
The Inside Story:
Towards Understanding Privacy Leakage
of Neural Networks

Masterarbeit

im Rahmen des Studiengangs

Informatik

der Universität zu Lübeck

vorgelegt von

Thorsten Peinemann

ausgegeben und betreut von

Prof. Dr. Esfandiar Mohammadi

Lübeck, den 01. Oktober 2021

Ich versichere an Eides statt, die vorliegende Arbeit selbstständig und
nur unter Benutzung der angegebenen Quellen und Hilfsmittel angefer-
tigt zu haben.

Ort, Datum Unterschrift

iii

Zusammenfassung

In dieser Arbeit entwickeln wir Werkzeuge, die helfen zu verstehen, wie
und was neuronale Netze auf einem synthetischen Datensatz lernen. Die-
ser Datensatz ist zweidimensional, da die Visualisierung bei hochdimen-
sionalen Daten schwierig ist. Der Datensatz ist eng danach modelliert,
wie reale Datensätze höchstwahrscheinlich aussehen. Als neue mögliche
Leakage leiten wir daraus Polytopfunktionen ab. Ein neuronales Netz
lernt diese Funktionen für einzelne Polytope im Eingaberaum. Mit zwei
neuartigen Membership-Inference-Attacken zeigen wir, dass es tatsäch-
lich Leakage durch unseren Ansatz gibt, aber weniger als wir hofften.
Wir diskutieren Covers Theorem [1] [2] als möglichen Grund dafür. Wir
argumentieren, dass in unserem Setting, die Confidence eines neuronalen
Netzes mehr Leakage bietet. Mithilfe unserer Visualisierung beobachten
wir erste Hinweise darauf, dass neuronale Netze zu Beginn des Trainings
einen einzigen Bergrücken mit großen Polytopfunktionsparametern auf-
bauen, wobei in späteren Epochen weitere Bergrücken hinzukommen.
Wir erklären diesen Effekt mathematisch durch Forward Weight Depen-
dency und Backward Weight Dependency. Wir beobachten auch, dass
nach dem Training die Polytopfunktionsparameter mit Entscheidungs-
grenzen korrelieren. Darüber hinaus zeigen wir, dass Gradient-Boosted-
Decision-Trees eine sinnvolle Option als Angriffsmodell für Membership-
Inference-Attacken sind, indem wir die Angriffsgenauigkeit des
MLLeaks-Angriffs [3] leicht verbessern.

Abstract

In this thesis, we develop tools that help in understanding how and what
neural networks learn on a synthetic dataset. This dataset is two di-
mensional, since visualization is hard on high dimensional data. It is
closely modeled after what real datasets most likely look like. We derive
a new possible source of leakage: Polytope functions, i.e. the individual
functions the neural network has learned for a specific polytope in input
space. With two novel membership inference attacks we show that there
is in fact leakage through our approach but less than we had hoped. We
discuss Cover’s theorem [1] [2] as a possible reason for this. We argue that
in our setting, the confidence of a neural network is more promising for
leakage extraction. Using our visualization, we observe first indications
of neural networks building a single mountain ridge of large polytope
function parameters in the beginning of training with more mountain

v

ridges rising up in later epochs. We mathematically explain this effect
through forward weight dependency and backward weight dependency.
We also observe that after training, the polytope function parameters cor-
relate with decision boundaries. Furthermore, we show that gradient
boosted decision trees are a viable option as an attack model for member-
ship inference by slightly improving the attack accuracy of the MLLeaks
[3] attack.

vi

Table of Contents

1 Introduction 1

2 Related Work 5
2.1 Membership Inference Attacks 5
2.2 Loss Function Membership Inference 6
2.3 Label Only Black Box Membership Inference 7
2.4 Model Inversion . 7

3 Preliminaries and Definitions 9
3.1 Notation Table . 9
3.2 Basics of Neural Networks 9

3.2.1 Data Encoding for Training of a Neural Network . . 10
3.2.2 Training a Neural Network 10
3.2.3 The Structure of Neural Networks 11

3.3 Partial Linearity Theorem and Activation Polytopes 13
3.4 Polytope Functions and the Gradient of a Neural Network . 15
3.5 Optimizing a Loss Function with Gradient Descent 16
3.6 Membership Inference Attacks on Neural Networks 16
3.7 Gradient Boosted Decision Trees 17
3.8 Model Extraction and Federated Learning 17

4 Exploiting Leakage of Activation Polytopes in Neural Networks 19
4.1 Introduction and Motivation 19
4.2 Visualizing Activation Polytopes 21
4.3 Obtaining Attack Training Data in a High Dimensional Set-

ting . 29
4.4 Metrics for an Activation Polytopes Attack 30

4.4.1 Boundary Distance 30
4.4.2 Activation Polytope Derivative 32
4.4.3 Normal Cosine Similarity 32

4.5 The Activation Polytopes Attack 32
4.6 Limitations of the Activation Polytopes Approach 34
4.7 Implementation Details . 34

vii

5 New Observations on the Inner Workings of a Neural Network 36
5.1 Depicting the Influence of Training Data in Neural Networks 36
5.2 Conclusions for Leakage and Neural Network Understand-

ing . 37
5.3 An Animated Visualization of the Training Process of Neu-

ral Networks . 39
5.4 Further Observations and Mathematical Explanations . . . 39

6 A Gradient Descent Based Boundary
Distance Attack 43
6.1 Introduction and Motivation 43
6.2 Using Gradient Descent To Find The Closest Boundary . . . 44
6.3 Putting Our Observations On The Inner Workings Of Neu-

ral Networks To Use . 44
6.4 The Gradient Descent Boundary Distance Attack 47
6.5 Implementation Details . 48

7 Experiments and Evaluation 49
7.1 Experimental Setup . 49
7.2 Evaluated Datasets . 49
7.3 Results and Evaluation of the Activation Polytopes Attack . 50
7.4 Improving the MLLeaks Attack Through Gradient

Boosted Decision Trees . 54
7.5 Results and Evaluation of the Gradient Descent Boundary

Attack . 54

8 Conclusion and Outlook 58

viii

1 Introduction

Artificial intelligence is part of many services, some of which are ac-
cessed multiple billion times a day [4]. Be it an internet search engine,
asking a car where to drive when heading towards a specific location,
or shopping online and going through suggested items. This social and
economic development has raised a series of questions on whether the
data that individuals contribute to such artificial intelligence is safe with
the data aggregator. Even if the data aggregator itself is not susceptible
to a direct attack with theft of data per se, privacy research in the field of
artificial intelligence has made some startling discoveries in recent years.

Neural networks are a very popular form of artificial intelligence. This
is due to their applicability in nearly any field where statistics or data
has been aggregated as well as their empirically proven effectiveness on
many real world problems. Despite their popularity, classically trained
neural networks leak information about their training data. Fredrikson
et al. [5] are the first ones to introduce such an attack on a neural network
(or model) by using the certainty output by the model under attack. At-
tacks like MLLeaks by Salem et al. [3] and The Secret Revealer by Zhang
et al. [6] are respectively able to safely infer whether a given datapoint
is part of training data and to even completely reconstruct large parts
of training data. Through exposing the weaknesses of neural networks
these attacks teach people to be more concerned about their privacy and
inform the research community about the main vulnerabilities of neural
networks that need to be fixed.

Most privacy attacks from the literature focus on extracting leakage by
looking at the output of the targeted models. Jayaraman et al. [7] intro-
duce a threshold based attack that rather looks at the loss function.

We began our work with the hypothesis that activation polytopes leak
information about training data. These polytopes subdivide the input
space of a neural network and every one of them describes an affine lin-
ear function the neural network has learned, as Raghu et al. [8] state. In

1

comparison to a classical approach that uses the prediction or the confi-
dence of the target model, our approach is not able to extract as much
leakage.

There is still a huge gap between the theoretical point of view, trying to
understand neural networks, and the practical point of view, trying to
create effective attacks. The present thesis lessens the size of this gap
by bringing the two sides together: Through an in-depth analysis of the
behavior of neural networks, accompanied by easy to use visualization
tools, and also the creation of attacks that are supported by observations
made through the use of our tools.

Our Contribution

The construction of privacy attacks can be a road that is paved with trial
and error and a lot of hardship. Finding new leakage possibilities and
the evaluation of attacks is mostly done empirically, in that the resulting
attack is run on a number of standard datasets to show that it is in fact
capable of leaking sensitive information of the targeted model. On the
one hand, this makes it harder to analyze why a specific attack is actu-
ally working. On the other hand, if the attack fails, it is more often than
not hard to explain why this attack is not functioning properly. Generic
frameworks for the evaluation of privacy attacks and visualization tools
for neural networks could help with this. On top of that, to this day, the
questions of how exactly neural networks learn what they learn and how
they encode their knowledge are still mostly unanswered but definitely
highly relevant for the discovery of new weak spots of neural networks.

We introduce a new set of tools and insights that will hopefully help to
overcome these shortcomings of privacy research on neural networks.
We create a synthetic two dimensional dataset that is supposed to resem-
ble the layout of high dimensional data in section 4.2. On this dataset we
apply our novel visualization tool that samples over the input space and
generates images that showcase the output, the parameters of polytope
functions and even the layout of hyperedges of associated neurons of the
target model over the input space (see section 4.2 and section 5.3). The
polytope functions stem from the work by Raghu et al. [8] who men-
tion that neural networks with piecewise linear activation functions have
their input space divided into convex polytopes that are bordered by hy-
peredges, each belonging to a single neuron of the neural network. Each
of these polytopes has an associated linear function (the polytope func-
tion), describing the output of the neural network in this polytope.

We derive these polytope functions as a possible new source of leakage.
There is in fact leakage through our approach, but not as much as we had

2

hoped. As a reason for this, we discuss Cover’s theorem [1] [2] in section
7.3 and in section 7.5.

In section 5.4 we are able to observe first indications of an interesting
effect: Neural networks seem to create mountain ridges between data
clusters of different classes, using its output and its polytope function
parameters. We notice that in the beginning of the training phase of the
neural network, it starts by creating a single mountain ridge for an initial
split of training data and in later epochs this mountain ridge splits up or
new mountain ridges rise up. We give a possible explanation for this in a
mathematical way.

We use our framework and our insights to construct two new privacy
attacks (see chapter 4 and chapter 6) that aim at membership inference
(classifying whether a given datapoint is part of training data), one of
which is able to perform on par on some datasets with latest research in
the field by Choquette et al. [9] in the best case.

Summary of Contributions

1. We develop a visualization tool for neural networks trained on two
dimensional datasets that helps in evaluating and implementing
privacy attacks (see chapter 5).

2. We thoroughly analyze the effect of training data on the shape and
layout of activation polytopes of neural networks and use our visu-
alization to understand how and what neural networks learn and
where there is possible leakage. In section 5.4, we are able to ob-
serve first indications of the way neural networks train on data. For
these indications we give a mathematical explanation.

3. We deploy a membership inference attack in section 4.5 that exploits
the shape of activation polytopes that we observe.

4. We deploy a gradient descent based decision boundary attack for
membership inference in section 6.4. This attack optimizes towards
low confidence, small output and large polytope function parame-
ters in finding the closest boundary.

5. We conduct extensive experiments to evaluate the performance of
our attacks in chapter 7. We find that the gradient descent based
attack performs on par with latest research on some datasets in the
best case. We also conclude that in our framework, confidence based
attacks are more performant and complete than any attack that uses
the output of the neural network or its polytope function parame-
ters.

3

6. We assess the usage of gradient boosted decision trees as an at-
tack model for membership inference in section 7.4 and succeed in
slightly improving the MLLeaks attack by Salem et al. [3].

Structure of this Work

Chapter 2 looks at some reseach that is relevant for the present thesis.
Chapter 3 then lays a ground work of understanding of neural networks.
In chapter 4 we present our first attack, the activation polytopes attack.
In chapter 5 we discuss some new observations we made on the inner
workings of a neural network. Chapter 6 introduces our second attack, a
gradient descent based boundary distance attack. Experiments and eval-
uation of the attacks take place in chapter 7. Lastly, a conclusion and an
outlook are given in chapter 8.

4

2 Related Work

This chapter looks at some research which is closely related to our work
or is something that we build upon and compare ourselves to.

2.1 Membership Inference Attacks

Shokri et al. [10] were the first ones to demonstrate that membership in-
ference attacks can be carried out in a real life setting where the target
model (for example a neural network) under attack is used for a classifi-
cation task and the attacker only has black box access. For membership
inference, an attacker tries to infer for a given datapoint whether the tar-
get model has used this datapoint in training (the datapoint is a member)
or not (the datapoint is a nonmember). Shokri et al. assume, that the
attacker has access to the prediction of the target model, i.e. a certainty
value for each of the possible classes. In this thesis, we will also take
a look at the internal structure of the target model. In preparation for
their attack, multiple so called shadow models are trained. These shadow
models are all trained independently and supposed to behave similar to
the target model, so they should have a similar structure and employ
a similar learning technique. With the trained shadow models, the at-
tacker generates multiple input / prediction pairs for members and non-
members of the shadow models’ datasets and then tries to learn specific
patterns in the prediction that correlate with membership / nonmember-
ship. Shokri et al. use multiple attack models here: One attack model per
class of the target model.

The MLLeaks paper by Salem et al. [3] improves on Shokri et al.’s results.
Salem et al. introduce three different adversaries resulting in three differ-
ent types of attack strengths: The first adversary has access to a dataset
from the same distribution that the training dataset of the target model
comes from. Here, the authors show, that even with a single shadow
model and a single attack model, the accuracy is very similar to the one

5

by Shokri et al. We will use this adversary as well when comparing our
activation polytopes attack to the MLLeaks attack.

We use different metrics than just the top three certainties from the tar-
get model output: We look at the structure the target model has formed
through its weights and biases. To the best of our knowledge, this has
been completely disregarded in membership inference attacks so far.

The second adversary neither has access to a dataset from the same dis-
tribution as the training dataset of the target model, nor does it know,
what the target model’s structure looks like. This only results in a small
drop of attack accuracy but leads to a more realistic scenario. The third
adversary completely refrains from usage of a shadow model and simply
distinguishes members and nonmembers based on whether the biggest
certainty value in the output of the target model is above or below a pre-
viously chosen threshold.

For picking the threshold, Salem et al. propose the following approach:
The target model is queried with a number of random datapoints and the
maximum certainty value of their predictions is noted. These random
datapoints are assumed to be nonmembers, so a top percentile of their
maximum certainties are averaged and taken as threshold.

2.2 Loss Function Membership Inference

Jayaraman et al. [7] investigate membership inference based on the loss
function of a target model. Doing so, they take a different approach than
leakage through the output of a target model which has been common
thus far. For a given datapoint, their attack perturbs the datapoint and
then measures the loss in comparison to the loss at the original datapoint.
If the given datapoint is a member of the training dataset, then it is likely
to be positioned at a minimum with regard to the loss function. Most of
the perturbations will therefore induce a higher loss function value. If the
given datapoint is a nonmember, the perturbations will more or less have
an equal probability of inducing a greater or smaller loss function value.
Measuring this behavior for a datapoint and comparing with a threshold
is used to infer membership.

We try to leak information about training data through the structure of ac-
tivation polytopes and through polytope function parameters (for details
see section 3.3 and section 3.4. Thus we also take a different approach
than leakage through the output, but one that is different to Jayaraman et
al. We compare our approach to the classic approach of using the output
or the confidence of the target model.

6

2.3 Label Only Black Box Membership Inference

A recent paper by Choquette et al. [9] introduces a black box membership
inference attack that has minimal assumptions: Only the output label of
the target model is given to the attacker. However, multiple queries to
the target model are required.

Choquette et al.’s attack is a boundary distance attack, meaning that it
tries to determine a given datapoint’s distance to the closest decision
boundary, i.e. the boundary where the target model’s prediction changes
from the originally predicted label on the datapoint to a different label.
For a given datapoint, the attack starts with a random perturbation of
that datapoint, so that the perturbation is classified with a different label.
Then they finetune on the boundary with a binary search like approach,
namely the HopSkipJumpAttack by Chen et al. [11].

We deploy a boundary distance attack as well, but with a novel approach:
We use a gradient descent based strategy and use this optimization algo-
rithm to move from a given datapoint to low confidence, small output
and to parts of the neural network where its function has large parame-
ters.

2.4 Model Inversion

Fredrikson et al. [5] are the first ones to excerpt leakage from a target
model using the target model’s certainties from its output and putting it
to use in a model inversion attack.

The recent construction of The Secret Revealer by Zhang et al. [6], intro-
duces a novel model inversion attack that tries to gain information about
training data in a white box setting with possible auxiliary information
like nonsensitive parts of training data. The attack consists of two phases.

In the first phase of this attack, a generative adversarial network (GAN)
is trained on public data. This GAN is able to produce manifold but
realistic looking images in accordance with training data, e.g. images of
animals if the training data consists of image of cats and dogs and so
on. In this phase, the target model’s internals are used to optimize the
GAN to generate more diverse images instead of just a small collection
of images on repeat.

In the second phase, the actual attack takes place: Realistic images are
generated using the GAN, but the images should achieve high confidence
under the target model, since this is thought to correlate with member-
ship (belonging to training data). Using gradient descent as an optimiza-
tion algorithm, the produced images are updated over multiple itera-

7

tions. The images will then very likely resemble images from training
data.

For our gradient descent based attack, we build on this paper by Zhang
et al. However, there are some key differences: Firstly, we use gradi-
ent descent for membership inference instead of model inversion. Sec-
ondly, we optimize towards low confidence, rather than high confidence,
as we already are given a datapoint and are looking for a nearby deci-
sion boundary. And thirdly, we utilize different metrics like the norm of
the target model’s function’s parameters, which is motivated by visual-
ization of a target model and a thorough investigation of possible leakage
beforehand. To the best of our knowledge, this represents a part of neural
networks that has been neglected in membership inference so far.

8

3 Preliminaries and Definitions

Before we are able to present our attacks, we need to define some basics,
connected to neural networks and associated topics. Since we analyze
neural networks in depth and develop new insights, it is important that
here, we lay a good ground work of understanding of neural networks.
Any reader that has knowledge in the following topics can safely skip
them and continue to our contributions of the next chapters.

3.1 Notation Table

To make things as easy as possible for the reader, we present a notation
table which specifies notations for all the basics we need in this thesis.

Notation Meaning

M Neural network model
P Activation polytope
x Input to neural network model
y Output of neural network model
η Neuron / Perceptron
ν

(l)
i Output of the i’th neuron of layer l
w

(l)
ij Weight at the connection of the i’th neuron

of layer l − 1 and the j’th neuron of layer
l of neural network model

b Neural network bias
Ap, bp Polytope function weight and bias

3.2 Basics of Neural Networks

The topic this whole thesis revolves around is neural networks. Neural
networks can be used to handle many tasks: A simple task like learning

9

how to classify a flower type based on some metrics like, for instance,
stem size. Or a much harder task like learning to differentiate human
beings by looking at some known set of images of these persons. We will
also use the term model, when talking about neural networks.

3.2.1 Data Encoding for Training of a Neural Network

To handle any of the data mentioned above – stem size of a flower or
pictures of human beings – neural networks need some form of data en-
coding. Data on a computer is usually stored in a binary fashion but this
is not useful for learning in most cases: A string of 0s and 1s may not con-
vey the characteristics of a colored image of a person as well as its color
value magnitudes for red, green and blue color of each pixel. Therefore,
choosing a good encoding of input data is crucial to successfully training
a neural network on a dataset.

A binary representation can be usefull if the data at hand is actually a
measurement of binary features, like whether a given person has shopped
specific e-commerce items. For image datasets, usually, individual pixels
are encoded with a floating point value between 0 and 1 for each color
channel, indicating the magnitude of this color. Text datasets require a
more sophisticated approach: To grasp their structure it is often useful
to measure the frequency of features like specific words. We will go into
more detail on how to encode a dataset in a manner that allows a neu-
ral network to actually learn something, when we introduce the datasets
used in this thesis in section 7.2.

We interpret inputs and outputs of neural networks as vectors. For ex-
ample, data obtained from text with 1024 features extracted, will result in
1024 dimensional vectors.

Once a dataset has been preprocessed to be available in a useful encoding,
the next question that arises, is how neural networks can learn the data
from the dataset.

3.2.2 Training a Neural Network

In the training phase of supervised learning, the neural network is given
an assortment of data (training data) which is already labeled correctly. In
the case of images of a person, the label of an image could be the person’s
name. Once training is done, the task given to the neural network would
be to output a label which correctly identifies a person when we show an
unlabeled image (test data) to the neural network as input.

10

w · x+ bx

Figure 1: Neuron of a neural network, parameterized with a weight vec-
tor w and a scalar bias b.

We need to define what state of the neural network, i.e. its weights and
biases, is considered as good with regard to the task at hand. To this
end, a loss function calculates an error from the output of the neural net-
work on training data and the correct labels. The output is based on the
parameters of the model (weights and biases) whereas the correct label
stems from training data.

A possible candidate for a loss function is the MSE loss which measures
the element wise mean squared error from the model’s output on training
data and the correct labels.

To achieve a progression in training, weights and biases of the model
should be adjusted in a way, that the loss is decreased. This forms an
optimization problem which can be solved with different strategies. We
will take a look at one of them in section 3.5, namely gradient descent,
since we will need the details of this approach in chapter 6 when we try
to optimize towards a heap in the model’s parameters’ norm or a valley
in the output norm and confidence of a neural network.

3.2.3 The Structure of Neural Networks

As a basic building block, neural networks use neurons. Neurons com-
bine numeric inputs, factor them with weights, add a bias and thus pro-
duce a numeric output, which can then be fed into another neuron, see
figure 1.

The number of neurons needed for a given task, depends on the dimen-
sionality of input data, but also the complexity of the task is a huge factor:
The harder the task, the more neurons are usually needed. Multiple neu-
rons are combined in a layer and these layers can be stacked onto each
other.

11

max (0, w · x+ b)x

Figure 2: Perceptron of a neural network, parameterized with a weight
vector w and a scalar bias b. Here, the max function computes the
element-wise maximum in comparison with 0.

By adjusting the weights to the training data accordingly, a fixed number
of neurons can only learn an affine linear relationship between inputs
and labels. This is the case, since the function of a single neuron is affine
linear and thus the same goes for any combination of neurons.

Learning linear relations is insufficient for many tasks. This is why we
need to introduce nonlinearity in the form of an activation function. In
this thesis, we focus on the rectified linear unit (ReLU) activation func-
tion, as it is widely used and also adheres to our constraints of section
3.3. ReLUs work in such a way, that they take the input and cut of any-
thing that has a value below zero. We define this in a mathematical way:

Definition 3.1
Let x ∈ Rm be an arbitrary input to a neural network or any intermediate
result. A recitified linear unit is defined as the function
f(x) = (max (xi, 0))i=1,...,n.

When extending a neuron with a ReLU, we will call this a perceptron, see
figure 2.

We obtain the form of neural networks (see figure 3) we use from here
on out. It consists of a number of hidden layers of perceptrons, an input
layer which represents input data and an output layer which is a simple
linear layer (no ReLU) and produces the output of the neural network,
possibly with some alterations like mapping the individual values to the
range [0, 1], for instance. The output of a neural network is simply a vec-
tor and, in our case, will consist of a certainty value for each class. The
bigger the value, the higher the certainty of the model that the input be-
longs to this class.

In this thesis, we only analyze feed forward neural networks (FNNs),
rather than also taking into account convolutional neural networks

12

x1
...

x2

y1

y2

Figure 3: A feed forward neural network (FNN) with a two dimen-
sional input layer (left off the green dashed line), multiple hidden layers
with perceptrons and a two dimensional output layer (right off the red
dashed line)

(CNNs) which are most often used for image recognition. Putting our fo-
cus on one type of target models allows us to go even deeper in analysis
and attack development. Still, FNNs are highly relevant as many clas-
sification tasks can be performed by FNNs as section 7.2 demonstrates.
Interestingly enough, image filters used in CNN that do not use some
nonlinear features like pooling layers can easily be represented as sparse
weight matrices of a regular FNN.

3.3 Partial Linearity Theorem and Activation Polytopes

An interesting result we need in our reasearch is due to Raghu et al. [8],
who stated the following.

Theorem 3.2 (Partial Linearity Theorem)
Let M be neural network. If M uses a piecewise linear activation func-
tion, then the input space of M is subdivided into convex polytopes
where M behaves piecewise linearly.

An example of this can be seen in figure 4.

The reason for this behavior of neural networks is as follows: A single
perceptron in the neural network is either active or not, i.e. its output
value is greater than zero or equal to zero. We then define the activa-
tion pattern (or simply activation) of the whole network as an indicator
function, which for each perceptron indicates whether this perceptron is
active or not.

13

Figure 4: A simple neural network with a ReLU activation function,
three layers of perceptrons and two dimensional input. From left to
right, more layers of the model over the input space are shown. Each
line indicates the activation of a specific neuron: For every point from
input space above this line, the neuron is active, for every point below
it, the neuron is inactive. Taking all the layers together gives the convex
activation polytopes the input space is subdivided into. This image is
taken from Raghu et al.[8].

Definition 3.3
Let M be a neural network consisting of a set of perceptrons
N = {η1, η2, ..., ηn} and with inputs x ∈ Rm. Define the output of percep-
tron η of M on input x as νη. We then define the activation pattern as a

function f : Rm ×N → {0, 1}where f(x, η) =

1 νη(x) > 0
0 else

.

When given a specific activation, for each perceptron, the ReLU dissolves
since we know whether this perceptron is active or not. The output of
each perceptron then is either zero or changes linearly for this activation,
because the neuron itself consists of an affine linear function with weight
and bias.

The form of piecewise linear convex areas is explained in figure 4. Here,
we see a model that was trained on two dimensional input. For neurons
in the first layer, we can easily draw a line which indicates the activation.
Every input above this line activates the neuron, every input below it,
does not.

For deeper layers, Raghu et al. use an inductive argument: Since the
output of the lower layers is linear in any given polytope, the lines of a
deeper layer can only take turns at lines of lower layers, since here, an
input to the deeper layer has a break in linearity.

We refer to the polytopes of the Partial Linearity Theorem as activation
polytopes, because they are related to a specific activation of the neural
network at hand.

14

We use the results of Raghu et al. and go a lot of steps further: We de-
scribe a general way to compute the exact activation polytopes and then
improve on this by providing a different approach that is much more time
efficient but is still able to compute a good picture of activation polytopes,
given a desired resolution. From this, we are able to observe some first
indications of an interesting effect of how neural networks learn. Fur-
thermore we use Raghu et al.’s basic results to propose two novel attacks
based on our observations.

3.4 Polytope Functions and the Gradient of a Neural Net-
work

The last section concluded, that the input space of a neural network with
a piecewise linear activation function is subdivided into convex poly-
topes. For our attack proposed in chapter 4 and chapter 6 we will need
the actual functions of these polytopes. We call any of those functions a
polytope function and it is in the form MP (x) = AP · x + bP with weight
AP ∈ Rl×m, and bias bP ∈ Rl for some polytope P of a given neural net-
work M . How to obtain these functions is discussed in section 4.2.

Note thatAP not only describes the function ofM in the current polytope,
but is also equivalent to the gradient of M in said polytope: So when we
are talking about the function of M in a specific polytope, we are also
talking about the gradient in this polytope. This offers somewhat more
intuition to the reader, for instance a large gradient will imply a great
change in the output of the neural network.

The proof of the following theorem shows the equality between polytope
function weight and gradient.

Lemma 3.4
Let x ∈ Rm, A ∈ Rl×m, b ∈ Rl and define M(x) = Ax + b. It holds, that
∇M(x) = A, i.e. the gradient of an affine linear matrix function is equal
to the matrix itself.

Proof. To get the gradient of our function M , we need to calculate ∂M(x)
∂x

.
Fortunately, we can split up M(x) = Ax + b into l different functions
aix + bi where ai is the i-th row of A and bi is the i-th entry of b, thus we
get that M(x) = (aix+ bi)i=1,2,...,m.

Now, the gradient can easily be obtained:

∂M(x)
∂x

=


∂ a1x+b1

∂x
∂ a2x+b2

∂x
...

∂ amx+bm

∂x

 =


∂ a1x+b1
∂x1

∂ a1x+b1
∂x2

. . . ∂ a1x+b1
∂xm

∂ a2x+b2
∂x1

∂ a2x+b2
∂x2

. . . ∂ a2x+b2
∂xm

...
...

...
∂ alx+bl

∂x1
∂ alx+bl

∂x2
. . . ∂ alx+bl

∂xm



15

=


a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

...
al1 al2 . . . alm

,

which is, in fact, equal to A.

3.5 Optimizing a Loss Function with Gradient Descent

When we try to optimize a loss function, this implies that we want to
move towards an optimum of this function. Gradient descent does this
by calculating the gradient of the loss function with respect to the inputs
into the function. Since the gradient indicates the direction of steepest
ascent, Gradient Descent takes a step in the opposite direction of the gra-
dient, thus decreasing the loss function value. In every iteration the in-
puts are adjusted to the values the algorithm stepped to in the last one.
Hopefully, with each iteration, the input will get closer to something that
induces an optimum in the loss function.

For example, in neural network training, inputs to the loss function are
most often dependant on the weights and biases of the model. So, opti-
mizing this loss function results in adjustment of weights and biases of
the model to better fit the training data.

When we are interested in increasing the loss function value, we take a
similar approach, only that we walk in the direction of gradient when
trying to optimize our inputs. We call this gradient ascent.

In both gradient descent and gradient ascent, fixing a good learning rate,
i.e. the amount of distance allowed to be traveled in one optimization
step and a number of iterations (or epochs) that is large enough is critical
for a positive outcome of the algorithm. More parameters include: Mo-
mentum, which causes gradients of past iterations to be accumulated in-
stead of just using the gradient of the current epoch. Weight decay draws
the focus away from only minimizing the loss function, but also trying to
keep the weights small, typically measured by the euclidean norm of the
weights. Dampening reduces the learning rate after each iteration, that
is, in later epochs, smaller steps are taken.

3.6 Membership Inference Attacks on Neural Networks

In membership inference, an attacker is given white box or black box
access to a target model M and is given a datapoint d which is either
drawn from the training set of M or not. The attacker then must decide,

16

if d is a member, i.e. belonging to the training set, or a nonmember. The
accuracy of such an attack is considered to be the fraction of samples the
attacker classifies correctly.

3.7 Gradient Boosted Decision Trees

Friedman [12] introduces gradient boosted decision trees (GBDT). In sec-
tion 7.4 we show that they are a viable option as an attack model for
membership-inference-attacks.

A simple decision tree splits training data at each node by looking at one
or more values from the input datapoint, trying to reduce the value of a
given loss function. When asked for a prediction on a given input, the
input is pushed down through the decision tree and at each node takes a
turn into the split, the input belongs to. The leaf node can then be used
to obtain the result of the prediction.

In GBDT, multiple stages of decision trees are used. In the first stage, the
decision trees will only try to fit their output to the labeled training data
as good as possible. Decision trees at a second stage will try to fix their
output to the difference of the label and the output of the decision trees
of the first stage. At the third stage, new decision trees take the label and
the outputs of the first and the second stage into account and so on. Con-
sequently, a new stage only trys to change and improve output on those
samples from training data, that are currently being falsely classified, ac-
cording to the labels of training data.

3.8 Model Extraction and Federated Learning

We discuss potential applications for our observations on the training of
neural networks in chapter 5. This includes model extraction and feder-
ated learning.

A model extraction attack aims at reconstructing the weights and biases
of a neural network. The attacker has some access to the model, e.g. the
attacker might be able to query the model to gain some input / output
pairs to help with the task. In this attack, one will either be interested in
fidelity extraction, meaning that the extracted parameters of the targeted
network M should closely match the function that M represents in that it
produces almost the same output every time. Or, one will be interested
in task accuracy extraction, where the extracted function should be able
to solve the same classifaction task that M tries to solve, even though the
extracted function might not produce exactly the same predictions as M .

17

In federated learning, multiple actors with individual datasets try to train
a global model on all of these datasets, without ever sharing the datasets.
This is often accomplished by a central server that receives updates from
the actors and – based on these updates – constructs a model for all.

18

4 Exploiting Leakage of Activation Polytopes in
Neural Networks

We present our first privacy attack on neural networks: This attack ex-
ploits a specific part of neural networks that has been neglected in secu-
rity analysis so far, to the best of our knowledge: The layout of activation
polytopes and their behavior in the training of neural networks. The re-
sults indicate that there is in fact leakage – but further research is needed
to distil an even better, more powerful attack.

4.1 Introduction and Motivation

In neural network training, the model tries to fit its parameters, i.e. its
weights and biases to the training data as good as possible. The accuracy
on the training data should reach an acceptable level, but furthermore,
the accuracy on test data should be satisfying as well. Test data is not
known to the model in training, so generalizing to this is a very important
but also a very tough task.

Neural networks are prone to overfitting. When this happens, the gap
between training accuracy and test accuracy is very large. This is un-
desirable: On the one hand, a bad performance on test data makes the
model rather useless. On the other hand, it opens up many possibilities
for attacks. For instance, when a model overfits, its certainty will quite
possibly be lower for test data than training data. Even a simple thresh-
old attack can then classify given datapoints based on a threshold value
ϑ fairly successfully into members and nonmembers: If the certainty of
the target model on a given datapoint d is above ϑ, the attacker would
conclude that d is a member, otherwise it would conclude that d is a non-
member.

Infering membership of datapoints is a highly relevant field of research
and poses a huge threat to privacy. Medical history, geographical posi-
tions or shopping preferences that are reflected in datasets all represent

19

sensitive data. Individuals that contributed to the dataset will most often
be concerned that the fact of their contribution alone will be held private
by the data aggregator.

As chapter 2 on related work has shown, many attacks already exist in the
area of membership inference. One very popular example is the MLLeaks
attack by Salem et al. [3] which uses an attack model that learns on the top
three values from the certainty of the target model to infer membership.
The authors’ work resulted in a highly successful attack in a setting where
the structure of the target model is known to the attacker, and even in the
case where this structure is not known, i.e. a strict black box attack.

It is an open question though, whether the results of Salem et al. could
be improved even further when moving towards a white box setting and
exploiting the structure as well as parameters of the target model. This
is definitely a vastly interesting topic to look at: Better results in mem-
bership inference attacks raise awareness for sensible handling of private
data and highlight the main vulnerabilities to the privacy research com-
munity.

We propose a new membership inference attack which exploits a com-
pletely unregarded part of neural networks with great potential for leak-
age: We try to exploit the structure of activation polytopes of the target
model.

As explained by the partial linearity theorem in section 3.3, activation
polytopes are piecewise linear convex polytopes that subdivide the in-
put space of any neural network that uses a piecewise linear activation
function, like a ReLU. The question is, why should we bother looking
at the polytopes? The reason is, that these polytopes are built during
training. And since all the model sees in training is the training data,
we suspect leakage here. Also, we assume that an attack exploiting this
leakage would be even more robust to less overfitting of the target model
or defense mechanisms since this leakage stems from the structure of the
target model rather than its output. We propose the following hypothe-
sis.

Hypothesis 4.1
The layout and the form of activation polytopes of a neural network with
a piecewise linear activation function are both susceptible to leaking in-
formation about the training data.

With our attack we try to evaluate the validity of this hypothesis.

20

4.2 Visualizing Activation Polytopes

We visualize activation polytopes to further support our hypothesis. Be-
fore diving into the actual attack, we conduct a number of experiments
to evaluate the influence of training data on activation polytopes.

When visualizing the activation polytopes of a neural network, we have
to restrain ourselves to the two dimensional case for obvious reasons. In
higher dimensions we will use different means to get some insights into
a model in later chapters, but for plotting the full activation polytopes we
need to draw them on a plane.

Since datasets of two dimensional datapoints are not so relevant in ma-
chine learning and thus are very rare, we introduce a new synthetic dataset
we call Clusters2D. This dataset is constructed by randomly sampling
pairs of cluster centers over the unit square with a uniform distribution
and then spreading random datapoints around a cluster center. For each
pair of cluster centers, one cluster will contain only members of class
0 and the other will only contain members of class 1. This approach
tries to resemble the arrangement of natural datasets of higher dimen-
sions where we often find clusters of datapoints that belong to the same
class. But to make the classification task of the target model somewhat
harder, we only keep a small gap between neighboring clusters of dif-
ferent classes. This way, the target model is urged to draw fine decision
boundaries between the two. An example Clusters2D dataset is shown
in figure 5.

We need to obtain a mathematical representation of activation polytopes
before we can actually visualize them. For a mathematical representa-
tion of a single activation polytope, given by the corresponding activa-
tion pattern, we want an equation for each of the adjacent hyperedges. In
the two dimensional case, these hyperedges are simple two dimensional
lines, in three dimensions, they are planes in the three dimensional space
and in higher dimensions they are hyperplanes.

The challenge at hand can now be specified as follows: for a fixed neural
network M and given an arbitrary point p, compute the bounding acti-
vation polytope P of M for p.

To solve this challenge, firstly, we recall, that for a given activation pat-
tern, we argued in section 3.3 that all ReLUs dissolve. And so, each
perceptron of M either contributes a linear function – described by its
weights and bias – to the overall function of M or nothing at all, e.g. the
zero function.

As a first step, we compute the activation pattern f of M , given p. A
detailed description on how to do this, is given in algorithm 1. Again, f

21

Figure 5: An example of a Clusters2D dataset. The dataset features two
classes, shown as green and orange clusters. All datapoints are sampled
over the unit square.

22

is an indicator function, which tells us for each perceptron whether it is
active or not.

Algorithm 1: ActivationPattern
Input : model, point
Output: Activation pattern of model for point

1 set activation to the zero function
2 for each layer of model do
3 output = outputAfterLayer(model, layer, point)
4 for each perceptron of layer do
5 if output[perceptron] > 0 then
6 activation(perceptron) := 1
7 else
8 activation(perceptron) := 0
9 end

10 end
11 end
12 return activation

Given that we are able to compute an activation pattern, we want to
calculate for each perceptron ν the actual weights and the adapted bias
which describe the output of M up until after ν. We call these actual
weights and biases the adapted weights and biases and denote this with
w∗ and b∗ as opposed to the basic parameters w, b of the perceptron, as
defined in M .

The adapted parameters of a model inside of some activation polytope P
form an affine linear function like g(x) = w∗ ·x+b∗ for any input x. When
all the points inside of P that cause g to go from negative values to zero or
above are connected, this describes the hyperedge of ν at P . This is true
since g is greater than zero if and only if ν is active and so, the hyperedge
obtained from g in said way, indicates this change in activation. Note
that, some perceptrons might not contribute a hyperedge to P but we will
see how to sort these out in just a bit. We give an example of a hyperedge
of an activation polytope in figure 6.

For the calculation of adapted weights and biases, we start by taking a
coarse grained look at M and disregard any ReLU. The output M1 of the
first layer ofM is made up of the basic weight matrixw1 and the basic bias
vector b1 of the first layer: M1(x) = w1 · x + b1. The output of the second
layer then isM2(x) = w2 ·M1(x)+b2 = w2 ·(w1 ·x+b1)+b2 = w2 ·w1 ·x+w2 ·
b1 + b2. Consequently, the adapted weight matrix of the second layer is
simply w∗2 = w2 · w1, and the adapted bias vector is b∗2 = w2 ∗ b1 + b2. This
gives us a way to easily compute the adapted parameters of any layer

23

P

e

η

Figure 6: An activation polytope P of some neural network M . The
green lines indicate where perceptron η changes from inactive (all points
below the line) to active (all points above the line). The edge e of P that
is due to η is only a part of that. If η’s behavior inside of P is given by
g(x) = w∗ · x + b for some input x, then e is obtained by connecting all
the points inside of P that make g go from negative values to zero and
above. When continued outside of P this gives the dotted line.

and any perceptron. Note that, adapted weights and biases of any layer
can be constructed independently from one another as we do not need
one of the two to calculate the other.

Let us take the ReLUs into account now, as well. Our algorithm to calcu-
late adapted weights steps through M layer by layer: At the first layer,
the adapted weights are equal to the basic weights. At the second layer,
for neuron ν, we simply construct a matrix of all weights of neurons of
the first layer and multiply it by the weight of ν. But for any perceptron of
the first layer which is inactive, we discard it’s weights, i.e. replace them
with the zero vector. The overall result matches the weights of the func-
tion which produces output at ν when the input is send through from the
beginning of M . With deeper layers we go on analogously: Construct a
matrix of adapted weights from the former layer, set all inactive percep-
trons’ weights to zero and multiply the weight of the current perceptron
to obtain the adapted weight of this perceptron. Pseudocode for this ap-
proach is given in algorithm 2.

The adapted bias of any layer is generated in a similar fashion, as can be
seen in algorithm 3. Again, at the first layer, the adapted bias is equal
to the basic bias. At the second layer we multiply the weight matrix
(with discarded weights of inactive perceptrons) of the second layer by
the bias vector of the first layer and add the bias vector of the second
layer. Deeper layers are handled in an analogous fashion.

24

Algorithm 2: AdaptedWeights
Input : model, point, myPerceptron
Output: Adapted weight of myPerceptron at activation polytope of

model at point
1 set myPerceptronLayer to the layer of myPerceptron in model
2 set adaptedWeights to the identity matrix
3 activation = ActivationPattern(model, point)
4 for each layer before myPerceptronLayer do
5 layerWeights = LayerWeightMatrix(model, layer)
6 for each perceptron of layer do
7 if activation(perceptron) = 0 then
8 layerWeights(perceptron) = (0, 0, ..., 0)
9 end

10 end
11 adaptedWeights = layerWeights · adaptedWeights
12 end
13 adaptedWeights = PerceptronWeightVector(model,

myPerceptron) · adaptedWeights
14 return adaptedWeights

Algorithm 3: AdaptedBias
Input : model, point, myPerceptron
Output: Adapted bias of myPerceptron at activation polytope of

model at point
1 set myPerceptronLayer to the layer of myPerceptron in model
2 adaptedBias = LayerBiasVector(model, first layer)
3 activation = ActivationPattern(model, point)
4 for each layer after first layer up to myPerceptronLayer do
5 layerWeights = LayerWeightsMatrix(model, layer)
6 layerBias = LayerBiasVector(model, layer)
7 for each perceptron of layer do
8 if activation(perceptron) = 0 then
9 layerWeights(perceptron) = (0, 0, ..., 0)

10 end
11 end
12 adaptedBias = layerWeights · adaptedBias + layerBias
13 end
14 return adaptedBias(myPerceptron)

25

It remains to show, how to get the exact bounding polytope for an acti-
vation, once the hyperedge equations have all been set up. We already
mentioned, that some perceptrons might not even contribute a hyper-
edge to the polytope at all. To sort these out and get a simple point wise
representation of the polytope we do the following. Firstly, we construct
a series of constraints that bound our activation polytope: For any per-
ceptron, from the activation pattern we either get that any point of the
polytope must lie above or below this perceptron’s hyperedge. For our
constraints, this results in the hyperedge equation of this perceptron with
a greater than or a less than sign in between. Now, again for any sin-
gle perceptron and its hyperedge, we construct an optimization problem
which tries to get any point which lies on the given hyperedge but with
respect to all the constraints just built. By doing this optimization twice
with a slightly different target function, we get two points on the hyper-
edge and still inside the activation polytope. These two points are suffi-
cient to describe the hyperedge’s contribution to the activation polytope
in the two dimensional case. Also, if this perceptron’s hyperedge is not
adjacent to the current activation polytope, we will simply not get any
solution to the optimization problem and we can discard this perceptron.
The procedure described here is depicted in detail in algorithm 4. The
function Solve is considered to be an optimizer of some sort: It takes an
equation for which it must propose a solution, keeping some constraints
in mind and trying to maximize or minimize to a specific goal. See section
4.7 for details on the solver we used.

We are now able to construct any hyperedge belonging to an activation
polytope at a specific point in the input space. Applying this result to our
Clusters2D dataset, we obtain such pictures as in figure 7.

There are many things we are able to observe here. The density of the
polytopes seems to be higher right between two clusters of different
classes, whereas with a bit of distance to training data, the density seems
to drop. Furthermore, many perceptrons form hyperedges which are all
in parallel in between the two clusters. The overall appearance of poly-
topes seems more structured nearby training data, while they look less
structured and less homogenous when going further away from training
data, at least in most directions.

From these experiments we derive 4.1 which states that the layout and the
form of activation polytopes are susceptible to leaking information about
the training data. Furthermore, we suspect density and parallelism of
activation polytopes to be even more concentrated around training data
on higher dimensional data: Here, the neural network still has to focus its
effort on separating clusters and classifying training data but anywhere
where there is not much to be done, i.e. where there is no training data,

26

Algorithm 4: ActivationPolytope
Input : model, point
Output: Boundary points of activation polytope of model at point

1 activation = ActivationPattern(model, point)
2 constraints = ()
3 polytope = ()
4 for each perceptron of model do
5 adaptedWeights = AdaptedWeights(model, point, perceptron)
6 adaptedBias = AdaptedBias(model, point, perceptron)
7 if activation(perceptron) = 1 then
8 Append(constraints, adaptedWeights · x+ adaptedBias ≥ 0)
9 else

10 Append(constraints, adaptedWeights · x+ adaptedBias ≤ 0)
11 end
12 end
13 for each perceptron of model do
14 adaptedWeights = AdaptedWeights(model, point, perceptron)
15 adaptedBias = AdaptedBias(model, point, perceptron)
16 solution = Solve(adaptedWeights · x+ adaptedBias = 0,

constraints, maximize x1 + x2)
17 if solution 6= ⊥ then
18 Append(polytope, solution)
19 solution = Solve(adaptedWeights · x+ adaptedBias = 0,

constraints, minimize x1 + x2)
20 Append(polytope, solution)
21 end
22 end
23 return polytope

27

Figure 7: Activation polytopes of a neural network with 4 layers of 25
perceptrons per layer. The model has been trained on a random Clus-
ters2D dataset which is indicated by the green and red clusters of mem-
bers. From top left to bottom right the pictures show an overview and
three detailed views. The last picture was taken at the top left corner of
the first picture. As can be seen, activation polytopes tend to be more
dense and feature hyperedges that are more parallel nearby training
data. When moving away from training data, the activation polytopes
become less structured and less dense.

28

the artifacts which we can observe in the two dimensional case might just
vanish since they spread out into a lot of dimensions except for just two.

To summarize, we get two assumptions that are a requirement for hy-
pothesis 4.1, as follows.

Assumption 4.2
High dimensional data behaves in a similar fashion as Clusters2D, in that
it forms clusters of data points from the same class and produces a lot of
empty space between clusters or pairs of clusters that are from different
classes.

Assumption 4.3
Additionally, the structure of activation polytopes observed on
Clusters2D is similar on high dimensional data as well, but vanishes
when more distant to training data.

4.3 Obtaining Attack Training Data in a High Dimensional
Setting

All datasets evaluated in the experimental chapter in section 7.2 consist
of data with the number of dimensions ranging from 600 up to a couple
of thousands. Our attack needs to measure metrics in the surroundings
of a given point (applicable metrics are discussed in section 4.4) to mimic
the creation of a detailed view around a given point like in figure 7. Such
a detailed view can then be used to infer membership, i.e. separate views
into those that look like the surrounding of a member and those that do
not. Any attempt to do this, must consider that sampling over a cer-
tain radius around a given point is impracticable because of high dimen-
sionality. Furthermore we can not simply compute all of the activation
polytopes: A target model with n neurons can have up to 2n activation
polytopes over training data. The reason for this is that we have a distinct
activation polytope for each activation and since there are n neurons with
two different states – either active or inactive – we have an exponential
amount of different activations, thus an exponential amount of different
activation polytopes.

To cope with thess problems, we introduce a ray shooting algorithm
which tries to get the most out of the surrounding structure around a
given point. This algorithm shoots rays from the given point for which
membership shall be inferred. Once a first activation polytope boundary
is crossed, the exact position of the crossing point is finetuned by taking
a binary search like approach walking backward with a smaller step size
and changing direction every time the boundary is crossed again. The

29

ray’s initial direction is chosen uniformly at random for every dimen-
sion. After the first boundary is hit and for every subsequent boundary,
the ray continues in the direction of the normal standing on the closest
hyperedge of the activation polytope the ray currently is in. The algo-
rithm moves forward in the direction which takes it further away from
the initial starting point. Taking the normal of the closest hyperedge en-
sures that the algorithm does not simply walk randomly but somewhat
normalizes the way distances between boundaries are measured. Algo-
rithm 5 shows these thoughts in pseudocode. Values chosen for the num-
ber of boundaries computed and the number of steps taken to determine
a boundary precisely, both influence running time and precision of the
algorithm. Larger values inflict a greater runtime but also greater detail
in the obtained boundaries.

There are a few things to note about the functions used in algorithm 5.
ClosestPerceptron is supposed to get the perceptron which is closest
to a given point, which means that it should find the perceptron corre-
sponding to the hyperedge the point is closest to in the current activation
polytope. This is fairly easy, because this perceptron will be right at the
verge of flipping to activated / deactivated. Therefore, the output of this
perceptron will have the smallest absolute value over all perceptrons in
the target model, when sending the point through the model.

Once the closest perceptron has been determined, calculating the normal
of this perceptron’s hyperedge is something already covered by the cal-
culation of adapted weights: The hyperedge’s equation is made up of
w∗ · x + b∗, so this already is an edge representation with normal w∗ and
displacement b∗.

With the ray shooting algorithm, we introduced a way to perform mea-
surements around a given point without needing to go through all the
dimensions. In the next section we discuss what could possibly be mea-
sured in those surroundings.

4.4 Metrics for an Activation Polytopes Attack

We define what parts of activation polytopes we want to analyze for pos-
sible leakage. The following metrics are measured for a given datapoint,
to generate data for an attack model.

4.4.1 Boundary Distance

The first metric is called the boundary distance metric. It simply looks at
the distances from the starting point to any point along the ray that sits at

30

Algorithm 5: HyperedgeRayShooting
Input : model, point, numBoundaries, numSteps
Output: Points at Boundaries encountered

1 for i ∈ {1, 2, ..., numDims} do
2 directionVeci =∈R (−1, 1, 0, 0)
3 end
4 directionVec = Normalize(directionVec)
5 lastClass = PredictClass(model, point)
6 direction = 1
7 boundaryPoints = ()
8 for boundaryIndex ∈ {1, 2, ..., numBoundaries} do
9 stepWidth = 1

10 finetuning = False
11 for ∈ {1, 2, ..., numSteps} do
12 point = point + direction · stepWidth · directionVec
13 newClass = PredictClass(model, point)
14 if newClass 6= lastClass then
15 direction = -direction
16 finetuning = True
17 lastClass = newClass
18 boundaryPoint = point
19 end
20 if finetuning then
21 stepWidth = stepWidth/2
22 end
23 end
24 Append(boundaryPoints, boundaryPoint)
25 perceptron = ClosestPerceptron(model, boundaryPoint)
26 directionVec = AdaptedWeight(model, perceptron)
27 directionVec = Normalize(directionVec)
28 set direction to whatever takes us further away from the initial point
29 end
30 return boundaryPoints

31

a boundary. By doing this, it expresses the density of activation polytopes
around a given point: The higher the density, the more likely the gaps
between boundaries encountered from the ray shooting algorithm will
be small.

4.4.2 Activation Polytope Derivative

Another metric we look at, takes all the activation polytopes discovered
and computes the target model’s respective gradients at these polytopes.
Keep in mind, that this gradient is equal to the weight of this polytope’s
function. This has potential leakage: Since the polytopes arrange them-
selves according to training data, the polytope functions’ parameters quite
possibly leak some information about training data. Their computation
has already been covered in section 3.4. The gradient of the neural net-
work is a matrix, so applying the Frobenius norm – which is an extension
of the Euclidean norm to matrices – gives a scalar value which is the out-
put of this metric.

4.4.3 Normal Cosine Similarity

The last metric looks at all the hyperedges of the boundaries encountered.
Since, in the two dimesional case, we noticed more parallelism around
training data, this metric computes the cosine similarity of subsequent
boundaries’ normalized normals. The cosine similarity is a measure of
similarity between two vectors and shows off where there is high paral-
lelism.

4.5 The Activation Polytopes Attack

We introduce the activation polytopes attack. This attack takes a simi-
lar approach as Salem et al. [3] did in their MLLeaks attack: The attack
model is trained on data obtained from a priorly constructed shadow
model and the actual attack is then carried out on the target model. Re-
call, that the shadow model is used so that the attacker has labeled train-
ing data, since queries to the target model with a given datapoint do not
safely reflect whether this datapoint is a member or not.

Our approach differs from Salem et al. in that we try to exploit the form
of activation polytopes of the target model instead of simply looking at
the confidence which is output by the target model.

We concentrate on the first and simplest but nonetheless realistic and
interesting adversary as defined in the work of Salem et al., where the

32

shadow model uses the same architecture as the target model and is
trained on data from the same distribution as the data of the target model.

Once both the shadow model and the target model have been trained, our
attack takes batches of the shadow model’s training data and test data,
i.e. members and nonmembers, and for each of these batches’ points
performs the hyperedge ray shooting from algorithm 5 on the shadow
model. At the boundaries discovered by the algorithm, the attacker then
applies the metrics discussed in section 4.4. Algorithm 6 depicts this
training phase of our attack.

Algorithm 6: Activation Polytopes Attack – Training Phase
Input : shadowModel, shadowTrainingData, shadowTestData
Output: attackModel

1 attackTrainingData = ()
2 for point ∈ shadowTrainingData do
3 boundaries = hyperedgeRayShooting(shadowModel, point,

numBoundaries, numSteps)
4 for boundary ∈ boundaries do
5 apply chosen metric to this boundary
6 end
7 append(attackTrainingData, (boundaries, 1))
8 end
9 for point ∈ shadowTestData do

10 boundaries = hyperedgeRayShooting(shadowModel, point,
numBoundaries, numSteps)

11 for boundary ∈ boundaries do
12 apply chosen metric to this boundary
13 end
14 append(attackTrainingData, (boundaries, 0))
15 end
16 train attackModel on attackTrainingData
17 return attackModel

The attack model used in the algorithm can basically be any kind of clas-
sifier which predicts members and nonmembers with a high certainty
based on the outputs of the hyperedge ray shooting algorithm in combi-
nation with our metrics. Like Salem et al., we use a feed forward neural
network to keep up the comparability to their work. We also evaluate
the performance of gradient boosted decision trees, since they seem well
suited for this classification task, but have not been investigated in such
a manner anywhere before, to the best of our knowledge.

When running the attack on the target model with a given datapoint, this

33

datapoint goes through the same procedure as the training data for our
attack did with the shadow model: The hyperedge ray shooting algo-
rithm is performed on the target model with the datapoint and then sent
to the attack model for a classification into members and nonmembers.
Algorithm 7 summarizes this.

Algorithm 7: Activation Polytopes Attack – Attack Phase
Input : attackModel, targetModel, point
Output: Membership classification

1 boundaries = hyperedgeRayShooting(targetModel, point,
numBoundaries, numSteps)

2 for boundary ∈ boundaries do
3 apply chosen metric to this boundary
4 end
5 return predictMembership(attackModel, boundaries)

4.6 Limitations of the Activation Polytopes Approach

There are some limitations of our first approach for the reader to note.
The first limitation which we already mentioned, is the fact that there
is an exponential number of activation polytopes. So any visualization
technique – even in the two dimensional space – has a hard time at get-
ting a complete representation of a given neural network in an efficient
way. Time consuming visualization hinders the research process in that it
takes too long to try out different specific strategies for visualization like
color schemes or line strengths, and it takes too long to visualize a greater
amount of different target models to validate any observations made on a
single target model once. We overcome this problem in the next chapter.

As our experiments in section 7.3 indicate, there is in fact leakage through
our approach, but less strong as we would have hoped. We discuss
Cover’s theorem [1] [2] as a reason for this. In chapter 6 we introduce
a different attack with a more promising outlook.

4.7 Implementation Details

When implementing our activation polytopes attack, there are a few things
to note.

Firstly, when using PyTorch – as we did – it is important to turn off gra-
dient computation when running the training phase or the attack phase
of the algorithm. PyTorch usually automatically constructs a tree from

34

all executed operations for later gradient computation. So when a lot of
batches are processed to generate the attack’s training data or to run the
attack itself, PyTorch will always keep track of what is computed and in
what order. However, this is completely unnecessary, since the activation
polytopes attack does not optimize in any way over the input data or the
models used, except for the attack model, which is trained in a follow up
step, as can be seen in algorithm 6. Disabling PyTorch gradient compu-
tation through the command pytorch.no_grad() not only erases this
computational overhead and therefore saves time, but also heavily de-
creases memory usage: We noticed large drops in GPU utilization as well
as occupied memory space.

Implementing the hyperedge ray shooting of algorithm 5 requires some
care as to when a new boundary is discovered. If the first boundary
is crossed and finetuned, the algorithm, in its last step for this bound-
ary, might go back over the boundary again, closer to the starting point.
When going for the next boundary, the algorithm definitely should not
consider the same boundary again. An implementation should rather
keep track of the last point which was actually over the boundary when
looking from the starting point. From this point the algorithm should
continue when moving to the next boundary.

In section 4.2 we argue, that a solver of some sort is needed to compute
activation polytopes with algorithm 4. This solver needs to do some op-
timization with potentially many constraints, as their amount grows lin-
early in the size of the target model. Therefore, some thought should be
put in to what optimizer to use here. We decided to utilize Gurobi [13]
which is an industry standard tool and has proven to be highly efficient in
comparison to other software suites. Gurobi takes a fairly easy approach
to optimization, as there is little setup required and adding constraints
and equations follows a simple and intuitive schema as can be seen in
their documentation.

35

5 New Observations on the Inner Workings of a
Neural Network

As preparation for our next attack and similar to the visualization of ac-
tivation polytopes in chapter 4, we spend a lot of time trying to deeply
understand what is happening inside of the targeted neural network.
More specifically, we want to move on from the computationally expen-
sive calculation of individual activation polytope hyperedges to the vi-
sualization of polytope functions. As mentioned in the last chapter, the
exponential amount of activation polytopes is one main problem for vi-
sualization and attack development. In this chapter, we move past this
problem and use our newly developed visualization tool to gain new in-
sights on the inner workings of a neural network.

5.1 Depicting the Influence of Training Data in Neural Net-
works

We generate images that for each point on a two dimensional grid plot
the polytope function’s parameters’ norms (i.e. the norm of its weight
and bias) of the target model at this specific point, see algorithm 8. To
compare, we also plot the norm of the output as well as the confidence of
the target model at this point. The target model in this scenario has been
trained on our synthetic dataset Clusters2D so that we are actually able
to see something meaningful in 2D.

In algorithm 8 the function PolytopeFunction is assumed to return
the adapted weights and the adapted bias of the polytope function of the
given model at the given point. This function simply acts as an interface
to algorithms 2 and 3 where weights and bias are computed respectively.

By creating these images, we are hoping to understand how output and
polytope function of the target model are influenced by the position of
training data. On the one hand, this could help us in understanding how

36

Algorithm 8: VisualizationSampling
Input : model, areaOfInterest, resolution
Output: Image of model over areaOfInterest

1 Generate a list of points that are spread equidistantly in areaOfInterest
according to resolution

2 image = EmptyImage()
3 for point ∈ list do
4 outputnorm = ‖model(point)‖
5 A, b = PolytopeFunction(model, point) Anorm = ‖A‖
6 bnorm = ‖b‖
7 Paint pixel in image at point with desired value out of the three

above
8 end
9 return image

neural networks learn the classification task at hand, which is an utterly
relevant field of research and has not been understood so good so far. On
the other hand, we want to figure out what is leaked from both of these
parts of a neural network, possibly to be used in an attack.

One example of the aforementioned plots can be seen in figure 8. We
are able to observe first indications of an interesting effect: The neural
network seems to build some sort of mountain ridge of large polytope
function weights and bias to separate training data of different classes.
The bias also tends to carve small norms into plains of large norms. Other
than that, there is less activity of the model when moving away from
training data. The output norm of the model behaves inversely, in that it
features narrow valleys of small output vectors where the separation of
different classes is done. Both of these lines – the valleys of the output
norm and the mountain ridges of the polytope function’s weight norm –
correspond to the decision boundaries.

5.2 Conclusions for Leakage and Neural Network Under-
standing

We draw two conclusions from these observations: First off, neural net-
works use these valleys and mountain ridges two separate training data
and therefore this effect has a high risk of leakage of sensible informa-
tion about training data. And secondly, this effect could give a precise
description of a neural network and what it has learned, while still be-
ing way more dense, i.e. with less overhead than, for instance, activation
polytopes.

37

Figure 8: Different plots on a two dimensional grid of a neural network
that has been trained on a random Clusters2D dataset. Shown from
top left to bottom right are decision boundaries, output norm, polytope
function weight norm and polytope function bias norm. Green and red
dots represent clusters of training data of different classes. Yellow areas
indicate large values, blue areas indicate small values. The examined
models seem to build a sort of mountain ridge of using polytope func-
tion parameters to seperate training data. The output norm behaves
inversely. Both effects – mountain ridges and valleys – correspond to
the decision boundaries.

38

This could be used in membership inference or model inversion attacks
and could even be used to make model extraction more efficient: If there
is a less complex description of a neural network, we could try to extract
this instead of trying to reconstruct all the hyperplanes making up the
activation polytopes which quite possibly has a far greater query com-
plexity. Another example where our observations could be applied, is
the field of federated learning. Here, exchange of local mountain ridges /
valleys with other actors provides a great way of sharing what has been
learned so far but possibly reducing the amount of data that has to be
transmitted, thus making the overall approach more efficient.

Comparing to the paper by Raghu et al. [8] who originally talked about
activation polytopes, our approach described here also gives a great op-
portunity to visualize activation polytopes without having to compute
the exponential lot of them. Our approach allows researchers to pick any
desired resolution and any desired spot in the neural network (at least in
the two dimensional case) and the visualization computes the surround-
ing polytope functions but still is much more time efficient. The images of
figure 7 that was shown in the last chapter were created using the method
described here: For each pixel, the activation of the model is computed.
For two adjacent pixel it is then checked if their activation differs. If so,
we fill in one of the pixels and in the end, we get all the activation poly-
topes at the current level of resolution.

5.3 An Animated Visualization of the Training Process of
Neural Networks

The observations and implications we have gathered so far become even
more apparent, when we create animated views of the mountain ridges
over time: Every five batches of every epoch we take a snapshot just like
the ones in figure 8 and append these to a GIF to get a glance at what
training of a neural network looks like in motion. The reader can take a
look at figure 9 for this, the discussion of those images takes place in the
next section.

5.4 Further Observations and Mathematical Explanations

On the newly obtained animated view of a neural network (see figure 9)
we make another completely new observation: The neural network’s hy-
peredges all seem to work on the same task in the beginning, we call this
coalescing neurons. The reader can see this as a big mountain ridge that
goes through the middle and takes care of a very basic split of training
data in the second image (epoch 1) of figure 9. Then, after some time,

39

Figure 9: Progression of polytope function weight norm of a neural net-
work that has been trained on a random Clusters2D dataset. Yellow
areas indicate large values, blue areas indicate small values. Green and
red dots represent clusters of training data of different classes. From top
left to bottom right the state of the model is shown in pretraining, epoch
1, epoch 2 and epoch 9. We observe that the examined models start by
creating a single mountain ridge of large polytope function weights and
bias that generates an initial split of training data. After some time, this
mountain ridge either splits up, or new ones rise up somewhere. This
process keeps on going until there are ridges in all useful spots.

40

L
(Loss)

x1

x2
(Input)

w
(0)
11

w
(0)
22

ν
(0)
1

ν
(0)
2

w
(1)
11

w
(1)
22

w
(2)
11

w
(2)
22

ν
(1)
1

ν
(1)
2

ν
(2)
1

ν
(2)
2

Figure 10: Explanation of backward weight dependency on an exam-
ple neural network. Weights of layer l are denoted by w

(l)
ij , whereas

(ν(l)
1 , ν

(l)
2) describes the output of the model after layer l. When com-

puting the weight update in stochastic gradient descent for weight w(0)
22

(red dashed line), all the weights that can be reached from this weight
until the end of the model (green dotted lines) influence the update.
Combined with forward weight dependency (neurons from deeper lay-
ers need neurons from upper layers to bend and perform hyperedge
breaks), this gives a probable reason why neurons of upper layers and
neurons of deeper layers are so intertwined in the beginning of training
the model.

in our observations, this mountain ridge either splits up into another
mountain ridge, or another mountain ridge rises up somewhere. Over
the course of multiple epochs, this process keeps on going until there are
ridges in all useful spots.

We hold two influences responsible for this observed depedency between
weights of deeper layers and upper layers. The first one is the forward
weight dependency of the neural network: When hyperedges of neurons
from deeper layers want to bend at some point, they need to have hyper-
edges of upper layers to perform a break.

The second one is the backward weight dependency: To explain this,
we have a look at the example neural network of figure 10. This model
features three layers with two neurons each and two dimensional input
(x1, x2). The weights of layer l are denoted by w(l)

ij and the output of layer
l is referred to as (ν(l)

1 , ν
(l)
2). The output of the last layer is fed into the loss

function L.

We calculate the gradient ∂L(x)
∂w

(0)
22

which is used in stochastic gradient de-

scent to update the weight w(0)
22 . The output of the neural network after

layer l is denoted as ν(l). The function Φ(l)′ is the derivative of the ReLU
function over the output of layer l.

41

∂L(x)
∂w

(0)
22

= ∑
i 2(NN(x)i − yi)

∑
j Φ(2)′ ∑

k w
(2)
kj. Φ(1)′ ∑

l w
(1)
l2. Φ(0)′ ν

(0)
2

The green and dotty underlined terms are the weights which are green
and dotted in figure 10. Weight w(0)

22 is updated dependant on all the
weights that can be reached when going fromw

(0)
22 to the end of the neural

network. This is true in general as well: Weights of upper layers are
updated depending on all of the weights from deeper layers.

Combining forward weight dependency and backward weight depen-
dency, this gives a probable reason why neurons from deeper layers and
neurons from upper layers are so intertwined at the beginning.

Through our visualization we notice another effect: Hyperedges associ-
ated with neurons of deeper layers move quicker than those associated
with neurons of upper layers. This is due to the fact that in SGD, updates
of weights of upper layers become dependant on more and more factors
(as can be seen in the gradient that has been computed in this section).
When these factors are small (for examples the derivatives Φ′ in said for-
mulas), the overall gradient tends to diminish and therefore the update
for the weight becomes rather small.

It is outside the scope of this master thesis to dive even deeper into this
topic or to even use it for model extraction or federated learning. Hope-
fully, our findings and conclusions will be of use to other researchers in
the future. Most certainly, they will be of use to us in the next chapter.

42

6 A Gradient Descent Based Boundary
Distance Attack

Our next attack combines any insights we have made so far or are made
in recent papers. We form a new white box attack which uses gradient
descent / ascent to optimize towards low confidence, small output and
large polytope function parameters of the target model to determine the
distance to the closest decision boundary of said model. Then, a thresh-
old is used to compare the distance and to infer membership. Our ap-
proach differs from recent approaches in that it uses gradient descent as
an optimization tool and furthermore exploits not only the output of the
target model but its structure (given by its polytope functions’ parame-
ters) as well. In the best case, this attack is able to perform on par with
the latest research results on black box membership inference attacks by
Choquette et al. [9] on some datasets.

6.1 Introduction and Motivation

Our activation polytopes attack tries to get a good picture of the structure
of the target model around a given datapoint. From this, it tries to infer
whether the datapoint is a member or not. When we evaluate the per-
formance of this attack in numerous experiments in section 7.3 we con-
clude, that for the most part the leakage extracted is not as strong as we
had hoped. However, one metric does induce a reasonable attack perfor-
mance: The decision boundary metric, which looks at the distance from a
given datapoint to the nearby activation polytope hyperedges. This is not
so surprising: Decision boundaries for membership inference have been
researched far and wide in recent papers, take the work by Choquette et
al. [9] for instance.

Our first approach includes the ray shooting from algorithm 5. Coming
from an analysis on two dimensional synthetic data, we were hoping that
this ray shooting captures the essence of what makes a member a member

43

by simply doing the same thing we did in 2D: Taking a kind of ’picture’
around a given datapoint. Sadly, this approach is not able to get results
as good as results from current research. We would like to improve on
that.

We craft a new attack which is able to infer membership better through
a more targeted approach than our ray shooting and also through using
boundary distance as a metric.

6.2 Using Gradient Descent To Find The Closest Boundary

It would be possible to just use our ray shooting approach once again to
find the nearest boundary. In chapter 4 the task for this algorithm was to
take a kind of ’picture’ of the surroundings of a given datapoint. Now,
this task changes as we do not care about the overall surroundings but we
need to find a close to optimal path from the datapoint which leads to the
closest boundary. Again, in a high dimensional setting this is anything
but trivial, since there are countless possible paths to choose from, and
picking a random one is not likely to give very good results.

To manage this solution space complexity, we employ a standard algo-
rithm in optimization, the gradient descent algorithm. This will be sim-
ilar to the work by Zhang et al. [6] who used this algorithm for model
inversion on CNNs trained on image datasets. We use gradient descent
for membership inference instead and evaluate FNNs and associated
datasets.

Gradient descent is an iterative algorithm that starts at some point x and
progresses into the negative direction of the gradient of some loss func-
tion which describes how valuable x is to us, resulting in a change of
point and a decrease in value. Gradient ascent takes the opposite direc-
tion, therefore it tries to increase the value. We refer the reader to section
3.5, which describes gradient descent / ascent in more detail.

6.3 Putting Our Observations On The Inner Workings Of
Neural Networks To Use

We already identified the parameters of polytope functions and the out-
put of the neural network as two indicators for leakage in chapter 5. In
the following, we derive three possible parts of the neural network that
leak information about training data when looking at some activation
polytope P with polytope function MP (x) = AP · x + bP . Here, softmax
defines the softmax function that maps the output values of the target
model to the range [0,1].

44

Confidence
‖softmax(AP · x+ bP)‖∞

Output
‖AP · x+ bP‖2

Polytope Function
‖AP‖2 , ‖bP‖∞

Research up to this point has shown its main interest in leakage through
confidence of the target model, this applies to the paper by Zhang et al.
[6] as well. Output is a bit broader as it looks at the whole output rather
than just the most significant value. Leakage through polytope functions
is a completely new approach. All of the three leakage options are very
similar, yet it is the fine differences that result in the manifold observa-
tions we make in experiments in section 7.5.

For leakage through polytope functions, we use the Frobeniusnorm ‖.‖2
for the polytope function weight and the max norm ‖.‖∞ for the polytope
function bias. In our experiments we find these to be the most helpful in
running our attack (see overall results in section 7.5).

In our attack, when given a datapoint on which membership should be
inferred, we use gradient ascent / descent to optimize towards large
polytope function parameters, small output or low confidence of the tar-
get model respectively and move the datapoint accordingly. This way, we
move closer to the valleys and mountain ridges we have seen in chapter
5 and we are able to compare both strategies.

Our approach differs distinctly from Zhang et al. [6]: Firstly, we opti-
mize towards low confidence since we start at a possible training data
point and try to find a nearby decision boundary. Zhang et al. optimize
towards high confidence of the target model, since they start somewhere
random and try to find a training data point. And secondly, we also want
to evaluate whether the polytope function of the target model can be used
to leak even more than the output or confidence of the model can.

Other than that, we use another approach similar to the finetuning we
did in algorithm 5: When a boundary is crossed, we finetune on this
boundary by going back and forth with a smaller step size.

The loss function for gradient ascent / descent in this use case consists of
either the norm of a polytope function’s parameter at the datapoint, the
norm of the output, or the confidence of the target model.

Algorithm 9 provides some pseudocode for our approach to use gradient
ascent / descent. A loss function for polytope function bias is used here,

45

but it can be replaced by any other useful loss function. In the algorithm,
PolytopeFunction returns weights and bias of the polytope function
of a model at a specific point by using algorithms 2 and 3. The function
GAOptimize represents an implementation of gradient ascent optimiza-
tion, which is presumed to return a gradient, i.e. a vector that indicates
the direction of steepest ascent of polytope function weight for the input
point. Details on the practical use of gradient ascent optimization are
provided in section 6.5.

Algorithm 9: ConfidenceBoundaryDistance
Input : model, point, numIterations
Output: Boundary distance of point in model

1 direction = 1
2 finetuning = False
3 stepWidth = 1
4 optPoint = Copy(point)
5 lastClass = PredictClass(model, optPoint)
6 for iteration ∈ {1, 2, ..., numIterations} do
7 ,=

¯
PolytopeFunction(model, optPoint)

8 loss = norm()
9 gradient = GAOptimize(loss, optPoint)

10 optPoint = optPoint + direction · stepWidth · gradient
11 newClass = PredictClass(model, optPoint)
12 if newClass 6= lastClass then
13 direction = -direction
14 finetuning = True
15 lastClass = newClass
16 boundaryPoint = optPoint
17 end
18 if finetuning then
19 stepWidth = stepWidth/2
20 end
21 end
22 return EuclideanDistance(point, boundaryPoint)

When using this algorithm, we want to make sure, that the utilization
of gradient ascent is in fact possible here, which is not obvious at all:
Gradient ascent expects a loss function which is differentiable. Is this the
case here?

Recall that, for the loss function using polytope function weights, we use
algorithm 2, where we need to mix the weights of individual layers of the
target model with regard to the activation pattern in these layers. Mix-

46

ing these weights are simple multiplications which can be differentiated.
Getting the activation pattern of a specific layer is a bit tricky: Precise
clamping of the output of a layer to the values 0 and 1 makes it hard in
differentiation of this step. Therefore, we use the sigmoid function which
continuously maps values to the range [0,1] and clamps everything above
1 and below 0. This function is well differentiable.

The same logic applies to the bias loss function.

Let us move on to the confidence loss function. Ordinarily, this loss func-
tion would not be differentiable, because the maximum function is usu-
ally not continuous. The same goes for any ReLU that is part of the neural
network under scrutiny, since a ReLU is basically a maximum function
as well. However, one can approximate the derivative of discontinuous
functions: For instance, the derivative of the function f(x) = max (x, 0)
for some input x ∈ R is often approximated by

f ′(x) =


1 x > 0
0 x < 0
0.5 else.

PyTorch uses this approximation and many more like these for other
functions which are not differentiable by default. This helps us a lot: With
the maximum function being differentiable, all that remains in the con-
fidence loss function is the function of the neural network M itself. We
already know that M is differentiable – at least in PyTorch – because this
is used throughout the training phase ofM when gradients are computed
to update the weights and biases of the network. The only difference be-
ing that here, we do not update those parameters, but update the input
instead.

6.4 The Gradient Descent Boundary Distance Attack

Putting together the pieces for our gradient descent boundary distance
attack is fairly simple now: For each datapoint on which membership
shall be inferred, the attack computes the boundary distance and com-
pares it with a priorly selected threshold. If the distance is above the
threshold, this datapoint is classified as a member, otherwise it is classi-
fied as a nonmember, see algorithm 10.

Choosing a good threshold is important for attack performance, obvi-
ously. There are different approaches to this and we already mentioned
a possible strategy in section 2.1. When evaluating our attack in experi-
ments, we pick an optimal threshold.

47

Algorithm 10: Gradient Ascent Boundary Distance Attack
Input : model, point, threshold
Output: Membership classification

1 distance = ConfidenceBoundaryDistance(model, point,
numIterations)

2 if distance > threshold then
3 return >
4 else
5 return ⊥
6 end

6.5 Implementation Details

Implementing our attack requires an efficient gradient descent / ascent
to be available if not implemented anew. Luckily, PyTorch provides
torch.optim.SGD, an implementation of stochastic gradient descent,
which can be used for gradient ascent when defining the loss negatively,
so that the polytope function parameters’ norms increase during opti-
mization instead of decreasing. Of course, the parameterization of Py-
Torch’s SGD influences the outcome of our algorithm. So picking a learn-
ing rate, momentum or number of epochs must be done beforehand. Be-
fore applying our attack to a dataset, we evaluate some of the dataset’s
datapoints to tweak parameters so that gradient ascent takes a meaning-
ful path through the model. For the tuning of parameters, we plot the
change of the norm when gradient ascent / descent optimizes. Here, we
do not finetune on a single boundary (like our attack does) and we note
wherever there is a change of class, i.e. a boundary is detected. These vi-
sualizations help us in finding a good set of parameters so that the clos-
est boundary is found with a reasonable number of epochs and with a
satisfying numerical precision. Access to the dataset is not imperative
here: We only need a set of parameters that makes sure, that the decision
boundary is reached from any given datapoint with these parameters. So
tuning the parameters on a random point and slightly raising the num-
ber of epochs, should suffice to get a working attack on real data as well.
Furthermore, we observed that we do not need to change our set of pa-
rameters for different datasets.

48

7 Experiments and Evaluation

This chapter evaluates the algorithms and attacks discussed in this the-
sis. Beforehand, the experimental setup as to what machinery and tech-
nologies were used, are explained in detail.

7.1 Experimental Setup

All experiments were run on a NVIDIA DGX-2 deep learning system [14].
This GPU cluster consists of 16 NVIDIA Tesla V100 GPUs which them-
selves account for an overall number of roughly 82 thousand Cuda cores
that perform at two petaFLOPS. The GPUs are supported by 512 GB of
GPU memory and 1.5 TB of main memory.

The algorithms developed in this thesis were implemented using the
Python [15] programming language which is most commonly used in the
research field of artificial intelligence security due to its intuitive syntax,
simple programmability and many extensions available through pack-
ages.

Amongst various packages used in this thesis, we most importantly rely
on the PyTorch [16] package which has also evolved as one of the most
popular libraries used, connected to machine learning. PyTorch features
a comprehensive yet easy approach to working with neural networks.

7.2 Evaluated Datasets

We perform an empirical study on various datasets to evaluate the use-
fulness of our attacks. All of the datasets used, have already been used
in prior research on this topic, therefore it is easy for us to compare with
results from different papers. We give a short summary of what these
datasets are about.

49

The Purchase [17] dataset contains shopping history of customers for dif-
ferent products. It is represented as 600 dimensional binary vectors indi-
cating for each of the 600 products whether the individual of this data-
point has purchased this product or not. Shokri et al. [10] performed a
clustering on this dataset resulting in one hundred clusters with individ-
uals of similar purchasing preferences. By doing this, they constructed
a classification problem where the task is to predict the correct cluster
given a purchase history.

Shokri et al. further used the Location [18] dataset which originally con-
tains mobile check-ins to a social network in the Bangkok area. The
Bangkok map is split into same size pieces and for each user it is noted
whether this user has made a check-in in this region, resulting in 446
binary features in this dataset. Again, the dataset is clustered into 30 dif-
ferent clusters based on the check-in behavior of users, to obtain a classi-
fication problem.

The News [19] dataset consists of newsgroup documents that are cate-
gorized into twenty classes. Since datapoints in this dataset are in text
form, they have to be transformed into frequencies of terms. These fre-
quencies are then converted into term-frequency times inverse document
frequency (tfidf) values by a tfidf formula, which has proven to be more
useful than regular frequencies in text classification. We obtain 134410
dimensions after the tfidf transformation.

The Adult [20] dataset contains 14 individuals’ attributes like age and
ocupation and poses the task to predict whether a given person makes
over 50K $ a year.

The Texas [21] dataset attributes patients 6169 important health factors
like injury cause and diagnosis. From this, a prediction as to what proce-
dure this patient will undergo, is demanded.

We use the same splits for datasets to obtain training data for all needed
models as in the original papers by Salem et al. [3] and Choquette et al.
[9] respectively.

7.3 Results and Evaluation of the Activation Polytopes At-
tack

For the first results, we take a look at the activation polytopes attack.
This attack analyzes the structure of activation polytopes around given
datapoints to make an attempt at determining whether they are members
or nonmembers. Here, we compare ourselves to the paper by Salem et al.
[3], since they proposed a very successful attack in this field and we use
a very similar approach: We concentrate on their first adversary, where

50

a separate shadow model uses the same architecture as the target model
and is trained on data from the same distribution as the training data of
the target model. In the training phase of our attack, only the shadow
model is used, whereas the actual attack is then carried out on the target
model.

As hypothesis 4.1 states, we want to show that the structure of activation
polytopes leaks even more information about training data than the con-
fidence could. Therefore we extend the attack data of Salem et al. by our
attack data in hope of more leakage. We also extend any attack model in
a natural way so that it is able to handle attack data with more dimen-
sions, i.e. more attachments. The attack models used in this scenario are
simple feed forward neural networks with two layers and 64 neurons,
parameters like learning rate are picked to be equal to the parameters of
Salem et al.

Figure 11: Attack accuracy of the original MLLeaks attack by Salem et al.
[3] and the combination of the MLLeaks attack with additional metrics
obtained through our activation polytopes attack on different datasets.
Attack models are neural networks. Our approach is not able to improve
the MLLeaks attack.

The first results of our activation polytopes attack is shown in figure 11.
We observe, that our attack does not improve the overall performance of
the attack by Salem et al. Different attack metrics perform a bit differently
but none of these metrics show a significant increase in attack accuracy.

This means that our first attack – at least in its current state – can not
be used to leak any more than already is leaked by the MLLeaks attack

51

when carried out on these datasets. Any decrease in accuracy can be ex-
plained by the fact that the neural network used as attack model actually
now faces a tougher task in relating the attack’s data and the labels in
training when our data is not as correlated with membership as is the
data by Salem et al. Possible reasons, that this correlation is not so strong
could be, that the MLLeaks attack already is almost complete, i.e. it cap-
tures most there is to infer membership and any other approach would
have a hard time extracting anymore useful information to further im-
prove the attack. Also, it is possible that assumptions 4.2 and 4.3 are not
valid assumptions to make: Maybe high dimensional data does not have
a similar structure as Clusters2D does. Or maybe, this structure does ex-
ist, but it does not vanish when moving away from training data, so that
it is harder for our attack to distinguish members and nonmembers.

To evaluate our assumptions, we also carry out our attack as a standalone
attack. As attack model, we deploy a neural network, just like in the
paper by Salem et al., figure 12 shows the results in this scenario.

Figure 12: Comparions of attack accuracy between the original ML-
Leaks attack by Salem et al. [3] and our standalone activation polytopes
attack on different datasets. Attack models are neural networks. Only
on one dataset is our attack successfull.

For almost all of the datasets, our attack is not able to leak any informa-
tion about training data, with the exception of the Location dataset. Our
attack’s accuracy on the Location dataset is around 60% for the boundary
distance metric. The other two metrics reveal some leakage as well, but
less. The attack by Salem et al. performs with an attack accuracy of 86%
on this dataset.

52

This result is rather surprising to us, as our two dimensional plots indi-
cated clear leakage and we would have suspected at least some leakage
on all of the datasets. Our attack’s accuracy on the Location dataset how-
ever, is fairly good since it implies definite leakage of sensible informa-
tion from the target model, meaning that assumptions 4.2 and 4.3 might
not be faulty afterall, at least on one dataset so far. However, the other
datasets indicate, that our approach is not working yet, either because
these datasets are contrary to assumptions 4.2 and 4.3. Or, other metrics
than the ones used here or even a different approach than our hyperedge
ray shooting from algorithm 5 are necessary to infer membership.

The metric which performs the best, is the boundary distance. This metric
is the least experimental of the three, as boundary distance has been used
in many attacks so far, for instance the paper by Choquette et al. [9]. So,
this result is not so surprising. The other metrics do not seem to capture
the structure quite as well.

Overfitting could play a role in the performance of the activation poly-
topes attack, as it does with many membership inference attacks. Overfit-
ting does occur the strongest on the Location target model, with training
accuracy at 100% and test accuracy at 60% which might explain that our
attack performs the best here. But other target models overfit similarily,
with the Purchase target model performing on training data with 100%
accuracy and on test data with 72%, so overfitting alone can not be held
accountable for our attack’s performance.

Cover’s theorem [1] [2] states, that transforming a low dimensional
dataset into high dimensions through a nonlinear transformation, makes
the resulting dataset more likely to be linearly separable and therefore
easier to learn for a neural network. This does not apply directly to our
scenario as we do not transform the Clusters2D dataset to get the real
datasets evaluated here, but it might still apply to our high dimensional
datasets. This would mean that a target model that trains on datasets like
Location and Purchase has a simpler task than we would it expect to have
when generalizing our Clusters2D dataset to higher dimensions. The tar-
get model then does not need to concentrate its activation polytopes as
much as it did in the two dimensional case. So even though there is a far
greater amount of these polytopes (recall that they grow exponentially
with the number of neurons in the target model) they might not form in a
way around members that make them distinguishable from nonmembers
that good.

To further assess our ray shooting approach of algorithm 5, we increase
the number of rays. This only slightly increases the attack accuracy. We
conclude, that the ray shooting algorithm is not a useful approach for
constructing attack data.

53

7.4 Improving the MLLeaks Attack Through Gradient
Boosted Decision Trees

As mentioned in section 3.7, we want to investigate the usage of gradi-
ent boosted decision trees in membership inference. To the best of our
knowledge, these classifier have not been thoroughly examined and put
to use in this field of research so this is a definitive step into something
new.

Aside from the attack model, all other aspects of our attack remain the
same as we simply put the attack training and test data into a GBDT. For
the sake of completeness, we also deploy a GBDT for the MLLeaks attack.

GBDTs have some parameters that need to be chosen carefully. Most
importantly, one has to decide on the number of decision trees and the
number of nodes in one of these trees. Both of these parameters influence
the performance of the model drastically. The number of decision trees
can be chosen somewhat arbitrarily: Each decision tree only tries to im-
prove on the results of the tree before itself, so the overall training error
can only decrease when more trees are used. We choose the number of
decision trees to be 1024. The second parameter, the number of nodes
in a single tree is chosen from the range between one and 60 nodes by
whichever gives the best attack performance. The optimal parameter is
always below 10 in our experiments. In a realistic attack scenario, choos-
ing this parameter in a gainful manner (regarding the attack accuracy)
might pose a problem. Future work should perform an in depth study
on how this parameter should be chosen in general.

We measured results that can be seen in figure 13. Interestingly enough,
with GBDTs we are not only able to improve our activation polytopes
attack, but also, we are able to improve the MLLeaks attack on almost all
of the datasets. Increase in accuracy ranges up to 5% points for MLLeaks
and also for our attack, at least on the Location dataset. We are able show,
that GBDTs are in fact a good choice as an attack model in the field of
membership inference.

7.5 Results and Evaluation of the Gradient Descent Bound-
ary Attack

As a second result, we evaluate our gradient descent based boundary
attack. This attack uses gradient descent / ascent to find a path from a
given datapoint by optimizing towards large polytope function param-
eters, small output norm and high confidence of the target model and
then measures the distance between the datapoint and the first decision

54

Figure 13: Attack accuracy of the original MLLeaks attack by Salem et al.
[3] and our standalone activation polytopes attack on various datasets.
Attack models are gradient boosted decision trees (GBDT). Both the ML-
Leaks attack and our activation polytopes attack profit from an attack
accuracy increase of 5% points. Increasing the number of rays of algo-
rithm 5 only induces a small increase of attack accuracy.

boundary that it discovers. We compare ourselves with one of the lat-
est papers in this field by Choquette et al. [9], who contributed a very
successful black box attack that only uses the label that is output by the
target model (label only attack).

Attack accuracy of our approach and of the one by Choquette et al. are
shown in figure 14. Our attack performs on par with Choquette et al. on
the Adult and Location datasets: The label only attack has an accuracy of
59% on Adult, whereas our attack has an accuracy of 58%. On Location,
the label only attack has an accuracy of 89%, our attack can even slightly
improve on that with an accuracy of 91%. On the Purchase-100 and Texas
datasets, our attack underperforms in comparison to Choquette et al.:
Their attack has an accuracy of 87% and 80% respectively and our attack
has an accuracy of 78% and 58% respectively.

On Adult and Location, we can infer, that our approach is in fact a vi-
able option as an attack. We generally are not surprised, that this attack
performs much better than our first approach (the activation polytopes
attack of chapter 4) since we crafted this attack from everything we had
learned in that chapter and also since boundary attacks in general are
often very performant.

In section 6.3 we derived three possible parts of neural networks that leak

55

Figure 14: Comparison of attack accuracy between the paper by Cho-
quette et al. [9] (Label Only) and our approach on different datasets.
For our attack, we show the performance with an optimal threshold. On
two datasets, our attack performs on par with the attack by Choquette
et al. We conclude that our attack is in fact a viable option as an attack
and that confidence is best for leakage extraction (at least in our attack
framework).

information about training data: Confidence, polytope function parame-
ters and output. We conclude that – inside of our attack framework – con-
fidence is the best way to go when constructing a membership inference
attack. The polytope function parameters do not extract as much leakage
as confidence is able to. Changing the norms of the polytope function
parameters does not change attack accuracy that much. Applying an ad-
ditional softmax transformation does increase the attack accuracy most
of the time.

To some extent, we can follow that polytope function parameters and de-
cision boundaries are also aligned on higher dimensional data: We were
only observe this correlation on our synthetic two dimensional dataset,
but since the gradient ascent attack is able to extract leakage through
polytope function parameters, there must be some correlation on real
datasets as well.

The question that remains open and needs to be answered, is the follow-
ing. Since our attack performs in a white box setting, while the attack by
Choquette et al. performs in a black box setting: Why does our attack not
perform much better than their attack? And why does it only perform as
good as their attack on two datasets?

56

To answer the second question, we observe that Location is the dataset
that overfits the most in comparison to the other datasets, followed by
Purchase-100, so overfitting is quite possibly helpful for our attack. How-
ever, the target model of the Texas dataset overfits more than the target
model of Adult, but our attack’s accuracy is very similar in both cases, so
overfitting can not be the only explanation.

To answer both questions alike, maybe some target models and datasets
are more prone to leaking information to our gradient descent / ascent
based attack as their confidence / gradient landscape is shaped more
suitable for finding the closest boundary through optimizing towards
high confidence of the target model. For instance, the Location dataset
does induce a slightly better attack performance for our attack than for
the attack by Choquette et al. Maybe an optimization strategy different
from gradient descent / ascent could do the trick on other datasets as
well. Another reason could also be that, the leakage on Location and
Adult are ’maxed out’, meaning that with decision boundary attacks, no
more information about training data and membership can be leaked as
current approaches are already too precise.

We consider Cover’s theorem [1] [2] to be another reason for our attack’s
performance (we already mentioned Cover’s theorem in detail in section
7.3). If the task of learning a high dimensional datasets is easier for a
target model than we would expect from looking at Clusters2D, then it
does not need to finetune its individual polytope function parameters to
the training data as much. The parameters would then tend not to cor-
relate with decision boundaries as much and leak less information about
training data.

57

8 Conclusion and Outlook

In this thesis, we developed tools that help in understanding how and
what neural networks learn on a synthetic two dimensional dataset that
is closely modeled after what high dimensional datasets most likely look
like. These tools will hopefully help other researchers in finding new
opportunities for leakage and then implementing and evaluating privacy
attacks like membership inference and model inversion. Using our tools,
we derived three main possible leakage opportunities (see section 6.3)
given a target model: Its confidence, its output and its polytope functions,
i.e. the individual functions the neural network has learned at a specific
point, parameterized by weight and bias.

When applying our visualization tools in chapter 5, we were able to ob-
serve first indications of an interesting effect of neural network training:
Neural networks seem to build a single mountain ridge of large polytope
function parameters in the beginning and then after a while, more moun-
tain ridges rise up. We mathematically explained these coalescing neu-
rons through forward weight dependency (which states that hyperedges
belonging to neurons of deeper layers need neurons of upper layers to
bend and perform breaks) and backward weight dependency (in stochas-
tic gradient descent, weights in upper layers are updated dependant on
weights of deeper layers) which, when combined, might cause neurons
of all layers to perform a similar task, at least in the beginning of train-
ing. We also observed that after training, the norm of polytope function
parameters very much correlate with decision boundaries, so the neural
network uses this to encode what is has learned. We highlighted possi-
ble applications of our observations in the fields of model extraction and
federated learning. And we observed that hyperedges associated with
neurons of deeper layers change quicker than those of neurons of upper
layers. This last observation is due to the fact that the updates in stochas-
tic gradient descent become dependant on more factors when looking at
neurons of upper layers. For these neurons, the updates tend to diminish
since many small factors might occur.

58

We crafted two novel membership inference attacks that use more than
the confidence of the target model, based on the observations made
through the usage of our tools. The first one exploits the layout and struc-
ture of activation polytopes (the polytopes over the input space, inside of
which neural networks with partial linear activation functions behave
like a linear function) and uses neural networks and gradient boosted
decision trees as attack models (see chapter 4). The second one uses a
gradient descent based approach and optimizes towards large polytope
function parameters and low confidence and small output norm for find-
ing the closest boundary (see chapter 6). The boundary distance is com-
pared to a threshold to infer membership.

Through these attacks and our visualization tools we were able to lessen
the size of the gap between the theoretical point of view of the likes of
Raghu et al. [8] that explain how neural networks learn and a practical
point of view like the one of Jayaraman et al. [7] that showcases an attack
that uses the loss function of a target model instead of the confidence. We
contributed another approach that does not use the confidence of target
models as an attack angle and also tied it to observations we made on
how neural networks learn.

Our first attack on activation polytopes does in fact reveal leakage but
underperforms in comparison with the MLLeaks attack by Salem et al.
[3], see section 7.3. In section 7.4, we also assessed the implementation of
gradient boosted decision trees (GBDT) as attack models and were able
to slightly improve the performance of the MLLeaks attack. Therefore
we follow that GBDT are a good fit as an attack model in membership
inference attacks

Our second attack on polytope function parameters, output norm and
confidence is able to perform on par on some datasets in comparison to
the latest research by Choquette et al. [9] in the best case, see section
7.5. Out of polytope function parameters, output and confidence, we
conclude that confidence is the best way to go for leakage extraction in
our framework.

We discuss Cover’s theorem [1] [2] as a possible reason for why the leak-
age of activation polytopes and activation functions is not that strong, see
section 7.3 and section 7.5.

There are a lot of possibilities to expand on our work. Our observations
on neural network training – the coalescing neurons at the beginning of
training and the correlation between polytope function parameters and
decision boundaries – should be tested on datasets of higher dimensional
data, to further confirm that any effects observed on Clusters2D also pop
up there. Possible applications of our observations, like model extraction
and federated learning should also be evaluated.

59

We give a mathematical explanation for the coalescing neurons in sec-
tion 5.4. An even deeper mathematical analysis, especially concerning
backward propagation, could help in understanding exactly what is hap-
pening and why. More analysis on the progression of activation poly-
topes and polytope functions throughout the training of a neural net-
work could also be helpful. This could furthermore be used to improve
our attacks.

Since we proposed one way of visualizing neural networks and assessing
possible attack angles for membership inference and model inversion,
there should be even more proposals that try to close the gap between
the theory and the practice of leakage of neural networks. It would also
be interesting to see the effect of combining our insights on the struc-
ture of activation polytopes and our observations on polytope function
parameters with other attacks, like The Secret Revealer by Zhang et al.
[6].

We contributed to the trend of trying to understand what neural net-
works do and how we can exploit that, aside from taking a look at only
the confidence of the target model. This trend will certainly keep on
growing in the future and we are looking forward to new intriguing de-
velopments in this field.

60

Bibliography

[1] Thomas M. Cover. Geometrical and statistical properties of systems
of linear inequalities with applications in pattern recognition. IEEE
Trans. Electron. Comput., 14:326–334, 1965.

[2] Simon Haykin. Neural Networks and Learning Machines (Third Edi-
tion). Pearson, 2009.

[3] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang,
Mario Fritz, and Michael Backes. Ml-leaks: Model and data indepen-
dent membership inference attacks and defenses on machine learn-
ing models, 2018.

[4] Google. Google zeitgeist. https://archive.google.com/
zeitgeist/2012/, 2012.

[5] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inver-
sion attacks that exploit confidence information and basic counter-
measures. pages 1322–1333, 10 2015.

[6] Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and
Dawn Song. The secret revealer: Generative model-inversion attacks
against deep neural networks, 2020.

[7] Bargav Jayaraman, Lingxiao Wang, Katherine Knipmeyer, Quan-
quan Gu, and David Evans. Revisiting membership inference under
realistic assumptions, 2021.

[8] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha
Sohl-Dickstein. On the expressive power of deep neural networks,
2017.

[9] Christopher A. Choquette-Choo, Florian Tramèr, Nicholas Carlini,
and Nicolas Papernot. Label-only membership inference attacks.
CoRR, abs/2007.14321, 2020.

[10] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine learning
models. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 3–18. IEEE Computer Society,
2017.

61

https://archive.google.com/zeitgeist/2012/
https://archive.google.com/zeitgeist/2012/

[11] Jianbo Chen, Michael I. Jordan, and Martin J. Wainwright. Hop-
skipjumpattack: A query-efficient decision-based attack, 2020.

[12] Jerome H. Friedman. Stochastic gradient boosting. Computational
Statistics Data Analysis, 38(4):367–378, 2002. Nonlinear Methods and
Data Mining.

[13] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual,
2021.

[14] NVIDIA Corporation. NVIDIA DGX-2 Datasheet. https://
www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-
web-new.pdf, 2019. Accessed: 21.08.2021.

[15] Python Software Foundation. Python language reference, version
3.8. https://www.python.org, 2021.

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[17] Acquire valued shoppers challenge. https://www.kaggle.com/
c/acquire-valued-shoppers-challenge/data, 2021.

[18] Dingqi Yang, Daqing Zhang, and Bingqing Qu. Participatory cul-
tural mapping based on collective behavior data in location-based
social networks. ACM Trans. Intell. Syst. Technol., 7(3):30:1–30:23,
2016.

[19] News category dataset. https://www.kaggle.com/rmisra/
news-category-dataset, 2021.

[20] Uci adult census income. https://archive.ics.uci.edu/ml/
datasets/adult, 2021.

[21] Hospital discharge data. https://www.dshs.texas.gov/
THCIC/Hospitals/Download.shtm, 2021.

62

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-2-datasheet-us-nvidia-955420-r2-web-new.pdf
https://www.python.org
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.kaggle.com/rmisra/news-category-dataset
https://www.kaggle.com/rmisra/news-category-dataset
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm

	Zusammenfassung
	Abstract
	Table Of Contents
	Introduction
	Related Work
	Membership Inference Attacks
	Loss Function Membership Inference
	Label Only Black Box Membership Inference
	Model Inversion

	Preliminaries and Definitions
	Notation Table
	Basics of Neural Networks
	Data Encoding for Training of a Neural Network
	Training a Neural Network
	The Structure of Neural Networks

	Partial Linearity Theorem and Activation Polytopes
	Polytope Functions and the Gradient of a Neural Network
	Optimizing a Loss Function with Gradient Descent
	Membership Inference Attacks on Neural Networks
	Gradient Boosted Decision Trees
	Model Extraction and Federated Learning

	Exploiting Leakage of Activation Polytopes in Neural Networks
	Introduction and Motivation
	Visualizing Activation Polytopes
	Obtaining Attack Training Data in a High Dimensional Setting
	Metrics for an Activation Polytopes Attack
	Boundary Distance
	Activation Polytope Derivative
	Normal Cosine Similarity

	The Activation Polytopes Attack
	Limitations of the Activation Polytopes Approach
	Implementation Details

	New Observations on the Inner Workings of a Neural Network
	Depicting the Influence of Training Data in Neural Networks
	Conclusions for Leakage and Neural Network Understanding
	An Animated Visualization of the Training Process of Neural Networks
	Further Observations and Mathematical Explanations

	A Gradient Descent Based Boundary Distance Attack
	Introduction and Motivation
	Using Gradient Descent To Find The Closest Boundary
	Putting Our Observations On The Inner Workings Of Neural Networks To Use
	The Gradient Descent Boundary Distance Attack
	Implementation Details

	Experiments and Evaluation
	Experimental Setup
	Evaluated Datasets
	Results and Evaluation of the Activation Polytopes Attack
	Improving the MLLeaks Attack Through Gradient Boosted Decision Trees
	Results and Evaluation of the Gradient Descent Boundary Attack

	Conclusion and Outlook
	Bibliography

