
Privacy-Preserving Machine Learning for
Cyber Insurance

Master Thesis

T. Giovanna

February 23, 2021

Supervisor: Prof. Dr. S. Čapkun
Advisors: Prof. E. Mohammadi, Dr. K. Kostiainen

Department of Computer Science, ETH Zürich





Abstract

Cyber risk assessment is an emerging field, in particular for insurance companies, that
offer cyber insurance packages to their clients. However, understanding cyber risk is not
easy, especially due to the lack of historical data. While machine learning can help, rec-
onciling accuracy, explainability and privacy when data is lacking is challenging. Some
machine learning techniques are better than others at addressing these challenges. For
instance, ensemble methods such as gradient boosted decision trees (GBDT) are easily
explainable, due to their tree structure. This is not the case of other methods such as
deep neural networks, which are much more complex to interpret. GBDT models can also
provide privacy through differential privacy. However, current state of the arts on differ-
entially private GBDT models suffers from low accuracy when there are limited training
data. In this thesis, we propose a new decision tree induction algorithm, 2-nodes, that
enhances accuracy over small datasets while satisfying ε-differential privacy. Further, we
propose an algorithm based on Bayesian networks to generate synthetic data for cyber risk
assessment. Finally, we evaluate our model on various real and synthetic datasets and
show that our new induction method is able to improve accuracy on small datasets.

ii



Contents

Contents iii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Example setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Chosen approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Gradient boosted decision trees (GBDT) . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Differentially Private Decision Trees 9
3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Privacy budget allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Query sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.3 Termination criteria and post-processing . . . . . . . . . . . . . . . . . . . 11
3.1.4 Depth-first and best-leaf first decision tree induction . . . . . . . . . . . . 12

3.2 Differentially private gradient boosted decision trees (DP-GBDT) . . . . . . . . . 12

4 2-nodes Algorithm 14
4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Synthetic Data 17
5.1 Features extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Targets estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.1 Approach 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.2 Approach 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Performance Evaluation 26
6.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Security Analysis 30
7.1 Attack landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.1.1 Enclave attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



Contents

7.1.2 Security & privacy attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Attacks on DP-GBDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Related Work 34

9 Conclusion 35

A Appendix 36

Bibliography 42

iv



Chapter 1

Introduction

1.1 Motivation

In many scenarios where machine learning (ML) is involved, the responsible developing team
strives to have an accurate, explainable model. Accurate, because the end goal of an ML
model is to help the team in understanding a problem better. Inaccurate outputs would
not be helpful. Explainable, because if the team cannot understand the decisions made by
the model, in particular the steps involved in these decisions, the problem would remain as
complex as it was. Any machine learning model needs a starting point. This starting point
usually takes the form of a training set.

The training set contains data about the problem to be learned about, and sometimes data
about the solution to be found (unsupervised vs. supervised learning). In some cases, leakage of
the training data creates serious privacy issues, which for some applications is unacceptable.
This leads the model to not only require being accurate and explainable, but also to prevent
such privacy leaks. One way to prevent these leaks is to train the model in a privacy preserv-
ing fashion. Privacy preserving machine learning models can offer guarantees that prevent
information about the training data to be extracted. An example application where privacy of
the training data is important can be found in assessing cyber risk, which we focus on in this
thesis.

In recent years, cyber attacks and data breaches have surged, as outlined by recent reports
([40], [21], [9]). Companies, large and small, have an increasing need for protection. Such pro-
tection not only extends to their technical infrastructure and ability to respond to incidents,
but also to potential financial losses that they may face. To cover the latter, insurance compa-
nies have come up with cyber insurance products. From the insurer perspective’s however,
assessing the cyber risk that a particular customer is exposed to is highly challenging. The
understanding of cyber risk, i.e. how to describe or model the risk, is not yet as understood
as other risks, such as the ones covered by car insurance products.

One major issue that insurers face is trustworthiness when it comes to data provided by their
customers. Indeed, customers are often unwilling to disclose their true security practices,
fearing that such information could be used to discriminate against them, should they not
be complying with or implementing these practices according to the latest industry stan-
dards. Currently, these information are collected by insurers through questionnaires that the
customers need to fill in. These questionnaires will typically include questions about their
security management practices, e.g. details about their software patching process or remote
access policy.

1



1.2. Example setting

1.2 Example setting

One way to address above problems is for insurers to give customers access to an interface
allowing them to answer their questionnaires, within a protected space (such as an Intel SGX
enclave). This protected space:

• can be used to collect sensitive data, while reassuring both the insurers and the cus-
tomers that no party has direct access to the data.

• can be leveraged by customers through remote attestation to verify the correctness of
the protected space (i.e. the integrity of any code running within the enclave).

• can give customers privacy guarantees with respect to the data they provide.

This is represented on the left hand side of Figure 1.1. In this thesis, we focus on enabling
a trustworthy evaluation of the data collected within the protected space. The goal of this
evaluation is to train a machine learning model that can be used by insurers to help them
evaluate the risk and potential losses associated to the onboarding of a new customer, while
providing customers peace of mind about their data. This is represented on the right hand
side of Figure 1.1.

Figure 1.1: The SGX application on the left hand side, and the privacy preserving machine
learning operating within the SGX enclave, zoomed in on the right hand side. SGX application
schematic adapted from [20].

The insurance company hosts the enclave. The data that the customers send are sent encrypted
to the enclave, and never leave it. The data cannot be queried directly, be it by the customers or
the insurance company. The SGX enclave can then release the trained model to the insurance
company, which can leverage it to learn various kinds of information about the customers.
However, due to the privacy preserving properties of the model, the insurance company
cannot retrieve information about any single customer.

1.3 Chosen approach

Gradient Boosted Decision Tree (GBDT) models have attracted a lot of attention in recent years
and have successfully been used as a winning model in various machine learning competi-
tions1. GBDT models have been shown to be performant, and easily explainable due to their

1https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions

2

https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-solutions


1.4. Contributions

tree structure. In addition, research work (e.g. of Qinbin et al. (2020) [25] or Liu et al. (2018)
[26]) has pushed GBDT models towards becoming privacy preserving by leveraging differen-
tial privacy. While differential privacy is not the only way to provide privacy (see Chapter 8),
its strong mathematical foundations and provable properties have made it a de-facto choice in
many research work. Although our example setting justifies the attack model that we consider
in Chapter 7, this thesis focuses on the improvement and evaluation of the algorithmic parts:
differential privacy applied to gradient boosted decision trees.

1.4 Contributions

While recent work shows encouraging results, developing gradient boosted decision tree mod-
els that satisfy ε-differential privacy while remaining as accurate as non-private models is still
an open challenge, especially when the training data is small, such as in the case of cyber risk
evaluation. This thesis aims at addressing the current shortcomings of previous approachs,
with the following contributions:

1. We propose a new decision tree induction method, called 2-nodes, that enhances accuracy
over low-populated datasets, while satisfying ε-differential privacy. In particular, we
propose to make use of extra data in the tree induction process, by finding the optimal
splitting point over a node and its sibling’s data rather than just the node itself. We use
this induction method in an implementation of DP-GBDT that we implement from the
literature. This is covered in Chapter 4.

2. In Chapter 5, and since real data is lacking, we propose a way to generate synthetic
datasets that mimic cyber insurance questionnaire answers. To achieve this, we collect
figures from cyber security reports written by different vendors in the security and
insurance sector, and derive a Bayesian network that we use to compute the dataset’s
features and targets.

3. We show in Chapter 6 that our model can successfully be used to accurately evaluate
cyber risk on 4 different synthetic datasets, as well as improve predictions over low-
populated datasets.

4. We explore privacy attacks on machine learning models in Chapter 7 and apply them to
our DP-GBDT model, and show that in some cases it can reduce attack accuracy under
strong privacy constraints.

3



Chapter 2

Background

2.1 Decision trees

A decision tree is a supervised learning technique, where given a set of inputs X = X1, . . . , Xn
one tries to predict a response or class Y for an unseen input Xi. Decision trees can be used
for both classification and regression tasks. In a classification task, Y is a class (also called a
label): it is categorical (or discrete). Consider for instance a set of inputs X where each instance
Xi (i ∈ [1, n]) describes the size and the colour of a fruit. For each instance, the associated
class in Y could be the type of fruit. A decision tree that is fit on this dataset will learn how to
characterise a new, unseen fruit Xnew. In such a scenario, the classification task will therefore
be to predict if Xnew is, say, an apple or an orange. On the other hand, in a regression task,
Y is a quantity, a number: it is numerical (or continous). If our instances in X were now to
describe the type and the weight of the fruit, with associated class their size in centimetres,
then the regression task would be to predict a real number for the size of Xnew. Figure 2.1
shows a simple decision tree for both classification and regression.

Figure 2.1: A classification tree (left) and a regression tree (right).

Decision trees consist of:

• Nodes: a node represents a decision (or split) to be made about its instances Xi, . . . , Xj,
where i, j ∈ [1, n] and i < j. This split happens on an attribute and attribute’s value of
an instance. In the rightmost decision tree in Figure 2.1, one such split is on attribute
type of fruit and attribute’s value apple.

• Edges: an edge corresponds to the outcome of the node’s decision, and connects to the
next node.

• Leaf nodes: a leaf node is a node that is terminal, i.e. it has no children. Leaf nodes hold
the prediction results.

To classify a new, unseen instance, one simply follows the tree edges until it reaches a leaf
node. Constructing a decision tree usually involves a recursive algorithm, such as ID3 [33].

4



2.2. Gradient boosted decision trees (GBDT)

In ID3, the tree construction starts from the root node, and progresses towards the leaf nodes
until a maximum depth is reached, controlling how many recursions the algorithm will run
through. At each node, the splitting point (i.e., the attribute and attribute’s value on which to
separate the node’s instances) is chosen using the information gain.

Definition 2.1 (Information Gain [3]) Let X = X1, . . . , Xn be a set of inputs (training instances),
where each Xi is of the form (x, y) = (x1, . . . , xn, y). xj is the value of the jth attribute of x, and y is
its corresponding label. The information gain for an attribute j is given by:

IG(X, j) = H(X)− H(X|j)

Where H(·) is the Shannon entropy. In other words, the information gain is the difference in entropy
before and after the potential split on attribute j. Note that after the split, both entropies of resulting
nodes are taken into account and added together.

We can use this measure to rank attributes and choose the best splitting point. While decision
trees are rather simple to understand, they come with their fair share of drawbacks:

• Prone to overfitting (the trees fit perfectly the training samples but fail to accurately
predict unseen samples).

• Highly complex when there are many class labels / depth is large.

• Low bias and high variance (trees make no assumptions about the target variables, how-
ever a change in the training dataset may result in a completely different tree structure).

To address the above limitations, one can train multiple trees. In this case, we talk about
ensemble methods. The idea behind ensemble methods is to combine multiple weak learners to
form a strong learner. Here, a weak learner is a single decision tree and a strong learner is an
ensemble of decision trees. The most common ensemble methods are bagging and boosting. In
bagging, one trains several trees on different subsets of the data. As a result, the trees have
a different structure and therefore offer different predictions. These trees can be trained in
parallel, as they are independent from one another. The final predictions can be computed as
the average of all predictions of each individual decision tree. A popular extension of bagging
is a Random Forest model, where the subsets of data and the trees splitting points are chosen
at random.

In boosting, the trees are fitted sequentially, meaning that for an ensemble of n trees, tree
t depends on tree t − 1 for all t ∈ [1, n]. In particular, tree t fits the residual of tree t − 1.
This iterative process is repeated n times, for all trees. Each tree’s output (h(x)) is usually
given a weight w relative to its accuracy. The final predictions are computed as the weighted
sum of each tree: ŷ(x) = ∑t wtht(x) [42]. The more often an instance is misclassified, the
more important it becomes for the training of the subsequent tree. Training the trees therefore
becomes a minimisation problem on the objective function O(x) = ∑i l(ŷi, yi) + ∑t Ω( ft) [7]
where l(ŷi, yi) is the loss function (i.e. the distance between the truth and the prediction of
the ith sample) and Ω( ft) is the regularisation function (it penalises the complexity of the tth

tree). When the objective function is minimised using gradient descent, we talk about gradient
boosting, which we introduce in the next section.

2.2 Gradient boosted decision trees (GBDT)

Given a convex loss function l and a dataset with n instances X = X1, . . . , Xn, Xi = (x, y) =
(x1, . . . , xd, y) ∀i ∈ [1, n], GBDT minimises the following objective function at the tth iteration
[38]:

5



2.2. Gradient boosted decision trees (GBDT)

O(x)(t) =
n

∑
i

!
gi ft(xi) +

1
2

hi f 2
t (xi)

"
+ Ω( ft) (2.1)

where gi = ∂ŷ(t−1) l(yi, ŷ(t−1)) is the first order gradient statistics of the loss function, ft is
the decision tree at iteration t, and Ω( ft) = 1

2 λ‖V‖2 is the regularisation term (V is the leaf
weight, λ is the regularisation parameter). The tree is built from the root until maximum
depth is reached. Assume that IL and IR are the instances in the left and right nodes after a
split. We have I = IL ∪ IR, and the gain after the split is given by: [7]

G(IL, IR) =
1
2

#
(∑i∈IL

gi)
2

∑i∈IL
hi + λ

+
(∑i∈IR

gi)
2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

$
(2.2)

For the square loss function, hi = 1 in Equations 2.1 and 2.2. Furthermore, since the last
term in the above equation does not depend on the splitting point, and assuming the square
loss function is used, Equation 2.2 can be further simplified to: [25]

G(IL, IR) =
(∑i∈IL

gi)
2

|IL|+ λ
+

(∑i∈IR
gi)

2

|IR|+ λ
(2.3)

GBDT traverses all combinations of features and features’ values to find the best split. If a
node has a negative gain or if it is at the maximum depth, then it becomes a leaf node and it
is assigned the optimal leaf value:

V(I) = −η
∑i∈I gi

|I|+ λ
(2.4)

where η is the learning rate, which controls the influence of a single tree. Algorithm 1
describes the training process of gradient boosted decision trees.

Algorithm 1: GBDTs training process
Input: X = X1, . . . , Xn: instances, y = y1, . . . , yn: labels
Input: λ: regularisation parameter, dmax: maximum depth, η: learning rate
Input: T: total number of trees, l: loss function
Output: An ensemble of trained decision trees.

1 for t = 1 to T do
2 Update gradients of all training instances on loss l
3 for d = 1 to dmax do
4 for each node in current depth do
5 for each split value i do

6 Gi ←
(∑i∈IL

gi)
2

|IL|+λ
+

(∑i∈IR
gi)

2

|IR|+λ
⊲ Equation 2.3

7 Split node on split value i = arg maxi(Gi)

8 for each leaf node i do
9 Vi ← −η ∑i∈I gi

|I|+λ
⊲ Equation 2.4

6



2.3. Differential privacy

2.3 Differential privacy

In some cases, the privacy of the individuals that constitute a dataset needs to be preserved.
There are several ways to do that, such as K-anonymity. In K-anonymity, the attributes of the
individuals are generalised such that a single individual becomes indistinguishable from at
least K − 1 other individuals. Unfortunately, achieving optimal K-anonymity is NP-hard and
there has been criticism about possible re-identification of the individuals [18], in particular
when the attacker acquires background information about the training data.

A different approach is to use differential privacy. Differential privacy is a mathematical defi-
nition that provides provable privacy guarantees [10]. It assumes that a potential attacker has
almost full knowledge about the training data, and is only uncertain about a single training
data point. By leveraging differential privacy, a defender can deny the presence of each and
every data point in the training data.

Definition 2.2 (ε-Differential Privacy [25]) Let ε be a positive real number and f be a randomised
function. The function f is said to provide ε-differential privacy if, for any two datasets D and D’ that
differ by a single record and any output O of function f :

Pr[ f (D) ∈ O] ≤ eε · Pr[ f (D′) ∈ O] (2.5)

In the above definition, ε is called the privacy budget. Intuitively, this budget measures how
much privacy the function f offers. The lower this budget, the higher privacy f achieves,
i.e. the more a defender can deny the presence of single data points in the training data. To
achieve ε-differential privacy in practice, the Laplace mechanism and the exponential mech-
anism are usually adopted [11]. The process involves adding noise that is calibrated to the
sensitivity of f .

Definition 2.3 (Sensitivity [25]) Let f : D → Rd be a function. The sensitivity of f is:

∆ f = max
D,D′∈D

‖ f (D)− f (D′)‖1 (2.6)

where D and D’ have at most one different record.

The sensitivity of f captures the magnitude by which a single datapoint in D can change the
function f in the worst case. In other words, it is a measure of the randomness that we must
introduce in order to hide the participation of a single datapoint (to preserve the datapoint’s
privacy). The ε-deniability that a defender gets can fail with probability at most ∆ f . Usually,
this randomness is drawn from a Laplace distribution.

Definition 2.4 (Laplace Distribution) A random variable has a Lap(µ, b) distribution if its proba-
bility density function is:

f (x|µ, b) =
1
2b

exp
!
− |x − µ|

b

"
(2.7)

Where µ is the mean and b is the scale of the distribution.

Combining the previous definitions, we can formally describe the Laplace mechanism and the
exponential mechanism.

Theorem 2.5 (Laplace Mechanism [25]) Let f : D → Rd be a function. The Laplace mechanism F
is defined as:

7



2.3. Differential privacy

F(D) = f (D) + Lap(0, ∆ f /ε) (2.8)

Where the noise Lap(0, ∆ f /ε) is drawn from a Laplace distribution with mean µ = 0 and scale
b = ∆ f /ε. Then F provides ε-differential privacy.

Theorem 2.6 (Exponential Mechanism [25]) Let u : (D ×R) → R be a utility function, with
sensitivity ∆u. The exponential mechanism F is defined as:

F(D, u) = choose r ∈ R with probability ∝ exp
!

εu(D, r)
2∆u

"
(2.9)

Then F provides ε-differential privacy.

Theorems 2.5 and 2.6 provide privacy guarantees for a single function. When using multiple
functions, much like in an algorithm, there are considerations to take into account around the
privacy budget ε. This is considered through two additional theorems: sequential composition
theorem and parallel composition theorem ([11], [25]).

Theorem 2.7 (Sequential Composition) Let f = { f1, . . . , fm} be a series of functions performed
sequentially on a dataset. If fi provides ε i-differential privacy, then f provides ∑m

i ε i-differential pri-
vacy.

Theorem 2.8 (Parallel Composition) Let f = { f1, . . . , fm} be a series of functions performed sepa-
rately on disjoint subsets of a dataset. If fi provides ε i-differential privacy, then f provides {max(ε1, . . . , εm)}-
differential privacy.

8



Chapter 3

Differentially Private Decision Trees

Differentially private decision tree learning methods aim at preventing information leakage at
two levels: when splitting internal nodes, and when querying leaf nodes for prediction results.
In [16], Fletcher et al. (2020) survey differential privacy methods for decision tree learning.
They identify the main factors that need to be considered when designing such algorithms:

• The privacy budget ε.

• The number of times the data needs to be queried. This directly impacts budget
consumption. If the data needs to be queried multiple times, then we must apply the
sequential composition theorem (Theorem 2.7). It is clear from the theorem that the
more queries there are, the faster the privacy budget will be consumed. The querying
strategy of a differentially private model is therefore crucial.

• The sensitivity ∆ of the queries. For a fixed privacy objective, tighter sensitivity bounds
lead to less added noise, as shown in Theorem 2.5 and 2.6: in the Laplace mechanism,
reducing the sensitivity ∆ f will reduce the scale of the associated Laplace distribution,
hence decreasing the amount of added noise. Equally, in the exponential mechanism,
reducing the sensitivity ∆u will make sure that the chosen attribute’s value has a high
probability of being amongst the best possible choices.

• The size of the dataset. The larger the dataset is, the easier it is for the trees to learn
the underlying data structure (since they have access to more data to make better splits),
and the least sensitive to noise the trees will be (since a large amount of data will make
sure that best splits are chosen with high probability).

3.1 Related work

In this section, we explore current and past related work.

3.1.1 Privacy budget allocation

Jagannathan et al. (2009) [22] are amongst the first ones to propose a practical differentially
private implementation of decision trees for classification problems. They propose a differ-
entially private version of the ID3 algorithm, and show that a naive implementation where
counting queries are noised lead to very poor utility under realistic privacy budget constraints.
In fact, splitting a privacy budget of ε = 1 evenly across all queries achieves a classification er-
ror rate as high as 81.27% on the nursery dataset1. To address this shortcoming, they propose
a new approach based on Random Forest ensemble methods. Instead of adding noise to each

1https://archive.ics.uci.edu/ml/datasets/nursery

9

https://archive.ics.uci.edu/ml/datasets/nursery


3.1. Related work

of the queries made during the ID3 algorithm, the decision trees are computed at random
and noise is only added to the leaf nodes. This leads to tremendous improvements, with the
previously reported error rate dropping to approximately 10.5% for the same dataset and un-
der similar privacy constraints. For comparison, the non-private version of the ID3 algorithm
achieves an error rate of 1.81% on the same dataset.

In [27], Mohammed et al. (2011) split the privacy budget ε into two halves, where each is
used for the internal nodes and the leaf nodes respectively (εnode = ε lea f = ε

2 ). Rather than
selecting the splitting attribute using noisy counts as in [22], Mohammed et al. (2011) propose
to use the exponential mechanism (as defined by Theorem 2.6). The main advantage of using
the exponential mechanism to select the splitting attribute is that it exponentially favours
candidates with a high information gain, hence building more accurate decision trees. In [26],
Liu et al. (2018) propose to split ε into si shares for the selection of internal nodes, based on
the kth harmonic number: si =

1
k +

1
k−1 + · · ·+ 1. Denoting the budget share for leaf nodes by

sl = 1, the total number of shares is st = si + sl . With k being a fixed, pre-defined number of
attributes, Liu et al. (2018) assign εnode = ε

st
∗ 1

k2 and ε lea f = ε
st

. Under these constraints, the
decision tree satisfies ε-differential privacy. We refer the reader to [26] for a formal analysis
of the budget allocation. With the above budget allocation strategies and under Theorem 2.7,
building an ensemble of T decision trees requires a total privacy budget of εT. This means
that if the privacy target is ε, and because of the data overlap amongst the trees, each tree only
receives a privacy budget of εt = ε

T . As T grows bigger, trees therefore only receive a very
small privacy budget, leading to high noise addition and poor accuracy.

Fletcher et al. (2017) [15] and Li et al. (2020) [25] address this shortcoming by proposing an
ensemble of trees where each tree operates on a distinct subset of the data. Under these new
constraints, each tree within the ensemble can use the full privacy budget: εt = ε. However,
this approach doesn’t work well on small datasets. Indeed, since every tree operates on its
own subset of data, the total number of instances that each tree receives becomes smaller as
the number of trees grows bigger. Consider a dataset of n instances X = X1, . . . , Xn and an
ensemble of T trees. Each tree gets roughly ntree = ⌈ n

T ⌉ instances. If T is too small, then
the learning algorithm suffers from the pitfalls outlined in Section 2.1. If T is too high, then
ntree is small and the decision trees might not have enough instances to learn the underlying
structure of the dataset.

In [41] and [4], the authors mention an adaptive budget allocation method. Rather than fixing
an equal privacy budget used at each depth of the tree, the authors propose to compute this
quantity during the tree induction algorithm. In the former case, the budget at each depth
d is computed as εnode = 1

2d εt. This exponentially decaying budgeting is motivated by the
intuition that early splits in the tree are more important than subsequent splits, hence why
they get a higher portion of the privacy budget. However, such an allocation method might
not be ideal when the tree gets very deep, as lower levels in the tree will receive a really small
budget, which in turn creates too much noise and penalizes the quality of the tree. In the
latter, the author proposes a new induction algorithm, ADiffP-ϕ, that computes each split’s
privacy budget dynamically and uses it as a termination criteria when the budget gets too
small. Thus, the total number of nodes in the tree is not controlled by the maximum depth
(or any other usual termination criteria), but by the total privacy budget available to the tree.

3.1.2 Query sensitivity

Fletcher and Islam (2015) [13] explore reducing the sensitivity of the splitting functions, hop-
ping to reduce the amount of noise added in the tree-building process. Rather than computing
the global sensitivity of a function, they propose to compute the local sensitivity of the Gini
index in the node being split as ∆ = 1− ( ni

ni+1 )
2 − ( 1

ni+1 )
2 where ni is the support of node i (the

support is equal to the number of instances in the node). This sensitivity reduction directly

10



3.1. Related work

improves the Laplace and exponential mechanisms, as a tighter sensitivity bound allows for
lower added noise. However, in its current form, this sensitivity derivation might be too noisy
in some cases and incorrectly providing differential privacy. The same authors later proposed
additional work ([14], [15]) based on Nissim et al. (2007) [31]’s smooth sensitivity definition
to enhance their model.

In [25], Quinbin et al. (2020) propose a new way to bound the sensitivity of both the leaf
nodes and the splitting function. Using new procedures (Geometric Leaf Clipping and Gradient-
based Data Filtering), they proved that the sensitivity of the leaf nodes could be bound by
∆V ≤ min( g∗l

1+λ , 2g∗l (1− η)t−1) and that the sensitivity of the splitting function could be bound
by ∆G ≤ 3g∗2

l , where g∗l is the maximum possible 1-norm gradient, λ is a regularisation
parameter, η is the learning rate and t is the index of the tree being constructed. These new
bounds offer better accuracy in the differentially private settings.

Wang et al. (2020) [41] introduce the first provably accurate privacy preserving, top-down
decision tree learning algorithm in the distributed setting. More information about top-down
algorithms can be found in [24]. They propose a new splitting function, PrivateSplit, that
approximates the optimal split chosen by the top-down algorithm, while providing differential
privacy and proving boosting-based utility guarantees. In fact, they show that their algorithm
only needs (1/ε)O(log(1/ε)/γ2) splits to achieve a training error ≤ ε with probability ≥ 1 − δ
(provided that the dataset has a certain size). On the adult dataset2, their algorithm achieves
roughly 79% accuracy, which is a little over Quibin et al. (2020) [25]’s accuracy (roughly 74%)
over the same dataset and under the same privacy budget constraints ε = 1.

3.1.3 Termination criteria and post-processing

When building a decision tree, one must choose some criteria as to when to stop growing the
tree. The simplest criterion is to stop growing the tree once it reaches a certain depth d. Other
termination criteria include defining a maximum number of leaf nodes that a tree can have,
or defining a minimum number of samples that a node must have before being split (i.e. a
minimum node support). However, there is no optimal value for any of these criteria that
works for every dataset. Rather, it is left to the user to find appropriate values that work best
for their use case. In some cases, these parameters may be estimated based on the dataset. In
[12], the authors limit the tree depth to d = k

2 where k is the number of features in the dataset.
In [22], the tree depth is set to d = min(k/2, logb(n)− 1) where n is the size of the dataset,
and b is the branching factor.

Once the tree has reached its termination criteria, one can apply post-processing methods,
such as pruning, to the tree. Pruning consists in removing untrustworthy leaf nodes from the
tree. A leaf node can be considered untrustworthy if its support or purity (homogeneity of
the class labels in the node) is too low. In the differentially private settings, pruning cannot be
applied as it is in traditional decision trees, as the modifications to the tree induction algorithm
induced by differential privacy need to be accounted for. Friedman and Schuster (2010) [17]
adapt classical pruning mechanisms by normalising the support of each node in the tree, so
that that sum of all counts in all nodes matches the size of the dataset (which is not initially
the case due to the noise introduced by differential privacy). In random forests, Fletcher and
Islam (2015) [14] observe that in some cases, an additional split worsens the decision tree
rather than help it, since the split is chosen at random. They therefore propose to prune leaf
nodes where the added noise is greater than the class count signal.

2https://archive.ics.uci.edu/ml/datasets/adult

11

https://archive.ics.uci.edu/ml/datasets/adult


3.2. Differentially private gradient boosted decision trees (DP-GBDT)

3.1.4 Depth-first and best-leaf first decision tree induction

There are several ways to grow a decision tree during its induction process. While most
algorithms grow trees by level, i.e. depth-wise, some implementations (like XGBoost [7])
grow decision trees with a best-leaf first approach. This approach was first described by
Haijian S. (2007) [36] in his doctoral thesis. Figure 3.1 and 3.2 show the differences between a
depth-first and a best-leaf first tree induction algorithm (the figures are adapted from XGboost
documentation3).

Figure 3.1: A depth-first decision tree induction algorithm.

Figure 3.2: A best-leaf first decision tree induction algorithm.

Depending on the dataset, a best-leaf first induction might achieve a lower loss. However,
when the number of data is small, a best-leaf first approach may over-fit the dataset.

In the next section, we choose to explore in more details the work of Quibin et al. (2020) [25].
This choice is motivated by the tight sensitivity bounds that the authors were able to derive,
along with the good prediction accuracy that their model showed.

3.2 Differentially private gradient boosted decision trees (DP-GBDT)

To make decision trees differentially private with the definitions provided in Section 2.3, the
literature ([44], [27], [25]) proposes two changes to Algorithm 1:

• For each node, the attribute and the attribute’s value on which the node is split must be
chosen through the exponential mechanism. The information gain G is used as the utility
function, and the exponential mechanism guarantees that the attributes and attributes’
value with higher gain have a higher probability of being chosen.

• For each leaf node, the leaf value must be noised through the Laplace mechanism.

3https://github.com/Microsoft/LightGBM/blob/master/docs/Features.rst

12

https://github.com/Microsoft/LightGBM/blob/master/docs/Features.rst


3.2. Differentially private gradient boosted decision trees (DP-GBDT)

Qinbin et al. (2020) [25] suggests that each tree t’s privacy budget εt gets split into two
parts: ε lea f = εt

2 for the leaf nodes and εnode =
εt

2dmax
for the internal nodes, where dmax is the

maximum depth for the tree t. Since the nodes in one depth have disjoint inputs, Theorem
2.8 can be applied and the privacy budget in one depth needs to be counted only once. Thus,
the total privacy budget consumption is no more than εnode ∗ dmax + ε lea f = εt. Once a tree
is trained, the gradients of all instances are updated. This allows the next tree to converge
towards a minimum for the objective function defined in Equation 2.1. The authors propose
Algorithm 2.

Algorithm 2: Differentially private GBDTs training process [25]
Input: X = X1, . . . , Xn: instances, y = y1, . . . , yn: labels
Input: λ: regularisation parameter, dmax: maximum depth, η: learning rate
Input: T: total number of trees, l: loss function, ε: privacy budget
Output: An ensemble of trained differentially private decision trees.

1 εt = ε ⊲ Each tree is trained on a disjoint subset of the dataset, so we can apply Theorem 2.8
2 for t = 1 to T do
3 Update gradients of all training instances on loss l
4 ε lea f =

εt
2 , εnode =

εt
2dmax

5 for d = 1 to dmax do
6 for each node in current depth do
7 for each split value i do

8 Gi ←
(∑i∈IL

gi)
2

|IL|+λ
+

(∑i∈IR
gi)

2

|IR|+λ
⊲ Equation 2.3

9 Pi ← exp( εnode·Gi
2∆G ) ⊲ Theorem 2.6

10 Split node on split value i, where i is chosen with probability Pi/ ∑j Pj

11 for each leaf node i do
12 Vi ← η

%
−∑i∈I gi

|I|+λ
+ Lap(0, ∆V/ε lea f )

&
⊲ Equation 2.4 and Theorem 2.5

The authors use the parallel composition theorem (Theorem 2.8) to lower the privacy budget
consumption by training each decision tree on a disjoint set of data. However, when the
training dataset is small and the number of trees is large, each tree only gets very few samples
to learn from. This low number of samples available to the trees results in bad splits, which
damages the quality of the trees and their predictions. To address this limitation, we propose
in the next chapter a new induction algorithm, 2-nodes.

13



Chapter 4

2-nodes Algorithm

Our model was implemented in Python 3, and is available on GitHub1. Our base implementa-
tion follows [25], with their own implementation (based on XGBoost [7]) available on GitHub
as well2. We implemented the following features:

• Gradient based data filtering and geometric leaf clipping (from [25], described in Section
3.1.2). This can be enabled or disabled.

• Depth-first, best-leaf first and 2-nodes tree induction, outlined in Section 3.1.4 and in
this chapter.

• Decaying privacy budget (from [41], described in Section 3.1.1). This can be enabled or
disabled.

4.1 Design

The 2-nodes induction method (Figure 4.1) is a modified version of the classical depth-first
tree growth algorithm outlined in Figure 3.1. At each depth d of the tree, for a given node
ndi , 0 ≤ d < dmax and 0 ≤ i < 2d, we consider the data-points of the sibling node ndj (j being
the index of the node that shares the same parent node as ndi ) while computing the optimal
splitting point. The reason we opted for this design is that the exponential mechanism (used
to select the splitting point) performs better the more instances there are within a node, as the
gain and associated probabilities will be higher (see Equation 2.3). By combining instances in
the nodes and their siblings, we can make sure that the chosen splits will fit the data better.

Figure 4.1: Data-points (red nodes) being considered while splitting a node for the depth-first
(left) vs. 2-nodes (right) algorithms. In the depth-first case, node n10 ’s best split is computed
over the instances of the node itself. In the 2-nodes case, node n10 ’s best split is computed on
the instances of the node itself, and the instances of its sibling node n11 .

1https://github.com/giovannt0/dpgbdt
2https://github.com/QinbinLi/DPBoost

14

https://github.com/giovannt0/dpgbdt
https://github.com/QinbinLi/DPBoost


4.2. Properties

4.2 Properties

In a differentially private scenario, the data-points in each node (except the root node) at every
level will be queried twice (once when splitting the node, and once when splitting its sibling
node). We can therefore adapt Algorithm 2 into Algorithm 3.

Algorithm 3: 2-nodes DPGBDT training process
Input: X = X1, . . . , Xn: instances, y = y1, . . . , yn: labels
Input: λ: regularisation parameter, dmax: maximum depth, η: learning rate
Input: T: total number of trees, l: loss function, ε: privacy budget
Output: An ensemble of trained differentially private decision trees.

1 εt = ε ⊲ Each tree is trained on a disjoint subset of the dataset, so we can apply Theorem 2.8
2 for t = 1 to T do
3 Update gradients of all training instances on loss l
4 ε lea f =

εt
2 , εnode =

εt
4dmax

⊲ The budget for internal nodes is half of that in Algorithm 2
5 for d = 1 to dmax do
6 for each node in current depth do
7 g = concat(gnode, gnode sibling) ⊲ Concat the gradients of the node and its sibling
8 for each split value i do

9 Gi ←
(∑i∈IL

gi)
2

|IL|+λ
+

(∑i∈IR
gi)

2

|IR|+λ
⊲ Equation 2.3

10 Pi ← exp( εnode·Gi
2∆G ) ⊲ Theorem 2.6

11 Split node on split value i, where i is chosen with probability Pi/ ∑j Pj

12 for each leaf node i do
13 Vi ← η

%
−∑i∈I gi

|I|+λ
+ Lap(0, ∆V/ε lea f )

&
⊲ Equation 2.4 and Theorem 2.5

Theorem 4.1 The output of Algorithm 3 satisfies ε-differential privacy.

Proof Let ε be the total privacy budget for a gradient boosted decision tree model of T trees.
Since the trees receive a disjoint subset of the dataset, each tree receives a budget of εt = ε.
Let ε lea f =

εt
2 and εnode =

εt
4dmax

be the budgets for tree t’s leaf nodes and its internal nodes. At
each depth of the tree t, the inputs are disjoints and are queried exactly twice.

Per Theorem 2.7 and 2.8, the privacy budget consumption for a single tree t of depth dmax
does not exceed ε lea f + 2 ∗ dmax ∗ εnode =

εt
2 + 2 ∗ dmax ∗ εt

4∗dmax
= εt. This holds for all T trees,

as per Theorem 2.8. The budget consumption therefore never exceeds ε. □

Legitimately, the above algorithm raises questions regarding choosing 2 nodes to compute the
gains and not a greater number. There are two main reasons for not choosing a number that
is greater than 2:

1. Since we query the instances n times, n being the number of nodes taken into account
during node splitting, the privacy budget needs to be divided by n as per Theorem 2.7.
For a small ε and a large n, the resulting privacy budget that is left for the nodes would
be so small that there would be too much added noise in the resulting tree. This would
lead to bad splits, itself leading to bad predictions.

2. In 2-nodes, we consider the direct sibling node. The node being split and its sibling share
the same parent node. This means that, up to this point in the tree, instances in both
nodes are very similar, thus they can be worked on together and lead to good results. If
we were to take other nodes into account, in other sub-trees that are at the same depth

15



4.2. Properties

as the node being split, then the instances in these nodes might differ significantly. This
is the case when an earlier split in the tree happens on a very distinctive attribute of the
dataset.

A detailed evaluation of the performances of the 2-nodes induction algorithm for both real
life and synthetic datasets is given in Section 6.

16



Chapter 5

Synthetic Data

There are many scenarios where privacy preserving machine learning is desirable. For in-
stance, consider a dataset which contains patient data, such as their health history. A leak of
this dataset would be very bad for the patient’s privacy, as the disclosed information could
be used to discriminate against them (e.g. higher health insurance premiums). This risk can
make patients more hesitant to share their data. This in turn causes the problem of having
small datasets.

In the cyber risk scenario, historical data is lacking. This is because many insurance compa-
nies have just started to offer this line of product. While we were able to get a few anonymised
cyber insurance questionnaires from our industry partner1, it is not enough to properly evalu-
ate our model. This is the motivation of this chapter, in which we generate our own synthetic
datasets. For our purpose, we introduce two distinct targets: loss, which is a probability
p ∈ [0, 1] that a company suffers a loss, and cost, which is a positive number cost ∈ R+ that
quantifies the losses of the company following a security incident. While the process tries to
mimic real data as much as possible, there is no ground truth for the type of data that we are
generating. As such, we acknowledge that we cannot verify the quality or truthfulness of the
generated datasets. Figure 5.1 describes the overall process of data generation.

Figure 5.1: Synthetic data generation process.

1https://zisc.ethz.ch/research/projects/privacy-preserving-machine-learning-for-cyber-insurance/

17

https://zisc.ethz.ch/research/projects/privacy-preserving-machine-learning-for-cyber-insurance/


5.1. Features extraction

In a first part, we cross-reference the few questionnaires we were given with various security
reports, and extract our dataset’s features. This is presented in Section 5.1. In a second part,
we build a Bayesian network based on the extracted features to estimate our dataset’s targets.
This is described in Section 5.2. Finally, we use a log normal distribution to generate samples
that share the same features but that have different target values. This is covered in Section
5.3.

5.1 Features extraction

There are two components to any dataset: a set of features and a set of targets. The former
describes attributes of the dataset’s instances, while the latter captures the goal of the pre-
diction task. The set of features and the set of targets should be closely related, otherwise
the learning task becomes quite meaningless. Consider for instance the adult2 dataset, where
the prediction task is to determine whether or not a person makes over 50k$ a year. The set
of features is composed of various attributes about the persons: their age, education, work-
class, etc. These features are directly relevant to the prediction task, since they will influence
the target value: a person that graduated high school versus a person that graduated from a
Doctorate degree are likely to have a measurable income gap.

To identify our features, we need to understand how companies handle security, i.e. what
are their security practices, and what are the implications on the loss and cost targets. These
security practices can be technical (e.g. firewall configuration) or operational (e.g. does the
company have a security and privacy policy that their employees must adhere to). Unfortu-
nately, companies are likely to be concerned that honest answers indicating poor IT security
practices could be used to discriminate against them. Hence, they are not very keen on re-
leasing such information.

To shed some light on this, we went through annually released security reports from various
vendors: Verizon [40], NetDiligence [29], IBM [21], Cisco [9], Checkpoint [5], and AIG [1].
These reports highlight current security practices that company follow (or, fail to follow) and
provide insights about the threat landscape they face, in an anonymised fashion. Of particular
relevance to our business problem, the NetDiligence [29] and AIG [1] reports provide data
from the insurer’s perspective, highlighting common causes and consequences about cyber
attacks that their clients suffered.

Using these reports, we can derive useful probabilities. NetDiligence [29] shows that in the
2014 − 2018 period, social engineering (act of tricking someone into divulging information or
taking action) was responsible for 28% of the claims they received from companies. Since this
number is post-incident, we can transform it into a conditional probability between the event
social engineering and the event the company suffers a loss: Pr(social engineering|loss) = 0.28.
To benefit our synthetic data generation problem, we can tweak this a little and create a new
feature, f1 = company trains employees against social engineering. We can now artificially derive:
Pr( f1|loss) = 1 − Pr(social engineering|loss) = 1 − 0.28 = 0.72. It could be argued that for
some companies, training was delivered but improperly, thus raising questions about the
probability that was derived. For this thesis and for the sake of simplicity, we will assume an
ideal scenario.

Following a similar approach, we derive multiple such features and probabilities across all
the reports, which we summarise in Table 5.1. If multiple vendors report about the same
incident (e.g. social engineering), we take the mean value that was reported across all reports.
As these reports do not provide pre-incident figures (e.g., Pr( f1)), we manually assign a prob-
ability to such events, where relevant. We additionally create the following features for which

2https://archive.ics.uci.edu/ml/datasets/adult

18

https://archive.ics.uci.edu/ml/datasets/adult


5.2. Targets estimation

the reports did not provide any information: company uses 3rd party, company has ids ips, com-
pany has recovery plan, company has firewalls. For the company sector, we create a single feature
sector which can be one of [hospitality, manu f acturing, energy, . . . ]. We let the reader refer
to Table A.1 for more information about the features and their meaning.

While the companies’ security practices will likely influence the loss target, not all features
influence the cost target. Typically, f1 = social engineering is not expected to contribute to the
cost target, as this target is post-incident: employees being trained against social engineering
is not expected to influence how much the company will lose once an incident has happened.
To make up the cost target, we need to position ourselves on the attacker’s side. Once an
initial foothold inside the company has been established, the kind of data they may be able to
find is likely to be relevant, as it will allow them to progress their attack further.

The Verizon report [40] gives us a breakdown of the type of data that each industry is likely to
possess: PII (personal identifiable information), PCI (payment card industry), PHI (protected
health information), credentials (passwords), or ’other’. This is reported in Table 5.2. This
allows us to derive further features: company has pii, company has pci, company has phi, etc.

Feature (F) Pr(F) Pr(F|loss) Pr(F|SME) Pr(F|large)

company is in hospitality 0.03 0.04
company is a public entity 0.03

company is in other 0.11 0.09
company is a nonpro f it 0.05
company is in education 0.05 0.08

company is in technology 0.06 0.03
company is in manu f acturing 0.08 0.03

company is in f inancial services 0.09 0.15
company is in energy 0.04
company is in retail 0.09 0.24

company is in healthcare 0.19 0.26
company is in pro f essional services 0.22 0.04

company trains employees
against social engineering 0.70 0.8025

company has patching process 0.60 0.828
company has antivirus 0.95 0.81

company uses 3rd party 0.87
company has ids ips 0.94

company has recovery plan 0.33
company has f irewalls 0.83

Table 5.1: Potential features for the synthetic dataset and their respective probabilities. We
separate small and medium sized businesses (SME) from large businesses.

5.2 Targets estimation

Section 5.1 introduced a way to identify the set of features for our synthetic dataset, and their
corresponding probabilities for feature selection. Feature selection consists in deciding if a
feature is True or False for a given company. For instance, the social engineering feature f1 has
a probability of Pr( f1) = 0.70 according to Table 5.1. During the data generation process, each

19



5.2. Targets estimation

Sector (S) Pr(PII|S) Pr(PCI|S) Pr(PHI|S) Pr(credentials|S) Pr(other|S)
Hospitality 0.44 0.34 0.23

Public Entity 0.51 0.33 0.34
Other 0.81 0.36 0.42

Education 0.75 0.30 0.23
Technology 0.69 0.41 0.34

Manu f acturing 0.49 0.20 0.55 0.25
Financial Services 0.77 0.32 0.35 0.35

Energy 0.41 0.68 0.41 0.35
Retail 0.49 0.47 0.27 0.25

Healthcare 0.77 0.67 0.18 0.18
Pro f essional Services 0.75 0.45 0.32

Table 5.2: Probabilities for companies within a specific sector to store a certain type of data

instance will see this feature set to True with probability 0.70, and to False with probability
0.30. This process of feature selection is repeated across all features. Once this is done, we
must use the results of the feature selection process to compute fictive values for our targets
loss and cost. This section presents two approaches, both using Bayesian networks, that vary
in complexity.

Definition 5.1 (Graphical model [39]) A graphical model is a tool that is used to visually illustrate
and work with conditional independencies among variables in a given problem.

A graph is composed of a set of nodes (which represent the variables) and a set of edges. Each
edge connects two nodes, and an edge can have an optional direction associated to it. Two
variables are conditionally independent if they have no direct impact on each other’s value.
Figure 5.2 shows an example of a graphical model.

Figure 5.2: A graphical mode, in which A and B are conditionally independent given C.

Definition 5.2 (Bayesian network [39]) Bayesian networks are a particular instance of graphical
models. They are directed acyclic graphs (DAG): all edges in the graph are directed (i.e. they point in a
particular direction) and there are no cycles (i.e. there is no way to start from a node, travel along a set
of directed edges and arrive back at the starting node).

Figure 5.3 illustrates a Bayesian network. Given nodes X = X1, . . . , Xn, the joint probability
function for any Bayesian network is Pr(X) = ∏n

i=1 Pr(Xi|parents(Xi)). This means that the
joint probability of all the variables is the product of the probabilities of each variable given
its parents’ value. In Figure 5.3, we have Pr(A, B, C) = Pr(A)Pr(B)Pr(C|A, B).

20



5.2. Targets estimation

Figure 5.3: A simple Bayesian network.

5.2.1 Approach 1

Loss target

For the loss target, we propose the Bayesian network outlined in Figure 5.4. We make the
loss target depend on a subset of the features: social engineering training, antivirus, and outdated
software patching process. Since the reports do not mention any correlations between these
features, we assume that they are conditionally independent with respect to loss.

Figure 5.4: Bayesian network for the loss target.

We can then derive:

Pr(loss| social, antivirus, patching) =
Pr(loss, social, antivirus, patching)

Pr(social)Pr(antivirus)Pr(patching)

=
Pr(social, antivirus, patching|loss)Pr(loss)

Pr(social)Pr(antivirus)Pr(patching)

=
Pr(social|loss)Pr(antivirus|loss)Pr(patching|loss)

Pr(social)Pr(antivirus)Pr(patching)
(5.1)

Fixing Pr(loss) = 0.10 and plugging in the data provided in Table 5.1, we can compute the
loss target.

Cost target

To derive a number for the target cost, we exclusively rely on data provided in the NetDiligence
[29] report:

• The min, max and mean cost of a breach in a particular industry: min(costbreach), max(costbreach),
mean(costbreach)

• The mean post-incident (crisis) cost, i.e. the breach remediation cost costremediation

• The mean cost per type of data that was potentially exposed, costdata. This cost directly
depends on the features of a given instance: if the instance is in healthcare, then as per
Table 5.2, we will add together the costs for leaked PII, PHI, credentials and others if
these attributes are True for that instance.

21



5.2. Targets estimation

In particular, we derive the cost as per the following formula: cost = triangular(min(costbreach),
max(costbreach), mean(costbreach)) + costremediation + ∑data costdata where triangular() is the trian-
gular distribution. Fig. 5.5 shows the distribution of values for the targets over 1 million
generated samples. The method used to generate the samples is detailed in Section 5.3.

Figure 5.5: Target distribution for the synthetic dataset.

Unfortunately, our testing demonstrated that the problem was rendered hard through too
much randomness / noise addition, rather than by the intricacies of the features and the
targets themselves. This is why we now propose a second approach to the problem.

5.2.2 Approach 2

Loss target

For the loss target, we propose a more complex Bayesian network, as depicted in Figure 5.6.
Table A.2 summarises the probabilities that we used in this model. Following the logic of
Equation 5.1, we can derive:

Pr(A) = Pr(company size|company sector)Pr(company size)
Pr(A|loss) = Pr(company size, company sector| loss)

Pr(B) = Pr(BYOD)Pr(pentest)Pr(RBAC)Pr(red teaming)Pr(2FA)Pr(pwd policy|2FA)

Pr(social|pwd policy, red teaming)
Pr(B|loss) = Pr(BYOD|loss)Pr(pentest|loss)

Pr(RBAC|loss)Pr(red teaming, 2FA, pwd policy, soc|loss)
Pr(C) = Pr(patching)Pr(antivirus)Pr( f w ingress)Pr( f w egress)Pr(3rd party)Pr(CISO)

Pr(C|loss) = Pr(patching|loss)Pr(antivirus|loss)Pr( f w ingress|loss)Pr( f w egress|loss)
Pr(3rd party|loss)Pr(CISO|loss)

Pr(D) = Pr(IPS|IDS)Pr(IDS)Pr(threat|IDS)Pr(IOC|threat)
Pr(D|loss) = Pr(IPS, IDS, threat, IOC|loss)

(5.2)

Which we can plug into:

Pr(loss|A, B, C, D) =
Pr(A|loss)Pr(B|loss)Pr(C|loss)Pr(D|loss)Pr(loss)

Pr(A)Pr(B)Pr(C)Pr(D)
(5.3)

22



5.3. Data generation

Figure 5.6: Revisited Bayesian network for the loss target.

Cost target

For the cost target, we propose additional features that influence the outcome, as shown in
Figure 5.7. The cost is now computed as:

cost = ∑
data

costdata + λ1mean(costbreach) + λ2costremediation (5.4)

where λ1 and λ2 ∈ [0, 1] represent the fraction of the cost that should be applied to the
instance. They are computed at runtime depending on the instance’s features. For example,
if the instance has the feature company has incident response team set to True, then we decrease
λ2 by a certain amount, as we expect the remediation cost to be lower in the presence of an IR
team.

We generate 4 synthetic datasets, each of 1 million samples, using this new approach. The
distributions of the targets are depicted in Figure A.1.

5.3 Data generation

We start the data generation process by first creating what we called an instance stereotype. An
instance stereotype is an instance with a defined set of features (e.g. company has antivirus :
True, company has IDS : True, company has IPS : False, . . . ). In practice, we expect that
instances may share the same features while having slightly different target values. This is
because there are many other factors that influence the loss and cost targets in real life, which

23



5.3. Data generation

Figure 5.7: Features that influence the cost target.

are not captured here. For instance, two companies may both have an incident response
team but their process may differ, and incident containment could take the first company two
hours and the second one two days, which may in turn impact the cost target. To model these
differences, we rely on a log normal distribution.

Definition 5.3 (Log normal distribution) Let Z be a standard normal variable, and let µ and σ > 0
be two real numbers. Then, the distribution of the random variable X = eµ+σZ is called the log-normal
distribution with parameters µ and σ.

Note: µ and σ are the parameters of the variable’s natural logarithm, not of X itself. In order to produce

a distribution with desired mean µX and standard deviation σX, one uses µ = ln

#
µ2

X!
(µ2

X+σ2
X)

$
and

σ =

'
ln

%
1 + σ2

X
µ2

X

&
.

We start with some instance stereotype and derive additional instances that share the same
features but slightly different target values: the target values are now drawn from the log
normal distribution. For example, if we have an instance stereotype with loss probability
0.30, we model a log normal distribution with mean µX = 0.30 and standard deviation σX =
0.30/100 ∗ 15 (i.e. 15% deviation). Instances that stem from this instance stereotype will
have their loss target drawn at random from the associated log normal distribution. Each
stereotype will contribute to generating 1% of the total number of samples. Algorithm 4
details the procedure to generate the synthetic datasets.

We evaluate the datasets through 3-fold cross-validation using our non-DP (vanilla) gradient
boosting algorithm. We set the learning rate to 0.5, and the maximum depth to 15. The
datasets are evaluated for [300, 5000, 15000, 25000, 50000, 75000, 100000] samples. The number
of trees is fixed to 20. Figure A.2 reports the mean absolute percentage error (MAPE) obtained
with the baseline model over all synthetic datasets, for both the loss and cost targets. Table 5.3
reports the mean absolute percentage error rate for each dataset and target, where n samples =
300 is ignored so that the mean isn’t skewed upward, as the learning task is much more
difficult with this low amount of samples.

24



5.3. Data generation

Algorithm 4: Synthetic data generation
Input: n samples: number of samples to generate
Output: n samples synthetic data points

1 samples ← []
2 while len(samples) < n samples do
3 stereotype ← NewStereotype()
4 n stereotype ← ⌈n samples/100⌉
5 samples stereotype ← GenerateFromStereotype(stereotype, n stereotype)
6 samples ← samples.extend(samples stereotype)

7 return samples[: n samples]
8

9 function NewStereotype()
10 pro f ile ← Init() ⊲ Initialise attributes based on Table A.2 and 5.2
11 pro f ile.loss ← Pr(loss|A, B, C, D) ⊲ Equation 5.3
12 pro f ile.cost ← ∑data costdata + λ1mean(costbreach) + λ2costremediation ⊲ Equation 5.4
13 return pro f ile

14

15 function GenerateFromStereotype(stereotype: Stereotype, n stereotype: int)
16 samples ← []

17 µloss, σloss = ln
!

stereotype.loss2√
(stereotype.loss2+(stereotype.loss∗0.15)2)

"
,
'

ln(1 + (stereotype.loss∗0.15)2

stereotype.loss2 )

18 µcost, σcost = ln
!

stereotype.cost2√
(stereotype.cost2+(stereotype.cost∗0.15)2)

"
,
(

ln(1 + (stereotype.cost∗0.15)2

stereotype.cost2 )

19 for = 1 to n stereotype do
20 stereotype.loss ← LogNormal(µloss, σloss)
21 stereotype.cost ← LogNormal(µcost, σcost)
22 samples.append(stereotype)

23 return samples

Dataset Target: loss Target: cost

Synthetic A 3.44 ± 0.11 2.08 ± 0.21
Synthetic B 2.28 ± 0.13 1.85 ± 0.04
Synthetic C 2.22 ± 0.12 1.82 ± 0.02
Synthetic D 2.06 ± 0.08 1.85 ± 0.04

Table 5.3: Mean Absolute Percentage Error (%) for the synthetic datasets.

25



Chapter 6

Performance Evaluation

In this chapter, we evaluate the performances of non-private GBDT and differentially private
GBDT. For the latter, we compare our 2-nodes algorithm versus the classic depth-first tree
induction algorithm. We use 3 real datasets not related to cyber insurance, and 4 synthetic
cyber insurance datasets (since no real publicly released datasets are available). For the real
datasets, we follow the literature and report the root mean square error (RMSE) for regression
tasks, and the test error (in %) for classification tasks. For the synthetic datasets, we report the
mean absolute percentage error (MAPE, in %).

6.1 Datasets

We evaluate the different models on the following datasets:

• Abalone1: each instance describes attributes of an abalone, such as their sex, length, or
weight. The prediction task is a regression task, consisting in predicting the age of the
abalone. There are 8 features and 4177 instances.

• YearPredictionMSD2: each instance describes audio features. The prediction task in a
regression task, consisting in predicting the year of release of the song. There are 90
features and 515345 instances.

• Adult3: each instance gives information about the background and education of a per-
son. The prediction task is a classification task, consisting in predicting whether a person
makes more than 50k$ a year or not. There are 14 features and 48842 instances.

• Synthetic {A, B, C, D}: synthetic datasets generated according to Algorithm 4. Each
dataset contains 1 million samples, and there are 28 features per instance. The prediction
task is a regression task (refer to Chapter 5 for more details).

For each dataset, we take a sample of n = 5000 instances. For the real datasets, we fix the tree
depth to dmax = 6, the learning rate to η = 0.1 and the number of trees to ntrees = 50. For
the synthetic datasets, we fix dmax = 15, η = 0.5 and ntrees = 20. The models are evaluated
through a 5-cross validation process. We report results for the vanilla GBDT (non-private,
as in Algorithm 1) and the differentially private GBDT algorithms (depth-first and 2-nodes
variants, as in Algorithm 2 and 3 respectively).

1https://archive.ics.uci.edu/ml/datasets/abalone
2https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
3https://archive.ics.uci.edu/ml/datasets/adult

26

https://archive.ics.uci.edu/ml/datasets/abalone
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
https://archive.ics.uci.edu/ml/datasets/adult


6.2. Results

6.2 Results

We use values of ε in the [0.1, 1.[ range. Intuitively, the higher the privacy budget ε is, the
less noise will be added to the model. This results in better accuracy, but in lower privacy
guarantees. We choose not to evaluate the model on higher privacy budgets, as the existing
literature (e.g. [25]) reports great accuracy in such settings already.

Table 6.1 shows the mean training time (in seconds) per tree and per dataset. The depth-first
variant implements the algorithm outlined in [25], while the 2-nodes variant tries to enhance
it. For the Abalone and YearPredictionMSD datasets, we report the root mean square error
(RMSE) for our model. For the Adult dataset, we report the test error (in %).

(Non-DP) Vanilla (DP) Depth-first (DP) 2-nodes

Abalone 2.44 0.26 0.33
YearPredictionMSD 85.3 11.92 12.06

Adult 0.87 0.17 0.16
Synthetic A 0.37 0.40 0.42
Synthetic B 0.30 0.41 0.41
Synthetic C 0.68 0.41 0.41
Synthetic D 0.27 0.40 0.40

Table 6.1: Mean training time (in seconds) per decision tree, for all datasets.

As shown in Figure 6.1, our 2-nodes induction method performs slightly better than the
regular depth-first induction method. This is especially visible in the Abalone dataset when
ε is low and when we decrease the number of samples to n = 300 and the number of trees
to ntrees = 5, where for ε = 0.1 our 2-nodes model performs 31.94% better than the regular
depth-first model. (reported in Figure 6.2).

Table 6.2 summarises the results for the vanilla model versus the differentially private model
(where the privacy budget is fixed to ε = 0.5) on these real-life datasets.

(Non-DP) Vanilla (DP) Depth-first (DP) 2-nodes

Abalone (RMSE) 2.15 ± 0.04 6.58 ± 0.40 6.18 ± 0.75
YearPredictionMSD (RMSE) 8.87 ± 0.16 21.57 ± 0.64 20.62 ± 0.13

Adult (Test error) 16.81 ± 0.45 22.37 ± 0.97 22.92 ± 0.91

Table 6.2: Prediction error for the real datasets.

27



6.2. Results

(a) Regression tasks: Abalone and YearPredictionMSD

(b) Classification task: Adult

Figure 6.1: Prediction error for the vanilla model and various values of ε for the differentially
private model.

Figure 6.2: Prediction error for the Abalone dataset, with 300 samples.

For the synthetic datasets, we report the MAPE, defined as MAPE = 1
n ∑n

i | Ri−Pi
Ri

| where Ri is
the real value and Pi the predicted one. If the prediction task was to predict the price of an
object, with its real price being 100$ and the predicted price being 110$, then the MAPE score
would be MAPE = | 100−110

100 | = 0.1 i.e. 10% error, since we would be 10$ off.

28



6.2. Results

Results for the cost target are reported in Figure 6.3. For the loss target, the reader can refer
to Figure A.3. Table 6.3 summarises the results for the vanilla model versus the differentially
private model (where the privacy budget is fixed to ε = 0.5), for the cost target. For the loss
target, the reader can refer to Table A.3.

(Non-DP) Vanilla (DP) Depth-first (DP) 2-nodes

Synthetic A (MAPE) 2.90 ± 0.80 11.83 ± 3.31 7.12 ± 0.89
Synthetic B (MAPE) 2.69 ± 0.79 8.43 ± 1.62 7.99 ± 1.58
Synthetic C (MAPE) 2.13 ± 0.36 6.88 ± 0.71 8.52 ± 1.74
Synthetic D (MAPE) 2.05 ± 0.16 7.00 ± 0.76 5.47 ± 0.42

Table 6.3: Prediction error for the cost target on the synthetic datasets.

For the synthetic dataset A, 2-nodes is able to decrease the error by almost 40%. For datasets B
and D, the error decreases by 5.22% and 27.97% respectively. On dataset C, 2-nodes performs
worst with an error increase of 23.84%.

(a) Synthetic datasets A and B

(b) Synthetic datasets C and D

Figure 6.3: Mean Absolute Percentage Error for the cost target on the synthetic datasets.

29



Chapter 7

Security Analysis

7.1 Attack landscape

In this section, we give an overview of the various attacks that we consider for our model.

7.1.1 Enclave attacks

Most SGX attacks are side-channel [30] attacks, i.e. attacks that are based on information
gained from the implementation of the system under attack, rather than weaknesses in the
implementation itself. Popular side-channel attacks against SGX are cache-based timing at-
tacks, such as Flush+Reload [43] or Prime+Probe [32]. Both attacks exploit cache behaviour to
leak information on victim access to shared memory. In Flush+Reload, the attacker flushes a
memory line and then measures the time that it takes for the line to be reloaded. If the line
was reloaded fast, then the attacker infers that the victim accessed the data located at that
line. In Prime+Probe, the attacker first primes the cache (i.e. loads it with dummy data) and
waits for the victim to access one of the cache lines. Afterwards, the attacker probes the cache
and measures its response time. If the access is fast, then the victim did not access this cache
line. If it is slow, it did access it. Figure 7.1 shows how processors fetch data from the cache
/ memory, and how it relates to access time.

To defend against such attacks, the enclave’s authors must make sure that their design is side-
channel resilient. This can be achieved by making sure that the code is designed in a cache
leakage-free manner, making the execution flow and memory access patterns independent of
the data accessed. For other kinds of attacks, [30] suggests that authors can act on multiple
fronts: microcode patches, system/application design and compiler/SDK. While this is an
active and interesting research area, it is mostly independent of the focus of this thesis, and
thus we will not explore these attacks further.

Figure 7.1: Illustration of a processor fetching data from cache or memory [19].

30



7.1. Attack landscape

7.1.2 Security & privacy attacks

Since the questionnaires are served to the customers through e.g. a web application, we
must consider security attacks targeted at such applications. A malicious customer could
try to influence the model accuracy by tempering with the learning set. This could be done
by e.g. flooding the web application with bogus questionnaire’s answers. In this thesis we
will assume that customers are trustworthy, and we will instead focus on privacy attacks, in
particular those that target machine learning models.

If a machine learning model was trained using personal data, such as people’s health records
or identity information, then a privacy attack would aim at extracting these information to
benefit the attacking party. For the scope of this thesis, we consider the insurance company
to be the adversary, since they own the machine learning model. While they cannot access its
content (as it is enclave-protected), it can design privacy attacks in order to gain information
about the training set used by the model (i.e. the questionnaires submitted by the customers).
Since it is assumed that the model is trained and run within a trusted environment, we will
focus our threat model on black-box attacks (i.e. the attacker only has access to the model’s
API, can submit input vectors and retrieve their corresponding predictions), as shown in
Figure 7.2 (adapted from [35]).

Figure 7.2: Threat model

In such a model, the insurance company is interested in gaining meaningful information about
the training instances that were used by the model. Several attacks can be constructed [35]:

• Membership inference attack: these attacks aim at determining whether or not an input
vector x was used as part of the training set. First introduced by Shokri et al. (2017) [37],
it is one of the most popular attacks. This attack assumes a black-box scenario where
the attacker only has access to the prediction vectors.

• Model inversion attack: given a prediction vector ŷ and partial knowledge of some
features of the initial sample x, this attack aims at recovering information about one or
all missing features. This is not to be confused with attribute inference attacks, which try
to infer sensitive feature’s values of a targeted instance by leveraging publicly available
data.

• Property inference attack: these attacks aim at extracting properties over the training set
that were not explicitly encoded as features during the learning task. For instance, our
synthetic data generation process (described in details in Chapter 5) does not encode the
number of employees of a company in the dataset. Trying to determine such property
from the model would fall under this category of attacks.

31



7.2. Attacks on DP-GBDT

• Model extraction attack: these attacks do not aim at recovering information about the
training dataset, but information about the inner working of the learning model, in order
to reconstruct a substitute model that behaves similarly.

Many of the above attacks are conducted through shadow models training, which is illustrated
in Figure 7.3. In shadow training, the attacker trains various models (the so-called shadow
models) on shadow datasets, i.e. datasets that follow a similar distribution as the target
dataset. Once the shadow models are trained, the attacker constructs an attack dataset, where
each instance typically represents the probability vector outputted by the shadow models. The
attacker can then train an attack model, which takes as input a prediction vector and outputs
membership / property information.

Figure 7.3: Shadow training architecture for a membership inference attack. [6]

7.2 Attacks on DP-GBDT

While there are many Python libraries readily available to conduct privacy attacks on ma-
chine learning models, such as the adversarial-robustness-toolbox Python library1, to the best of
our knowledge there is no work in the literature that considers privacy attacks on regression
models such as our ensemble of gradient boosted decision trees. We therefore tried to convert
our synthetic datasets to a classification task, and to tweak our model to support multi-class
classification. We evaluate several classical attacks, in particular the gap attack, introduced by
Shokri et al. (2017) [37], for different train-test split ratios. Unfortunately, our tests indicate
that the current attacks do not adapt well to regression models. In particular, we were unable
to detect an explainable correlation between the privacy budget and the accuracy of the mem-
bership inference attack. For reference, our results are shown in Figure A.4 and summarised
in Table A.4 (for a fixed ε = 0.1).

While for low ε values, our model is effectively reducing the success rate of membership
inference attacks to 60% or below, the literature ([6], [8]) shows that we should see such
values starting from a higher ε value. Figure A.5 shows the same attack on a 50-50% train-
test split. From the Figure, what happens is unclear: the model seems not to be leaking any

1https://github.com/Trusted-AI/adversarial-robustness-toolbox

32

https://github.com/Trusted-AI/adversarial-robustness-toolbox


7.2. Attacks on DP-GBDT

data. However this should be interpreted with a grain of salt, as this could be the result of
a lack of better attacks for GBDT models. Indeed, most of current work that evaluates the
impact of differential privacy on membership inference attacks targets neural networks and
deep learning models only (such as the work in [6] and [2]). The reader can refer to Figure
4 in [34] to get an idea of the influence of differential privacy against membership inference
attacks for neural networks.

During this thesis, we have also tried to evaluate the model against other inference attacks,
such as attribute inference attacks. Different settings were tested, such as growing very
deep decision trees to overfit on the training data. This was done using both the adversarial-
robustness-toolbox as well as other work found on popular open-source website GitHub. Re-
sults were hovering in the 50% attack accuracy zone, consistently across the different tools,
confirming that our model could not be evaluated as-is. This shows that developing privacy
attacks on regression ensemble models will be an important step in evaluating them, and we
encourage future work in that direction.

33



Chapter 8

Related Work

In this chapter, we give a brief overview of other privacy preserving work, that use different
mechanisms than differential privacy. In particular, we focus on membership privacy.

Nasr et al. (2018) [28] opt to turn the problem into a min-max privacy game, and design a train-
ing algorithm that both minimises the prediction loss of the model as well as the maximum
gain of the best membership inference attack. By considering the strongest membership infer-
ence attack available to an attacker, the defender can ensure that his model will provide the
best protection. Their method is designed to work on classification models. They showed that
on popular classification dataset Purchase-100, their method only decreased baseline accuracy
by 3.6%, while reducing the membership attack success rate from 67.6% to 51.6%.

In [23], Jia et al. (2019) introduced MemGuard. MemGuard offers defences against member-
ship privacy attacks while providing utility-loss guarantees. As opposed to tampering with
the training process of the algorithm such as in differential privacy, the authors propose to
carefully add noise to the vector of confidence score. This vector is equivalent to the prediction
vector with probabilities that is depicted in Figure 7.3. The amount of noise that is added to
the prediction vector is not enough to change the predicted label itself, but is enough to trick
the adversary’s attacking model.

In their design of a membership inference attack, Shokri et al. (2017) [37] also give pointers to
mitigation strategies:

1. Restrict the prediction vector to the top k classes only: the more classes there are in a
dataset, the more information the model leaks. If there are many classes that are present
in small quantities only, restricting the model to the top k classes will still result in useful
outputs. Having a small k will reduce the attack success.

2. Coarsen precision of the prediction vector: this is similar to [23], but instead of adding
noise to the prediction vector, its probabilities are rounded to d digits. The smaller d is,
the less information the model leaks.

3. Use regularization: since models that overfit too much the data will tend to be more
vulnerable to membership inference attacks, regularisation techniques such as the L2-
norm standard regularisation can be used to counter overfitting.

As shown in above research, differential privacy is not the one solution to many problems, but
rather it is a potential solution to some specific problems, and sometimes differential privacy
is not the way to go. Membership privacy (or more generally privacy preserving machine
learning) is an active area of research, and there’s still room for improvement and for finding
a one-fit-all solution.

34



Chapter 9

Conclusion

In this work, we merge existing techniques for inducing differentially private decision trees
and additionally propose a new induction method, 2-nodes, which enhances accuracy over
both real and synthetic datasets. We show that under strong privacy constraints, our model
achieves great accuracy on our synthetic datasets. While this work shows encouraging results
in assessing cyber risk, there are still several paths to be explored in future work. First, while
the model currently supports both regression and classification tasks, finding optimal privacy
bounds (tighter sensitivity bounds lead to enhanced accuracy) for multi-class classification
remains an open challenge. Second, and as seen during our model’s evaluation, the current
literature does not cover privacy leakage attacks targeted at regression models, much less en-
semble models such as our gradient boosted decision trees. Developing such attacks would
be crucial to properly evaluate our work, and thus constitute a challenging and interesting fu-
ture research direction. Finally, the space of ensemble methods and their respective induction
algorithms is yet another area of potential improvement, that could contribute towards better
privacy preserving machine learning methods.

35



Appendix A

Appendix

(a) Synthetic datasets A and B

(b) Synthetic datasets C and D

Figure A.1: Target distribution for the synthetic datasets.

36



(a) Synthetic datasets A and B

(b) Synthetic datasets C and D

Figure A.2: Problem difficulty for the synthetic datasets.

37



Feature Meaning

company size One of [small, large]. Refers to the size of the company.

company sector The sector the company operates in. Refer to Table 5.2
for the list of sectors.

company allows BYOD
The company has a bring your own device policy, which
allows employees to use their personal devices as their

work device.

company does pentest The company runs penetration tests against their
infrastructure, at least once a year.

company uses RBAC The company has a role based access control policy in
place.

company does red teaming The company performs red teaming exercises.
company has 2FA The company uses 2-factor authentication.

company has password policy
The company has a password policy in place. Such

policy defines e.g. the minimum length of
employee passwords.

company trains employees
against social engineering

The company trains its employees against social
engineering techniques. This includes training

against e.g. phishing.
company has antivirus The company has antivirus in place.

company has patching process
The company keeps its systems up to date by
applying the latest software / security patches

on a regular basis.
company has ingress f irewall The company has ingress fire-walling rules.
company has egress f irewall The company has egress fire-walling rules.

company uses 3rd party The company relies on a 3rd party provider for some
of its services. This can be e.g. cloud-based solutions.

company has ciso The company has a dedicated CISO.
company has threat

intelligence team The company has a dedicated threat intelligence team.

company monitors IOCs The company is subscribed to an indicator of
compromise feed.

company has IDS The company has an intrusion detection system.
company has IPS The company has an intrusion prevention system.

company separates systems The company separates its systems, e.g. they have a
DMZ.

company does daily backup The company performs daily backups of its systems.

company has recovery plan
In the event of a security incident or other disaster,

the company has a process for recovery in place.
This can include people to contact, processes to start, etc.

company has incident
response team The company has a dedicated IR team.

Table A.1: List of features and their meaning for the synthetic datasets.

38



Feature (F) P(F) P(F|loss)

company size small: 0.68
large: 0.32

company sector See Table 5.1
company allows BYOD 0.44 0.14
company does pentest 0.36 0.23
company uses RBAC 0.85 0.67

company does red teaming 0.33
company has 2FA 0.78

company has password policy 0.88
company trains employees
against social engineering 0.70

company has antivirus 0.95 0.81
company has patching process 0.60 0.828
company has ingress f irewall 0.83 0.84
company has egress f irewall 0.61 0.76

company uses 3rd party 0.87 0.79
company has ciso 0.67 0.68

company has threat
intelligence team 0.38

company monitors IOCs 0.44
company has IDS 0.94
company has IPS 0.81

company separates systems 0.79
company does daily backup 0.91
company has recovery plan 0.33

company has incident
response team 0.46

Table A.2: List of probabilities used in the Bayesian Network in Figure 5.6. Conditional
probabilities that rely on multiple features are omitted but are available in the implementation.

(Non-DP) Vanilla (DP) Depth-first (DP) 2-nodes

Synthetic A (MAPE) 3.71 ± 0.37 10.35 ± 0.76 10.92 ± 1.61
Synthetic B (MAPE) 3.05 ± 0.49 9.35 ± 1.69 11.97 ± 2.11
Synthetic C (MAPE) 2.33 ± 0.23 9.25 ± 0.56 9.24 ± 1.13
Synthetic D (MAPE) 3.00 ± 0.83 13.08 ± 1.54 16.06 ± 4.06

Table A.3: Prediction error for the loss target on the synthetic datasets.

(Non-DP) Vanilla (DP) Depth-first (DP) 2-nodes

Synthetic A 74.06 41.87 44.89
Synthetic B 74.02 47.77 47.31
Synthetic C 73.48 45.36 51.08
Synthetic D 73.70 51.16 47.89

Table A.4: Membership inference attack success rate (in %) for the cost target on the synthetic
datasets. Train-test split is set to 75-25%.

39



(a) Synthetic datasets A and B

(b) Synthetic datasets C and D

Figure A.3: Mean Absolute Percentage Error for the loss target on the synthetic datasets.

40



(a) Synthetic datasets A and B

(b) Synthetic datasets C and D

Figure A.4: Membership inference attack success rate (in %) for the cost target on the synthetic
datasets. Train-test split is set to 75-25%.

(a) Synthetic datasets A and B

Figure A.5: Membership inference attack success rate (in %) for the cost target on the synthetic
datasets. Train-test split is set to 50-50%.

41



Bibliography

[1] AIG. Claims Intelligence Series.

[2] Daniel Bernau, Philip-William Grassal, Jonas Robl, and Florian Kerschbaum. Assessing
differentially private deep learning with membership inference. CoRR, abs/1912.11328,
2019.

[3] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the
sulq framework. In PODS, pages 128–138. ACM, 2005.

[4] Nazanin Borhan. Budget Allocation on Differentially Private Decision Trees and Random
Forests, 2018.

[5] Checkpoint. Cyber Security Report, 2020.

[6] Junjie Chen, Wendy Hui Wang, and Xinghua Shi. Differential privacy protection against
membership inference attack on machine learning for genomic data. bioRxiv, 2020.

[7] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD,
pages 785–794. ACM, 2016.

[8] Christopher A. Choquette-Choo, Florian Tramèr, Nicholas Carlini, and Nicolas Papernot.
Label-only membership inference attacks. CoRR, abs/2007.14321, 2020.

[9] Cisco. Annual Cybersecurity Report, 2018.

[10] Cynthia Dwork. Differential privacy. In Encyclopedia of Cryptography and Security (2nd
Ed.), pages 338–340. Springer, 2011.

[11] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

[12] Wei Fan, Haixun Wang, Philip S. Yu, and Sheng Ma. Is random model better? on its
accuracy and efficiency. In ICDM, pages 51–58. IEEE Computer Society, 2003.

[13] Sam Fletcher and Md Zahidul Islam. A differentially private decision forest. In AusDM,
volume 168 of CRPIT, pages 99–108. Australian Computer Society, 2015.

[14] Sam Fletcher and Md Zahidul Islam. A differentially private random decision forest
using reliable signal-to-noise ratios. In Australasian Conference on Artificial Intelligence,
volume 9457 of Lecture Notes in Computer Science, pages 192–203. Springer, 2015.

42



Bibliography

[15] Sam Fletcher and Md Zahidul Islam. Differentially private random decision forests using
smooth sensitivity. Expert Syst. Appl., 78:16–31, 2017.

[16] Sam Fletcher and Md Zahidul Islam. Decision tree classification with differential privacy:
A survey. ACM Comput. Surv., 52(4):83:1–83:33, 2019.

[17] Arik Friedman and Assaf Schuster. Data mining with differential privacy. In KDD, pages
493–502. ACM, 2010.

[18] Abigail Goldsteen, Gilad Ezov, Ron Shmelkin, Micha Moffie, and Ariel Farkash.
Anonymizing machine learning models. CoRR, abs/2007.13086, 2020.

[19] Xiaofei (Rex) Guo Gorka Irazoqui. LLC Attacks - Applicability & Countermeasures.

[20] Aurélien Havet, Rafael Pires, Pascal Felber, Marcelo Pasin, Romain Rouvoy, and Valerio
Schiavoni. Securestreams: A reactive middleware framework for secure data stream
processing. CoRR, 2018.

[21] IBM. X-Force Threat Intelligence Index, 2020.

[22] Geetha Jagannathan, Krishnan Pillaipakkamnatt, and Rebecca N. Wright. A practical
differentially private random decision tree classifier. In ICDM Workshops, pages 114–121.
IEEE Computer Society, 2009.

[23] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and Neil Zhenqiang Gong.
Memguard: Defending against black-box membership inference attacks via adversarial
examples. In CCS, pages 259–274. ACM, 2019.

[24] Michael J. Kearns and Yishay Mansour. On the boosting ability of top-down decision tree
learning algorithms. J. Comput. Syst. Sci., 58(1):109–128, 1999.

[25] Qinbin Li, Zhaomin Wu, Zeyi Wen, and Bingsheng He. Privacy-preserving gradient
boosting decision trees. In AAAI, pages 784–791. AAAI Press, 2020.

[26] Xiaoqian Liu, Qianmu Li, Tao Li, and Dong Chen. Differentially private classification
with decision tree ensemble. Appl. Soft Comput., 62:807–816, 2018.

[27] Noman Mohammed, Rui Chen, Benjamin C. M. Fung, and Philip S. Yu. Differentially
private data release for data mining. In KDD, pages 493–501. ACM, 2011.

[28] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning with membership
privacy using adversarial regularization. CoRR, 2018.

[29] NetDiligence. Cyber Claims Study, 2019.

[30] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A survey of published
attacks on intel SGX. CoRR, abs/2006.13598, 2020.

[31] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth sensitivity and sam-
pling in private data analysis. In STOC, pages 75–84. ACM, 2007.

[32] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The
case of AES. In CT-RSA, volume 3860 of Lecture Notes in Computer Science, pages 1–20.
Springer, 2006.

43



Bibliography

[33] J. Ross Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, 1986.

[34] Md. Atiqur Rahman, Tanzila Rahman, Robert Laganière, and Noman Mohammed. Mem-
bership inference attack against differentially private deep learning model. Trans. Data
Priv., 11(1):61–79, 2018.

[35] Maria Rigaki and Sebastian Garcia. A survey of privacy attacks in machine learning.
CoRR, abs/2007.07646, 2020.

[36] Haijian Shi. Best-first decision tree learning. 2007.

[37] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership infer-
ence attacks against machine learning models. In IEEE Symposium on Security and Privacy,
pages 3–18. IEEE Computer Society, 2017.

[38] Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, and Cho-Jui
Hsieh. Gradient boosted decision trees for high dimensional sparse output. In ICML,
volume 70 of Proceedings of Machine Learning Research, pages 3182–3190. PMLR, 2017.

[39] Todd A. Stephenson. An Introduction To Bayesian Network Theory and Usage, 2000.

[40] Verizon. Data Breach Investigations Report, 2020.

[41] Kaiwen Wang, Travis Dick, and Maria-Florina Balcan. Scalable and provably accu-
rate algorithms for differentially private distributed decision tree learning. CoRR,
abs/2012.10602, 2020.

[42] Katherine Woodruff. Introduction to boosted decision trees, 2017.

[43] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low noise, L3
cache side-channel attack. In USENIX Security Symposium, pages 719–732. USENIX Asso-
ciation, 2014.

[44] Lingchen Zhao, Lihao Ni, Shengshan Hu, Yanjiao Chen, Pan Zhou, Fu Xiao, and Libing
Wu. Inprivate digging: Enabling tree-based distributed data mining with differential
privacy. In INFOCOM, pages 2087–2095. IEEE, 2018.

44



 
 
 
Declaration of originality 
 
The  signed  declaration  of  originality  is  a  component  of  every  semester  paper,  Bachelor’s  thesis,  
Master’s  thesis  and  any  other  degree  paper  undertaken  during  the  course  of  studies,  including  the  
respective electronic versions. 
 
Lecturers may also require a declaration of originality for other written papers compiled for their 
courses. 
__________________________________________________________________________ 
 
I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it 
in my own words. Parts excepted are corrections of form and content by the supervisor. 
 
Title of work (in block letters): 

 

 
 
Authored by (in block letters): 
For papers written by groups the names of all authors are required. 
 
Name(s): First name(s): 
   

   

   

   

   

 
With my signature I confirm that 
− I have  committed  none  of  the  forms  of  plagiarism  described  in  the  ‘Citation etiquette’  information  

sheet. 
− I have documented all methods, data and processes truthfully. 
− I have not manipulated any data. 
− I have mentioned all persons who were significant facilitators of the work. 

 
I am aware that the work may be screened electronically for plagiarism. 
 
Place, date Signature(s) 
   

   

   

   

   

  
 For papers written by groups the names of all authors are 

required. Their signatures collectively guarantee the entire 
content of the written paper. 

PRIVACY-PRESERVING MACHINE LEARNING FOR CYBER INSURANCE

GIOVANNA THEO

ZURICH, 16/02/2021ZURICH, 23/02/2021


