Title:

Testing Side-channel Security of Cryptographic Implementations against Future Microarchitectures

 

Abstract:

How will future microarchitectures impact the security of existing cryptographic implementations? As we cannot keep reducing the size of transistors, chip vendors have started developing new microarchitectural optimizations to speed up computation. A recent study (Sanchez Vicarte et al., ISCA 2021) suggests that these optimizations might open the Pandora's box of microarchitectural attacks. However, there is little guidance on how to evaluate the security impact of future optimization proposals. To help chip vendors explore the impact of microarchitectural optimizations on cryptographic implementations, we develop (i) an expressive domain-specific language, called LmSpec, that allows them to specify the leakage model for the given optimization and (ii) a testing framework, called LmTest, to automatically detect leaks under the specified leakage model within the given implementation. Using this framework, we conduct an empirical study of 18 proposed microarchitectural optimizations on 25 implementations of eight cryptographic primitives in five popular libraries. We find that every implementation would contain secret-dependent leaks, sometimes sufficient to recover a victim’s secret key, if these optimizations were realized. Ironically, some leaks are possible only because of coding idioms used to prevent leaks under the standard constant-time model.

 

Bio:

Prior to joining the Hasso Plattner Institute, Chitchanok Chuengsatiansup was a Professor of Cybersecurity at The University of Klagenfurt, Austria, a Senior Lecturer at The University of Melbourne and a Lecturer at The University of Adelaide, Australia.
Before that, she was a postdoctoral researcher at Inria and ENS de Lyon, France. She obtained her PhD from Eindhoven University of Technology, the Netherlands, Master's degree from The University of Tokyo, Japan, and Bachelor’s degree from Chulalongkorn University, Thailand.
Her research aims at enhancing security and efficiency of cryptosystems by considering the interplay among side-channel security, mathematical constructions, and users' performance budget. In particular, she is interested in optimizing interrelated factors to achieve high-speed high-security cryptographic software.

 

Speaker:

Prof. Chitchanok Chuengsatiansup

Professor of Cybersecurity
Hasso Plattner Institute
Germany