classified as a random variable and
the bijection is added to the state. In the case that c now also satisfies is_rnd_for_bij,
the potential candidate c is added to the stack to be used for another bijection.

6.5 File expr.ml

The expr.ml file contains all functions and data structures necessary to initialize and
operate on expressions and to define operators. This is where we added our subtraction
operator (with some small changes to the parser and lexer as well) and where a lot of
potential for the extension of operators into MASKVERIF still exists. Of special interest are
operators and expressions as data types.
We have already shown the expression and expression data structure in Section 5. To sum-
marize, expressions expr and expression nodes exprnode are recursively defined over

61



6 Documentation of MASKVERIF

one another to construct a tree. The leaves of this tree are either randoms rnd or shares
constructed over a parameter param indicating input, output, or intermediate share, int
to indicate the number of shares, and a variable var. Additionally, leaves can be public or
private variables of type var or constants of type constant.
The nodes of an expression are operators, either with one, two, or more arguments. To
understand these further we will outline the operator data type in Figure 6.1.

1 type operator = {
2 op_id : int;
3 op_name : string;
4 op_ty : (ty list * ty) option;
5 op_bij : bij_kind;
6 op_kind : op_kind
7 }

Figure 6.1: Operator data type in MASKVERIF.

An operator has an ID op_id which uniquely identifies it and is assigned when it is con-
structed. The name of an operator op_name is defined by what kind of operator it is and
the size of its arguments in bits. An example of this is that a ∧ operator for two 32-bit
variables has the name &w32. Additionally, the argument sizes in a bit are specified as
op_ty and can be 1, 8, 16, 32, or 64 bit. Every operator is either bijective or not, specified
by op_bij. The value op_kind indicates the operation that is performed, currently, these
can be Add (which is a bitwise ⊕), Mul (bitwise ∧), Neg (bitwise complement), Sub (the
subtraction mod 2k we added) and Other, which is used for the custom defined operators
in gadgets.
The expr.ml file contains more functions that handle these data types, but the knowledge
we presented is sufficient to understand operators and expressions on a deep enough level
to work with MASKVERIF. Expressions are the predominant data type used to represent
the symbolic values that MASKVERIF analyses for verification and understanding them
will allow both users and programmers to easily use and extend the tool.
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7 Conclusions

We will now briefly summarize the contents and contributions of this work and outline
some open problems regarding the topic.

7.1 Summary

In this thesis, we extended MASKVERIF, one of the leading formal verification tools for
masked implementations, by implementing rules that simplify the observations that
MASKVERIF operates on. These rules allowed us to verify two important Boolean-to-
arithmetic conversion algorithms with MASKVERIF without the occurrence of false nega-
tives for the first time.

The first algorithm is from Goubin’s seminal work in 2001 [Gou01], which started open-
ing up the area of research for Boolean-to-arithmetic masking conversion and vice versa.
Since this algorithm was published over 20 years ago, the current security notions of
t–probing security, t–non–interference, and t–strong non–interference were not formally veri-
fied in Goubin’s security proof. We offered a proof of t–probing security for Goubin’s B2A
algorithm and showed at which point the t–non–interference property is violated. This
algorithm is now correctly verified as t–probing secure by MASKVERIF using our simplifi-
cation rules added to the code.

The second algorithm we focused on is Coron’s t–SNI variant of Goubin’s B2A algorithm,
which was incorrectly assessed as not even t–probing secure by MASKVERIF. Our rules
also lead to the correct verification of this algorithm as t–SNI.

Additionally, we offered extensive documentation of MASKVERIF’s codebase and showed
how it is connected to the pseudocode that Barthe et al. [BBC+19] provide for MASKVERIF

version three. This documentation hopefully provides researchers with a helpful tool for
an easier understanding of MASKVERIF’s verification functions which in turn makes its
use or extension more straightforward.

Lastly, we provided several MASKVERIF gadgets for different use cases like first and
second-order Boolean-to-arithmetic conversion, first-order arithmetic-to-Boolean conver-
sion, mask refreshing up to tenth-order, and t–SNI secure addition up to fifth-order for
register sizes of 1, 8, 16, 32, or 64 bits.
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7 Conclusions

7.2 Discussion and Open Problems

Over the course of this work, many interesting open problems revealed themselves.

• The first open problem is the extension of our first-order rules to correctly verify
higher-order Boolean-to-arithmetic conversion algorithms without false negatives.
Currently, the higher-order version of Coron’s algorithm in [Cor17] still leads to
false negatives. Coron was able to correctly verify this algorithm in his tool with
rules similar to ours, indicating that while the approach may be correct, MASKVERIF

is currently unable to handle the expressions that the algorithm produces. As it
currently stands we believe that simply incorporating Coron’s rules into MASKVERIF

will not fix the false negatives in higher-order B2A and further research on our part
is necessary to determine the root cause and potential solutions.

• Secondly, MASKVERIF is currently not able to verify arithmetic-to-Boolean algo-
rithms of any order. A first step here would be to extend MASKVERIF in a way
that leads to the correct verification of Goubin’s first-order arithmetic-to-Boolean
conversion algorithm [Gou01]. Later on, the correct verification of higher-order
arithmetic-to-Boolean conversion algorithms can also be pursued.

• Another interesting topic is researching how to minimize the number of false neg-
atives that MASKVERIF’s verification produces. It is expected that MASKVERIF’s
heuristics and simplifications lead to some loss in completeness, however, minimiz-
ing the gap in completeness between MASKVERIF and its competitors, while keeping
a lead in performance, would drastically improve the quality of the tool further for
many use cases.

• Last but not least, many other state-of-the-art tools are now focusing on com-
bined security (passive and active attackers) and it would be interesting to see if
MASKVERIF can be extended to incorporate active attackers inducing faults as well.
Most other tools again focus on completeness, causing performance to often suffer
heavily for combined security. This happens because many tools look at all possi-
ble fault positions and then verify the different notions of probing security for all
positions. If MASKVERIF could be extended to fulfill the role of a tool for formal
verification of combined security that does not offer completeness but also does not
incur such a performance loss for combined security, it could be a very useful tool
for the verification of larger implementations.
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